xref: /freebsd/sys/netipsec/key.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 #include <sys/vimage.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #include <netinet/vinet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/vinet6.h>
83 #endif /* INET6 */
84 
85 #include <net/pfkeyv2.h>
86 #include <netipsec/keydb.h>
87 #include <netipsec/key.h>
88 #include <netipsec/keysock.h>
89 #include <netipsec/key_debug.h>
90 
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 
96 #include <netipsec/xform.h>
97 
98 #include <machine/stdarg.h>
99 
100 /* randomness */
101 #include <sys/random.h>
102 #include <sys/vimage.h>
103 
104 #define FULLMASK	0xff
105 #define	_BITS(bytes)	((bytes) << 3)
106 
107 /*
108  * Note on SA reference counting:
109  * - SAs that are not in DEAD state will have (total external reference + 1)
110  *   following value in reference count field.  they cannot be freed and are
111  *   referenced from SA header.
112  * - SAs that are in DEAD state will have (total external reference)
113  *   in reference count field.  they are ready to be freed.  reference from
114  *   SA header will be removed in key_delsav(), when the reference count
115  *   field hits 0 (= no external reference other than from SA header.
116  */
117 
118 #ifdef VIMAGE_GLOBALS
119 u_int32_t key_debug_level;
120 static u_int key_spi_trycnt;
121 static u_int32_t key_spi_minval;
122 static u_int32_t key_spi_maxval;
123 static u_int32_t policy_id;
124 static u_int key_int_random;
125 static u_int key_larval_lifetime;
126 static int key_blockacq_count;
127 static int key_blockacq_lifetime;
128 static int key_preferred_oldsa;
129 
130 static u_int32_t acq_seq;
131 
132 static int ipsec_esp_keymin;
133 static int ipsec_esp_auth;
134 static int ipsec_ah_keymin;
135 
136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
139 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
140 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
141 #endif /* VIMAGE_GLOBALS */
142 
143 static struct mtx sptree_lock;
144 #define	SPTREE_LOCK_INIT() \
145 	mtx_init(&sptree_lock, "sptree", \
146 		"fast ipsec security policy database", MTX_DEF)
147 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
148 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
149 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
150 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
151 
152 static struct mtx sahtree_lock;
153 #define	SAHTREE_LOCK_INIT() \
154 	mtx_init(&sahtree_lock, "sahtree", \
155 		"fast ipsec security association database", MTX_DEF)
156 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
157 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
158 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
159 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
160 
161 							/* registed list */
162 static struct mtx regtree_lock;
163 #define	REGTREE_LOCK_INIT() \
164 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
165 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
166 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
167 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
168 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
169 
170 static struct mtx acq_lock;
171 #define	ACQ_LOCK_INIT() \
172 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
173 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
174 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
175 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
176 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
177 
178 static struct mtx spacq_lock;
179 #define	SPACQ_LOCK_INIT() \
180 	mtx_init(&spacq_lock, "spacqtree", \
181 		"fast ipsec security policy acquire list", MTX_DEF)
182 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
183 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
184 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
185 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
186 
187 /* search order for SAs */
188 static const u_int saorder_state_valid_prefer_old[] = {
189 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
190 };
191 static const u_int saorder_state_valid_prefer_new[] = {
192 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
193 };
194 static const u_int saorder_state_alive[] = {
195 	/* except DEAD */
196 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
197 };
198 static const u_int saorder_state_any[] = {
199 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
200 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
201 };
202 
203 static const int minsize[] = {
204 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
205 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
206 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
207 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
208 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
209 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
210 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
211 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
212 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
213 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
214 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
215 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
216 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
217 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
218 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
219 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
220 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
221 	0,				/* SADB_X_EXT_KMPRIVATE */
222 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
223 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
224 };
225 static const int maxsize[] = {
226 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
227 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
228 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
229 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
230 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
231 	0,				/* SADB_EXT_ADDRESS_SRC */
232 	0,				/* SADB_EXT_ADDRESS_DST */
233 	0,				/* SADB_EXT_ADDRESS_PROXY */
234 	0,				/* SADB_EXT_KEY_AUTH */
235 	0,				/* SADB_EXT_KEY_ENCRYPT */
236 	0,				/* SADB_EXT_IDENTITY_SRC */
237 	0,				/* SADB_EXT_IDENTITY_DST */
238 	0,				/* SADB_EXT_SENSITIVITY */
239 	0,				/* SADB_EXT_PROPOSAL */
240 	0,				/* SADB_EXT_SUPPORTED_AUTH */
241 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
242 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
243 	0,				/* SADB_X_EXT_KMPRIVATE */
244 	0,				/* SADB_X_EXT_POLICY */
245 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
246 };
247 
248 #ifdef SYSCTL_DECL
249 SYSCTL_DECL(_net_key);
250 #endif
251 
252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL,	debug,
253 	CTLFLAG_RW, key_debug_level,	0,	"");
254 
255 /* max count of trial for the decision of spi value */
256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt,
257 	CTLFLAG_RW, key_spi_trycnt,	0,	"");
258 
259 /* minimum spi value to allocate automatically. */
260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE,
261 	spi_minval,	CTLFLAG_RW, key_spi_minval,	0,	"");
262 
263 /* maximun spi value to allocate automatically. */
264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE,
265 	spi_maxval,	CTLFLAG_RW, key_spi_maxval,	0,	"");
266 
267 /* interval to initialize randseed */
268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT,
269 	int_random,	CTLFLAG_RW, key_int_random,	0,	"");
270 
271 /* lifetime for larval SA */
272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME,
273 	larval_lifetime, CTLFLAG_RW, key_larval_lifetime,	0,	"");
274 
275 /* counter for blocking to send SADB_ACQUIRE to IKEd */
276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT,
277 	blockacq_count,	CTLFLAG_RW, key_blockacq_count,	0,	"");
278 
279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME,
281 	blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime,	0, "");
282 
283 /* ESP auth */
284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH,	esp_auth,
285 	CTLFLAG_RW, ipsec_esp_auth,	0,	"");
286 
287 /* minimum ESP key length */
288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN,
289 	esp_keymin, CTLFLAG_RW, ipsec_esp_keymin,	0,	"");
290 
291 /* minimum AH key length */
292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
293 	CTLFLAG_RW, ipsec_ah_keymin,	0,	"");
294 
295 /* perfered old SA rather than new SA */
296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA,
297 	preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa,	0,	"");
298 
299 #define __LIST_CHAINED(elm) \
300 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
301 #define LIST_INSERT_TAIL(head, elm, type, field) \
302 do {\
303 	struct type *curelm = LIST_FIRST(head); \
304 	if (curelm == NULL) {\
305 		LIST_INSERT_HEAD(head, elm, field); \
306 	} else { \
307 		while (LIST_NEXT(curelm, field)) \
308 			curelm = LIST_NEXT(curelm, field);\
309 		LIST_INSERT_AFTER(curelm, elm, field);\
310 	}\
311 } while (0)
312 
313 #define KEY_CHKSASTATE(head, sav, name) \
314 do { \
315 	if ((head) != (sav)) {						\
316 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
317 			(name), (head), (sav)));			\
318 		continue;						\
319 	}								\
320 } while (0)
321 
322 #define KEY_CHKSPDIR(head, sp, name) \
323 do { \
324 	if ((head) != (sp)) {						\
325 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
326 			"anyway continue.\n",				\
327 			(name), (head), (sp)));				\
328 	}								\
329 } while (0)
330 
331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
338 
339 /*
340  * set parameters into secpolicyindex buffer.
341  * Must allocate secpolicyindex buffer passed to this function.
342  */
343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
344 do { \
345 	bzero((idx), sizeof(struct secpolicyindex));                         \
346 	(idx)->dir = (_dir);                                                 \
347 	(idx)->prefs = (ps);                                                 \
348 	(idx)->prefd = (pd);                                                 \
349 	(idx)->ul_proto = (ulp);                                             \
350 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
351 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
352 } while (0)
353 
354 /*
355  * set parameters into secasindex buffer.
356  * Must allocate secasindex buffer before calling this function.
357  */
358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
359 do { \
360 	bzero((idx), sizeof(struct secasindex));                             \
361 	(idx)->proto = (p);                                                  \
362 	(idx)->mode = (m);                                                   \
363 	(idx)->reqid = (r);                                                  \
364 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
365 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
366 } while (0)
367 
368 /* key statistics */
369 struct _keystat {
370 	u_long getspi_count; /* the avarage of count to try to get new SPI */
371 } keystat;
372 
373 struct sadb_msghdr {
374 	struct sadb_msg *msg;
375 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
376 	int extoff[SADB_EXT_MAX + 1];
377 	int extlen[SADB_EXT_MAX + 1];
378 };
379 
380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
381 static void key_freesp_so __P((struct secpolicy **));
382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
383 static void key_delsp __P((struct secpolicy *));
384 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
385 static void _key_delsp(struct secpolicy *sp);
386 static struct secpolicy *key_getspbyid __P((u_int32_t));
387 static u_int32_t key_newreqid __P((void));
388 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
389 	const struct sadb_msghdr *, int, int, ...));
390 static int key_spdadd __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static u_int32_t key_getnewspid __P((void));
393 static int key_spddelete __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static int key_spddelete2 __P((struct socket *, struct mbuf *,
396 	const struct sadb_msghdr *));
397 static int key_spdget __P((struct socket *, struct mbuf *,
398 	const struct sadb_msghdr *));
399 static int key_spdflush __P((struct socket *, struct mbuf *,
400 	const struct sadb_msghdr *));
401 static int key_spddump __P((struct socket *, struct mbuf *,
402 	const struct sadb_msghdr *));
403 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
404 	u_int8_t, u_int32_t, u_int32_t));
405 static u_int key_getspreqmsglen __P((struct secpolicy *));
406 static int key_spdexpire __P((struct secpolicy *));
407 static struct secashead *key_newsah __P((struct secasindex *));
408 static void key_delsah __P((struct secashead *));
409 static struct secasvar *key_newsav __P((struct mbuf *,
410 	const struct sadb_msghdr *, struct secashead *, int *,
411 	const char*, int));
412 #define	KEY_NEWSAV(m, sadb, sah, e)				\
413 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
414 static void key_delsav __P((struct secasvar *));
415 static struct secashead *key_getsah __P((struct secasindex *));
416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
418 static int key_setsaval __P((struct secasvar *, struct mbuf *,
419 	const struct sadb_msghdr *));
420 static int key_mature __P((struct secasvar *));
421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
422 	u_int8_t, u_int32_t, u_int32_t));
423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
424 	u_int32_t, pid_t, u_int16_t));
425 static struct mbuf *key_setsadbsa __P((struct secasvar *));
426 static struct mbuf *key_setsadbaddr __P((u_int16_t,
427 	const struct sockaddr *, u_int8_t, u_int16_t));
428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
430 	u_int32_t));
431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
432 				     struct malloc_type *);
433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
434 					    struct malloc_type *type);
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438 
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD	1	/* protocol, addresses. */
441 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
442 #define CMP_REQID	3	/* additionally HEAD, reaid. */
443 #define CMP_EXACTLY	4	/* all elements. */
444 static int key_cmpsaidx
445 	__P((const struct secasindex *, const struct secasindex *, int));
446 
447 static int key_cmpspidx_exactly
448 	__P((struct secpolicyindex *, struct secpolicyindex *));
449 static int key_cmpspidx_withmask
450 	__P((struct secpolicyindex *, struct secpolicyindex *));
451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
452 static int key_bbcmp __P((const void *, const void *, u_int));
453 static u_int16_t key_satype2proto __P((u_int8_t));
454 static u_int8_t key_proto2satype __P((u_int16_t));
455 
456 static int key_getspi __P((struct socket *, struct mbuf *,
457 	const struct sadb_msghdr *));
458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
459 					struct secasindex *));
460 static int key_update __P((struct socket *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 #ifdef IPSEC_DOSEQCHECK
463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
464 #endif
465 static int key_add __P((struct socket *, struct mbuf *,
466 	const struct sadb_msghdr *));
467 static int key_setident __P((struct secashead *, struct mbuf *,
468 	const struct sadb_msghdr *));
469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
470 	const struct sadb_msghdr *));
471 static int key_delete __P((struct socket *, struct mbuf *,
472 	const struct sadb_msghdr *));
473 static int key_get __P((struct socket *, struct mbuf *,
474 	const struct sadb_msghdr *));
475 
476 static void key_getcomb_setlifetime __P((struct sadb_comb *));
477 static struct mbuf *key_getcomb_esp __P((void));
478 static struct mbuf *key_getcomb_ah __P((void));
479 static struct mbuf *key_getcomb_ipcomp __P((void));
480 static struct mbuf *key_getprop __P((const struct secasindex *));
481 
482 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
483 static struct secacq *key_newacq __P((const struct secasindex *));
484 static struct secacq *key_getacq __P((const struct secasindex *));
485 static struct secacq *key_getacqbyseq __P((u_int32_t));
486 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
487 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
488 static int key_acquire2 __P((struct socket *, struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_register __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_expire __P((struct secasvar *));
493 static int key_flush __P((struct socket *, struct mbuf *,
494 	const struct sadb_msghdr *));
495 static int key_dump __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static int key_promisc __P((struct socket *, struct mbuf *,
498 	const struct sadb_msghdr *));
499 static int key_senderror __P((struct socket *, struct mbuf *, int));
500 static int key_validate_ext __P((const struct sadb_ext *, int));
501 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
502 static struct mbuf *key_setlifetime(struct seclifetime *src,
503 				     u_int16_t exttype);
504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
505 
506 #if 0
507 static const char *key_getfqdn __P((void));
508 static const char *key_getuserfqdn __P((void));
509 #endif
510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
511 static struct mbuf *key_alloc_mbuf __P((int));
512 
513 static __inline void
514 sa_initref(struct secasvar *sav)
515 {
516 
517 	refcount_init(&sav->refcnt, 1);
518 }
519 static __inline void
520 sa_addref(struct secasvar *sav)
521 {
522 
523 	refcount_acquire(&sav->refcnt);
524 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
525 }
526 static __inline int
527 sa_delref(struct secasvar *sav)
528 {
529 
530 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
531 	return (refcount_release(&sav->refcnt));
532 }
533 
534 #define	SP_ADDREF(p) do {						\
535 	(p)->refcnt++;							\
536 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
537 } while (0)
538 #define	SP_DELREF(p) do {						\
539 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
540 	(p)->refcnt--;							\
541 } while (0)
542 
543 
544 /*
545  * Update the refcnt while holding the SPTREE lock.
546  */
547 void
548 key_addref(struct secpolicy *sp)
549 {
550 	SPTREE_LOCK();
551 	SP_ADDREF(sp);
552 	SPTREE_UNLOCK();
553 }
554 
555 /*
556  * Return 0 when there are known to be no SP's for the specified
557  * direction.  Otherwise return 1.  This is used by IPsec code
558  * to optimize performance.
559  */
560 int
561 key_havesp(u_int dir)
562 {
563 	INIT_VNET_IPSEC(curvnet);
564 
565 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
566 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
567 }
568 
569 /* %%% IPsec policy management */
570 /*
571  * allocating a SP for OUTBOUND or INBOUND packet.
572  * Must call key_freesp() later.
573  * OUT:	NULL:	not found
574  *	others:	found and return the pointer.
575  */
576 struct secpolicy *
577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
578 {
579 	INIT_VNET_IPSEC(curvnet);
580 	struct secpolicy *sp;
581 
582 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
583 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
584 		("invalid direction %u", dir));
585 
586 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
587 		printf("DP %s from %s:%u\n", __func__, where, tag));
588 
589 	/* get a SP entry */
590 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
591 		printf("*** objects\n");
592 		kdebug_secpolicyindex(spidx));
593 
594 	SPTREE_LOCK();
595 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
596 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
597 			printf("*** in SPD\n");
598 			kdebug_secpolicyindex(&sp->spidx));
599 
600 		if (sp->state == IPSEC_SPSTATE_DEAD)
601 			continue;
602 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
603 			goto found;
604 	}
605 	sp = NULL;
606 found:
607 	if (sp) {
608 		/* sanity check */
609 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
610 
611 		/* found a SPD entry */
612 		sp->lastused = time_second;
613 		SP_ADDREF(sp);
614 	}
615 	SPTREE_UNLOCK();
616 
617 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
618 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
619 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
620 	return sp;
621 }
622 
623 /*
624  * allocating a SP for OUTBOUND or INBOUND packet.
625  * Must call key_freesp() later.
626  * OUT:	NULL:	not found
627  *	others:	found and return the pointer.
628  */
629 struct secpolicy *
630 key_allocsp2(u_int32_t spi,
631 	     union sockaddr_union *dst,
632 	     u_int8_t proto,
633 	     u_int dir,
634 	     const char* where, int tag)
635 {
636 	INIT_VNET_IPSEC(curvnet);
637 	struct secpolicy *sp;
638 
639 	IPSEC_ASSERT(dst != NULL, ("null dst"));
640 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
641 		("invalid direction %u", dir));
642 
643 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
644 		printf("DP %s from %s:%u\n", __func__, where, tag));
645 
646 	/* get a SP entry */
647 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
648 		printf("*** objects\n");
649 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
650 		kdebug_sockaddr(&dst->sa));
651 
652 	SPTREE_LOCK();
653 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
654 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
655 			printf("*** in SPD\n");
656 			kdebug_secpolicyindex(&sp->spidx));
657 
658 		if (sp->state == IPSEC_SPSTATE_DEAD)
659 			continue;
660 		/* compare simple values, then dst address */
661 		if (sp->spidx.ul_proto != proto)
662 			continue;
663 		/* NB: spi's must exist and match */
664 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
665 			continue;
666 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
667 			goto found;
668 	}
669 	sp = NULL;
670 found:
671 	if (sp) {
672 		/* sanity check */
673 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
674 
675 		/* found a SPD entry */
676 		sp->lastused = time_second;
677 		SP_ADDREF(sp);
678 	}
679 	SPTREE_UNLOCK();
680 
681 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
682 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
683 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
684 	return sp;
685 }
686 
687 #if 0
688 /*
689  * return a policy that matches this particular inbound packet.
690  * XXX slow
691  */
692 struct secpolicy *
693 key_gettunnel(const struct sockaddr *osrc,
694 	      const struct sockaddr *odst,
695 	      const struct sockaddr *isrc,
696 	      const struct sockaddr *idst,
697 	      const char* where, int tag)
698 {
699 	INIT_VNET_IPSEC(curvnet);
700 	struct secpolicy *sp;
701 	const int dir = IPSEC_DIR_INBOUND;
702 	struct ipsecrequest *r1, *r2, *p;
703 	struct secpolicyindex spidx;
704 
705 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
706 		printf("DP %s from %s:%u\n", __func__, where, tag));
707 
708 	if (isrc->sa_family != idst->sa_family) {
709 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
710 			__func__, isrc->sa_family, idst->sa_family));
711 		sp = NULL;
712 		goto done;
713 	}
714 
715 	SPTREE_LOCK();
716 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
717 		if (sp->state == IPSEC_SPSTATE_DEAD)
718 			continue;
719 
720 		r1 = r2 = NULL;
721 		for (p = sp->req; p; p = p->next) {
722 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
723 				continue;
724 
725 			r1 = r2;
726 			r2 = p;
727 
728 			if (!r1) {
729 				/* here we look at address matches only */
730 				spidx = sp->spidx;
731 				if (isrc->sa_len > sizeof(spidx.src) ||
732 				    idst->sa_len > sizeof(spidx.dst))
733 					continue;
734 				bcopy(isrc, &spidx.src, isrc->sa_len);
735 				bcopy(idst, &spidx.dst, idst->sa_len);
736 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
737 					continue;
738 			} else {
739 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
740 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
741 					continue;
742 			}
743 
744 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
745 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
746 				continue;
747 
748 			goto found;
749 		}
750 	}
751 	sp = NULL;
752 found:
753 	if (sp) {
754 		sp->lastused = time_second;
755 		SP_ADDREF(sp);
756 	}
757 	SPTREE_UNLOCK();
758 done:
759 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
760 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
761 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
762 	return sp;
763 }
764 #endif
765 
766 /*
767  * allocating an SA entry for an *OUTBOUND* packet.
768  * checking each request entries in SP, and acquire an SA if need.
769  * OUT:	0: there are valid requests.
770  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
771  */
772 int
773 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
774 {
775 	INIT_VNET_IPSEC(curvnet);
776 	u_int level;
777 	int error;
778 
779 	IPSEC_ASSERT(isr != NULL, ("null isr"));
780 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
781 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
782 		saidx->mode == IPSEC_MODE_TUNNEL,
783 		("unexpected policy %u", saidx->mode));
784 
785 	/*
786 	 * XXX guard against protocol callbacks from the crypto
787 	 * thread as they reference ipsecrequest.sav which we
788 	 * temporarily null out below.  Need to rethink how we
789 	 * handle bundled SA's in the callback thread.
790 	 */
791 	IPSECREQUEST_LOCK_ASSERT(isr);
792 
793 	/* get current level */
794 	level = ipsec_get_reqlevel(isr);
795 #if 0
796 	/*
797 	 * We do allocate new SA only if the state of SA in the holder is
798 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
799 	 */
800 	if (isr->sav != NULL) {
801 		if (isr->sav->sah == NULL)
802 			panic("%s: sah is null.\n", __func__);
803 		if (isr->sav == (struct secasvar *)LIST_FIRST(
804 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
805 			KEY_FREESAV(&isr->sav);
806 			isr->sav = NULL;
807 		}
808 	}
809 #else
810 	/*
811 	 * we free any SA stashed in the IPsec request because a different
812 	 * SA may be involved each time this request is checked, either
813 	 * because new SAs are being configured, or this request is
814 	 * associated with an unconnected datagram socket, or this request
815 	 * is associated with a system default policy.
816 	 *
817 	 * The operation may have negative impact to performance.  We may
818 	 * want to check cached SA carefully, rather than picking new SA
819 	 * every time.
820 	 */
821 	if (isr->sav != NULL) {
822 		KEY_FREESAV(&isr->sav);
823 		isr->sav = NULL;
824 	}
825 #endif
826 
827 	/*
828 	 * new SA allocation if no SA found.
829 	 * key_allocsa_policy should allocate the oldest SA available.
830 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
831 	 */
832 	if (isr->sav == NULL)
833 		isr->sav = key_allocsa_policy(saidx);
834 
835 	/* When there is SA. */
836 	if (isr->sav != NULL) {
837 		if (isr->sav->state != SADB_SASTATE_MATURE &&
838 		    isr->sav->state != SADB_SASTATE_DYING)
839 			return EINVAL;
840 		return 0;
841 	}
842 
843 	/* there is no SA */
844 	error = key_acquire(saidx, isr->sp);
845 	if (error != 0) {
846 		/* XXX What should I do ? */
847 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
848 			__func__, error));
849 		return error;
850 	}
851 
852 	if (level != IPSEC_LEVEL_REQUIRE) {
853 		/* XXX sigh, the interface to this routine is botched */
854 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
855 		return 0;
856 	} else {
857 		return ENOENT;
858 	}
859 }
860 
861 /*
862  * allocating a SA for policy entry from SAD.
863  * NOTE: searching SAD of aliving state.
864  * OUT:	NULL:	not found.
865  *	others:	found and return the pointer.
866  */
867 static struct secasvar *
868 key_allocsa_policy(const struct secasindex *saidx)
869 {
870 #define	N(a)	_ARRAYLEN(a)
871 	INIT_VNET_IPSEC(curvnet);
872 	struct secashead *sah;
873 	struct secasvar *sav;
874 	u_int stateidx, arraysize;
875 	const u_int *state_valid;
876 
877 	SAHTREE_LOCK();
878 	LIST_FOREACH(sah, &V_sahtree, chain) {
879 		if (sah->state == SADB_SASTATE_DEAD)
880 			continue;
881 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
882 			if (V_key_preferred_oldsa) {
883 				state_valid = saorder_state_valid_prefer_old;
884 				arraysize = N(saorder_state_valid_prefer_old);
885 			} else {
886 				state_valid = saorder_state_valid_prefer_new;
887 				arraysize = N(saorder_state_valid_prefer_new);
888 			}
889 			SAHTREE_UNLOCK();
890 			goto found;
891 		}
892 	}
893 	SAHTREE_UNLOCK();
894 
895 	return NULL;
896 
897     found:
898 	/* search valid state */
899 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
900 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
901 		if (sav != NULL)
902 			return sav;
903 	}
904 
905 	return NULL;
906 #undef N
907 }
908 
909 /*
910  * searching SAD with direction, protocol, mode and state.
911  * called by key_allocsa_policy().
912  * OUT:
913  *	NULL	: not found
914  *	others	: found, pointer to a SA.
915  */
916 static struct secasvar *
917 key_do_allocsa_policy(struct secashead *sah, u_int state)
918 {
919 	INIT_VNET_IPSEC(curvnet);
920 	struct secasvar *sav, *nextsav, *candidate, *d;
921 
922 	/* initilize */
923 	candidate = NULL;
924 
925 	SAHTREE_LOCK();
926 	for (sav = LIST_FIRST(&sah->savtree[state]);
927 	     sav != NULL;
928 	     sav = nextsav) {
929 
930 		nextsav = LIST_NEXT(sav, chain);
931 
932 		/* sanity check */
933 		KEY_CHKSASTATE(sav->state, state, __func__);
934 
935 		/* initialize */
936 		if (candidate == NULL) {
937 			candidate = sav;
938 			continue;
939 		}
940 
941 		/* Which SA is the better ? */
942 
943 		IPSEC_ASSERT(candidate->lft_c != NULL,
944 			("null candidate lifetime"));
945 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
946 
947 		/* What the best method is to compare ? */
948 		if (V_key_preferred_oldsa) {
949 			if (candidate->lft_c->addtime >
950 					sav->lft_c->addtime) {
951 				candidate = sav;
952 			}
953 			continue;
954 			/*NOTREACHED*/
955 		}
956 
957 		/* preferred new sa rather than old sa */
958 		if (candidate->lft_c->addtime <
959 				sav->lft_c->addtime) {
960 			d = candidate;
961 			candidate = sav;
962 		} else
963 			d = sav;
964 
965 		/*
966 		 * prepared to delete the SA when there is more
967 		 * suitable candidate and the lifetime of the SA is not
968 		 * permanent.
