1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t, u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *, int); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 if (sp->state == IPSEC_SPSTATE_DEAD) { 1202 SPTREE_WUNLOCK(); 1203 return; 1204 } 1205 sp->state = IPSEC_SPSTATE_DEAD; 1206 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1207 SPTREE_WUNLOCK(); 1208 KEY_FREESP(&sp); 1209 } 1210 1211 /* 1212 * insert a secpolicy into the SP database. Lower priorities first 1213 */ 1214 static void 1215 key_insertsp(struct secpolicy *newsp) 1216 { 1217 struct secpolicy *sp; 1218 1219 SPTREE_WLOCK(); 1220 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1221 if (newsp->priority < sp->priority) { 1222 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1223 goto done; 1224 } 1225 } 1226 1227 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1228 1229 done: 1230 newsp->state = IPSEC_SPSTATE_ALIVE; 1231 SPTREE_WUNLOCK(); 1232 } 1233 1234 /* 1235 * Must be called after calling key_allocsp(). 1236 * For the packet with socket. 1237 */ 1238 void 1239 key_freeso(struct socket *so) 1240 { 1241 IPSEC_ASSERT(so != NULL, ("null so")); 1242 1243 switch (so->so_proto->pr_domain->dom_family) { 1244 #if defined(INET) || defined(INET6) 1245 #ifdef INET 1246 case PF_INET: 1247 #endif 1248 #ifdef INET6 1249 case PF_INET6: 1250 #endif 1251 { 1252 struct inpcb *pcb = sotoinpcb(so); 1253 1254 /* Does it have a PCB ? */ 1255 if (pcb == NULL) 1256 return; 1257 key_freesp_so(&pcb->inp_sp->sp_in); 1258 key_freesp_so(&pcb->inp_sp->sp_out); 1259 } 1260 break; 1261 #endif /* INET || INET6 */ 1262 default: 1263 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1264 __func__, so->so_proto->pr_domain->dom_family)); 1265 return; 1266 } 1267 } 1268 1269 static void 1270 key_freesp_so(struct secpolicy **sp) 1271 { 1272 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1273 1274 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1275 (*sp)->policy == IPSEC_POLICY_BYPASS) 1276 return; 1277 1278 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1279 ("invalid policy %u", (*sp)->policy)); 1280 KEY_FREESP(sp); 1281 } 1282 1283 void 1284 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1285 { 1286 1287 IPSEC_ASSERT(sav != NULL, ("null sav")); 1288 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1289 1290 sa_addref(sav); 1291 } 1292 1293 /* 1294 * Must be called after calling key_allocsa(). 1295 * This function is called by key_freesp() to free some SA allocated 1296 * for a policy. 1297 */ 1298 void 1299 key_freesav(struct secasvar **psav, const char* where, int tag) 1300 { 1301 struct secasvar *sav = *psav; 1302 1303 IPSEC_ASSERT(sav != NULL, ("null sav")); 1304 1305 if (sa_delref(sav)) { 1306 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1307 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1308 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1309 *psav = NULL; 1310 key_delsav(sav); 1311 } else { 1312 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1313 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1314 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1315 } 1316 } 1317 1318 /* %%% SPD management */ 1319 /* 1320 * search SPD 1321 * OUT: NULL : not found 1322 * others : found, pointer to a SP. 1323 */ 1324 static struct secpolicy * 1325 key_getsp(struct secpolicyindex *spidx) 1326 { 1327 SPTREE_RLOCK_TRACKER; 1328 struct secpolicy *sp; 1329 1330 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1331 1332 SPTREE_RLOCK(); 1333 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1334 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1335 SP_ADDREF(sp); 1336 break; 1337 } 1338 } 1339 SPTREE_RUNLOCK(); 1340 1341 return sp; 1342 } 1343 1344 /* 1345 * get SP by index. 1346 * OUT: NULL : not found 1347 * others : found, pointer to a SP. 1348 */ 1349 static struct secpolicy * 1350 key_getspbyid(u_int32_t id) 1351 { 1352 SPTREE_RLOCK_TRACKER; 1353 struct secpolicy *sp; 1354 1355 SPTREE_RLOCK(); 1356 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1357 if (sp->id == id) { 1358 SP_ADDREF(sp); 1359 goto done; 1360 } 1361 } 1362 1363 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1364 if (sp->id == id) { 1365 SP_ADDREF(sp); 1366 goto done; 1367 } 1368 } 1369 done: 1370 SPTREE_RUNLOCK(); 1371 1372 return sp; 1373 } 1374 1375 struct secpolicy * 1376 key_newsp(const char* where, int tag) 1377 { 1378 struct secpolicy *newsp = NULL; 1379 1380 newsp = (struct secpolicy *) 1381 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1382 if (newsp) 1383 refcount_init(&newsp->refcnt, 1); 1384 1385 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1386 printf("DP %s from %s:%u return SP:%p\n", __func__, 1387 where, tag, newsp)); 1388 return newsp; 1389 } 1390 1391 /* 1392 * create secpolicy structure from sadb_x_policy structure. 1393 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1394 * so must be set properly later. 1395 */ 1396 struct secpolicy * 1397 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1398 { 1399 struct secpolicy *newsp; 1400 1401 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1402 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1403 1404 if (len != PFKEY_EXTLEN(xpl0)) { 1405 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1406 *error = EINVAL; 1407 return NULL; 1408 } 1409 1410 if ((newsp = KEY_NEWSP()) == NULL) { 1411 *error = ENOBUFS; 1412 return NULL; 1413 } 1414 1415 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1416 newsp->policy = xpl0->sadb_x_policy_type; 1417 newsp->priority = xpl0->sadb_x_policy_priority; 1418 1419 /* check policy */ 1420 switch (xpl0->sadb_x_policy_type) { 1421 case IPSEC_POLICY_DISCARD: 1422 case IPSEC_POLICY_NONE: 1423 case IPSEC_POLICY_ENTRUST: 1424 case IPSEC_POLICY_BYPASS: 1425 newsp->req = NULL; 1426 break; 1427 1428 case IPSEC_POLICY_IPSEC: 1429 { 1430 int tlen; 1431 struct sadb_x_ipsecrequest *xisr; 1432 struct ipsecrequest **p_isr = &newsp->req; 1433 1434 /* validity check */ 1435 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1436 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1437 __func__)); 1438 KEY_FREESP(&newsp); 1439 *error = EINVAL; 1440 return NULL; 1441 } 1442 1443 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1444 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1445 1446 while (tlen > 0) { 1447 /* length check */ 1448 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1449 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1450 "length.\n", __func__)); 1451 KEY_FREESP(&newsp); 1452 *error = EINVAL; 1453 return NULL; 1454 } 1455 1456 /* allocate request buffer */ 1457 /* NB: data structure is zero'd */ 1458 *p_isr = ipsec_newisr(); 1459 if ((*p_isr) == NULL) { 1460 ipseclog((LOG_DEBUG, 1461 "%s: No more memory.\n", __func__)); 1462 KEY_FREESP(&newsp); 1463 *error = ENOBUFS; 1464 return NULL; 1465 } 1466 1467 /* set values */ 1468 switch (xisr->sadb_x_ipsecrequest_proto) { 1469 case IPPROTO_ESP: 1470 case IPPROTO_AH: 1471 case IPPROTO_IPCOMP: 1472 break; 1473 default: 1474 ipseclog((LOG_DEBUG, 1475 "%s: invalid proto type=%u\n", __func__, 1476 xisr->sadb_x_ipsecrequest_proto)); 1477 KEY_FREESP(&newsp); 1478 *error = EPROTONOSUPPORT; 1479 return NULL; 1480 } 1481 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1482 1483 switch (xisr->sadb_x_ipsecrequest_mode) { 1484 case IPSEC_MODE_TRANSPORT: 1485 case IPSEC_MODE_TUNNEL: 1486 break; 1487 case IPSEC_MODE_ANY: 1488 default: 1489 ipseclog((LOG_DEBUG, 1490 "%s: invalid mode=%u\n", __func__, 1491 xisr->sadb_x_ipsecrequest_mode)); 1492 KEY_FREESP(&newsp); 1493 *error = EINVAL; 1494 return NULL; 1495 } 1496 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1497 1498 switch (xisr->sadb_x_ipsecrequest_level) { 1499 case IPSEC_LEVEL_DEFAULT: 1500 case IPSEC_LEVEL_USE: 1501 case IPSEC_LEVEL_REQUIRE: 1502 break; 1503 case IPSEC_LEVEL_UNIQUE: 1504 /* validity check */ 1505 /* 1506 * If range violation of reqid, kernel will 1507 * update it, don't refuse it. 1508 */ 1509 if (xisr->sadb_x_ipsecrequest_reqid 1510 > IPSEC_MANUAL_REQID_MAX) { 1511 ipseclog((LOG_DEBUG, 1512 "%s: reqid=%d range " 1513 "violation, updated by kernel.\n", 1514 __func__, 1515 xisr->sadb_x_ipsecrequest_reqid)); 1516 xisr->sadb_x_ipsecrequest_reqid = 0; 1517 } 1518 1519 /* allocate new reqid id if reqid is zero. */ 1520 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1521 u_int32_t reqid; 1522 if ((reqid = key_newreqid()) == 0) { 1523 KEY_FREESP(&newsp); 1524 *error = ENOBUFS; 1525 return NULL; 1526 } 1527 (*p_isr)->saidx.reqid = reqid; 1528 xisr->sadb_x_ipsecrequest_reqid = reqid; 1529 } else { 1530 /* set it for manual keying. */ 1531 (*p_isr)->saidx.reqid = 1532 xisr->sadb_x_ipsecrequest_reqid; 1533 } 1534 break; 1535 1536 default: 1537 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1538 __func__, 1539 xisr->sadb_x_ipsecrequest_level)); 1540 KEY_FREESP(&newsp); 1541 *error = EINVAL; 1542 return NULL; 1543 } 1544 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1545 1546 /* set IP addresses if there */ 1547 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1548 struct sockaddr *paddr; 1549 1550 paddr = (struct sockaddr *)(xisr + 1); 1551 1552 /* validity check */ 1553 if (paddr->sa_len 1554 > sizeof((*p_isr)->saidx.src)) { 1555 ipseclog((LOG_DEBUG, "%s: invalid " 1556 "request address length.\n", 1557 __func__)); 1558 KEY_FREESP(&newsp); 1559 *error = EINVAL; 1560 return NULL; 1561 } 1562 bcopy(paddr, &(*p_isr)->saidx.src, 1563 paddr->sa_len); 1564 1565 paddr = (struct sockaddr *)((caddr_t)paddr 1566 + paddr->sa_len); 1567 1568 /* validity check */ 1569 if (paddr->sa_len 1570 > sizeof((*p_isr)->saidx.dst)) { 1571 ipseclog((LOG_DEBUG, "%s: invalid " 1572 "request address length.\n", 1573 __func__)); 1574 KEY_FREESP(&newsp); 1575 *error = EINVAL; 1576 return NULL; 1577 } 1578 bcopy(paddr, &(*p_isr)->saidx.dst, 1579 paddr->sa_len); 1580 } 1581 1582 (*p_isr)->sp = newsp; 1583 1584 /* initialization for the next. */ 1585 p_isr = &(*p_isr)->next; 1586 tlen -= xisr->sadb_x_ipsecrequest_len; 1587 1588 /* validity check */ 1589 if (tlen < 0) { 1590 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1591 __func__)); 1592 KEY_FREESP(&newsp); 1593 *error = EINVAL; 1594 return NULL; 1595 } 1596 1597 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1598 + xisr->sadb_x_ipsecrequest_len); 1599 } 1600 } 1601 break; 1602 default: 1603 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1604 KEY_FREESP(&newsp); 1605 *error = EINVAL; 1606 return NULL; 1607 } 1608 1609 *error = 0; 1610 return newsp; 1611 } 1612 1613 static u_int32_t 1614 key_newreqid() 1615 { 1616 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1617 1618 auto_reqid = (auto_reqid == ~0 1619 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1620 1621 /* XXX should be unique check */ 1622 1623 return auto_reqid; 1624 } 1625 1626 /* 1627 * copy secpolicy struct to sadb_x_policy structure indicated. 1628 */ 1629 struct mbuf * 1630 key_sp2msg(struct secpolicy *sp) 1631 { 1632 struct sadb_x_policy *xpl; 1633 int tlen; 1634 caddr_t p; 1635 struct mbuf *m; 1636 1637 IPSEC_ASSERT(sp != NULL, ("null policy")); 1638 1639 tlen = key_getspreqmsglen(sp); 1640 1641 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1642 if (m == NULL) 1643 return (NULL); 1644 m_align(m, tlen); 1645 m->m_len = tlen; 1646 xpl = mtod(m, struct sadb_x_policy *); 1647 bzero(xpl, tlen); 1648 1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1651 xpl->sadb_x_policy_type = sp->policy; 1652 xpl->sadb_x_policy_dir = sp->spidx.dir; 1653 xpl->sadb_x_policy_id = sp->id; 1654 xpl->sadb_x_policy_priority = sp->priority; 1655 p = (caddr_t)xpl + sizeof(*xpl); 1656 1657 /* if is the policy for ipsec ? */ 1658 if (sp->policy == IPSEC_POLICY_IPSEC) { 1659 struct sadb_x_ipsecrequest *xisr; 1660 struct ipsecrequest *isr; 1661 1662 for (isr = sp->req; isr != NULL; isr = isr->next) { 1663 1664 xisr = (struct sadb_x_ipsecrequest *)p; 1665 1666 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1667 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1668 xisr->sadb_x_ipsecrequest_level = isr->level; 1669 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1670 1671 p += sizeof(*xisr); 1672 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1673 p += isr->saidx.src.sa.sa_len; 1674 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1675 p += isr->saidx.src.sa.sa_len; 1676 1677 xisr->sadb_x_ipsecrequest_len = 1678 PFKEY_ALIGN8(sizeof(*xisr) 1679 + isr->saidx.src.sa.sa_len 1680 + isr->saidx.dst.sa.sa_len); 1681 } 1682 } 1683 1684 return m; 1685 } 1686 1687 /* m will not be freed nor modified */ 1688 static struct mbuf * 1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1690 int ndeep, int nitem, ...) 1691 { 1692 va_list ap; 1693 int idx; 1694 int i; 1695 struct mbuf *result = NULL, *n; 1696 int len; 1697 1698 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1699 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1700 1701 va_start(ap, nitem); 1702 for (i = 0; i < nitem; i++) { 1703 idx = va_arg(ap, int); 1704 if (idx < 0 || idx > SADB_EXT_MAX) 1705 goto fail; 1706 /* don't attempt to pull empty extension */ 1707 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1708 continue; 1709 if (idx != SADB_EXT_RESERVED && 1710 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1711 continue; 1712 1713 if (idx == SADB_EXT_RESERVED) { 1714 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1715 1716 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1717 1718 MGETHDR(n, M_NOWAIT, MT_DATA); 1719 if (!n) 1720 goto fail; 1721 n->m_len = len; 1722 n->m_next = NULL; 1723 m_copydata(m, 0, sizeof(struct sadb_msg), 1724 mtod(n, caddr_t)); 1725 } else if (i < ndeep) { 1726 len = mhp->extlen[idx]; 1727 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1728 if (n == NULL) 1729 goto fail; 1730 m_align(n, len); 1731 n->m_len = len; 1732 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1733 mtod(n, caddr_t)); 1734 } else { 1735 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1736 M_NOWAIT); 1737 } 1738 if (n == NULL) 1739 goto fail; 1740 1741 if (result) 1742 m_cat(result, n); 1743 else 1744 result = n; 1745 } 1746 va_end(ap); 1747 1748 if ((result->m_flags & M_PKTHDR) != 0) { 1749 result->m_pkthdr.len = 0; 1750 for (n = result; n; n = n->m_next) 1751 result->m_pkthdr.len += n->m_len; 1752 } 1753 1754 return result; 1755 1756 fail: 1757 m_freem(result); 1758 va_end(ap); 1759 return NULL; 1760 } 1761 1762 /* 1763 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1764 * add an entry to SP database, when received 1765 * <base, address(SD), (lifetime(H),) policy> 1766 * from the user(?). 1767 * Adding to SP database, 1768 * and send 1769 * <base, address(SD), (lifetime(H),) policy> 1770 * to the socket which was send. 1771 * 1772 * SPDADD set a unique policy entry. 1773 * SPDSETIDX like SPDADD without a part of policy requests. 1774 * SPDUPDATE replace a unique policy entry. 1775 * 1776 * m will always be freed. 1777 */ 1778 static int 1779 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1780 { 1781 struct sadb_address *src0, *dst0; 1782 struct sadb_x_policy *xpl0, *xpl; 1783 struct sadb_lifetime *lft = NULL; 1784 struct secpolicyindex spidx; 1785 struct secpolicy *newsp; 1786 int error; 1787 1788 IPSEC_ASSERT(so != NULL, ("null socket")); 1789 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1790 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1791 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1792 1793 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1794 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1795 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1796 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1797 return key_senderror(so, m, EINVAL); 1798 } 1799 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1800 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1801 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1802 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1803 __func__)); 1804 return key_senderror(so, m, EINVAL); 1805 } 1806 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1807 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1808 < sizeof(struct sadb_lifetime)) { 1809 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1810 __func__)); 1811 return key_senderror(so, m, EINVAL); 1812 } 1813 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1814 } 1815 1816 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1817 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1818 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1819 1820 /* 1821 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1822 * we are processing traffic endpoints. 1823 */ 1824 1825 /* make secindex */ 1826 /* XXX boundary check against sa_len */ 1827 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1828 src0 + 1, 1829 dst0 + 1, 1830 src0->sadb_address_prefixlen, 1831 dst0->sadb_address_prefixlen, 1832 src0->sadb_address_proto, 1833 &spidx); 1834 1835 /* checking the direciton. */ 1836 switch (xpl0->sadb_x_policy_dir) { 1837 case IPSEC_DIR_INBOUND: 1838 case IPSEC_DIR_OUTBOUND: 1839 break; 1840 default: 1841 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1842 mhp->msg->sadb_msg_errno = EINVAL; 1843 return 0; 1844 } 1845 1846 /* check policy */ 1847 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1848 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1849 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1850 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1851 return key_senderror(so, m, EINVAL); 1852 } 1853 1854 /* policy requests are mandatory when action is ipsec. */ 1855 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1856 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1857 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1858 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1859 __func__)); 1860 return key_senderror(so, m, EINVAL); 1861 } 1862 1863 /* 1864 * checking there is SP already or not. 1865 * SPDUPDATE doesn't depend on whether there is a SP or not. 1866 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1867 * then error. 1868 */ 1869 newsp = key_getsp(&spidx); 1870 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1871 if (newsp) { 1872 key_unlink(newsp); 1873 KEY_FREESP(&newsp); 1874 } 1875 } else { 1876 if (newsp != NULL) { 1877 KEY_FREESP(&newsp); 1878 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1879 __func__)); 1880 return key_senderror(so, m, EEXIST); 1881 } 1882 } 1883 1884 /* XXX: there is race between key_getsp and key_msg2sp. */ 1885 1886 /* allocation new SP entry */ 1887 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1888 return key_senderror(so, m, error); 1889 } 1890 1891 if ((newsp->id = key_getnewspid()) == 0) { 1892 KEY_FREESP(&newsp); 1893 return key_senderror(so, m, ENOBUFS); 1894 } 1895 1896 /* XXX boundary check against sa_len */ 1897 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1898 src0 + 1, 1899 dst0 + 1, 1900 src0->sadb_address_prefixlen, 1901 dst0->sadb_address_prefixlen, 1902 src0->sadb_address_proto, 1903 &newsp->spidx); 1904 1905 /* sanity check on addr pair */ 1906 if (((struct sockaddr *)(src0 + 1))->sa_family != 1907 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1908 KEY_FREESP(&newsp); 1909 return key_senderror(so, m, EINVAL); 1910 } 1911 if (((struct sockaddr *)(src0 + 1))->sa_len != 1912 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1913 KEY_FREESP(&newsp); 1914 return key_senderror(so, m, EINVAL); 1915 } 1916 #if 1 1917 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1918 newsp->req->saidx.dst.sa.sa_family) { 1919 if (newsp->req->saidx.src.sa.sa_family != 1920 newsp->req->saidx.dst.sa.sa_family) { 1921 KEY_FREESP(&newsp); 1922 return key_senderror(so, m, EINVAL); 1923 } 1924 } 1925 #endif 1926 1927 newsp->created = time_second; 1928 newsp->lastused = newsp->created; 1929 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1930 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1931 1932 key_insertsp(newsp); 1933 1934 /* delete the entry in spacqtree */ 1935 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1936 struct secspacq *spacq = key_getspacq(&spidx); 1937 if (spacq != NULL) { 1938 /* reset counter in order to deletion by timehandler. */ 1939 spacq->created = time_second; 1940 spacq->count = 0; 1941 SPACQ_UNLOCK(); 1942 } 1943 } 1944 1945 { 1946 struct mbuf *n, *mpolicy; 1947 struct sadb_msg *newmsg; 1948 int off; 1949 1950 /* 1951 * Note: do not send SADB_X_EXT_NAT_T_* here: 1952 * we are sending traffic endpoints. 1953 */ 1954 1955 /* create new sadb_msg to reply. */ 1956 if (lft) { 1957 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1958 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1959 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1960 } else { 1961 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1962 SADB_X_EXT_POLICY, 1963 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1964 } 1965 if (!n) 1966 return key_senderror(so, m, ENOBUFS); 1967 1968 if (n->m_len < sizeof(*newmsg)) { 1969 n = m_pullup(n, sizeof(*newmsg)); 1970 if (!n) 1971 return key_senderror(so, m, ENOBUFS); 1972 } 1973 newmsg = mtod(n, struct sadb_msg *); 1974 newmsg->sadb_msg_errno = 0; 1975 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1976 1977 off = 0; 1978 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1979 sizeof(*xpl), &off); 1980 if (mpolicy == NULL) { 1981 /* n is already freed */ 1982 return key_senderror(so, m, ENOBUFS); 1983 } 1984 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1985 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1986 m_freem(n); 1987 return key_senderror(so, m, EINVAL); 1988 } 1989 xpl->sadb_x_policy_id = newsp->id; 1990 1991 m_freem(m); 1992 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1993 } 1994 } 1995 1996 /* 1997 * get new policy id. 1998 * OUT: 1999 * 0: failure. 2000 * others: success. 2001 */ 2002 static u_int32_t 2003 key_getnewspid() 2004 { 2005 u_int32_t newid = 0; 2006 int count = V_key_spi_trycnt; /* XXX */ 2007 struct secpolicy *sp; 2008 2009 /* when requesting to allocate spi ranged */ 2010 while (count--) { 2011 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2012 2013 if ((sp = key_getspbyid(newid)) == NULL) 2014 break; 2015 2016 KEY_FREESP(&sp); 2017 } 2018 2019 if (count == 0 || newid == 0) { 2020 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2021 __func__)); 2022 return 0; 2023 } 2024 2025 return newid; 2026 } 2027 2028 /* 2029 * SADB_SPDDELETE processing 2030 * receive 2031 * <base, address(SD), policy(*)> 2032 * from the user(?), and set SADB_SASTATE_DEAD, 2033 * and send, 2034 * <base, address(SD), policy(*)> 2035 * to the ikmpd. 2036 * policy(*) including direction of policy. 2037 * 2038 * m will always be freed. 