xref: /freebsd/sys/netipsec/key.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * SPDX-License-Identifier: BSD-3-Clause
6  *
7  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the project nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * This code is referd to RFC 2367
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41 #include "opt_ipsec.h"
42 
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/fnv_hash.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/mbuf.h>
51 #include <sys/domain.h>
52 #include <sys/protosw.h>
53 #include <sys/malloc.h>
54 #include <sys/rmlock.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/refcount.h>
62 #include <sys/syslog.h>
63 
64 #include <vm/uma.h>
65 
66 #include <net/if.h>
67 #include <net/if_var.h>
68 #include <net/vnet.h>
69 #include <net/raw_cb.h>
70 
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #include <netinet/in_var.h>
75 #include <netinet/udp.h>
76 
77 #ifdef INET6
78 #include <netinet/ip6.h>
79 #include <netinet6/in6_var.h>
80 #include <netinet6/ip6_var.h>
81 #endif /* INET6 */
82 
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 #include <machine/in_cksum.h>
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 #define	UINT32_80PCT	0xcccccccc
105 /*
106  * Note on SA reference counting:
107  * - SAs that are not in DEAD state will have (total external reference + 1)
108  *   following value in reference count field.  they cannot be freed and are
109  *   referenced from SA header.
110  * - SAs that are in DEAD state will have (total external reference)
111  *   in reference count field.  they are ready to be freed.  reference from
112  *   SA header will be removed in key_delsav(), when the reference count
113  *   field hits 0 (= no external reference other than from SA header.
114  */
115 
116 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
117 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000;
118 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100;
119 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
120 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0;
121 /*interval to initialize randseed,1(m)*/
122 VNET_DEFINE_STATIC(u_int, key_int_random) = 60;
123 /* interval to expire acquiring, 30(s)*/
124 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30;
125 /* counter for blocking SADB_ACQUIRE.*/
126 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10;
127 /* lifetime for blocking SADB_ACQUIRE.*/
128 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20;
129 /* preferred old sa rather than new sa.*/
130 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1;
131 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
132 #define	V_key_spi_minval	VNET(key_spi_minval)
133 #define	V_key_spi_maxval	VNET(key_spi_maxval)
134 #define	V_policy_id		VNET(policy_id)
135 #define	V_key_int_random	VNET(key_int_random)
136 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
137 #define	V_key_blockacq_count	VNET(key_blockacq_count)
138 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
139 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
140 
141 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0;
142 #define	V_acq_seq		VNET(acq_seq)
143 
144 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0;
145 #define	V_sp_genid		VNET(sp_genid)
146 
147 /* SPD */
148 TAILQ_HEAD(secpolicy_queue, secpolicy);
149 LIST_HEAD(secpolicy_list, secpolicy);
150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]);
151 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]);
152 static struct rmlock sptree_lock;
153 #define	V_sptree		VNET(sptree)
154 #define	V_sptree_ifnet		VNET(sptree_ifnet)
155 #define	SPTREE_LOCK_INIT()      rm_init(&sptree_lock, "sptree")
156 #define	SPTREE_LOCK_DESTROY()   rm_destroy(&sptree_lock)
157 #define	SPTREE_RLOCK_TRACKER    struct rm_priotracker sptree_tracker
158 #define	SPTREE_RLOCK()          rm_rlock(&sptree_lock, &sptree_tracker)
159 #define	SPTREE_RUNLOCK()        rm_runlock(&sptree_lock, &sptree_tracker)
160 #define	SPTREE_RLOCK_ASSERT()   rm_assert(&sptree_lock, RA_RLOCKED)
161 #define	SPTREE_WLOCK()          rm_wlock(&sptree_lock)
162 #define	SPTREE_WUNLOCK()        rm_wunlock(&sptree_lock)
163 #define	SPTREE_WLOCK_ASSERT()   rm_assert(&sptree_lock, RA_WLOCKED)
164 #define	SPTREE_UNLOCK_ASSERT()  rm_assert(&sptree_lock, RA_UNLOCKED)
165 
166 /* Hash table for lookup SP using unique id */
167 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl);
168 VNET_DEFINE_STATIC(u_long, sphash_mask);
169 #define	V_sphashtbl		VNET(sphashtbl)
170 #define	V_sphash_mask		VNET(sphash_mask)
171 
172 #define	SPHASH_NHASH_LOG2	7
173 #define	SPHASH_NHASH		(1 << SPHASH_NHASH_LOG2)
174 #define	SPHASH_HASHVAL(id)	(key_u32hash(id) & V_sphash_mask)
175 #define	SPHASH_HASH(id)		&V_sphashtbl[SPHASH_HASHVAL(id)]
176 
177 /* SPD cache */
178 struct spdcache_entry {
179    struct secpolicyindex spidx;	/* secpolicyindex */
180    struct secpolicy *sp;	/* cached policy to be used */
181 
182    LIST_ENTRY(spdcache_entry) chain;
183 };
184 LIST_HEAD(spdcache_entry_list, spdcache_entry);
185 
186 #define	SPDCACHE_MAX_ENTRIES_PER_HASH	8
187 
188 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0;
189 #define	V_key_spdcache_maxentries	VNET(key_spdcache_maxentries)
190 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32;
191 #define	V_key_spdcache_threshold	VNET(key_spdcache_threshold)
192 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0;
193 #define	V_spd_size		VNET(spd_size)
194 
195 #define SPDCACHE_ENABLED()	(V_key_spdcache_maxentries != 0)
196 #define SPDCACHE_ACTIVE() \
197 	(SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold)
198 
199 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl);
200 VNET_DEFINE_STATIC(u_long, spdcachehash_mask);
201 #define	V_spdcachehashtbl	VNET(spdcachehashtbl)
202 #define	V_spdcachehash_mask	VNET(spdcachehash_mask)
203 
204 #define	SPDCACHE_HASHVAL(idx) \
205 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) &  \
206 	    V_spdcachehash_mask)
207 
208 /* Each cache line is protected by a mutex */
209 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock);
210 #define	V_spdcache_lock		VNET(spdcache_lock)
211 
212 #define	SPDCACHE_LOCK_INIT(a) \
213 	mtx_init(&V_spdcache_lock[a], "spdcache", \
214 	    "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK)
215 #define	SPDCACHE_LOCK_DESTROY(a)	mtx_destroy(&V_spdcache_lock[a])
216 #define	SPDCACHE_LOCK(a)		mtx_lock(&V_spdcache_lock[a]);
217 #define	SPDCACHE_UNLOCK(a)		mtx_unlock(&V_spdcache_lock[a]);
218 
219 static struct sx spi_alloc_lock;
220 #define	SPI_ALLOC_LOCK_INIT()		sx_init(&spi_alloc_lock, "spialloc")
221 #define	SPI_ALLOC_LOCK_DESTROY()	sx_destroy(&spi_alloc_lock)
222 #define	SPI_ALLOC_LOCK()          	sx_xlock(&spi_alloc_lock)
223 #define	SPI_ALLOC_UNLOCK()        	sx_unlock(&spi_alloc_lock)
224 #define	SPI_ALLOC_LOCK_ASSERT()   	sx_assert(&spi_alloc_lock, SA_XLOCKED)
225 
226 /* SAD */
227 TAILQ_HEAD(secashead_queue, secashead);
228 LIST_HEAD(secashead_list, secashead);
229 VNET_DEFINE_STATIC(struct secashead_queue, sahtree);
230 static struct rmlock sahtree_lock;
231 #define	V_sahtree		VNET(sahtree)
232 #define	SAHTREE_LOCK_INIT()	rm_init(&sahtree_lock, "sahtree")
233 #define	SAHTREE_LOCK_DESTROY()	rm_destroy(&sahtree_lock)
234 #define	SAHTREE_RLOCK_TRACKER	struct rm_priotracker sahtree_tracker
235 #define	SAHTREE_RLOCK()		rm_rlock(&sahtree_lock, &sahtree_tracker)
236 #define	SAHTREE_RUNLOCK()	rm_runlock(&sahtree_lock, &sahtree_tracker)
237 #define	SAHTREE_RLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_RLOCKED)
238 #define	SAHTREE_WLOCK()		rm_wlock(&sahtree_lock)
239 #define	SAHTREE_WUNLOCK()	rm_wunlock(&sahtree_lock)
240 #define	SAHTREE_WLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_WLOCKED)
241 #define	SAHTREE_UNLOCK_ASSERT()	rm_assert(&sahtree_lock, RA_UNLOCKED)
242 
243 /* Hash table for lookup in SAD using SA addresses */
244 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl);
245 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask);
246 #define	V_sahaddrhashtbl	VNET(sahaddrhashtbl)
247 #define	V_sahaddrhash_mask	VNET(sahaddrhash_mask)
248 
249 #define	SAHHASH_NHASH_LOG2	7
250 #define	SAHHASH_NHASH		(1 << SAHHASH_NHASH_LOG2)
251 #define	SAHADDRHASH_HASHVAL(idx)	\
252 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
253 	    V_sahaddrhash_mask)
254 #define	SAHADDRHASH_HASH(saidx)		\
255     &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)]
256 
257 /* Hash table for lookup in SAD using SPI */
258 LIST_HEAD(secasvar_list, secasvar);
259 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl);
260 VNET_DEFINE_STATIC(u_long, savhash_mask);
261 #define	V_savhashtbl		VNET(savhashtbl)
262 #define	V_savhash_mask		VNET(savhash_mask)
263 #define	SAVHASH_NHASH_LOG2	7
264 #define	SAVHASH_NHASH		(1 << SAVHASH_NHASH_LOG2)
265 #define	SAVHASH_HASHVAL(spi)	(key_u32hash(spi) & V_savhash_mask)
266 #define	SAVHASH_HASH(spi)	&V_savhashtbl[SAVHASH_HASHVAL(spi)]
267 
268 static uint32_t
269 key_addrprotohash(const union sockaddr_union *src,
270     const union sockaddr_union *dst, const uint8_t *proto)
271 {
272 	uint32_t hval;
273 
274 	hval = fnv_32_buf(proto, sizeof(*proto),
275 	    FNV1_32_INIT);
276 	switch (dst->sa.sa_family) {
277 #ifdef INET
278 	case AF_INET:
279 		hval = fnv_32_buf(&src->sin.sin_addr,
280 		    sizeof(in_addr_t), hval);
281 		hval = fnv_32_buf(&dst->sin.sin_addr,
282 		    sizeof(in_addr_t), hval);
283 		break;
284 #endif
285 #ifdef INET6
286 	case AF_INET6:
287 		hval = fnv_32_buf(&src->sin6.sin6_addr,
288 		    sizeof(struct in6_addr), hval);
289 		hval = fnv_32_buf(&dst->sin6.sin6_addr,
290 		    sizeof(struct in6_addr), hval);
291 		break;
292 #endif
293 	default:
294 		hval = 0;
295 		ipseclog((LOG_DEBUG, "%s: unknown address family %d\n",
296 		    __func__, dst->sa.sa_family));
297 	}
298 	return (hval);
299 }
300 
301 static uint32_t
302 key_u32hash(uint32_t val)
303 {
304 
305 	return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT));
306 }
307 
308 							/* registed list */
309 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
310 #define	V_regtree		VNET(regtree)
311 static struct mtx regtree_lock;
312 #define	REGTREE_LOCK_INIT() \
313 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
314 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
315 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
316 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
317 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
318 
319 /* Acquiring list */
320 LIST_HEAD(secacq_list, secacq);
321 VNET_DEFINE_STATIC(struct secacq_list, acqtree);
322 #define	V_acqtree		VNET(acqtree)
323 static struct mtx acq_lock;
324 #define	ACQ_LOCK_INIT() \
325     mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF)
326 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
327 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
328 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
329 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
330 
331 /* Hash table for lookup in ACQ list using SA addresses */
332 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl);
333 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask);
334 #define	V_acqaddrhashtbl	VNET(acqaddrhashtbl)
335 #define	V_acqaddrhash_mask	VNET(acqaddrhash_mask)
336 
337 /* Hash table for lookup in ACQ list using SEQ number */
338 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl);
339 VNET_DEFINE_STATIC(u_long, acqseqhash_mask);
340 #define	V_acqseqhashtbl		VNET(acqseqhashtbl)
341 #define	V_acqseqhash_mask	VNET(acqseqhash_mask)
342 
343 #define	ACQHASH_NHASH_LOG2	7
344 #define	ACQHASH_NHASH		(1 << ACQHASH_NHASH_LOG2)
345 #define	ACQADDRHASH_HASHVAL(idx)	\
346 	(key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \
347 	    V_acqaddrhash_mask)
348 #define	ACQSEQHASH_HASHVAL(seq)		\
349     (key_u32hash(seq) & V_acqseqhash_mask)
350 #define	ACQADDRHASH_HASH(saidx)	\
351     &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)]
352 #define	ACQSEQHASH_HASH(seq)	\
353     &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)]
354 							/* SP acquiring list */
355 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree);
356 #define	V_spacqtree		VNET(spacqtree)
357 static struct mtx spacq_lock;
358 #define	SPACQ_LOCK_INIT() \
359 	mtx_init(&spacq_lock, "spacqtree", \
360 		"fast ipsec security policy acquire list", MTX_DEF)
361 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
362 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
363 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
364 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
365 
366 static const int minsize[] = {
367 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
368 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
369 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
370 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
371 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
372 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
373 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
374 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
375 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
376 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
377 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
378 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
379 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
380 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
381 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
382 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
383 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
384 	0,				/* SADB_X_EXT_KMPRIVATE */
385 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
386 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
387 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
388 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
389 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
390 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
391 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
392 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
393 	sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
394 	sizeof(struct sadb_address),	/* SADB_X_EXT_NEW_ADDRESS_SRC */
395 	sizeof(struct sadb_address),	/* SADB_X_EXT_NEW_ADDRESS_DST */
396 };
397 _Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
398 
399 static const int maxsize[] = {
400 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
401 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
402 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
403 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
404 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
405 	0,				/* SADB_EXT_ADDRESS_SRC */
406 	0,				/* SADB_EXT_ADDRESS_DST */
407 	0,				/* SADB_EXT_ADDRESS_PROXY */
408 	0,				/* SADB_EXT_KEY_AUTH */
409 	0,				/* SADB_EXT_KEY_ENCRYPT */
410 	0,				/* SADB_EXT_IDENTITY_SRC */
411 	0,				/* SADB_EXT_IDENTITY_DST */
412 	0,				/* SADB_EXT_SENSITIVITY */
413 	0,				/* SADB_EXT_PROPOSAL */
414 	0,				/* SADB_EXT_SUPPORTED_AUTH */
415 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
416 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
417 	0,				/* SADB_X_EXT_KMPRIVATE */
418 	0,				/* SADB_X_EXT_POLICY */
419 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
420 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
421 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
422 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
423 	0,				/* SADB_X_EXT_NAT_T_OAI */
424 	0,				/* SADB_X_EXT_NAT_T_OAR */
425 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
426 	sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */
427 	0,				/* SADB_X_EXT_NEW_ADDRESS_SRC */
428 	0,				/* SADB_X_EXT_NEW_ADDRESS_DST */
429 };
430 _Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch");
431 
432 /*
433  * Internal values for SA flags:
434  * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses,
435  *	thus we will not free the most of SA content in key_delsav().
436  */
437 #define	SADB_X_EXT_F_CLONED	0x80000000
438 
439 #define	SADB_CHECKLEN(_mhp, _ext)			\
440     ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \
441 	((_mhp)->extlen[(_ext)] > maxsize[(_ext)])))
442 #define	SADB_CHECKHDR(_mhp, _ext)	((_mhp)->ext[(_ext)] == NULL)
443 
444 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256;
445 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0;
446 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128;
447 
448 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
449 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
450 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
451 
452 #ifdef IPSEC_DEBUG
453 VNET_DEFINE(int, ipsec_debug) = 1;
454 #else
455 VNET_DEFINE(int, ipsec_debug) = 0;
456 #endif
457 
458 #ifdef INET
459 SYSCTL_DECL(_net_inet_ipsec);
460 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug,
461     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
462     "Enable IPsec debugging output when set.");
463 #endif
464 #ifdef INET6
465 SYSCTL_DECL(_net_inet6_ipsec6);
466 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug,
467     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0,
468     "Enable IPsec debugging output when set.");
469 #endif
470 
471 SYSCTL_DECL(_net_key);
472 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
473 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
474 
475 /* max count of trial for the decision of spi value */
476 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
477 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
478 
479 /* minimum spi value to allocate automatically. */
480 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
481 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
482 
483 /* maximun spi value to allocate automatically. */
484 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
485 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
486 
487 /* interval to initialize randseed */
488 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
489 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
490 
491 /* lifetime for larval SA */
492 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
493 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
494 
495 /* counter for blocking to send SADB_ACQUIRE to IKEd */
496 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
497 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
498 
499 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
500 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
501 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
502 
503 /* ESP auth */
504 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
505 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
506 
507 /* minimum ESP key length */
508 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
509 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
510 
511 /* minimum AH key length */
512 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
513 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
514 
515 /* perfered old SA rather than new SA */
516 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
517 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
518 
519 static SYSCTL_NODE(_net_key, OID_AUTO, spdcache,
520     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
521     "SPD cache");
522 
523 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries,
524 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0,
525 	"Maximum number of entries in the SPD cache"
526 	" (power of 2, 0 to disable)");
527 
528 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold,
529 	CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0,
530 	"Number of SPs that make the SPD cache active");
531 
532 #define __LIST_CHAINED(elm) \
533 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
534 
535 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
536 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
537 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
538 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
539 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
540 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
541 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
542 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache");
543 
544 static uma_zone_t __read_mostly ipsec_key_lft_zone;
545 
546 /*
547  * set parameters into secpolicyindex buffer.