969 		 */
970 		if (d->lft_h->addtime != 0) {
971 			struct mbuf *m, *result;
972 			u_int8_t satype;
973 
974 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
975 
976 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
977 
978 			satype = key_proto2satype(d->sah->saidx.proto);
979 			if (satype == 0)
980 				goto msgfail;
981 
982 			m = key_setsadbmsg(SADB_DELETE, 0,
983 			    satype, 0, 0, d->refcnt - 1);
984 			if (!m)
985 				goto msgfail;
986 			result = m;
987 
988 			/* set sadb_address for saidx's. */
989 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
990 				&d->sah->saidx.src.sa,
991 				d->sah->saidx.src.sa.sa_len << 3,
992 				IPSEC_ULPROTO_ANY);
993 			if (!m)
994 				goto msgfail;
995 			m_cat(result, m);
996 
997 			/* set sadb_address for saidx's. */
998 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
999 				&d->sah->saidx.dst.sa,
1000 				d->sah->saidx.dst.sa.sa_len << 3,
1001 				IPSEC_ULPROTO_ANY);
1002 			if (!m)
1003 				goto msgfail;
1004 			m_cat(result, m);
1005 
1006 			/* create SA extension */
1007 			m = key_setsadbsa(d);
1008 			if (!m)
1009 				goto msgfail;
1010 			m_cat(result, m);
1011 
1012 			if (result->m_len < sizeof(struct sadb_msg)) {
1013 				result = m_pullup(result,
1014 						sizeof(struct sadb_msg));
1015 				if (result == NULL)
1016 					goto msgfail;
1017 			}
1018 
1019 			result->m_pkthdr.len = 0;
1020 			for (m = result; m; m = m->m_next)
1021 				result->m_pkthdr.len += m->m_len;
1022 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1023 				PFKEY_UNIT64(result->m_pkthdr.len);
1024 
1025 			if (key_sendup_mbuf(NULL, result,
1026 					KEY_SENDUP_REGISTERED))
1027 				goto msgfail;
1028 		 msgfail:
1029 			KEY_FREESAV(&d);
1030 		}
1031 	}
1032 	if (candidate) {
1033 		sa_addref(candidate);
1034 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1035 			printf("DP %s cause refcnt++:%d SA:%p\n",
1036 				__func__, candidate->refcnt, candidate));
1037 	}
1038 	SAHTREE_UNLOCK();
1039 
1040 	return candidate;
1041 }
1042 
1043 /*
1044  * allocating a usable SA entry for a *INBOUND* packet.
1045  * Must call key_freesav() later.
1046  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1047  *	NULL:		not found, or error occured.
1048  *
1049  * In the comparison, no source address is used--for RFC2401 conformance.
1050  * To quote, from section 4.1:
1051  *	A security association is uniquely identified by a triple consisting
1052  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1053  *	security protocol (AH or ESP) identifier.
1054  * Note that, however, we do need to keep source address in IPsec SA.
1055  * IKE specification and PF_KEY specification do assume that we
1056  * keep source address in IPsec SA.  We see a tricky situation here.
1057  */
1058 struct secasvar *
1059 key_allocsa(
1060 	union sockaddr_union *dst,
1061 	u_int proto,
1062 	u_int32_t spi,
1063 	const char* where, int tag)
1064 {
1065 	INIT_VNET_IPSEC(curvnet);
1066 	struct secashead *sah;
1067 	struct secasvar *sav;
1068 	u_int stateidx, arraysize, state;
1069 	const u_int *saorder_state_valid;
1070 
1071 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1072 
1073 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1074 		printf("DP %s from %s:%u\n", __func__, where, tag));
1075 
1076 	/*
1077 	 * searching SAD.
1078 	 * XXX: to be checked internal IP header somewhere.  Also when
1079 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1080 	 * encrypted so we can't check internal IP header.
1081 	 */
1082 	SAHTREE_LOCK();
1083 	if (V_key_preferred_oldsa) {
1084 		saorder_state_valid = saorder_state_valid_prefer_old;
1085 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1086 	} else {
1087 		saorder_state_valid = saorder_state_valid_prefer_new;
1088 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1089 	}
1090 	LIST_FOREACH(sah, &V_sahtree, chain) {
1091 		/* search valid state */
1092 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1093 			state = saorder_state_valid[stateidx];
1094 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1095 				/* sanity check */
1096 				KEY_CHKSASTATE(sav->state, state, __func__);
1097 				/* do not return entries w/ unusable state */
1098 				if (sav->state != SADB_SASTATE_MATURE &&
1099 				    sav->state != SADB_SASTATE_DYING)
1100 					continue;
1101 				if (proto != sav->sah->saidx.proto)
1102 					continue;
1103 				if (spi != sav->spi)
1104 					continue;
1105 #if 0	/* don't check src */
1106 				/* check src address */
1107 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1108 					continue;
1109 #endif
1110 				/* check dst address */
1111 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1112 					continue;
1113 				sa_addref(sav);
1114 				goto done;
1115 			}
1116 		}
1117 	}
1118 	sav = NULL;
1119 done:
1120 	SAHTREE_UNLOCK();
1121 
1122 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1123 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1124 			sav, sav ? sav->refcnt : 0));
1125 	return sav;
1126 }
1127 
1128 /*
1129  * Must be called after calling key_allocsp().
1130  * For both the packet without socket and key_freeso().
1131  */
1132 void
1133 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1134 {
1135 	INIT_VNET_IPSEC(curvnet);
1136 	struct secpolicy *sp = *spp;
1137 
1138 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1139 
1140 	SPTREE_LOCK();
1141 	SP_DELREF(sp);
1142 
1143 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1144 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1145 			__func__, sp, sp->id, where, tag, sp->refcnt));
1146 
1147 	if (sp->refcnt == 0) {
1148 		*spp = NULL;
1149 		key_delsp(sp);
1150 	}
1151 	SPTREE_UNLOCK();
1152 }
1153 
1154 /*
1155  * Must be called after calling key_allocsp().
1156  * For the packet with socket.
1157  */
1158 void
1159 key_freeso(struct socket *so)
1160 {
1161 	INIT_VNET_IPSEC(curvnet);
1162 	IPSEC_ASSERT(so != NULL, ("null so"));
1163 
1164 	switch (so->so_proto->pr_domain->dom_family) {
1165 #if defined(INET) || defined(INET6)
1166 #ifdef INET
1167 	case PF_INET:
1168 #endif
1169 #ifdef INET6
1170 	case PF_INET6:
1171 #endif
1172 	    {
1173 		struct inpcb *pcb = sotoinpcb(so);
1174 
1175 		/* Does it have a PCB ? */
1176 		if (pcb == NULL)
1177 			return;
1178 		key_freesp_so(&pcb->inp_sp->sp_in);
1179 		key_freesp_so(&pcb->inp_sp->sp_out);
1180 	    }
1181 		break;
1182 #endif /* INET || INET6 */
1183 	default:
1184 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1185 		    __func__, so->so_proto->pr_domain->dom_family));
1186 		return;
1187 	}
1188 }
1189 
1190 static void
1191 key_freesp_so(struct secpolicy **sp)
1192 {
1193 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1194 
1195 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1196 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1197 		return;
1198 
1199 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1200 		("invalid policy %u", (*sp)->policy));
1201 	KEY_FREESP(sp);
1202 }
1203 
1204 /*
1205  * Must be called after calling key_allocsa().
1206  * This function is called by key_freesp() to free some SA allocated
1207  * for a policy.
1208  */
1209 void
1210 key_freesav(struct secasvar **psav, const char* where, int tag)
1211 {
1212 	INIT_VNET_IPSEC(curvnet);
1213 	struct secasvar *sav = *psav;
1214 
1215 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1216 
1217 	if (sa_delref(sav)) {
1218 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1219 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1220 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1221 		*psav = NULL;
1222 		key_delsav(sav);
1223 	} else {
1224 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1225 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1226 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1227 	}
1228 }
1229 
1230 /* %%% SPD management */
1231 /*
1232  * free security policy entry.
1233  */
1234 static void
1235 key_delsp(struct secpolicy *sp)
1236 {
1237 	struct ipsecrequest *isr, *nextisr;
1238 
1239 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1240 	SPTREE_LOCK_ASSERT();
1241 
1242 	sp->state = IPSEC_SPSTATE_DEAD;
1243 
1244 	IPSEC_ASSERT(sp->refcnt == 0,
1245 		("SP with references deleted (refcnt %u)", sp->refcnt));
1246 
1247 	/* remove from SP index */
1248 	if (__LIST_CHAINED(sp))
1249 		LIST_REMOVE(sp, chain);
1250 
1251 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1252 		if (isr->sav != NULL) {
1253 			KEY_FREESAV(&isr->sav);
1254 			isr->sav = NULL;
1255 		}
1256 
1257 		nextisr = isr->next;
1258 		ipsec_delisr(isr);
1259 	}
1260 	_key_delsp(sp);
1261 }
1262 
1263 /*
1264  * search SPD
1265  * OUT:	NULL	: not found
1266  *	others	: found, pointer to a SP.
1267  */
1268 static struct secpolicy *
1269 key_getsp(struct secpolicyindex *spidx)
1270 {
1271 	INIT_VNET_IPSEC(curvnet);
1272 	struct secpolicy *sp;
1273 
1274 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1275 
1276 	SPTREE_LOCK();
1277 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1278 		if (sp->state == IPSEC_SPSTATE_DEAD)
1279 			continue;
1280 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1281 			SP_ADDREF(sp);
1282 			break;
1283 		}
1284 	}
1285 	SPTREE_UNLOCK();
1286 
1287 	return sp;
1288 }
1289 
1290 /*
1291  * get SP by index.
1292  * OUT:	NULL	: not found
1293  *	others	: found, pointer to a SP.
1294  */
1295 static struct secpolicy *
1296 key_getspbyid(u_int32_t id)
1297 {
1298 	INIT_VNET_IPSEC(curvnet);
1299 	struct secpolicy *sp;
1300 
1301 	SPTREE_LOCK();
1302 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1303 		if (sp->state == IPSEC_SPSTATE_DEAD)
1304 			continue;
1305 		if (sp->id == id) {
1306 			SP_ADDREF(sp);
1307 			goto done;
1308 		}
1309 	}
1310 
1311 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1312 		if (sp->state == IPSEC_SPSTATE_DEAD)
1313 			continue;
1314 		if (sp->id == id) {
1315 			SP_ADDREF(sp);
1316 			goto done;
1317 		}
1318 	}
1319 done:
1320 	SPTREE_UNLOCK();
1321 
1322 	return sp;
1323 }
1324 
1325 struct secpolicy *
1326 key_newsp(const char* where, int tag)
1327 {
1328 	INIT_VNET_IPSEC(curvnet);
1329 	struct secpolicy *newsp = NULL;
1330 
1331 	newsp = (struct secpolicy *)
1332 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1333 	if (newsp) {
1334 		SECPOLICY_LOCK_INIT(newsp);
1335 		newsp->refcnt = 1;
1336 		newsp->req = NULL;
1337 	}
1338 
1339 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1340 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1341 			where, tag, newsp));
1342 	return newsp;
1343 }
1344 
1345 static void
1346 _key_delsp(struct secpolicy *sp)
1347 {
1348 	SECPOLICY_LOCK_DESTROY(sp);
1349 	free(sp, M_IPSEC_SP);
1350 }
1351 
1352 /*
1353  * create secpolicy structure from sadb_x_policy structure.
1354  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1355  * so must be set properly later.
1356  */
1357 struct secpolicy *
1358 key_msg2sp(xpl0, len, error)
1359 	struct sadb_x_policy *xpl0;
1360 	size_t len;
1361 	int *error;
1362 {
1363 	INIT_VNET_IPSEC(curvnet);
1364 	struct secpolicy *newsp;
1365 
1366 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1367 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1368 
1369 	if (len != PFKEY_EXTLEN(xpl0)) {
1370 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1371 		*error = EINVAL;
1372 		return NULL;
1373 	}
1374 
1375 	if ((newsp = KEY_NEWSP()) == NULL) {
1376 		*error = ENOBUFS;
1377 		return NULL;
1378 	}
1379 
1380 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1381 	newsp->policy = xpl0->sadb_x_policy_type;
1382 
1383 	/* check policy */
1384 	switch (xpl0->sadb_x_policy_type) {
1385 	case IPSEC_POLICY_DISCARD:
1386 	case IPSEC_POLICY_NONE:
1387 	case IPSEC_POLICY_ENTRUST:
1388 	case IPSEC_POLICY_BYPASS:
1389 		newsp->req = NULL;
1390 		break;
1391 
1392 	case IPSEC_POLICY_IPSEC:
1393 	    {
1394 		int tlen;
1395 		struct sadb_x_ipsecrequest *xisr;
1396 		struct ipsecrequest **p_isr = &newsp->req;
1397 
1398 		/* validity check */
1399 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1400 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1401 				__func__));
1402 			KEY_FREESP(&newsp);
1403 			*error = EINVAL;
1404 			return NULL;
1405 		}
1406 
1407 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1408 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1409 
1410 		while (tlen > 0) {
1411 			/* length check */
1412 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1413 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1414 					"length.\n", __func__));
1415 				KEY_FREESP(&newsp);
1416 				*error = EINVAL;
1417 				return NULL;
1418 			}
1419 
1420 			/* allocate request buffer */
1421 			/* NB: data structure is zero'd */
1422 			*p_isr = ipsec_newisr();
1423 			if ((*p_isr) == NULL) {
1424 				ipseclog((LOG_DEBUG,
1425 				    "%s: No more memory.\n", __func__));
1426 				KEY_FREESP(&newsp);
1427 				*error = ENOBUFS;
1428 				return NULL;
1429 			}
1430 
1431 			/* set values */
1432 			switch (xisr->sadb_x_ipsecrequest_proto) {
1433 			case IPPROTO_ESP:
1434 			case IPPROTO_AH:
1435 			case IPPROTO_IPCOMP:
1436 				break;
1437 			default:
1438 				ipseclog((LOG_DEBUG,
1439 				    "%s: invalid proto type=%u\n", __func__,
1440 				    xisr->sadb_x_ipsecrequest_proto));
1441 				KEY_FREESP(&newsp);
1442 				*error = EPROTONOSUPPORT;
1443 				return NULL;
1444 			}
1445 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1446 
1447 			switch (xisr->sadb_x_ipsecrequest_mode) {
1448 			case IPSEC_MODE_TRANSPORT:
1449 			case IPSEC_MODE_TUNNEL:
1450 				break;
1451 			case IPSEC_MODE_ANY:
1452 			default:
1453 				ipseclog((LOG_DEBUG,
1454 				    "%s: invalid mode=%u\n", __func__,
1455 				    xisr->sadb_x_ipsecrequest_mode));
1456 				KEY_FREESP(&newsp);
1457 				*error = EINVAL;
1458 				return NULL;
1459 			}
1460 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1461 
1462 			switch (xisr->sadb_x_ipsecrequest_level) {
1463 			case IPSEC_LEVEL_DEFAULT:
1464 			case IPSEC_LEVEL_USE:
1465 			case IPSEC_LEVEL_REQUIRE:
1466 				break;
1467 			case IPSEC_LEVEL_UNIQUE:
1468 				/* validity check */
1469 				/*
1470 				 * If range violation of reqid, kernel will
1471 				 * update it, don't refuse it.
1472 				 */
1473 				if (xisr->sadb_x_ipsecrequest_reqid
1474 						> IPSEC_MANUAL_REQID_MAX) {
1475 					ipseclog((LOG_DEBUG,
1476 					    "%s: reqid=%d range "
1477 					    "violation, updated by kernel.\n",
1478 					    __func__,
1479 					    xisr->sadb_x_ipsecrequest_reqid));
1480 					xisr->sadb_x_ipsecrequest_reqid = 0;
1481 				}
1482 
1483 				/* allocate new reqid id if reqid is zero. */
1484 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1485 					u_int32_t reqid;
1486 					if ((reqid = key_newreqid()) == 0) {
1487 						KEY_FREESP(&newsp);
1488 						*error = ENOBUFS;
1489 						return NULL;
1490 					}
1491 					(*p_isr)->saidx.reqid = reqid;
1492 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1493 				} else {
1494 				/* set it for manual keying. */
1495 					(*p_isr)->saidx.reqid =
1496 						xisr->sadb_x_ipsecrequest_reqid;
1497 				}
1498 				break;
1499 
1500 			default:
1501 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1502 					__func__,
1503 					xisr->sadb_x_ipsecrequest_level));
1504 				KEY_FREESP(&newsp);
1505 				*error = EINVAL;
1506 				return NULL;
1507 			}
1508 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1509 
1510 			/* set IP addresses if there */
1511 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1512 				struct sockaddr *paddr;
1513 
1514 				paddr = (struct sockaddr *)(xisr + 1);
1515 
1516 				/* validity check */
1517 				if (paddr->sa_len
1518 				    > sizeof((*p_isr)->saidx.src)) {
1519 					ipseclog((LOG_DEBUG, "%s: invalid "
1520 						"request address length.\n",
1521 						__func__));
1522 					KEY_FREESP(&newsp);
1523 					*error = EINVAL;
1524 					return NULL;
1525 				}
1526 				bcopy(paddr, &(*p_isr)->saidx.src,
1527 					paddr->sa_len);
1528 
1529 				paddr = (struct sockaddr *)((caddr_t)paddr
1530 							+ paddr->sa_len);
1531 
1532 				/* validity check */
1533 				if (paddr->sa_len
1534 				    > sizeof((*p_isr)->saidx.dst)) {
1535 					ipseclog((LOG_DEBUG, "%s: invalid "
1536 						"request address length.\n",
1537 						__func__));
1538 					KEY_FREESP(&newsp);
1539 					*error = EINVAL;
1540 					return NULL;
1541 				}
1542 				bcopy(paddr, &(*p_isr)->saidx.dst,
1543 					paddr->sa_len);
1544 			}
1545 
1546 			(*p_isr)->sp = newsp;
1547 
1548 			/* initialization for the next. */
1549 			p_isr = &(*p_isr)->next;
1550 			tlen -= xisr->sadb_x_ipsecrequest_len;
1551 
1552 			/* validity check */
1553 			if (tlen < 0) {
1554 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1555 					__func__));
1556 				KEY_FREESP(&newsp);
1557 				*error = EINVAL;
1558 				return NULL;
1559 			}
1560 
1561 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1562 			                 + xisr->sadb_x_ipsecrequest_len);
1563 		}
1564 	    }
1565 		break;
1566 	default:
1567 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1568 		KEY_FREESP(&newsp);
1569 		*error = EINVAL;
1570 		return NULL;
1571 	}
1572 
1573 	*error = 0;
1574 	return newsp;
1575 }
1576 
1577 static u_int32_t
1578 key_newreqid()
1579 {
1580 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1581 
1582 	auto_reqid = (auto_reqid == ~0
1583 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1584 
1585 	/* XXX should be unique check */
1586 
1587 	return auto_reqid;
1588 }
1589 
1590 /*
1591  * copy secpolicy struct to sadb_x_policy structure indicated.
1592  */
1593 struct mbuf *
1594 key_sp2msg(sp)
1595 	struct secpolicy *sp;
1596 {
1597 	struct sadb_x_policy *xpl;
1598 	int tlen;
1599 	caddr_t p;
1600 	struct mbuf *m;
1601 
1602 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1603 
1604 	tlen = key_getspreqmsglen(sp);
1605 
1606 	m = key_alloc_mbuf(tlen);
1607 	if (!m || m->m_next) {	/*XXX*/
1608 		if (m)
1609 			m_freem(m);
1610 		return NULL;
1611 	}
1612 
1613 	m->m_len = tlen;
1614 	m->m_next = NULL;
1615 	xpl = mtod(m, struct sadb_x_policy *);
1616 	bzero(xpl, tlen);
1617 
1618 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1619 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1620 	xpl->sadb_x_policy_type = sp->policy;
1621 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1622 	xpl->sadb_x_policy_id = sp->id;
1623 	p = (caddr_t)xpl + sizeof(*xpl);
1624 
1625 	/* if is the policy for ipsec ? */
1626 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1627 		struct sadb_x_ipsecrequest *xisr;
1628 		struct ipsecrequest *isr;
1629 
1630 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1631 
1632 			xisr = (struct sadb_x_ipsecrequest *)p;
1633 
1634 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1635 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1636 			xisr->sadb_x_ipsecrequest_level = isr->level;
1637 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1638 
1639 			p += sizeof(*xisr);
1640 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1641 			p += isr->saidx.src.sa.sa_len;
1642 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1643 			p += isr->saidx.src.sa.sa_len;
1644 
1645 			xisr->sadb_x_ipsecrequest_len =
1646 				PFKEY_ALIGN8(sizeof(*xisr)
1647 					+ isr->saidx.src.sa.sa_len
1648 					+ isr->saidx.dst.sa.sa_len);
1649 		}
1650 	}
1651 
1652 	return m;
1653 }
1654 
1655 /* m will not be freed nor modified */
1656 static struct mbuf *
1657 #ifdef __STDC__
1658 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1659 	int ndeep, int nitem, ...)
1660 #else
1661 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1662 	struct mbuf *m;
1663 	const struct sadb_msghdr *mhp;
1664 	int ndeep;
1665 	int nitem;
1666 	va_dcl
1667 #endif
1668 {
1669 	va_list ap;
1670 	int idx;
1671 	int i;
1672 	struct mbuf *result = NULL, *n;
1673 	int len;
1674 
1675 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1676 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1677 
1678 	va_start(ap, nitem);
1679 	for (i = 0; i < nitem; i++) {
1680 		idx = va_arg(ap, int);
1681 		if (idx < 0 || idx > SADB_EXT_MAX)
1682 			goto fail;
1683 		/* don't attempt to pull empty extension */
1684 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1685 			continue;
1686 		if (idx != SADB_EXT_RESERVED  &&
1687 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1688 			continue;
1689 
1690 		if (idx == SADB_EXT_RESERVED) {
1691 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1692 
1693 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1694 
1695 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1696 			if (!n)
1697 				goto fail;
1698 			n->m_len = len;
1699 			n->m_next = NULL;
1700 			m_copydata(m, 0, sizeof(struct sadb_msg),
1701 			    mtod(n, caddr_t));
1702 		} else if (i < ndeep) {
1703 			len = mhp->extlen[idx];
1704 			n = key_alloc_mbuf(len);
1705 			if (!n || n->m_next) {	/*XXX*/
1706 				if (n)
1707 					m_freem(n);
1708 				goto fail;
1709 			}
1710 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1711 			    mtod(n, caddr_t));
1712 		} else {
1713 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1714 			    M_DONTWAIT);
1715 		}
1716 		if (n == NULL)
1717 			goto fail;
1718 
1719 		if (result)
1720 			m_cat(result, n);
1721 		else
1722 			result = n;
1723 	}
1724 	va_end(ap);
1725 
1726 	if ((result->m_flags & M_PKTHDR) != 0) {
1727 		result->m_pkthdr.len = 0;
1728 		for (n = result; n; n = n->m_next)
1729 			result->m_pkthdr.len += n->m_len;
1730 	}
1731 
1732 	return result;
1733 
1734 fail:
1735 	m_freem(result);
1736 	return NULL;
1737 }
1738 
1739 /*
1740  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1741  * add an entry to SP database, when received
1742  *   <base, address(SD), (lifetime(H),) policy>
1743  * from the user(?).
1744  * Adding to SP database,
1745  * and send
1746  *   <base, address(SD), (lifetime(H),) policy>
1747  * to the socket which was send.
1748  *
1749  * SPDADD set a unique policy entry.
1750  * SPDSETIDX like SPDADD without a part of policy requests.
1751  * SPDUPDATE replace a unique policy entry.
1752  *
1753  * m will always be freed.
1754  */
1755 static int
1756 key_spdadd(so, m, mhp)
1757 	struct socket *so;
1758 	struct mbuf *m;
1759 	const struct sadb_msghdr *mhp;
1760 {
1761 	INIT_VNET_IPSEC(curvnet);
1762 	struct sadb_address *src0, *dst0;
1763 	struct sadb_x_policy *xpl0, *xpl;
1764 	struct sadb_lifetime *lft = NULL;
1765 	struct secpolicyindex spidx;
1766 	struct secpolicy *newsp;
1767 	int error;
1768 
1769 	IPSEC_ASSERT(so != NULL, ("null socket"));
1770 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1771 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1772 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1773 
1774 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1775 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1776 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1777 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1778 		return key_senderror(so, m, EINVAL);
1779 	}
1780 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1781 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1782 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1783 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1784 			__func__));
1785 		return key_senderror(so, m, EINVAL);
1786 	}
1787 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1788 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1789 			< sizeof(struct sadb_lifetime)) {
1790 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1791 				__func__));
1792 			return key_senderror(so, m, EINVAL);
1793 		}
1794 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1795 	}
1796 
1797 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1798 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1799 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1800 
1801 	/* make secindex */
1802 	/* XXX boundary check against sa_len */
1803 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1804 	                src0 + 1,
1805 	                dst0 + 1,
1806 	                src0->sadb_address_prefixlen,
1807 	                dst0->sadb_address_prefixlen,
1808 	                src0->sadb_address_proto,
1809 	                &spidx);
1810 
1811 	/* checking the direciton. */
1812 	switch (xpl0->sadb_x_policy_dir) {
1813 	case IPSEC_DIR_INBOUND:
1814 	case IPSEC_DIR_OUTBOUND:
1815 		break;
1816 	default:
1817 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1818 		mhp->msg->sadb_msg_errno = EINVAL;
1819 		return 0;
1820 	}
1821 
1822 	/* check policy */
1823 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1824 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1825 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1826 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1827 		return key_senderror(so, m, EINVAL);
1828 	}
1829 
1830 	/* policy requests are mandatory when action is ipsec. */
1831         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1832 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1833 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1834 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1835 			__func__));
1836 		return key_senderror(so, m, EINVAL);
1837 	}
1838 
1839 	/*
1840 	 * checking there is SP already or not.
1841 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1842 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1843 	 * then error.