2039 */ 2040 static int 2041 key_spddelete(struct socket *so, struct mbuf *m, 2042 const struct sadb_msghdr *mhp) 2043 { 2044 struct sadb_address *src0, *dst0; 2045 struct sadb_x_policy *xpl0; 2046 struct secpolicyindex spidx; 2047 struct secpolicy *sp; 2048 2049 IPSEC_ASSERT(so != NULL, ("null so")); 2050 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2051 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2052 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2053 2054 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2055 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2056 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2057 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2058 __func__)); 2059 return key_senderror(so, m, EINVAL); 2060 } 2061 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2062 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2063 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2064 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2065 __func__)); 2066 return key_senderror(so, m, EINVAL); 2067 } 2068 2069 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2070 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2071 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2072 2073 /* 2074 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2075 * we are processing traffic endpoints. 2076 */ 2077 2078 /* make secindex */ 2079 /* XXX boundary check against sa_len */ 2080 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2081 src0 + 1, 2082 dst0 + 1, 2083 src0->sadb_address_prefixlen, 2084 dst0->sadb_address_prefixlen, 2085 src0->sadb_address_proto, 2086 &spidx); 2087 2088 /* checking the direciton. */ 2089 switch (xpl0->sadb_x_policy_dir) { 2090 case IPSEC_DIR_INBOUND: 2091 case IPSEC_DIR_OUTBOUND: 2092 break; 2093 default: 2094 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2095 return key_senderror(so, m, EINVAL); 2096 } 2097 2098 /* Is there SP in SPD ? */ 2099 if ((sp = key_getsp(&spidx)) == NULL) { 2100 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2101 return key_senderror(so, m, EINVAL); 2102 } 2103 2104 /* save policy id to buffer to be returned. */ 2105 xpl0->sadb_x_policy_id = sp->id; 2106 2107 key_unlink(sp); 2108 KEY_FREESP(&sp); 2109 2110 { 2111 struct mbuf *n; 2112 struct sadb_msg *newmsg; 2113 2114 /* 2115 * Note: do not send SADB_X_EXT_NAT_T_* here: 2116 * we are sending traffic endpoints. 2117 */ 2118 2119 /* create new sadb_msg to reply. */ 2120 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2121 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2122 if (!n) 2123 return key_senderror(so, m, ENOBUFS); 2124 2125 newmsg = mtod(n, struct sadb_msg *); 2126 newmsg->sadb_msg_errno = 0; 2127 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2128 2129 m_freem(m); 2130 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2131 } 2132 } 2133 2134 /* 2135 * SADB_SPDDELETE2 processing 2136 * receive 2137 * <base, policy(*)> 2138 * from the user(?), and set SADB_SASTATE_DEAD, 2139 * and send, 2140 * <base, policy(*)> 2141 * to the ikmpd. 2142 * policy(*) including direction of policy. 2143 * 2144 * m will always be freed. 2145 */ 2146 static int 2147 key_spddelete2(struct socket *so, struct mbuf *m, 2148 const struct sadb_msghdr *mhp) 2149 { 2150 u_int32_t id; 2151 struct secpolicy *sp; 2152 2153 IPSEC_ASSERT(so != NULL, ("null socket")); 2154 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2155 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2156 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2157 2158 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2159 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2160 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2161 return key_senderror(so, m, EINVAL); 2162 } 2163 2164 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2165 2166 /* Is there SP in SPD ? */ 2167 if ((sp = key_getspbyid(id)) == NULL) { 2168 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2169 return key_senderror(so, m, EINVAL); 2170 } 2171 2172 key_unlink(sp); 2173 KEY_FREESP(&sp); 2174 2175 { 2176 struct mbuf *n, *nn; 2177 struct sadb_msg *newmsg; 2178 int off, len; 2179 2180 /* create new sadb_msg to reply. */ 2181 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2182 2183 MGETHDR(n, M_NOWAIT, MT_DATA); 2184 if (n && len > MHLEN) { 2185 if (!(MCLGET(n, M_NOWAIT))) { 2186 m_freem(n); 2187 n = NULL; 2188 } 2189 } 2190 if (!n) 2191 return key_senderror(so, m, ENOBUFS); 2192 2193 n->m_len = len; 2194 n->m_next = NULL; 2195 off = 0; 2196 2197 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2198 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2199 2200 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2201 off, len)); 2202 2203 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2204 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2205 if (!n->m_next) { 2206 m_freem(n); 2207 return key_senderror(so, m, ENOBUFS); 2208 } 2209 2210 n->m_pkthdr.len = 0; 2211 for (nn = n; nn; nn = nn->m_next) 2212 n->m_pkthdr.len += nn->m_len; 2213 2214 newmsg = mtod(n, struct sadb_msg *); 2215 newmsg->sadb_msg_errno = 0; 2216 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2217 2218 m_freem(m); 2219 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2220 } 2221 } 2222 2223 /* 2224 * SADB_X_SPDGET processing 2225 * receive 2226 * <base, policy(*)> 2227 * from the user(?), 2228 * and send, 2229 * <base, address(SD), policy> 2230 * to the ikmpd. 2231 * policy(*) including direction of policy. 2232 * 2233 * m will always be freed. 2234 */ 2235 static int 2236 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2237 { 2238 u_int32_t id; 2239 struct secpolicy *sp; 2240 struct mbuf *n; 2241 2242 IPSEC_ASSERT(so != NULL, ("null socket")); 2243 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2244 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2245 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2246 2247 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2248 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2249 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2250 __func__)); 2251 return key_senderror(so, m, EINVAL); 2252 } 2253 2254 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2255 2256 /* Is there SP in SPD ? */ 2257 if ((sp = key_getspbyid(id)) == NULL) { 2258 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2259 return key_senderror(so, m, ENOENT); 2260 } 2261 2262 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2263 mhp->msg->sadb_msg_pid); 2264 KEY_FREESP(&sp); 2265 if (n != NULL) { 2266 m_freem(m); 2267 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2268 } else 2269 return key_senderror(so, m, ENOBUFS); 2270 } 2271 2272 /* 2273 * SADB_X_SPDACQUIRE processing. 2274 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2275 * send 2276 * <base, policy(*)> 2277 * to KMD, and expect to receive 2278 * <base> with SADB_X_SPDACQUIRE if error occured, 2279 * or 2280 * <base, policy> 2281 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2282 * policy(*) is without policy requests. 2283 * 2284 * 0 : succeed 2285 * others: error number 2286 */ 2287 int 2288 key_spdacquire(struct secpolicy *sp) 2289 { 2290 struct mbuf *result = NULL, *m; 2291 struct secspacq *newspacq; 2292 2293 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2294 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2295 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2296 ("policy not IPSEC %u", sp->policy)); 2297 2298 /* Get an entry to check whether sent message or not. */ 2299 newspacq = key_getspacq(&sp->spidx); 2300 if (newspacq != NULL) { 2301 if (V_key_blockacq_count < newspacq->count) { 2302 /* reset counter and do send message. */ 2303 newspacq->count = 0; 2304 } else { 2305 /* increment counter and do nothing. */ 2306 newspacq->count++; 2307 SPACQ_UNLOCK(); 2308 return (0); 2309 } 2310 SPACQ_UNLOCK(); 2311 } else { 2312 /* make new entry for blocking to send SADB_ACQUIRE. */ 2313 newspacq = key_newspacq(&sp->spidx); 2314 if (newspacq == NULL) 2315 return ENOBUFS; 2316 } 2317 2318 /* create new sadb_msg to reply. */ 2319 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2320 if (!m) 2321 return ENOBUFS; 2322 2323 result = m; 2324 2325 result->m_pkthdr.len = 0; 2326 for (m = result; m; m = m->m_next) 2327 result->m_pkthdr.len += m->m_len; 2328 2329 mtod(result, struct sadb_msg *)->sadb_msg_len = 2330 PFKEY_UNIT64(result->m_pkthdr.len); 2331 2332 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2333 } 2334 2335 /* 2336 * SADB_SPDFLUSH processing 2337 * receive 2338 * <base> 2339 * from the user, and free all entries in secpctree. 2340 * and send, 2341 * <base> 2342 * to the user. 2343 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2344 * 2345 * m will always be freed. 2346 */ 2347 static int 2348 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2349 { 2350 TAILQ_HEAD(, secpolicy) drainq; 2351 struct sadb_msg *newmsg; 2352 struct secpolicy *sp, *nextsp; 2353 u_int dir; 2354 2355 IPSEC_ASSERT(so != NULL, ("null socket")); 2356 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2357 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2358 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2359 2360 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2361 return key_senderror(so, m, EINVAL); 2362 2363 TAILQ_INIT(&drainq); 2364 SPTREE_WLOCK(); 2365 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2366 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2367 } 2368 /* 2369 * We need to set state to DEAD for each policy to be sure, 2370 * that another thread won't try to unlink it. 2371 */ 2372 TAILQ_FOREACH(sp, &drainq, chain) 2373 sp->state = IPSEC_SPSTATE_DEAD; 2374 SPTREE_WUNLOCK(); 2375 sp = TAILQ_FIRST(&drainq); 2376 while (sp != NULL) { 2377 nextsp = TAILQ_NEXT(sp, chain); 2378 KEY_FREESP(&sp); 2379 sp = nextsp; 2380 } 2381 2382 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2383 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2384 return key_senderror(so, m, ENOBUFS); 2385 } 2386 2387 if (m->m_next) 2388 m_freem(m->m_next); 2389 m->m_next = NULL; 2390 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2391 newmsg = mtod(m, struct sadb_msg *); 2392 newmsg->sadb_msg_errno = 0; 2393 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2394 2395 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2396 } 2397 2398 /* 2399 * SADB_SPDDUMP processing 2400 * receive 2401 * <base> 2402 * from the user, and dump all SP leaves 2403 * and send, 2404 * <base> ..... 2405 * to the ikmpd. 2406 * 2407 * m will always be freed. 2408 */ 2409 static int 2410 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2411 { 2412 SPTREE_RLOCK_TRACKER; 2413 struct secpolicy *sp; 2414 int cnt; 2415 u_int dir; 2416 struct mbuf *n; 2417 2418 IPSEC_ASSERT(so != NULL, ("null socket")); 2419 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2420 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2421 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2422 2423 /* search SPD entry and get buffer size. */ 2424 cnt = 0; 2425 SPTREE_RLOCK(); 2426 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2427 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2428 cnt++; 2429 } 2430 } 2431 2432 if (cnt == 0) { 2433 SPTREE_RUNLOCK(); 2434 return key_senderror(so, m, ENOENT); 2435 } 2436 2437 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2438 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2439 --cnt; 2440 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2441 mhp->msg->sadb_msg_pid); 2442 2443 if (n) 2444 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2445 } 2446 } 2447 2448 SPTREE_RUNLOCK(); 2449 m_freem(m); 2450 return 0; 2451 } 2452 2453 static struct mbuf * 2454 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2455 u_int32_t pid) 2456 { 2457 struct mbuf *result = NULL, *m; 2458 struct seclifetime lt; 2459 2460 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2461 if (!m) 2462 goto fail; 2463 result = m; 2464 2465 /* 2466 * Note: do not send SADB_X_EXT_NAT_T_* here: 2467 * we are sending traffic endpoints. 2468 */ 2469 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2470 &sp->spidx.src.sa, sp->spidx.prefs, 2471 sp->spidx.ul_proto); 2472 if (!m) 2473 goto fail; 2474 m_cat(result, m); 2475 2476 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2477 &sp->spidx.dst.sa, sp->spidx.prefd, 2478 sp->spidx.ul_proto); 2479 if (!m) 2480 goto fail; 2481 m_cat(result, m); 2482 2483 m = key_sp2msg(sp); 2484 if (!m) 2485 goto fail; 2486 m_cat(result, m); 2487 2488 if(sp->lifetime){ 2489 lt.addtime=sp->created; 2490 lt.usetime= sp->lastused; 2491 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2492 if (!m) 2493 goto fail; 2494 m_cat(result, m); 2495 2496 lt.addtime=sp->lifetime; 2497 lt.usetime= sp->validtime; 2498 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2499 if (!m) 2500 goto fail; 2501 m_cat(result, m); 2502 } 2503 2504 if ((result->m_flags & M_PKTHDR) == 0) 2505 goto fail; 2506 2507 if (result->m_len < sizeof(struct sadb_msg)) { 2508 result = m_pullup(result, sizeof(struct sadb_msg)); 2509 if (result == NULL) 2510 goto fail; 2511 } 2512 2513 result->m_pkthdr.len = 0; 2514 for (m = result; m; m = m->m_next) 2515 result->m_pkthdr.len += m->m_len; 2516 2517 mtod(result, struct sadb_msg *)->sadb_msg_len = 2518 PFKEY_UNIT64(result->m_pkthdr.len); 2519 2520 return result; 2521 2522 fail: 2523 m_freem(result); 2524 return NULL; 2525 } 2526 2527 /* 2528 * get PFKEY message length for security policy and request. 2529 */ 2530 static u_int 2531 key_getspreqmsglen(struct secpolicy *sp) 2532 { 2533 u_int tlen; 2534 2535 tlen = sizeof(struct sadb_x_policy); 2536 2537 /* if is the policy for ipsec ? */ 2538 if (sp->policy != IPSEC_POLICY_IPSEC) 2539 return tlen; 2540 2541 /* get length of ipsec requests */ 2542 { 2543 struct ipsecrequest *isr; 2544 int len; 2545 2546 for (isr = sp->req; isr != NULL; isr = isr->next) { 2547 len = sizeof(struct sadb_x_ipsecrequest) 2548 + isr->saidx.src.sa.sa_len 2549 + isr->saidx.dst.sa.sa_len; 2550 2551 tlen += PFKEY_ALIGN8(len); 2552 } 2553 } 2554 2555 return tlen; 2556 } 2557 2558 /* 2559 * SADB_SPDEXPIRE processing 2560 * send 2561 * <base, address(SD), lifetime(CH), policy> 2562 * to KMD by PF_KEY. 2563 * 2564 * OUT: 0 : succeed 2565 * others : error number 2566 */ 2567 static int 2568 key_spdexpire(struct secpolicy *sp) 2569 { 2570 struct mbuf *result = NULL, *m; 2571 int len; 2572 int error = -1; 2573 struct sadb_lifetime *lt; 2574 2575 /* XXX: Why do we lock ? */ 2576 2577 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2578 2579 /* set msg header */ 2580 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2581 if (!m) { 2582 error = ENOBUFS; 2583 goto fail; 2584 } 2585 result = m; 2586 2587 /* create lifetime extension (current and hard) */ 2588 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2589 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2590 if (m == NULL) { 2591 error = ENOBUFS; 2592 goto fail; 2593 } 2594 m_align(m, len); 2595 m->m_len = len; 2596 bzero(mtod(m, caddr_t), len); 2597 lt = mtod(m, struct sadb_lifetime *); 2598 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2599 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2600 lt->sadb_lifetime_allocations = 0; 2601 lt->sadb_lifetime_bytes = 0; 2602 lt->sadb_lifetime_addtime = sp->created; 2603 lt->sadb_lifetime_usetime = sp->lastused; 2604 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2605 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2606 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2607 lt->sadb_lifetime_allocations = 0; 2608 lt->sadb_lifetime_bytes = 0; 2609 lt->sadb_lifetime_addtime = sp->lifetime; 2610 lt->sadb_lifetime_usetime = sp->validtime; 2611 m_cat(result, m); 2612 2613 /* 2614 * Note: do not send SADB_X_EXT_NAT_T_* here: 2615 * we are sending traffic endpoints. 2616 */ 2617 2618 /* set sadb_address for source */ 2619 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2620 &sp->spidx.src.sa, 2621 sp->spidx.prefs, sp->spidx.ul_proto); 2622 if (!m) { 2623 error = ENOBUFS; 2624 goto fail; 2625 } 2626 m_cat(result, m); 2627 2628 /* set sadb_address for destination */ 2629 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2630 &sp->spidx.dst.sa, 2631 sp->spidx.prefd, sp->spidx.ul_proto); 2632 if (!m) { 2633 error = ENOBUFS; 2634 goto fail; 2635 } 2636 m_cat(result, m); 2637 2638 /* set secpolicy */ 2639 m = key_sp2msg(sp); 2640 if (!m) { 2641 error = ENOBUFS; 2642 goto fail; 2643 } 2644 m_cat(result, m); 2645 2646 if ((result->m_flags & M_PKTHDR) == 0) { 2647 error = EINVAL; 2648 goto fail; 2649 } 2650 2651 if (result->m_len < sizeof(struct sadb_msg)) { 2652 result = m_pullup(result, sizeof(struct sadb_msg)); 2653 if (result == NULL) { 2654 error = ENOBUFS; 2655 goto fail; 2656 } 2657 } 2658 2659 result->m_pkthdr.len = 0; 2660 for (m = result; m; m = m->m_next) 2661 result->m_pkthdr.len += m->m_len; 2662 2663 mtod(result, struct sadb_msg *)->sadb_msg_len = 2664 PFKEY_UNIT64(result->m_pkthdr.len); 2665 2666 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2667 2668 fail: 2669 if (result) 2670 m_freem(result); 2671 return error; 2672 } 2673 2674 /* %%% SAD management */ 2675 /* 2676 * allocating a memory for new SA head, and copy from the values of mhp. 2677 * OUT: NULL : failure due to the lack of memory. 2678 * others : pointer to new SA head. 2679 */ 2680 static struct secashead * 2681 key_newsah(struct secasindex *saidx) 2682 { 2683 struct secashead *newsah; 2684 2685 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2686 2687 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2688 if (newsah != NULL) { 2689 int i; 2690 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2691 LIST_INIT(&newsah->savtree[i]); 2692 newsah->saidx = *saidx; 2693 2694 /* add to saidxtree */ 2695 newsah->state = SADB_SASTATE_MATURE; 2696 2697 SAHTREE_LOCK(); 2698 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2699 SAHTREE_UNLOCK(); 2700 } 2701 return(newsah); 2702 } 2703 2704 /* 2705 * delete SA index and all SA registerd. 2706 */ 2707 static void 2708 key_delsah(struct secashead *sah) 2709 { 2710 struct secasvar *sav, *nextsav; 2711 u_int stateidx; 2712 int zombie = 0; 2713 2714 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2715 SAHTREE_LOCK_ASSERT(); 2716 2717 /* searching all SA registerd in the secindex. */ 2718 for (stateidx = 0; 2719 stateidx < _ARRAYLEN(saorder_state_any); 2720 stateidx++) { 2721 u_int state = saorder_state_any[stateidx]; 2722 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2723 if (sav->refcnt == 0) { 2724 /* sanity check */ 2725 KEY_CHKSASTATE(state, sav->state, __func__); 2726 /* 2727 * do NOT call KEY_FREESAV here: 2728 * it will only delete the sav if refcnt == 1, 2729 * where we already know that refcnt == 0 2730 */ 2731 key_delsav(sav); 2732 } else { 2733 /* give up to delete this sa */ 2734 zombie++; 2735 } 2736 } 2737 } 2738 if (!zombie) { /* delete only if there are savs */ 2739 /* remove from tree of SA index */ 2740 if (__LIST_CHAINED(sah)) 2741 LIST_REMOVE(sah, chain); 2742 free(sah, M_IPSEC_SAH); 2743 } 2744 } 2745 2746 /* 2747 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2748 * and copy the values of mhp into new buffer. 2749 * When SAD message type is GETSPI: 2750 * to set sequence number from acq_seq++, 2751 * to set zero to SPI. 2752 * not to call key_setsava(). 2753 * OUT: NULL : fail 2754 * others : pointer to new secasvar. 2755 * 2756 * does not modify mbuf. does not free mbuf on error. 2757 */ 2758 static struct secasvar * 2759 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2760 struct secashead *sah, int *errp, const char *where, int tag) 2761 { 2762 struct secasvar *newsav; 2763 const struct sadb_sa *xsa; 2764 2765 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2766 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2767 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2768 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2769 2770 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2771 if (newsav == NULL) { 2772 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2773 *errp = ENOBUFS; 2774 goto done; 2775 } 2776 2777 switch (mhp->msg->sadb_msg_type) { 2778 case SADB_GETSPI: 2779 newsav->spi = 0; 2780 2781 #ifdef IPSEC_DOSEQCHECK 2782 /* sync sequence number */ 2783 if (mhp->msg->sadb_msg_seq == 0) 2784 newsav->seq = 2785 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2786 else 2787 #endif 2788 newsav->seq = mhp->msg->sadb_msg_seq; 2789 break; 2790 2791 case SADB_ADD: 2792 /* sanity check */ 2793 if (mhp->ext[SADB_EXT_SA] == NULL) { 2794 free(newsav, M_IPSEC_SA); 2795 newsav = NULL; 2796 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2797 __func__)); 2798 *errp = EINVAL; 2799 goto done; 2800 } 2801 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2802 newsav->spi = xsa->sadb_sa_spi; 2803 newsav->seq = mhp->msg->sadb_msg_seq; 2804 break; 2805 default: 2806 free(newsav, M_IPSEC_SA); 2807 newsav = NULL; 2808 *errp = EINVAL; 2809 goto done; 2810 } 2811 2812 2813 /* copy sav values */ 2814 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2815 *errp = key_setsaval(newsav, m, mhp); 2816 if (*errp) { 2817 free(newsav, M_IPSEC_SA); 2818 newsav = NULL; 2819 goto done; 2820 } 2821 } 2822 2823 SECASVAR_LOCK_INIT(newsav); 2824 2825 /* reset created */ 2826 newsav->created = time_second; 2827 newsav->pid = mhp->msg->sadb_msg_pid; 2828 2829 /* add to satree */ 2830 newsav->sah = sah; 2831 sa_initref(newsav); 2832 newsav->state = SADB_SASTATE_LARVAL; 2833 2834 SAHTREE_LOCK(); 2835 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2836 secasvar, chain); 2837 SAHTREE_UNLOCK(); 2838 done: 2839 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2840 printf("DP %s from %s:%u return SP:%p\n", __func__, 2841 where, tag, newsav)); 2842 2843 return newsav; 2844 } 2845 2846 /* 2847 * free() SA variable entry. 2848 */ 2849 static void 2850 key_cleansav(struct secasvar *sav) 2851 { 2852 /* 2853 * Cleanup xform state. Note that zeroize'ing causes the 2854 * keys to be cleared; otherwise we must do it ourself. 2855 */ 2856 if (sav->tdb_xform != NULL) { 2857 sav->tdb_xform->xf_zeroize(sav); 2858 sav->tdb_xform = NULL; 2859 } else { 2860 if (sav->key_auth != NULL) 2861 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2862 if (sav->key_enc != NULL) 2863 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2864 } 2865 if (sav->key_auth != NULL) { 2866 if (sav->key_auth->key_data != NULL) 2867 free(sav->key_auth->key_data, M_IPSEC_MISC); 2868 free(sav->key_auth, M_IPSEC_MISC); 2869 sav->key_auth = NULL; 2870 } 2871 if (sav->key_enc != NULL) { 2872 if (sav->key_enc->key_data != NULL) 2873 free(sav->key_enc->key_data, M_IPSEC_MISC); 2874 free(sav->key_enc, M_IPSEC_MISC); 2875 sav->key_enc = NULL; 2876 } 2877 if (sav->sched) { 2878 bzero(sav->sched, sav->schedlen); 2879 free(sav->sched, M_IPSEC_MISC); 2880 sav->sched = NULL; 2881 } 2882 if (sav->replay != NULL) { 2883 free(sav->replay, M_IPSEC_MISC); 2884 sav->replay = NULL; 2885 } 2886 if (sav->lft_c != NULL) { 2887 free(sav->lft_c, M_IPSEC_MISC); 2888 sav->lft_c = NULL; 2889 } 2890 if (sav->lft_h != NULL) { 2891 free(sav->lft_h, M_IPSEC_MISC); 2892 sav->lft_h = NULL; 2893 } 2894 if (sav->lft_s != NULL) { 2895 free(sav->lft_s, M_IPSEC_MISC); 2896 sav->lft_s = NULL; 2897 } 2898 } 2899 2900 /* 2901 * free() SA variable entry. 