548  * Must allocate secpolicyindex buffer passed to this function.
549  */
550 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
551 do { \
552 	bzero((idx), sizeof(struct secpolicyindex));                         \
553 	(idx)->dir = (_dir);                                                 \
554 	(idx)->prefs = (ps);                                                 \
555 	(idx)->prefd = (pd);                                                 \
556 	(idx)->ul_proto = (ulp);                                             \
557 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
558 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
559 } while (0)
560 
561 /*
562  * set parameters into secasindex buffer.
563  * Must allocate secasindex buffer before calling this function.
564  */
565 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
566 do { \
567 	bzero((idx), sizeof(struct secasindex));                             \
568 	(idx)->proto = (p);                                                  \
569 	(idx)->mode = (m);                                                   \
570 	(idx)->reqid = (r);                                                  \
571 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
572 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
573 	key_porttosaddr(&(idx)->src.sa, 0);				     \
574 	key_porttosaddr(&(idx)->dst.sa, 0);				     \
575 } while (0)
576 
577 /* key statistics */
578 struct _keystat {
579 	u_long getspi_count; /* the avarage of count to try to get new SPI */
580 } keystat;
581 
582 struct sadb_msghdr {
583 	struct sadb_msg *msg;
584 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
585 	int extoff[SADB_EXT_MAX + 1];
586 	int extlen[SADB_EXT_MAX + 1];
587 };
588 
589 static struct supported_ealgs {
590 	int sadb_alg;
591 	const struct enc_xform *xform;
592 } supported_ealgs[] = {
593 	{ SADB_X_EALG_AES,		&enc_xform_aes_cbc },
594 	{ SADB_EALG_NULL,		&enc_xform_null },
595 	{ SADB_X_EALG_AESCTR,		&enc_xform_aes_icm },
596 	{ SADB_X_EALG_AESGCM16,		&enc_xform_aes_nist_gcm },
597 	{ SADB_X_EALG_AESGMAC,		&enc_xform_aes_nist_gmac },
598 };
599 
600 static struct supported_aalgs {
601 	int sadb_alg;
602 	const struct auth_hash *xform;
603 } supported_aalgs[] = {
604 	{ SADB_X_AALG_NULL,		&auth_hash_null },
605 	{ SADB_AALG_SHA1HMAC,		&auth_hash_hmac_sha1 },
606 	{ SADB_X_AALG_SHA2_256,		&auth_hash_hmac_sha2_256 },
607 	{ SADB_X_AALG_SHA2_384,		&auth_hash_hmac_sha2_384 },
608 	{ SADB_X_AALG_SHA2_512,		&auth_hash_hmac_sha2_512 },
609 	{ SADB_X_AALG_AES128GMAC,	&auth_hash_nist_gmac_aes_128 },
610 	{ SADB_X_AALG_AES192GMAC,	&auth_hash_nist_gmac_aes_192 },
611 	{ SADB_X_AALG_AES256GMAC,	&auth_hash_nist_gmac_aes_256 },
612 };
613 
614 static struct supported_calgs {
615 	int sadb_alg;
616 	const struct comp_algo *xform;
617 } supported_calgs[] = {
618 	{ SADB_X_CALG_DEFLATE,		&comp_algo_deflate },
619 };
620 
621 #ifndef IPSEC_DEBUG2
622 static struct callout key_timer;
623 #endif
624 
625 static void key_unlink(struct secpolicy *);
626 static void key_detach(struct secpolicy *);
627 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir);
628 static struct secpolicy *key_getsp(struct secpolicyindex *);
629 static struct secpolicy *key_getspbyid(u_int32_t);
630 static struct mbuf *key_gather_mbuf(struct mbuf *,
631 	const struct sadb_msghdr *, int, int, ...);
632 static int key_spdadd(struct socket *, struct mbuf *,
633 	const struct sadb_msghdr *);
634 static uint32_t key_getnewspid(void);
635 static int key_spddelete(struct socket *, struct mbuf *,
636 	const struct sadb_msghdr *);
637 static int key_spddelete2(struct socket *, struct mbuf *,
638 	const struct sadb_msghdr *);
639 static int key_spdget(struct socket *, struct mbuf *,
640 	const struct sadb_msghdr *);
641 static int key_spdflush(struct socket *, struct mbuf *,
642 	const struct sadb_msghdr *);
643 static int key_spddump(struct socket *, struct mbuf *,
644 	const struct sadb_msghdr *);
645 static struct mbuf *key_setdumpsp(struct secpolicy *,
646 	u_int8_t, u_int32_t, u_int32_t);
647 static struct mbuf *key_sp2mbuf(struct secpolicy *);
648 static size_t key_getspreqmsglen(struct secpolicy *);
649 static int key_spdexpire(struct secpolicy *);
650 static struct secashead *key_newsah(struct secasindex *);
651 static void key_freesah(struct secashead **);
652 static void key_delsah(struct secashead *);
653 static struct secasvar *key_newsav(const struct sadb_msghdr *,
654     struct secasindex *, uint32_t, int *);
655 static void key_delsav(struct secasvar *);
656 static void key_unlinksav(struct secasvar *);
657 static struct secashead *key_getsah(struct secasindex *);
658 static int key_checkspidup(uint32_t);
659 static struct secasvar *key_getsavbyspi(uint32_t);
660 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *);
661 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *);
662 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *);
663 static int key_updateaddresses(struct socket *, struct mbuf *,
664     const struct sadb_msghdr *, struct secasvar *, struct secasindex *);
665 
666 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
667 	u_int8_t, u_int32_t, u_int32_t);
668 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
669 	u_int32_t, pid_t, u_int16_t);
670 static struct mbuf *key_setsadbsa(struct secasvar *);
671 static struct mbuf *key_setsadbaddr(u_int16_t,
672 	const struct sockaddr *, u_int8_t, u_int16_t);
673 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
674 static struct mbuf *key_setsadbxtype(u_int16_t);
675 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t);
676 static struct mbuf *key_setsadbxsareplay(u_int32_t);
677 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
678 	u_int32_t, u_int32_t);
679 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t,
680     struct malloc_type *);
681 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
682     struct malloc_type *);
683 
684 /* flags for key_cmpsaidx() */
685 #define CMP_HEAD	1	/* protocol, addresses. */
686 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
687 #define CMP_REQID	3	/* additionally HEAD, reaid. */
688 #define CMP_EXACTLY	4	/* all elements. */
689 static int key_cmpsaidx(const struct secasindex *,
690     const struct secasindex *, int);
691 static int key_cmpspidx_exactly(struct secpolicyindex *,
692     struct secpolicyindex *);
693 static int key_cmpspidx_withmask(struct secpolicyindex *,
694     struct secpolicyindex *);
695 static int key_bbcmp(const void *, const void *, u_int);
696 static uint8_t key_satype2proto(uint8_t);
697 static uint8_t key_proto2satype(uint8_t);
698 
699 static int key_getspi(struct socket *, struct mbuf *,
700 	const struct sadb_msghdr *);
701 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
702 static int key_update(struct socket *, struct mbuf *,
703 	const struct sadb_msghdr *);
704 static int key_add(struct socket *, struct mbuf *,
705 	const struct sadb_msghdr *);
706 static int key_setident(struct secashead *, const struct sadb_msghdr *);
707 static struct mbuf *key_getmsgbuf_x1(struct mbuf *,
708 	const struct sadb_msghdr *);
709 static int key_delete(struct socket *, struct mbuf *,
710 	const struct sadb_msghdr *);
711 static int key_delete_all(struct socket *, struct mbuf *,
712 	const struct sadb_msghdr *, struct secasindex *);
713 static int key_get(struct socket *, struct mbuf *,
714 	const struct sadb_msghdr *);
715 
716 static void key_getcomb_setlifetime(struct sadb_comb *);
717 static struct mbuf *key_getcomb_ealg(void);
718 static struct mbuf *key_getcomb_ah(void);
719 static struct mbuf *key_getcomb_ipcomp(void);
720 static struct mbuf *key_getprop(const struct secasindex *);
721 
722 static int key_acquire(const struct secasindex *, struct secpolicy *);
723 static uint32_t key_newacq(const struct secasindex *, int *);
724 static uint32_t key_getacq(const struct secasindex *, int *);
725 static int key_acqdone(const struct secasindex *, uint32_t);
726 static int key_acqreset(uint32_t);
727 static struct secspacq *key_newspacq(struct secpolicyindex *);
728 static struct secspacq *key_getspacq(struct secpolicyindex *);
729 static int key_acquire2(struct socket *, struct mbuf *,
730 	const struct sadb_msghdr *);
731 static int key_register(struct socket *, struct mbuf *,
732 	const struct sadb_msghdr *);
733 static int key_expire(struct secasvar *, int);
734 static int key_flush(struct socket *, struct mbuf *,
735 	const struct sadb_msghdr *);
736 static int key_dump(struct socket *, struct mbuf *,
737 	const struct sadb_msghdr *);
738 static int key_promisc(struct socket *, struct mbuf *,
739 	const struct sadb_msghdr *);
740 static int key_senderror(struct socket *, struct mbuf *, int);
741 static int key_validate_ext(const struct sadb_ext *, int);
742 static int key_align(struct mbuf *, struct sadb_msghdr *);
743 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t);
744 static struct mbuf *key_setkey(struct seckey *, uint16_t);
745 
746 static void spdcache_init(void);
747 static void spdcache_clear(void);
748 static struct spdcache_entry *spdcache_entry_alloc(
749 	const struct secpolicyindex *spidx,
750 	struct secpolicy *policy);
751 static void spdcache_entry_free(struct spdcache_entry *entry);
752 #ifdef VIMAGE
753 static void spdcache_destroy(void);
754 #endif
755 
756 #define	DBG_IPSEC_INITREF(t, p)	do {				\
757 	refcount_init(&(p)->refcnt, 1);				\
758 	KEYDBG(KEY_STAMP,					\
759 	    printf("%s: Initialize refcnt %s(%p) = %u\n",	\
760 	    __func__, #t, (p), (p)->refcnt));			\
761 } while (0)
762 #define	DBG_IPSEC_ADDREF(t, p)	do {				\
763 	refcount_acquire(&(p)->refcnt);				\
764 	KEYDBG(KEY_STAMP,					\
765 	    printf("%s: Acquire refcnt %s(%p) -> %u\n",		\
766 	    __func__, #t, (p), (p)->refcnt));			\
767 } while (0)
768 #define	DBG_IPSEC_DELREF(t, p)	do {				\
769 	KEYDBG(KEY_STAMP,					\
770 	    printf("%s: Release refcnt %s(%p) -> %u\n",		\
771 	    __func__, #t, (p), (p)->refcnt - 1));		\
772 	refcount_release(&(p)->refcnt);				\
773 } while (0)
774 
775 #define	IPSEC_INITREF(t, p)	refcount_init(&(p)->refcnt, 1)
776 #define	IPSEC_ADDREF(t, p)	refcount_acquire(&(p)->refcnt)
777 #define	IPSEC_DELREF(t, p)	refcount_release(&(p)->refcnt)
778 
779 #define	SP_INITREF(p)	IPSEC_INITREF(SP, p)
780 #define	SP_ADDREF(p)	IPSEC_ADDREF(SP, p)
781 #define	SP_DELREF(p)	IPSEC_DELREF(SP, p)
782 
783 #define	SAH_INITREF(p)	IPSEC_INITREF(SAH, p)
784 #define	SAH_ADDREF(p)	IPSEC_ADDREF(SAH, p)
785 #define	SAH_DELREF(p)	IPSEC_DELREF(SAH, p)
786 
787 #define	SAV_INITREF(p)	IPSEC_INITREF(SAV, p)
788 #define	SAV_ADDREF(p)	IPSEC_ADDREF(SAV, p)
789 #define	SAV_DELREF(p)	IPSEC_DELREF(SAV, p)
790 
791 /*
792  * Update the refcnt while holding the SPTREE lock.
793  */
794 void
795 key_addref(struct secpolicy *sp)
796 {
797 
798 	SP_ADDREF(sp);
799 }
800 
801 /*
802  * Return 0 when there are known to be no SP's for the specified
803  * direction.  Otherwise return 1.  This is used by IPsec code
804  * to optimize performance.
805  */
806 int
807 key_havesp(u_int dir)
808 {
809 
810 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
811 		TAILQ_FIRST(&V_sptree[dir]) != NULL : 1);
812 }
813 
814 /* %%% IPsec policy management */
815 /*
816  * Return current SPDB generation.
817  */
818 uint32_t
819 key_getspgen(void)
820 {
821 
822 	return (V_sp_genid);
823 }
824 
825 void
826 key_bumpspgen(void)
827 {
828 
829 	V_sp_genid++;
830 }
831 
832 static int
833 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst)
834 {
835 
836 	/* family match */
837 	if (src->sa_family != dst->sa_family)
838 		return (EINVAL);
839 	/* sa_len match */
840 	if (src->sa_len != dst->sa_len)
841 		return (EINVAL);
842 	switch (src->sa_family) {
843 #ifdef INET
844 	case AF_INET:
845 		if (src->sa_len != sizeof(struct sockaddr_in))
846 			return (EINVAL);
847 		break;
848 #endif
849 #ifdef INET6
850 	case AF_INET6:
851 		if (src->sa_len != sizeof(struct sockaddr_in6))
852 			return (EINVAL);
853 		break;
854 #endif
855 	default:
856 		return (EAFNOSUPPORT);
857 	}
858 	return (0);
859 }
860 
861 struct secpolicy *
862 key_do_allocsp(struct secpolicyindex *spidx, u_int dir)
863 {
864 	SPTREE_RLOCK_TRACKER;
865 	struct secpolicy *sp;
866 
867 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
868 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
869 		("invalid direction %u", dir));
870 
871 	SPTREE_RLOCK();
872 	TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
873 		if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
874 			SP_ADDREF(sp);
875 			break;
876 		}
877 	}
878 	SPTREE_RUNLOCK();
879 	return (sp);
880 }
881 
882 /*
883  * allocating a SP for OUTBOUND or INBOUND packet.
884  * Must call key_freesp() later.
885  * OUT:	NULL:	not found
886  *	others:	found and return the pointer.
887  */
888 struct secpolicy *
889 key_allocsp(struct secpolicyindex *spidx, u_int dir)
890 {
891 	struct spdcache_entry *entry, *lastentry, *tmpentry;
892 	struct secpolicy *sp;
893 	uint32_t hashv;
894 	int nb_entries;
895 
896 	if (!SPDCACHE_ACTIVE()) {
897 		sp = key_do_allocsp(spidx, dir);
898 		goto out;
899 	}
900 
901 	hashv = SPDCACHE_HASHVAL(spidx);
902 	SPDCACHE_LOCK(hashv);
903 	nb_entries = 0;
904 	LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) {
905 		/* Removed outdated entries */
906 		if (entry->sp != NULL &&
907 		    entry->sp->state == IPSEC_SPSTATE_DEAD) {
908 			LIST_REMOVE(entry, chain);
909 			spdcache_entry_free(entry);
910 			continue;
911 		}
912 
913 		nb_entries++;
914 		if (!key_cmpspidx_exactly(&entry->spidx, spidx)) {
915 			lastentry = entry;
916 			continue;
917 		}
918 
919 		sp = entry->sp;
920 		if (entry->sp != NULL)
921 			SP_ADDREF(sp);
922 
923 		/* IPSECSTAT_INC(ips_spdcache_hits); */
924 
925 		SPDCACHE_UNLOCK(hashv);
926 		goto out;
927 	}
928 
929 	/* IPSECSTAT_INC(ips_spdcache_misses); */
930 
931 	sp = key_do_allocsp(spidx, dir);
932 	entry = spdcache_entry_alloc(spidx, sp);
933 	if (entry != NULL) {
934 		if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) {
935 			LIST_REMOVE(lastentry, chain);
936 			spdcache_entry_free(lastentry);
937 		}
938 
939 		LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain);
940 	}
941 
942 	SPDCACHE_UNLOCK(hashv);
943 
944 out:
945 	if (sp != NULL) {	/* found a SPD entry */
946 		sp->lastused = time_second;
947 		KEYDBG(IPSEC_STAMP,
948 		    printf("%s: return SP(%p)\n", __func__, sp));
949 		KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
950 	} else {
951 		KEYDBG(IPSEC_DATA,
952 		    printf("%s: lookup failed for ", __func__);
953 		    kdebug_secpolicyindex(spidx, NULL));
954 	}
955 	return (sp);
956 }
957 
958 /*
959  * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed
960  * or should be signed by MD5 signature.