1844 	 */
1845 	newsp = key_getsp(&spidx);
1846 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1847 		if (newsp) {
1848 			newsp->state = IPSEC_SPSTATE_DEAD;
1849 			KEY_FREESP(&newsp);
1850 		}
1851 	} else {
1852 		if (newsp != NULL) {
1853 			KEY_FREESP(&newsp);
1854 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1855 				__func__));
1856 			return key_senderror(so, m, EEXIST);
1857 		}
1858 	}
1859 
1860 	/* allocation new SP entry */
1861 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1862 		return key_senderror(so, m, error);
1863 	}
1864 
1865 	if ((newsp->id = key_getnewspid()) == 0) {
1866 		_key_delsp(newsp);
1867 		return key_senderror(so, m, ENOBUFS);
1868 	}
1869 
1870 	/* XXX boundary check against sa_len */
1871 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1872 	                src0 + 1,
1873 	                dst0 + 1,
1874 	                src0->sadb_address_prefixlen,
1875 	                dst0->sadb_address_prefixlen,
1876 	                src0->sadb_address_proto,
1877 	                &newsp->spidx);
1878 
1879 	/* sanity check on addr pair */
1880 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1881 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1882 		_key_delsp(newsp);
1883 		return key_senderror(so, m, EINVAL);
1884 	}
1885 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1886 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1887 		_key_delsp(newsp);
1888 		return key_senderror(so, m, EINVAL);
1889 	}
1890 #if 1
1891 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1892 		struct sockaddr *sa;
1893 		sa = (struct sockaddr *)(src0 + 1);
1894 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1895 			_key_delsp(newsp);
1896 			return key_senderror(so, m, EINVAL);
1897 		}
1898 	}
1899 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1900 		struct sockaddr *sa;
1901 		sa = (struct sockaddr *)(dst0 + 1);
1902 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1903 			_key_delsp(newsp);
1904 			return key_senderror(so, m, EINVAL);
1905 		}
1906 	}
1907 #endif
1908 
1909 	newsp->created = time_second;
1910 	newsp->lastused = newsp->created;
1911 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1912 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1913 
1914 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1915 	newsp->state = IPSEC_SPSTATE_ALIVE;
1916 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1917 
1918 	/* delete the entry in spacqtree */
1919 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1920 		struct secspacq *spacq = key_getspacq(&spidx);
1921 		if (spacq != NULL) {
1922 			/* reset counter in order to deletion by timehandler. */
1923 			spacq->created = time_second;
1924 			spacq->count = 0;
1925 			SPACQ_UNLOCK();
1926 		}
1927     	}
1928 
1929     {
1930 	struct mbuf *n, *mpolicy;
1931 	struct sadb_msg *newmsg;
1932 	int off;
1933 
1934 	/* create new sadb_msg to reply. */
1935 	if (lft) {
1936 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1937 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1938 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1939 	} else {
1940 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1941 		    SADB_X_EXT_POLICY,
1942 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1943 	}
1944 	if (!n)
1945 		return key_senderror(so, m, ENOBUFS);
1946 
1947 	if (n->m_len < sizeof(*newmsg)) {
1948 		n = m_pullup(n, sizeof(*newmsg));
1949 		if (!n)
1950 			return key_senderror(so, m, ENOBUFS);
1951 	}
1952 	newmsg = mtod(n, struct sadb_msg *);
1953 	newmsg->sadb_msg_errno = 0;
1954 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1955 
1956 	off = 0;
1957 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1958 	    sizeof(*xpl), &off);
1959 	if (mpolicy == NULL) {
1960 		/* n is already freed */
1961 		return key_senderror(so, m, ENOBUFS);
1962 	}
1963 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1964 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1965 		m_freem(n);
1966 		return key_senderror(so, m, EINVAL);
1967 	}
1968 	xpl->sadb_x_policy_id = newsp->id;
1969 
1970 	m_freem(m);
1971 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1972     }
1973 }
1974 
1975 /*
1976  * get new policy id.
1977  * OUT:
1978  *	0:	failure.
1979  *	others: success.
1980  */
1981 static u_int32_t
1982 key_getnewspid()
1983 {
1984 	INIT_VNET_IPSEC(curvnet);
1985 	u_int32_t newid = 0;
1986 	int count = V_key_spi_trycnt;	/* XXX */
1987 	struct secpolicy *sp;
1988 
1989 	/* when requesting to allocate spi ranged */
1990 	while (count--) {
1991 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1992 
1993 		if ((sp = key_getspbyid(newid)) == NULL)
1994 			break;
1995 
1996 		KEY_FREESP(&sp);
1997 	}
1998 
1999 	if (count == 0 || newid == 0) {
2000 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2001 			__func__));
2002 		return 0;
2003 	}
2004 
2005 	return newid;
2006 }
2007 
2008 /*
2009  * SADB_SPDDELETE processing
2010  * receive
2011  *   <base, address(SD), policy(*)>
2012  * from the user(?), and set SADB_SASTATE_DEAD,
2013  * and send,
2014  *   <base, address(SD), policy(*)>
2015  * to the ikmpd.
2016  * policy(*) including direction of policy.
2017  *
2018  * m will always be freed.
2019  */
2020 static int
2021 key_spddelete(so, m, mhp)
2022 	struct socket *so;
2023 	struct mbuf *m;
2024 	const struct sadb_msghdr *mhp;
2025 {
2026 	INIT_VNET_IPSEC(curvnet);
2027 	struct sadb_address *src0, *dst0;
2028 	struct sadb_x_policy *xpl0;
2029 	struct secpolicyindex spidx;
2030 	struct secpolicy *sp;
2031 
2032 	IPSEC_ASSERT(so != NULL, ("null so"));
2033 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2034 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2035 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2036 
2037 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2038 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2039 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2040 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2041 			__func__));
2042 		return key_senderror(so, m, EINVAL);
2043 	}
2044 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2045 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2046 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2047 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2048 			__func__));
2049 		return key_senderror(so, m, EINVAL);
2050 	}
2051 
2052 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2053 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2054 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2055 
2056 	/* make secindex */
2057 	/* XXX boundary check against sa_len */
2058 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2059 	                src0 + 1,
2060 	                dst0 + 1,
2061 	                src0->sadb_address_prefixlen,
2062 	                dst0->sadb_address_prefixlen,
2063 	                src0->sadb_address_proto,
2064 	                &spidx);
2065 
2066 	/* checking the direciton. */
2067 	switch (xpl0->sadb_x_policy_dir) {
2068 	case IPSEC_DIR_INBOUND:
2069 	case IPSEC_DIR_OUTBOUND:
2070 		break;
2071 	default:
2072 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2073 		return key_senderror(so, m, EINVAL);
2074 	}
2075 
2076 	/* Is there SP in SPD ? */
2077 	if ((sp = key_getsp(&spidx)) == NULL) {
2078 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2079 		return key_senderror(so, m, EINVAL);
2080 	}
2081 
2082 	/* save policy id to buffer to be returned. */
2083 	xpl0->sadb_x_policy_id = sp->id;
2084 
2085 	sp->state = IPSEC_SPSTATE_DEAD;
2086 	KEY_FREESP(&sp);
2087 
2088     {
2089 	struct mbuf *n;
2090 	struct sadb_msg *newmsg;
2091 
2092 	/* create new sadb_msg to reply. */
2093 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2094 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2095 	if (!n)
2096 		return key_senderror(so, m, ENOBUFS);
2097 
2098 	newmsg = mtod(n, struct sadb_msg *);
2099 	newmsg->sadb_msg_errno = 0;
2100 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2101 
2102 	m_freem(m);
2103 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2104     }
2105 }
2106 
2107 /*
2108  * SADB_SPDDELETE2 processing
2109  * receive
2110  *   <base, policy(*)>
2111  * from the user(?), and set SADB_SASTATE_DEAD,
2112  * and send,
2113  *   <base, policy(*)>
2114  * to the ikmpd.
2115  * policy(*) including direction of policy.
2116  *
2117  * m will always be freed.
2118  */
2119 static int
2120 key_spddelete2(so, m, mhp)
2121 	struct socket *so;
2122 	struct mbuf *m;
2123 	const struct sadb_msghdr *mhp;
2124 {
2125 	INIT_VNET_IPSEC(curvnet);
2126 	u_int32_t id;
2127 	struct secpolicy *sp;
2128 
2129 	IPSEC_ASSERT(so != NULL, ("null socket"));
2130 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2131 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2132 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2133 
2134 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2135 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2136 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2137 		return key_senderror(so, m, EINVAL);
2138 	}
2139 
2140 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2141 
2142 	/* Is there SP in SPD ? */
2143 	if ((sp = key_getspbyid(id)) == NULL) {
2144 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2145 		return key_senderror(so, m, EINVAL);
2146 	}
2147 
2148 	sp->state = IPSEC_SPSTATE_DEAD;
2149 	KEY_FREESP(&sp);
2150 
2151     {
2152 	struct mbuf *n, *nn;
2153 	struct sadb_msg *newmsg;
2154 	int off, len;
2155 
2156 	/* create new sadb_msg to reply. */
2157 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2158 
2159 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2160 	if (n && len > MHLEN) {
2161 		MCLGET(n, M_DONTWAIT);
2162 		if ((n->m_flags & M_EXT) == 0) {
2163 			m_freem(n);
2164 			n = NULL;
2165 		}
2166 	}
2167 	if (!n)
2168 		return key_senderror(so, m, ENOBUFS);
2169 
2170 	n->m_len = len;
2171 	n->m_next = NULL;
2172 	off = 0;
2173 
2174 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2175 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2176 
2177 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2178 		off, len));
2179 
2180 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2181 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2182 	if (!n->m_next) {
2183 		m_freem(n);
2184 		return key_senderror(so, m, ENOBUFS);
2185 	}
2186 
2187 	n->m_pkthdr.len = 0;
2188 	for (nn = n; nn; nn = nn->m_next)
2189 		n->m_pkthdr.len += nn->m_len;
2190 
2191 	newmsg = mtod(n, struct sadb_msg *);
2192 	newmsg->sadb_msg_errno = 0;
2193 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2194 
2195 	m_freem(m);
2196 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2197     }
2198 }
2199 
2200 /*
2201  * SADB_X_GET processing
2202  * receive
2203  *   <base, policy(*)>
2204  * from the user(?),
2205  * and send,
2206  *   <base, address(SD), policy>
2207  * to the ikmpd.
2208  * policy(*) including direction of policy.
2209  *
2210  * m will always be freed.
2211  */
2212 static int
2213 key_spdget(so, m, mhp)
2214 	struct socket *so;
2215 	struct mbuf *m;
2216 	const struct sadb_msghdr *mhp;
2217 {
2218 	INIT_VNET_IPSEC(curvnet);
2219 	u_int32_t id;
2220 	struct secpolicy *sp;
2221 	struct mbuf *n;
2222 
2223 	IPSEC_ASSERT(so != NULL, ("null socket"));
2224 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2225 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2226 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2227 
2228 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2229 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2230 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2231 			__func__));
2232 		return key_senderror(so, m, EINVAL);
2233 	}
2234 
2235 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2236 
2237 	/* Is there SP in SPD ? */
2238 	if ((sp = key_getspbyid(id)) == NULL) {
2239 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2240 		return key_senderror(so, m, ENOENT);
2241 	}
2242 
2243 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2244 	if (n != NULL) {
2245 		m_freem(m);
2246 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2247 	} else
2248 		return key_senderror(so, m, ENOBUFS);
2249 }
2250 
2251 /*
2252  * SADB_X_SPDACQUIRE processing.
2253  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2254  * send
2255  *   <base, policy(*)>
2256  * to KMD, and expect to receive
2257  *   <base> with SADB_X_SPDACQUIRE if error occured,
2258  * or
2259  *   <base, policy>
2260  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2261  * policy(*) is without policy requests.
2262  *
2263  *    0     : succeed
2264  *    others: error number
2265  */
2266 int
2267 key_spdacquire(sp)
2268 	struct secpolicy *sp;
2269 {
2270 	INIT_VNET_IPSEC(curvnet);
2271 	struct mbuf *result = NULL, *m;
2272 	struct secspacq *newspacq;
2273 
2274 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2275 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2276 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2277 		("policy not IPSEC %u", sp->policy));
2278 
2279 	/* Get an entry to check whether sent message or not. */
2280 	newspacq = key_getspacq(&sp->spidx);
2281 	if (newspacq != NULL) {
2282 		if (V_key_blockacq_count < newspacq->count) {
2283 			/* reset counter and do send message. */
2284 			newspacq->count = 0;
2285 		} else {
2286 			/* increment counter and do nothing. */
2287 			newspacq->count++;
2288 			return 0;
2289 		}
2290 		SPACQ_UNLOCK();
2291 	} else {
2292 		/* make new entry for blocking to send SADB_ACQUIRE. */
2293 		newspacq = key_newspacq(&sp->spidx);
2294 		if (newspacq == NULL)
2295 			return ENOBUFS;
2296 	}
2297 
2298 	/* create new sadb_msg to reply. */
2299 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2300 	if (!m)
2301 		return ENOBUFS;
2302 
2303 	result = m;
2304 
2305 	result->m_pkthdr.len = 0;
2306 	for (m = result; m; m = m->m_next)
2307 		result->m_pkthdr.len += m->m_len;
2308 
2309 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2310 	    PFKEY_UNIT64(result->m_pkthdr.len);
2311 
2312 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2313 }
2314 
2315 /*
2316  * SADB_SPDFLUSH processing
2317  * receive
2318  *   <base>
2319  * from the user, and free all entries in secpctree.
2320  * and send,
2321  *   <base>
2322  * to the user.
2323  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2324  *
2325  * m will always be freed.
2326  */
2327 static int
2328 key_spdflush(so, m, mhp)
2329 	struct socket *so;
2330 	struct mbuf *m;
2331 	const struct sadb_msghdr *mhp;
2332 {
2333 	INIT_VNET_IPSEC(curvnet);
2334 	struct sadb_msg *newmsg;
2335 	struct secpolicy *sp;
2336 	u_int dir;
2337 
2338 	IPSEC_ASSERT(so != NULL, ("null socket"));
2339 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2340 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2341 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2342 
2343 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2344 		return key_senderror(so, m, EINVAL);
2345 
2346 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2347 		SPTREE_LOCK();
2348 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2349 			sp->state = IPSEC_SPSTATE_DEAD;
2350 		SPTREE_UNLOCK();
2351 	}
2352 
2353 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2354 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2355 		return key_senderror(so, m, ENOBUFS);
2356 	}
2357 
2358 	if (m->m_next)
2359 		m_freem(m->m_next);
2360 	m->m_next = NULL;
2361 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2362 	newmsg = mtod(m, struct sadb_msg *);
2363 	newmsg->sadb_msg_errno = 0;
2364 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2365 
2366 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2367 }
2368 
2369 /*
2370  * SADB_SPDDUMP processing
2371  * receive
2372  *   <base>
2373  * from the user, and dump all SP leaves
2374  * and send,
2375  *   <base> .....
2376  * to the ikmpd.
2377  *
2378  * m will always be freed.
2379  */
2380 static int
2381 key_spddump(so, m, mhp)
2382 	struct socket *so;
2383 	struct mbuf *m;
2384 	const struct sadb_msghdr *mhp;
2385 {
2386 	INIT_VNET_IPSEC(curvnet);
2387 	struct secpolicy *sp;
2388 	int cnt;
2389 	u_int dir;
2390 	struct mbuf *n;
2391 
2392 	IPSEC_ASSERT(so != NULL, ("null socket"));
2393 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2394 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2395 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2396 
2397 	/* search SPD entry and get buffer size. */
2398 	cnt = 0;
2399 	SPTREE_LOCK();
2400 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2401 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2402 			cnt++;
2403 		}
2404 	}
2405 
2406 	if (cnt == 0) {
2407 		SPTREE_UNLOCK();
2408 		return key_senderror(so, m, ENOENT);
2409 	}
2410 
2411 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2412 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2413 			--cnt;
2414 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2415 			    mhp->msg->sadb_msg_pid);
2416 
2417 			if (n)
2418 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2419 		}
2420 	}
2421 
2422 	SPTREE_UNLOCK();
2423 	m_freem(m);
2424 	return 0;
2425 }
2426 
2427 static struct mbuf *
2428 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2429 {
2430 	struct mbuf *result = NULL, *m;
2431 	struct seclifetime lt;
2432 
2433 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2434 	if (!m)
2435 		goto fail;
2436 	result = m;
2437 
2438 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2439 	    &sp->spidx.src.sa, sp->spidx.prefs,
2440 	    sp->spidx.ul_proto);
2441 	if (!m)
2442 		goto fail;
2443 	m_cat(result, m);
2444 
2445 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2446 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2447 	    sp->spidx.ul_proto);
2448 	if (!m)
2449 		goto fail;
2450 	m_cat(result, m);
2451 
2452 	m = key_sp2msg(sp);
2453 	if (!m)
2454 		goto fail;
2455 	m_cat(result, m);
2456 
2457 	if(sp->lifetime){
2458 		lt.addtime=sp->created;
2459 		lt.usetime= sp->lastused;
2460 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2461 		if (!m)
2462 			goto fail;
2463 		m_cat(result, m);
2464 
2465 		lt.addtime=sp->lifetime;
2466 		lt.usetime= sp->validtime;
2467 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2468 		if (!m)
2469 			goto fail;
2470 		m_cat(result, m);
2471 	}
2472 
2473 	if ((result->m_flags & M_PKTHDR) == 0)
2474 		goto fail;
2475 
2476 	if (result->m_len < sizeof(struct sadb_msg)) {
2477 		result = m_pullup(result, sizeof(struct sadb_msg));
2478 		if (result == NULL)
2479 			goto fail;
2480 	}
2481 
2482 	result->m_pkthdr.len = 0;
2483 	for (m = result; m; m = m->m_next)
2484 		result->m_pkthdr.len += m->m_len;
2485 
2486 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2487 	    PFKEY_UNIT64(result->m_pkthdr.len);
2488 
2489 	return result;
2490 
2491 fail:
2492 	m_freem(result);
2493 	return NULL;
2494 }
2495 
2496 /*
2497  * get PFKEY message length for security policy and request.
2498  */
2499 static u_int
2500 key_getspreqmsglen(sp)
2501 	struct secpolicy *sp;
2502 {
2503 	u_int tlen;
2504 
2505 	tlen = sizeof(struct sadb_x_policy);
2506 
2507 	/* if is the policy for ipsec ? */
2508 	if (sp->policy != IPSEC_POLICY_IPSEC)
2509 		return tlen;
2510 
2511 	/* get length of ipsec requests */
2512     {
2513 	struct ipsecrequest *isr;
2514 	int len;
2515 
2516 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2517 		len = sizeof(struct sadb_x_ipsecrequest)
2518 			+ isr->saidx.src.sa.sa_len
2519 			+ isr->saidx.dst.sa.sa_len;
2520 
2521 		tlen += PFKEY_ALIGN8(len);
2522 	}
2523     }
2524 
2525 	return tlen;
2526 }
2527 
2528 /*
2529  * SADB_SPDEXPIRE processing
2530  * send
2531  *   <base, address(SD), lifetime(CH), policy>
2532  * to KMD by PF_KEY.
2533  *
2534  * OUT:	0	: succeed
2535  *	others	: error number
2536  */
2537 static int
2538 key_spdexpire(sp)
2539 	struct secpolicy *sp;
2540 {
2541 	struct mbuf *result = NULL, *m;
2542 	int len;
2543 	int error = -1;
2544 	struct sadb_lifetime *lt;
2545 
2546 	/* XXX: Why do we lock ? */
2547 
2548 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2549 
2550 	/* set msg header */
2551 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2552 	if (!m) {
2553 		error = ENOBUFS;
2554 		goto fail;
2555 	}
2556 	result = m;
2557 
2558 	/* create lifetime extension (current and hard) */
2559 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2560 	m = key_alloc_mbuf(len);
2561 	if (!m || m->m_next) {	/*XXX*/
2562 		if (m)
2563 			m_freem(m);
2564 		error = ENOBUFS;
2565 		goto fail;
2566 	}
2567 	bzero(mtod(m, caddr_t), len);
2568 	lt = mtod(m, struct sadb_lifetime *);
2569 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2570 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2571 	lt->sadb_lifetime_allocations = 0;
2572 	lt->sadb_lifetime_bytes = 0;
2573 	lt->sadb_lifetime_addtime = sp->created;
2574 	lt->sadb_lifetime_usetime = sp->lastused;
2575 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2576 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2577 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2578 	lt->sadb_lifetime_allocations = 0;
2579 	lt->sadb_lifetime_bytes = 0;
2580 	lt->sadb_lifetime_addtime = sp->lifetime;
2581 	lt->sadb_lifetime_usetime = sp->validtime;
2582 	m_cat(result, m);
2583 
2584 	/* set sadb_address for source */
2585 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2586 	    &sp->spidx.src.sa,
2587 	    sp->spidx.prefs, sp->spidx.ul_proto);
2588 	if (!m) {
2589 		error = ENOBUFS;
2590 		goto fail;
2591 	}
2592 	m_cat(result, m);
2593 
2594 	/* set sadb_address for destination */
2595 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2596 	    &sp->spidx.dst.sa,
2597 	    sp->spidx.prefd, sp->spidx.ul_proto);
2598 	if (!m) {
2599 		error = ENOBUFS;
2600 		goto fail;
2601 	}
2602 	m_cat(result, m);
2603 
2604 	/* set secpolicy */
2605 	m = key_sp2msg(sp);
2606 	if (!m) {
2607 		error = ENOBUFS;
2608 		goto fail;
2609 	}
2610 	m_cat(result, m);
2611 
2612 	if ((result->m_flags & M_PKTHDR) == 0) {
2613 		error = EINVAL;
2614 		goto fail;
2615 	}
2616 
2617 	if (result->m_len < sizeof(struct sadb_msg)) {
2618 		result = m_pullup(result, sizeof(struct sadb_msg));
2619 		if (result == NULL) {
2620 			error = ENOBUFS;
2621 			goto fail;
2622 		}
2623 	}
2624 
2625 	result->m_pkthdr.len = 0;
2626 	for (m = result; m; m = m->m_next)
2627 		result->m_pkthdr.len += m->m_len;
2628 
2629 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2630 	    PFKEY_UNIT64(result->m_pkthdr.len);
2631 
2632 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2633 
2634  fail:
2635 	if (result)
2636 		m_freem(result);
2637 	return error;
2638 }
2639 
2640 /* %%% SAD management */
2641 /*
2642  * allocating a memory for new SA head, and copy from the values of mhp.
2643  * OUT:	NULL	: failure due to the lack of memory.
2644  *	others	: pointer to new SA head.
2645  */
2646 static struct secashead *
2647 key_newsah(saidx)
2648 	struct secasindex *saidx;
2649 {
2650 	INIT_VNET_IPSEC(curvnet);
2651 	struct secashead *newsah;
2652 
2653 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2654 
2655 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2656 	if (newsah != NULL) {
2657 		int i;
2658 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2659 			LIST_INIT(&newsah->savtree[i]);
2660 		newsah->saidx = *saidx;
2661 
2662 		/* add to saidxtree */
2663 		newsah->state = SADB_SASTATE_MATURE;
2664 
2665 		SAHTREE_LOCK();
2666 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2667 		SAHTREE_UNLOCK();
2668 	}
2669 	return(newsah);
2670 }
2671 
2672 /*
2673  * delete SA index and all SA registerd.
2674  */
2675 static void
2676 key_delsah(sah)
2677 	struct secashead *sah;
2678 {
2679 	INIT_VNET_IPSEC(curvnet);
2680 	struct secasvar *sav, *nextsav;
2681 	u_int stateidx;
2682 	int zombie = 0;
2683 
2684 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2685 	SAHTREE_LOCK_ASSERT();
2686 
2687 	/* searching all SA registerd in the secindex. */
2688 	for (stateidx = 0;
2689 	     stateidx < _ARRAYLEN(saorder_state_any);
2690 	     stateidx++) {
2691 		u_int state = saorder_state_any[stateidx];
2692 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2693 			if (sav->refcnt == 0) {
2694 				/* sanity check */
2695 				KEY_CHKSASTATE(state, sav->state, __func__);
2696 				/*
2697 				 * do NOT call KEY_FREESAV here:
2698 				 * it will only delete the sav if refcnt == 1,
2699 				 * where we already know that refcnt == 0
2700 				 */
2701 				key_delsav(sav);
2702 			} else {
2703 				/* give up to delete this sa */
2704 				zombie++;
2705 			}
2706 		}
2707 	}
2708 	if (!zombie) {		/* delete only if there are savs */
2709 		/* remove from tree of SA index */
2710 		if (__LIST_CHAINED(sah))
2711 			LIST_REMOVE(sah, chain);
2712 		if (sah->sa_route.ro_rt) {
2713 			RTFREE(sah->sa_route.ro_rt);
2714 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2715 		}
2716 		free(sah, M_IPSEC_SAH);
2717 	}
2718 }
2719 
2720 /*
2721  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2722  * and copy the values of mhp into new buffer.
2723  * When SAD message type is GETSPI:
2724  *	to set sequence number from acq_seq++,
2725  *	to set zero to SPI.
2726  *	not to call key_setsava().
2727  * OUT:	NULL	: fail
2728  *	others	: pointer to new secasvar.
2729  *
2730  * does not modify mbuf.  does not free mbuf on error.
2731  */
2732 static struct secasvar *
2733 key_newsav(m, mhp, sah, errp, where, tag)
2734 	struct mbuf *m;
2735 	const struct sadb_msghdr *mhp;
2736 	struct secashead *sah;
2737 	int *errp;
2738 	const char* where;
2739 	int tag;
2740 {
2741 	INIT_VNET_IPSEC(curvnet);
2742 	struct secasvar *newsav;
2743 	const struct sadb_sa *xsa;
2744 
2745 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2746 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2747 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2748 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2749 
2750 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2751 	if (newsav == NULL) {
2752 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2753 		*errp = ENOBUFS;
2754 		goto done;
2755 	}
2756 
2757 	switch (mhp->msg->sadb_msg_type) {
2758 	case SADB_GETSPI:
2759 		newsav->spi = 0;
2760 
2761 #ifdef IPSEC_DOSEQCHECK
2762 		/* sync sequence number */
2763 		if (mhp->msg->sadb_msg_seq == 0)
2764 			newsav->seq =
2765 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2766 		else
2767 #endif
2768 			newsav->seq = mhp->msg->sadb_msg_seq;
2769 		break;
2770 
2771 	case SADB_ADD:
2772 		/* sanity check */
2773 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2774 			free(newsav, M_IPSEC_SA);
2775 			newsav = NULL;
2776 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2777 				__func__));
2778 			*errp = EINVAL;
2779 			goto done;
2780 		}
2781 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2782 		newsav->spi = xsa->sadb_sa_spi;
2783 		newsav->seq = mhp->msg->sadb_msg_seq;
2784 		break;
2785 	default:
2786 		free(newsav, M_IPSEC_SA);
2787 		newsav = NULL;
2788 		*errp = EINVAL;
2789 		goto done;
2790 	}
2791 
2792 
2793 	/* copy sav values */
2794 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2795 		*errp = key_setsaval(newsav, m, mhp);
2796 		if (*errp) {
2797 			free(newsav, M_IPSEC_SA);
2798 			newsav = NULL;
2799 			goto done;
2800 		}
2801 	}
2802 
2803 	SECASVAR_LOCK_INIT(newsav);
2804 
2805 	/* reset created */
2806 	newsav->created = time_second;
2807 	newsav->pid = mhp->msg->sadb_msg_pid;
2808 
2809 	/* add to satree */
2810 	newsav->sah = sah;
2811 	sa_initref(newsav);
2812 	newsav->state = SADB_SASTATE_LARVAL;
2813 
2814 	/* XXX locking??? */
2815 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2816 			secasvar, chain);
2817 done:
2818 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2819 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2820 			where, tag, newsav));
2821 
2822 	return newsav;
2823 }
2824 
2825 /*
2826  * free() SA variable entry.