2902 */ 2903 static void 2904 key_delsav(struct secasvar *sav) 2905 { 2906 IPSEC_ASSERT(sav != NULL, ("null sav")); 2907 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2908 2909 /* remove from SA header */ 2910 if (__LIST_CHAINED(sav)) 2911 LIST_REMOVE(sav, chain); 2912 key_cleansav(sav); 2913 SECASVAR_LOCK_DESTROY(sav); 2914 free(sav, M_IPSEC_SA); 2915 } 2916 2917 /* 2918 * search SAD. 2919 * OUT: 2920 * NULL : not found 2921 * others : found, pointer to a SA. 2922 */ 2923 static struct secashead * 2924 key_getsah(struct secasindex *saidx) 2925 { 2926 struct secashead *sah; 2927 2928 SAHTREE_LOCK(); 2929 LIST_FOREACH(sah, &V_sahtree, chain) { 2930 if (sah->state == SADB_SASTATE_DEAD) 2931 continue; 2932 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2933 break; 2934 } 2935 SAHTREE_UNLOCK(); 2936 2937 return sah; 2938 } 2939 2940 /* 2941 * check not to be duplicated SPI. 2942 * NOTE: this function is too slow due to searching all SAD. 2943 * OUT: 2944 * NULL : not found 2945 * others : found, pointer to a SA. 2946 */ 2947 static struct secasvar * 2948 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2949 { 2950 struct secashead *sah; 2951 struct secasvar *sav; 2952 2953 /* check address family */ 2954 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2955 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2956 __func__)); 2957 return NULL; 2958 } 2959 2960 sav = NULL; 2961 /* check all SAD */ 2962 SAHTREE_LOCK(); 2963 LIST_FOREACH(sah, &V_sahtree, chain) { 2964 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2965 continue; 2966 sav = key_getsavbyspi(sah, spi); 2967 if (sav != NULL) 2968 break; 2969 } 2970 SAHTREE_UNLOCK(); 2971 2972 return sav; 2973 } 2974 2975 /* 2976 * search SAD litmited alive SA, protocol, SPI. 2977 * OUT: 2978 * NULL : not found 2979 * others : found, pointer to a SA. 2980 */ 2981 static struct secasvar * 2982 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2983 { 2984 struct secasvar *sav; 2985 u_int stateidx, state; 2986 2987 sav = NULL; 2988 SAHTREE_LOCK_ASSERT(); 2989 /* search all status */ 2990 for (stateidx = 0; 2991 stateidx < _ARRAYLEN(saorder_state_alive); 2992 stateidx++) { 2993 2994 state = saorder_state_alive[stateidx]; 2995 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2996 2997 /* sanity check */ 2998 if (sav->state != state) { 2999 ipseclog((LOG_DEBUG, "%s: " 3000 "invalid sav->state (queue: %d SA: %d)\n", 3001 __func__, state, sav->state)); 3002 continue; 3003 } 3004 3005 if (sav->spi == spi) 3006 return sav; 3007 } 3008 } 3009 3010 return NULL; 3011 } 3012 3013 /* 3014 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3015 * You must update these if need. 3016 * OUT: 0: success. 3017 * !0: failure. 3018 * 3019 * does not modify mbuf. does not free mbuf on error. 3020 */ 3021 static int 3022 key_setsaval(struct secasvar *sav, struct mbuf *m, 3023 const struct sadb_msghdr *mhp) 3024 { 3025 int error = 0; 3026 3027 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3028 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3029 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3030 3031 /* initialization */ 3032 sav->replay = NULL; 3033 sav->key_auth = NULL; 3034 sav->key_enc = NULL; 3035 sav->sched = NULL; 3036 sav->schedlen = 0; 3037 sav->lft_c = NULL; 3038 sav->lft_h = NULL; 3039 sav->lft_s = NULL; 3040 sav->tdb_xform = NULL; /* transform */ 3041 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3042 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3043 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3044 /* Initialize even if NAT-T not compiled in: */ 3045 sav->natt_type = 0; 3046 sav->natt_esp_frag_len = 0; 3047 3048 /* SA */ 3049 if (mhp->ext[SADB_EXT_SA] != NULL) { 3050 const struct sadb_sa *sa0; 3051 3052 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3053 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3054 error = EINVAL; 3055 goto fail; 3056 } 3057 3058 sav->alg_auth = sa0->sadb_sa_auth; 3059 sav->alg_enc = sa0->sadb_sa_encrypt; 3060 sav->flags = sa0->sadb_sa_flags; 3061 3062 /* replay window */ 3063 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3064 sav->replay = (struct secreplay *) 3065 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3066 if (sav->replay == NULL) { 3067 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3068 __func__)); 3069 error = ENOBUFS; 3070 goto fail; 3071 } 3072 if (sa0->sadb_sa_replay != 0) 3073 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3074 sav->replay->wsize = sa0->sadb_sa_replay; 3075 } 3076 } 3077 3078 /* Authentication keys */ 3079 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3080 const struct sadb_key *key0; 3081 int len; 3082 3083 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3084 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3085 3086 error = 0; 3087 if (len < sizeof(*key0)) { 3088 error = EINVAL; 3089 goto fail; 3090 } 3091 switch (mhp->msg->sadb_msg_satype) { 3092 case SADB_SATYPE_AH: 3093 case SADB_SATYPE_ESP: 3094 case SADB_X_SATYPE_TCPSIGNATURE: 3095 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3096 sav->alg_auth != SADB_X_AALG_NULL) 3097 error = EINVAL; 3098 break; 3099 case SADB_X_SATYPE_IPCOMP: 3100 default: 3101 error = EINVAL; 3102 break; 3103 } 3104 if (error) { 3105 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3106 __func__)); 3107 goto fail; 3108 } 3109 3110 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3111 M_IPSEC_MISC); 3112 if (sav->key_auth == NULL ) { 3113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3114 __func__)); 3115 error = ENOBUFS; 3116 goto fail; 3117 } 3118 } 3119 3120 /* Encryption key */ 3121 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3122 const struct sadb_key *key0; 3123 int len; 3124 3125 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3126 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3127 3128 error = 0; 3129 if (len < sizeof(*key0)) { 3130 error = EINVAL; 3131 goto fail; 3132 } 3133 switch (mhp->msg->sadb_msg_satype) { 3134 case SADB_SATYPE_ESP: 3135 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3136 sav->alg_enc != SADB_EALG_NULL) { 3137 error = EINVAL; 3138 break; 3139 } 3140 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3141 len, 3142 M_IPSEC_MISC); 3143 if (sav->key_enc == NULL) { 3144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3145 __func__)); 3146 error = ENOBUFS; 3147 goto fail; 3148 } 3149 break; 3150 case SADB_X_SATYPE_IPCOMP: 3151 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3152 error = EINVAL; 3153 sav->key_enc = NULL; /*just in case*/ 3154 break; 3155 case SADB_SATYPE_AH: 3156 case SADB_X_SATYPE_TCPSIGNATURE: 3157 default: 3158 error = EINVAL; 3159 break; 3160 } 3161 if (error) { 3162 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3163 __func__)); 3164 goto fail; 3165 } 3166 } 3167 3168 /* set iv */ 3169 sav->ivlen = 0; 3170 3171 switch (mhp->msg->sadb_msg_satype) { 3172 case SADB_SATYPE_AH: 3173 error = xform_init(sav, XF_AH); 3174 break; 3175 case SADB_SATYPE_ESP: 3176 error = xform_init(sav, XF_ESP); 3177 break; 3178 case SADB_X_SATYPE_IPCOMP: 3179 error = xform_init(sav, XF_IPCOMP); 3180 break; 3181 case SADB_X_SATYPE_TCPSIGNATURE: 3182 error = xform_init(sav, XF_TCPSIGNATURE); 3183 break; 3184 } 3185 if (error) { 3186 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3187 __func__, mhp->msg->sadb_msg_satype)); 3188 goto fail; 3189 } 3190 3191 /* reset created */ 3192 sav->created = time_second; 3193 3194 /* make lifetime for CURRENT */ 3195 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3196 if (sav->lft_c == NULL) { 3197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3198 error = ENOBUFS; 3199 goto fail; 3200 } 3201 3202 sav->lft_c->allocations = 0; 3203 sav->lft_c->bytes = 0; 3204 sav->lft_c->addtime = time_second; 3205 sav->lft_c->usetime = 0; 3206 3207 /* lifetimes for HARD and SOFT */ 3208 { 3209 const struct sadb_lifetime *lft0; 3210 3211 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3212 if (lft0 != NULL) { 3213 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3214 error = EINVAL; 3215 goto fail; 3216 } 3217 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3218 if (sav->lft_h == NULL) { 3219 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3220 error = ENOBUFS; 3221 goto fail; 3222 } 3223 /* to be initialize ? */ 3224 } 3225 3226 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3227 if (lft0 != NULL) { 3228 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3229 error = EINVAL; 3230 goto fail; 3231 } 3232 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3233 if (sav->lft_s == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 /* to be initialize ? */ 3239 } 3240 } 3241 3242 return 0; 3243 3244 fail: 3245 /* initialization */ 3246 key_cleansav(sav); 3247 3248 return error; 3249 } 3250 3251 /* 3252 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3253 * OUT: 0: valid 3254 * other: errno 3255 */ 3256 static int 3257 key_mature(struct secasvar *sav) 3258 { 3259 int error; 3260 3261 /* check SPI value */ 3262 switch (sav->sah->saidx.proto) { 3263 case IPPROTO_ESP: 3264 case IPPROTO_AH: 3265 /* 3266 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3267 * 1-255 reserved by IANA for future use, 3268 * 0 for implementation specific, local use. 3269 */ 3270 if (ntohl(sav->spi) <= 255) { 3271 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3272 __func__, (u_int32_t)ntohl(sav->spi))); 3273 return EINVAL; 3274 } 3275 break; 3276 } 3277 3278 /* check satype */ 3279 switch (sav->sah->saidx.proto) { 3280 case IPPROTO_ESP: 3281 /* check flags */ 3282 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3283 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3284 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3285 "given to old-esp.\n", __func__)); 3286 return EINVAL; 3287 } 3288 error = xform_init(sav, XF_ESP); 3289 break; 3290 case IPPROTO_AH: 3291 /* check flags */ 3292 if (sav->flags & SADB_X_EXT_DERIV) { 3293 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3294 "given to AH SA.\n", __func__)); 3295 return EINVAL; 3296 } 3297 if (sav->alg_enc != SADB_EALG_NONE) { 3298 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3299 "mismated.\n", __func__)); 3300 return(EINVAL); 3301 } 3302 error = xform_init(sav, XF_AH); 3303 break; 3304 case IPPROTO_IPCOMP: 3305 if (sav->alg_auth != SADB_AALG_NONE) { 3306 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3307 "mismated.\n", __func__)); 3308 return(EINVAL); 3309 } 3310 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3311 && ntohl(sav->spi) >= 0x10000) { 3312 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3313 __func__)); 3314 return(EINVAL); 3315 } 3316 error = xform_init(sav, XF_IPCOMP); 3317 break; 3318 case IPPROTO_TCP: 3319 if (sav->alg_enc != SADB_EALG_NONE) { 3320 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3321 "mismated.\n", __func__)); 3322 return(EINVAL); 3323 } 3324 error = xform_init(sav, XF_TCPSIGNATURE); 3325 break; 3326 default: 3327 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3328 error = EPROTONOSUPPORT; 3329 break; 3330 } 3331 if (error == 0) { 3332 SAHTREE_LOCK(); 3333 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3334 SAHTREE_UNLOCK(); 3335 } 3336 return (error); 3337 } 3338 3339 /* 3340 * subroutine for SADB_GET and SADB_DUMP. 3341 */ 3342 static struct mbuf * 3343 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3344 u_int32_t seq, u_int32_t pid) 3345 { 3346 struct mbuf *result = NULL, *tres = NULL, *m; 3347 int i; 3348 int dumporder[] = { 3349 SADB_EXT_SA, SADB_X_EXT_SA2, 3350 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3351 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3352 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3353 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3354 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3355 #ifdef IPSEC_NAT_T 3356 SADB_X_EXT_NAT_T_TYPE, 3357 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3358 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3359 SADB_X_EXT_NAT_T_FRAG, 3360 #endif 3361 }; 3362 3363 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3364 if (m == NULL) 3365 goto fail; 3366 result = m; 3367 3368 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3369 m = NULL; 3370 switch (dumporder[i]) { 3371 case SADB_EXT_SA: 3372 m = key_setsadbsa(sav); 3373 if (!m) 3374 goto fail; 3375 break; 3376 3377 case SADB_X_EXT_SA2: 3378 m = key_setsadbxsa2(sav->sah->saidx.mode, 3379 sav->replay ? sav->replay->count : 0, 3380 sav->sah->saidx.reqid); 3381 if (!m) 3382 goto fail; 3383 break; 3384 3385 case SADB_EXT_ADDRESS_SRC: 3386 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3387 &sav->sah->saidx.src.sa, 3388 FULLMASK, IPSEC_ULPROTO_ANY); 3389 if (!m) 3390 goto fail; 3391 break; 3392 3393 case SADB_EXT_ADDRESS_DST: 3394 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3395 &sav->sah->saidx.dst.sa, 3396 FULLMASK, IPSEC_ULPROTO_ANY); 3397 if (!m) 3398 goto fail; 3399 break; 3400 3401 case SADB_EXT_KEY_AUTH: 3402 if (!sav->key_auth) 3403 continue; 3404 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3405 if (!m) 3406 goto fail; 3407 break; 3408 3409 case SADB_EXT_KEY_ENCRYPT: 3410 if (!sav->key_enc) 3411 continue; 3412 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3413 if (!m) 3414 goto fail; 3415 break; 3416 3417 case SADB_EXT_LIFETIME_CURRENT: 3418 if (!sav->lft_c) 3419 continue; 3420 m = key_setlifetime(sav->lft_c, 3421 SADB_EXT_LIFETIME_CURRENT); 3422 if (!m) 3423 goto fail; 3424 break; 3425 3426 case SADB_EXT_LIFETIME_HARD: 3427 if (!sav->lft_h) 3428 continue; 3429 m = key_setlifetime(sav->lft_h, 3430 SADB_EXT_LIFETIME_HARD); 3431 if (!m) 3432 goto fail; 3433 break; 3434 3435 case SADB_EXT_LIFETIME_SOFT: 3436 if (!sav->lft_s) 3437 continue; 3438 m = key_setlifetime(sav->lft_s, 3439 SADB_EXT_LIFETIME_SOFT); 3440 3441 if (!m) 3442 goto fail; 3443 break; 3444 3445 #ifdef IPSEC_NAT_T 3446 case SADB_X_EXT_NAT_T_TYPE: 3447 m = key_setsadbxtype(sav->natt_type); 3448 if (!m) 3449 goto fail; 3450 break; 3451 3452 case SADB_X_EXT_NAT_T_DPORT: 3453 m = key_setsadbxport( 3454 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3455 SADB_X_EXT_NAT_T_DPORT); 3456 if (!m) 3457 goto fail; 3458 break; 3459 3460 case SADB_X_EXT_NAT_T_SPORT: 3461 m = key_setsadbxport( 3462 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3463 SADB_X_EXT_NAT_T_SPORT); 3464 if (!m) 3465 goto fail; 3466 break; 3467 3468 case SADB_X_EXT_NAT_T_OAI: 3469 case SADB_X_EXT_NAT_T_OAR: 3470 case SADB_X_EXT_NAT_T_FRAG: 3471 /* We do not (yet) support those. */ 3472 continue; 3473 #endif 3474 3475 case SADB_EXT_ADDRESS_PROXY: 3476 case SADB_EXT_IDENTITY_SRC: 3477 case SADB_EXT_IDENTITY_DST: 3478 /* XXX: should we brought from SPD ? */ 3479 case SADB_EXT_SENSITIVITY: 3480 default: 3481 continue; 3482 } 3483 3484 if (!m) 3485 goto fail; 3486 if (tres) 3487 m_cat(m, tres); 3488 tres = m; 3489 3490 } 3491 3492 m_cat(result, tres); 3493 if (result->m_len < sizeof(struct sadb_msg)) { 3494 result = m_pullup(result, sizeof(struct sadb_msg)); 3495 if (result == NULL) 3496 goto fail; 3497 } 3498 3499 result->m_pkthdr.len = 0; 3500 for (m = result; m; m = m->m_next) 3501 result->m_pkthdr.len += m->m_len; 3502 3503 mtod(result, struct sadb_msg *)->sadb_msg_len = 3504 PFKEY_UNIT64(result->m_pkthdr.len); 3505 3506 return result; 3507 3508 fail: 3509 m_freem(result); 3510 m_freem(tres); 3511 return NULL; 3512 } 3513 3514 /* 3515 * set data into sadb_msg. 3516 */ 3517 static struct mbuf * 3518 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3519 pid_t pid, u_int16_t reserved) 3520 { 3521 struct mbuf *m; 3522 struct sadb_msg *p; 3523 int len; 3524 3525 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3526 if (len > MCLBYTES) 3527 return NULL; 3528 MGETHDR(m, M_NOWAIT, MT_DATA); 3529 if (m && len > MHLEN) { 3530 if (!(MCLGET(m, M_NOWAIT))) { 3531 m_freem(m); 3532 m = NULL; 3533 } 3534 } 3535 if (!m) 3536 return NULL; 3537 m->m_pkthdr.len = m->m_len = len; 3538 m->m_next = NULL; 3539 3540 p = mtod(m, struct sadb_msg *); 3541 3542 bzero(p, len); 3543 p->sadb_msg_version = PF_KEY_V2; 3544 p->sadb_msg_type = type; 3545 p->sadb_msg_errno = 0; 3546 p->sadb_msg_satype = satype; 3547 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3548 p->sadb_msg_reserved = reserved; 3549 p->sadb_msg_seq = seq; 3550 p->sadb_msg_pid = (u_int32_t)pid; 3551 3552 return m; 3553 } 3554 3555 /* 3556 * copy secasvar data into sadb_address. 3557 */ 3558 static struct mbuf * 3559 key_setsadbsa(struct secasvar *sav) 3560 { 3561 struct mbuf *m; 3562 struct sadb_sa *p; 3563 int len; 3564 3565 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3566 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3567 if (m == NULL) 3568 return (NULL); 3569 m_align(m, len); 3570 m->m_len = len; 3571 p = mtod(m, struct sadb_sa *); 3572 bzero(p, len); 3573 p->sadb_sa_len = PFKEY_UNIT64(len); 3574 p->sadb_sa_exttype = SADB_EXT_SA; 3575 p->sadb_sa_spi = sav->spi; 3576 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3577 p->sadb_sa_state = sav->state; 3578 p->sadb_sa_auth = sav->alg_auth; 3579 p->sadb_sa_encrypt = sav->alg_enc; 3580 p->sadb_sa_flags = sav->flags; 3581 3582 return m; 3583 } 3584 3585 /* 3586 * set data into sadb_address. 3587 */ 3588 static struct mbuf * 3589 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3590 u_int8_t prefixlen, u_int16_t ul_proto) 3591 { 3592 struct mbuf *m; 3593 struct sadb_address *p; 3594 size_t len; 3595 3596 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3597 PFKEY_ALIGN8(saddr->sa_len); 3598 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3599 if (m == NULL) 3600 return (NULL); 3601 m_align(m, len); 3602 m->m_len = len; 3603 p = mtod(m, struct sadb_address *); 3604 3605 bzero(p, len); 3606 p->sadb_address_len = PFKEY_UNIT64(len); 3607 p->sadb_address_exttype = exttype; 3608 p->sadb_address_proto = ul_proto; 3609 if (prefixlen == FULLMASK) { 3610 switch (saddr->sa_family) { 3611 case AF_INET: 3612 prefixlen = sizeof(struct in_addr) << 3; 3613 break; 3614 case AF_INET6: 3615 prefixlen = sizeof(struct in6_addr) << 3; 3616 break; 3617 default: 3618 ; /*XXX*/ 3619 } 3620 } 3621 p->sadb_address_prefixlen = prefixlen; 3622 p->sadb_address_reserved = 0; 3623 3624 bcopy(saddr, 3625 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3626 saddr->sa_len); 3627 3628 return m; 3629 } 3630 3631 /* 3632 * set data into sadb_x_sa2. 3633 */ 3634 static struct mbuf * 3635 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3636 { 3637 struct mbuf *m; 3638 struct sadb_x_sa2 *p; 3639 size_t len; 3640 3641 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3642 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3643 if (m == NULL) 3644 return (NULL); 3645 m_align(m, len); 3646 m->m_len = len; 3647 p = mtod(m, struct sadb_x_sa2 *); 3648 3649 bzero(p, len); 3650 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3651 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3652 p->sadb_x_sa2_mode = mode; 3653 p->sadb_x_sa2_reserved1 = 0; 3654 p->sadb_x_sa2_reserved2 = 0; 3655 p->sadb_x_sa2_sequence = seq; 3656 p->sadb_x_sa2_reqid = reqid; 3657 3658 return m; 3659 } 3660 3661 #ifdef IPSEC_NAT_T 3662 /* 3663 * Set a type in sadb_x_nat_t_type. 3664 */ 3665 static struct mbuf * 3666 key_setsadbxtype(u_int16_t type) 3667 { 3668 struct mbuf *m; 3669 size_t len; 3670 struct sadb_x_nat_t_type *p; 3671 3672 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3673 3674 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3675 if (m == NULL) 3676 return (NULL); 3677 m_align(m, len); 3678 m->m_len = len; 3679 p = mtod(m, struct sadb_x_nat_t_type *); 3680 3681 bzero(p, len); 3682 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3683 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3684 p->sadb_x_nat_t_type_type = type; 3685 3686 return (m); 3687 } 3688 /* 3689 * Set a port in sadb_x_nat_t_port. 3690 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3691 */ 3692 static struct mbuf * 3693 key_setsadbxport(u_int16_t port, u_int16_t type) 3694 { 3695 struct mbuf *m; 3696 size_t len; 3697 struct sadb_x_nat_t_port *p; 3698 3699 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3700 3701 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3702 if (m == NULL) 3703 return (NULL); 3704 m_align(m, len); 3705 m->m_len = len; 3706 p = mtod(m, struct sadb_x_nat_t_port *); 3707 3708 bzero(p, len); 3709 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3710 p->sadb_x_nat_t_port_exttype = type; 3711 p->sadb_x_nat_t_port_port = port; 3712 3713 return (m); 3714 } 3715 3716 /* 3717 * Get port from sockaddr. Port is in network byte order. 3718 */ 3719 u_int16_t 3720 key_portfromsaddr(struct sockaddr *sa) 3721 { 3722 3723 switch (sa->sa_family) { 3724 #ifdef INET 3725 case AF_INET: 3726 return ((struct sockaddr_in *)sa)->sin_port; 3727 #endif 3728 #ifdef INET6 3729 case AF_INET6: 3730 return ((struct sockaddr_in6 *)sa)->sin6_port; 3731 #endif 3732 } 3733 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3734 printf("DP %s unexpected address family %d\n", 3735 __func__, sa->sa_family)); 3736 return (0); 3737 } 3738 #endif /* IPSEC_NAT_T */ 3739 3740 /* 3741 * Set port in struct sockaddr. Port is in network byte order. 3742 */ 3743 static void 3744 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3745 { 3746 3747 switch (sa->sa_family) { 3748 #ifdef INET 3749 case AF_INET: 3750 ((struct sockaddr_in *)sa)->sin_port = port; 3751 break; 3752 #endif 3753 #ifdef INET6 3754 case AF_INET6: 3755 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3756 break; 3757 #endif 3758 default: 3759 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3760 __func__, sa->sa_family)); 3761 break; 3762 } 3763 } 3764 3765 /* 3766 * set data into sadb_x_policy 3767 */ 3768 static struct mbuf * 3769 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 3770 { 3771 struct mbuf *m; 3772 struct sadb_x_policy *p; 3773 size_t len; 3774 3775 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3776 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3777 if (m == NULL) 3778 return (NULL); 3779 m_align(m, len); 3780 m->m_len = len; 3781 p = mtod(m, struct sadb_x_policy *); 3782 3783 bzero(p, len); 3784 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3785 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3786 p->sadb_x_policy_type = type; 3787 p->sadb_x_policy_dir = dir; 3788 p->sadb_x_policy_id = id; 3789 p->sadb_x_policy_priority = priority; 3790 3791 return m; 3792 } 3793 3794 /* %%% utilities */ 3795 /* Take a key message (sadb_key) from the socket and turn it into one 3796 * of the kernel's key structures (seckey). 