961  * We don't use key_allocsa() for such lookups, because we don't know SPI.
962  * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with
963  * signed packet. We use SADB only as storage for password.
964  * OUT:	positive:	corresponding SA for given saidx found.
965  *	NULL:		SA not found
966  */
967 struct secasvar *
968 key_allocsa_tcpmd5(struct secasindex *saidx)
969 {
970 	SAHTREE_RLOCK_TRACKER;
971 	struct secashead *sah;
972 	struct secasvar *sav;
973 
974 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP,
975 	    ("unexpected security protocol %u", saidx->proto));
976 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5,
977 	    ("unexpected mode %u", saidx->mode));
978 
979 	SAHTREE_RLOCK();
980 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
981 		KEYDBG(IPSEC_DUMP,
982 		    printf("%s: checking SAH\n", __func__);
983 		    kdebug_secash(sah, "  "));
984 		if (sah->saidx.proto != IPPROTO_TCP)
985 			continue;
986 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
987 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
988 			break;
989 	}
990 	if (sah != NULL) {
991 		if (V_key_preferred_oldsa)
992 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
993 		else
994 			sav = TAILQ_FIRST(&sah->savtree_alive);
995 		if (sav != NULL)
996 			SAV_ADDREF(sav);
997 	} else
998 		sav = NULL;
999 	SAHTREE_RUNLOCK();
1000 
1001 	if (sav != NULL) {
1002 		KEYDBG(IPSEC_STAMP,
1003 		    printf("%s: return SA(%p)\n", __func__, sav));
1004 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1005 	} else {
1006 		KEYDBG(IPSEC_STAMP,
1007 		    printf("%s: SA not found\n", __func__));
1008 		KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1009 	}
1010 	return (sav);
1011 }
1012 
1013 /*
1014  * Allocating an SA entry for an *OUTBOUND* packet.
1015  * OUT:	positive:	corresponding SA for given saidx found.
1016  *	NULL:		SA not found, but will be acquired, check *error
1017  *			for acquiring status.
1018  */
1019 struct secasvar *
1020 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx,
1021     int *error)
1022 {
1023 	SAHTREE_RLOCK_TRACKER;
1024 	struct secashead *sah;
1025 	struct secasvar *sav;
1026 
1027 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
1028 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
1029 		saidx->mode == IPSEC_MODE_TUNNEL,
1030 		("unexpected policy %u", saidx->mode));
1031 
1032 	/*
1033 	 * We check new SA in the IPsec request because a different
1034 	 * SA may be involved each time this request is checked, either
1035 	 * because new SAs are being configured, or this request is
1036 	 * associated with an unconnected datagram socket, or this request
1037 	 * is associated with a system default policy.
1038 	 */
1039 	SAHTREE_RLOCK();
1040 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
1041 		KEYDBG(IPSEC_DUMP,
1042 		    printf("%s: checking SAH\n", __func__);
1043 		    kdebug_secash(sah, "  "));
1044 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID))
1045 			break;
1046 	}
1047 	if (sah != NULL) {
1048 		/*
1049 		 * Allocate the oldest SA available according to
1050 		 * draft-jenkins-ipsec-rekeying-03.
1051 		 */
1052 		if (V_key_preferred_oldsa)
1053 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1054 		else
1055 			sav = TAILQ_FIRST(&sah->savtree_alive);
1056 		if (sav != NULL)
1057 			SAV_ADDREF(sav);
1058 	} else
1059 		sav = NULL;
1060 	SAHTREE_RUNLOCK();
1061 
1062 	if (sav != NULL) {
1063 		*error = 0;
1064 		KEYDBG(IPSEC_STAMP,
1065 		    printf("%s: chosen SA(%p) for SP(%p)\n", __func__,
1066 			sav, sp));
1067 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1068 		return (sav); /* return referenced SA */
1069 	}
1070 
1071 	/* there is no SA */
1072 	*error = key_acquire(saidx, sp);
1073 	if ((*error) != 0)
1074 		ipseclog((LOG_DEBUG,
1075 		    "%s: error %d returned from key_acquire()\n",
1076 			__func__, *error));
1077 	KEYDBG(IPSEC_STAMP,
1078 	    printf("%s: acquire SA for SP(%p), error %d\n",
1079 		__func__, sp, *error));
1080 	KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL));
1081 	return (NULL);
1082 }
1083 
1084 /*
1085  * allocating a usable SA entry for a *INBOUND* packet.
1086  * Must call key_freesav() later.
1087  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1088  *	NULL:		not found, or error occurred.
1089  *
1090  * According to RFC 2401 SA is uniquely identified by a triple SPI,
1091  * destination address, and security protocol. But according to RFC 4301,
1092  * SPI by itself suffices to specify an SA.
1093  *
1094  * Note that, however, we do need to keep source address in IPsec SA.
1095  * IKE specification and PF_KEY specification do assume that we
1096  * keep source address in IPsec SA.  We see a tricky situation here.
1097  */
1098 struct secasvar *
1099 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi)
1100 {
1101 	SAHTREE_RLOCK_TRACKER;
1102 	struct secasvar *sav;
1103 
1104 	IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH ||
1105 	    proto == IPPROTO_IPCOMP, ("unexpected security protocol %u",
1106 	    proto));
1107 
1108 	SAHTREE_RLOCK();
1109 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
1110 		if (sav->spi == spi)
1111 			break;
1112 	}
1113 	/*
1114 	 * We use single SPI namespace for all protocols, so it is
1115 	 * impossible to have SPI duplicates in the SAVHASH.
1116 	 */
1117 	if (sav != NULL) {
1118 		if (sav->state != SADB_SASTATE_LARVAL &&
1119 		    sav->sah->saidx.proto == proto &&
1120 		    key_sockaddrcmp(&dst->sa,
1121 			&sav->sah->saidx.dst.sa, 0) == 0)
1122 			SAV_ADDREF(sav);
1123 		else
1124 			sav = NULL;
1125 	}
1126 	SAHTREE_RUNLOCK();
1127 
1128 	if (sav == NULL) {
1129 		KEYDBG(IPSEC_STAMP,
1130 		    char buf[IPSEC_ADDRSTRLEN];
1131 		    printf("%s: SA not found for spi %u proto %u dst %s\n",
1132 			__func__, ntohl(spi), proto, ipsec_address(dst, buf,
1133 			sizeof(buf))));
1134 	} else {
1135 		KEYDBG(IPSEC_STAMP,
1136 		    printf("%s: return SA(%p)\n", __func__, sav));
1137 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1138 	}
1139 	return (sav);
1140 }
1141 
1142 struct secasvar *
1143 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst,
1144     uint8_t proto)
1145 {
1146 	SAHTREE_RLOCK_TRACKER;
1147 	struct secasindex saidx;
1148 	struct secashead *sah;
1149 	struct secasvar *sav;
1150 
1151 	IPSEC_ASSERT(src != NULL, ("null src address"));
1152 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1153 
1154 	KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa,
1155 	    &dst->sa, &saidx);
1156 
1157 	sav = NULL;
1158 	SAHTREE_RLOCK();
1159 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
1160 		if (IPSEC_MODE_TUNNEL != sah->saidx.mode)
1161 			continue;
1162 		if (proto != sah->saidx.proto)
1163 			continue;
1164 		if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0)
1165 			continue;
1166 		if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0)
1167 			continue;
1168 		/* XXXAE: is key_preferred_oldsa reasonably?*/
1169 		if (V_key_preferred_oldsa)
1170 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
1171 		else
1172 			sav = TAILQ_FIRST(&sah->savtree_alive);
1173 		if (sav != NULL) {
1174 			SAV_ADDREF(sav);
1175 			break;
1176 		}
1177 	}
1178 	SAHTREE_RUNLOCK();
1179 	KEYDBG(IPSEC_STAMP,
1180 	    printf("%s: return SA(%p)\n", __func__, sav));
1181 	if (sav != NULL)
1182 		KEYDBG(IPSEC_DATA, kdebug_secasv(sav));
1183 	return (sav);
1184 }
1185 
1186 /*
1187  * Must be called after calling key_allocsp().
1188  */
1189 void
1190 key_freesp(struct secpolicy **spp)
1191 {
1192 	struct secpolicy *sp = *spp;
1193 
1194 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1195 	if (SP_DELREF(sp) == 0)
1196 		return;
1197 
1198 	KEYDBG(IPSEC_STAMP,
1199 	    printf("%s: last reference to SP(%p)\n", __func__, sp));
1200 	KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp));
1201 
1202 	*spp = NULL;
1203 	while (sp->tcount > 0)
1204 		ipsec_delisr(sp->req[--sp->tcount]);
1205 	free(sp, M_IPSEC_SP);
1206 }
1207 
1208 static void
1209 key_unlink(struct secpolicy *sp)
1210 {
1211 	SPTREE_WLOCK();
1212 	key_detach(sp);
1213 	SPTREE_WUNLOCK();
1214 	if (SPDCACHE_ENABLED())
1215 		spdcache_clear();
1216 	key_freesp(&sp);
1217 }
1218 
1219 static void
1220 key_detach(struct secpolicy *sp)
1221 {
1222 	IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND ||
1223 	    sp->spidx.dir == IPSEC_DIR_OUTBOUND,
1224 	    ("invalid direction %u", sp->spidx.dir));
1225 	SPTREE_WLOCK_ASSERT();
1226 
1227 	KEYDBG(KEY_STAMP,
1228 	    printf("%s: SP(%p)\n", __func__, sp));
1229 	if (sp->state != IPSEC_SPSTATE_ALIVE) {
1230 		/* SP is already unlinked */
1231 		return;
1232 	}
1233 	sp->state = IPSEC_SPSTATE_DEAD;
1234 	TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
1235 	V_spd_size--;
1236 	LIST_REMOVE(sp, idhash);
1237 	V_sp_genid++;
1238 }
1239 
1240 /*
1241  * insert a secpolicy into the SP database. Lower priorities first
1242  */
1243 static void
1244 key_insertsp(struct secpolicy *newsp)
1245 {
1246 	struct secpolicy *sp;
1247 
1248 	SPTREE_WLOCK_ASSERT();
1249 	TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) {
1250 		if (newsp->priority < sp->priority) {
1251 			TAILQ_INSERT_BEFORE(sp, newsp, chain);
1252 			goto done;
1253 		}
1254 	}
1255 	TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain);
1256 done:
1257 	LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash);
1258 	newsp->state = IPSEC_SPSTATE_ALIVE;
1259 	V_spd_size++;
1260 	V_sp_genid++;
1261 }
1262 
1263 /*
1264  * Insert a bunch of VTI secpolicies into the SPDB.
1265  * We keep VTI policies in the separate list due to following reasons:
1266  * 1) they should be immutable to user's or some deamon's attempts to
1267  *    delete. The only way delete such policies - destroy or unconfigure
1268  *    corresponding virtual inteface.
1269  * 2) such policies have traffic selector that matches all traffic per
1270  *    address family.
1271  * Since all VTI policies have the same priority, we don't care about
1272  * policies order.
1273  */
1274 int
1275 key_register_ifnet(struct secpolicy **spp, u_int count)
1276 {
1277 	struct mbuf *m;
1278 	u_int i;
1279 
1280 	SPTREE_WLOCK();
1281 	/*
1282 	 * First of try to acquire id for each SP.
1283 	 */
1284 	for (i = 0; i < count; i++) {
1285 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1286 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1287 		    ("invalid direction %u", spp[i]->spidx.dir));
1288 
1289 		if ((spp[i]->id = key_getnewspid()) == 0) {
1290 			SPTREE_WUNLOCK();
1291 			return (EAGAIN);
1292 		}
1293 	}
1294 	for (i = 0; i < count; i++) {
1295 		TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir],
1296 		    spp[i], chain);
1297 		/*
1298 		 * NOTE: despite the fact that we keep VTI SP in the
1299 		 * separate list, SPHASH contains policies from both
1300 		 * sources. Thus SADB_X_SPDGET will correctly return
1301 		 * SP by id, because it uses SPHASH for lookups.
1302 		 */
1303 		LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash);
1304 		spp[i]->state = IPSEC_SPSTATE_IFNET;
1305 	}
1306 	SPTREE_WUNLOCK();
1307 	/*
1308 	 * Notify user processes about new SP.
1309 	 */
1310 	for (i = 0; i < count; i++) {
1311 		m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0);
1312 		if (m != NULL)
1313 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1314 	}
1315 	return (0);
1316 }
1317 
1318 void
1319 key_unregister_ifnet(struct secpolicy **spp, u_int count)
1320 {
1321 	struct mbuf *m;
1322 	u_int i;
1323 
1324 	SPTREE_WLOCK();
1325 	for (i = 0; i < count; i++) {
1326 		IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND ||
1327 		    spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND,
1328 		    ("invalid direction %u", spp[i]->spidx.dir));
1329 
1330 		if (spp[i]->state != IPSEC_SPSTATE_IFNET)
1331 			continue;
1332 		spp[i]->state = IPSEC_SPSTATE_DEAD;
1333 		TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir],
1334 		    spp[i], chain);
1335 		V_spd_size--;
1336 		LIST_REMOVE(spp[i], idhash);
1337 	}
1338 	SPTREE_WUNLOCK();
1339 	if (SPDCACHE_ENABLED())
1340 		spdcache_clear();
1341 
1342 	for (i = 0; i < count; i++) {
1343 		m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0);
1344 		if (m != NULL)
1345 			key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL);
1346 	}
1347 }
1348 
1349 /*
1350  * Must be called after calling key_allocsa().
1351  * This function is called by key_freesp() to free some SA allocated
1352  * for a policy.
1353  */
1354 void
1355 key_freesav(struct secasvar **psav)
1356 {
1357 	struct secasvar *sav = *psav;
1358 
1359 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1360 	CURVNET_ASSERT_SET();
1361 	if (SAV_DELREF(sav) == 0)
1362 		return;
1363 
1364 	KEYDBG(IPSEC_STAMP,
1365 	    printf("%s: last reference to SA(%p)\n", __func__, sav));
1366 
1367 	*psav = NULL;
1368 	key_delsav(sav);
1369 }
1370 
1371 /*
1372  * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK.
1373  * Expect that SA has extra reference due to lookup.
1374  * Release this references, also release SAH reference after unlink.
1375  */
1376 static void
1377 key_unlinksav(struct secasvar *sav)
1378 {
1379 	struct secashead *sah;
1380 
1381 	KEYDBG(KEY_STAMP,
1382 	    printf("%s: SA(%p)\n", __func__, sav));
1383 
1384 	CURVNET_ASSERT_SET();
1385 	SAHTREE_UNLOCK_ASSERT();
1386 	SAHTREE_WLOCK();
1387 	if (sav->state == SADB_SASTATE_DEAD) {
1388 		/* SA is already unlinked */
1389 		SAHTREE_WUNLOCK();
1390 		return;
1391 	}
1392 	/* Unlink from SAH */
1393 	if (sav->state == SADB_SASTATE_LARVAL)
1394 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
1395 	else
1396 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
1397 	/* Unlink from SPI hash */
1398 	LIST_REMOVE(sav, spihash);
1399 	sav->state = SADB_SASTATE_DEAD;
1400 	sah = sav->sah;
1401 	SAHTREE_WUNLOCK();
1402 	key_freesav(&sav);
1403 	/* Since we are unlinked, release reference to SAH */
1404 	key_freesah(&sah);
1405 }
1406 
1407 /* %%% SPD management */
1408 /*
1409  * search SPD
1410  * OUT:	NULL	: not found
1411  *	others	: found, pointer to a SP.