2827  */
2828 static void
2829 key_cleansav(struct secasvar *sav)
2830 {
2831 	/*
2832 	 * Cleanup xform state.  Note that zeroize'ing causes the
2833 	 * keys to be cleared; otherwise we must do it ourself.
2834 	 */
2835 	if (sav->tdb_xform != NULL) {
2836 		sav->tdb_xform->xf_zeroize(sav);
2837 		sav->tdb_xform = NULL;
2838 	} else {
2839 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2840 		if (sav->key_auth != NULL)
2841 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2842 		if (sav->key_enc != NULL)
2843 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2844 	}
2845 	if (sav->key_auth != NULL) {
2846 		if (sav->key_auth->key_data != NULL)
2847 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2848 		free(sav->key_auth, M_IPSEC_MISC);
2849 		sav->key_auth = NULL;
2850 	}
2851 	if (sav->key_enc != NULL) {
2852 		if (sav->key_enc->key_data != NULL)
2853 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2854 		free(sav->key_enc, M_IPSEC_MISC);
2855 		sav->key_enc = NULL;
2856 	}
2857 	if (sav->sched) {
2858 		bzero(sav->sched, sav->schedlen);
2859 		free(sav->sched, M_IPSEC_MISC);
2860 		sav->sched = NULL;
2861 	}
2862 	if (sav->replay != NULL) {
2863 		free(sav->replay, M_IPSEC_MISC);
2864 		sav->replay = NULL;
2865 	}
2866 	if (sav->lft_c != NULL) {
2867 		free(sav->lft_c, M_IPSEC_MISC);
2868 		sav->lft_c = NULL;
2869 	}
2870 	if (sav->lft_h != NULL) {
2871 		free(sav->lft_h, M_IPSEC_MISC);
2872 		sav->lft_h = NULL;
2873 	}
2874 	if (sav->lft_s != NULL) {
2875 		free(sav->lft_s, M_IPSEC_MISC);
2876 		sav->lft_s = NULL;
2877 	}
2878 }
2879 
2880 /*
2881  * free() SA variable entry.
2882  */
2883 static void
2884 key_delsav(sav)
2885 	struct secasvar *sav;
2886 {
2887 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2888 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2889 
2890 	/* remove from SA header */
2891 	if (__LIST_CHAINED(sav))
2892 		LIST_REMOVE(sav, chain);
2893 	key_cleansav(sav);
2894 	SECASVAR_LOCK_DESTROY(sav);
2895 	free(sav, M_IPSEC_SA);
2896 }
2897 
2898 /*
2899  * search SAD.
2900  * OUT:
2901  *	NULL	: not found
2902  *	others	: found, pointer to a SA.
2903  */
2904 static struct secashead *
2905 key_getsah(saidx)
2906 	struct secasindex *saidx;
2907 {
2908 	INIT_VNET_IPSEC(curvnet);
2909 	struct secashead *sah;
2910 
2911 	SAHTREE_LOCK();
2912 	LIST_FOREACH(sah, &V_sahtree, chain) {
2913 		if (sah->state == SADB_SASTATE_DEAD)
2914 			continue;
2915 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2916 			break;
2917 	}
2918 	SAHTREE_UNLOCK();
2919 
2920 	return sah;
2921 }
2922 
2923 /*
2924  * check not to be duplicated SPI.
2925  * NOTE: this function is too slow due to searching all SAD.
2926  * OUT:
2927  *	NULL	: not found
2928  *	others	: found, pointer to a SA.
2929  */
2930 static struct secasvar *
2931 key_checkspidup(saidx, spi)
2932 	struct secasindex *saidx;
2933 	u_int32_t spi;
2934 {
2935 	INIT_VNET_IPSEC(curvnet);
2936 	struct secashead *sah;
2937 	struct secasvar *sav;
2938 
2939 	/* check address family */
2940 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2941 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2942 			__func__));
2943 		return NULL;
2944 	}
2945 
2946 	sav = NULL;
2947 	/* check all SAD */
2948 	SAHTREE_LOCK();
2949 	LIST_FOREACH(sah, &V_sahtree, chain) {
2950 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2951 			continue;
2952 		sav = key_getsavbyspi(sah, spi);
2953 		if (sav != NULL)
2954 			break;
2955 	}
2956 	SAHTREE_UNLOCK();
2957 
2958 	return sav;
2959 }
2960 
2961 /*
2962  * search SAD litmited alive SA, protocol, SPI.
2963  * OUT:
2964  *	NULL	: not found
2965  *	others	: found, pointer to a SA.
2966  */
2967 static struct secasvar *
2968 key_getsavbyspi(sah, spi)
2969 	struct secashead *sah;
2970 	u_int32_t spi;
2971 {
2972 	INIT_VNET_IPSEC(curvnet);
2973 	struct secasvar *sav;
2974 	u_int stateidx, state;
2975 
2976 	sav = NULL;
2977 	SAHTREE_LOCK_ASSERT();
2978 	/* search all status */
2979 	for (stateidx = 0;
2980 	     stateidx < _ARRAYLEN(saorder_state_alive);
2981 	     stateidx++) {
2982 
2983 		state = saorder_state_alive[stateidx];
2984 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2985 
2986 			/* sanity check */
2987 			if (sav->state != state) {
2988 				ipseclog((LOG_DEBUG, "%s: "
2989 				    "invalid sav->state (queue: %d SA: %d)\n",
2990 				    __func__, state, sav->state));
2991 				continue;
2992 			}
2993 
2994 			if (sav->spi == spi)
2995 				return sav;
2996 		}
2997 	}
2998 
2999 	return NULL;
3000 }
3001 
3002 /*
3003  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3004  * You must update these if need.
3005  * OUT:	0:	success.
3006  *	!0:	failure.
3007  *
3008  * does not modify mbuf.  does not free mbuf on error.
3009  */
3010 static int
3011 key_setsaval(sav, m, mhp)
3012 	struct secasvar *sav;
3013 	struct mbuf *m;
3014 	const struct sadb_msghdr *mhp;
3015 {
3016 	INIT_VNET_IPSEC(curvnet);
3017 	int error = 0;
3018 
3019 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3020 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3021 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3022 
3023 	/* initialization */
3024 	sav->replay = NULL;
3025 	sav->key_auth = NULL;
3026 	sav->key_enc = NULL;
3027 	sav->sched = NULL;
3028 	sav->schedlen = 0;
3029 	sav->iv = NULL;
3030 	sav->lft_c = NULL;
3031 	sav->lft_h = NULL;
3032 	sav->lft_s = NULL;
3033 	sav->tdb_xform = NULL;		/* transform */
3034 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3035 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3036 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3037 
3038 	/* SA */
3039 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3040 		const struct sadb_sa *sa0;
3041 
3042 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3043 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3044 			error = EINVAL;
3045 			goto fail;
3046 		}
3047 
3048 		sav->alg_auth = sa0->sadb_sa_auth;
3049 		sav->alg_enc = sa0->sadb_sa_encrypt;
3050 		sav->flags = sa0->sadb_sa_flags;
3051 
3052 		/* replay window */
3053 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3054 			sav->replay = (struct secreplay *)
3055 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3056 			if (sav->replay == NULL) {
3057 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3058 					__func__));
3059 				error = ENOBUFS;
3060 				goto fail;
3061 			}
3062 			if (sa0->sadb_sa_replay != 0)
3063 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3064 			sav->replay->wsize = sa0->sadb_sa_replay;
3065 		}
3066 	}
3067 
3068 	/* Authentication keys */
3069 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3070 		const struct sadb_key *key0;
3071 		int len;
3072 
3073 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3074 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3075 
3076 		error = 0;
3077 		if (len < sizeof(*key0)) {
3078 			error = EINVAL;
3079 			goto fail;
3080 		}
3081 		switch (mhp->msg->sadb_msg_satype) {
3082 		case SADB_SATYPE_AH:
3083 		case SADB_SATYPE_ESP:
3084 		case SADB_X_SATYPE_TCPSIGNATURE:
3085 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3086 			    sav->alg_auth != SADB_X_AALG_NULL)
3087 				error = EINVAL;
3088 			break;
3089 		case SADB_X_SATYPE_IPCOMP:
3090 		default:
3091 			error = EINVAL;
3092 			break;
3093 		}
3094 		if (error) {
3095 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3096 				__func__));
3097 			goto fail;
3098 		}
3099 
3100 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3101 								M_IPSEC_MISC);
3102 		if (sav->key_auth == NULL ) {
3103 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3104 				  __func__));
3105 			error = ENOBUFS;
3106 			goto fail;
3107 		}
3108 	}
3109 
3110 	/* Encryption key */
3111 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3112 		const struct sadb_key *key0;
3113 		int len;
3114 
3115 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3116 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3117 
3118 		error = 0;
3119 		if (len < sizeof(*key0)) {
3120 			error = EINVAL;
3121 			goto fail;
3122 		}
3123 		switch (mhp->msg->sadb_msg_satype) {
3124 		case SADB_SATYPE_ESP:
3125 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3126 			    sav->alg_enc != SADB_EALG_NULL) {
3127 				error = EINVAL;
3128 				break;
3129 			}
3130 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3131 								       len,
3132 								       M_IPSEC_MISC);
3133 			if (sav->key_enc == NULL) {
3134 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3135 					__func__));
3136 				error = ENOBUFS;
3137 				goto fail;
3138 			}
3139 			break;
3140 		case SADB_X_SATYPE_IPCOMP:
3141 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3142 				error = EINVAL;
3143 			sav->key_enc = NULL;	/*just in case*/
3144 			break;
3145 		case SADB_SATYPE_AH:
3146 		case SADB_X_SATYPE_TCPSIGNATURE:
3147 		default:
3148 			error = EINVAL;
3149 			break;
3150 		}
3151 		if (error) {
3152 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3153 				__func__));
3154 			goto fail;
3155 		}
3156 	}
3157 
3158 	/* set iv */
3159 	sav->ivlen = 0;
3160 
3161 	switch (mhp->msg->sadb_msg_satype) {
3162 	case SADB_SATYPE_AH:
3163 		error = xform_init(sav, XF_AH);
3164 		break;
3165 	case SADB_SATYPE_ESP:
3166 		error = xform_init(sav, XF_ESP);
3167 		break;
3168 	case SADB_X_SATYPE_IPCOMP:
3169 		error = xform_init(sav, XF_IPCOMP);
3170 		break;
3171 	case SADB_X_SATYPE_TCPSIGNATURE:
3172 		error = xform_init(sav, XF_TCPSIGNATURE);
3173 		break;
3174 	}
3175 	if (error) {
3176 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3177 		        __func__, mhp->msg->sadb_msg_satype));
3178 		goto fail;
3179 	}
3180 
3181 	/* reset created */
3182 	sav->created = time_second;
3183 
3184 	/* make lifetime for CURRENT */
3185 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3186 	if (sav->lft_c == NULL) {
3187 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3188 		error = ENOBUFS;
3189 		goto fail;
3190 	}
3191 
3192 	sav->lft_c->allocations = 0;
3193 	sav->lft_c->bytes = 0;
3194 	sav->lft_c->addtime = time_second;
3195 	sav->lft_c->usetime = 0;
3196 
3197 	/* lifetimes for HARD and SOFT */
3198     {
3199 	const struct sadb_lifetime *lft0;
3200 
3201 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3202 	if (lft0 != NULL) {
3203 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3204 			error = EINVAL;
3205 			goto fail;
3206 		}
3207 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3208 		if (sav->lft_h == NULL) {
3209 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3210 			error = ENOBUFS;
3211 			goto fail;
3212 		}
3213 		/* to be initialize ? */
3214 	}
3215 
3216 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3217 	if (lft0 != NULL) {
3218 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3219 			error = EINVAL;
3220 			goto fail;
3221 		}
3222 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3223 		if (sav->lft_s == NULL) {
3224 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3225 			error = ENOBUFS;
3226 			goto fail;
3227 		}
3228 		/* to be initialize ? */
3229 	}
3230     }
3231 
3232 	return 0;
3233 
3234  fail:
3235 	/* initialization */
3236 	key_cleansav(sav);
3237 
3238 	return error;
3239 }
3240 
3241 /*
3242  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3243  * OUT:	0:	valid
3244  *	other:	errno
3245  */
3246 static int
3247 key_mature(struct secasvar *sav)
3248 {
3249 	INIT_VNET_IPSEC(curvnet);
3250 	int error;
3251 
3252 	/* check SPI value */
3253 	switch (sav->sah->saidx.proto) {
3254 	case IPPROTO_ESP:
3255 	case IPPROTO_AH:
3256 		/*
3257 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3258 		 * 1-255 reserved by IANA for future use,
3259 		 * 0 for implementation specific, local use.
3260 		 */
3261 		if (ntohl(sav->spi) <= 255) {
3262 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3263 			    __func__, (u_int32_t)ntohl(sav->spi)));
3264 			return EINVAL;
3265 		}
3266 		break;
3267 	}
3268 
3269 	/* check satype */
3270 	switch (sav->sah->saidx.proto) {
3271 	case IPPROTO_ESP:
3272 		/* check flags */
3273 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3274 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3275 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3276 				"given to old-esp.\n", __func__));
3277 			return EINVAL;
3278 		}
3279 		error = xform_init(sav, XF_ESP);
3280 		break;
3281 	case IPPROTO_AH:
3282 		/* check flags */
3283 		if (sav->flags & SADB_X_EXT_DERIV) {
3284 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3285 				"given to AH SA.\n", __func__));
3286 			return EINVAL;
3287 		}
3288 		if (sav->alg_enc != SADB_EALG_NONE) {
3289 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3290 				"mismated.\n", __func__));
3291 			return(EINVAL);
3292 		}
3293 		error = xform_init(sav, XF_AH);
3294 		break;
3295 	case IPPROTO_IPCOMP:
3296 		if (sav->alg_auth != SADB_AALG_NONE) {
3297 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3298 				"mismated.\n", __func__));
3299 			return(EINVAL);
3300 		}
3301 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3302 		 && ntohl(sav->spi) >= 0x10000) {
3303 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3304 				__func__));
3305 			return(EINVAL);
3306 		}
3307 		error = xform_init(sav, XF_IPCOMP);
3308 		break;
3309 	case IPPROTO_TCP:
3310 		if (sav->alg_enc != SADB_EALG_NONE) {
3311 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3312 				"mismated.\n", __func__));
3313 			return(EINVAL);
3314 		}
3315 		error = xform_init(sav, XF_TCPSIGNATURE);
3316 		break;
3317 	default:
3318 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3319 		error = EPROTONOSUPPORT;
3320 		break;
3321 	}
3322 	if (error == 0) {
3323 		SAHTREE_LOCK();
3324 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3325 		SAHTREE_UNLOCK();
3326 	}
3327 	return (error);
3328 }
3329 
3330 /*
3331  * subroutine for SADB_GET and SADB_DUMP.
3332  */
3333 static struct mbuf *
3334 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3335     u_int32_t seq, u_int32_t pid)
3336 {
3337 	struct mbuf *result = NULL, *tres = NULL, *m;
3338 	int i;
3339 	int dumporder[] = {
3340 		SADB_EXT_SA, SADB_X_EXT_SA2,
3341 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3342 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3343 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3344 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3345 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3346 	};
3347 
3348 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3349 	if (m == NULL)
3350 		goto fail;
3351 	result = m;
3352 
3353 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3354 		m = NULL;
3355 		switch (dumporder[i]) {
3356 		case SADB_EXT_SA:
3357 			m = key_setsadbsa(sav);
3358 			if (!m)
3359 				goto fail;
3360 			break;
3361 
3362 		case SADB_X_EXT_SA2:
3363 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3364 					sav->replay ? sav->replay->count : 0,
3365 					sav->sah->saidx.reqid);
3366 			if (!m)
3367 				goto fail;
3368 			break;
3369 
3370 		case SADB_EXT_ADDRESS_SRC:
3371 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3372 			    &sav->sah->saidx.src.sa,
3373 			    FULLMASK, IPSEC_ULPROTO_ANY);
3374 			if (!m)
3375 				goto fail;
3376 			break;
3377 
3378 		case SADB_EXT_ADDRESS_DST:
3379 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3380 			    &sav->sah->saidx.dst.sa,
3381 			    FULLMASK, IPSEC_ULPROTO_ANY);
3382 			if (!m)
3383 				goto fail;
3384 			break;
3385 
3386 		case SADB_EXT_KEY_AUTH:
3387 			if (!sav->key_auth)
3388 				continue;
3389 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3390 			if (!m)
3391 				goto fail;
3392 			break;
3393 
3394 		case SADB_EXT_KEY_ENCRYPT:
3395 			if (!sav->key_enc)
3396 				continue;
3397 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3398 			if (!m)
3399 				goto fail;
3400 			break;
3401 
3402 		case SADB_EXT_LIFETIME_CURRENT:
3403 			if (!sav->lft_c)
3404 				continue;
3405 			m = key_setlifetime(sav->lft_c,
3406 					    SADB_EXT_LIFETIME_CURRENT);
3407 			if (!m)
3408 				goto fail;
3409 			break;
3410 
3411 		case SADB_EXT_LIFETIME_HARD:
3412 			if (!sav->lft_h)
3413 				continue;
3414 			m = key_setlifetime(sav->lft_h,
3415 					    SADB_EXT_LIFETIME_HARD);
3416 			if (!m)
3417 				goto fail;
3418 			break;
3419 
3420 		case SADB_EXT_LIFETIME_SOFT:
3421 			if (!sav->lft_s)
3422 				continue;
3423 			m = key_setlifetime(sav->lft_s,
3424 					    SADB_EXT_LIFETIME_SOFT);
3425 
3426 			if (!m)
3427 				goto fail;
3428 			break;
3429 
3430 		case SADB_EXT_ADDRESS_PROXY:
3431 		case SADB_EXT_IDENTITY_SRC:
3432 		case SADB_EXT_IDENTITY_DST:
3433 			/* XXX: should we brought from SPD ? */
3434 		case SADB_EXT_SENSITIVITY:
3435 		default:
3436 			continue;
3437 		}
3438 
3439 		if (!m)
3440 			goto fail;
3441 		if (tres)
3442 			m_cat(m, tres);
3443 		tres = m;
3444 
3445 	}
3446 
3447 	m_cat(result, tres);
3448 	if (result->m_len < sizeof(struct sadb_msg)) {
3449 		result = m_pullup(result, sizeof(struct sadb_msg));
3450 		if (result == NULL)
3451 			goto fail;
3452 	}
3453 
3454 	result->m_pkthdr.len = 0;
3455 	for (m = result; m; m = m->m_next)
3456 		result->m_pkthdr.len += m->m_len;
3457 
3458 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3459 	    PFKEY_UNIT64(result->m_pkthdr.len);
3460 
3461 	return result;
3462 
3463 fail:
3464 	m_freem(result);
3465 	m_freem(tres);
3466 	return NULL;
3467 }
3468 
3469 /*
3470  * set data into sadb_msg.
3471  */
3472 static struct mbuf *
3473 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3474     pid_t pid, u_int16_t reserved)
3475 {
3476 	struct mbuf *m;
3477 	struct sadb_msg *p;
3478 	int len;
3479 
3480 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3481 	if (len > MCLBYTES)
3482 		return NULL;
3483 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3484 	if (m && len > MHLEN) {
3485 		MCLGET(m, M_DONTWAIT);
3486 		if ((m->m_flags & M_EXT) == 0) {
3487 			m_freem(m);
3488 			m = NULL;
3489 		}
3490 	}
3491 	if (!m)
3492 		return NULL;
3493 	m->m_pkthdr.len = m->m_len = len;
3494 	m->m_next = NULL;
3495 
3496 	p = mtod(m, struct sadb_msg *);
3497 
3498 	bzero(p, len);
3499 	p->sadb_msg_version = PF_KEY_V2;
3500 	p->sadb_msg_type = type;
3501 	p->sadb_msg_errno = 0;
3502 	p->sadb_msg_satype = satype;
3503 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3504 	p->sadb_msg_reserved = reserved;
3505 	p->sadb_msg_seq = seq;
3506 	p->sadb_msg_pid = (u_int32_t)pid;
3507 
3508 	return m;
3509 }
3510 
3511 /*
3512  * copy secasvar data into sadb_address.
3513  */
3514 static struct mbuf *
3515 key_setsadbsa(sav)
3516 	struct secasvar *sav;
3517 {
3518 	struct mbuf *m;
3519 	struct sadb_sa *p;
3520 	int len;
3521 
3522 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3523 	m = key_alloc_mbuf(len);
3524 	if (!m || m->m_next) {	/*XXX*/
3525 		if (m)
3526 			m_freem(m);
3527 		return NULL;
3528 	}
3529 
3530 	p = mtod(m, struct sadb_sa *);
3531 
3532 	bzero(p, len);
3533 	p->sadb_sa_len = PFKEY_UNIT64(len);
3534 	p->sadb_sa_exttype = SADB_EXT_SA;
3535 	p->sadb_sa_spi = sav->spi;
3536 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3537 	p->sadb_sa_state = sav->state;
3538 	p->sadb_sa_auth = sav->alg_auth;
3539 	p->sadb_sa_encrypt = sav->alg_enc;
3540 	p->sadb_sa_flags = sav->flags;
3541 
3542 	return m;
3543 }
3544 
3545 /*
3546  * set data into sadb_address.
3547  */
3548 static struct mbuf *
3549 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3550 {
3551 	struct mbuf *m;
3552 	struct sadb_address *p;
3553 	size_t len;
3554 
3555 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3556 	    PFKEY_ALIGN8(saddr->sa_len);
3557 	m = key_alloc_mbuf(len);
3558 	if (!m || m->m_next) {	/*XXX*/
3559 		if (m)
3560 			m_freem(m);
3561 		return NULL;
3562 	}
3563 
3564 	p = mtod(m, struct sadb_address *);
3565 
3566 	bzero(p, len);
3567 	p->sadb_address_len = PFKEY_UNIT64(len);
3568 	p->sadb_address_exttype = exttype;
3569 	p->sadb_address_proto = ul_proto;
3570 	if (prefixlen == FULLMASK) {
3571 		switch (saddr->sa_family) {
3572 		case AF_INET:
3573 			prefixlen = sizeof(struct in_addr) << 3;
3574 			break;
3575 		case AF_INET6:
3576 			prefixlen = sizeof(struct in6_addr) << 3;
3577 			break;
3578 		default:
3579 			; /*XXX*/
3580 		}
3581 	}
3582 	p->sadb_address_prefixlen = prefixlen;
3583 	p->sadb_address_reserved = 0;
3584 
3585 	bcopy(saddr,
3586 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3587 	    saddr->sa_len);
3588 
3589 	return m;
3590 }
3591 
3592 /*
3593  * set data into sadb_x_sa2.
3594  */
3595 static struct mbuf *
3596 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3597 {
3598 	struct mbuf *m;
3599 	struct sadb_x_sa2 *p;
3600 	size_t len;
3601 
3602 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3603 	m = key_alloc_mbuf(len);
3604 	if (!m || m->m_next) {	/*XXX*/
3605 		if (m)
3606 			m_freem(m);
3607 		return NULL;
3608 	}
3609 
3610 	p = mtod(m, struct sadb_x_sa2 *);
3611 
3612 	bzero(p, len);
3613 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3614 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3615 	p->sadb_x_sa2_mode = mode;
3616 	p->sadb_x_sa2_reserved1 = 0;
3617 	p->sadb_x_sa2_reserved2 = 0;
3618 	p->sadb_x_sa2_sequence = seq;
3619 	p->sadb_x_sa2_reqid = reqid;
3620 
3621 	return m;
3622 }
3623 
3624 /*
3625  * set data into sadb_x_policy
3626  */
3627 static struct mbuf *
3628 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3629 {
3630 	struct mbuf *m;
3631 	struct sadb_x_policy *p;
3632 	size_t len;
3633 
3634 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3635 	m = key_alloc_mbuf(len);
3636 	if (!m || m->m_next) {	/*XXX*/
3637 		if (m)
3638 			m_freem(m);
3639 		return NULL;
3640 	}
3641 
3642 	p = mtod(m, struct sadb_x_policy *);
3643 
3644 	bzero(p, len);
3645 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3646 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3647 	p->sadb_x_policy_type = type;
3648 	p->sadb_x_policy_dir = dir;
3649 	p->sadb_x_policy_id = id;
3650 
3651 	return m;
3652 }
3653 
3654 /* %%% utilities */
3655 /* Take a key message (sadb_key) from the socket and turn it into one
3656  * of the kernel's key structures (seckey).
3657  *
3658  * IN: pointer to the src
3659  * OUT: NULL no more memory
3660  */
3661 struct seckey *
3662 key_dup_keymsg(const struct sadb_key *src, u_int len,
3663 	       struct malloc_type *type)
3664 {
3665 	INIT_VNET_IPSEC(curvnet);
3666 	struct seckey *dst;
3667 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3668 	if (dst != NULL) {
3669 		dst->bits = src->sadb_key_bits;
3670 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3671 		if (dst->key_data != NULL) {
3672 			bcopy((const char *)src + sizeof(struct sadb_key),
3673 			      dst->key_data, len);
3674 		} else {
3675 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3676 				  __func__));
3677 			free(dst, type);
3678 			dst = NULL;
3679 		}
3680 	} else {
3681 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3682 			  __func__));
3683 
3684 	}
3685 	return dst;
3686 }
3687 
3688 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3689  * turn it into one of the kernel's lifetime structures (seclifetime).
3690  *
3691  * IN: pointer to the destination, source and malloc type
3692  * OUT: NULL, no more memory
3693  */
3694 
3695 static struct seclifetime *
3696 key_dup_lifemsg(const struct sadb_lifetime *src,
3697 		 struct malloc_type *type)
3698 {
3699 	INIT_VNET_IPSEC(curvnet);
3700 	struct seclifetime *dst = NULL;
3701 
3702 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3703 					   type, M_NOWAIT);
3704 	if (dst == NULL) {
3705 		/* XXX counter */
3706 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3707 	} else {
3708 		dst->allocations = src->sadb_lifetime_allocations;
3709 		dst->bytes = src->sadb_lifetime_bytes;
3710 		dst->addtime = src->sadb_lifetime_addtime;
3711 		dst->usetime = src->sadb_lifetime_usetime;
3712 	}
3713 	return dst;
3714 }
3715 
3716 /* compare my own address
3717  * OUT:	1: true, i.e. my address.