3797 * 3798 * IN: pointer to the src 3799 * OUT: NULL no more memory 3800 */ 3801 struct seckey * 3802 key_dup_keymsg(const struct sadb_key *src, u_int len, 3803 struct malloc_type *type) 3804 { 3805 struct seckey *dst; 3806 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3807 if (dst != NULL) { 3808 dst->bits = src->sadb_key_bits; 3809 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3810 if (dst->key_data != NULL) { 3811 bcopy((const char *)src + sizeof(struct sadb_key), 3812 dst->key_data, len); 3813 } else { 3814 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3815 __func__)); 3816 free(dst, type); 3817 dst = NULL; 3818 } 3819 } else { 3820 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3821 __func__)); 3822 3823 } 3824 return dst; 3825 } 3826 3827 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3828 * turn it into one of the kernel's lifetime structures (seclifetime). 3829 * 3830 * IN: pointer to the destination, source and malloc type 3831 * OUT: NULL, no more memory 3832 */ 3833 3834 static struct seclifetime * 3835 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3836 { 3837 struct seclifetime *dst = NULL; 3838 3839 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3840 type, M_NOWAIT); 3841 if (dst == NULL) { 3842 /* XXX counter */ 3843 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3844 } else { 3845 dst->allocations = src->sadb_lifetime_allocations; 3846 dst->bytes = src->sadb_lifetime_bytes; 3847 dst->addtime = src->sadb_lifetime_addtime; 3848 dst->usetime = src->sadb_lifetime_usetime; 3849 } 3850 return dst; 3851 } 3852 3853 /* compare my own address 3854 * OUT: 1: true, i.e. my address. 3855 * 0: false 3856 */ 3857 int 3858 key_ismyaddr(struct sockaddr *sa) 3859 { 3860 3861 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3862 switch (sa->sa_family) { 3863 #ifdef INET 3864 case AF_INET: 3865 return (in_localip(satosin(sa)->sin_addr)); 3866 #endif 3867 #ifdef INET6 3868 case AF_INET6: 3869 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3870 #endif 3871 } 3872 3873 return 0; 3874 } 3875 3876 #ifdef INET6 3877 /* 3878 * compare my own address for IPv6. 3879 * 1: ours 3880 * 0: other 3881 */ 3882 static int 3883 key_ismyaddr6(struct sockaddr_in6 *sin6) 3884 { 3885 struct in6_addr in6; 3886 3887 if (!IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) 3888 return (in6_localip(&sin6->sin6_addr)); 3889 3890 /* Convert address into kernel-internal form */ 3891 in6 = sin6->sin6_addr; 3892 in6.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff); 3893 return (in6_localip(&in6)); 3894 } 3895 #endif /*INET6*/ 3896 3897 /* 3898 * compare two secasindex structure. 3899 * flag can specify to compare 2 saidxes. 3900 * compare two secasindex structure without both mode and reqid. 3901 * don't compare port. 3902 * IN: 3903 * saidx0: source, it can be in SAD. 3904 * saidx1: object. 3905 * OUT: 3906 * 1 : equal 3907 * 0 : not equal 3908 */ 3909 static int 3910 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3911 int flag) 3912 { 3913 int chkport = 0; 3914 3915 /* sanity */ 3916 if (saidx0 == NULL && saidx1 == NULL) 3917 return 1; 3918 3919 if (saidx0 == NULL || saidx1 == NULL) 3920 return 0; 3921 3922 if (saidx0->proto != saidx1->proto) 3923 return 0; 3924 3925 if (flag == CMP_EXACTLY) { 3926 if (saidx0->mode != saidx1->mode) 3927 return 0; 3928 if (saidx0->reqid != saidx1->reqid) 3929 return 0; 3930 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3931 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3932 return 0; 3933 } else { 3934 3935 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3936 if (flag == CMP_MODE_REQID 3937 ||flag == CMP_REQID) { 3938 /* 3939 * If reqid of SPD is non-zero, unique SA is required. 3940 * The result must be of same reqid in this case. 3941 */ 3942 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3943 return 0; 3944 } 3945 3946 if (flag == CMP_MODE_REQID) { 3947 if (saidx0->mode != IPSEC_MODE_ANY 3948 && saidx0->mode != saidx1->mode) 3949 return 0; 3950 } 3951 3952 #ifdef IPSEC_NAT_T 3953 /* 3954 * If NAT-T is enabled, check ports for tunnel mode. 3955 * Do not check ports if they are set to zero in the SPD. 3956 * Also do not do it for native transport mode, as there 3957 * is no port information available in the SP. 3958 */ 3959 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3960 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3961 saidx1->proto == IPPROTO_ESP)) && 3962 saidx1->src.sa.sa_family == AF_INET && 3963 saidx1->dst.sa.sa_family == AF_INET && 3964 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3965 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3966 chkport = 1; 3967 #endif /* IPSEC_NAT_T */ 3968 3969 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3970 return 0; 3971 } 3972 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3973 return 0; 3974 } 3975 } 3976 3977 return 1; 3978 } 3979 3980 /* 3981 * compare two secindex structure exactly. 3982 * IN: 3983 * spidx0: source, it is often in SPD. 3984 * spidx1: object, it is often from PFKEY message. 3985 * OUT: 3986 * 1 : equal 3987 * 0 : not equal 3988 */ 3989 static int 3990 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3991 struct secpolicyindex *spidx1) 3992 { 3993 /* sanity */ 3994 if (spidx0 == NULL && spidx1 == NULL) 3995 return 1; 3996 3997 if (spidx0 == NULL || spidx1 == NULL) 3998 return 0; 3999 4000 if (spidx0->prefs != spidx1->prefs 4001 || spidx0->prefd != spidx1->prefd 4002 || spidx0->ul_proto != spidx1->ul_proto) 4003 return 0; 4004 4005 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4006 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4007 } 4008 4009 /* 4010 * compare two secindex structure with mask. 4011 * IN: 4012 * spidx0: source, it is often in SPD. 4013 * spidx1: object, it is often from IP header. 4014 * OUT: 4015 * 1 : equal 4016 * 0 : not equal 4017 */ 4018 static int 4019 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4020 struct secpolicyindex *spidx1) 4021 { 4022 /* sanity */ 4023 if (spidx0 == NULL && spidx1 == NULL) 4024 return 1; 4025 4026 if (spidx0 == NULL || spidx1 == NULL) 4027 return 0; 4028 4029 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4030 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4031 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4032 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4033 return 0; 4034 4035 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4036 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4037 && spidx0->ul_proto != spidx1->ul_proto) 4038 return 0; 4039 4040 switch (spidx0->src.sa.sa_family) { 4041 case AF_INET: 4042 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4043 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4044 return 0; 4045 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4046 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4047 return 0; 4048 break; 4049 case AF_INET6: 4050 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4051 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4052 return 0; 4053 /* 4054 * scope_id check. if sin6_scope_id is 0, we regard it 4055 * as a wildcard scope, which matches any scope zone ID. 4056 */ 4057 if (spidx0->src.sin6.sin6_scope_id && 4058 spidx1->src.sin6.sin6_scope_id && 4059 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4060 return 0; 4061 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4062 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4063 return 0; 4064 break; 4065 default: 4066 /* XXX */ 4067 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4068 return 0; 4069 break; 4070 } 4071 4072 switch (spidx0->dst.sa.sa_family) { 4073 case AF_INET: 4074 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4075 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4076 return 0; 4077 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4078 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4079 return 0; 4080 break; 4081 case AF_INET6: 4082 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4083 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4084 return 0; 4085 /* 4086 * scope_id check. if sin6_scope_id is 0, we regard it 4087 * as a wildcard scope, which matches any scope zone ID. 4088 */ 4089 if (spidx0->dst.sin6.sin6_scope_id && 4090 spidx1->dst.sin6.sin6_scope_id && 4091 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4092 return 0; 4093 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4094 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4095 return 0; 4096 break; 4097 default: 4098 /* XXX */ 4099 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4100 return 0; 4101 break; 4102 } 4103 4104 /* XXX Do we check other field ? e.g. flowinfo */ 4105 4106 return 1; 4107 } 4108 4109 /* returns 0 on match */ 4110 static int 4111 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4112 int port) 4113 { 4114 #ifdef satosin 4115 #undef satosin 4116 #endif 4117 #define satosin(s) ((const struct sockaddr_in *)s) 4118 #ifdef satosin6 4119 #undef satosin6 4120 #endif 4121 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4122 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4123 return 1; 4124 4125 switch (sa1->sa_family) { 4126 case AF_INET: 4127 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4128 return 1; 4129 if (satosin(sa1)->sin_addr.s_addr != 4130 satosin(sa2)->sin_addr.s_addr) { 4131 return 1; 4132 } 4133 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4134 return 1; 4135 break; 4136 case AF_INET6: 4137 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4138 return 1; /*EINVAL*/ 4139 if (satosin6(sa1)->sin6_scope_id != 4140 satosin6(sa2)->sin6_scope_id) { 4141 return 1; 4142 } 4143 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4144 &satosin6(sa2)->sin6_addr)) { 4145 return 1; 4146 } 4147 if (port && 4148 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4149 return 1; 4150 } 4151 break; 4152 default: 4153 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4154 return 1; 4155 break; 4156 } 4157 4158 return 0; 4159 #undef satosin 4160 #undef satosin6 4161 } 4162 4163 /* 4164 * compare two buffers with mask. 4165 * IN: 4166 * addr1: source 4167 * addr2: object 4168 * bits: Number of bits to compare 4169 * OUT: 4170 * 1 : equal 4171 * 0 : not equal 4172 */ 4173 static int 4174 key_bbcmp(const void *a1, const void *a2, u_int bits) 4175 { 4176 const unsigned char *p1 = a1; 4177 const unsigned char *p2 = a2; 4178 4179 /* XXX: This could be considerably faster if we compare a word 4180 * at a time, but it is complicated on LSB Endian machines */ 4181 4182 /* Handle null pointers */ 4183 if (p1 == NULL || p2 == NULL) 4184 return (p1 == p2); 4185 4186 while (bits >= 8) { 4187 if (*p1++ != *p2++) 4188 return 0; 4189 bits -= 8; 4190 } 4191 4192 if (bits > 0) { 4193 u_int8_t mask = ~((1<<(8-bits))-1); 4194 if ((*p1 & mask) != (*p2 & mask)) 4195 return 0; 4196 } 4197 return 1; /* Match! */ 4198 } 4199 4200 static void 4201 key_flush_spd(time_t now) 4202 { 4203 SPTREE_RLOCK_TRACKER; 4204 struct secpolicy *sp; 4205 u_int dir; 4206 4207 /* SPD */ 4208 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4209 restart: 4210 SPTREE_RLOCK(); 4211 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4212 if (sp->lifetime == 0 && sp->validtime == 0) 4213 continue; 4214 if ((sp->lifetime && 4215 now - sp->created > sp->lifetime) || 4216 (sp->validtime && 4217 now - sp->lastused > sp->validtime)) { 4218 SP_ADDREF(sp); 4219 SPTREE_RUNLOCK(); 4220 key_spdexpire(sp); 4221 key_unlink(sp); 4222 KEY_FREESP(&sp); 4223 goto restart; 4224 } 4225 } 4226 SPTREE_RUNLOCK(); 4227 } 4228 } 4229 4230 static void 4231 key_flush_sad(time_t now) 4232 { 4233 struct secashead *sah, *nextsah; 4234 struct secasvar *sav, *nextsav; 4235 4236 /* SAD */ 4237 SAHTREE_LOCK(); 4238 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4239 /* if sah has been dead, then delete it and process next sah. */ 4240 if (sah->state == SADB_SASTATE_DEAD) { 4241 key_delsah(sah); 4242 continue; 4243 } 4244 4245 /* if LARVAL entry doesn't become MATURE, delete it. */ 4246 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4247 /* Need to also check refcnt for a larval SA ??? */ 4248 if (now - sav->created > V_key_larval_lifetime) 4249 KEY_FREESAV(&sav); 4250 } 4251 4252 /* 4253 * check MATURE entry to start to send expire message 4254 * whether or not. 4255 */ 4256 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4257 /* we don't need to check. */ 4258 if (sav->lft_s == NULL) 4259 continue; 4260 4261 /* sanity check */ 4262 if (sav->lft_c == NULL) { 4263 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4264 "time, why?\n", __func__)); 4265 continue; 4266 } 4267 /* 4268 * RFC 2367: 4269 * HARD lifetimes MUST take precedence over SOFT 4270 * lifetimes, meaning if the HARD and SOFT lifetimes 4271 * are the same, the HARD lifetime will appear on the 4272 * EXPIRE message. 4273 */ 4274 /* check HARD lifetime */ 4275 if ((sav->lft_h->addtime != 0 && 4276 now - sav->created > sav->lft_h->addtime) || 4277 (sav->lft_h->bytes != 0 && 4278 sav->lft_h->bytes < sav->lft_c->bytes)) { 4279 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4280 key_expire(sav, 1); 4281 KEY_FREESAV(&sav); 4282 } 4283 /* check SOFT lifetime */ 4284 else if ((sav->lft_s->addtime != 0 && 4285 now - sav->created > sav->lft_s->addtime) || 4286 (sav->lft_s->bytes != 0 && 4287 sav->lft_s->bytes < sav->lft_c->bytes)) { 4288 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4289 key_expire(sav, 0); 4290 } 4291 } 4292 4293 /* check DYING entry to change status to DEAD. */ 4294 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4295 /* we don't need to check. */ 4296 if (sav->lft_h == NULL) 4297 continue; 4298 4299 /* sanity check */ 4300 if (sav->lft_c == NULL) { 4301 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4302 "time, why?\n", __func__)); 4303 continue; 4304 } 4305 4306 if (sav->lft_h->addtime != 0 && 4307 now - sav->created > sav->lft_h->addtime) { 4308 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4309 key_expire(sav, 1); 4310 KEY_FREESAV(&sav); 4311 } 4312 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4313 else if (sav->lft_s != NULL 4314 && sav->lft_s->addtime != 0 4315 && now - sav->created > sav->lft_s->addtime) { 4316 /* 4317 * XXX: should be checked to be 4318 * installed the valid SA. 4319 */ 4320 4321 /* 4322 * If there is no SA then sending 4323 * expire message. 4324 */ 4325 key_expire(sav, 0); 4326 } 4327 #endif 4328 /* check HARD lifetime by bytes */ 4329 else if (sav->lft_h->bytes != 0 && 4330 sav->lft_h->bytes < sav->lft_c->bytes) { 4331 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4332 key_expire(sav, 1); 4333 KEY_FREESAV(&sav); 4334 } 4335 } 4336 4337 /* delete entry in DEAD */ 4338 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4339 /* sanity check */ 4340 if (sav->state != SADB_SASTATE_DEAD) { 4341 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4342 "(queue: %d SA: %d): kill it anyway\n", 4343 __func__, 4344 SADB_SASTATE_DEAD, sav->state)); 4345 } 4346 /* 4347 * do not call key_freesav() here. 4348 * sav should already be freed, and sav->refcnt 4349 * shows other references to sav 4350 * (such as from SPD). 4351 */ 4352 } 4353 } 4354 SAHTREE_UNLOCK(); 4355 } 4356 4357 static void 4358 key_flush_acq(time_t now) 4359 { 4360 struct secacq *acq, *nextacq; 4361 4362 /* ACQ tree */ 4363 ACQ_LOCK(); 4364 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4365 nextacq = LIST_NEXT(acq, chain); 4366 if (now - acq->created > V_key_blockacq_lifetime 4367 && __LIST_CHAINED(acq)) { 4368 LIST_REMOVE(acq, chain); 4369 free(acq, M_IPSEC_SAQ); 4370 } 4371 } 4372 ACQ_UNLOCK(); 4373 } 4374 4375 static void 4376 key_flush_spacq(time_t now) 4377 { 4378 struct secspacq *acq, *nextacq; 4379 4380 /* SP ACQ tree */ 4381 SPACQ_LOCK(); 4382 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4383 nextacq = LIST_NEXT(acq, chain); 4384 if (now - acq->created > V_key_blockacq_lifetime 4385 && __LIST_CHAINED(acq)) { 4386 LIST_REMOVE(acq, chain); 4387 free(acq, M_IPSEC_SAQ); 4388 } 4389 } 4390 SPACQ_UNLOCK(); 4391 } 4392 4393 /* 4394 * time handler. 4395 * scanning SPD and SAD to check status for each entries, 4396 * and do to remove or to expire. 4397 * XXX: year 2038 problem may remain. 4398 */ 4399 static void 4400 key_timehandler(void *arg) 4401 { 4402 VNET_ITERATOR_DECL(vnet_iter); 4403 time_t now = time_second; 4404 4405 VNET_LIST_RLOCK_NOSLEEP(); 4406 VNET_FOREACH(vnet_iter) { 4407 CURVNET_SET(vnet_iter); 4408 key_flush_spd(now); 4409 key_flush_sad(now); 4410 key_flush_acq(now); 4411 key_flush_spacq(now); 4412 CURVNET_RESTORE(); 4413 } 4414 VNET_LIST_RUNLOCK_NOSLEEP(); 4415 4416 #ifndef IPSEC_DEBUG2 4417 /* do exchange to tick time !! */ 4418 callout_schedule(&key_timer, hz); 4419 #endif /* IPSEC_DEBUG2 */ 4420 } 4421 4422 u_long 4423 key_random() 4424 { 4425 u_long value; 4426 4427 key_randomfill(&value, sizeof(value)); 4428 return value; 4429 } 4430 4431 void 4432 key_randomfill(void *p, size_t l) 4433 { 4434 size_t n; 4435 u_long v; 4436 static int warn = 1; 4437 4438 n = 0; 4439 n = (size_t)read_random(p, (u_int)l); 4440 /* last resort */ 4441 while (n < l) { 4442 v = random(); 4443 bcopy(&v, (u_int8_t *)p + n, 4444 l - n < sizeof(v) ? l - n : sizeof(v)); 4445 n += sizeof(v); 4446 4447 if (warn) { 4448 printf("WARNING: pseudo-random number generator " 4449 "used for IPsec processing\n"); 4450 warn = 0; 4451 } 4452 } 4453 } 4454 4455 /* 4456 * map SADB_SATYPE_* to IPPROTO_*. 4457 * if satype == SADB_SATYPE then satype is mapped to ~0. 4458 * OUT: 4459 * 0: invalid satype. 4460 */ 4461 static u_int16_t 4462 key_satype2proto(u_int8_t satype) 4463 { 4464 switch (satype) { 4465 case SADB_SATYPE_UNSPEC: 4466 return IPSEC_PROTO_ANY; 4467 case SADB_SATYPE_AH: 4468 return IPPROTO_AH; 4469 case SADB_SATYPE_ESP: 4470 return IPPROTO_ESP; 4471 case SADB_X_SATYPE_IPCOMP: 4472 return IPPROTO_IPCOMP; 4473 case SADB_X_SATYPE_TCPSIGNATURE: 4474 return IPPROTO_TCP; 4475 default: 4476 return 0; 4477 } 4478 /* NOTREACHED */ 4479 } 4480 4481 /* 4482 * map IPPROTO_* to SADB_SATYPE_* 4483 * OUT: 4484 * 0: invalid protocol type. 4485 */ 4486 static u_int8_t 4487 key_proto2satype(u_int16_t proto) 4488 { 4489 switch (proto) { 4490 case IPPROTO_AH: 4491 return SADB_SATYPE_AH; 4492 case IPPROTO_ESP: 4493 return SADB_SATYPE_ESP; 4494 case IPPROTO_IPCOMP: 4495 return SADB_X_SATYPE_IPCOMP; 4496 case IPPROTO_TCP: 4497 return SADB_X_SATYPE_TCPSIGNATURE; 4498 default: 4499 return 0; 4500 } 4501 /* NOTREACHED */ 4502 } 4503 4504 /* %%% PF_KEY */ 4505 /* 4506 * SADB_GETSPI processing is to receive 4507 * <base, (SA2), src address, dst address, (SPI range)> 4508 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4509 * tree with the status of LARVAL, and send 4510 * <base, SA(*), address(SD)> 4511 * to the IKMPd. 4512 * 4513 * IN: mhp: pointer to the pointer to each header. 4514 * OUT: NULL if fail. 4515 * other if success, return pointer to the message to send. 4516 */ 4517 static int 4518 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4519 { 4520 struct sadb_address *src0, *dst0; 4521 struct secasindex saidx; 4522 struct secashead *newsah; 4523 struct secasvar *newsav; 4524 u_int8_t proto; 4525 u_int32_t spi; 4526 u_int8_t mode; 4527 u_int32_t reqid; 4528 int error; 4529 4530 IPSEC_ASSERT(so != NULL, ("null socket")); 4531 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4532 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4533 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4534 4535 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4536 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4537 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4538 __func__)); 4539 return key_senderror(so, m, EINVAL); 4540 } 4541 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4542 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4543 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4544 __func__)); 4545 return key_senderror(so, m, EINVAL); 4546 } 4547 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4548 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4549 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4550 } else { 4551 mode = IPSEC_MODE_ANY; 4552 reqid = 0; 4553 } 4554 4555 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4556 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4557 4558 /* map satype to proto */ 4559 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4560 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4561 __func__)); 4562 return key_senderror(so, m, EINVAL); 4563 } 4564 4565 /* 4566 * Make sure the port numbers are zero. 4567 * In case of NAT-T we will update them later if needed. 4568 */ 4569 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4570 case AF_INET: 4571 if (((struct sockaddr *)(src0 + 1))->sa_len != 4572 sizeof(struct sockaddr_in)) 4573 return key_senderror(so, m, EINVAL); 4574 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4575 break; 4576 case AF_INET6: 4577 if (((struct sockaddr *)(src0 + 1))->sa_len != 4578 sizeof(struct sockaddr_in6)) 4579 return key_senderror(so, m, EINVAL); 4580 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4581 break; 4582 default: 4583 ; /*???*/ 4584 } 4585 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4586 case AF_INET: 4587 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4588 sizeof(struct sockaddr_in)) 4589 return key_senderror(so, m, EINVAL); 4590 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4591 break; 4592 case AF_INET6: 4593 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4594 sizeof(struct sockaddr_in6)) 4595 return key_senderror(so, m, EINVAL); 4596 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4597 break; 4598 default: 4599 ; /*???*/ 4600 } 4601 4602 /* XXX boundary check against sa_len */ 4603 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4604 4605 #ifdef IPSEC_NAT_T 4606 /* 4607 * Handle NAT-T info if present. 4608 * We made sure the port numbers are zero above, so we do 4609 * not have to worry in case we do not update them. 4610 */ 4611 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4612 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4613 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4614 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4615 4616 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4617 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4618 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4619 struct sadb_x_nat_t_type *type; 4620 struct sadb_x_nat_t_port *sport, *dport; 4621 4622 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4623 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4624 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4625 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4626 "passed.