1412  */
1413 static struct secpolicy *
1414 key_getsp(struct secpolicyindex *spidx)
1415 {
1416 	SPTREE_RLOCK_TRACKER;
1417 	struct secpolicy *sp;
1418 
1419 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1420 
1421 	SPTREE_RLOCK();
1422 	TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1423 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1424 			SP_ADDREF(sp);
1425 			break;
1426 		}
1427 	}
1428 	SPTREE_RUNLOCK();
1429 
1430 	return sp;
1431 }
1432 
1433 /*
1434  * get SP by index.
1435  * OUT:	NULL	: not found
1436  *	others	: found, pointer to referenced SP.
1437  */
1438 static struct secpolicy *
1439 key_getspbyid(uint32_t id)
1440 {
1441 	SPTREE_RLOCK_TRACKER;
1442 	struct secpolicy *sp;
1443 
1444 	SPTREE_RLOCK();
1445 	LIST_FOREACH(sp, SPHASH_HASH(id), idhash) {
1446 		if (sp->id == id) {
1447 			SP_ADDREF(sp);
1448 			break;
1449 		}
1450 	}
1451 	SPTREE_RUNLOCK();
1452 	return (sp);
1453 }
1454 
1455 struct secpolicy *
1456 key_newsp(void)
1457 {
1458 	struct secpolicy *sp;
1459 
1460 	sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO);
1461 	if (sp != NULL)
1462 		SP_INITREF(sp);
1463 	return (sp);
1464 }
1465 
1466 struct ipsecrequest *
1467 ipsec_newisr(void)
1468 {
1469 
1470 	return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR,
1471 	    M_NOWAIT | M_ZERO));
1472 }
1473 
1474 void
1475 ipsec_delisr(struct ipsecrequest *p)
1476 {
1477 
1478 	free(p, M_IPSEC_SR);
1479 }
1480 
1481 /*
1482  * create secpolicy structure from sadb_x_policy structure.
1483  * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure
1484  * are not set, so must be set properly later.
1485  */
1486 struct secpolicy *
1487 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error)
1488 {
1489 	struct secpolicy *newsp;
1490 
1491 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1492 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1493 
1494 	if (len != PFKEY_EXTLEN(xpl0)) {
1495 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1496 		*error = EINVAL;
1497 		return NULL;
1498 	}
1499 
1500 	if ((newsp = key_newsp()) == NULL) {
1501 		*error = ENOBUFS;
1502 		return NULL;
1503 	}
1504 
1505 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1506 	newsp->policy = xpl0->sadb_x_policy_type;
1507 	newsp->priority = xpl0->sadb_x_policy_priority;
1508 	newsp->tcount = 0;
1509 
1510 	/* check policy */
1511 	switch (xpl0->sadb_x_policy_type) {
1512 	case IPSEC_POLICY_DISCARD:
1513 	case IPSEC_POLICY_NONE:
1514 	case IPSEC_POLICY_ENTRUST:
1515 	case IPSEC_POLICY_BYPASS:
1516 		break;
1517 
1518 	case IPSEC_POLICY_IPSEC:
1519 	    {
1520 		struct sadb_x_ipsecrequest *xisr;
1521 		struct ipsecrequest *isr;
1522 		int tlen;
1523 
1524 		/* validity check */
1525 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1526 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1527 				__func__));
1528 			key_freesp(&newsp);
1529 			*error = EINVAL;
1530 			return NULL;
1531 		}
1532 
1533 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1534 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1535 
1536 		while (tlen > 0) {
1537 			/* length check */
1538 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) ||
1539 			    xisr->sadb_x_ipsecrequest_len > tlen) {
1540 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1541 					"length.\n", __func__));
1542 				key_freesp(&newsp);
1543 				*error = EINVAL;
1544 				return NULL;
1545 			}
1546 
1547 			if (newsp->tcount >= IPSEC_MAXREQ) {
1548 				ipseclog((LOG_DEBUG,
1549 				    "%s: too many ipsecrequests.\n",
1550 				    __func__));
1551 				key_freesp(&newsp);
1552 				*error = EINVAL;
1553 				return (NULL);
1554 			}
1555 
1556 			/* allocate request buffer */
1557 			/* NB: data structure is zero'd */
1558 			isr = ipsec_newisr();
1559 			if (isr == NULL) {
1560 				ipseclog((LOG_DEBUG,
1561 				    "%s: No more memory.\n", __func__));
1562 				key_freesp(&newsp);
1563 				*error = ENOBUFS;
1564 				return NULL;
1565 			}
1566 
1567 			newsp->req[newsp->tcount++] = isr;
1568 
1569 			/* set values */
1570 			switch (xisr->sadb_x_ipsecrequest_proto) {
1571 			case IPPROTO_ESP:
1572 			case IPPROTO_AH:
1573 			case IPPROTO_IPCOMP:
1574 				break;
1575 			default:
1576 				ipseclog((LOG_DEBUG,
1577 				    "%s: invalid proto type=%u\n", __func__,
1578 				    xisr->sadb_x_ipsecrequest_proto));
1579 				key_freesp(&newsp);
1580 				*error = EPROTONOSUPPORT;
1581 				return NULL;
1582 			}
1583 			isr->saidx.proto =
1584 			    (uint8_t)xisr->sadb_x_ipsecrequest_proto;
1585 
1586 			switch (xisr->sadb_x_ipsecrequest_mode) {
1587 			case IPSEC_MODE_TRANSPORT:
1588 			case IPSEC_MODE_TUNNEL:
1589 				break;
1590 			case IPSEC_MODE_ANY:
1591 			default:
1592 				ipseclog((LOG_DEBUG,
1593 				    "%s: invalid mode=%u\n", __func__,
1594 				    xisr->sadb_x_ipsecrequest_mode));
1595 				key_freesp(&newsp);
1596 				*error = EINVAL;
1597 				return NULL;
1598 			}
1599 			isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1600 
1601 			switch (xisr->sadb_x_ipsecrequest_level) {
1602 			case IPSEC_LEVEL_DEFAULT:
1603 			case IPSEC_LEVEL_USE:
1604 			case IPSEC_LEVEL_REQUIRE:
1605 				break;
1606 			case IPSEC_LEVEL_UNIQUE:
1607 				/* validity check */
1608 				/*
1609 				 * If range violation of reqid, kernel will
1610 				 * update it, don't refuse it.
1611 				 */
1612 				if (xisr->sadb_x_ipsecrequest_reqid
1613 						> IPSEC_MANUAL_REQID_MAX) {
1614 					ipseclog((LOG_DEBUG,
1615 					    "%s: reqid=%d range "
1616 					    "violation, updated by kernel.\n",
1617 					    __func__,
1618 					    xisr->sadb_x_ipsecrequest_reqid));
1619 					xisr->sadb_x_ipsecrequest_reqid = 0;
1620 				}
1621 
1622 				/* allocate new reqid id if reqid is zero. */
1623 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1624 					u_int32_t reqid;
1625 					if ((reqid = key_newreqid()) == 0) {
1626 						key_freesp(&newsp);
1627 						*error = ENOBUFS;
1628 						return NULL;
1629 					}
1630 					isr->saidx.reqid = reqid;
1631 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1632 				} else {
1633 				/* set it for manual keying. */
1634 					isr->saidx.reqid =
1635 					    xisr->sadb_x_ipsecrequest_reqid;
1636 				}
1637 				break;
1638 
1639 			default:
1640 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1641 					__func__,
1642 					xisr->sadb_x_ipsecrequest_level));
1643 				key_freesp(&newsp);
1644 				*error = EINVAL;
1645 				return NULL;
1646 			}
1647 			isr->level = xisr->sadb_x_ipsecrequest_level;
1648 
1649 			/* set IP addresses if there */
1650 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1651 				struct sockaddr *paddr;
1652 
1653 				len = tlen - sizeof(*xisr);
1654 				paddr = (struct sockaddr *)(xisr + 1);
1655 				/* validity check */
1656 				if (len < sizeof(struct sockaddr) ||
1657 				    len < 2 * paddr->sa_len ||
1658 				    paddr->sa_len > sizeof(isr->saidx.src)) {
1659 					ipseclog((LOG_DEBUG, "%s: invalid "
1660 						"request address length.\n",
1661 						__func__));
1662 					key_freesp(&newsp);
1663 					*error = EINVAL;
1664 					return NULL;
1665 				}
1666 				/*
1667 				 * Request length should be enough to keep
1668 				 * source and destination addresses.
1669 				 */
1670 				if (xisr->sadb_x_ipsecrequest_len <
1671 				    sizeof(*xisr) + 2 * paddr->sa_len) {
1672 					ipseclog((LOG_DEBUG, "%s: invalid "
1673 					    "ipsecrequest length.\n",
1674 					    __func__));
1675 					key_freesp(&newsp);
1676 					*error = EINVAL;
1677 					return (NULL);
1678 				}
1679 				bcopy(paddr, &isr->saidx.src, paddr->sa_len);
1680 				paddr = (struct sockaddr *)((caddr_t)paddr +
1681 				    paddr->sa_len);
1682 
1683 				/* validity check */
1684 				if (paddr->sa_len !=
1685 				    isr->saidx.src.sa.sa_len) {
1686 					ipseclog((LOG_DEBUG, "%s: invalid "
1687 						"request address length.\n",
1688 						__func__));
1689 					key_freesp(&newsp);
1690 					*error = EINVAL;
1691 					return NULL;
1692 				}
1693 				/* AF family should match */
1694 				if (paddr->sa_family !=
1695 				    isr->saidx.src.sa.sa_family) {
1696 					ipseclog((LOG_DEBUG, "%s: address "
1697 					    "family doesn't match.\n",
1698 						__func__));
1699 					key_freesp(&newsp);
1700 					*error = EINVAL;
1701 					return (NULL);
1702 				}
1703 				bcopy(paddr, &isr->saidx.dst, paddr->sa_len);
1704 			} else {
1705 				/*
1706 				 * Addresses for TUNNEL mode requests are
1707 				 * mandatory.
1708 				 */
1709 				if (isr->saidx.mode == IPSEC_MODE_TUNNEL) {
1710 					ipseclog((LOG_DEBUG, "%s: missing "
1711 					    "request addresses.\n", __func__));
1712 					key_freesp(&newsp);
1713 					*error = EINVAL;
1714 					return (NULL);
1715 				}
1716 			}
1717 			tlen -= xisr->sadb_x_ipsecrequest_len;
1718 
1719 			/* validity check */
1720 			if (tlen < 0) {
1721 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1722 					__func__));
1723 				key_freesp(&newsp);
1724 				*error = EINVAL;
1725 				return NULL;
1726 			}
1727 
1728 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1729 			                 + xisr->sadb_x_ipsecrequest_len);
1730 		}
1731 		/* XXXAE: LARVAL SP */
1732 		if (newsp->tcount < 1) {
1733 			ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms "
1734 			    "not found.\n", __func__));
1735 			key_freesp(&newsp);
1736 			*error = EINVAL;
1737 			return (NULL);
1738 		}
1739 	    }
1740 		break;
1741 	default:
1742 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1743 		key_freesp(&newsp);
1744 		*error = EINVAL;
1745 		return NULL;
1746 	}
1747 
1748 	*error = 0;
1749 	return (newsp);
1750 }
1751 
1752 uint32_t
1753 key_newreqid(void)
1754 {
1755 	static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1756 
1757 	if (auto_reqid == ~0)
1758 		auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1759 	else
1760 		auto_reqid++;
1761 
1762 	/* XXX should be unique check */
1763 	return (auto_reqid);
1764 }
1765 
1766 /*
1767  * copy secpolicy struct to sadb_x_policy structure indicated.
1768  */
1769 static struct mbuf *
1770 key_sp2mbuf(struct secpolicy *sp)
1771 {
1772 	struct mbuf *m;
1773 	size_t tlen;
1774 
1775 	tlen = key_getspreqmsglen(sp);
1776 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1777 	if (m == NULL)
1778 		return (NULL);
1779 	m_align(m, tlen);
1780 	m->m_len = tlen;
1781 	if (key_sp2msg(sp, m->m_data, &tlen) != 0) {
1782 		m_freem(m);
1783 		return (NULL);
1784 	}
1785 	return (m);
1786 }
1787 
1788 int
1789 key_sp2msg(struct secpolicy *sp, void *request, size_t *len)
1790 {
1791 	struct sadb_x_ipsecrequest *xisr;
1792 	struct sadb_x_policy *xpl;
1793 	struct ipsecrequest *isr;
1794 	size_t xlen, ilen;
1795 	caddr_t p;
1796 	int error, i;
1797 
1798 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1799 
1800 	xlen = sizeof(*xpl);
1801 	if (*len < xlen)
1802 		return (EINVAL);
1803 
1804 	error = 0;
1805 	bzero(request, *len);
1806 	xpl = (struct sadb_x_policy *)request;
1807 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1808 	xpl->sadb_x_policy_type = sp->policy;
1809 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1810 	xpl->sadb_x_policy_id = sp->id;
1811 	xpl->sadb_x_policy_priority = sp->priority;
1812 	switch (sp->state) {
1813 	case IPSEC_SPSTATE_IFNET:
1814 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET;
1815 		break;
1816 	case IPSEC_SPSTATE_PCB:
1817 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB;
1818 		break;
1819 	default:
1820 		xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL;
1821 	}
1822 
1823 	/* if is the policy for ipsec ? */
1824 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1825 		p = (caddr_t)xpl + sizeof(*xpl);
1826 		for (i = 0; i < sp->tcount; i++) {
1827 			isr = sp->req[i];
1828 			ilen = PFKEY_ALIGN8(sizeof(*xisr) +
1829 			    isr->saidx.src.sa.sa_len +
1830 			    isr->saidx.dst.sa.sa_len);
1831 			xlen += ilen;
1832 			if (xlen > *len) {
1833 				error = ENOBUFS;
1834 				/* Calculate needed size */
1835 				continue;
1836 			}
1837 			xisr = (struct sadb_x_ipsecrequest *)p;
1838 			xisr->sadb_x_ipsecrequest_len = ilen;
1839 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1840 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1841 			xisr->sadb_x_ipsecrequest_level = isr->level;
1842 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1843 
1844 			p += sizeof(*xisr);
1845 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1846 			p += isr->saidx.src.sa.sa_len;
1847 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1848 			p += isr->saidx.dst.sa.sa_len;
1849 		}
1850 	}
1851 	xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen);
1852 	if (error == 0)
1853 		*len = xlen;
1854 	else
1855 		*len = sizeof(*xpl);
1856 	return (error);
1857 }
1858 
1859 /* m will not be freed nor modified */
1860 static struct mbuf *
1861 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1862     int ndeep, int nitem, ...)
1863 {
1864 	va_list ap;
1865 	int idx;
1866 	int i;
1867 	struct mbuf *result = NULL, *n;
1868 	int len;
1869 
1870 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1871 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1872 
1873 	va_start(ap, nitem);
1874 	for (i = 0; i < nitem; i++) {
1875 		idx = va_arg(ap, int);
1876 		if (idx < 0 || idx > SADB_EXT_MAX)
1877 			goto fail;
1878 		/* don't attempt to pull empty extension */
1879 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1880 			continue;
1881 		if (idx != SADB_EXT_RESERVED  &&
1882 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1883 			continue;
1884 
1885 		if (idx == SADB_EXT_RESERVED) {
1886 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1887 
1888 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1889 
1890 			MGETHDR(n, M_NOWAIT, MT_DATA);
1891 			if (!n)
1892 				goto fail;
1893 			n->m_len = len;
1894 			n->m_next = NULL;
1895 			m_copydata(m, 0, sizeof(struct sadb_msg),
1896 			    mtod(n, caddr_t));
1897 		} else if (i < ndeep) {
1898 			len = mhp->extlen[idx];
1899 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1900 			if (n == NULL)
1901 				goto fail;
1902 			m_align(n, len);
1903 			n->m_len = len;
1904 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1905 			    mtod(n, caddr_t));
1906 		} else {
1907 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1908 			    M_NOWAIT);
1909 		}
1910 		if (n == NULL)
1911 			goto fail;
1912 
1913 		if (result)
1914 			m_cat(result, n);
1915 		else
1916 			result = n;
1917 	}
1918 	va_end(ap);
1919 
1920 	if ((result->m_flags & M_PKTHDR) != 0) {
1921 		result->m_pkthdr.len = 0;
1922 		for (n = result; n; n = n->m_next)
1923 			result->m_pkthdr.len += n->m_len;
1924 	}
1925 
1926 	return result;
1927 
1928 fail:
1929 	m_freem(result);
1930 	va_end(ap);
1931 	return NULL;
1932 }
1933 
1934 /*
1935  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1936  * add an entry to SP database, when received
1937  *   <base, address(SD), (lifetime(H),) policy>
1938  * from the user(?).