3718  *	0: false
3719  */
3720 int
3721 key_ismyaddr(sa)
3722 	struct sockaddr *sa;
3723 {
3724 #ifdef INET
3725 	INIT_VNET_INET(curvnet);
3726 	struct sockaddr_in *sin;
3727 	struct in_ifaddr *ia;
3728 #endif
3729 
3730 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3731 
3732 	switch (sa->sa_family) {
3733 #ifdef INET
3734 	case AF_INET:
3735 		sin = (struct sockaddr_in *)sa;
3736 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3737 		     ia = ia->ia_link.tqe_next)
3738 		{
3739 			if (sin->sin_family == ia->ia_addr.sin_family &&
3740 			    sin->sin_len == ia->ia_addr.sin_len &&
3741 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3742 			{
3743 				return 1;
3744 			}
3745 		}
3746 		break;
3747 #endif
3748 #ifdef INET6
3749 	case AF_INET6:
3750 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3751 #endif
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 #ifdef INET6
3758 /*
3759  * compare my own address for IPv6.
3760  * 1: ours
3761  * 0: other
3762  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3763  */
3764 #include <netinet6/in6_var.h>
3765 
3766 static int
3767 key_ismyaddr6(sin6)
3768 	struct sockaddr_in6 *sin6;
3769 {
3770 	INIT_VNET_INET6(curvnet);
3771 	struct in6_ifaddr *ia;
3772 #if 0
3773 	struct in6_multi *in6m;
3774 #endif
3775 
3776 	for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) {
3777 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3778 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3779 			return 1;
3780 
3781 #if 0
3782 		/*
3783 		 * XXX Multicast
3784 		 * XXX why do we care about multlicast here while we don't care
3785 		 * about IPv4 multicast??
3786 		 * XXX scope
3787 		 */
3788 		in6m = NULL;
3789 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3790 		if (in6m)
3791 			return 1;
3792 #endif
3793 	}
3794 
3795 	/* loopback, just for safety */
3796 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3797 		return 1;
3798 
3799 	return 0;
3800 }
3801 #endif /*INET6*/
3802 
3803 /*
3804  * compare two secasindex structure.
3805  * flag can specify to compare 2 saidxes.
3806  * compare two secasindex structure without both mode and reqid.
3807  * don't compare port.
3808  * IN:
3809  *      saidx0: source, it can be in SAD.
3810  *      saidx1: object.
3811  * OUT:
3812  *      1 : equal
3813  *      0 : not equal
3814  */
3815 static int
3816 key_cmpsaidx(
3817 	const struct secasindex *saidx0,
3818 	const struct secasindex *saidx1,
3819 	int flag)
3820 {
3821 	/* sanity */
3822 	if (saidx0 == NULL && saidx1 == NULL)
3823 		return 1;
3824 
3825 	if (saidx0 == NULL || saidx1 == NULL)
3826 		return 0;
3827 
3828 	if (saidx0->proto != saidx1->proto)
3829 		return 0;
3830 
3831 	if (flag == CMP_EXACTLY) {
3832 		if (saidx0->mode != saidx1->mode)
3833 			return 0;
3834 		if (saidx0->reqid != saidx1->reqid)
3835 			return 0;
3836 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3837 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3838 			return 0;
3839 	} else {
3840 
3841 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3842 		if (flag == CMP_MODE_REQID
3843 		  ||flag == CMP_REQID) {
3844 			/*
3845 			 * If reqid of SPD is non-zero, unique SA is required.
3846 			 * The result must be of same reqid in this case.
3847 			 */
3848 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3849 				return 0;
3850 		}
3851 
3852 		if (flag == CMP_MODE_REQID) {
3853 			if (saidx0->mode != IPSEC_MODE_ANY
3854 			 && saidx0->mode != saidx1->mode)
3855 				return 0;
3856 		}
3857 
3858 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3859 			return 0;
3860 		}
3861 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3862 			return 0;
3863 		}
3864 	}
3865 
3866 	return 1;
3867 }
3868 
3869 /*
3870  * compare two secindex structure exactly.
3871  * IN:
3872  *	spidx0: source, it is often in SPD.
3873  *	spidx1: object, it is often from PFKEY message.
3874  * OUT:
3875  *	1 : equal
3876  *	0 : not equal
3877  */
3878 static int
3879 key_cmpspidx_exactly(
3880 	struct secpolicyindex *spidx0,
3881 	struct secpolicyindex *spidx1)
3882 {
3883 	/* sanity */
3884 	if (spidx0 == NULL && spidx1 == NULL)
3885 		return 1;
3886 
3887 	if (spidx0 == NULL || spidx1 == NULL)
3888 		return 0;
3889 
3890 	if (spidx0->prefs != spidx1->prefs
3891 	 || spidx0->prefd != spidx1->prefd
3892 	 || spidx0->ul_proto != spidx1->ul_proto)
3893 		return 0;
3894 
3895 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3896 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3897 }
3898 
3899 /*
3900  * compare two secindex structure with mask.
3901  * IN:
3902  *	spidx0: source, it is often in SPD.
3903  *	spidx1: object, it is often from IP header.
3904  * OUT:
3905  *	1 : equal
3906  *	0 : not equal
3907  */
3908 static int
3909 key_cmpspidx_withmask(
3910 	struct secpolicyindex *spidx0,
3911 	struct secpolicyindex *spidx1)
3912 {
3913 	/* sanity */
3914 	if (spidx0 == NULL && spidx1 == NULL)
3915 		return 1;
3916 
3917 	if (spidx0 == NULL || spidx1 == NULL)
3918 		return 0;
3919 
3920 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3921 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3922 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3923 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3924 		return 0;
3925 
3926 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3927 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3928 	 && spidx0->ul_proto != spidx1->ul_proto)
3929 		return 0;
3930 
3931 	switch (spidx0->src.sa.sa_family) {
3932 	case AF_INET:
3933 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3934 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3935 			return 0;
3936 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3937 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3938 			return 0;
3939 		break;
3940 	case AF_INET6:
3941 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3942 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3943 			return 0;
3944 		/*
3945 		 * scope_id check. if sin6_scope_id is 0, we regard it
3946 		 * as a wildcard scope, which matches any scope zone ID.
3947 		 */
3948 		if (spidx0->src.sin6.sin6_scope_id &&
3949 		    spidx1->src.sin6.sin6_scope_id &&
3950 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3951 			return 0;
3952 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3953 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3954 			return 0;
3955 		break;
3956 	default:
3957 		/* XXX */
3958 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3959 			return 0;
3960 		break;
3961 	}
3962 
3963 	switch (spidx0->dst.sa.sa_family) {
3964 	case AF_INET:
3965 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3966 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3967 			return 0;
3968 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3969 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3970 			return 0;
3971 		break;
3972 	case AF_INET6:
3973 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3974 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3975 			return 0;
3976 		/*
3977 		 * scope_id check. if sin6_scope_id is 0, we regard it
3978 		 * as a wildcard scope, which matches any scope zone ID.
3979 		 */
3980 		if (spidx0->dst.sin6.sin6_scope_id &&
3981 		    spidx1->dst.sin6.sin6_scope_id &&
3982 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3983 			return 0;
3984 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3985 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3986 			return 0;
3987 		break;
3988 	default:
3989 		/* XXX */
3990 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3991 			return 0;
3992 		break;
3993 	}
3994 
3995 	/* XXX Do we check other field ?  e.g. flowinfo */
3996 
3997 	return 1;
3998 }
3999 
4000 /* returns 0 on match */
4001 static int
4002 key_sockaddrcmp(
4003 	const struct sockaddr *sa1,
4004 	const struct sockaddr *sa2,
4005 	int port)
4006 {
4007 #ifdef satosin
4008 #undef satosin
4009 #endif
4010 #define satosin(s) ((const struct sockaddr_in *)s)
4011 #ifdef satosin6
4012 #undef satosin6
4013 #endif
4014 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4015 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4016 		return 1;
4017 
4018 	switch (sa1->sa_family) {
4019 	case AF_INET:
4020 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4021 			return 1;
4022 		if (satosin(sa1)->sin_addr.s_addr !=
4023 		    satosin(sa2)->sin_addr.s_addr) {
4024 			return 1;
4025 		}
4026 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4027 			return 1;
4028 		break;
4029 	case AF_INET6:
4030 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4031 			return 1;	/*EINVAL*/
4032 		if (satosin6(sa1)->sin6_scope_id !=
4033 		    satosin6(sa2)->sin6_scope_id) {
4034 			return 1;
4035 		}
4036 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4037 		    &satosin6(sa2)->sin6_addr)) {
4038 			return 1;
4039 		}
4040 		if (port &&
4041 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4042 			return 1;
4043 		}
4044 		break;
4045 	default:
4046 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4047 			return 1;
4048 		break;
4049 	}
4050 
4051 	return 0;
4052 #undef satosin
4053 #undef satosin6
4054 }
4055 
4056 /*
4057  * compare two buffers with mask.
4058  * IN:
4059  *	addr1: source
4060  *	addr2: object
4061  *	bits:  Number of bits to compare
4062  * OUT:
4063  *	1 : equal
4064  *	0 : not equal
4065  */
4066 static int
4067 key_bbcmp(const void *a1, const void *a2, u_int bits)
4068 {
4069 	const unsigned char *p1 = a1;
4070 	const unsigned char *p2 = a2;
4071 
4072 	/* XXX: This could be considerably faster if we compare a word
4073 	 * at a time, but it is complicated on LSB Endian machines */
4074 
4075 	/* Handle null pointers */
4076 	if (p1 == NULL || p2 == NULL)
4077 		return (p1 == p2);
4078 
4079 	while (bits >= 8) {
4080 		if (*p1++ != *p2++)
4081 			return 0;
4082 		bits -= 8;
4083 	}
4084 
4085 	if (bits > 0) {
4086 		u_int8_t mask = ~((1<<(8-bits))-1);
4087 		if ((*p1 & mask) != (*p2 & mask))
4088 			return 0;
4089 	}
4090 	return 1;	/* Match! */
4091 }
4092 
4093 static void
4094 key_flush_spd(time_t now)
4095 {
4096 	INIT_VNET_IPSEC(curvnet);
4097 	static u_int16_t sptree_scangen = 0;
4098 	u_int16_t gen = sptree_scangen++;
4099 	struct secpolicy *sp;
4100 	u_int dir;
4101 
4102 	/* SPD */
4103 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4104 restart:
4105 		SPTREE_LOCK();
4106 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4107 			if (sp->scangen == gen)		/* previously handled */
4108 				continue;
4109 			sp->scangen = gen;
4110 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4111 			    sp->refcnt == 1) {
4112 				/*
4113 				 * Ensure that we only decrease refcnt once,
4114 				 * when we're the last consumer.
4115 				 * Directly call SP_DELREF/key_delsp instead
4116 				 * of KEY_FREESP to avoid unlocking/relocking
4117 				 * SPTREE_LOCK before key_delsp: may refcnt
4118 				 * be increased again during that time ?
4119 				 * NB: also clean entries created by
4120 				 * key_spdflush
4121 				 */
4122 				SP_DELREF(sp);
4123 				key_delsp(sp);
4124 				SPTREE_UNLOCK();
4125 				goto restart;
4126 			}
4127 			if (sp->lifetime == 0 && sp->validtime == 0)
4128 				continue;
4129 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4130 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4131 				sp->state = IPSEC_SPSTATE_DEAD;
4132 				SPTREE_UNLOCK();
4133 				key_spdexpire(sp);
4134 				goto restart;
4135 			}
4136 		}
4137 		SPTREE_UNLOCK();
4138 	}
4139 }
4140 
4141 static void
4142 key_flush_sad(time_t now)
4143 {
4144 	INIT_VNET_IPSEC(curvnet);
4145 	struct secashead *sah, *nextsah;
4146 	struct secasvar *sav, *nextsav;
4147 
4148 	/* SAD */
4149 	SAHTREE_LOCK();
4150 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4151 		/* if sah has been dead, then delete it and process next sah. */
4152 		if (sah->state == SADB_SASTATE_DEAD) {
4153 			key_delsah(sah);
4154 			continue;
4155 		}
4156 
4157 		/* if LARVAL entry doesn't become MATURE, delete it. */
4158 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4159 			/* Need to also check refcnt for a larval SA ??? */
4160 			if (now - sav->created > V_key_larval_lifetime)
4161 				KEY_FREESAV(&sav);
4162 		}
4163 
4164 		/*
4165 		 * check MATURE entry to start to send expire message
4166 		 * whether or not.
4167 		 */
4168 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4169 			/* we don't need to check. */
4170 			if (sav->lft_s == NULL)
4171 				continue;
4172 
4173 			/* sanity check */
4174 			if (sav->lft_c == NULL) {
4175 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4176 					"time, why?\n", __func__));
4177 				continue;
4178 			}
4179 
4180 			/* check SOFT lifetime */
4181 			if (sav->lft_s->addtime != 0 &&
4182 			    now - sav->created > sav->lft_s->addtime) {
4183 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4184 				/*
4185 				 * Actually, only send expire message if
4186 				 * SA has been used, as it was done before,
4187 				 * but should we always send such message,
4188 				 * and let IKE daemon decide if it should be
4189 				 * renegotiated or not ?
4190 				 * XXX expire message will actually NOT be
4191 				 * sent if SA is only used after soft
4192 				 * lifetime has been reached, see below
4193 				 * (DYING state)
4194 				 */
4195 				if (sav->lft_c->usetime != 0)
4196 					key_expire(sav);
4197 			}
4198 			/* check SOFT lifetime by bytes */
4199 			/*
4200 			 * XXX I don't know the way to delete this SA
4201 			 * when new SA is installed.  Caution when it's
4202 			 * installed too big lifetime by time.
4203 			 */
4204 			else if (sav->lft_s->bytes != 0 &&
4205 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4206 
4207 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4208 				/*
4209 				 * XXX If we keep to send expire
4210 				 * message in the status of
4211 				 * DYING. Do remove below code.
4212 				 */
4213 				key_expire(sav);
4214 			}
4215 		}
4216 
4217 		/* check DYING entry to change status to DEAD. */
4218 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4219 			/* we don't need to check. */
4220 			if (sav->lft_h == NULL)
4221 				continue;
4222 
4223 			/* sanity check */
4224 			if (sav->lft_c == NULL) {
4225 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4226 					"time, why?\n", __func__));
4227 				continue;
4228 			}
4229 
4230 			if (sav->lft_h->addtime != 0 &&
4231 			    now - sav->created > sav->lft_h->addtime) {
4232 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4233 				KEY_FREESAV(&sav);
4234 			}
4235 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4236 			else if (sav->lft_s != NULL
4237 			      && sav->lft_s->addtime != 0
4238 			      && now - sav->created > sav->lft_s->addtime) {
4239 				/*
4240 				 * XXX: should be checked to be
4241 				 * installed the valid SA.
4242 				 */
4243 
4244 				/*
4245 				 * If there is no SA then sending
4246 				 * expire message.
4247 				 */
4248 				key_expire(sav);
4249 			}
4250 #endif
4251 			/* check HARD lifetime by bytes */
4252 			else if (sav->lft_h->bytes != 0 &&
4253 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4254 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4255 				KEY_FREESAV(&sav);
4256 			}
4257 		}
4258 
4259 		/* delete entry in DEAD */
4260 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4261 			/* sanity check */
4262 			if (sav->state != SADB_SASTATE_DEAD) {
4263 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4264 					"(queue: %d SA: %d): kill it anyway\n",
4265 					__func__,
4266 					SADB_SASTATE_DEAD, sav->state));
4267 			}
4268 			/*
4269 			 * do not call key_freesav() here.
4270 			 * sav should already be freed, and sav->refcnt
4271 			 * shows other references to sav
4272 			 * (such as from SPD).
4273 			 */
4274 		}
4275 	}
4276 	SAHTREE_UNLOCK();
4277 }
4278 
4279 static void
4280 key_flush_acq(time_t now)
4281 {
4282 	INIT_VNET_IPSEC(curvnet);
4283 	struct secacq *acq, *nextacq;
4284 
4285 	/* ACQ tree */
4286 	ACQ_LOCK();
4287 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4288 		nextacq = LIST_NEXT(acq, chain);
4289 		if (now - acq->created > V_key_blockacq_lifetime
4290 		 && __LIST_CHAINED(acq)) {
4291 			LIST_REMOVE(acq, chain);
4292 			free(acq, M_IPSEC_SAQ);
4293 		}
4294 	}
4295 	ACQ_UNLOCK();
4296 }
4297 
4298 static void
4299 key_flush_spacq(time_t now)
4300 {
4301 	INIT_VNET_IPSEC(curvnet);
4302 	struct secspacq *acq, *nextacq;
4303 
4304 	/* SP ACQ tree */
4305 	SPACQ_LOCK();
4306 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4307 		nextacq = LIST_NEXT(acq, chain);
4308 		if (now - acq->created > V_key_blockacq_lifetime
4309 		 && __LIST_CHAINED(acq)) {
4310 			LIST_REMOVE(acq, chain);
4311 			free(acq, M_IPSEC_SAQ);
4312 		}
4313 	}
4314 	SPACQ_UNLOCK();
4315 }
4316 
4317 /*
4318  * time handler.
4319  * scanning SPD and SAD to check status for each entries,
4320  * and do to remove or to expire.
4321  * XXX: year 2038 problem may remain.
4322  */
4323 void
4324 key_timehandler(void)
4325 {
4326 	VNET_ITERATOR_DECL(vnet_iter);
4327 	time_t now = time_second;
4328 
4329 	VNET_LIST_RLOCK();
4330 	VNET_FOREACH(vnet_iter) {
4331 		CURVNET_SET(vnet_iter);
4332 		key_flush_spd(now);
4333 		key_flush_sad(now);
4334 		key_flush_acq(now);
4335 		key_flush_spacq(now);
4336 		CURVNET_RESTORE();
4337 	}
4338 	VNET_LIST_RUNLOCK();
4339 
4340 #ifndef IPSEC_DEBUG2
4341 	/* do exchange to tick time !! */
4342 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4343 #endif /* IPSEC_DEBUG2 */
4344 }
4345 
4346 u_long
4347 key_random()
4348 {
4349 	u_long value;
4350 
4351 	key_randomfill(&value, sizeof(value));
4352 	return value;
4353 }
4354 
4355 void
4356 key_randomfill(p, l)
4357 	void *p;
4358 	size_t l;
4359 {
4360 	size_t n;
4361 	u_long v;
4362 	static int warn = 1;
4363 
4364 	n = 0;
4365 	n = (size_t)read_random(p, (u_int)l);
4366 	/* last resort */
4367 	while (n < l) {
4368 		v = random();
4369 		bcopy(&v, (u_int8_t *)p + n,
4370 		    l - n < sizeof(v) ? l - n : sizeof(v));
4371 		n += sizeof(v);
4372 
4373 		if (warn) {
4374 			printf("WARNING: pseudo-random number generator "
4375 			    "used for IPsec processing\n");
4376 			warn = 0;
4377 		}
4378 	}
4379 }
4380 
4381 /*
4382  * map SADB_SATYPE_* to IPPROTO_*.
4383  * if satype == SADB_SATYPE then satype is mapped to ~0.
4384  * OUT:
4385  *	0: invalid satype.
4386  */
4387 static u_int16_t
4388 key_satype2proto(u_int8_t satype)
4389 {
4390 	switch (satype) {
4391 	case SADB_SATYPE_UNSPEC:
4392 		return IPSEC_PROTO_ANY;
4393 	case SADB_SATYPE_AH:
4394 		return IPPROTO_AH;
4395 	case SADB_SATYPE_ESP:
4396 		return IPPROTO_ESP;
4397 	case SADB_X_SATYPE_IPCOMP:
4398 		return IPPROTO_IPCOMP;
4399 	case SADB_X_SATYPE_TCPSIGNATURE:
4400 		return IPPROTO_TCP;
4401 	default:
4402 		return 0;
4403 	}
4404 	/* NOTREACHED */
4405 }
4406 
4407 /*
4408  * map IPPROTO_* to SADB_SATYPE_*
4409  * OUT:
4410  *	0: invalid protocol type.
4411  */
4412 static u_int8_t
4413 key_proto2satype(u_int16_t proto)
4414 {
4415 	switch (proto) {
4416 	case IPPROTO_AH:
4417 		return SADB_SATYPE_AH;
4418 	case IPPROTO_ESP:
4419 		return SADB_SATYPE_ESP;
4420 	case IPPROTO_IPCOMP:
4421 		return SADB_X_SATYPE_IPCOMP;
4422 	case IPPROTO_TCP:
4423 		return SADB_X_SATYPE_TCPSIGNATURE;
4424 	default:
4425 		return 0;
4426 	}
4427 	/* NOTREACHED */
4428 }
4429 
4430 /* %%% PF_KEY */
4431 /*
4432  * SADB_GETSPI processing is to receive
4433  *	<base, (SA2), src address, dst address, (SPI range)>
4434  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4435  * tree with the status of LARVAL, and send
4436  *	<base, SA(*), address(SD)>
4437  * to the IKMPd.
4438  *
4439  * IN:	mhp: pointer to the pointer to each header.
4440  * OUT:	NULL if fail.
4441  *	other if success, return pointer to the message to send.
4442  */
4443 static int
4444 key_getspi(so, m, mhp)
4445 	struct socket *so;
4446 	struct mbuf *m;
4447 	const struct sadb_msghdr *mhp;
4448 {
4449 	INIT_VNET_IPSEC(curvnet);
4450 	struct sadb_address *src0, *dst0;
4451 	struct secasindex saidx;
4452 	struct secashead *newsah;
4453 	struct secasvar *newsav;
4454 	u_int8_t proto;
4455 	u_int32_t spi;
4456 	u_int8_t mode;
4457 	u_int32_t reqid;
4458 	int error;
4459 
4460 	IPSEC_ASSERT(so != NULL, ("null socket"));
4461 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4462 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4463 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4464 
4465 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4466 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4467 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4468 			__func__));
4469 		return key_senderror(so, m, EINVAL);
4470 	}
4471 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4472 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4473 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4474 			__func__));
4475 		return key_senderror(so, m, EINVAL);
4476 	}
4477 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4478 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4479 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4480 	} else {
4481 		mode = IPSEC_MODE_ANY;
4482 		reqid = 0;
4483 	}
4484 
4485 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4486 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4487 
4488 	/* map satype to proto */
4489 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4490 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4491 			__func__));
4492 		return key_senderror(so, m, EINVAL);
4493 	}
4494 
4495 	/* make sure if port number is zero. */
4496 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4497 	case AF_INET:
4498 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4499 		    sizeof(struct sockaddr_in))
4500 			return key_senderror(so, m, EINVAL);
4501 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4502 		break;
4503 	case AF_INET6:
4504 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4505 		    sizeof(struct sockaddr_in6))
4506 			return key_senderror(so, m, EINVAL);
4507 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4508 		break;
4509 	default:
4510 		; /*???*/
4511 	}
4512 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4513 	case AF_INET:
4514 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4515 		    sizeof(struct sockaddr_in))
4516 			return key_senderror(so, m, EINVAL);
4517 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4518 		break;
4519 	case AF_INET6:
4520 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4521 		    sizeof(struct sockaddr_in6))
4522 			return key_senderror(so, m, EINVAL);
4523 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4524 		break;
4525 	default:
4526 		; /*???*/
4527 	}
4528 
4529 	/* XXX boundary check against sa_len */
4530 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4531 
4532 	/* SPI allocation */
4533 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4534 	                       &saidx);
4535 	if (spi == 0)
4536 		return key_senderror(so, m, EINVAL);
4537 
4538 	/* get a SA index */
4539 	if ((newsah = key_getsah(&saidx)) == NULL) {
4540 		/* create a new SA index */
4541 		if ((newsah = key_newsah(&saidx)) == NULL) {
4542 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4543 			return key_senderror(so, m, ENOBUFS);
4544 		}
4545 	}
4546 
4547 	/* get a new SA */
4548 	/* XXX rewrite */
4549 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4550 	if (newsav == NULL) {
4551 		/* XXX don't free new SA index allocated in above. */
4552 		return key_senderror(so, m, error);
4553 	}
4554 
4555 	/* set spi */
4556 	newsav->spi = htonl(spi);
4557 
4558 	/* delete the entry in acqtree */
4559 	if (mhp->msg->sadb_msg_seq != 0) {
4560 		struct secacq *acq;
4561 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4562 			/* reset counter in order to deletion by timehandler. */
4563 			acq->created = time_second;
4564 			acq->count = 0;
4565 		}
4566     	}
4567 
4568     {
4569 	struct mbuf *n, *nn;
4570 	struct sadb_sa *m_sa;
4571 	struct sadb_msg *newmsg;
4572 	int off, len;
4573 
4574 	/* create new sadb_msg to reply. */
4575 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4576 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4577 
4578 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4579 	if (len > MHLEN) {
4580 		MCLGET(n, M_DONTWAIT);
4581 		if ((n->m_flags & M_EXT) == 0) {
4582 			m_freem(n);
4583 			n = NULL;
4584 		}
4585 	}
4586 	if (!n)
4587 		return key_senderror(so, m, ENOBUFS);
4588 
4589 	n->m_len = len;
4590 	n->m_next = NULL;
4591 	off = 0;
4592 
4593 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4594 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4595 
4596 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4597 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4598 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4599 	m_sa->sadb_sa_spi = htonl(spi);
4600 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4601 
4602 	IPSEC_ASSERT(off == len,
4603 		("length inconsistency (off %u len %u)", off, len));
4604 
4605 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4606 	    SADB_EXT_ADDRESS_DST);
4607 	if (!n->m_next) {
4608 		m_freem(n);
4609 		return key_senderror(so, m, ENOBUFS);
4610 	}
4611 
4612 	if (n->m_len < sizeof(struct sadb_msg)) {
4613 		n = m_pullup(n, sizeof(struct sadb_msg));
4614 		if (n == NULL)
4615 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4616 	}
4617 
4618 	n->m_pkthdr.len = 0;
4619 	for (nn = n; nn; nn = nn->m_next)
4620 		n->m_pkthdr.len += nn->m_len;
4621 
4622 	newmsg = mtod(n, struct sadb_msg *);
4623 	newmsg->sadb_msg_seq = newsav->seq;
4624 	newmsg->sadb_msg_errno = 0;
4625 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4626 
4627 	m_freem(m);
4628 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4629     }
4630 }
4631 
4632 /*
4633  * allocating new SPI
4634  * called by key_getspi().
4635  * OUT:
4636  *	0:	failure.
4637  *	others: success.