\n", __func__)); 4627 return key_senderror(so, m, EINVAL); 4628 } 4629 4630 sport = (struct sadb_x_nat_t_port *) 4631 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4632 dport = (struct sadb_x_nat_t_port *) 4633 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4634 4635 if (sport) 4636 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4637 if (dport) 4638 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4639 } 4640 #endif 4641 4642 /* SPI allocation */ 4643 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4644 &saidx); 4645 if (spi == 0) 4646 return key_senderror(so, m, EINVAL); 4647 4648 /* get a SA index */ 4649 if ((newsah = key_getsah(&saidx)) == NULL) { 4650 /* create a new SA index */ 4651 if ((newsah = key_newsah(&saidx)) == NULL) { 4652 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4653 return key_senderror(so, m, ENOBUFS); 4654 } 4655 } 4656 4657 /* get a new SA */ 4658 /* XXX rewrite */ 4659 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4660 if (newsav == NULL) { 4661 /* XXX don't free new SA index allocated in above. */ 4662 return key_senderror(so, m, error); 4663 } 4664 4665 /* set spi */ 4666 newsav->spi = htonl(spi); 4667 4668 /* delete the entry in acqtree */ 4669 if (mhp->msg->sadb_msg_seq != 0) { 4670 struct secacq *acq; 4671 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4672 /* reset counter in order to deletion by timehandler. */ 4673 acq->created = time_second; 4674 acq->count = 0; 4675 } 4676 } 4677 4678 { 4679 struct mbuf *n, *nn; 4680 struct sadb_sa *m_sa; 4681 struct sadb_msg *newmsg; 4682 int off, len; 4683 4684 /* create new sadb_msg to reply. */ 4685 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4686 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4687 4688 MGETHDR(n, M_NOWAIT, MT_DATA); 4689 if (len > MHLEN) { 4690 if (!(MCLGET(n, M_NOWAIT))) { 4691 m_freem(n); 4692 n = NULL; 4693 } 4694 } 4695 if (!n) 4696 return key_senderror(so, m, ENOBUFS); 4697 4698 n->m_len = len; 4699 n->m_next = NULL; 4700 off = 0; 4701 4702 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4703 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4704 4705 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4706 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4707 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4708 m_sa->sadb_sa_spi = htonl(spi); 4709 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4710 4711 IPSEC_ASSERT(off == len, 4712 ("length inconsistency (off %u len %u)", off, len)); 4713 4714 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4715 SADB_EXT_ADDRESS_DST); 4716 if (!n->m_next) { 4717 m_freem(n); 4718 return key_senderror(so, m, ENOBUFS); 4719 } 4720 4721 if (n->m_len < sizeof(struct sadb_msg)) { 4722 n = m_pullup(n, sizeof(struct sadb_msg)); 4723 if (n == NULL) 4724 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4725 } 4726 4727 n->m_pkthdr.len = 0; 4728 for (nn = n; nn; nn = nn->m_next) 4729 n->m_pkthdr.len += nn->m_len; 4730 4731 newmsg = mtod(n, struct sadb_msg *); 4732 newmsg->sadb_msg_seq = newsav->seq; 4733 newmsg->sadb_msg_errno = 0; 4734 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4735 4736 m_freem(m); 4737 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4738 } 4739 } 4740 4741 /* 4742 * allocating new SPI 4743 * called by key_getspi(). 4744 * OUT: 4745 * 0: failure. 4746 * others: success. 4747 */ 4748 static u_int32_t 4749 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4750 { 4751 u_int32_t newspi; 4752 u_int32_t min, max; 4753 int count = V_key_spi_trycnt; 4754 4755 /* set spi range to allocate */ 4756 if (spirange != NULL) { 4757 min = spirange->sadb_spirange_min; 4758 max = spirange->sadb_spirange_max; 4759 } else { 4760 min = V_key_spi_minval; 4761 max = V_key_spi_maxval; 4762 } 4763 /* IPCOMP needs 2-byte SPI */ 4764 if (saidx->proto == IPPROTO_IPCOMP) { 4765 u_int32_t t; 4766 if (min >= 0x10000) 4767 min = 0xffff; 4768 if (max >= 0x10000) 4769 max = 0xffff; 4770 if (min > max) { 4771 t = min; min = max; max = t; 4772 } 4773 } 4774 4775 if (min == max) { 4776 if (key_checkspidup(saidx, min) != NULL) { 4777 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4778 __func__, min)); 4779 return 0; 4780 } 4781 4782 count--; /* taking one cost. */ 4783 newspi = min; 4784 4785 } else { 4786 4787 /* init SPI */ 4788 newspi = 0; 4789 4790 /* when requesting to allocate spi ranged */ 4791 while (count--) { 4792 /* generate pseudo-random SPI value ranged. */ 4793 newspi = min + (key_random() % (max - min + 1)); 4794 4795 if (key_checkspidup(saidx, newspi) == NULL) 4796 break; 4797 } 4798 4799 if (count == 0 || newspi == 0) { 4800 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4801 __func__)); 4802 return 0; 4803 } 4804 } 4805 4806 /* statistics */ 4807 keystat.getspi_count = 4808 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4809 4810 return newspi; 4811 } 4812 4813 /* 4814 * SADB_UPDATE processing 4815 * receive 4816 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4817 * key(AE), (identity(SD),) (sensitivity)> 4818 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4819 * and send 4820 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4821 * (identity(SD),) (sensitivity)> 4822 * to the ikmpd. 4823 * 4824 * m will always be freed. 4825 */ 4826 static int 4827 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4828 { 4829 struct sadb_sa *sa0; 4830 struct sadb_address *src0, *dst0; 4831 #ifdef IPSEC_NAT_T 4832 struct sadb_x_nat_t_type *type; 4833 struct sadb_x_nat_t_port *sport, *dport; 4834 struct sadb_address *iaddr, *raddr; 4835 struct sadb_x_nat_t_frag *frag; 4836 #endif 4837 struct secasindex saidx; 4838 struct secashead *sah; 4839 struct secasvar *sav; 4840 u_int16_t proto; 4841 u_int8_t mode; 4842 u_int32_t reqid; 4843 int error; 4844 4845 IPSEC_ASSERT(so != NULL, ("null socket")); 4846 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4847 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4848 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4849 4850 /* map satype to proto */ 4851 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4852 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4853 __func__)); 4854 return key_senderror(so, m, EINVAL); 4855 } 4856 4857 if (mhp->ext[SADB_EXT_SA] == NULL || 4858 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4859 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4860 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4861 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4862 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4863 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4864 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4865 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4866 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4867 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4868 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4869 __func__)); 4870 return key_senderror(so, m, EINVAL); 4871 } 4872 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4873 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4874 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4875 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4876 __func__)); 4877 return key_senderror(so, m, EINVAL); 4878 } 4879 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4880 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4881 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4882 } else { 4883 mode = IPSEC_MODE_ANY; 4884 reqid = 0; 4885 } 4886 /* XXX boundary checking for other extensions */ 4887 4888 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4889 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4890 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4891 4892 /* XXX boundary check against sa_len */ 4893 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4894 4895 /* 4896 * Make sure the port numbers are zero. 4897 * In case of NAT-T we will update them later if needed. 4898 */ 4899 KEY_PORTTOSADDR(&saidx.src, 0); 4900 KEY_PORTTOSADDR(&saidx.dst, 0); 4901 4902 #ifdef IPSEC_NAT_T 4903 /* 4904 * Handle NAT-T info if present. 4905 */ 4906 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4907 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4908 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4909 4910 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4911 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4912 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4913 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4914 __func__)); 4915 return key_senderror(so, m, EINVAL); 4916 } 4917 4918 type = (struct sadb_x_nat_t_type *) 4919 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4920 sport = (struct sadb_x_nat_t_port *) 4921 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4922 dport = (struct sadb_x_nat_t_port *) 4923 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4924 } else { 4925 type = 0; 4926 sport = dport = 0; 4927 } 4928 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4929 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4930 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4931 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4932 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4933 __func__)); 4934 return key_senderror(so, m, EINVAL); 4935 } 4936 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4937 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4938 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4939 } else { 4940 iaddr = raddr = NULL; 4941 } 4942 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4943 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4944 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4945 __func__)); 4946 return key_senderror(so, m, EINVAL); 4947 } 4948 frag = (struct sadb_x_nat_t_frag *) 4949 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4950 } else { 4951 frag = 0; 4952 } 4953 #endif 4954 4955 /* get a SA header */ 4956 if ((sah = key_getsah(&saidx)) == NULL) { 4957 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4958 return key_senderror(so, m, ENOENT); 4959 } 4960 4961 /* set spidx if there */ 4962 /* XXX rewrite */ 4963 error = key_setident(sah, m, mhp); 4964 if (error) 4965 return key_senderror(so, m, error); 4966 4967 /* find a SA with sequence number. */ 4968 #ifdef IPSEC_DOSEQCHECK 4969 if (mhp->msg->sadb_msg_seq != 0 4970 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4971 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4972 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4973 return key_senderror(so, m, ENOENT); 4974 } 4975 #else 4976 SAHTREE_LOCK(); 4977 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4978 SAHTREE_UNLOCK(); 4979 if (sav == NULL) { 4980 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4981 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4982 return key_senderror(so, m, EINVAL); 4983 } 4984 #endif 4985 4986 /* validity check */ 4987 if (sav->sah->saidx.proto != proto) { 4988 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4989 "(DB=%u param=%u)\n", __func__, 4990 sav->sah->saidx.proto, proto)); 4991 return key_senderror(so, m, EINVAL); 4992 } 4993 #ifdef IPSEC_DOSEQCHECK 4994 if (sav->spi != sa0->sadb_sa_spi) { 4995 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 4996 __func__, 4997 (u_int32_t)ntohl(sav->spi), 4998 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4999 return key_senderror(so, m, EINVAL); 5000 } 5001 #endif 5002 if (sav->pid != mhp->msg->sadb_msg_pid) { 5003 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5004 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5005 return key_senderror(so, m, EINVAL); 5006 } 5007 5008 /* copy sav values */ 5009 error = key_setsaval(sav, m, mhp); 5010 if (error) { 5011 KEY_FREESAV(&sav); 5012 return key_senderror(so, m, error); 5013 } 5014 5015 #ifdef IPSEC_NAT_T 5016 /* 5017 * Handle more NAT-T info if present, 5018 * now that we have a sav to fill. 5019 */ 5020 if (type) 5021 sav->natt_type = type->sadb_x_nat_t_type_type; 5022 5023 if (sport) 5024 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5025 sport->sadb_x_nat_t_port_port); 5026 if (dport) 5027 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5028 dport->sadb_x_nat_t_port_port); 5029 5030 #if 0 5031 /* 5032 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5033 * We should actually check for a minimum MTU here, if we 5034 * want to support it in ip_output. 5035 */ 5036 if (frag) 5037 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5038 #endif 5039 #endif 5040 5041 /* check SA values to be mature. */ 5042 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5043 KEY_FREESAV(&sav); 5044 return key_senderror(so, m, 0); 5045 } 5046 5047 { 5048 struct mbuf *n; 5049 5050 /* set msg buf from mhp */ 5051 n = key_getmsgbuf_x1(m, mhp); 5052 if (n == NULL) { 5053 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5054 return key_senderror(so, m, ENOBUFS); 5055 } 5056 5057 m_freem(m); 5058 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5059 } 5060 } 5061 5062 /* 5063 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5064 * only called by key_update(). 5065 * OUT: 5066 * NULL : not found 5067 * others : found, pointer to a SA. 5068 */ 5069 #ifdef IPSEC_DOSEQCHECK 5070 static struct secasvar * 5071 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5072 { 5073 struct secasvar *sav; 5074 u_int state; 5075 5076 state = SADB_SASTATE_LARVAL; 5077 5078 /* search SAD with sequence number ? */ 5079 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5080 5081 KEY_CHKSASTATE(state, sav->state, __func__); 5082 5083 if (sav->seq == seq) { 5084 sa_addref(sav); 5085 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5086 printf("DP %s cause refcnt++:%d SA:%p\n", 5087 __func__, sav->refcnt, sav)); 5088 return sav; 5089 } 5090 } 5091 5092 return NULL; 5093 } 5094 #endif 5095 5096 /* 5097 * SADB_ADD processing 5098 * add an entry to SA database, when received 5099 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5100 * key(AE), (identity(SD),) (sensitivity)> 5101 * from the ikmpd, 5102 * and send 5103 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5104 * (identity(SD),) (sensitivity)> 5105 * to the ikmpd. 5106 * 5107 * IGNORE identity and sensitivity messages. 5108 * 5109 * m will always be freed. 5110 */ 5111 static int 5112 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5113 { 5114 struct sadb_sa *sa0; 5115 struct sadb_address *src0, *dst0; 5116 #ifdef IPSEC_NAT_T 5117 struct sadb_x_nat_t_type *type; 5118 struct sadb_address *iaddr, *raddr; 5119 struct sadb_x_nat_t_frag *frag; 5120 #endif 5121 struct secasindex saidx; 5122 struct secashead *newsah; 5123 struct secasvar *newsav; 5124 u_int16_t proto; 5125 u_int8_t mode; 5126 u_int32_t reqid; 5127 int error; 5128 5129 IPSEC_ASSERT(so != NULL, ("null socket")); 5130 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5131 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5132 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5133 5134 /* map satype to proto */ 5135 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5136 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5137 __func__)); 5138 return key_senderror(so, m, EINVAL); 5139 } 5140 5141 if (mhp->ext[SADB_EXT_SA] == NULL || 5142 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5143 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5144 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5145 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5146 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5147 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5148 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5149 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5150 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5151 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5152 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5153 __func__)); 5154 return key_senderror(so, m, EINVAL); 5155 } 5156 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5157 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5158 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5159 /* XXX need more */ 5160 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5161 __func__)); 5162 return key_senderror(so, m, EINVAL); 5163 } 5164 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5165 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5166 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5167 } else { 5168 mode = IPSEC_MODE_ANY; 5169 reqid = 0; 5170 } 5171 5172 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5173 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5174 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5175 5176 /* XXX boundary check against sa_len */ 5177 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5178 5179 /* 5180 * Make sure the port numbers are zero. 5181 * In case of NAT-T we will update them later if needed. 5182 */ 5183 KEY_PORTTOSADDR(&saidx.src, 0); 5184 KEY_PORTTOSADDR(&saidx.dst, 0); 5185 5186 #ifdef IPSEC_NAT_T 5187 /* 5188 * Handle NAT-T info if present. 5189 */ 5190 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5191 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5192 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5193 struct sadb_x_nat_t_port *sport, *dport; 5194 5195 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5196 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5197 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5198 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5199 __func__)); 5200 return key_senderror(so, m, EINVAL); 5201 } 5202 5203 type = (struct sadb_x_nat_t_type *) 5204 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5205 sport = (struct sadb_x_nat_t_port *) 5206 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5207 dport = (struct sadb_x_nat_t_port *) 5208 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5209 5210 if (sport) 5211 KEY_PORTTOSADDR(&saidx.src, 5212 sport->sadb_x_nat_t_port_port); 5213 if (dport) 5214 KEY_PORTTOSADDR(&saidx.dst, 5215 dport->sadb_x_nat_t_port_port); 5216 } else { 5217 type = 0; 5218 } 5219 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5220 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5221 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5222 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5223 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5224 __func__)); 5225 return key_senderror(so, m, EINVAL); 5226 } 5227 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5228 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5229 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5230 } else { 5231 iaddr = raddr = NULL; 5232 } 5233 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5234 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5235 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5236 __func__)); 5237 return key_senderror(so, m, EINVAL); 5238 } 5239 frag = (struct sadb_x_nat_t_frag *) 5240 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5241 } else { 5242 frag = 0; 5243 } 5244 #endif 5245 5246 /* get a SA header */ 5247 if ((newsah = key_getsah(&saidx)) == NULL) { 5248 /* create a new SA header */ 5249 if ((newsah = key_newsah(&saidx)) == NULL) { 5250 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5251 return key_senderror(so, m, ENOBUFS); 5252 } 5253 } 5254 5255 /* set spidx if there */ 5256 /* XXX rewrite */ 5257 error = key_setident(newsah, m, mhp); 5258 if (error) { 5259 return key_senderror(so, m, error); 5260 } 5261 5262 /* create new SA entry. */ 5263 /* We can create new SA only if SPI is differenct. */ 5264 SAHTREE_LOCK(); 5265 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5266 SAHTREE_UNLOCK(); 5267 if (newsav != NULL) { 5268 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5269 return key_senderror(so, m, EEXIST); 5270 } 5271 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5272 if (newsav == NULL) { 5273 return key_senderror(so, m, error); 5274 } 5275 5276 #ifdef IPSEC_NAT_T 5277 /* 5278 * Handle more NAT-T info if present, 5279 * now that we have a sav to fill. 5280 */ 5281 if (type) 5282 newsav->natt_type = type->sadb_x_nat_t_type_type; 5283 5284 #if 0 5285 /* 5286 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5287 * We should actually check for a minimum MTU here, if we 5288 * want to support it in ip_output. 5289 */ 5290 if (frag) 5291 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5292 #endif 5293 #endif 5294 5295 /* check SA values to be mature. */ 5296 if ((error = key_mature(newsav)) != 0) { 5297 KEY_FREESAV(&newsav); 5298 return key_senderror(so, m, error); 5299 } 5300 5301 /* 5302 * don't call key_freesav() here, as we would like to keep the SA 5303 * in the database on success. 5304 */ 5305 5306 { 5307 struct mbuf *n; 5308 5309 /* set msg buf from mhp */ 5310 n = key_getmsgbuf_x1(m, mhp); 5311 if (n == NULL) { 5312 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5313 return key_senderror(so, m, ENOBUFS); 5314 } 5315 5316 m_freem(m); 5317 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5318 } 5319 } 5320 5321 /* m is retained */ 5322 static int 5323 key_setident(struct secashead *sah, struct mbuf *m, 5324 const struct sadb_msghdr *mhp) 5325 { 5326 const struct sadb_ident *idsrc, *iddst; 5327 int idsrclen, iddstlen; 5328 5329 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5330 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5331 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5332 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5333 5334 /* don't make buffer if not there */ 5335 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5336 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5337 sah->idents = NULL; 5338 sah->identd = NULL; 5339 return 0; 5340 } 5341 5342 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5343 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5344 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5345 return EINVAL; 5346 } 5347 5348 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5349 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5350 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5351 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5352 5353 /* validity check */ 5354 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5355 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5356 return EINVAL; 5357 } 5358 5359 switch (idsrc->sadb_ident_type) { 5360 case SADB_IDENTTYPE_PREFIX: 5361 case SADB_IDENTTYPE_FQDN: 5362 case SADB_IDENTTYPE_USERFQDN: 5363 default: 5364 /* XXX do nothing */ 5365 sah->idents = NULL; 5366 sah->identd = NULL; 5367 return 0; 5368 } 5369 5370 /* make structure */ 5371 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5372 if (sah->idents == NULL) { 5373 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5374 return ENOBUFS; 5375 } 5376 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5377 if (sah->identd == NULL) { 5378 free(sah->idents, M_IPSEC_MISC); 5379 sah->idents = NULL; 5380 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5381 return ENOBUFS; 5382 } 5383 sah->idents->type = idsrc->sadb_ident_type; 5384 sah->idents->id = idsrc->sadb_ident_id; 5385 5386 sah->identd->type = iddst->sadb_ident_type; 5387 sah->identd->id = iddst->sadb_ident_id; 5388 5389 return 0; 5390 } 5391 5392 /* 5393 * m will not be freed on return. 5394 * it is caller's responsibility to free the result. 