1939  * Adding to SP database,
1940  * and send
1941  *   <base, address(SD), (lifetime(H),) policy>
1942  * to the socket which was send.
1943  *
1944  * SPDADD set a unique policy entry.
1945  * SPDSETIDX like SPDADD without a part of policy requests.
1946  * SPDUPDATE replace a unique policy entry.
1947  *
1948  * XXXAE: serialize this in PF_KEY to avoid races.
1949  * m will always be freed.
1950  */
1951 static int
1952 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
1953 {
1954 	struct secpolicyindex spidx;
1955 	struct sadb_address *src0, *dst0;
1956 	struct sadb_x_policy *xpl0, *xpl;
1957 	struct sadb_lifetime *lft = NULL;
1958 	struct secpolicy *newsp, *oldsp;
1959 	int error;
1960 
1961 	IPSEC_ASSERT(so != NULL, ("null socket"));
1962 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1963 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1964 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1965 
1966 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
1967 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
1968 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
1969 		ipseclog((LOG_DEBUG,
1970 		    "%s: invalid message: missing required header.\n",
1971 		    __func__));
1972 		return key_senderror(so, m, EINVAL);
1973 	}
1974 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
1975 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
1976 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
1977 		ipseclog((LOG_DEBUG,
1978 		    "%s: invalid message: wrong header size.\n", __func__));
1979 		return key_senderror(so, m, EINVAL);
1980 	}
1981 	if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) {
1982 		if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) {
1983 			ipseclog((LOG_DEBUG,
1984 			    "%s: invalid message: wrong header size.\n",
1985 			    __func__));
1986 			return key_senderror(so, m, EINVAL);
1987 		}
1988 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1989 	}
1990 
1991 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1992 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1993 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1994 
1995 	/* check the direciton */
1996 	switch (xpl0->sadb_x_policy_dir) {
1997 	case IPSEC_DIR_INBOUND:
1998 	case IPSEC_DIR_OUTBOUND:
1999 		break;
2000 	default:
2001 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2002 		return key_senderror(so, m, EINVAL);
2003 	}
2004 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
2005 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2006 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2007 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2008 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2009 		return key_senderror(so, m, EINVAL);
2010 	}
2011 
2012 	/* policy requests are mandatory when action is ipsec. */
2013 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2014 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2015 		ipseclog((LOG_DEBUG,
2016 		    "%s: policy requests required.\n", __func__));
2017 		return key_senderror(so, m, EINVAL);
2018 	}
2019 
2020 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
2021 	    (struct sockaddr *)(dst0 + 1));
2022 	if (error != 0 ||
2023 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2024 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2025 		return key_senderror(so, m, error);
2026 	}
2027 	/* make secindex */
2028 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2029 	                src0 + 1,
2030 	                dst0 + 1,
2031 	                src0->sadb_address_prefixlen,
2032 	                dst0->sadb_address_prefixlen,
2033 	                src0->sadb_address_proto,
2034 	                &spidx);
2035 	/* Checking there is SP already or not. */
2036 	oldsp = key_getsp(&spidx);
2037 	if (oldsp != NULL) {
2038 		if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2039 			KEYDBG(KEY_STAMP,
2040 			    printf("%s: unlink SP(%p) for SPDUPDATE\n",
2041 				__func__, oldsp));
2042 			KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp));
2043 		} else {
2044 			key_freesp(&oldsp);
2045 			ipseclog((LOG_DEBUG,
2046 			    "%s: a SP entry exists already.\n", __func__));
2047 			return (key_senderror(so, m, EEXIST));
2048 		}
2049 	}
2050 
2051 	/* allocate new SP entry */
2052 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
2053 		if (oldsp != NULL) {
2054 			key_unlink(oldsp);
2055 			key_freesp(&oldsp); /* second for our reference */
2056 		}
2057 		return key_senderror(so, m, error);
2058 	}
2059 
2060 	newsp->lastused = newsp->created = time_second;
2061 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2062 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2063 	bcopy(&spidx, &newsp->spidx, sizeof(spidx));
2064 
2065 	SPTREE_WLOCK();
2066 	if ((newsp->id = key_getnewspid()) == 0) {
2067 		if (oldsp != NULL)
2068 			key_detach(oldsp);
2069 		SPTREE_WUNLOCK();
2070 		if (oldsp != NULL) {
2071 			key_freesp(&oldsp); /* first for key_detach */
2072 			IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2073 			key_freesp(&oldsp); /* second for our reference */
2074 			if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */
2075 				spdcache_clear();
2076 		}
2077 		key_freesp(&newsp);
2078 		return key_senderror(so, m, ENOBUFS);
2079 	}
2080 	if (oldsp != NULL)
2081 		key_detach(oldsp);
2082 	key_insertsp(newsp);
2083 	SPTREE_WUNLOCK();
2084 	if (oldsp != NULL) {
2085 		key_freesp(&oldsp); /* first for key_detach */
2086 		IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug"));
2087 		key_freesp(&oldsp); /* second for our reference */
2088 	}
2089 	if (SPDCACHE_ENABLED())
2090 		spdcache_clear();
2091 	KEYDBG(KEY_STAMP,
2092 	    printf("%s: SP(%p)\n", __func__, newsp));
2093 	KEYDBG(KEY_DATA, kdebug_secpolicy(newsp));
2094 
2095     {
2096 	struct mbuf *n, *mpolicy;
2097 	struct sadb_msg *newmsg;
2098 	int off;
2099 
2100 	/* create new sadb_msg to reply. */
2101 	if (lft) {
2102 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2103 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2104 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2105 	} else {
2106 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2107 		    SADB_X_EXT_POLICY,
2108 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2109 	}
2110 	if (!n)
2111 		return key_senderror(so, m, ENOBUFS);
2112 
2113 	if (n->m_len < sizeof(*newmsg)) {
2114 		n = m_pullup(n, sizeof(*newmsg));
2115 		if (!n)
2116 			return key_senderror(so, m, ENOBUFS);
2117 	}
2118 	newmsg = mtod(n, struct sadb_msg *);
2119 	newmsg->sadb_msg_errno = 0;
2120 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2121 
2122 	off = 0;
2123 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2124 	    sizeof(*xpl), &off);
2125 	if (mpolicy == NULL) {
2126 		/* n is already freed */
2127 		return key_senderror(so, m, ENOBUFS);
2128 	}
2129 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2130 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2131 		m_freem(n);
2132 		return key_senderror(so, m, EINVAL);
2133 	}
2134 	xpl->sadb_x_policy_id = newsp->id;
2135 
2136 	m_freem(m);
2137 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2138     }
2139 }
2140 
2141 /*
2142  * get new policy id.
2143  * OUT:
2144  *	0:	failure.
2145  *	others: success.
2146  */
2147 static uint32_t
2148 key_getnewspid(void)
2149 {
2150 	struct secpolicy *sp;
2151 	uint32_t newid = 0;
2152 	int tries, limit;
2153 
2154 	SPTREE_WLOCK_ASSERT();
2155 
2156 	limit = atomic_load_int(&V_key_spi_trycnt);
2157 	for (tries = 0; tries < limit; tries++) {
2158 		if (V_policy_id == ~0) /* overflowed */
2159 			newid = V_policy_id = 1;
2160 		else
2161 			newid = ++V_policy_id;
2162 		LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) {
2163 			if (sp->id == newid)
2164 				break;
2165 		}
2166 		if (sp == NULL)
2167 			break;
2168 	}
2169 	if (tries == limit || newid == 0) {
2170 		ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n",
2171 		    __func__));
2172 		return (0);
2173 	}
2174 	return (newid);
2175 }
2176 
2177 /*
2178  * SADB_SPDDELETE processing
2179  * receive
2180  *   <base, address(SD), policy(*)>
2181  * from the user(?), and set SADB_SASTATE_DEAD,
2182  * and send,
2183  *   <base, address(SD), policy(*)>
2184  * to the ikmpd.
2185  * policy(*) including direction of policy.
2186  *
2187  * m will always be freed.
2188  */
2189 static int
2190 key_spddelete(struct socket *so, struct mbuf *m,
2191     const struct sadb_msghdr *mhp)
2192 {
2193 	struct secpolicyindex spidx;
2194 	struct sadb_address *src0, *dst0;
2195 	struct sadb_x_policy *xpl0;
2196 	struct secpolicy *sp;
2197 
2198 	IPSEC_ASSERT(so != NULL, ("null so"));
2199 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2200 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2201 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2202 
2203 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
2204 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
2205 	    SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) {
2206 		ipseclog((LOG_DEBUG,
2207 		    "%s: invalid message: missing required header.\n",
2208 		    __func__));
2209 		return key_senderror(so, m, EINVAL);
2210 	}
2211 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
2212 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
2213 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2214 		ipseclog((LOG_DEBUG,
2215 		    "%s: invalid message: wrong header size.\n", __func__));
2216 		return key_senderror(so, m, EINVAL);
2217 	}
2218 
2219 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2220 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2221 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2222 
2223 	/* check the direciton */
2224 	switch (xpl0->sadb_x_policy_dir) {
2225 	case IPSEC_DIR_INBOUND:
2226 	case IPSEC_DIR_OUTBOUND:
2227 		break;
2228 	default:
2229 		ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__));
2230 		return key_senderror(so, m, EINVAL);
2231 	}
2232 	/* Only DISCARD, NONE and IPSEC are allowed */
2233 	if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD &&
2234 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE &&
2235 	    xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) {
2236 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
2237 		return key_senderror(so, m, EINVAL);
2238 	}
2239 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
2240 	    (struct sockaddr *)(dst0 + 1)) != 0 ||
2241 	    src0->sadb_address_proto != dst0->sadb_address_proto) {
2242 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
2243 		return key_senderror(so, m, EINVAL);
2244 	}
2245 	/* make secindex */
2246 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2247 	                src0 + 1,
2248 	                dst0 + 1,
2249 	                src0->sadb_address_prefixlen,
2250 	                dst0->sadb_address_prefixlen,
2251 	                src0->sadb_address_proto,
2252 	                &spidx);
2253 
2254 	/* Is there SP in SPD ? */
2255 	if ((sp = key_getsp(&spidx)) == NULL) {
2256 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2257 		return key_senderror(so, m, EINVAL);
2258 	}
2259 
2260 	/* save policy id to buffer to be returned. */
2261 	xpl0->sadb_x_policy_id = sp->id;
2262 
2263 	KEYDBG(KEY_STAMP,
2264 	    printf("%s: SP(%p)\n", __func__, sp));
2265 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2266 	key_unlink(sp);
2267 	key_freesp(&sp);
2268 
2269     {
2270 	struct mbuf *n;
2271 	struct sadb_msg *newmsg;
2272 
2273 	/* create new sadb_msg to reply. */
2274 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2275 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2276 	if (!n)
2277 		return key_senderror(so, m, ENOBUFS);
2278 
2279 	newmsg = mtod(n, struct sadb_msg *);
2280 	newmsg->sadb_msg_errno = 0;
2281 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2282 
2283 	m_freem(m);
2284 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2285     }
2286 }
2287 
2288 /*
2289  * SADB_SPDDELETE2 processing
2290  * receive
2291  *   <base, policy(*)>
2292  * from the user(?), and set SADB_SASTATE_DEAD,
2293  * and send,
2294  *   <base, policy(*)>
2295  * to the ikmpd.
2296  * policy(*) including direction of policy.
2297  *
2298  * m will always be freed.
2299  */
2300 static int
2301 key_spddelete2(struct socket *so, struct mbuf *m,
2302     const struct sadb_msghdr *mhp)
2303 {
2304 	struct secpolicy *sp;
2305 	uint32_t id;
2306 
2307 	IPSEC_ASSERT(so != NULL, ("null socket"));
2308 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2309 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2310 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2311 
2312 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2313 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2314 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2315 		    __func__));
2316 		return key_senderror(so, m, EINVAL);
2317 	}
2318 
2319 	id = ((struct sadb_x_policy *)
2320 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2321 
2322 	/* Is there SP in SPD ? */
2323 	if ((sp = key_getspbyid(id)) == NULL) {
2324 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2325 		    __func__, id));
2326 		return key_senderror(so, m, EINVAL);
2327 	}
2328 
2329 	KEYDBG(KEY_STAMP,
2330 	    printf("%s: SP(%p)\n", __func__, sp));
2331 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2332 	key_unlink(sp);
2333 	if (sp->state != IPSEC_SPSTATE_DEAD) {
2334 		ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n",
2335 		    __func__, id));
2336 		key_freesp(&sp);
2337 		return (key_senderror(so, m, EACCES));
2338 	}
2339 	key_freesp(&sp);
2340 
2341     {
2342 	struct mbuf *n, *nn;
2343 	struct sadb_msg *newmsg;
2344 	int off, len;
2345 
2346 	/* create new sadb_msg to reply. */
2347 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2348 
2349 	MGETHDR(n, M_NOWAIT, MT_DATA);
2350 	if (n && len > MHLEN) {
2351 		if (!(MCLGET(n, M_NOWAIT))) {
2352 			m_freem(n);
2353 			n = NULL;
2354 		}
2355 	}
2356 	if (!n)
2357 		return key_senderror(so, m, ENOBUFS);
2358 
2359 	n->m_len = len;
2360 	n->m_next = NULL;
2361 	off = 0;
2362 
2363 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2364 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2365 
2366 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2367 		off, len));
2368 
2369 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2370 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2371 	if (!n->m_next) {
2372 		m_freem(n);
2373 		return key_senderror(so, m, ENOBUFS);
2374 	}
2375 
2376 	n->m_pkthdr.len = 0;
2377 	for (nn = n; nn; nn = nn->m_next)
2378 		n->m_pkthdr.len += nn->m_len;
2379 
2380 	newmsg = mtod(n, struct sadb_msg *);
2381 	newmsg->sadb_msg_errno = 0;
2382 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2383 
2384 	m_freem(m);
2385 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2386     }
2387 }
2388 
2389 /*
2390  * SADB_X_SPDGET processing
2391  * receive
2392  *   <base, policy(*)>
2393  * from the user(?),
2394  * and send,
2395  *   <base, address(SD), policy>
2396  * to the ikmpd.
2397  * policy(*) including direction of policy.
2398  *
2399  * m will always be freed.
2400  */
2401 static int
2402 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2403 {
2404 	struct secpolicy *sp;
2405 	struct mbuf *n;
2406 	uint32_t id;
2407 
2408 	IPSEC_ASSERT(so != NULL, ("null socket"));
2409 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2410 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2411 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2412 
2413 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) ||
2414 	    SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) {
2415 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2416 		    __func__));
2417 		return key_senderror(so, m, EINVAL);
2418 	}
2419 
2420 	id = ((struct sadb_x_policy *)
2421 	    mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2422 
2423 	/* Is there SP in SPD ? */
2424 	if ((sp = key_getspbyid(id)) == NULL) {
2425 		ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n",
2426 		    __func__, id));
2427 		return key_senderror(so, m, ENOENT);
2428 	}
2429 
2430 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2431 	    mhp->msg->sadb_msg_pid);
2432 	key_freesp(&sp);
2433 	if (n != NULL) {
2434 		m_freem(m);
2435 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2436 	} else
2437 		return key_senderror(so, m, ENOBUFS);
2438 }
2439 
2440 /*
2441  * SADB_X_SPDACQUIRE processing.
2442  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2443  * send
2444  *   <base, policy(*)>
2445  * to KMD, and expect to receive
2446  *   <base> with SADB_X_SPDACQUIRE if error occurred,
2447  * or
2448  *   <base, policy>
2449  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2450  * policy(*) is without policy requests.