4638  */
4639 static u_int32_t
4640 key_do_getnewspi(spirange, saidx)
4641 	struct sadb_spirange *spirange;
4642 	struct secasindex *saidx;
4643 {
4644 	INIT_VNET_IPSEC(curvnet);
4645 	u_int32_t newspi;
4646 	u_int32_t min, max;
4647 	int count = V_key_spi_trycnt;
4648 
4649 	/* set spi range to allocate */
4650 	if (spirange != NULL) {
4651 		min = spirange->sadb_spirange_min;
4652 		max = spirange->sadb_spirange_max;
4653 	} else {
4654 		min = V_key_spi_minval;
4655 		max = V_key_spi_maxval;
4656 	}
4657 	/* IPCOMP needs 2-byte SPI */
4658 	if (saidx->proto == IPPROTO_IPCOMP) {
4659 		u_int32_t t;
4660 		if (min >= 0x10000)
4661 			min = 0xffff;
4662 		if (max >= 0x10000)
4663 			max = 0xffff;
4664 		if (min > max) {
4665 			t = min; min = max; max = t;
4666 		}
4667 	}
4668 
4669 	if (min == max) {
4670 		if (key_checkspidup(saidx, min) != NULL) {
4671 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4672 				__func__, min));
4673 			return 0;
4674 		}
4675 
4676 		count--; /* taking one cost. */
4677 		newspi = min;
4678 
4679 	} else {
4680 
4681 		/* init SPI */
4682 		newspi = 0;
4683 
4684 		/* when requesting to allocate spi ranged */
4685 		while (count--) {
4686 			/* generate pseudo-random SPI value ranged. */
4687 			newspi = min + (key_random() % (max - min + 1));
4688 
4689 			if (key_checkspidup(saidx, newspi) == NULL)
4690 				break;
4691 		}
4692 
4693 		if (count == 0 || newspi == 0) {
4694 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4695 				__func__));
4696 			return 0;
4697 		}
4698 	}
4699 
4700 	/* statistics */
4701 	keystat.getspi_count =
4702 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4703 
4704 	return newspi;
4705 }
4706 
4707 /*
4708  * SADB_UPDATE processing
4709  * receive
4710  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4711  *       key(AE), (identity(SD),) (sensitivity)>
4712  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4713  * and send
4714  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4715  *       (identity(SD),) (sensitivity)>
4716  * to the ikmpd.
4717  *
4718  * m will always be freed.
4719  */
4720 static int
4721 key_update(so, m, mhp)
4722 	struct socket *so;
4723 	struct mbuf *m;
4724 	const struct sadb_msghdr *mhp;
4725 {
4726 	INIT_VNET_IPSEC(curvnet);
4727 	struct sadb_sa *sa0;
4728 	struct sadb_address *src0, *dst0;
4729 	struct secasindex saidx;
4730 	struct secashead *sah;
4731 	struct secasvar *sav;
4732 	u_int16_t proto;
4733 	u_int8_t mode;
4734 	u_int32_t reqid;
4735 	int error;
4736 
4737 	IPSEC_ASSERT(so != NULL, ("null socket"));
4738 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4739 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4740 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4741 
4742 	/* map satype to proto */
4743 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4744 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4745 			__func__));
4746 		return key_senderror(so, m, EINVAL);
4747 	}
4748 
4749 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4750 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4751 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4752 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4753 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4754 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4755 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4756 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4757 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4758 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4759 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4760 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4761 			__func__));
4762 		return key_senderror(so, m, EINVAL);
4763 	}
4764 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4765 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4766 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4767 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4768 			__func__));
4769 		return key_senderror(so, m, EINVAL);
4770 	}
4771 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4772 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4773 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4774 	} else {
4775 		mode = IPSEC_MODE_ANY;
4776 		reqid = 0;
4777 	}
4778 	/* XXX boundary checking for other extensions */
4779 
4780 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4781 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4782 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4783 
4784 	/* XXX boundary check against sa_len */
4785 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4786 
4787 	/* get a SA header */
4788 	if ((sah = key_getsah(&saidx)) == NULL) {
4789 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4790 		return key_senderror(so, m, ENOENT);
4791 	}
4792 
4793 	/* set spidx if there */
4794 	/* XXX rewrite */
4795 	error = key_setident(sah, m, mhp);
4796 	if (error)
4797 		return key_senderror(so, m, error);
4798 
4799 	/* find a SA with sequence number. */
4800 #ifdef IPSEC_DOSEQCHECK
4801 	if (mhp->msg->sadb_msg_seq != 0
4802 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4803 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4804 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4805 		return key_senderror(so, m, ENOENT);
4806 	}
4807 #else
4808 	SAHTREE_LOCK();
4809 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4810 	SAHTREE_UNLOCK();
4811 	if (sav == NULL) {
4812 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4813 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4814 		return key_senderror(so, m, EINVAL);
4815 	}
4816 #endif
4817 
4818 	/* validity check */
4819 	if (sav->sah->saidx.proto != proto) {
4820 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4821 			"(DB=%u param=%u)\n", __func__,
4822 			sav->sah->saidx.proto, proto));
4823 		return key_senderror(so, m, EINVAL);
4824 	}
4825 #ifdef IPSEC_DOSEQCHECK
4826 	if (sav->spi != sa0->sadb_sa_spi) {
4827 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4828 		    __func__,
4829 		    (u_int32_t)ntohl(sav->spi),
4830 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4831 		return key_senderror(so, m, EINVAL);
4832 	}
4833 #endif
4834 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4835 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4836 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4837 		return key_senderror(so, m, EINVAL);
4838 	}
4839 
4840 	/* copy sav values */
4841 	error = key_setsaval(sav, m, mhp);
4842 	if (error) {
4843 		KEY_FREESAV(&sav);
4844 		return key_senderror(so, m, error);
4845 	}
4846 
4847 	/* check SA values to be mature. */
4848 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4849 		KEY_FREESAV(&sav);
4850 		return key_senderror(so, m, 0);
4851 	}
4852 
4853     {
4854 	struct mbuf *n;
4855 
4856 	/* set msg buf from mhp */
4857 	n = key_getmsgbuf_x1(m, mhp);
4858 	if (n == NULL) {
4859 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4860 		return key_senderror(so, m, ENOBUFS);
4861 	}
4862 
4863 	m_freem(m);
4864 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4865     }
4866 }
4867 
4868 /*
4869  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4870  * only called by key_update().
4871  * OUT:
4872  *	NULL	: not found
4873  *	others	: found, pointer to a SA.
4874  */
4875 #ifdef IPSEC_DOSEQCHECK
4876 static struct secasvar *
4877 key_getsavbyseq(sah, seq)
4878 	struct secashead *sah;
4879 	u_int32_t seq;
4880 {
4881 	struct secasvar *sav;
4882 	u_int state;
4883 
4884 	state = SADB_SASTATE_LARVAL;
4885 
4886 	/* search SAD with sequence number ? */
4887 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4888 
4889 		KEY_CHKSASTATE(state, sav->state, __func__);
4890 
4891 		if (sav->seq == seq) {
4892 			sa_addref(sav);
4893 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4894 				printf("DP %s cause refcnt++:%d SA:%p\n",
4895 					__func__, sav->refcnt, sav));
4896 			return sav;
4897 		}
4898 	}
4899 
4900 	return NULL;
4901 }
4902 #endif
4903 
4904 /*
4905  * SADB_ADD processing
4906  * add an entry to SA database, when received
4907  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4908  *       key(AE), (identity(SD),) (sensitivity)>
4909  * from the ikmpd,
4910  * and send
4911  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4912  *       (identity(SD),) (sensitivity)>
4913  * to the ikmpd.
4914  *
4915  * IGNORE identity and sensitivity messages.
4916  *
4917  * m will always be freed.
4918  */
4919 static int
4920 key_add(so, m, mhp)
4921 	struct socket *so;
4922 	struct mbuf *m;
4923 	const struct sadb_msghdr *mhp;
4924 {
4925 	INIT_VNET_IPSEC(curvnet);
4926 	struct sadb_sa *sa0;
4927 	struct sadb_address *src0, *dst0;
4928 	struct secasindex saidx;
4929 	struct secashead *newsah;
4930 	struct secasvar *newsav;
4931 	u_int16_t proto;
4932 	u_int8_t mode;
4933 	u_int32_t reqid;
4934 	int error;
4935 
4936 	IPSEC_ASSERT(so != NULL, ("null socket"));
4937 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4938 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4939 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4940 
4941 	/* map satype to proto */
4942 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4943 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4944 			__func__));
4945 		return key_senderror(so, m, EINVAL);
4946 	}
4947 
4948 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4949 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4950 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4951 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4952 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4953 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4954 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4955 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4956 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4957 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4958 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4959 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4960 			__func__));
4961 		return key_senderror(so, m, EINVAL);
4962 	}
4963 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4964 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4965 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4966 		/* XXX need more */
4967 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4968 			__func__));
4969 		return key_senderror(so, m, EINVAL);
4970 	}
4971 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4972 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4973 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4974 	} else {
4975 		mode = IPSEC_MODE_ANY;
4976 		reqid = 0;
4977 	}
4978 
4979 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4980 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4981 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4982 
4983 	/* XXX boundary check against sa_len */
4984 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4985 
4986 	/* get a SA header */
4987 	if ((newsah = key_getsah(&saidx)) == NULL) {
4988 		/* create a new SA header */
4989 		if ((newsah = key_newsah(&saidx)) == NULL) {
4990 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4991 			return key_senderror(so, m, ENOBUFS);
4992 		}
4993 	}
4994 
4995 	/* set spidx if there */
4996 	/* XXX rewrite */
4997 	error = key_setident(newsah, m, mhp);
4998 	if (error) {
4999 		return key_senderror(so, m, error);
5000 	}
5001 
5002 	/* create new SA entry. */
5003 	/* We can create new SA only if SPI is differenct. */
5004 	SAHTREE_LOCK();
5005 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5006 	SAHTREE_UNLOCK();
5007 	if (newsav != NULL) {
5008 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5009 		return key_senderror(so, m, EEXIST);
5010 	}
5011 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5012 	if (newsav == NULL) {
5013 		return key_senderror(so, m, error);
5014 	}
5015 
5016 	/* check SA values to be mature. */
5017 	if ((error = key_mature(newsav)) != 0) {
5018 		KEY_FREESAV(&newsav);
5019 		return key_senderror(so, m, error);
5020 	}
5021 
5022 	/*
5023 	 * don't call key_freesav() here, as we would like to keep the SA
5024 	 * in the database on success.
5025 	 */
5026 
5027     {
5028 	struct mbuf *n;
5029 
5030 	/* set msg buf from mhp */
5031 	n = key_getmsgbuf_x1(m, mhp);
5032 	if (n == NULL) {
5033 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5034 		return key_senderror(so, m, ENOBUFS);
5035 	}
5036 
5037 	m_freem(m);
5038 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5039     }
5040 }
5041 
5042 /* m is retained */
5043 static int
5044 key_setident(sah, m, mhp)
5045 	struct secashead *sah;
5046 	struct mbuf *m;
5047 	const struct sadb_msghdr *mhp;
5048 {
5049 	INIT_VNET_IPSEC(curvnet);
5050 	const struct sadb_ident *idsrc, *iddst;
5051 	int idsrclen, iddstlen;
5052 
5053 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5054 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5055 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5056 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5057 
5058 	/* don't make buffer if not there */
5059 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5060 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5061 		sah->idents = NULL;
5062 		sah->identd = NULL;
5063 		return 0;
5064 	}
5065 
5066 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5067 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5068 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5069 		return EINVAL;
5070 	}
5071 
5072 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5073 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5074 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5075 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5076 
5077 	/* validity check */
5078 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5079 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5080 		return EINVAL;
5081 	}
5082 
5083 	switch (idsrc->sadb_ident_type) {
5084 	case SADB_IDENTTYPE_PREFIX:
5085 	case SADB_IDENTTYPE_FQDN:
5086 	case SADB_IDENTTYPE_USERFQDN:
5087 	default:
5088 		/* XXX do nothing */
5089 		sah->idents = NULL;
5090 		sah->identd = NULL;
5091 	 	return 0;
5092 	}
5093 
5094 	/* make structure */
5095 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5096 	if (sah->idents == NULL) {
5097 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5098 		return ENOBUFS;
5099 	}
5100 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5101 	if (sah->identd == NULL) {
5102 		free(sah->idents, M_IPSEC_MISC);
5103 		sah->idents = NULL;
5104 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5105 		return ENOBUFS;
5106 	}
5107 	sah->idents->type = idsrc->sadb_ident_type;
5108 	sah->idents->id = idsrc->sadb_ident_id;
5109 
5110 	sah->identd->type = iddst->sadb_ident_type;
5111 	sah->identd->id = iddst->sadb_ident_id;
5112 
5113 	return 0;
5114 }
5115 
5116 /*
5117  * m will not be freed on return.
5118  * it is caller's responsibility to free the result.
5119  */
5120 static struct mbuf *
5121 key_getmsgbuf_x1(m, mhp)
5122 	struct mbuf *m;
5123 	const struct sadb_msghdr *mhp;
5124 {
5125 	struct mbuf *n;
5126 
5127 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5128 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5129 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5130 
5131 	/* create new sadb_msg to reply. */
5132 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5133 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5134 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5135 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5136 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5137 	if (!n)
5138 		return NULL;
5139 
5140 	if (n->m_len < sizeof(struct sadb_msg)) {
5141 		n = m_pullup(n, sizeof(struct sadb_msg));
5142 		if (n == NULL)
5143 			return NULL;
5144 	}
5145 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5146 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5147 	    PFKEY_UNIT64(n->m_pkthdr.len);
5148 
5149 	return n;
5150 }
5151 
5152 static int key_delete_all __P((struct socket *, struct mbuf *,
5153 	const struct sadb_msghdr *, u_int16_t));
5154 
5155 /*
5156  * SADB_DELETE processing
5157  * receive
5158  *   <base, SA(*), address(SD)>
5159  * from the ikmpd, and set SADB_SASTATE_DEAD,
5160  * and send,
5161  *   <base, SA(*), address(SD)>
5162  * to the ikmpd.
5163  *
5164  * m will always be freed.
5165  */
5166 static int
5167 key_delete(so, m, mhp)
5168 	struct socket *so;
5169 	struct mbuf *m;
5170 	const struct sadb_msghdr *mhp;
5171 {
5172 	INIT_VNET_IPSEC(curvnet);
5173 	struct sadb_sa *sa0;
5174 	struct sadb_address *src0, *dst0;
5175 	struct secasindex saidx;
5176 	struct secashead *sah;
5177 	struct secasvar *sav = NULL;
5178 	u_int16_t proto;
5179 
5180 	IPSEC_ASSERT(so != NULL, ("null socket"));
5181 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5182 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5183 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5184 
5185 	/* map satype to proto */
5186 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5187 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5188 			__func__));
5189 		return key_senderror(so, m, EINVAL);
5190 	}
5191 
5192 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5193 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5194 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5195 			__func__));
5196 		return key_senderror(so, m, EINVAL);
5197 	}
5198 
5199 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5200 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5201 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5202 			__func__));
5203 		return key_senderror(so, m, EINVAL);
5204 	}
5205 
5206 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5207 		/*
5208 		 * Caller wants us to delete all non-LARVAL SAs
5209 		 * that match the src/dst.  This is used during
5210 		 * IKE INITIAL-CONTACT.
5211 		 */
5212 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5213 		return key_delete_all(so, m, mhp, proto);
5214 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5215 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5216 			__func__));
5217 		return key_senderror(so, m, EINVAL);
5218 	}
5219 
5220 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5221 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5222 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5223 
5224 	/* XXX boundary check against sa_len */
5225 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5226 
5227 	/* get a SA header */
5228 	SAHTREE_LOCK();
5229 	LIST_FOREACH(sah, &V_sahtree, chain) {
5230 		if (sah->state == SADB_SASTATE_DEAD)
5231 			continue;
5232 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5233 			continue;
5234 
5235 		/* get a SA with SPI. */
5236 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5237 		if (sav)
5238 			break;
5239 	}
5240 	if (sah == NULL) {
5241 		SAHTREE_UNLOCK();
5242 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5243 		return key_senderror(so, m, ENOENT);
5244 	}
5245 
5246 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5247 	SAHTREE_UNLOCK();
5248 	KEY_FREESAV(&sav);
5249 
5250     {
5251 	struct mbuf *n;
5252 	struct sadb_msg *newmsg;
5253 
5254 	/* create new sadb_msg to reply. */
5255 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5256 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5257 	if (!n)
5258 		return key_senderror(so, m, ENOBUFS);
5259 
5260 	if (n->m_len < sizeof(struct sadb_msg)) {
5261 		n = m_pullup(n, sizeof(struct sadb_msg));
5262 		if (n == NULL)
5263 			return key_senderror(so, m, ENOBUFS);
5264 	}
5265 	newmsg = mtod(n, struct sadb_msg *);
5266 	newmsg->sadb_msg_errno = 0;
5267 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5268 
5269 	m_freem(m);
5270 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5271     }
5272 }
5273 
5274 /*
5275  * delete all SAs for src/dst.  Called from key_delete().
5276  */
5277 static int
5278 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5279     u_int16_t proto)
5280 {
5281 	INIT_VNET_IPSEC(curvnet);
5282 	struct sadb_address *src0, *dst0;
5283 	struct secasindex saidx;
5284 	struct secashead *sah;
5285 	struct secasvar *sav, *nextsav;
5286 	u_int stateidx, state;
5287 
5288 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5289 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5290 
5291 	/* XXX boundary check against sa_len */
5292 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5293 
5294 	SAHTREE_LOCK();
5295 	LIST_FOREACH(sah, &V_sahtree, chain) {
5296 		if (sah->state == SADB_SASTATE_DEAD)
5297 			continue;
5298 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5299 			continue;
5300 
5301 		/* Delete all non-LARVAL SAs. */
5302 		for (stateidx = 0;
5303 		     stateidx < _ARRAYLEN(saorder_state_alive);
5304 		     stateidx++) {
5305 			state = saorder_state_alive[stateidx];
5306 			if (state == SADB_SASTATE_LARVAL)
5307 				continue;
5308 			for (sav = LIST_FIRST(&sah->savtree[state]);
5309 			     sav != NULL; sav = nextsav) {
5310 				nextsav = LIST_NEXT(sav, chain);
5311 				/* sanity check */
5312 				if (sav->state != state) {
5313 					ipseclog((LOG_DEBUG, "%s: invalid "
5314 						"sav->state (queue %d SA %d)\n",
5315 						__func__, state, sav->state));
5316 					continue;
5317 				}
5318 
5319 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5320 				KEY_FREESAV(&sav);
5321 			}
5322 		}
5323 	}
5324 	SAHTREE_UNLOCK();
5325     {
5326 	struct mbuf *n;
5327 	struct sadb_msg *newmsg;
5328 
5329 	/* create new sadb_msg to reply. */
5330 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5331 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5332 	if (!n)
5333 		return key_senderror(so, m, ENOBUFS);
5334 
5335 	if (n->m_len < sizeof(struct sadb_msg)) {
5336 		n = m_pullup(n, sizeof(struct sadb_msg));
5337 		if (n == NULL)
5338 			return key_senderror(so, m, ENOBUFS);
5339 	}
5340 	newmsg = mtod(n, struct sadb_msg *);
5341 	newmsg->sadb_msg_errno = 0;
5342 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5343 
5344 	m_freem(m);
5345 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5346     }
5347 }
5348 
5349 /*
5350  * SADB_GET processing
5351  * receive
5352  *   <base, SA(*), address(SD)>
5353  * from the ikmpd, and get a SP and a SA to respond,
5354  * and send,
5355  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5356  *       (identity(SD),) (sensitivity)>
5357  * to the ikmpd.
5358  *
5359  * m will always be freed.
5360  */
5361 static int
5362 key_get(so, m, mhp)
5363 	struct socket *so;
5364 	struct mbuf *m;
5365 	const struct sadb_msghdr *mhp;
5366 {
5367 	INIT_VNET_IPSEC(curvnet);
5368 	struct sadb_sa *sa0;
5369 	struct sadb_address *src0, *dst0;
5370 	struct secasindex saidx;
5371 	struct secashead *sah;
5372 	struct secasvar *sav = NULL;
5373 	u_int16_t proto;
5374 
5375 	IPSEC_ASSERT(so != NULL, ("null socket"));
5376 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5377 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5378 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5379 
5380 	/* map satype to proto */
5381 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5382 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5383 			__func__));
5384 		return key_senderror(so, m, EINVAL);
5385 	}
5386 
5387 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5388 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5389 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5390 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5391 			__func__));
5392 		return key_senderror(so, m, EINVAL);
5393 	}
5394 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5395 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5396 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5397 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5398 			__func__));
5399 		return key_senderror(so, m, EINVAL);
5400 	}
5401 
5402 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5403 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5404 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5405 
5406 	/* XXX boundary check against sa_len */
5407 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5408 
5409 	/* get a SA header */
5410 	SAHTREE_LOCK();
5411 	LIST_FOREACH(sah, &V_sahtree, chain) {
5412 		if (sah->state == SADB_SASTATE_DEAD)
5413 			continue;
5414 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5415 			continue;
5416 
5417 		/* get a SA with SPI. */
5418 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5419 		if (sav)
5420 			break;
5421 	}
5422 	SAHTREE_UNLOCK();
5423 	if (sah == NULL) {
5424 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5425 		return key_senderror(so, m, ENOENT);
5426 	}
5427 
5428     {
5429 	struct mbuf *n;
5430 	u_int8_t satype;
5431 
5432 	/* map proto to satype */
5433 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5434 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5435 			__func__));
5436 		return key_senderror(so, m, EINVAL);
5437 	}
5438 
5439 	/* create new sadb_msg to reply. */
5440 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5441 	    mhp->msg->sadb_msg_pid);
5442 	if (!n)
5443 		return key_senderror(so, m, ENOBUFS);
5444 
5445 	m_freem(m);
5446 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5447     }
5448 }
5449 
5450 /* XXX make it sysctl-configurable? */
5451 static void
5452 key_getcomb_setlifetime(comb)
5453 	struct sadb_comb *comb;
5454 {
5455 
5456 	comb->sadb_comb_soft_allocations = 1;
5457 	comb->sadb_comb_hard_allocations = 1;
5458 	comb->sadb_comb_soft_bytes = 0;
5459 	comb->sadb_comb_hard_bytes = 0;
5460 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5461 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5462 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5463 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5464 }
5465 
5466 /*
5467  * XXX reorder combinations by preference
5468  * XXX no idea if the user wants ESP authentication or not
5469  */
5470 static struct mbuf *
5471 key_getcomb_esp()
5472 {
5473 	INIT_VNET_IPSEC(curvnet);
5474 	struct sadb_comb *comb;
5475 	struct enc_xform *algo;
5476 	struct mbuf *result = NULL, *m, *n;
5477 	int encmin;
5478 	int i, off, o;
5479 	int totlen;
5480 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5481 
5482 	m = NULL;
5483 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5484 		algo = esp_algorithm_lookup(i);
5485 		if (algo == NULL)
5486 			continue;
5487 
5488 		/* discard algorithms with key size smaller than system min */
5489 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5490 			continue;
5491 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5492 			encmin = V_ipsec_esp_keymin;
5493 		else
5494 			encmin = _BITS(algo->minkey);
5495 
5496 		if (V_ipsec_esp_auth)
5497 			m = key_getcomb_ah();
5498 		else {
5499 			IPSEC_ASSERT(l <= MLEN,
5500 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5501 			MGET(m, M_DONTWAIT, MT_DATA);
5502 			if (m) {
5503 				M_ALIGN(m, l);
5504 				m->m_len = l;
5505 				m->m_next = NULL;
5506 				bzero(mtod(m, caddr_t), m->m_len);
5507 			}
5508 		}
5509 		if (!m)
5510 			goto fail;
5511 
5512 		totlen = 0;
5513 		for (n = m; n; n = n->m_next)
5514 			totlen += n->m_len;
5515 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5516 
5517 		for (off = 0; off < totlen; off += l) {
5518 			n = m_pulldown(m, off, l, &o);
5519 			if (!n) {
5520 				/* m is already freed */
5521 				goto fail;
5522 			}
5523 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5524 			bzero(comb, sizeof(*comb));
5525 			key_getcomb_setlifetime(comb);
5526 			comb->sadb_comb_encrypt = i;
5527 			comb->sadb_comb_encrypt_minbits = encmin;
5528 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5529 		}
5530 
5531 		if (!result)
5532 			result = m;
5533 		else
5534 			m_cat(result, m);
5535 	}
5536 
5537 	return result;
5538 
5539  fail:
5540 	if (result)
5541 		m_freem(result);
5542 	return NULL;
5543 }
5544 
5545 static void
5546 key_getsizes_ah(
5547 	const struct auth_hash *ah,
5548 	int alg,
5549 	u_int16_t* min,
5550 	u_int16_t* max)
5551 {
5552 	INIT_VNET_IPSEC(curvnet);
5553 
5554 	*min = *max = ah->keysize;
5555 	if (ah->keysize == 0) {
5556 		/*
5557 		 * Transform takes arbitrary key size but algorithm
5558 		 * key size is restricted.  Enforce this here.
5559 		 */
5560 		switch (alg) {
5561 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5562 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5563 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5564 		default:
5565 			DPRINTF(("%s: unknown AH algorithm %u\n",
5566 				__func__, alg));
5567 			break;
5568 		}
5569 	}
5570 }
5571 
5572 /*
5573  * XXX reorder combinations by preference
5574  */
5575 static struct mbuf *
5576 key_getcomb_ah()
5577 {
5578 	INIT_VNET_IPSEC(curvnet);
5579 	struct sadb_comb *comb;
5580 	struct auth_hash *algo;
5581 	struct mbuf *m;
5582 	u_int16_t minkeysize, maxkeysize;
5583 	int i;
5584 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5585 
5586 	m = NULL;
5587 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5588 #if 1
5589 		/* we prefer HMAC algorithms, not old algorithms */
5590 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5591 			continue;
5592 #endif
5593 		algo = ah_algorithm_lookup(i);
5594 		if (!algo)
5595 			continue;
5596 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5597 		/* discard algorithms with key size smaller than system min */
5598 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5599 			continue;
5600 
5601 		if (!m) {
5602 			IPSEC_ASSERT(l <= MLEN,
5603 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5604 			MGET(m, M_DONTWAIT, MT_DATA);
5605 			if (m) {
5606 				M_ALIGN(m, l);
5607 				m->m_len = l;
5608 				m->m_next = NULL;
5609 			}
5610 		} else
5611 			M_PREPEND(m, l, M_DONTWAIT);
5612 		if (!m)
5613 			return NULL;
5614 
5615 		comb = mtod(m, struct sadb_comb *);
5616 		bzero(comb, sizeof(*comb));
5617 		key_getcomb_setlifetime(comb);
5618 		comb->sadb_comb_auth = i;
5619 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5620 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5621 	}
5622 
5623 	return m;
5624 }
5625 
5626 /*
5627  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5628  * XXX reorder combinations by preference
5629  */
5630 static struct mbuf *
5631 key_getcomb_ipcomp()
5632 {
5633 	struct sadb_comb *comb;
5634 	struct comp_algo *algo;
5635 	struct mbuf *m;
5636 	int i;
5637 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5638 
5639 	m = NULL;
5640 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5641 		algo = ipcomp_algorithm_lookup(i);
5642 		if (!algo)
5643 			continue;
5644 
5645 		if (!m) {
5646 			IPSEC_ASSERT(l <= MLEN,
5647 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5648 			MGET(m, M_DONTWAIT, MT_DATA);
5649 			if (m) {
5650 				M_ALIGN(m, l);
5651 				m->m_len = l;
5652 				m->m_next = NULL;
5653 			}
5654 		} else
5655 			M_PREPEND(m, l, M_DONTWAIT);
5656 		if (!m)
5657 			return NULL;
5658 
5659 		comb = mtod(m, struct sadb_comb *);
5660 		bzero(comb, sizeof(*comb));
5661 		key_getcomb_setlifetime(comb);
5662 		comb->sadb_comb_encrypt = i;
5663 		/* what should we set into sadb_comb_*_{min,max}bits? */
5664 	}
5665 
5666 	return m;
5667 }
5668 
5669 /*
5670  * XXX no way to pass mode (transport/tunnel) to userland
5671  * XXX replay checking?