5395 */ 5396 static struct mbuf * 5397 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5398 { 5399 struct mbuf *n; 5400 5401 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5402 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5403 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5404 5405 /* create new sadb_msg to reply. */ 5406 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5407 SADB_EXT_SA, SADB_X_EXT_SA2, 5408 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5409 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5410 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5411 if (!n) 5412 return NULL; 5413 5414 if (n->m_len < sizeof(struct sadb_msg)) { 5415 n = m_pullup(n, sizeof(struct sadb_msg)); 5416 if (n == NULL) 5417 return NULL; 5418 } 5419 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5420 mtod(n, struct sadb_msg *)->sadb_msg_len = 5421 PFKEY_UNIT64(n->m_pkthdr.len); 5422 5423 return n; 5424 } 5425 5426 /* 5427 * SADB_DELETE processing 5428 * receive 5429 * <base, SA(*), address(SD)> 5430 * from the ikmpd, and set SADB_SASTATE_DEAD, 5431 * and send, 5432 * <base, SA(*), address(SD)> 5433 * to the ikmpd. 5434 * 5435 * m will always be freed. 5436 */ 5437 static int 5438 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5439 { 5440 struct sadb_sa *sa0; 5441 struct sadb_address *src0, *dst0; 5442 struct secasindex saidx; 5443 struct secashead *sah; 5444 struct secasvar *sav = NULL; 5445 u_int16_t proto; 5446 5447 IPSEC_ASSERT(so != NULL, ("null socket")); 5448 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5449 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5450 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5451 5452 /* map satype to proto */ 5453 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5454 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5455 __func__)); 5456 return key_senderror(so, m, EINVAL); 5457 } 5458 5459 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5460 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5461 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5462 __func__)); 5463 return key_senderror(so, m, EINVAL); 5464 } 5465 5466 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5467 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5468 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5469 __func__)); 5470 return key_senderror(so, m, EINVAL); 5471 } 5472 5473 if (mhp->ext[SADB_EXT_SA] == NULL) { 5474 /* 5475 * Caller wants us to delete all non-LARVAL SAs 5476 * that match the src/dst. This is used during 5477 * IKE INITIAL-CONTACT. 5478 */ 5479 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5480 return key_delete_all(so, m, mhp, proto); 5481 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5482 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5483 __func__)); 5484 return key_senderror(so, m, EINVAL); 5485 } 5486 5487 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5488 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5489 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5490 5491 /* XXX boundary check against sa_len */ 5492 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5493 5494 /* 5495 * Make sure the port numbers are zero. 5496 * In case of NAT-T we will update them later if needed. 5497 */ 5498 KEY_PORTTOSADDR(&saidx.src, 0); 5499 KEY_PORTTOSADDR(&saidx.dst, 0); 5500 5501 #ifdef IPSEC_NAT_T 5502 /* 5503 * Handle NAT-T info if present. 5504 */ 5505 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5506 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5507 struct sadb_x_nat_t_port *sport, *dport; 5508 5509 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5510 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5511 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5512 __func__)); 5513 return key_senderror(so, m, EINVAL); 5514 } 5515 5516 sport = (struct sadb_x_nat_t_port *) 5517 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5518 dport = (struct sadb_x_nat_t_port *) 5519 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5520 5521 if (sport) 5522 KEY_PORTTOSADDR(&saidx.src, 5523 sport->sadb_x_nat_t_port_port); 5524 if (dport) 5525 KEY_PORTTOSADDR(&saidx.dst, 5526 dport->sadb_x_nat_t_port_port); 5527 } 5528 #endif 5529 5530 /* get a SA header */ 5531 SAHTREE_LOCK(); 5532 LIST_FOREACH(sah, &V_sahtree, chain) { 5533 if (sah->state == SADB_SASTATE_DEAD) 5534 continue; 5535 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5536 continue; 5537 5538 /* get a SA with SPI. */ 5539 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5540 if (sav) 5541 break; 5542 } 5543 if (sah == NULL) { 5544 SAHTREE_UNLOCK(); 5545 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5546 return key_senderror(so, m, ENOENT); 5547 } 5548 5549 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5550 KEY_FREESAV(&sav); 5551 SAHTREE_UNLOCK(); 5552 5553 { 5554 struct mbuf *n; 5555 struct sadb_msg *newmsg; 5556 5557 /* create new sadb_msg to reply. */ 5558 /* XXX-BZ NAT-T extensions? */ 5559 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5560 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5561 if (!n) 5562 return key_senderror(so, m, ENOBUFS); 5563 5564 if (n->m_len < sizeof(struct sadb_msg)) { 5565 n = m_pullup(n, sizeof(struct sadb_msg)); 5566 if (n == NULL) 5567 return key_senderror(so, m, ENOBUFS); 5568 } 5569 newmsg = mtod(n, struct sadb_msg *); 5570 newmsg->sadb_msg_errno = 0; 5571 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5572 5573 m_freem(m); 5574 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5575 } 5576 } 5577 5578 /* 5579 * delete all SAs for src/dst. Called from key_delete(). 5580 */ 5581 static int 5582 key_delete_all(struct socket *so, struct mbuf *m, 5583 const struct sadb_msghdr *mhp, u_int16_t proto) 5584 { 5585 struct sadb_address *src0, *dst0; 5586 struct secasindex saidx; 5587 struct secashead *sah; 5588 struct secasvar *sav, *nextsav; 5589 u_int stateidx, state; 5590 5591 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5592 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5593 5594 /* XXX boundary check against sa_len */ 5595 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5596 5597 /* 5598 * Make sure the port numbers are zero. 5599 * In case of NAT-T we will update them later if needed. 5600 */ 5601 KEY_PORTTOSADDR(&saidx.src, 0); 5602 KEY_PORTTOSADDR(&saidx.dst, 0); 5603 5604 #ifdef IPSEC_NAT_T 5605 /* 5606 * Handle NAT-T info if present. 5607 */ 5608 5609 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5610 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5611 struct sadb_x_nat_t_port *sport, *dport; 5612 5613 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5614 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5615 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5616 __func__)); 5617 return key_senderror(so, m, EINVAL); 5618 } 5619 5620 sport = (struct sadb_x_nat_t_port *) 5621 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5622 dport = (struct sadb_x_nat_t_port *) 5623 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5624 5625 if (sport) 5626 KEY_PORTTOSADDR(&saidx.src, 5627 sport->sadb_x_nat_t_port_port); 5628 if (dport) 5629 KEY_PORTTOSADDR(&saidx.dst, 5630 dport->sadb_x_nat_t_port_port); 5631 } 5632 #endif 5633 5634 SAHTREE_LOCK(); 5635 LIST_FOREACH(sah, &V_sahtree, chain) { 5636 if (sah->state == SADB_SASTATE_DEAD) 5637 continue; 5638 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5639 continue; 5640 5641 /* Delete all non-LARVAL SAs. */ 5642 for (stateidx = 0; 5643 stateidx < _ARRAYLEN(saorder_state_alive); 5644 stateidx++) { 5645 state = saorder_state_alive[stateidx]; 5646 if (state == SADB_SASTATE_LARVAL) 5647 continue; 5648 for (sav = LIST_FIRST(&sah->savtree[state]); 5649 sav != NULL; sav = nextsav) { 5650 nextsav = LIST_NEXT(sav, chain); 5651 /* sanity check */ 5652 if (sav->state != state) { 5653 ipseclog((LOG_DEBUG, "%s: invalid " 5654 "sav->state (queue %d SA %d)\n", 5655 __func__, state, sav->state)); 5656 continue; 5657 } 5658 5659 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5660 KEY_FREESAV(&sav); 5661 } 5662 } 5663 } 5664 SAHTREE_UNLOCK(); 5665 { 5666 struct mbuf *n; 5667 struct sadb_msg *newmsg; 5668 5669 /* create new sadb_msg to reply. */ 5670 /* XXX-BZ NAT-T extensions? */ 5671 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5672 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5673 if (!n) 5674 return key_senderror(so, m, ENOBUFS); 5675 5676 if (n->m_len < sizeof(struct sadb_msg)) { 5677 n = m_pullup(n, sizeof(struct sadb_msg)); 5678 if (n == NULL) 5679 return key_senderror(so, m, ENOBUFS); 5680 } 5681 newmsg = mtod(n, struct sadb_msg *); 5682 newmsg->sadb_msg_errno = 0; 5683 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5684 5685 m_freem(m); 5686 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5687 } 5688 } 5689 5690 /* 5691 * SADB_GET processing 5692 * receive 5693 * <base, SA(*), address(SD)> 5694 * from the ikmpd, and get a SP and a SA to respond, 5695 * and send, 5696 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5697 * (identity(SD),) (sensitivity)> 5698 * to the ikmpd. 5699 * 5700 * m will always be freed. 5701 */ 5702 static int 5703 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5704 { 5705 struct sadb_sa *sa0; 5706 struct sadb_address *src0, *dst0; 5707 struct secasindex saidx; 5708 struct secashead *sah; 5709 struct secasvar *sav = NULL; 5710 u_int16_t proto; 5711 5712 IPSEC_ASSERT(so != NULL, ("null socket")); 5713 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5714 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5715 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5716 5717 /* map satype to proto */ 5718 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5719 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5720 __func__)); 5721 return key_senderror(so, m, EINVAL); 5722 } 5723 5724 if (mhp->ext[SADB_EXT_SA] == NULL || 5725 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5726 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5727 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5728 __func__)); 5729 return key_senderror(so, m, EINVAL); 5730 } 5731 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5732 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5733 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5734 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5735 __func__)); 5736 return key_senderror(so, m, EINVAL); 5737 } 5738 5739 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5740 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5741 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5742 5743 /* XXX boundary check against sa_len */ 5744 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5745 5746 /* 5747 * Make sure the port numbers are zero. 5748 * In case of NAT-T we will update them later if needed. 5749 */ 5750 KEY_PORTTOSADDR(&saidx.src, 0); 5751 KEY_PORTTOSADDR(&saidx.dst, 0); 5752 5753 #ifdef IPSEC_NAT_T 5754 /* 5755 * Handle NAT-T info if present. 5756 */ 5757 5758 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5759 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5760 struct sadb_x_nat_t_port *sport, *dport; 5761 5762 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5763 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5764 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5765 __func__)); 5766 return key_senderror(so, m, EINVAL); 5767 } 5768 5769 sport = (struct sadb_x_nat_t_port *) 5770 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5771 dport = (struct sadb_x_nat_t_port *) 5772 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5773 5774 if (sport) 5775 KEY_PORTTOSADDR(&saidx.src, 5776 sport->sadb_x_nat_t_port_port); 5777 if (dport) 5778 KEY_PORTTOSADDR(&saidx.dst, 5779 dport->sadb_x_nat_t_port_port); 5780 } 5781 #endif 5782 5783 /* get a SA header */ 5784 SAHTREE_LOCK(); 5785 LIST_FOREACH(sah, &V_sahtree, chain) { 5786 if (sah->state == SADB_SASTATE_DEAD) 5787 continue; 5788 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5789 continue; 5790 5791 /* get a SA with SPI. */ 5792 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5793 if (sav) 5794 break; 5795 } 5796 SAHTREE_UNLOCK(); 5797 if (sah == NULL) { 5798 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5799 return key_senderror(so, m, ENOENT); 5800 } 5801 5802 { 5803 struct mbuf *n; 5804 u_int8_t satype; 5805 5806 /* map proto to satype */ 5807 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5808 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5809 __func__)); 5810 return key_senderror(so, m, EINVAL); 5811 } 5812 5813 /* create new sadb_msg to reply. */ 5814 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5815 mhp->msg->sadb_msg_pid); 5816 if (!n) 5817 return key_senderror(so, m, ENOBUFS); 5818 5819 m_freem(m); 5820 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5821 } 5822 } 5823 5824 /* XXX make it sysctl-configurable? */ 5825 static void 5826 key_getcomb_setlifetime(struct sadb_comb *comb) 5827 { 5828 5829 comb->sadb_comb_soft_allocations = 1; 5830 comb->sadb_comb_hard_allocations = 1; 5831 comb->sadb_comb_soft_bytes = 0; 5832 comb->sadb_comb_hard_bytes = 0; 5833 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5834 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5835 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5836 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5837 } 5838 5839 /* 5840 * XXX reorder combinations by preference 5841 * XXX no idea if the user wants ESP authentication or not 5842 */ 5843 static struct mbuf * 5844 key_getcomb_esp() 5845 { 5846 struct sadb_comb *comb; 5847 struct enc_xform *algo; 5848 struct mbuf *result = NULL, *m, *n; 5849 int encmin; 5850 int i, off, o; 5851 int totlen; 5852 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5853 5854 m = NULL; 5855 for (i = 1; i <= SADB_EALG_MAX; i++) { 5856 algo = esp_algorithm_lookup(i); 5857 if (algo == NULL) 5858 continue; 5859 5860 /* discard algorithms with key size smaller than system min */ 5861 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5862 continue; 5863 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5864 encmin = V_ipsec_esp_keymin; 5865 else 5866 encmin = _BITS(algo->minkey); 5867 5868 if (V_ipsec_esp_auth) 5869 m = key_getcomb_ah(); 5870 else { 5871 IPSEC_ASSERT(l <= MLEN, 5872 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5873 MGET(m, M_NOWAIT, MT_DATA); 5874 if (m) { 5875 M_ALIGN(m, l); 5876 m->m_len = l; 5877 m->m_next = NULL; 5878 bzero(mtod(m, caddr_t), m->m_len); 5879 } 5880 } 5881 if (!m) 5882 goto fail; 5883 5884 totlen = 0; 5885 for (n = m; n; n = n->m_next) 5886 totlen += n->m_len; 5887 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5888 5889 for (off = 0; off < totlen; off += l) { 5890 n = m_pulldown(m, off, l, &o); 5891 if (!n) { 5892 /* m is already freed */ 5893 goto fail; 5894 } 5895 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5896 bzero(comb, sizeof(*comb)); 5897 key_getcomb_setlifetime(comb); 5898 comb->sadb_comb_encrypt = i; 5899 comb->sadb_comb_encrypt_minbits = encmin; 5900 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5901 } 5902 5903 if (!result) 5904 result = m; 5905 else 5906 m_cat(result, m); 5907 } 5908 5909 return result; 5910 5911 fail: 5912 if (result) 5913 m_freem(result); 5914 return NULL; 5915 } 5916 5917 static void 5918 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5919 u_int16_t* max) 5920 { 5921 5922 *min = *max = ah->keysize; 5923 if (ah->keysize == 0) { 5924 /* 5925 * Transform takes arbitrary key size but algorithm 5926 * key size is restricted. Enforce this here. 5927 */ 5928 switch (alg) { 5929 case SADB_X_AALG_MD5: *min = *max = 16; break; 5930 case SADB_X_AALG_SHA: *min = *max = 20; break; 5931 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5932 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5933 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5934 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5935 default: 5936 DPRINTF(("%s: unknown AH algorithm %u\n", 5937 __func__, alg)); 5938 break; 5939 } 5940 } 5941 } 5942 5943 /* 5944 * XXX reorder combinations by preference 5945 */ 5946 static struct mbuf * 5947 key_getcomb_ah() 5948 { 5949 struct sadb_comb *comb; 5950 struct auth_hash *algo; 5951 struct mbuf *m; 5952 u_int16_t minkeysize, maxkeysize; 5953 int i; 5954 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5955 5956 m = NULL; 5957 for (i = 1; i <= SADB_AALG_MAX; i++) { 5958 #if 1 5959 /* we prefer HMAC algorithms, not old algorithms */ 5960 if (i != SADB_AALG_SHA1HMAC && 5961 i != SADB_AALG_MD5HMAC && 5962 i != SADB_X_AALG_SHA2_256 && 5963 i != SADB_X_AALG_SHA2_384 && 5964 i != SADB_X_AALG_SHA2_512) 5965 continue; 5966 #endif 5967 algo = ah_algorithm_lookup(i); 5968 if (!algo) 5969 continue; 5970 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5971 /* discard algorithms with key size smaller than system min */ 5972 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5973 continue; 5974 5975 if (!m) { 5976 IPSEC_ASSERT(l <= MLEN, 5977 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5978 MGET(m, M_NOWAIT, MT_DATA); 5979 if (m) { 5980 M_ALIGN(m, l); 5981 m->m_len = l; 5982 m->m_next = NULL; 5983 } 5984 } else 5985 M_PREPEND(m, l, M_NOWAIT); 5986 if (!m) 5987 return NULL; 5988 5989 comb = mtod(m, struct sadb_comb *); 5990 bzero(comb, sizeof(*comb)); 5991 key_getcomb_setlifetime(comb); 5992 comb->sadb_comb_auth = i; 5993 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 5994 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 5995 } 5996 5997 return m; 5998 } 5999 6000 /* 6001 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6002 * XXX reorder combinations by preference 6003 */ 6004 static struct mbuf * 6005 key_getcomb_ipcomp() 6006 { 6007 struct sadb_comb *comb; 6008 struct comp_algo *algo; 6009 struct mbuf *m; 6010 int i; 6011 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6012 6013 m = NULL; 6014 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6015 algo = ipcomp_algorithm_lookup(i); 6016 if (!algo) 6017 continue; 6018 6019 if (!m) { 6020 IPSEC_ASSERT(l <= MLEN, 6021 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6022 MGET(m, M_NOWAIT, MT_DATA); 6023 if (m) { 6024 M_ALIGN(m, l); 6025 m->m_len = l; 6026 m->m_next = NULL; 6027 } 6028 } else 6029 M_PREPEND(m, l, M_NOWAIT); 6030 if (!m) 6031 return NULL; 6032 6033 comb = mtod(m, struct sadb_comb *); 6034 bzero(comb, sizeof(*comb)); 6035 key_getcomb_setlifetime(comb); 6036 comb->sadb_comb_encrypt = i; 6037 /* what should we set into sadb_comb_*_{min,max}bits? */ 6038 } 6039 6040 return m; 6041 } 6042 6043 /* 6044 * XXX no way to pass mode (transport/tunnel) to userland 6045 * XXX replay checking? 6046 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6047 */ 6048 static struct mbuf * 6049 key_getprop(const struct secasindex *saidx) 6050 { 6051 struct sadb_prop *prop; 6052 struct mbuf *m, *n; 6053 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6054 int totlen; 6055 6056 switch (saidx->proto) { 6057 case IPPROTO_ESP: 6058 m = key_getcomb_esp(); 6059 break; 6060 case IPPROTO_AH: 6061 m = key_getcomb_ah(); 6062 break; 6063 case IPPROTO_IPCOMP: 6064 m = key_getcomb_ipcomp(); 6065 break; 6066 default: 6067 return NULL; 6068 } 6069 6070 if (!m) 6071 return NULL; 6072 M_PREPEND(m, l, M_NOWAIT); 6073 if (!m) 6074 return NULL; 6075 6076 totlen = 0; 6077 for (n = m; n; n = n->m_next) 6078 totlen += n->m_len; 6079 6080 prop = mtod(m, struct sadb_prop *); 6081 bzero(prop, sizeof(*prop)); 6082 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6083 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6084 prop->sadb_prop_replay = 32; /* XXX */ 6085 6086 return m; 6087 } 6088 6089 /* 6090 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6091 * send 6092 * <base, SA, address(SD), (address(P)), x_policy, 6093 * (identity(SD),) (sensitivity,) proposal> 6094 * to KMD, and expect to receive 6095 * <base> with SADB_ACQUIRE if error occured, 6096 * or 6097 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6098 * from KMD by PF_KEY. 6099 * 6100 * XXX x_policy is outside of RFC2367 (KAME extension). 6101 * XXX sensitivity is not supported. 6102 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6103 * see comment for key_getcomb_ipcomp(). 6104 * 6105 * OUT: 6106 * 0 : succeed 6107 * others: error number 6108 */ 6109 static int 6110 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6111 { 6112 union sockaddr_union addr; 6113 struct mbuf *result, *m; 6114 struct secacq *newacq; 6115 u_int32_t seq; 6116 int error; 6117 u_int16_t ul_proto; 6118 u_int8_t mask, satype; 6119 6120 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6121 satype = key_proto2satype(saidx->proto); 6122 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6123 6124 error = -1; 6125 result = NULL; 6126 ul_proto = IPSEC_ULPROTO_ANY; 6127 /* 6128 * We never do anything about acquirng SA. There is anather 6129 * solution that kernel blocks to send SADB_ACQUIRE message until 6130 * getting something message from IKEd. In later case, to be 6131 * managed with ACQUIRING list. 6132 */ 6133 /* Get an entry to check whether sending message or not. */ 6134 if ((newacq = key_getacq(saidx)) != NULL) { 6135 if (V_key_blockacq_count < newacq->count) { 6136 /* reset counter and do send message. */ 6137 newacq->count = 0; 6138 } else { 6139 /* increment counter and do nothing. */ 6140 newacq->count++; 6141 return 0; 6142 } 6143 } else { 6144 /* make new entry for blocking to send SADB_ACQUIRE. */ 6145 if ((newacq = key_newacq(saidx)) == NULL) 6146 return ENOBUFS; 6147 } 6148 6149 6150 seq = newacq->seq; 6151 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6152 if (!m) { 6153 error = ENOBUFS; 6154 goto fail; 6155 } 6156 result = m; 6157 6158 /* 6159 * No SADB_X_EXT_NAT_T_* here: we do not know 6160 * anything related to NAT-T at this time. 6161 */ 6162 6163 /* 6164 * set sadb_address for saidx's. 6165 * 6166 * Note that if sp is supplied, then we're being called from 6167 * key_checkrequest and should supply port and protocol information. 