2451  *
2452  *    0     : succeed
2453  *    others: error number
2454  */
2455 int
2456 key_spdacquire(struct secpolicy *sp)
2457 {
2458 	struct mbuf *result = NULL, *m;
2459 	struct secspacq *newspacq;
2460 
2461 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2462 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2463 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2464 		("policy not IPSEC %u", sp->policy));
2465 
2466 	/* Get an entry to check whether sent message or not. */
2467 	newspacq = key_getspacq(&sp->spidx);
2468 	if (newspacq != NULL) {
2469 		if (V_key_blockacq_count < newspacq->count) {
2470 			/* reset counter and do send message. */
2471 			newspacq->count = 0;
2472 		} else {
2473 			/* increment counter and do nothing. */
2474 			newspacq->count++;
2475 			SPACQ_UNLOCK();
2476 			return (0);
2477 		}
2478 		SPACQ_UNLOCK();
2479 	} else {
2480 		/* make new entry for blocking to send SADB_ACQUIRE. */
2481 		newspacq = key_newspacq(&sp->spidx);
2482 		if (newspacq == NULL)
2483 			return ENOBUFS;
2484 	}
2485 
2486 	/* create new sadb_msg to reply. */
2487 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2488 	if (!m)
2489 		return ENOBUFS;
2490 
2491 	result = m;
2492 
2493 	result->m_pkthdr.len = 0;
2494 	for (m = result; m; m = m->m_next)
2495 		result->m_pkthdr.len += m->m_len;
2496 
2497 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2498 	    PFKEY_UNIT64(result->m_pkthdr.len);
2499 
2500 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2501 }
2502 
2503 /*
2504  * SADB_SPDFLUSH processing
2505  * receive
2506  *   <base>
2507  * from the user, and free all entries in secpctree.
2508  * and send,
2509  *   <base>
2510  * to the user.
2511  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2512  *
2513  * m will always be freed.
2514  */
2515 static int
2516 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2517 {
2518 	struct secpolicy_queue drainq;
2519 	struct sadb_msg *newmsg;
2520 	struct secpolicy *sp, *nextsp;
2521 	u_int dir;
2522 
2523 	IPSEC_ASSERT(so != NULL, ("null socket"));
2524 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2525 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2526 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2527 
2528 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2529 		return key_senderror(so, m, EINVAL);
2530 
2531 	TAILQ_INIT(&drainq);
2532 	SPTREE_WLOCK();
2533 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2534 		TAILQ_CONCAT(&drainq, &V_sptree[dir], chain);
2535 	}
2536 	/*
2537 	 * We need to set state to DEAD for each policy to be sure,
2538 	 * that another thread won't try to unlink it.
2539 	 * Also remove SP from sphash.
2540 	 */
2541 	TAILQ_FOREACH(sp, &drainq, chain) {
2542 		sp->state = IPSEC_SPSTATE_DEAD;
2543 		LIST_REMOVE(sp, idhash);
2544 	}
2545 	V_sp_genid++;
2546 	V_spd_size = 0;
2547 	SPTREE_WUNLOCK();
2548 	if (SPDCACHE_ENABLED())
2549 		spdcache_clear();
2550 	sp = TAILQ_FIRST(&drainq);
2551 	while (sp != NULL) {
2552 		nextsp = TAILQ_NEXT(sp, chain);
2553 		key_freesp(&sp);
2554 		sp = nextsp;
2555 	}
2556 
2557 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2558 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2559 		return key_senderror(so, m, ENOBUFS);
2560 	}
2561 
2562 	if (m->m_next)
2563 		m_freem(m->m_next);
2564 	m->m_next = NULL;
2565 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2566 	newmsg = mtod(m, struct sadb_msg *);
2567 	newmsg->sadb_msg_errno = 0;
2568 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2569 
2570 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2571 }
2572 
2573 static uint8_t
2574 key_satype2scopemask(uint8_t satype)
2575 {
2576 
2577 	if (satype == IPSEC_POLICYSCOPE_ANY)
2578 		return (0xff);
2579 	return (satype);
2580 }
2581 /*
2582  * SADB_SPDDUMP processing
2583  * receive
2584  *   <base>
2585  * from the user, and dump all SP leaves and send,
2586  *   <base> .....
2587  * to the ikmpd.
2588  *
2589  * NOTE:
2590  *   sadb_msg_satype is considered as mask of policy scopes.
2591  *   m will always be freed.
2592  */
2593 static int
2594 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
2595 {
2596 	SPTREE_RLOCK_TRACKER;
2597 	struct secpolicy *sp;
2598 	struct mbuf *n;
2599 	int cnt;
2600 	u_int dir, scope;
2601 
2602 	IPSEC_ASSERT(so != NULL, ("null socket"));
2603 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2604 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2605 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2606 
2607 	/* search SPD entry and get buffer size. */
2608 	cnt = 0;
2609 	scope = key_satype2scopemask(mhp->msg->sadb_msg_satype);
2610 	SPTREE_RLOCK();
2611 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2612 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2613 			TAILQ_FOREACH(sp, &V_sptree[dir], chain)
2614 				cnt++;
2615 		}
2616 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2617 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain)
2618 				cnt++;
2619 		}
2620 	}
2621 
2622 	if (cnt == 0) {
2623 		SPTREE_RUNLOCK();
2624 		return key_senderror(so, m, ENOENT);
2625 	}
2626 
2627 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2628 		if (scope & IPSEC_POLICYSCOPE_GLOBAL) {
2629 			TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
2630 				--cnt;
2631 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2632 				    mhp->msg->sadb_msg_pid);
2633 
2634 				if (n != NULL)
2635 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2636 			}
2637 		}
2638 		if (scope & IPSEC_POLICYSCOPE_IFNET) {
2639 			TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) {
2640 				--cnt;
2641 				n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2642 				    mhp->msg->sadb_msg_pid);
2643 
2644 				if (n != NULL)
2645 					key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2646 			}
2647 		}
2648 	}
2649 
2650 	SPTREE_RUNLOCK();
2651 	m_freem(m);
2652 	return (0);
2653 }
2654 
2655 static struct mbuf *
2656 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq,
2657     u_int32_t pid)
2658 {
2659 	struct mbuf *result = NULL, *m;
2660 	struct seclifetime lt;
2661 
2662 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2663 	if (!m)
2664 		goto fail;
2665 	result = m;
2666 
2667 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2668 	    &sp->spidx.src.sa, sp->spidx.prefs,
2669 	    sp->spidx.ul_proto);
2670 	if (!m)
2671 		goto fail;
2672 	m_cat(result, m);
2673 
2674 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2675 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2676 	    sp->spidx.ul_proto);
2677 	if (!m)
2678 		goto fail;
2679 	m_cat(result, m);
2680 
2681 	m = key_sp2mbuf(sp);
2682 	if (!m)
2683 		goto fail;
2684 	m_cat(result, m);
2685 
2686 	if(sp->lifetime){
2687 		lt.addtime=sp->created;
2688 		lt.usetime= sp->lastused;
2689 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2690 		if (!m)
2691 			goto fail;
2692 		m_cat(result, m);
2693 
2694 		lt.addtime=sp->lifetime;
2695 		lt.usetime= sp->validtime;
2696 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2697 		if (!m)
2698 			goto fail;
2699 		m_cat(result, m);
2700 	}
2701 
2702 	if ((result->m_flags & M_PKTHDR) == 0)
2703 		goto fail;
2704 
2705 	if (result->m_len < sizeof(struct sadb_msg)) {
2706 		result = m_pullup(result, sizeof(struct sadb_msg));
2707 		if (result == NULL)
2708 			goto fail;
2709 	}
2710 
2711 	result->m_pkthdr.len = 0;
2712 	for (m = result; m; m = m->m_next)
2713 		result->m_pkthdr.len += m->m_len;
2714 
2715 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2716 	    PFKEY_UNIT64(result->m_pkthdr.len);
2717 
2718 	return result;
2719 
2720 fail:
2721 	m_freem(result);
2722 	return NULL;
2723 }
2724 /*
2725  * get PFKEY message length for security policy and request.
2726  */
2727 static size_t
2728 key_getspreqmsglen(struct secpolicy *sp)
2729 {
2730 	size_t tlen, len;
2731 	int i;
2732 
2733 	tlen = sizeof(struct sadb_x_policy);
2734 	/* if is the policy for ipsec ? */
2735 	if (sp->policy != IPSEC_POLICY_IPSEC)
2736 		return (tlen);
2737 
2738 	/* get length of ipsec requests */
2739 	for (i = 0; i < sp->tcount; i++) {
2740 		len = sizeof(struct sadb_x_ipsecrequest)
2741 			+ sp->req[i]->saidx.src.sa.sa_len
2742 			+ sp->req[i]->saidx.dst.sa.sa_len;
2743 
2744 		tlen += PFKEY_ALIGN8(len);
2745 	}
2746 	return (tlen);
2747 }
2748 
2749 /*
2750  * SADB_SPDEXPIRE processing
2751  * send
2752  *   <base, address(SD), lifetime(CH), policy>
2753  * to KMD by PF_KEY.
2754  *
2755  * OUT:	0	: succeed
2756  *	others	: error number
2757  */
2758 static int
2759 key_spdexpire(struct secpolicy *sp)
2760 {
2761 	struct sadb_lifetime *lt;
2762 	struct mbuf *result = NULL, *m;
2763 	int len, error = -1;
2764 
2765 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2766 
2767 	KEYDBG(KEY_STAMP,
2768 	    printf("%s: SP(%p)\n", __func__, sp));
2769 	KEYDBG(KEY_DATA, kdebug_secpolicy(sp));
2770 
2771 	/* set msg header */
2772 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2773 	if (!m) {
2774 		error = ENOBUFS;
2775 		goto fail;
2776 	}
2777 	result = m;
2778 
2779 	/* create lifetime extension (current and hard) */
2780 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2781 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2782 	if (m == NULL) {
2783 		error = ENOBUFS;
2784 		goto fail;
2785 	}
2786 	m_align(m, len);
2787 	m->m_len = len;
2788 	bzero(mtod(m, caddr_t), len);
2789 	lt = mtod(m, struct sadb_lifetime *);
2790 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2791 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2792 	lt->sadb_lifetime_allocations = 0;
2793 	lt->sadb_lifetime_bytes = 0;
2794 	lt->sadb_lifetime_addtime = sp->created;
2795 	lt->sadb_lifetime_usetime = sp->lastused;
2796 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2797 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2798 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2799 	lt->sadb_lifetime_allocations = 0;
2800 	lt->sadb_lifetime_bytes = 0;
2801 	lt->sadb_lifetime_addtime = sp->lifetime;
2802 	lt->sadb_lifetime_usetime = sp->validtime;
2803 	m_cat(result, m);
2804 
2805 	/* set sadb_address for source */
2806 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2807 	    &sp->spidx.src.sa,
2808 	    sp->spidx.prefs, sp->spidx.ul_proto);
2809 	if (!m) {
2810 		error = ENOBUFS;
2811 		goto fail;
2812 	}
2813 	m_cat(result, m);
2814 
2815 	/* set sadb_address for destination */
2816 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2817 	    &sp->spidx.dst.sa,
2818 	    sp->spidx.prefd, sp->spidx.ul_proto);
2819 	if (!m) {
2820 		error = ENOBUFS;
2821 		goto fail;
2822 	}
2823 	m_cat(result, m);
2824 
2825 	/* set secpolicy */
2826 	m = key_sp2mbuf(sp);
2827 	if (!m) {
2828 		error = ENOBUFS;
2829 		goto fail;
2830 	}
2831 	m_cat(result, m);
2832 
2833 	if ((result->m_flags & M_PKTHDR) == 0) {
2834 		error = EINVAL;
2835 		goto fail;
2836 	}
2837 
2838 	if (result->m_len < sizeof(struct sadb_msg)) {
2839 		result = m_pullup(result, sizeof(struct sadb_msg));
2840 		if (result == NULL) {
2841 			error = ENOBUFS;
2842 			goto fail;
2843 		}
2844 	}
2845 
2846 	result->m_pkthdr.len = 0;
2847 	for (m = result; m; m = m->m_next)
2848 		result->m_pkthdr.len += m->m_len;
2849 
2850 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2851 	    PFKEY_UNIT64(result->m_pkthdr.len);
2852 
2853 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2854 
2855  fail:
2856 	if (result)
2857 		m_freem(result);
2858 	return error;
2859 }
2860 
2861 /* %%% SAD management */
2862 /*
2863  * allocating and initialize new SA head.
2864  * OUT:	NULL	: failure due to the lack of memory.
2865  *	others	: pointer to new SA head.
2866  */
2867 static struct secashead *
2868 key_newsah(struct secasindex *saidx)
2869 {
2870 	struct secashead *sah;
2871 
2872 	sah = malloc(sizeof(struct secashead), M_IPSEC_SAH,
2873 	    M_NOWAIT | M_ZERO);
2874 	if (sah == NULL) {
2875 		PFKEYSTAT_INC(in_nomem);
2876 		return (NULL);
2877 	}
2878 	TAILQ_INIT(&sah->savtree_larval);
2879 	TAILQ_INIT(&sah->savtree_alive);
2880 	sah->saidx = *saidx;
2881 	sah->state = SADB_SASTATE_DEAD;
2882 	SAH_INITREF(sah);
2883 
2884 	KEYDBG(KEY_STAMP,
2885 	    printf("%s: SAH(%p)\n", __func__, sah));
2886 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2887 	return (sah);
2888 }
2889 
2890 static void
2891 key_freesah(struct secashead **psah)
2892 {
2893 	struct secashead *sah = *psah;
2894 
2895 	CURVNET_ASSERT_SET();
2896 
2897 	if (SAH_DELREF(sah) == 0)
2898 		return;
2899 
2900 	KEYDBG(KEY_STAMP,
2901 	    printf("%s: last reference to SAH(%p)\n", __func__, sah));
2902 	KEYDBG(KEY_DATA, kdebug_secash(sah, NULL));
2903 
2904 	*psah = NULL;
2905 	key_delsah(sah);
2906 }
2907 
2908 static void
2909 key_delsah(struct secashead *sah)
2910 {
2911 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2912 	IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD,
2913 	    ("Attempt to free non DEAD SAH %p", sah));
2914 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval),
2915 	    ("Attempt to free SAH %p with LARVAL SA", sah));
2916 	IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive),
2917 	    ("Attempt to free SAH %p with ALIVE SA", sah));
2918 
2919 	free(sah, M_IPSEC_SAH);
2920 }
2921 
2922 /*
2923  * allocating a new SA for key_add() and key_getspi() call,
2924  * and copy the values of mhp into new buffer.
2925  * When SAD message type is SADB_GETSPI set SA state to LARVAL.
2926  * For SADB_ADD create and initialize SA with MATURE state.
2927  * OUT:	NULL	: fail
2928  *	others	: pointer to new secasvar.
2929  */
2930 static struct secasvar *
2931 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx,
2932     uint32_t spi, int *errp)
2933 {
2934 	struct secashead *sah;
2935 	struct secasvar *sav;
2936 	int isnew;
2937 
2938 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2939 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2940 	IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI ||
2941 	    mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type"));
2942 
2943 	sav = NULL;
2944 	sah = NULL;
2945 	/* check SPI value */
2946 	switch (saidx->proto) {
2947 	case IPPROTO_ESP:
2948 	case IPPROTO_AH:
2949 		/*
2950 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
2951 		 * 1-255 reserved by IANA for future use,
2952 		 * 0 for implementation specific, local use.
2953 		 */
2954 		if (ntohl(spi) <= 255) {
2955 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
2956 			    __func__, ntohl(spi)));
2957 			*errp = EINVAL;
2958 			goto done;
2959 		}
2960 		break;
2961 	}
2962 
2963 	sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO);
2964 	if (sav == NULL) {
2965 		*errp = ENOBUFS;
2966 		goto done;
2967 	}
2968 	sav->lock = malloc_aligned(max(sizeof(struct mtx), CACHE_LINE_SIZE),
2969 	    CACHE_LINE_SIZE, M_IPSEC_MISC, M_NOWAIT | M_ZERO);
2970 	if (sav->lock == NULL) {
2971 		*errp = ENOBUFS;
2972 		goto done;
2973 	}
2974 	mtx_init(sav->lock, "ipsec association", NULL, MTX_DEF);
2975 	sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO);
2976 	if (sav->lft_c == NULL) {
2977 		*errp = ENOBUFS;
2978 		goto done;
2979 	}
2980 
2981 	sav->spi = spi;
2982 	sav->seq = mhp->msg->sadb_msg_seq;
2983 	sav->state = SADB_SASTATE_LARVAL;
2984 	sav->pid = (pid_t)mhp->msg->sadb_msg_pid;
2985 	SAV_INITREF(sav);
2986 again:
2987 	sah = key_getsah(saidx);
2988 	if (sah == NULL) {
2989 		/* create a new SA index */
2990 		sah = key_newsah(saidx);
2991 		if (sah == NULL) {
2992 			ipseclog((LOG_DEBUG,
2993 			    "%s: No more memory.\n", __func__));
2994 			*errp = ENOBUFS;
2995 			goto done;
2996 		}
2997 		isnew = 1;
2998 	} else
2999 		isnew = 0;
3000 
3001 	sav->sah = sah;
3002 	if (mhp->msg->sadb_msg_type == SADB_GETSPI) {
3003 		sav->created = time_second;
3004 	} else if (sav->state == SADB_SASTATE_LARVAL) {
3005 		/*
3006 		 * Do not call key_setsaval() second time in case
3007 		 * of `goto again`. We will have MATURE state.