5672  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5673  */
5674 static struct mbuf *
5675 key_getprop(saidx)
5676 	const struct secasindex *saidx;
5677 {
5678 	struct sadb_prop *prop;
5679 	struct mbuf *m, *n;
5680 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5681 	int totlen;
5682 
5683 	switch (saidx->proto)  {
5684 	case IPPROTO_ESP:
5685 		m = key_getcomb_esp();
5686 		break;
5687 	case IPPROTO_AH:
5688 		m = key_getcomb_ah();
5689 		break;
5690 	case IPPROTO_IPCOMP:
5691 		m = key_getcomb_ipcomp();
5692 		break;
5693 	default:
5694 		return NULL;
5695 	}
5696 
5697 	if (!m)
5698 		return NULL;
5699 	M_PREPEND(m, l, M_DONTWAIT);
5700 	if (!m)
5701 		return NULL;
5702 
5703 	totlen = 0;
5704 	for (n = m; n; n = n->m_next)
5705 		totlen += n->m_len;
5706 
5707 	prop = mtod(m, struct sadb_prop *);
5708 	bzero(prop, sizeof(*prop));
5709 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5710 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5711 	prop->sadb_prop_replay = 32;	/* XXX */
5712 
5713 	return m;
5714 }
5715 
5716 /*
5717  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5718  * send
5719  *   <base, SA, address(SD), (address(P)), x_policy,
5720  *       (identity(SD),) (sensitivity,) proposal>
5721  * to KMD, and expect to receive
5722  *   <base> with SADB_ACQUIRE if error occured,
5723  * or
5724  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5725  * from KMD by PF_KEY.
5726  *
5727  * XXX x_policy is outside of RFC2367 (KAME extension).
5728  * XXX sensitivity is not supported.
5729  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5730  * see comment for key_getcomb_ipcomp().
5731  *
5732  * OUT:
5733  *    0     : succeed
5734  *    others: error number
5735  */
5736 static int
5737 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5738 {
5739 	INIT_VNET_IPSEC(curvnet);
5740 	struct mbuf *result = NULL, *m;
5741 	struct secacq *newacq;
5742 	u_int8_t satype;
5743 	int error = -1;
5744 	u_int32_t seq;
5745 
5746 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5747 	satype = key_proto2satype(saidx->proto);
5748 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5749 
5750 	/*
5751 	 * We never do anything about acquirng SA.  There is anather
5752 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5753 	 * getting something message from IKEd.  In later case, to be
5754 	 * managed with ACQUIRING list.
5755 	 */
5756 	/* Get an entry to check whether sending message or not. */
5757 	if ((newacq = key_getacq(saidx)) != NULL) {
5758 		if (V_key_blockacq_count < newacq->count) {
5759 			/* reset counter and do send message. */
5760 			newacq->count = 0;
5761 		} else {
5762 			/* increment counter and do nothing. */
5763 			newacq->count++;
5764 			return 0;
5765 		}
5766 	} else {
5767 		/* make new entry for blocking to send SADB_ACQUIRE. */
5768 		if ((newacq = key_newacq(saidx)) == NULL)
5769 			return ENOBUFS;
5770 	}
5771 
5772 
5773 	seq = newacq->seq;
5774 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5775 	if (!m) {
5776 		error = ENOBUFS;
5777 		goto fail;
5778 	}
5779 	result = m;
5780 
5781 	/* set sadb_address for saidx's. */
5782 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5783 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5784 	if (!m) {
5785 		error = ENOBUFS;
5786 		goto fail;
5787 	}
5788 	m_cat(result, m);
5789 
5790 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5791 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5792 	if (!m) {
5793 		error = ENOBUFS;
5794 		goto fail;
5795 	}
5796 	m_cat(result, m);
5797 
5798 	/* XXX proxy address (optional) */
5799 
5800 	/* set sadb_x_policy */
5801 	if (sp) {
5802 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5803 		if (!m) {
5804 			error = ENOBUFS;
5805 			goto fail;
5806 		}
5807 		m_cat(result, m);
5808 	}
5809 
5810 	/* XXX identity (optional) */
5811 #if 0
5812 	if (idexttype && fqdn) {
5813 		/* create identity extension (FQDN) */
5814 		struct sadb_ident *id;
5815 		int fqdnlen;
5816 
5817 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5818 		id = (struct sadb_ident *)p;
5819 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5820 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5821 		id->sadb_ident_exttype = idexttype;
5822 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5823 		bcopy(fqdn, id + 1, fqdnlen);
5824 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5825 	}
5826 
5827 	if (idexttype) {
5828 		/* create identity extension (USERFQDN) */
5829 		struct sadb_ident *id;
5830 		int userfqdnlen;
5831 
5832 		if (userfqdn) {
5833 			/* +1 for terminating-NUL */
5834 			userfqdnlen = strlen(userfqdn) + 1;
5835 		} else
5836 			userfqdnlen = 0;
5837 		id = (struct sadb_ident *)p;
5838 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5839 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5840 		id->sadb_ident_exttype = idexttype;
5841 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5842 		/* XXX is it correct? */
5843 		if (curproc && curproc->p_cred)
5844 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5845 		if (userfqdn && userfqdnlen)
5846 			bcopy(userfqdn, id + 1, userfqdnlen);
5847 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5848 	}
5849 #endif
5850 
5851 	/* XXX sensitivity (optional) */
5852 
5853 	/* create proposal/combination extension */
5854 	m = key_getprop(saidx);
5855 #if 0
5856 	/*
5857 	 * spec conformant: always attach proposal/combination extension,
5858 	 * the problem is that we have no way to attach it for ipcomp,
5859 	 * due to the way sadb_comb is declared in RFC2367.
5860 	 */
5861 	if (!m) {
5862 		error = ENOBUFS;
5863 		goto fail;
5864 	}
5865 	m_cat(result, m);
5866 #else
5867 	/*
5868 	 * outside of spec; make proposal/combination extension optional.
5869 	 */
5870 	if (m)
5871 		m_cat(result, m);
5872 #endif
5873 
5874 	if ((result->m_flags & M_PKTHDR) == 0) {
5875 		error = EINVAL;
5876 		goto fail;
5877 	}
5878 
5879 	if (result->m_len < sizeof(struct sadb_msg)) {
5880 		result = m_pullup(result, sizeof(struct sadb_msg));
5881 		if (result == NULL) {
5882 			error = ENOBUFS;
5883 			goto fail;
5884 		}
5885 	}
5886 
5887 	result->m_pkthdr.len = 0;
5888 	for (m = result; m; m = m->m_next)
5889 		result->m_pkthdr.len += m->m_len;
5890 
5891 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5892 	    PFKEY_UNIT64(result->m_pkthdr.len);
5893 
5894 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5895 
5896  fail:
5897 	if (result)
5898 		m_freem(result);
5899 	return error;
5900 }
5901 
5902 static struct secacq *
5903 key_newacq(const struct secasindex *saidx)
5904 {
5905 	INIT_VNET_IPSEC(curvnet);
5906 	struct secacq *newacq;
5907 
5908 	/* get new entry */
5909 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5910 	if (newacq == NULL) {
5911 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5912 		return NULL;
5913 	}
5914 
5915 	/* copy secindex */
5916 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5917 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
5918 	newacq->created = time_second;
5919 	newacq->count = 0;
5920 
5921 	/* add to acqtree */
5922 	ACQ_LOCK();
5923 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
5924 	ACQ_UNLOCK();
5925 
5926 	return newacq;
5927 }
5928 
5929 static struct secacq *
5930 key_getacq(const struct secasindex *saidx)
5931 {
5932 	INIT_VNET_IPSEC(curvnet);
5933 	struct secacq *acq;
5934 
5935 	ACQ_LOCK();
5936 	LIST_FOREACH(acq, &V_acqtree, chain) {
5937 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5938 			break;
5939 	}
5940 	ACQ_UNLOCK();
5941 
5942 	return acq;
5943 }
5944 
5945 static struct secacq *
5946 key_getacqbyseq(seq)
5947 	u_int32_t seq;
5948 {
5949 	INIT_VNET_IPSEC(curvnet);
5950 	struct secacq *acq;
5951 
5952 	ACQ_LOCK();
5953 	LIST_FOREACH(acq, &V_acqtree, chain) {
5954 		if (acq->seq == seq)
5955 			break;
5956 	}
5957 	ACQ_UNLOCK();
5958 
5959 	return acq;
5960 }
5961 
5962 static struct secspacq *
5963 key_newspacq(spidx)
5964 	struct secpolicyindex *spidx;
5965 {
5966 	INIT_VNET_IPSEC(curvnet);
5967 	struct secspacq *acq;
5968 
5969 	/* get new entry */
5970 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5971 	if (acq == NULL) {
5972 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5973 		return NULL;
5974 	}
5975 
5976 	/* copy secindex */
5977 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5978 	acq->created = time_second;
5979 	acq->count = 0;
5980 
5981 	/* add to spacqtree */
5982 	SPACQ_LOCK();
5983 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
5984 	SPACQ_UNLOCK();
5985 
5986 	return acq;
5987 }
5988 
5989 static struct secspacq *
5990 key_getspacq(spidx)
5991 	struct secpolicyindex *spidx;
5992 {
5993 	INIT_VNET_IPSEC(curvnet);
5994 	struct secspacq *acq;
5995 
5996 	SPACQ_LOCK();
5997 	LIST_FOREACH(acq, &V_spacqtree, chain) {
5998 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5999 			/* NB: return holding spacq_lock */
6000 			return acq;
6001 		}
6002 	}
6003 	SPACQ_UNLOCK();
6004 
6005 	return NULL;
6006 }
6007 
6008 /*
6009  * SADB_ACQUIRE processing,
6010  * in first situation, is receiving
6011  *   <base>
6012  * from the ikmpd, and clear sequence of its secasvar entry.
6013  *
6014  * In second situation, is receiving
6015  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6016  * from a user land process, and return
6017  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6018  * to the socket.
6019  *
6020  * m will always be freed.
6021  */
6022 static int
6023 key_acquire2(so, m, mhp)
6024 	struct socket *so;
6025 	struct mbuf *m;
6026 	const struct sadb_msghdr *mhp;
6027 {
6028 	INIT_VNET_IPSEC(curvnet);
6029 	const struct sadb_address *src0, *dst0;
6030 	struct secasindex saidx;
6031 	struct secashead *sah;
6032 	u_int16_t proto;
6033 	int error;
6034 
6035 	IPSEC_ASSERT(so != NULL, ("null socket"));
6036 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6037 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6038 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6039 
6040 	/*
6041 	 * Error message from KMd.
6042 	 * We assume that if error was occured in IKEd, the length of PFKEY
6043 	 * message is equal to the size of sadb_msg structure.
6044 	 * We do not raise error even if error occured in this function.
6045 	 */
6046 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6047 		struct secacq *acq;
6048 
6049 		/* check sequence number */
6050 		if (mhp->msg->sadb_msg_seq == 0) {
6051 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6052 				"number.\n", __func__));
6053 			m_freem(m);
6054 			return 0;
6055 		}
6056 
6057 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6058 			/*
6059 			 * the specified larval SA is already gone, or we got
6060 			 * a bogus sequence number.  we can silently ignore it.
6061 			 */
6062 			m_freem(m);
6063 			return 0;
6064 		}
6065 
6066 		/* reset acq counter in order to deletion by timehander. */
6067 		acq->created = time_second;
6068 		acq->count = 0;
6069 		m_freem(m);
6070 		return 0;
6071 	}
6072 
6073 	/*
6074 	 * This message is from user land.
6075 	 */
6076 
6077 	/* map satype to proto */
6078 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6079 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6080 			__func__));
6081 		return key_senderror(so, m, EINVAL);
6082 	}
6083 
6084 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6085 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6086 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6087 		/* error */
6088 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6089 			__func__));
6090 		return key_senderror(so, m, EINVAL);
6091 	}
6092 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6093 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6094 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6095 		/* error */
6096 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6097 			__func__));
6098 		return key_senderror(so, m, EINVAL);
6099 	}
6100 
6101 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6102 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6103 
6104 	/* XXX boundary check against sa_len */
6105 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6106 
6107 	/* get a SA index */
6108 	SAHTREE_LOCK();
6109 	LIST_FOREACH(sah, &V_sahtree, chain) {
6110 		if (sah->state == SADB_SASTATE_DEAD)
6111 			continue;
6112 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6113 			break;
6114 	}
6115 	SAHTREE_UNLOCK();
6116 	if (sah != NULL) {
6117 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6118 		return key_senderror(so, m, EEXIST);
6119 	}
6120 
6121 	error = key_acquire(&saidx, NULL);
6122 	if (error != 0) {
6123 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6124 			__func__, mhp->msg->sadb_msg_errno));
6125 		return key_senderror(so, m, error);
6126 	}
6127 
6128 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6129 }
6130 
6131 /*
6132  * SADB_REGISTER processing.
6133  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6134  * receive
6135  *   <base>
6136  * from the ikmpd, and register a socket to send PF_KEY messages,
6137  * and send
6138  *   <base, supported>
6139  * to KMD by PF_KEY.
6140  * If socket is detached, must free from regnode.
6141  *
6142  * m will always be freed.
6143  */
6144 static int
6145 key_register(so, m, mhp)
6146 	struct socket *so;
6147 	struct mbuf *m;
6148 	const struct sadb_msghdr *mhp;
6149 {
6150 	INIT_VNET_IPSEC(curvnet);
6151 	struct secreg *reg, *newreg = 0;
6152 
6153 	IPSEC_ASSERT(so != NULL, ("null socket"));
6154 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6155 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6156 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6157 
6158 	/* check for invalid register message */
6159 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6160 		return key_senderror(so, m, EINVAL);
6161 
6162 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6163 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6164 		goto setmsg;
6165 
6166 	/* check whether existing or not */
6167 	REGTREE_LOCK();
6168 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6169 		if (reg->so == so) {
6170 			REGTREE_UNLOCK();
6171 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6172 				__func__));
6173 			return key_senderror(so, m, EEXIST);
6174 		}
6175 	}
6176 
6177 	/* create regnode */
6178 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6179 	if (newreg == NULL) {
6180 		REGTREE_UNLOCK();
6181 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6182 		return key_senderror(so, m, ENOBUFS);
6183 	}
6184 
6185 	newreg->so = so;
6186 	((struct keycb *)sotorawcb(so))->kp_registered++;
6187 
6188 	/* add regnode to regtree. */
6189 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6190 	REGTREE_UNLOCK();
6191 
6192   setmsg:
6193     {
6194 	struct mbuf *n;
6195 	struct sadb_msg *newmsg;
6196 	struct sadb_supported *sup;
6197 	u_int len, alen, elen;
6198 	int off;
6199 	int i;
6200 	struct sadb_alg *alg;
6201 
6202 	/* create new sadb_msg to reply. */
6203 	alen = 0;
6204 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6205 		if (ah_algorithm_lookup(i))
6206 			alen += sizeof(struct sadb_alg);
6207 	}
6208 	if (alen)
6209 		alen += sizeof(struct sadb_supported);
6210 	elen = 0;
6211 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6212 		if (esp_algorithm_lookup(i))
6213 			elen += sizeof(struct sadb_alg);
6214 	}
6215 	if (elen)
6216 		elen += sizeof(struct sadb_supported);
6217 
6218 	len = sizeof(struct sadb_msg) + alen + elen;
6219 
6220 	if (len > MCLBYTES)
6221 		return key_senderror(so, m, ENOBUFS);
6222 
6223 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6224 	if (len > MHLEN) {
6225 		MCLGET(n, M_DONTWAIT);
6226 		if ((n->m_flags & M_EXT) == 0) {
6227 			m_freem(n);
6228 			n = NULL;
6229 		}
6230 	}
6231 	if (!n)
6232 		return key_senderror(so, m, ENOBUFS);
6233 
6234 	n->m_pkthdr.len = n->m_len = len;
6235 	n->m_next = NULL;
6236 	off = 0;
6237 
6238 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6239 	newmsg = mtod(n, struct sadb_msg *);
6240 	newmsg->sadb_msg_errno = 0;
6241 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6242 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6243 
6244 	/* for authentication algorithm */
6245 	if (alen) {
6246 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6247 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6248 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6249 		off += PFKEY_ALIGN8(sizeof(*sup));
6250 
6251 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6252 			struct auth_hash *aalgo;
6253 			u_int16_t minkeysize, maxkeysize;
6254 
6255 			aalgo = ah_algorithm_lookup(i);
6256 			if (!aalgo)
6257 				continue;
6258 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6259 			alg->sadb_alg_id = i;
6260 			alg->sadb_alg_ivlen = 0;
6261 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6262 			alg->sadb_alg_minbits = _BITS(minkeysize);
6263 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6264 			off += PFKEY_ALIGN8(sizeof(*alg));
6265 		}
6266 	}
6267 
6268 	/* for encryption algorithm */
6269 	if (elen) {
6270 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6271 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6272 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6273 		off += PFKEY_ALIGN8(sizeof(*sup));
6274 
6275 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6276 			struct enc_xform *ealgo;
6277 
6278 			ealgo = esp_algorithm_lookup(i);
6279 			if (!ealgo)
6280 				continue;
6281 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6282 			alg->sadb_alg_id = i;
6283 			alg->sadb_alg_ivlen = ealgo->blocksize;
6284 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6285 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6286 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6287 		}
6288 	}
6289 
6290 	IPSEC_ASSERT(off == len,
6291 		("length assumption failed (off %u len %u)", off, len));
6292 
6293 	m_freem(m);
6294 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6295     }
6296 }
6297 
6298 /*
6299  * free secreg entry registered.
6300  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6301  */
6302 void
6303 key_freereg(struct socket *so)
6304 {
6305 	INIT_VNET_IPSEC(curvnet);
6306 	struct secreg *reg;
6307 	int i;
6308 
6309 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6310 
6311 	/*
6312 	 * check whether existing or not.
6313 	 * check all type of SA, because there is a potential that
6314 	 * one socket is registered to multiple type of SA.
6315 	 */
6316 	REGTREE_LOCK();
6317 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6318 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6319 			if (reg->so == so && __LIST_CHAINED(reg)) {
6320 				LIST_REMOVE(reg, chain);
6321 				free(reg, M_IPSEC_SAR);
6322 				break;
6323 			}
6324 		}
6325 	}
6326 	REGTREE_UNLOCK();
6327 }
6328 
6329 /*
6330  * SADB_EXPIRE processing
6331  * send
6332  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6333  * to KMD by PF_KEY.
6334  * NOTE: We send only soft lifetime extension.
6335  *
6336  * OUT:	0	: succeed
6337  *	others	: error number
6338  */
6339 static int
6340 key_expire(struct secasvar *sav)
6341 {
6342 	int s;
6343 	int satype;
6344 	struct mbuf *result = NULL, *m;
6345 	int len;
6346 	int error = -1;
6347 	struct sadb_lifetime *lt;
6348 
6349 	/* XXX: Why do we lock ? */
6350 	s = splnet();	/*called from softclock()*/
6351 
6352 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6353 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6354 
6355 	/* set msg header */
6356 	satype = key_proto2satype(sav->sah->saidx.proto);
6357 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6358 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6359 	if (!m) {
6360 		error = ENOBUFS;
6361 		goto fail;
6362 	}
6363 	result = m;
6364 
6365 	/* create SA extension */
6366 	m = key_setsadbsa(sav);
6367 	if (!m) {
6368 		error = ENOBUFS;
6369 		goto fail;
6370 	}
6371 	m_cat(result, m);
6372 
6373 	/* create SA extension */
6374 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6375 			sav->replay ? sav->replay->count : 0,
6376 			sav->sah->saidx.reqid);
6377 	if (!m) {
6378 		error = ENOBUFS;
6379 		goto fail;
6380 	}
6381 	m_cat(result, m);
6382 
6383 	/* create lifetime extension (current and soft) */
6384 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6385 	m = key_alloc_mbuf(len);
6386 	if (!m || m->m_next) {	/*XXX*/
6387 		if (m)
6388 			m_freem(m);
6389 		error = ENOBUFS;
6390 		goto fail;
6391 	}
6392 	bzero(mtod(m, caddr_t), len);
6393 	lt = mtod(m, struct sadb_lifetime *);
6394 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6395 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6396 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6397 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6398 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6399 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6400 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6401 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6402 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6403 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6404 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6405 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6406 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6407 	m_cat(result, m);
6408 
6409 	/* set sadb_address for source */
6410 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6411 	    &sav->sah->saidx.src.sa,
6412 	    FULLMASK, IPSEC_ULPROTO_ANY);
6413 	if (!m) {
6414 		error = ENOBUFS;
6415 		goto fail;
6416 	}
6417 	m_cat(result, m);
6418 
6419 	/* set sadb_address for destination */
6420 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6421 	    &sav->sah->saidx.dst.sa,
6422 	    FULLMASK, IPSEC_ULPROTO_ANY);
6423 	if (!m) {
6424 		error = ENOBUFS;
6425 		goto fail;
6426 	}
6427 	m_cat(result, m);
6428 
6429 	if ((result->m_flags & M_PKTHDR) == 0) {
6430 		error = EINVAL;
6431 		goto fail;
6432 	}
6433 
6434 	if (result->m_len < sizeof(struct sadb_msg)) {
6435 		result = m_pullup(result, sizeof(struct sadb_msg));
6436 		if (result == NULL) {
6437 			error = ENOBUFS;
6438 			goto fail;
6439 		}
6440 	}
6441 
6442 	result->m_pkthdr.len = 0;
6443 	for (m = result; m; m = m->m_next)
6444 		result->m_pkthdr.len += m->m_len;
6445 
6446 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6447 	    PFKEY_UNIT64(result->m_pkthdr.len);
6448 
6449 	splx(s);
6450 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6451 
6452  fail:
6453 	if (result)
6454 		m_freem(result);
6455 	splx(s);
6456 	return error;
6457 }
6458 
6459 /*
6460  * SADB_FLUSH processing
6461  * receive
6462  *   <base>
6463  * from the ikmpd, and free all entries in secastree.
6464  * and send,
6465  *   <base>
6466  * to the ikmpd.
6467  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6468  *
6469  * m will always be freed.
6470  */
6471 static int
6472 key_flush(so, m, mhp)
6473 	struct socket *so;
6474 	struct mbuf *m;
6475 	const struct sadb_msghdr *mhp;
6476 {
6477 	INIT_VNET_IPSEC(curvnet);
6478 	struct sadb_msg *newmsg;
6479 	struct secashead *sah, *nextsah;
6480 	struct secasvar *sav, *nextsav;
6481 	u_int16_t proto;
6482 	u_int8_t state;
6483 	u_int stateidx;
6484 
6485 	IPSEC_ASSERT(so != NULL, ("null socket"));
6486 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6487 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6488 
6489 	/* map satype to proto */
6490 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6491 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6492 			__func__));
6493 		return key_senderror(so, m, EINVAL);
6494 	}
6495 
6496 	/* no SATYPE specified, i.e. flushing all SA. */
6497 	SAHTREE_LOCK();
6498 	for (sah = LIST_FIRST(&V_sahtree);
6499 	     sah != NULL;
6500 	     sah = nextsah) {
6501 		nextsah = LIST_NEXT(sah, chain);
6502 
6503 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6504 		 && proto != sah->saidx.proto)
6505 			continue;
6506 
6507 		for (stateidx = 0;
6508 		     stateidx < _ARRAYLEN(saorder_state_alive);
6509 		     stateidx++) {
6510 			state = saorder_state_any[stateidx];
6511 			for (sav = LIST_FIRST(&sah->savtree[state]);
6512 			     sav != NULL;
6513 			     sav = nextsav) {
6514 
6515 				nextsav = LIST_NEXT(sav, chain);
6516 
6517 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6518 				KEY_FREESAV(&sav);
6519 			}
6520 		}
6521 
6522 		sah->state = SADB_SASTATE_DEAD;
6523 	}
6524 	SAHTREE_UNLOCK();
6525 
6526 	if (m->m_len < sizeof(struct sadb_msg) ||
6527 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6528 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6529 		return key_senderror(so, m, ENOBUFS);
6530 	}
6531 
6532 	if (m->m_next)
6533 		m_freem(m->m_next);
6534 	m->m_next = NULL;
6535 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6536 	newmsg = mtod(m, struct sadb_msg *);
6537 	newmsg->sadb_msg_errno = 0;
6538 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6539 
6540 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6541 }
6542 
6543 /*
6544  * SADB_DUMP processing
6545  * dump all entries including status of DEAD in SAD.
6546  * receive
6547  *   <base>
6548  * from the ikmpd, and dump all secasvar leaves
6549  * and send,
6550  *   <base> .....
6551  * to the ikmpd.
6552  *
6553  * m will always be freed.