6168 */ 6169 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6170 sp->spidx.ul_proto == IPPROTO_UDP)) 6171 ul_proto = sp->spidx.ul_proto; 6172 6173 addr = saidx->src; 6174 mask = FULLMASK; 6175 if (ul_proto != IPSEC_ULPROTO_ANY) { 6176 switch (sp->spidx.src.sa.sa_family) { 6177 case AF_INET: 6178 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6179 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6180 mask = sp->spidx.prefs; 6181 } 6182 break; 6183 case AF_INET6: 6184 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6185 addr.sin6.sin6_port = sp->spidx.src.sin6.sin6_port; 6186 mask = sp->spidx.prefs; 6187 } 6188 break; 6189 default: 6190 break; 6191 } 6192 } 6193 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6194 if (!m) { 6195 error = ENOBUFS; 6196 goto fail; 6197 } 6198 m_cat(result, m); 6199 6200 addr = saidx->dst; 6201 mask = FULLMASK; 6202 if (ul_proto != IPSEC_ULPROTO_ANY) { 6203 switch (sp->spidx.dst.sa.sa_family) { 6204 case AF_INET: 6205 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6206 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6207 mask = sp->spidx.prefd; 6208 } 6209 break; 6210 case AF_INET6: 6211 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6212 addr.sin6.sin6_port = sp->spidx.dst.sin6.sin6_port; 6213 mask = sp->spidx.prefd; 6214 } 6215 break; 6216 default: 6217 break; 6218 } 6219 } 6220 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6221 if (!m) { 6222 error = ENOBUFS; 6223 goto fail; 6224 } 6225 m_cat(result, m); 6226 6227 /* XXX proxy address (optional) */ 6228 6229 /* set sadb_x_policy */ 6230 if (sp) { 6231 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, sp->priority); 6232 if (!m) { 6233 error = ENOBUFS; 6234 goto fail; 6235 } 6236 m_cat(result, m); 6237 } 6238 6239 /* XXX identity (optional) */ 6240 #if 0 6241 if (idexttype && fqdn) { 6242 /* create identity extension (FQDN) */ 6243 struct sadb_ident *id; 6244 int fqdnlen; 6245 6246 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6247 id = (struct sadb_ident *)p; 6248 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6249 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6250 id->sadb_ident_exttype = idexttype; 6251 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6252 bcopy(fqdn, id + 1, fqdnlen); 6253 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6254 } 6255 6256 if (idexttype) { 6257 /* create identity extension (USERFQDN) */ 6258 struct sadb_ident *id; 6259 int userfqdnlen; 6260 6261 if (userfqdn) { 6262 /* +1 for terminating-NUL */ 6263 userfqdnlen = strlen(userfqdn) + 1; 6264 } else 6265 userfqdnlen = 0; 6266 id = (struct sadb_ident *)p; 6267 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6268 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6269 id->sadb_ident_exttype = idexttype; 6270 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6271 /* XXX is it correct? */ 6272 if (curproc && curproc->p_cred) 6273 id->sadb_ident_id = curproc->p_cred->p_ruid; 6274 if (userfqdn && userfqdnlen) 6275 bcopy(userfqdn, id + 1, userfqdnlen); 6276 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6277 } 6278 #endif 6279 6280 /* XXX sensitivity (optional) */ 6281 6282 /* create proposal/combination extension */ 6283 m = key_getprop(saidx); 6284 #if 0 6285 /* 6286 * spec conformant: always attach proposal/combination extension, 6287 * the problem is that we have no way to attach it for ipcomp, 6288 * due to the way sadb_comb is declared in RFC2367. 6289 */ 6290 if (!m) { 6291 error = ENOBUFS; 6292 goto fail; 6293 } 6294 m_cat(result, m); 6295 #else 6296 /* 6297 * outside of spec; make proposal/combination extension optional. 6298 */ 6299 if (m) 6300 m_cat(result, m); 6301 #endif 6302 6303 if ((result->m_flags & M_PKTHDR) == 0) { 6304 error = EINVAL; 6305 goto fail; 6306 } 6307 6308 if (result->m_len < sizeof(struct sadb_msg)) { 6309 result = m_pullup(result, sizeof(struct sadb_msg)); 6310 if (result == NULL) { 6311 error = ENOBUFS; 6312 goto fail; 6313 } 6314 } 6315 6316 result->m_pkthdr.len = 0; 6317 for (m = result; m; m = m->m_next) 6318 result->m_pkthdr.len += m->m_len; 6319 6320 mtod(result, struct sadb_msg *)->sadb_msg_len = 6321 PFKEY_UNIT64(result->m_pkthdr.len); 6322 6323 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6324 6325 fail: 6326 if (result) 6327 m_freem(result); 6328 return error; 6329 } 6330 6331 static struct secacq * 6332 key_newacq(const struct secasindex *saidx) 6333 { 6334 struct secacq *newacq; 6335 6336 /* get new entry */ 6337 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6338 if (newacq == NULL) { 6339 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6340 return NULL; 6341 } 6342 6343 /* copy secindex */ 6344 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6345 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6346 newacq->created = time_second; 6347 newacq->count = 0; 6348 6349 /* add to acqtree */ 6350 ACQ_LOCK(); 6351 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6352 ACQ_UNLOCK(); 6353 6354 return newacq; 6355 } 6356 6357 static struct secacq * 6358 key_getacq(const struct secasindex *saidx) 6359 { 6360 struct secacq *acq; 6361 6362 ACQ_LOCK(); 6363 LIST_FOREACH(acq, &V_acqtree, chain) { 6364 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6365 break; 6366 } 6367 ACQ_UNLOCK(); 6368 6369 return acq; 6370 } 6371 6372 static struct secacq * 6373 key_getacqbyseq(u_int32_t seq) 6374 { 6375 struct secacq *acq; 6376 6377 ACQ_LOCK(); 6378 LIST_FOREACH(acq, &V_acqtree, chain) { 6379 if (acq->seq == seq) 6380 break; 6381 } 6382 ACQ_UNLOCK(); 6383 6384 return acq; 6385 } 6386 6387 static struct secspacq * 6388 key_newspacq(struct secpolicyindex *spidx) 6389 { 6390 struct secspacq *acq; 6391 6392 /* get new entry */ 6393 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6394 if (acq == NULL) { 6395 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6396 return NULL; 6397 } 6398 6399 /* copy secindex */ 6400 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6401 acq->created = time_second; 6402 acq->count = 0; 6403 6404 /* add to spacqtree */ 6405 SPACQ_LOCK(); 6406 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6407 SPACQ_UNLOCK(); 6408 6409 return acq; 6410 } 6411 6412 static struct secspacq * 6413 key_getspacq(struct secpolicyindex *spidx) 6414 { 6415 struct secspacq *acq; 6416 6417 SPACQ_LOCK(); 6418 LIST_FOREACH(acq, &V_spacqtree, chain) { 6419 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6420 /* NB: return holding spacq_lock */ 6421 return acq; 6422 } 6423 } 6424 SPACQ_UNLOCK(); 6425 6426 return NULL; 6427 } 6428 6429 /* 6430 * SADB_ACQUIRE processing, 6431 * in first situation, is receiving 6432 * <base> 6433 * from the ikmpd, and clear sequence of its secasvar entry. 6434 * 6435 * In second situation, is receiving 6436 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6437 * from a user land process, and return 6438 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6439 * to the socket. 6440 * 6441 * m will always be freed. 6442 */ 6443 static int 6444 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6445 { 6446 const struct sadb_address *src0, *dst0; 6447 struct secasindex saidx; 6448 struct secashead *sah; 6449 u_int16_t proto; 6450 int error; 6451 6452 IPSEC_ASSERT(so != NULL, ("null socket")); 6453 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6454 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6455 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6456 6457 /* 6458 * Error message from KMd. 6459 * We assume that if error was occured in IKEd, the length of PFKEY 6460 * message is equal to the size of sadb_msg structure. 6461 * We do not raise error even if error occured in this function. 6462 */ 6463 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6464 struct secacq *acq; 6465 6466 /* check sequence number */ 6467 if (mhp->msg->sadb_msg_seq == 0) { 6468 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6469 "number.\n", __func__)); 6470 m_freem(m); 6471 return 0; 6472 } 6473 6474 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6475 /* 6476 * the specified larval SA is already gone, or we got 6477 * a bogus sequence number. we can silently ignore it. 6478 */ 6479 m_freem(m); 6480 return 0; 6481 } 6482 6483 /* reset acq counter in order to deletion by timehander. */ 6484 acq->created = time_second; 6485 acq->count = 0; 6486 m_freem(m); 6487 return 0; 6488 } 6489 6490 /* 6491 * This message is from user land. 6492 */ 6493 6494 /* map satype to proto */ 6495 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6496 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6497 __func__)); 6498 return key_senderror(so, m, EINVAL); 6499 } 6500 6501 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6502 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6503 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6504 /* error */ 6505 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6506 __func__)); 6507 return key_senderror(so, m, EINVAL); 6508 } 6509 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6510 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6511 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6512 /* error */ 6513 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6514 __func__)); 6515 return key_senderror(so, m, EINVAL); 6516 } 6517 6518 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6519 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6520 6521 /* XXX boundary check against sa_len */ 6522 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6523 6524 /* 6525 * Make sure the port numbers are zero. 6526 * In case of NAT-T we will update them later if needed. 6527 */ 6528 KEY_PORTTOSADDR(&saidx.src, 0); 6529 KEY_PORTTOSADDR(&saidx.dst, 0); 6530 6531 #ifndef IPSEC_NAT_T 6532 /* 6533 * Handle NAT-T info if present. 6534 */ 6535 6536 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6537 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6538 struct sadb_x_nat_t_port *sport, *dport; 6539 6540 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6541 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6542 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6543 __func__)); 6544 return key_senderror(so, m, EINVAL); 6545 } 6546 6547 sport = (struct sadb_x_nat_t_port *) 6548 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6549 dport = (struct sadb_x_nat_t_port *) 6550 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6551 6552 if (sport) 6553 KEY_PORTTOSADDR(&saidx.src, 6554 sport->sadb_x_nat_t_port_port); 6555 if (dport) 6556 KEY_PORTTOSADDR(&saidx.dst, 6557 dport->sadb_x_nat_t_port_port); 6558 } 6559 #endif 6560 6561 /* get a SA index */ 6562 SAHTREE_LOCK(); 6563 LIST_FOREACH(sah, &V_sahtree, chain) { 6564 if (sah->state == SADB_SASTATE_DEAD) 6565 continue; 6566 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6567 break; 6568 } 6569 SAHTREE_UNLOCK(); 6570 if (sah != NULL) { 6571 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6572 return key_senderror(so, m, EEXIST); 6573 } 6574 6575 error = key_acquire(&saidx, NULL); 6576 if (error != 0) { 6577 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6578 __func__, mhp->msg->sadb_msg_errno)); 6579 return key_senderror(so, m, error); 6580 } 6581 6582 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6583 } 6584 6585 /* 6586 * SADB_REGISTER processing. 6587 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6588 * receive 6589 * <base> 6590 * from the ikmpd, and register a socket to send PF_KEY messages, 6591 * and send 6592 * <base, supported> 6593 * to KMD by PF_KEY. 6594 * If socket is detached, must free from regnode. 6595 * 6596 * m will always be freed. 6597 */ 6598 static int 6599 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6600 { 6601 struct secreg *reg, *newreg = 0; 6602 6603 IPSEC_ASSERT(so != NULL, ("null socket")); 6604 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6605 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6606 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6607 6608 /* check for invalid register message */ 6609 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6610 return key_senderror(so, m, EINVAL); 6611 6612 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6613 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6614 goto setmsg; 6615 6616 /* check whether existing or not */ 6617 REGTREE_LOCK(); 6618 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6619 if (reg->so == so) { 6620 REGTREE_UNLOCK(); 6621 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6622 __func__)); 6623 return key_senderror(so, m, EEXIST); 6624 } 6625 } 6626 6627 /* create regnode */ 6628 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6629 if (newreg == NULL) { 6630 REGTREE_UNLOCK(); 6631 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6632 return key_senderror(so, m, ENOBUFS); 6633 } 6634 6635 newreg->so = so; 6636 ((struct keycb *)sotorawcb(so))->kp_registered++; 6637 6638 /* add regnode to regtree. */ 6639 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6640 REGTREE_UNLOCK(); 6641 6642 setmsg: 6643 { 6644 struct mbuf *n; 6645 struct sadb_msg *newmsg; 6646 struct sadb_supported *sup; 6647 u_int len, alen, elen; 6648 int off; 6649 int i; 6650 struct sadb_alg *alg; 6651 6652 /* create new sadb_msg to reply. */ 6653 alen = 0; 6654 for (i = 1; i <= SADB_AALG_MAX; i++) { 6655 if (ah_algorithm_lookup(i)) 6656 alen += sizeof(struct sadb_alg); 6657 } 6658 if (alen) 6659 alen += sizeof(struct sadb_supported); 6660 elen = 0; 6661 for (i = 1; i <= SADB_EALG_MAX; i++) { 6662 if (esp_algorithm_lookup(i)) 6663 elen += sizeof(struct sadb_alg); 6664 } 6665 if (elen) 6666 elen += sizeof(struct sadb_supported); 6667 6668 len = sizeof(struct sadb_msg) + alen + elen; 6669 6670 if (len > MCLBYTES) 6671 return key_senderror(so, m, ENOBUFS); 6672 6673 MGETHDR(n, M_NOWAIT, MT_DATA); 6674 if (len > MHLEN) { 6675 if (!(MCLGET(n, M_NOWAIT))) { 6676 m_freem(n); 6677 n = NULL; 6678 } 6679 } 6680 if (!n) 6681 return key_senderror(so, m, ENOBUFS); 6682 6683 n->m_pkthdr.len = n->m_len = len; 6684 n->m_next = NULL; 6685 off = 0; 6686 6687 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6688 newmsg = mtod(n, struct sadb_msg *); 6689 newmsg->sadb_msg_errno = 0; 6690 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6691 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6692 6693 /* for authentication algorithm */ 6694 if (alen) { 6695 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6696 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6697 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6698 off += PFKEY_ALIGN8(sizeof(*sup)); 6699 6700 for (i = 1; i <= SADB_AALG_MAX; i++) { 6701 struct auth_hash *aalgo; 6702 u_int16_t minkeysize, maxkeysize; 6703 6704 aalgo = ah_algorithm_lookup(i); 6705 if (!aalgo) 6706 continue; 6707 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6708 alg->sadb_alg_id = i; 6709 alg->sadb_alg_ivlen = 0; 6710 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6711 alg->sadb_alg_minbits = _BITS(minkeysize); 6712 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6713 off += PFKEY_ALIGN8(sizeof(*alg)); 6714 } 6715 } 6716 6717 /* for encryption algorithm */ 6718 if (elen) { 6719 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6720 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6721 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6722 off += PFKEY_ALIGN8(sizeof(*sup)); 6723 6724 for (i = 1; i <= SADB_EALG_MAX; i++) { 6725 struct enc_xform *ealgo; 6726 6727 ealgo = esp_algorithm_lookup(i); 6728 if (!ealgo) 6729 continue; 6730 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6731 alg->sadb_alg_id = i; 6732 alg->sadb_alg_ivlen = ealgo->ivsize; 6733 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6734 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6735 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6736 } 6737 } 6738 6739 IPSEC_ASSERT(off == len, 6740 ("length assumption failed (off %u len %u)", off, len)); 6741 6742 m_freem(m); 6743 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6744 } 6745 } 6746 6747 /* 6748 * free secreg entry registered. 6749 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6750 */ 6751 void 6752 key_freereg(struct socket *so) 6753 { 6754 struct secreg *reg; 6755 int i; 6756 6757 IPSEC_ASSERT(so != NULL, ("NULL so")); 6758 6759 /* 6760 * check whether existing or not. 6761 * check all type of SA, because there is a potential that 6762 * one socket is registered to multiple type of SA. 6763 */ 6764 REGTREE_LOCK(); 6765 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6766 LIST_FOREACH(reg, &V_regtree[i], chain) { 6767 if (reg->so == so && __LIST_CHAINED(reg)) { 6768 LIST_REMOVE(reg, chain); 6769 free(reg, M_IPSEC_SAR); 6770 break; 6771 } 6772 } 6773 } 6774 REGTREE_UNLOCK(); 6775 } 6776 6777 /* 6778 * SADB_EXPIRE processing 6779 * send 6780 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6781 * to KMD by PF_KEY. 6782 * NOTE: We send only soft lifetime extension. 6783 * 6784 * OUT: 0 : succeed 6785 * others : error number 6786 */ 6787 static int 6788 key_expire(struct secasvar *sav, int hard) 6789 { 6790 int satype; 6791 struct mbuf *result = NULL, *m; 6792 int len; 6793 int error = -1; 6794 struct sadb_lifetime *lt; 6795 6796 IPSEC_ASSERT (sav != NULL, ("null sav")); 6797 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6798 6799 /* set msg header */ 6800 satype = key_proto2satype(sav->sah->saidx.proto); 6801 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6802 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6803 if (!m) { 6804 error = ENOBUFS; 6805 goto fail; 6806 } 6807 result = m; 6808 6809 /* create SA extension */ 6810 m = key_setsadbsa(sav); 6811 if (!m) { 6812 error = ENOBUFS; 6813 goto fail; 6814 } 6815 m_cat(result, m); 6816 6817 /* create SA extension */ 6818 m = key_setsadbxsa2(sav->sah->saidx.mode, 6819 sav->replay ? sav->replay->count : 0, 6820 sav->sah->saidx.reqid); 6821 if (!m) { 6822 error = ENOBUFS; 6823 goto fail; 6824 } 6825 m_cat(result, m); 6826 6827 /* create lifetime extension (current and soft) */ 6828 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6829 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6830 if (m == NULL) { 6831 error = ENOBUFS; 6832 goto fail; 6833 } 6834 m_align(m, len); 6835 m->m_len = len; 6836 bzero(mtod(m, caddr_t), len); 6837 lt = mtod(m, struct sadb_lifetime *); 6838 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6839 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6840 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6841 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6842 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6843 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6844 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6845 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6846 if (hard) { 6847 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 6848 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 6849 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 6850 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 6851 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 6852 } else { 6853 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6854 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6855 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6856 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6857 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6858 } 6859 m_cat(result, m); 6860 6861 /* set sadb_address for source */ 6862 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6863 &sav->sah->saidx.src.sa, 6864 FULLMASK, IPSEC_ULPROTO_ANY); 6865 if (!m) { 6866 error = ENOBUFS; 6867 goto fail; 6868 } 6869 m_cat(result, m); 6870 6871 /* set sadb_address for destination */ 6872 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6873 &sav->sah->saidx.dst.sa, 6874 FULLMASK, IPSEC_ULPROTO_ANY); 6875 if (!m) { 6876 error = ENOBUFS; 6877 goto fail; 6878 } 6879 m_cat(result, m); 6880 6881 /* 6882 * XXX-BZ Handle NAT-T extensions here. 6883 */ 6884 6885 if ((result->m_flags & M_PKTHDR) == 0) { 6886 error = EINVAL; 6887 goto fail; 6888 } 6889 6890 if (result->m_len < sizeof(struct sadb_msg)) { 6891 result = m_pullup(result, sizeof(struct sadb_msg)); 6892 if (result == NULL) { 6893 error = ENOBUFS; 6894 goto fail; 6895 } 6896 } 6897 6898 result->m_pkthdr.len = 0; 6899 for (m = result; m; m = m->m_next) 6900 result->m_pkthdr.len += m->m_len; 6901 6902 mtod(result, struct sadb_msg *)->sadb_msg_len = 6903 PFKEY_UNIT64(result->m_pkthdr.len); 6904 6905 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6906 6907 fail: 6908 if (result) 6909 m_freem(result); 6910 return error; 6911 } 6912 6913 /* 6914 * SADB_FLUSH processing 6915 * receive 6916 * <base> 6917 * from the ikmpd, and free all entries in secastree. 6918 * and send, 6919 * <base> 6920 * to the ikmpd. 6921 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6922 * 6923 * m will always be freed. 6924 */ 6925 static int 6926 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6927 { 6928 struct sadb_msg *newmsg; 6929 struct secashead *sah, *nextsah; 6930 struct secasvar *sav, *nextsav; 6931 u_int16_t proto; 6932 u_int8_t state; 6933 u_int stateidx; 6934 6935 IPSEC_ASSERT(so != NULL, ("null socket")); 6936 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6937 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6938 6939 /* map satype to proto */ 6940 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6941 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6942 __func__)); 6943 return key_senderror(so, m, EINVAL); 6944 } 6945 6946 /* no SATYPE specified, i.e. flushing all SA. */ 6947 SAHTREE_LOCK(); 6948 for (sah = LIST_FIRST(&V_sahtree); 6949 sah != NULL; 6950 sah = nextsah) { 6951 nextsah = LIST_NEXT(sah, chain); 6952 6953 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6954 && proto != sah->saidx.proto) 6955 continue; 6956 6957 for (stateidx = 0; 6958 stateidx < _ARRAYLEN(saorder_state_alive); 6959 stateidx++) { 6960 state = saorder_state_any[stateidx]; 6961 for (sav = LIST_FIRST(&sah->savtree[state]); 6962 sav != NULL; 6963 sav = nextsav) { 6964 6965 nextsav = LIST_NEXT(sav, chain); 6966 6967 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6968 KEY_FREESAV(&sav); 6969 } 6970 } 6971 6972 sah->state = SADB_SASTATE_DEAD; 6973 } 6974 SAHTREE_UNLOCK(); 6975 6976 if (m->m_len < sizeof(struct sadb_msg) || 6977 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6978 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6979 return key_senderror(so, m, ENOBUFS); 6980 } 6981 6982 if (m->m_next) 6983 m_freem(m->m_next); 6984 m->m_next = NULL; 6985 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6986 newmsg = mtod(m, struct sadb_msg *); 6987 newmsg->sadb_msg_errno = 0; 6988 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6989 6990 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6991 } 6992 6993 /* 6994 * SADB_DUMP processing 6995 * dump all entries including status of DEAD in SAD. 6996 * receive 6997 * <base> 6998 * from the ikmpd, and dump all secasvar leaves 6999 * and send, 7000 * <base> ..... 7001 * to the ikmpd. 7002 * 7003 * m will always be freed. 