3008 		 */
3009 		*errp = key_setsaval(sav, mhp);
3010 		if (*errp != 0)
3011 			goto done;
3012 		sav->state = SADB_SASTATE_MATURE;
3013 	}
3014 
3015 	SAHTREE_WLOCK();
3016 	/*
3017 	 * Check that existing SAH wasn't unlinked.
3018 	 * Since we didn't hold the SAHTREE lock, it is possible,
3019 	 * that callout handler or key_flush() or key_delete() could
3020 	 * unlink this SAH.
3021 	 */
3022 	if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) {
3023 		SAHTREE_WUNLOCK();
3024 		key_freesah(&sah);	/* reference from key_getsah() */
3025 		goto again;
3026 	}
3027 	if (isnew != 0) {
3028 		/*
3029 		 * Add new SAH into SADB.
3030 		 *
3031 		 * XXXAE: we can serialize key_add and key_getspi calls, so
3032 		 * several threads will not fight in the race.
3033 		 * Otherwise we should check under SAHTREE lock, that this
3034 		 * SAH would not added twice.
3035 		 */
3036 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
3037 		/* Add new SAH into hash by addresses */
3038 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
3039 		/* Now we are linked in the chain */
3040 		sah->state = SADB_SASTATE_MATURE;
3041 		/*
3042 		 * SAV references this new SAH.
3043 		 * In case of existing SAH we reuse reference
3044 		 * from key_getsah().
3045 		 */
3046 		SAH_ADDREF(sah);
3047 	}
3048 	/* Link SAV with SAH */
3049 	if (sav->state == SADB_SASTATE_MATURE)
3050 		TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain);
3051 	else
3052 		TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain);
3053 	/* Add SAV into SPI hash */
3054 	LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash);
3055 	SAHTREE_WUNLOCK();
3056 	*errp = 0;	/* success */
3057 done:
3058 	if (*errp != 0) {
3059 		if (sav != NULL) {
3060 			if (sav->lock != NULL) {
3061 				mtx_destroy(sav->lock);
3062 				free(sav->lock, M_IPSEC_MISC);
3063 			}
3064 			if (sav->lft_c != NULL)
3065 				uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3066 			free(sav, M_IPSEC_SA), sav = NULL;
3067 		}
3068 		if (sah != NULL)
3069 			key_freesah(&sah);
3070 		if (*errp == ENOBUFS) {
3071 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3072 			    __func__));
3073 			PFKEYSTAT_INC(in_nomem);
3074 		}
3075 	}
3076 	return (sav);
3077 }
3078 
3079 /*
3080  * free() SA variable entry.
3081  */
3082 static void
3083 key_cleansav(struct secasvar *sav)
3084 {
3085 
3086 	if (sav->natt != NULL) {
3087 		free(sav->natt, M_IPSEC_MISC);
3088 		sav->natt = NULL;
3089 	}
3090 	if (sav->flags & SADB_X_EXT_F_CLONED)
3091 		return;
3092 	if (sav->tdb_xform != NULL) {
3093 		sav->tdb_xform->xf_cleanup(sav);
3094 		sav->tdb_xform = NULL;
3095 	}
3096 	if (sav->key_auth != NULL) {
3097 		zfree(sav->key_auth->key_data, M_IPSEC_MISC);
3098 		free(sav->key_auth, M_IPSEC_MISC);
3099 		sav->key_auth = NULL;
3100 	}
3101 	if (sav->key_enc != NULL) {
3102 		zfree(sav->key_enc->key_data, M_IPSEC_MISC);
3103 		free(sav->key_enc, M_IPSEC_MISC);
3104 		sav->key_enc = NULL;
3105 	}
3106 	if (sav->replay != NULL) {
3107 		if (sav->replay->bitmap != NULL)
3108 			free(sav->replay->bitmap, M_IPSEC_MISC);
3109 		free(sav->replay, M_IPSEC_MISC);
3110 		sav->replay = NULL;
3111 	}
3112 	if (sav->lft_h != NULL) {
3113 		free(sav->lft_h, M_IPSEC_MISC);
3114 		sav->lft_h = NULL;
3115 	}
3116 	if (sav->lft_s != NULL) {
3117 		free(sav->lft_s, M_IPSEC_MISC);
3118 		sav->lft_s = NULL;
3119 	}
3120 }
3121 
3122 /*
3123  * free() SA variable entry.
3124  */
3125 static void
3126 key_delsav(struct secasvar *sav)
3127 {
3128 	IPSEC_ASSERT(sav != NULL, ("null sav"));
3129 	IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD,
3130 	    ("attempt to free non DEAD SA %p", sav));
3131 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0",
3132 	    sav->refcnt));
3133 
3134 	/*
3135 	 * SA must be unlinked from the chain and hashtbl.
3136 	 * If SA was cloned, we leave all fields untouched,
3137 	 * except NAT-T config.
3138 	 */
3139 	key_cleansav(sav);
3140 	if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) {
3141 		mtx_destroy(sav->lock);
3142 		free(sav->lock, M_IPSEC_MISC);
3143 		uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c);
3144 	}
3145 	free(sav, M_IPSEC_SA);
3146 }
3147 
3148 /*
3149  * search SAH.
3150  * OUT:
3151  *	NULL	: not found
3152  *	others	: found, referenced pointer to a SAH.
3153  */
3154 static struct secashead *
3155 key_getsah(struct secasindex *saidx)
3156 {
3157 	SAHTREE_RLOCK_TRACKER;
3158 	struct secashead *sah;
3159 
3160 	SAHTREE_RLOCK();
3161 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
3162 	    if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) {
3163 		    SAH_ADDREF(sah);
3164 		    break;
3165 	    }
3166 	}
3167 	SAHTREE_RUNLOCK();
3168 	return (sah);
3169 }
3170 
3171 /*
3172  * Check not to be duplicated SPI.
3173  * OUT:
3174  *	0	: not found
3175  *	1	: found SA with given SPI.
3176  */
3177 static int
3178 key_checkspidup(uint32_t spi)
3179 {
3180 	SAHTREE_RLOCK_TRACKER;
3181 	struct secasvar *sav;
3182 
3183 	/* Assume SPI is in network byte order */
3184 	SAHTREE_RLOCK();
3185 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3186 		if (sav->spi == spi)
3187 			break;
3188 	}
3189 	SAHTREE_RUNLOCK();
3190 	return (sav != NULL);
3191 }
3192 
3193 /*
3194  * Search SA by SPI.
3195  * OUT:
3196  *	NULL	: not found
3197  *	others	: found, referenced pointer to a SA.
3198  */
3199 static struct secasvar *
3200 key_getsavbyspi(uint32_t spi)
3201 {
3202 	SAHTREE_RLOCK_TRACKER;
3203 	struct secasvar *sav;
3204 
3205 	/* Assume SPI is in network byte order */
3206 	SAHTREE_RLOCK();
3207 	LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) {
3208 		if (sav->spi != spi)
3209 			continue;
3210 		SAV_ADDREF(sav);
3211 		break;
3212 	}
3213 	SAHTREE_RUNLOCK();
3214 	return (sav);
3215 }
3216 
3217 static int
3218 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp)
3219 {
3220 	struct seclifetime *lft_h, *lft_s, *tmp;
3221 
3222 	/* Lifetime extension is optional, check that it is present. */
3223 	if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3224 	    SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) {
3225 		/*
3226 		 * In case of SADB_UPDATE we may need to change
3227 		 * existing lifetimes.
3228 		 */
3229 		if (sav->state == SADB_SASTATE_MATURE) {
3230 			lft_h = lft_s = NULL;
3231 			goto reset;
3232 		}
3233 		return (0);
3234 	}
3235 	/* Both HARD and SOFT extensions must present */
3236 	if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
3237 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
3238 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
3239 	    !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
3240 		ipseclog((LOG_DEBUG,
3241 		    "%s: invalid message: missing required header.\n",
3242 		    __func__));
3243 		return (EINVAL);
3244 	}
3245 	if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) ||
3246 	    SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) {
3247 		ipseclog((LOG_DEBUG,
3248 		    "%s: invalid message: wrong header size.\n", __func__));
3249 		return (EINVAL);
3250 	}
3251 	lft_h = key_dup_lifemsg((const struct sadb_lifetime *)
3252 	    mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC);
3253 	if (lft_h == NULL) {
3254 		PFKEYSTAT_INC(in_nomem);
3255 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3256 		return (ENOBUFS);
3257 	}
3258 	lft_s = key_dup_lifemsg((const struct sadb_lifetime *)
3259 	    mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC);
3260 	if (lft_s == NULL) {
3261 		PFKEYSTAT_INC(in_nomem);
3262 		free(lft_h, M_IPSEC_MISC);
3263 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3264 		return (ENOBUFS);
3265 	}
3266 reset:
3267 	if (sav->state != SADB_SASTATE_LARVAL) {
3268 		/*
3269 		 * key_update() holds reference to this SA,
3270 		 * so it won't be deleted in meanwhile.
3271 		 */
3272 		SECASVAR_LOCK(sav);
3273 		tmp = sav->lft_h;
3274 		sav->lft_h = lft_h;
3275 		lft_h = tmp;
3276 
3277 		tmp = sav->lft_s;
3278 		sav->lft_s = lft_s;
3279 		lft_s = tmp;
3280 		SECASVAR_UNLOCK(sav);
3281 		if (lft_h != NULL)
3282 			free(lft_h, M_IPSEC_MISC);
3283 		if (lft_s != NULL)
3284 			free(lft_s, M_IPSEC_MISC);
3285 		return (0);
3286 	}
3287 	/* We can update lifetime without holding a lock */
3288 	IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n"));
3289 	IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n"));
3290 	sav->lft_h = lft_h;
3291 	sav->lft_s = lft_s;
3292 	return (0);
3293 }
3294 
3295 /*
3296  * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*.
3297  * You must update these if need. Expects only LARVAL SAs.
3298  * OUT:	0:	success.
3299  *	!0:	failure.
3300  */
3301 static int
3302 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp)
3303 {
3304 	const struct sadb_sa *sa0;
3305 	const struct sadb_key *key0;
3306 	uint32_t replay;
3307 	size_t len;
3308 	int error;
3309 
3310 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3311 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3312 	IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL,
3313 	    ("Attempt to update non LARVAL SA"));
3314 
3315 	/* XXX rewrite */
3316 	error = key_setident(sav->sah, mhp);
3317 	if (error != 0)
3318 		goto fail;
3319 
3320 	/* SA */
3321 	if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
3322 		if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
3323 			error = EINVAL;
3324 			goto fail;
3325 		}
3326 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3327 		sav->alg_auth = sa0->sadb_sa_auth;
3328 		sav->alg_enc = sa0->sadb_sa_encrypt;
3329 		sav->flags = sa0->sadb_sa_flags;
3330 		if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) {
3331 			ipseclog((LOG_DEBUG,
3332 			    "%s: invalid sa_flags 0x%08x.\n", __func__,
3333 			    sav->flags));
3334 			error = EINVAL;
3335 			goto fail;
3336 		}
3337 
3338 		/* Optional replay window */
3339 		replay = 0;
3340 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0)
3341 			replay = sa0->sadb_sa_replay;
3342 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) {
3343 			if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) {
3344 				error = EINVAL;
3345 				goto fail;
3346 			}
3347 			replay = ((const struct sadb_x_sa_replay *)
3348 			    mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay;
3349 
3350 			if (replay > UINT32_MAX - 32) {
3351 				ipseclog((LOG_DEBUG,
3352 				    "%s: replay window too big.\n", __func__));
3353 				error = EINVAL;
3354 				goto fail;
3355 			}
3356 
3357 			replay = (replay + 7) >> 3;
3358 		}
3359 
3360 		sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC,
3361 		    M_NOWAIT | M_ZERO);
3362 		if (sav->replay == NULL) {
3363 			PFKEYSTAT_INC(in_nomem);
3364 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3365 			    __func__));
3366 			error = ENOBUFS;
3367 			goto fail;
3368 		}
3369 
3370 		if (replay != 0) {
3371 			/* number of 32b blocks to be allocated */
3372 			uint32_t bitmap_size;
3373 
3374 			/* RFC 6479:
3375 			 * - the allocated replay window size must be
3376 			 *   a power of two.
3377 			 * - use an extra 32b block as a redundant window.
3378 			 */
3379 			bitmap_size = 1;
3380 			while (replay + 4 > bitmap_size)
3381 				bitmap_size <<= 1;
3382 			bitmap_size = bitmap_size / 4;
3383 
3384 			sav->replay->bitmap = malloc(
3385 			    bitmap_size * sizeof(uint32_t), M_IPSEC_MISC,
3386 			    M_NOWAIT | M_ZERO);
3387 			if (sav->replay->bitmap == NULL) {
3388 				PFKEYSTAT_INC(in_nomem);
3389 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3390 					__func__));
3391 				error = ENOBUFS;
3392 				goto fail;
3393 			}
3394 			sav->replay->bitmap_size = bitmap_size;
3395 			sav->replay->wsize = replay;
3396 		}
3397 	}
3398 
3399 	/* Authentication keys */
3400 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
3401 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) {
3402 			error = EINVAL;
3403 			goto fail;
3404 		}
3405 		error = 0;
3406 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3407 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3408 		switch (mhp->msg->sadb_msg_satype) {
3409 		case SADB_SATYPE_AH:
3410 		case SADB_SATYPE_ESP:
3411 		case SADB_X_SATYPE_TCPSIGNATURE:
3412 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3413 			    sav->alg_auth != SADB_X_AALG_NULL)
3414 				error = EINVAL;
3415 			break;
3416 		case SADB_X_SATYPE_IPCOMP:
3417 		default:
3418 			error = EINVAL;
3419 			break;
3420 		}
3421 		if (error) {
3422 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3423 				__func__));
3424 			goto fail;
3425 		}
3426 
3427 		sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3428 		if (sav->key_auth == NULL ) {
3429 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3430 				  __func__));
3431 			PFKEYSTAT_INC(in_nomem);
3432 			error = ENOBUFS;
3433 			goto fail;
3434 		}
3435 	}
3436 
3437 	/* Encryption key */
3438 	if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) {
3439 		if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) {
3440 			error = EINVAL;
3441 			goto fail;
3442 		}
3443 		error = 0;
3444 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3445 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3446 		switch (mhp->msg->sadb_msg_satype) {
3447 		case SADB_SATYPE_ESP:
3448 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3449 			    sav->alg_enc != SADB_EALG_NULL) {
3450 				error = EINVAL;
3451 				break;
3452 			}
3453 			sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC);
3454 			if (sav->key_enc == NULL) {
3455 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3456 					__func__));
3457 				PFKEYSTAT_INC(in_nomem);
3458 				error = ENOBUFS;
3459 				goto fail;
3460 			}
3461 			break;
3462 		case SADB_X_SATYPE_IPCOMP:
3463 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3464 				error = EINVAL;
3465 			sav->key_enc = NULL;	/*just in case*/
3466 			break;
3467 		case SADB_SATYPE_AH:
3468 		case SADB_X_SATYPE_TCPSIGNATURE:
3469 		default:
3470 			error = EINVAL;
3471 			break;
3472 		}
3473 		if (error) {
3474 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3475 				__func__));
3476 			goto fail;
3477 		}
3478 	}
3479 
3480 	/* set iv */
3481 	sav->ivlen = 0;
3482 	switch (mhp->msg->sadb_msg_satype) {
3483 	case SADB_SATYPE_AH:
3484 		if (sav->flags & SADB_X_EXT_DERIV) {
3485 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3486 			    "given to AH SA.\n", __func__));
3487 			error = EINVAL;
3488 			goto fail;
3489 		}
3490 		if (sav->alg_enc != SADB_EALG_NONE) {
3491 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3492 			    "mismated.\n", __func__));
3493 			error = EINVAL;
3494 			goto fail;
3495 		}
3496 		error = xform_init(sav, XF_AH);
3497 		break;
3498 	case SADB_SATYPE_ESP:
3499 		if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) ==
3500 		    (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) {
3501 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3502 			    "given to old-esp.\n", __func__));
3503 			error = EINVAL;
3504 			goto fail;
3505 		}
3506 		error = xform_init(sav, XF_ESP);
3507 		break;
3508 	case SADB_X_SATYPE_IPCOMP:
3509 		if (sav->alg_auth != SADB_AALG_NONE) {
3510 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3511 			    "mismated.\n", __func__));
3512 			error = EINVAL;
3513 			goto fail;
3514 		}
3515 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 &&
3516 		    ntohl(sav->spi) >= 0x10000) {
3517 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3518 			    __func__));
3519 			error = EINVAL;
3520 			goto fail;
3521 		}
3522 		error = xform_init(sav, XF_IPCOMP);
3523 		break;
3524 	case SADB_X_SATYPE_TCPSIGNATURE:
3525 		if (sav->alg_enc != SADB_EALG_NONE) {
3526 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3527 			    "mismated.\n", __func__));
3528 			error = EINVAL;
3529 			goto fail;
3530 		}
3531 		error = xform_init(sav, XF_TCPSIGNATURE);
3532 		break;
3533 	default:
3534 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3535 		error = EPROTONOSUPPORT;
3536 		goto fail;
3537 	}
3538 	if (error) {
3539 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3540 		    __func__, mhp->msg->sadb_msg_satype));
3541 		goto fail;
3542 	}
3543 
3544 	/* Handle NAT-T headers */
3545 	error = key_setnatt(sav, mhp);
3546 	if (error != 0)
3547 		goto fail;
3548 
3549 	/* Initialize lifetime for CURRENT */
3550 	sav->firstused = 0;
3551 	sav->created = time_second;
3552 
3553 	/* lifetimes for HARD and SOFT */
3554 	error = key_updatelifetimes(sav, mhp);
3555 	if (error == 0)
3556 		return (0);
3557 fail:
3558 	key_cleansav(sav);
3559 	return (error);
3560 }
3561 
3562 /*
3563  * subroutine for SADB_GET and SADB_DUMP.