6554  */
6555 static int
6556 key_dump(so, m, mhp)
6557 	struct socket *so;
6558 	struct mbuf *m;
6559 	const struct sadb_msghdr *mhp;
6560 {
6561 	INIT_VNET_IPSEC(curvnet);
6562 	struct secashead *sah;
6563 	struct secasvar *sav;
6564 	u_int16_t proto;
6565 	u_int stateidx;
6566 	u_int8_t satype;
6567 	u_int8_t state;
6568 	int cnt;
6569 	struct sadb_msg *newmsg;
6570 	struct mbuf *n;
6571 
6572 	IPSEC_ASSERT(so != NULL, ("null socket"));
6573 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6574 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6575 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6576 
6577 	/* map satype to proto */
6578 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6579 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6580 			__func__));
6581 		return key_senderror(so, m, EINVAL);
6582 	}
6583 
6584 	/* count sav entries to be sent to the userland. */
6585 	cnt = 0;
6586 	SAHTREE_LOCK();
6587 	LIST_FOREACH(sah, &V_sahtree, chain) {
6588 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6589 		 && proto != sah->saidx.proto)
6590 			continue;
6591 
6592 		for (stateidx = 0;
6593 		     stateidx < _ARRAYLEN(saorder_state_any);
6594 		     stateidx++) {
6595 			state = saorder_state_any[stateidx];
6596 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6597 				cnt++;
6598 			}
6599 		}
6600 	}
6601 
6602 	if (cnt == 0) {
6603 		SAHTREE_UNLOCK();
6604 		return key_senderror(so, m, ENOENT);
6605 	}
6606 
6607 	/* send this to the userland, one at a time. */
6608 	newmsg = NULL;
6609 	LIST_FOREACH(sah, &V_sahtree, chain) {
6610 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6611 		 && proto != sah->saidx.proto)
6612 			continue;
6613 
6614 		/* map proto to satype */
6615 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6616 			SAHTREE_UNLOCK();
6617 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6618 				"SAD.\n", __func__));
6619 			return key_senderror(so, m, EINVAL);
6620 		}
6621 
6622 		for (stateidx = 0;
6623 		     stateidx < _ARRAYLEN(saorder_state_any);
6624 		     stateidx++) {
6625 			state = saorder_state_any[stateidx];
6626 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6627 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6628 				    --cnt, mhp->msg->sadb_msg_pid);
6629 				if (!n) {
6630 					SAHTREE_UNLOCK();
6631 					return key_senderror(so, m, ENOBUFS);
6632 				}
6633 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6634 			}
6635 		}
6636 	}
6637 	SAHTREE_UNLOCK();
6638 
6639 	m_freem(m);
6640 	return 0;
6641 }
6642 
6643 /*
6644  * SADB_X_PROMISC processing
6645  *
6646  * m will always be freed.
6647  */
6648 static int
6649 key_promisc(so, m, mhp)
6650 	struct socket *so;
6651 	struct mbuf *m;
6652 	const struct sadb_msghdr *mhp;
6653 {
6654 	int olen;
6655 
6656 	IPSEC_ASSERT(so != NULL, ("null socket"));
6657 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6658 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6659 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6660 
6661 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6662 
6663 	if (olen < sizeof(struct sadb_msg)) {
6664 #if 1
6665 		return key_senderror(so, m, EINVAL);
6666 #else
6667 		m_freem(m);
6668 		return 0;
6669 #endif
6670 	} else if (olen == sizeof(struct sadb_msg)) {
6671 		/* enable/disable promisc mode */
6672 		struct keycb *kp;
6673 
6674 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6675 			return key_senderror(so, m, EINVAL);
6676 		mhp->msg->sadb_msg_errno = 0;
6677 		switch (mhp->msg->sadb_msg_satype) {
6678 		case 0:
6679 		case 1:
6680 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6681 			break;
6682 		default:
6683 			return key_senderror(so, m, EINVAL);
6684 		}
6685 
6686 		/* send the original message back to everyone */
6687 		mhp->msg->sadb_msg_errno = 0;
6688 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6689 	} else {
6690 		/* send packet as is */
6691 
6692 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6693 
6694 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6695 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6696 	}
6697 }
6698 
6699 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6700 		const struct sadb_msghdr *)) = {
6701 	NULL,		/* SADB_RESERVED */
6702 	key_getspi,	/* SADB_GETSPI */
6703 	key_update,	/* SADB_UPDATE */
6704 	key_add,	/* SADB_ADD */
6705 	key_delete,	/* SADB_DELETE */
6706 	key_get,	/* SADB_GET */
6707 	key_acquire2,	/* SADB_ACQUIRE */
6708 	key_register,	/* SADB_REGISTER */
6709 	NULL,		/* SADB_EXPIRE */
6710 	key_flush,	/* SADB_FLUSH */
6711 	key_dump,	/* SADB_DUMP */
6712 	key_promisc,	/* SADB_X_PROMISC */
6713 	NULL,		/* SADB_X_PCHANGE */
6714 	key_spdadd,	/* SADB_X_SPDUPDATE */
6715 	key_spdadd,	/* SADB_X_SPDADD */
6716 	key_spddelete,	/* SADB_X_SPDDELETE */
6717 	key_spdget,	/* SADB_X_SPDGET */
6718 	NULL,		/* SADB_X_SPDACQUIRE */
6719 	key_spddump,	/* SADB_X_SPDDUMP */
6720 	key_spdflush,	/* SADB_X_SPDFLUSH */
6721 	key_spdadd,	/* SADB_X_SPDSETIDX */
6722 	NULL,		/* SADB_X_SPDEXPIRE */
6723 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6724 };
6725 
6726 /*
6727  * parse sadb_msg buffer to process PFKEYv2,
6728  * and create a data to response if needed.
6729  * I think to be dealed with mbuf directly.
6730  * IN:
6731  *     msgp  : pointer to pointer to a received buffer pulluped.
6732  *             This is rewrited to response.
6733  *     so    : pointer to socket.
6734  * OUT:
6735  *    length for buffer to send to user process.
6736  */
6737 int
6738 key_parse(m, so)
6739 	struct mbuf *m;
6740 	struct socket *so;
6741 {
6742 	INIT_VNET_IPSEC(curvnet);
6743 	struct sadb_msg *msg;
6744 	struct sadb_msghdr mh;
6745 	u_int orglen;
6746 	int error;
6747 	int target;
6748 
6749 	IPSEC_ASSERT(so != NULL, ("null socket"));
6750 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6751 
6752 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6753 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6754 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6755 		kdebug_sadb(msg));
6756 #endif
6757 
6758 	if (m->m_len < sizeof(struct sadb_msg)) {
6759 		m = m_pullup(m, sizeof(struct sadb_msg));
6760 		if (!m)
6761 			return ENOBUFS;
6762 	}
6763 	msg = mtod(m, struct sadb_msg *);
6764 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6765 	target = KEY_SENDUP_ONE;
6766 
6767 	if ((m->m_flags & M_PKTHDR) == 0 ||
6768 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6769 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6770 		V_pfkeystat.out_invlen++;
6771 		error = EINVAL;
6772 		goto senderror;
6773 	}
6774 
6775 	if (msg->sadb_msg_version != PF_KEY_V2) {
6776 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6777 		    __func__, msg->sadb_msg_version));
6778 		V_pfkeystat.out_invver++;
6779 		error = EINVAL;
6780 		goto senderror;
6781 	}
6782 
6783 	if (msg->sadb_msg_type > SADB_MAX) {
6784 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6785 		    __func__, msg->sadb_msg_type));
6786 		V_pfkeystat.out_invmsgtype++;
6787 		error = EINVAL;
6788 		goto senderror;
6789 	}
6790 
6791 	/* for old-fashioned code - should be nuked */
6792 	if (m->m_pkthdr.len > MCLBYTES) {
6793 		m_freem(m);
6794 		return ENOBUFS;
6795 	}
6796 	if (m->m_next) {
6797 		struct mbuf *n;
6798 
6799 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6800 		if (n && m->m_pkthdr.len > MHLEN) {
6801 			MCLGET(n, M_DONTWAIT);
6802 			if ((n->m_flags & M_EXT) == 0) {
6803 				m_free(n);
6804 				n = NULL;
6805 			}
6806 		}
6807 		if (!n) {
6808 			m_freem(m);
6809 			return ENOBUFS;
6810 		}
6811 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6812 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6813 		n->m_next = NULL;
6814 		m_freem(m);
6815 		m = n;
6816 	}
6817 
6818 	/* align the mbuf chain so that extensions are in contiguous region. */
6819 	error = key_align(m, &mh);
6820 	if (error)
6821 		return error;
6822 
6823 	msg = mh.msg;
6824 
6825 	/* check SA type */
6826 	switch (msg->sadb_msg_satype) {
6827 	case SADB_SATYPE_UNSPEC:
6828 		switch (msg->sadb_msg_type) {
6829 		case SADB_GETSPI:
6830 		case SADB_UPDATE:
6831 		case SADB_ADD:
6832 		case SADB_DELETE:
6833 		case SADB_GET:
6834 		case SADB_ACQUIRE:
6835 		case SADB_EXPIRE:
6836 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6837 			    "when msg type=%u.\n", __func__,
6838 			    msg->sadb_msg_type));
6839 			V_pfkeystat.out_invsatype++;
6840 			error = EINVAL;
6841 			goto senderror;
6842 		}
6843 		break;
6844 	case SADB_SATYPE_AH:
6845 	case SADB_SATYPE_ESP:
6846 	case SADB_X_SATYPE_IPCOMP:
6847 	case SADB_X_SATYPE_TCPSIGNATURE:
6848 		switch (msg->sadb_msg_type) {
6849 		case SADB_X_SPDADD:
6850 		case SADB_X_SPDDELETE:
6851 		case SADB_X_SPDGET:
6852 		case SADB_X_SPDDUMP:
6853 		case SADB_X_SPDFLUSH:
6854 		case SADB_X_SPDSETIDX:
6855 		case SADB_X_SPDUPDATE:
6856 		case SADB_X_SPDDELETE2:
6857 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6858 				__func__, msg->sadb_msg_type));
6859 			V_pfkeystat.out_invsatype++;
6860 			error = EINVAL;
6861 			goto senderror;
6862 		}
6863 		break;
6864 	case SADB_SATYPE_RSVP:
6865 	case SADB_SATYPE_OSPFV2:
6866 	case SADB_SATYPE_RIPV2:
6867 	case SADB_SATYPE_MIP:
6868 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6869 			__func__, msg->sadb_msg_satype));
6870 		V_pfkeystat.out_invsatype++;
6871 		error = EOPNOTSUPP;
6872 		goto senderror;
6873 	case 1:	/* XXX: What does it do? */
6874 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6875 			break;
6876 		/*FALLTHROUGH*/
6877 	default:
6878 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6879 			__func__, msg->sadb_msg_satype));
6880 		V_pfkeystat.out_invsatype++;
6881 		error = EINVAL;
6882 		goto senderror;
6883 	}
6884 
6885 	/* check field of upper layer protocol and address family */
6886 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6887 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6888 		struct sadb_address *src0, *dst0;
6889 		u_int plen;
6890 
6891 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6892 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6893 
6894 		/* check upper layer protocol */
6895 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6896 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6897 				"mismatched.\n", __func__));
6898 			V_pfkeystat.out_invaddr++;
6899 			error = EINVAL;
6900 			goto senderror;
6901 		}
6902 
6903 		/* check family */
6904 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6905 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6906 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6907 				__func__));
6908 			V_pfkeystat.out_invaddr++;
6909 			error = EINVAL;
6910 			goto senderror;
6911 		}
6912 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6913 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6914 			ipseclog((LOG_DEBUG, "%s: address struct size "
6915 				"mismatched.\n", __func__));
6916 			V_pfkeystat.out_invaddr++;
6917 			error = EINVAL;
6918 			goto senderror;
6919 		}
6920 
6921 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6922 		case AF_INET:
6923 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6924 			    sizeof(struct sockaddr_in)) {
6925 				V_pfkeystat.out_invaddr++;
6926 				error = EINVAL;
6927 				goto senderror;
6928 			}
6929 			break;
6930 		case AF_INET6:
6931 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6932 			    sizeof(struct sockaddr_in6)) {
6933 				V_pfkeystat.out_invaddr++;
6934 				error = EINVAL;
6935 				goto senderror;
6936 			}
6937 			break;
6938 		default:
6939 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6940 				__func__));
6941 			V_pfkeystat.out_invaddr++;
6942 			error = EAFNOSUPPORT;
6943 			goto senderror;
6944 		}
6945 
6946 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6947 		case AF_INET:
6948 			plen = sizeof(struct in_addr) << 3;
6949 			break;
6950 		case AF_INET6:
6951 			plen = sizeof(struct in6_addr) << 3;
6952 			break;
6953 		default:
6954 			plen = 0;	/*fool gcc*/
6955 			break;
6956 		}
6957 
6958 		/* check max prefix length */
6959 		if (src0->sadb_address_prefixlen > plen ||
6960 		    dst0->sadb_address_prefixlen > plen) {
6961 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6962 				__func__));
6963 			V_pfkeystat.out_invaddr++;
6964 			error = EINVAL;
6965 			goto senderror;
6966 		}
6967 
6968 		/*
6969 		 * prefixlen == 0 is valid because there can be a case when
6970 		 * all addresses are matched.
6971 		 */
6972 	}
6973 
6974 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6975 	    key_typesw[msg->sadb_msg_type] == NULL) {
6976 		V_pfkeystat.out_invmsgtype++;
6977 		error = EINVAL;
6978 		goto senderror;
6979 	}
6980 
6981 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6982 
6983 senderror:
6984 	msg->sadb_msg_errno = error;
6985 	return key_sendup_mbuf(so, m, target);
6986 }
6987 
6988 static int
6989 key_senderror(so, m, code)
6990 	struct socket *so;
6991 	struct mbuf *m;
6992 	int code;
6993 {
6994 	struct sadb_msg *msg;
6995 
6996 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6997 		("mbuf too small, len %u", m->m_len));
6998 
6999 	msg = mtod(m, struct sadb_msg *);
7000 	msg->sadb_msg_errno = code;
7001 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7002 }
7003 
7004 /*
7005  * set the pointer to each header into message buffer.
7006  * m will be freed on error.
7007  * XXX larger-than-MCLBYTES extension?
7008  */
7009 static int
7010 key_align(m, mhp)
7011 	struct mbuf *m;
7012 	struct sadb_msghdr *mhp;
7013 {
7014 	INIT_VNET_IPSEC(curvnet);
7015 	struct mbuf *n;
7016 	struct sadb_ext *ext;
7017 	size_t off, end;
7018 	int extlen;
7019 	int toff;
7020 
7021 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7022 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7023 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7024 		("mbuf too small, len %u", m->m_len));
7025 
7026 	/* initialize */
7027 	bzero(mhp, sizeof(*mhp));
7028 
7029 	mhp->msg = mtod(m, struct sadb_msg *);
7030 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7031 
7032 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7033 	extlen = end;	/*just in case extlen is not updated*/
7034 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7035 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7036 		if (!n) {
7037 			/* m is already freed */
7038 			return ENOBUFS;
7039 		}
7040 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7041 
7042 		/* set pointer */
7043 		switch (ext->sadb_ext_type) {
7044 		case SADB_EXT_SA:
7045 		case SADB_EXT_ADDRESS_SRC:
7046 		case SADB_EXT_ADDRESS_DST:
7047 		case SADB_EXT_ADDRESS_PROXY:
7048 		case SADB_EXT_LIFETIME_CURRENT:
7049 		case SADB_EXT_LIFETIME_HARD:
7050 		case SADB_EXT_LIFETIME_SOFT:
7051 		case SADB_EXT_KEY_AUTH:
7052 		case SADB_EXT_KEY_ENCRYPT:
7053 		case SADB_EXT_IDENTITY_SRC:
7054 		case SADB_EXT_IDENTITY_DST:
7055 		case SADB_EXT_SENSITIVITY:
7056 		case SADB_EXT_PROPOSAL:
7057 		case SADB_EXT_SUPPORTED_AUTH:
7058 		case SADB_EXT_SUPPORTED_ENCRYPT:
7059 		case SADB_EXT_SPIRANGE:
7060 		case SADB_X_EXT_POLICY:
7061 		case SADB_X_EXT_SA2:
7062 			/* duplicate check */
7063 			/*
7064 			 * XXX Are there duplication payloads of either
7065 			 * KEY_AUTH or KEY_ENCRYPT ?
7066 			 */
7067 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7068 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7069 					"%u\n", __func__, ext->sadb_ext_type));
7070 				m_freem(m);
7071 				V_pfkeystat.out_dupext++;
7072 				return EINVAL;
7073 			}
7074 			break;
7075 		default:
7076 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7077 				__func__, ext->sadb_ext_type));
7078 			m_freem(m);
7079 			V_pfkeystat.out_invexttype++;
7080 			return EINVAL;
7081 		}
7082 
7083 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7084 
7085 		if (key_validate_ext(ext, extlen)) {
7086 			m_freem(m);
7087 			V_pfkeystat.out_invlen++;
7088 			return EINVAL;
7089 		}
7090 
7091 		n = m_pulldown(m, off, extlen, &toff);
7092 		if (!n) {
7093 			/* m is already freed */
7094 			return ENOBUFS;
7095 		}
7096 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7097 
7098 		mhp->ext[ext->sadb_ext_type] = ext;
7099 		mhp->extoff[ext->sadb_ext_type] = off;
7100 		mhp->extlen[ext->sadb_ext_type] = extlen;
7101 	}
7102 
7103 	if (off != end) {
7104 		m_freem(m);
7105 		V_pfkeystat.out_invlen++;
7106 		return EINVAL;
7107 	}
7108 
7109 	return 0;
7110 }
7111 
7112 static int
7113 key_validate_ext(ext, len)
7114 	const struct sadb_ext *ext;
7115 	int len;
7116 {
7117 	const struct sockaddr *sa;
7118 	enum { NONE, ADDR } checktype = NONE;
7119 	int baselen = 0;
7120 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7121 
7122 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7123 		return EINVAL;
7124 
7125 	/* if it does not match minimum/maximum length, bail */
7126 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7127 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7128 		return EINVAL;
7129 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7130 		return EINVAL;
7131 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7132 		return EINVAL;
7133 
7134 	/* more checks based on sadb_ext_type XXX need more */
7135 	switch (ext->sadb_ext_type) {
7136 	case SADB_EXT_ADDRESS_SRC:
7137 	case SADB_EXT_ADDRESS_DST:
7138 	case SADB_EXT_ADDRESS_PROXY:
7139 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7140 		checktype = ADDR;
7141 		break;
7142 	case SADB_EXT_IDENTITY_SRC:
7143 	case SADB_EXT_IDENTITY_DST:
7144 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7145 		    SADB_X_IDENTTYPE_ADDR) {
7146 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7147 			checktype = ADDR;
7148 		} else
7149 			checktype = NONE;
7150 		break;
7151 	default:
7152 		checktype = NONE;
7153 		break;
7154 	}
7155 
7156 	switch (checktype) {
7157 	case NONE:
7158 		break;
7159 	case ADDR:
7160 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7161 		if (len < baselen + sal)
7162 			return EINVAL;
7163 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7164 			return EINVAL;
7165 		break;
7166 	}
7167 
7168 	return 0;
7169 }
7170 
7171 void
7172 key_init(void)
7173 {
7174 	INIT_VNET_IPSEC(curvnet);
7175 	int i;
7176 
7177 	V_key_debug_level = 0;
7178 	V_key_spi_trycnt = 1000;
7179 	V_key_spi_minval = 0x100;
7180 	V_key_spi_maxval = 0x0fffffff;	/* XXX */
7181 	V_policy_id = 0;
7182 	V_key_int_random = 60;		/*interval to initialize randseed,1(m)*/
7183 	V_key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
7184 	V_key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
7185 	V_key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
7186 	V_key_preferred_oldsa = 1;	/* preferred old sa rather than new sa*/
7187 
7188 	V_acq_seq = 0;
7189 
7190 	V_ipsec_esp_keymin = 256;
7191 	V_ipsec_esp_auth = 0;
7192 	V_ipsec_ah_keymin = 128;
7193 
7194 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7195 		LIST_INIT(&V_sptree[i]);
7196 
7197 	LIST_INIT(&V_sahtree);
7198 
7199 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7200 		LIST_INIT(&V_regtree[i]);
7201 
7202 	LIST_INIT(&V_acqtree);
7203 	LIST_INIT(&V_spacqtree);
7204 
7205 	/* system default */
7206 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7207 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7208 
7209 	if (!IS_DEFAULT_VNET(curvnet))
7210 		return;
7211 
7212 	SPTREE_LOCK_INIT();
7213 	REGTREE_LOCK_INIT();
7214 	SAHTREE_LOCK_INIT();
7215 	ACQ_LOCK_INIT();
7216 	SPACQ_LOCK_INIT();
7217 
7218 #ifndef IPSEC_DEBUG2
7219 	timeout((void *)key_timehandler, (void *)0, hz);
7220 #endif /*IPSEC_DEBUG2*/
7221 
7222 	/* initialize key statistics */
7223 	keystat.getspi_count = 1;
7224 
7225 	printf("IPsec: Initialized Security Association Processing.\n");
7226 
7227 	return;
7228 }
7229 
7230 /*
7231  * XXX: maybe This function is called after INBOUND IPsec processing.
7232  *
7233  * Special check for tunnel-mode packets.
7234  * We must make some checks for consistency between inner and outer IP header.
7235  *
7236  * xxx more checks to be provided
7237  */
7238 int
7239 key_checktunnelsanity(sav, family, src, dst)
7240 	struct secasvar *sav;
7241 	u_int family;
7242 	caddr_t src;
7243 	caddr_t dst;
7244 {
7245 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7246 
7247 	/* XXX: check inner IP header */
7248 
7249 	return 1;
7250 }
7251 
7252 /* record data transfer on SA, and update timestamps */
7253 void
7254 key_sa_recordxfer(sav, m)
7255 	struct secasvar *sav;
7256 	struct mbuf *m;
7257 {
7258 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7259 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7260 	if (!sav->lft_c)
7261 		return;
7262 
7263 	/*
7264 	 * XXX Currently, there is a difference of bytes size
7265 	 * between inbound and outbound processing.
7266 	 */
7267 	sav->lft_c->bytes += m->m_pkthdr.len;
7268 	/* to check bytes lifetime is done in key_timehandler(). */
7269 
7270 	/*
7271 	 * We use the number of packets as the unit of
7272 	 * allocations.  We increment the variable
7273 	 * whenever {esp,ah}_{in,out}put is called.
7274 	 */
7275 	sav->lft_c->allocations++;
7276 	/* XXX check for expires? */
7277 
7278 	/*
7279 	 * NOTE: We record CURRENT usetime by using wall clock,
7280 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7281 	 * difference (again in seconds) from usetime.
7282 	 *
7283 	 *	usetime
7284 	 *	v     expire   expire
7285 	 * -----+-----+--------+---> t
7286 	 *	<--------------> HARD
7287 	 *	<-----> SOFT
7288 	 */
7289 	sav->lft_c->usetime = time_second;
7290 	/* XXX check for expires? */
7291 
7292 	return;
7293 }
7294 
7295 /* dumb version */
7296 void
7297 key_sa_routechange(dst)
7298 	struct sockaddr *dst;
7299 {
7300 	INIT_VNET_IPSEC(curvnet);
7301 	struct secashead *sah;
7302 	struct route *ro;
7303 
7304 	SAHTREE_LOCK();
7305 	LIST_FOREACH(sah, &V_sahtree, chain) {
7306 		ro = &sah->sa_route;
7307 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7308 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7309 			RTFREE(ro->ro_rt);
7310 			ro->ro_rt = (struct rtentry *)NULL;
7311 		}
7312 	}
7313 	SAHTREE_UNLOCK();
7314 }
7315 
7316 static void
7317 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7318 {
7319 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7320 	SAHTREE_LOCK_ASSERT();
7321 
7322 	if (sav->state != state) {
7323 		if (__LIST_CHAINED(sav))
7324 			LIST_REMOVE(sav, chain);
7325 		sav->state = state;
7326 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7327 	}
7328 }
7329 
7330 void
7331 key_sa_stir_iv(sav)
7332 	struct secasvar *sav;
7333 {
7334 
7335 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7336 	key_randomfill(sav->iv, sav->ivlen);
7337 }
7338 
7339 /* XXX too much? */
7340 static struct mbuf *
7341 key_alloc_mbuf(l)
7342 	int l;
7343 {
7344 	struct mbuf *m = NULL, *n;
7345 	int len, t;
7346 
7347 	len = l;
7348 	while (len > 0) {
7349 		MGET(n, M_DONTWAIT, MT_DATA);
7350 		if (n && len > MLEN)
7351 			MCLGET(n, M_DONTWAIT);
7352 		if (!n) {
7353 			m_freem(m);
7354 			return NULL;
7355 		}
7356 
7357 		n->m_next = NULL;
7358 		n->m_len = 0;
7359 		n->m_len = M_TRAILINGSPACE(n);
7360 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7361 		if (n->m_len > len) {
7362 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7363 			n->m_data += t;
7364 			n->m_len = len;
7365 		}
7366 
7367 		len -= n->m_len;
7368 
7369 		if (m)
7370 			m_cat(m, n);
7371 		else
7372 			m = n;
7373 	}
7374 
7375 	return m;
7376 }
7377 
7378 /*
7379  * Take one of the kernel's security keys and convert it into a PF_KEY
7380  * structure within an mbuf, suitable for sending up to a waiting
7381  * application in user land.
7382  *
7383  * IN:
7384  *    src: A pointer to a kernel security key.
7385  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7386  * OUT:
7387  *    a valid mbuf or NULL indicating an error
7388  *
7389  */
7390 
7391 static struct mbuf *
7392 key_setkey(struct seckey *src, u_int16_t exttype)
7393 {
7394 	struct mbuf *m;
7395 	struct sadb_key *p;
7396 	int len;
7397 
7398 	if (src == NULL)
7399 		return NULL;
7400 
7401 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7402 	m = key_alloc_mbuf(len);
7403 	if (m == NULL)
7404 		return NULL;
7405 	p = mtod(m, struct sadb_key *);
7406 	bzero(p, len);
7407 	p->sadb_key_len = PFKEY_UNIT64(len);
7408 	p->sadb_key_exttype = exttype;
7409 	p->sadb_key_bits = src->bits;
7410 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7411 
7412 	return m;
7413 }
7414 
7415 /*
7416  * Take one of the kernel's lifetime data structures and convert it
7417  * into a PF_KEY structure within an mbuf, suitable for sending up to
7418  * a waiting application in user land.
7419  *
7420  * IN:
7421  *    src: A pointer to a kernel lifetime structure.
7422  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7423  *             data structures for more information.
7424  * OUT:
7425  *    a valid mbuf or NULL indicating an error
7426  *
7427  */
7428 
7429 static struct mbuf *
7430 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7431 {
7432 	struct mbuf *m = NULL;
7433 	struct sadb_lifetime *p;
7434 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7435 
7436 	if (src == NULL)
7437 		return NULL;
7438 
7439 	m = key_alloc_mbuf(len);
7440 	if (m == NULL)
7441 		return m;
7442 	p = mtod(m, struct sadb_lifetime *);
7443 
7444 	bzero(p, len);
7445 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7446 	p->sadb_lifetime_exttype = exttype;
7447 	p->sadb_lifetime_allocations = src->allocations;
7448 	p->sadb_lifetime_bytes = src->bytes;
7449 	p->sadb_lifetime_addtime = src->addtime;
7450 	p->sadb_lifetime_usetime = src->usetime;
7451 
7452 	return m;
7453 
7454 }
7455