7004 */ 7005 static int 7006 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7007 { 7008 struct secashead *sah; 7009 struct secasvar *sav; 7010 u_int16_t proto; 7011 u_int stateidx; 7012 u_int8_t satype; 7013 u_int8_t state; 7014 int cnt; 7015 struct sadb_msg *newmsg; 7016 struct mbuf *n; 7017 7018 IPSEC_ASSERT(so != NULL, ("null socket")); 7019 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7020 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7021 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7022 7023 /* map satype to proto */ 7024 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7025 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7026 __func__)); 7027 return key_senderror(so, m, EINVAL); 7028 } 7029 7030 /* count sav entries to be sent to the userland. */ 7031 cnt = 0; 7032 SAHTREE_LOCK(); 7033 LIST_FOREACH(sah, &V_sahtree, chain) { 7034 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7035 && proto != sah->saidx.proto) 7036 continue; 7037 7038 for (stateidx = 0; 7039 stateidx < _ARRAYLEN(saorder_state_any); 7040 stateidx++) { 7041 state = saorder_state_any[stateidx]; 7042 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7043 cnt++; 7044 } 7045 } 7046 } 7047 7048 if (cnt == 0) { 7049 SAHTREE_UNLOCK(); 7050 return key_senderror(so, m, ENOENT); 7051 } 7052 7053 /* send this to the userland, one at a time. */ 7054 newmsg = NULL; 7055 LIST_FOREACH(sah, &V_sahtree, chain) { 7056 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7057 && proto != sah->saidx.proto) 7058 continue; 7059 7060 /* map proto to satype */ 7061 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7062 SAHTREE_UNLOCK(); 7063 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7064 "SAD.\n", __func__)); 7065 return key_senderror(so, m, EINVAL); 7066 } 7067 7068 for (stateidx = 0; 7069 stateidx < _ARRAYLEN(saorder_state_any); 7070 stateidx++) { 7071 state = saorder_state_any[stateidx]; 7072 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7073 n = key_setdumpsa(sav, SADB_DUMP, satype, 7074 --cnt, mhp->msg->sadb_msg_pid); 7075 if (!n) { 7076 SAHTREE_UNLOCK(); 7077 return key_senderror(so, m, ENOBUFS); 7078 } 7079 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7080 } 7081 } 7082 } 7083 SAHTREE_UNLOCK(); 7084 7085 m_freem(m); 7086 return 0; 7087 } 7088 7089 /* 7090 * SADB_X_PROMISC processing 7091 * 7092 * m will always be freed. 7093 */ 7094 static int 7095 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7096 { 7097 int olen; 7098 7099 IPSEC_ASSERT(so != NULL, ("null socket")); 7100 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7101 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7102 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7103 7104 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7105 7106 if (olen < sizeof(struct sadb_msg)) { 7107 #if 1 7108 return key_senderror(so, m, EINVAL); 7109 #else 7110 m_freem(m); 7111 return 0; 7112 #endif 7113 } else if (olen == sizeof(struct sadb_msg)) { 7114 /* enable/disable promisc mode */ 7115 struct keycb *kp; 7116 7117 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7118 return key_senderror(so, m, EINVAL); 7119 mhp->msg->sadb_msg_errno = 0; 7120 switch (mhp->msg->sadb_msg_satype) { 7121 case 0: 7122 case 1: 7123 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7124 break; 7125 default: 7126 return key_senderror(so, m, EINVAL); 7127 } 7128 7129 /* send the original message back to everyone */ 7130 mhp->msg->sadb_msg_errno = 0; 7131 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7132 } else { 7133 /* send packet as is */ 7134 7135 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7136 7137 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7138 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7139 } 7140 } 7141 7142 static int (*key_typesw[])(struct socket *, struct mbuf *, 7143 const struct sadb_msghdr *) = { 7144 NULL, /* SADB_RESERVED */ 7145 key_getspi, /* SADB_GETSPI */ 7146 key_update, /* SADB_UPDATE */ 7147 key_add, /* SADB_ADD */ 7148 key_delete, /* SADB_DELETE */ 7149 key_get, /* SADB_GET */ 7150 key_acquire2, /* SADB_ACQUIRE */ 7151 key_register, /* SADB_REGISTER */ 7152 NULL, /* SADB_EXPIRE */ 7153 key_flush, /* SADB_FLUSH */ 7154 key_dump, /* SADB_DUMP */ 7155 key_promisc, /* SADB_X_PROMISC */ 7156 NULL, /* SADB_X_PCHANGE */ 7157 key_spdadd, /* SADB_X_SPDUPDATE */ 7158 key_spdadd, /* SADB_X_SPDADD */ 7159 key_spddelete, /* SADB_X_SPDDELETE */ 7160 key_spdget, /* SADB_X_SPDGET */ 7161 NULL, /* SADB_X_SPDACQUIRE */ 7162 key_spddump, /* SADB_X_SPDDUMP */ 7163 key_spdflush, /* SADB_X_SPDFLUSH */ 7164 key_spdadd, /* SADB_X_SPDSETIDX */ 7165 NULL, /* SADB_X_SPDEXPIRE */ 7166 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7167 }; 7168 7169 /* 7170 * parse sadb_msg buffer to process PFKEYv2, 7171 * and create a data to response if needed. 7172 * I think to be dealed with mbuf directly. 7173 * IN: 7174 * msgp : pointer to pointer to a received buffer pulluped. 7175 * This is rewrited to response. 7176 * so : pointer to socket. 7177 * OUT: 7178 * length for buffer to send to user process. 7179 */ 7180 int 7181 key_parse(struct mbuf *m, struct socket *so) 7182 { 7183 struct sadb_msg *msg; 7184 struct sadb_msghdr mh; 7185 u_int orglen; 7186 int error; 7187 int target; 7188 7189 IPSEC_ASSERT(so != NULL, ("null socket")); 7190 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7191 7192 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7193 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7194 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7195 kdebug_sadb(msg)); 7196 #endif 7197 7198 if (m->m_len < sizeof(struct sadb_msg)) { 7199 m = m_pullup(m, sizeof(struct sadb_msg)); 7200 if (!m) 7201 return ENOBUFS; 7202 } 7203 msg = mtod(m, struct sadb_msg *); 7204 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7205 target = KEY_SENDUP_ONE; 7206 7207 if ((m->m_flags & M_PKTHDR) == 0 || 7208 m->m_pkthdr.len != m->m_pkthdr.len) { 7209 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7210 PFKEYSTAT_INC(out_invlen); 7211 error = EINVAL; 7212 goto senderror; 7213 } 7214 7215 if (msg->sadb_msg_version != PF_KEY_V2) { 7216 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7217 __func__, msg->sadb_msg_version)); 7218 PFKEYSTAT_INC(out_invver); 7219 error = EINVAL; 7220 goto senderror; 7221 } 7222 7223 if (msg->sadb_msg_type > SADB_MAX) { 7224 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7225 __func__, msg->sadb_msg_type)); 7226 PFKEYSTAT_INC(out_invmsgtype); 7227 error = EINVAL; 7228 goto senderror; 7229 } 7230 7231 /* for old-fashioned code - should be nuked */ 7232 if (m->m_pkthdr.len > MCLBYTES) { 7233 m_freem(m); 7234 return ENOBUFS; 7235 } 7236 if (m->m_next) { 7237 struct mbuf *n; 7238 7239 MGETHDR(n, M_NOWAIT, MT_DATA); 7240 if (n && m->m_pkthdr.len > MHLEN) { 7241 if (!(MCLGET(n, M_NOWAIT))) { 7242 m_free(n); 7243 n = NULL; 7244 } 7245 } 7246 if (!n) { 7247 m_freem(m); 7248 return ENOBUFS; 7249 } 7250 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7251 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7252 n->m_next = NULL; 7253 m_freem(m); 7254 m = n; 7255 } 7256 7257 /* align the mbuf chain so that extensions are in contiguous region. */ 7258 error = key_align(m, &mh); 7259 if (error) 7260 return error; 7261 7262 msg = mh.msg; 7263 7264 /* check SA type */ 7265 switch (msg->sadb_msg_satype) { 7266 case SADB_SATYPE_UNSPEC: 7267 switch (msg->sadb_msg_type) { 7268 case SADB_GETSPI: 7269 case SADB_UPDATE: 7270 case SADB_ADD: 7271 case SADB_DELETE: 7272 case SADB_GET: 7273 case SADB_ACQUIRE: 7274 case SADB_EXPIRE: 7275 ipseclog((LOG_DEBUG, "%s: must specify satype " 7276 "when msg type=%u.\n", __func__, 7277 msg->sadb_msg_type)); 7278 PFKEYSTAT_INC(out_invsatype); 7279 error = EINVAL; 7280 goto senderror; 7281 } 7282 break; 7283 case SADB_SATYPE_AH: 7284 case SADB_SATYPE_ESP: 7285 case SADB_X_SATYPE_IPCOMP: 7286 case SADB_X_SATYPE_TCPSIGNATURE: 7287 switch (msg->sadb_msg_type) { 7288 case SADB_X_SPDADD: 7289 case SADB_X_SPDDELETE: 7290 case SADB_X_SPDGET: 7291 case SADB_X_SPDDUMP: 7292 case SADB_X_SPDFLUSH: 7293 case SADB_X_SPDSETIDX: 7294 case SADB_X_SPDUPDATE: 7295 case SADB_X_SPDDELETE2: 7296 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7297 __func__, msg->sadb_msg_type)); 7298 PFKEYSTAT_INC(out_invsatype); 7299 error = EINVAL; 7300 goto senderror; 7301 } 7302 break; 7303 case SADB_SATYPE_RSVP: 7304 case SADB_SATYPE_OSPFV2: 7305 case SADB_SATYPE_RIPV2: 7306 case SADB_SATYPE_MIP: 7307 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7308 __func__, msg->sadb_msg_satype)); 7309 PFKEYSTAT_INC(out_invsatype); 7310 error = EOPNOTSUPP; 7311 goto senderror; 7312 case 1: /* XXX: What does it do? */ 7313 if (msg->sadb_msg_type == SADB_X_PROMISC) 7314 break; 7315 /*FALLTHROUGH*/ 7316 default: 7317 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7318 __func__, msg->sadb_msg_satype)); 7319 PFKEYSTAT_INC(out_invsatype); 7320 error = EINVAL; 7321 goto senderror; 7322 } 7323 7324 /* check field of upper layer protocol and address family */ 7325 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7326 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7327 struct sadb_address *src0, *dst0; 7328 u_int plen; 7329 7330 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7331 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7332 7333 /* check upper layer protocol */ 7334 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7335 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7336 "mismatched.\n", __func__)); 7337 PFKEYSTAT_INC(out_invaddr); 7338 error = EINVAL; 7339 goto senderror; 7340 } 7341 7342 /* check family */ 7343 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7344 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7345 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7346 __func__)); 7347 PFKEYSTAT_INC(out_invaddr); 7348 error = EINVAL; 7349 goto senderror; 7350 } 7351 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7352 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7353 ipseclog((LOG_DEBUG, "%s: address struct size " 7354 "mismatched.\n", __func__)); 7355 PFKEYSTAT_INC(out_invaddr); 7356 error = EINVAL; 7357 goto senderror; 7358 } 7359 7360 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7361 case AF_INET: 7362 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7363 sizeof(struct sockaddr_in)) { 7364 PFKEYSTAT_INC(out_invaddr); 7365 error = EINVAL; 7366 goto senderror; 7367 } 7368 break; 7369 case AF_INET6: 7370 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7371 sizeof(struct sockaddr_in6)) { 7372 PFKEYSTAT_INC(out_invaddr); 7373 error = EINVAL; 7374 goto senderror; 7375 } 7376 break; 7377 default: 7378 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7379 __func__)); 7380 PFKEYSTAT_INC(out_invaddr); 7381 error = EAFNOSUPPORT; 7382 goto senderror; 7383 } 7384 7385 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7386 case AF_INET: 7387 plen = sizeof(struct in_addr) << 3; 7388 break; 7389 case AF_INET6: 7390 plen = sizeof(struct in6_addr) << 3; 7391 break; 7392 default: 7393 plen = 0; /*fool gcc*/ 7394 break; 7395 } 7396 7397 /* check max prefix length */ 7398 if (src0->sadb_address_prefixlen > plen || 7399 dst0->sadb_address_prefixlen > plen) { 7400 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7401 __func__)); 7402 PFKEYSTAT_INC(out_invaddr); 7403 error = EINVAL; 7404 goto senderror; 7405 } 7406 7407 /* 7408 * prefixlen == 0 is valid because there can be a case when 7409 * all addresses are matched. 7410 */ 7411 } 7412 7413 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7414 key_typesw[msg->sadb_msg_type] == NULL) { 7415 PFKEYSTAT_INC(out_invmsgtype); 7416 error = EINVAL; 7417 goto senderror; 7418 } 7419 7420 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7421 7422 senderror: 7423 msg->sadb_msg_errno = error; 7424 return key_sendup_mbuf(so, m, target); 7425 } 7426 7427 static int 7428 key_senderror(struct socket *so, struct mbuf *m, int code) 7429 { 7430 struct sadb_msg *msg; 7431 7432 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7433 ("mbuf too small, len %u", m->m_len)); 7434 7435 msg = mtod(m, struct sadb_msg *); 7436 msg->sadb_msg_errno = code; 7437 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7438 } 7439 7440 /* 7441 * set the pointer to each header into message buffer. 7442 * m will be freed on error. 7443 * XXX larger-than-MCLBYTES extension? 7444 */ 7445 static int 7446 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7447 { 7448 struct mbuf *n; 7449 struct sadb_ext *ext; 7450 size_t off, end; 7451 int extlen; 7452 int toff; 7453 7454 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7455 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7456 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7457 ("mbuf too small, len %u", m->m_len)); 7458 7459 /* initialize */ 7460 bzero(mhp, sizeof(*mhp)); 7461 7462 mhp->msg = mtod(m, struct sadb_msg *); 7463 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7464 7465 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7466 extlen = end; /*just in case extlen is not updated*/ 7467 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7468 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7469 if (!n) { 7470 /* m is already freed */ 7471 return ENOBUFS; 7472 } 7473 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7474 7475 /* set pointer */ 7476 switch (ext->sadb_ext_type) { 7477 case SADB_EXT_SA: 7478 case SADB_EXT_ADDRESS_SRC: 7479 case SADB_EXT_ADDRESS_DST: 7480 case SADB_EXT_ADDRESS_PROXY: 7481 case SADB_EXT_LIFETIME_CURRENT: 7482 case SADB_EXT_LIFETIME_HARD: 7483 case SADB_EXT_LIFETIME_SOFT: 7484 case SADB_EXT_KEY_AUTH: 7485 case SADB_EXT_KEY_ENCRYPT: 7486 case SADB_EXT_IDENTITY_SRC: 7487 case SADB_EXT_IDENTITY_DST: 7488 case SADB_EXT_SENSITIVITY: 7489 case SADB_EXT_PROPOSAL: 7490 case SADB_EXT_SUPPORTED_AUTH: 7491 case SADB_EXT_SUPPORTED_ENCRYPT: 7492 case SADB_EXT_SPIRANGE: 7493 case SADB_X_EXT_POLICY: 7494 case SADB_X_EXT_SA2: 7495 #ifdef IPSEC_NAT_T 7496 case SADB_X_EXT_NAT_T_TYPE: 7497 case SADB_X_EXT_NAT_T_SPORT: 7498 case SADB_X_EXT_NAT_T_DPORT: 7499 case SADB_X_EXT_NAT_T_OAI: 7500 case SADB_X_EXT_NAT_T_OAR: 7501 case SADB_X_EXT_NAT_T_FRAG: 7502 #endif 7503 /* duplicate check */ 7504 /* 7505 * XXX Are there duplication payloads of either 7506 * KEY_AUTH or KEY_ENCRYPT ? 7507 */ 7508 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7509 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7510 "%u\n", __func__, ext->sadb_ext_type)); 7511 m_freem(m); 7512 PFKEYSTAT_INC(out_dupext); 7513 return EINVAL; 7514 } 7515 break; 7516 default: 7517 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7518 __func__, ext->sadb_ext_type)); 7519 m_freem(m); 7520 PFKEYSTAT_INC(out_invexttype); 7521 return EINVAL; 7522 } 7523 7524 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7525 7526 if (key_validate_ext(ext, extlen)) { 7527 m_freem(m); 7528 PFKEYSTAT_INC(out_invlen); 7529 return EINVAL; 7530 } 7531 7532 n = m_pulldown(m, off, extlen, &toff); 7533 if (!n) { 7534 /* m is already freed */ 7535 return ENOBUFS; 7536 } 7537 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7538 7539 mhp->ext[ext->sadb_ext_type] = ext; 7540 mhp->extoff[ext->sadb_ext_type] = off; 7541 mhp->extlen[ext->sadb_ext_type] = extlen; 7542 } 7543 7544 if (off != end) { 7545 m_freem(m); 7546 PFKEYSTAT_INC(out_invlen); 7547 return EINVAL; 7548 } 7549 7550 return 0; 7551 } 7552 7553 static int 7554 key_validate_ext(const struct sadb_ext *ext, int len) 7555 { 7556 const struct sockaddr *sa; 7557 enum { NONE, ADDR } checktype = NONE; 7558 int baselen = 0; 7559 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7560 7561 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7562 return EINVAL; 7563 7564 /* if it does not match minimum/maximum length, bail */ 7565 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7566 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7567 return EINVAL; 7568 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7569 return EINVAL; 7570 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7571 return EINVAL; 7572 7573 /* more checks based on sadb_ext_type XXX need more */ 7574 switch (ext->sadb_ext_type) { 7575 case SADB_EXT_ADDRESS_SRC: 7576 case SADB_EXT_ADDRESS_DST: 7577 case SADB_EXT_ADDRESS_PROXY: 7578 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7579 checktype = ADDR; 7580 break; 7581 case SADB_EXT_IDENTITY_SRC: 7582 case SADB_EXT_IDENTITY_DST: 7583 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7584 SADB_X_IDENTTYPE_ADDR) { 7585 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7586 checktype = ADDR; 7587 } else 7588 checktype = NONE; 7589 break; 7590 default: 7591 checktype = NONE; 7592 break; 7593 } 7594 7595 switch (checktype) { 7596 case NONE: 7597 break; 7598 case ADDR: 7599 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7600 if (len < baselen + sal) 7601 return EINVAL; 7602 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7603 return EINVAL; 7604 break; 7605 } 7606 7607 return 0; 7608 } 7609 7610 void 7611 key_init(void) 7612 { 7613 int i; 7614 7615 for (i = 0; i < IPSEC_DIR_MAX; i++) 7616 TAILQ_INIT(&V_sptree[i]); 7617 7618 LIST_INIT(&V_sahtree); 7619 7620 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7621 LIST_INIT(&V_regtree[i]); 7622 7623 LIST_INIT(&V_acqtree); 7624 LIST_INIT(&V_spacqtree); 7625 7626 if (!IS_DEFAULT_VNET(curvnet)) 7627 return; 7628 7629 SPTREE_LOCK_INIT(); 7630 REGTREE_LOCK_INIT(); 7631 SAHTREE_LOCK_INIT(); 7632 ACQ_LOCK_INIT(); 7633 SPACQ_LOCK_INIT(); 7634 7635 #ifndef IPSEC_DEBUG2 7636 callout_init(&key_timer, 1); 7637 callout_reset(&key_timer, hz, key_timehandler, NULL); 7638 #endif /*IPSEC_DEBUG2*/ 7639 7640 /* initialize key statistics */ 7641 keystat.getspi_count = 1; 7642 7643 printf("IPsec: Initialized Security Association Processing.\n"); 7644 } 7645 7646 #ifdef VIMAGE 7647 void 7648 key_destroy(void) 7649 { 7650 TAILQ_HEAD(, secpolicy) drainq; 7651 struct secpolicy *sp, *nextsp; 7652 struct secacq *acq, *nextacq; 7653 struct secspacq *spacq, *nextspacq; 7654 struct secashead *sah, *nextsah; 7655 struct secreg *reg; 7656 int i; 7657 7658 TAILQ_INIT(&drainq); 7659 SPTREE_WLOCK(); 7660 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7661 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7662 } 7663 SPTREE_WUNLOCK(); 7664 sp = TAILQ_FIRST(&drainq); 7665 while (sp != NULL) { 7666 nextsp = TAILQ_NEXT(sp, chain); 7667 KEY_FREESP(&sp); 7668 sp = nextsp; 7669 } 7670 7671 SAHTREE_LOCK(); 7672 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7673 nextsah = LIST_NEXT(sah, chain); 7674 if (__LIST_CHAINED(sah)) { 7675 LIST_REMOVE(sah, chain); 7676 free(sah, M_IPSEC_SAH); 7677 } 7678 } 7679 SAHTREE_UNLOCK(); 7680 7681 REGTREE_LOCK(); 7682 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7683 LIST_FOREACH(reg, &V_regtree[i], chain) { 7684 if (__LIST_CHAINED(reg)) { 7685 LIST_REMOVE(reg, chain); 7686 free(reg, M_IPSEC_SAR); 7687 break; 7688 } 7689 } 7690 } 7691 REGTREE_UNLOCK(); 7692 7693 ACQ_LOCK(); 7694 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7695 nextacq = LIST_NEXT(acq, chain); 7696 if (__LIST_CHAINED(acq)) { 7697 LIST_REMOVE(acq, chain); 7698 free(acq, M_IPSEC_SAQ); 7699 } 7700 } 7701 ACQ_UNLOCK(); 7702 7703 SPACQ_LOCK(); 7704 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7705 spacq = nextspacq) { 7706 nextspacq = LIST_NEXT(spacq, chain); 7707 if (__LIST_CHAINED(spacq)) { 7708 LIST_REMOVE(spacq, chain); 7709 free(spacq, M_IPSEC_SAQ); 7710 } 7711 } 7712 SPACQ_UNLOCK(); 7713 } 7714 #endif 7715 7716 /* 7717 * XXX: maybe This function is called after INBOUND IPsec processing. 7718 * 7719 * Special check for tunnel-mode packets. 7720 * We must make some checks for consistency between inner and outer IP header. 7721 * 7722 * xxx more checks to be provided 7723 */ 7724 int 7725 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7726 caddr_t dst) 7727 { 7728 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7729 7730 /* XXX: check inner IP header */ 7731 7732 return 1; 7733 } 7734 7735 /* record data transfer on SA, and update timestamps */ 7736 void 7737 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7738 { 7739 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7740 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7741 if (!sav->lft_c) 7742 return; 7743 7744 /* 7745 * XXX Currently, there is a difference of bytes size 7746 * between inbound and outbound processing. 7747 */ 7748 sav->lft_c->bytes += m->m_pkthdr.len; 7749 /* to check bytes lifetime is done in key_timehandler(). */ 7750 7751 /* 7752 * We use the number of packets as the unit of 7753 * allocations. We increment the variable 7754 * whenever {esp,ah}_{in,out}put is called. 7755 */ 7756 sav->lft_c->allocations++; 7757 /* XXX check for expires? */ 7758 7759 /* 7760 * NOTE: We record CURRENT usetime by using wall clock, 7761 * in seconds. HARD and SOFT lifetime are measured by the time 7762 * difference (again in seconds) from usetime. 7763 * 7764 * usetime 7765 * v expire expire 7766 * -----+-----+--------+---> t 7767 * <--------------> HARD 7768 * <-----> SOFT 7769 */ 7770 sav->lft_c->usetime = time_second; 7771 /* XXX check for expires? */ 7772 7773 return; 7774 } 7775 7776 static void 7777 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7778 { 7779 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7780 SAHTREE_LOCK_ASSERT(); 7781 7782 if (sav->state != state) { 7783 if (__LIST_CHAINED(sav)) 7784 LIST_REMOVE(sav, chain); 7785 sav->state = state; 7786 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7787 } 7788 } 7789 7790 /* 7791 * Take one of the kernel's security keys and convert it into a PF_KEY 7792 * structure within an mbuf, suitable for sending up to a waiting 7793 * application in user land. 7794 * 7795 * IN: 7796 * src: A pointer to a kernel security key. 7797 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7798 * OUT: 7799 * a valid mbuf or NULL indicating an error 7800 * 7801 */ 7802 7803 static struct mbuf * 7804 key_setkey(struct seckey *src, u_int16_t exttype) 7805 { 7806 struct mbuf *m; 7807 struct sadb_key *p; 7808 int len; 7809 7810 if (src == NULL) 7811 return NULL; 7812 7813 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7814 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7815 if (m == NULL) 7816 return NULL; 7817 m_align(m, len); 7818 m->m_len = len; 7819 p = mtod(m, struct sadb_key *); 7820 bzero(p, len); 7821 p->sadb_key_len = PFKEY_UNIT64(len); 7822 p->sadb_key_exttype = exttype; 7823 p->sadb_key_bits = src->bits; 7824 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7825 7826 return m; 7827 } 7828 7829 /* 7830 * Take one of the kernel's lifetime data structures and convert it 7831 * into a PF_KEY structure within an mbuf, suitable for sending up to 7832 * a waiting application in user land. 7833 * 7834 * IN: 7835 * src: A pointer to a kernel lifetime structure. 7836 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7837 * data structures for more information. 7838 * OUT: 7839 * a valid mbuf or NULL indicating an error 7840 * 7841 */ 7842 7843 static struct mbuf * 7844 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7845 { 7846 struct mbuf *m = NULL; 7847 struct sadb_lifetime *p; 7848 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7849 7850 if (src == NULL) 7851 return NULL; 7852 7853 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7854 if (m == NULL) 7855 return m; 7856 m_align(m, len); 7857 m->m_len = len; 7858 p = mtod(m, struct sadb_lifetime *); 7859 7860 bzero(p, len); 7861 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7862 p->sadb_lifetime_exttype = exttype; 7863 p->sadb_lifetime_allocations = src->allocations; 7864 p->sadb_lifetime_bytes = src->bytes; 7865 p->sadb_lifetime_addtime = src->addtime; 7866 p->sadb_lifetime_usetime = src->usetime; 7867 7868 return m; 7869 7870 } 7871