3564  */
3565 static struct mbuf *
3566 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype,
3567     uint32_t seq, uint32_t pid)
3568 {
3569 	struct seclifetime lft_c;
3570 	struct mbuf *result = NULL, *tres = NULL, *m;
3571 	int i, dumporder[] = {
3572 		SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY,
3573 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3574 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3575 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY,
3576 		SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT,
3577 		SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
3578 		SADB_EXT_SENSITIVITY,
3579 		SADB_X_EXT_NAT_T_TYPE,
3580 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3581 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3582 		SADB_X_EXT_NAT_T_FRAG,
3583 	};
3584 	uint32_t replay_count;
3585 
3586 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3587 	if (m == NULL)
3588 		goto fail;
3589 	result = m;
3590 
3591 	for (i = nitems(dumporder) - 1; i >= 0; i--) {
3592 		m = NULL;
3593 		switch (dumporder[i]) {
3594 		case SADB_EXT_SA:
3595 			m = key_setsadbsa(sav);
3596 			if (!m)
3597 				goto fail;
3598 			break;
3599 
3600 		case SADB_X_EXT_SA2:
3601 			SECASVAR_LOCK(sav);
3602 			replay_count = sav->replay ? sav->replay->count : 0;
3603 			SECASVAR_UNLOCK(sav);
3604 			m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
3605 					sav->sah->saidx.reqid);
3606 			if (!m)
3607 				goto fail;
3608 			break;
3609 
3610 		case SADB_X_EXT_SA_REPLAY:
3611 			if (sav->replay == NULL ||
3612 			    sav->replay->wsize <= UINT8_MAX)
3613 				continue;
3614 
3615 			m = key_setsadbxsareplay(sav->replay->wsize);
3616 			if (!m)
3617 				goto fail;
3618 			break;
3619 
3620 		case SADB_EXT_ADDRESS_SRC:
3621 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3622 			    &sav->sah->saidx.src.sa,
3623 			    FULLMASK, IPSEC_ULPROTO_ANY);
3624 			if (!m)
3625 				goto fail;
3626 			break;
3627 
3628 		case SADB_EXT_ADDRESS_DST:
3629 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3630 			    &sav->sah->saidx.dst.sa,
3631 			    FULLMASK, IPSEC_ULPROTO_ANY);
3632 			if (!m)
3633 				goto fail;
3634 			break;
3635 
3636 		case SADB_EXT_KEY_AUTH:
3637 			if (!sav->key_auth)
3638 				continue;
3639 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3640 			if (!m)
3641 				goto fail;
3642 			break;
3643 
3644 		case SADB_EXT_KEY_ENCRYPT:
3645 			if (!sav->key_enc)
3646 				continue;
3647 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3648 			if (!m)
3649 				goto fail;
3650 			break;
3651 
3652 		case SADB_EXT_LIFETIME_CURRENT:
3653 			lft_c.addtime = sav->created;
3654 			lft_c.allocations = (uint32_t)counter_u64_fetch(
3655 			    sav->lft_c_allocations);
3656 			lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes);
3657 			lft_c.usetime = sav->firstused;
3658 			m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT);
3659 			if (!m)
3660 				goto fail;
3661 			break;
3662 
3663 		case SADB_EXT_LIFETIME_HARD:
3664 			if (!sav->lft_h)
3665 				continue;
3666 			m = key_setlifetime(sav->lft_h,
3667 					    SADB_EXT_LIFETIME_HARD);
3668 			if (!m)
3669 				goto fail;
3670 			break;
3671 
3672 		case SADB_EXT_LIFETIME_SOFT:
3673 			if (!sav->lft_s)
3674 				continue;
3675 			m = key_setlifetime(sav->lft_s,
3676 					    SADB_EXT_LIFETIME_SOFT);
3677 
3678 			if (!m)
3679 				goto fail;
3680 			break;
3681 
3682 		case SADB_X_EXT_NAT_T_TYPE:
3683 			if (sav->natt == NULL)
3684 				continue;
3685 			m = key_setsadbxtype(UDP_ENCAP_ESPINUDP);
3686 			if (!m)
3687 				goto fail;
3688 			break;
3689 
3690 		case SADB_X_EXT_NAT_T_DPORT:
3691 			if (sav->natt == NULL)
3692 				continue;
3693 			m = key_setsadbxport(sav->natt->dport,
3694 			    SADB_X_EXT_NAT_T_DPORT);
3695 			if (!m)
3696 				goto fail;
3697 			break;
3698 
3699 		case SADB_X_EXT_NAT_T_SPORT:
3700 			if (sav->natt == NULL)
3701 				continue;
3702 			m = key_setsadbxport(sav->natt->sport,
3703 			    SADB_X_EXT_NAT_T_SPORT);
3704 			if (!m)
3705 				goto fail;
3706 			break;
3707 
3708 		case SADB_X_EXT_NAT_T_OAI:
3709 			if (sav->natt == NULL ||
3710 			    (sav->natt->flags & IPSEC_NATT_F_OAI) == 0)
3711 				continue;
3712 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI,
3713 			    &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3714 			if (!m)
3715 				goto fail;
3716 			break;
3717 		case SADB_X_EXT_NAT_T_OAR:
3718 			if (sav->natt == NULL ||
3719 			    (sav->natt->flags & IPSEC_NATT_F_OAR) == 0)
3720 				continue;
3721 			m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR,
3722 			    &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY);
3723 			if (!m)
3724 				goto fail;
3725 			break;
3726 		case SADB_X_EXT_NAT_T_FRAG:
3727 			/* We do not (yet) support those. */
3728 			continue;
3729 
3730 		case SADB_EXT_ADDRESS_PROXY:
3731 		case SADB_EXT_IDENTITY_SRC:
3732 		case SADB_EXT_IDENTITY_DST:
3733 			/* XXX: should we brought from SPD ? */
3734 		case SADB_EXT_SENSITIVITY:
3735 		default:
3736 			continue;
3737 		}
3738 
3739 		if (!m)
3740 			goto fail;
3741 		if (tres)
3742 			m_cat(m, tres);
3743 		tres = m;
3744 	}
3745 
3746 	m_cat(result, tres);
3747 	tres = NULL;
3748 	if (result->m_len < sizeof(struct sadb_msg)) {
3749 		result = m_pullup(result, sizeof(struct sadb_msg));
3750 		if (result == NULL)
3751 			goto fail;
3752 	}
3753 
3754 	result->m_pkthdr.len = 0;
3755 	for (m = result; m; m = m->m_next)
3756 		result->m_pkthdr.len += m->m_len;
3757 
3758 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3759 	    PFKEY_UNIT64(result->m_pkthdr.len);
3760 
3761 	return result;
3762 
3763 fail:
3764 	m_freem(result);
3765 	m_freem(tres);
3766 	return NULL;
3767 }
3768 
3769 /*
3770  * set data into sadb_msg.
3771  */
3772 static struct mbuf *
3773 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3774     pid_t pid, u_int16_t reserved)
3775 {
3776 	struct mbuf *m;
3777 	struct sadb_msg *p;
3778 	int len;
3779 
3780 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3781 	if (len > MCLBYTES)
3782 		return NULL;
3783 	MGETHDR(m, M_NOWAIT, MT_DATA);
3784 	if (m && len > MHLEN) {
3785 		if (!(MCLGET(m, M_NOWAIT))) {
3786 			m_freem(m);
3787 			m = NULL;
3788 		}
3789 	}
3790 	if (!m)
3791 		return NULL;
3792 	m->m_pkthdr.len = m->m_len = len;
3793 	m->m_next = NULL;
3794 
3795 	p = mtod(m, struct sadb_msg *);
3796 
3797 	bzero(p, len);
3798 	p->sadb_msg_version = PF_KEY_V2;
3799 	p->sadb_msg_type = type;
3800 	p->sadb_msg_errno = 0;
3801 	p->sadb_msg_satype = satype;
3802 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3803 	p->sadb_msg_reserved = reserved;
3804 	p->sadb_msg_seq = seq;
3805 	p->sadb_msg_pid = (u_int32_t)pid;
3806 
3807 	return m;
3808 }
3809 
3810 /*
3811  * copy secasvar data into sadb_address.
3812  */
3813 static struct mbuf *
3814 key_setsadbsa(struct secasvar *sav)
3815 {
3816 	struct mbuf *m;
3817 	struct sadb_sa *p;
3818 	int len;
3819 
3820 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3821 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3822 	if (m == NULL)
3823 		return (NULL);
3824 	m_align(m, len);
3825 	m->m_len = len;
3826 	p = mtod(m, struct sadb_sa *);
3827 	bzero(p, len);
3828 	p->sadb_sa_len = PFKEY_UNIT64(len);
3829 	p->sadb_sa_exttype = SADB_EXT_SA;
3830 	p->sadb_sa_spi = sav->spi;
3831 	p->sadb_sa_replay = sav->replay ?
3832 	    (sav->replay->wsize > UINT8_MAX ? UINT8_MAX :
3833 		sav->replay->wsize): 0;
3834 	p->sadb_sa_state = sav->state;
3835 	p->sadb_sa_auth = sav->alg_auth;
3836 	p->sadb_sa_encrypt = sav->alg_enc;
3837 	p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX;
3838 	return (m);
3839 }
3840 
3841 /*
3842  * set data into sadb_address.
3843  */
3844 static struct mbuf *
3845 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
3846     u_int8_t prefixlen, u_int16_t ul_proto)
3847 {
3848 	struct mbuf *m;
3849 	struct sadb_address *p;
3850 	size_t len;
3851 
3852 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3853 	    PFKEY_ALIGN8(saddr->sa_len);
3854 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3855 	if (m == NULL)
3856 		return (NULL);
3857 	m_align(m, len);
3858 	m->m_len = len;
3859 	p = mtod(m, struct sadb_address *);
3860 
3861 	bzero(p, len);
3862 	p->sadb_address_len = PFKEY_UNIT64(len);
3863 	p->sadb_address_exttype = exttype;
3864 	p->sadb_address_proto = ul_proto;
3865 	if (prefixlen == FULLMASK) {
3866 		switch (saddr->sa_family) {
3867 		case AF_INET:
3868 			prefixlen = sizeof(struct in_addr) << 3;
3869 			break;
3870 		case AF_INET6:
3871 			prefixlen = sizeof(struct in6_addr) << 3;
3872 			break;
3873 		default:
3874 			; /*XXX*/
3875 		}
3876 	}
3877 	p->sadb_address_prefixlen = prefixlen;
3878 	p->sadb_address_reserved = 0;
3879 
3880 	bcopy(saddr,
3881 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3882 	    saddr->sa_len);
3883 
3884 	return m;
3885 }
3886 
3887 /*
3888  * set data into sadb_x_sa2.
3889  */
3890 static struct mbuf *
3891 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3892 {
3893 	struct mbuf *m;
3894 	struct sadb_x_sa2 *p;
3895 	size_t len;
3896 
3897 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3898 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3899 	if (m == NULL)
3900 		return (NULL);
3901 	m_align(m, len);
3902 	m->m_len = len;
3903 	p = mtod(m, struct sadb_x_sa2 *);
3904 
3905 	bzero(p, len);
3906 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3907 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3908 	p->sadb_x_sa2_mode = mode;
3909 	p->sadb_x_sa2_reserved1 = 0;
3910 	p->sadb_x_sa2_reserved2 = 0;
3911 	p->sadb_x_sa2_sequence = seq;
3912 	p->sadb_x_sa2_reqid = reqid;
3913 
3914 	return m;
3915 }
3916 
3917 /*
3918  * Set data into sadb_x_sa_replay.
3919  */
3920 static struct mbuf *
3921 key_setsadbxsareplay(u_int32_t replay)
3922 {
3923 	struct mbuf *m;
3924 	struct sadb_x_sa_replay *p;
3925 	size_t len;
3926 
3927 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay));
3928 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3929 	if (m == NULL)
3930 		return (NULL);
3931 	m_align(m, len);
3932 	m->m_len = len;
3933 	p = mtod(m, struct sadb_x_sa_replay *);
3934 
3935 	bzero(p, len);
3936 	p->sadb_x_sa_replay_len = PFKEY_UNIT64(len);
3937 	p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY;
3938 	p->sadb_x_sa_replay_replay = (replay << 3);
3939 
3940 	return m;
3941 }
3942 
3943 /*
3944  * Set a type in sadb_x_nat_t_type.
3945  */
3946 static struct mbuf *
3947 key_setsadbxtype(u_int16_t type)
3948 {
3949 	struct mbuf *m;
3950 	size_t len;
3951 	struct sadb_x_nat_t_type *p;
3952 
3953 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3954 
3955 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3956 	if (m == NULL)
3957 		return (NULL);
3958 	m_align(m, len);
3959 	m->m_len = len;
3960 	p = mtod(m, struct sadb_x_nat_t_type *);
3961 
3962 	bzero(p, len);
3963 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3964 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3965 	p->sadb_x_nat_t_type_type = type;
3966 
3967 	return (m);
3968 }
3969 /*
3970  * Set a port in sadb_x_nat_t_port.
3971  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3972  */
3973 static struct mbuf *
3974 key_setsadbxport(u_int16_t port, u_int16_t type)
3975 {
3976 	struct mbuf *m;
3977 	size_t len;
3978 	struct sadb_x_nat_t_port *p;
3979 
3980 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3981 
3982 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3983 	if (m == NULL)
3984 		return (NULL);
3985 	m_align(m, len);
3986 	m->m_len = len;
3987 	p = mtod(m, struct sadb_x_nat_t_port *);
3988 
3989 	bzero(p, len);
3990 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3991 	p->sadb_x_nat_t_port_exttype = type;
3992 	p->sadb_x_nat_t_port_port = port;
3993 
3994 	return (m);
3995 }
3996 
3997 /*
3998  * Get port from sockaddr. Port is in network byte order.
3999  */
4000 uint16_t
4001 key_portfromsaddr(struct sockaddr *sa)
4002 {
4003 
4004 	switch (sa->sa_family) {
4005 #ifdef INET
4006 	case AF_INET:
4007 		return ((struct sockaddr_in *)sa)->sin_port;
4008 #endif
4009 #ifdef INET6
4010 	case AF_INET6:
4011 		return ((struct sockaddr_in6 *)sa)->sin6_port;
4012 #endif
4013 	}
4014 	return (0);
4015 }
4016 
4017 /*
4018  * Set port in struct sockaddr. Port is in network byte order.
4019  */
4020 void
4021 key_porttosaddr(struct sockaddr *sa, uint16_t port)
4022 {
4023 
4024 	switch (sa->sa_family) {
4025 #ifdef INET
4026 	case AF_INET:
4027 		((struct sockaddr_in *)sa)->sin_port = port;
4028 		break;
4029 #endif
4030 #ifdef INET6
4031 	case AF_INET6:
4032 		((struct sockaddr_in6 *)sa)->sin6_port = port;
4033 		break;
4034 #endif
4035 	default:
4036 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
4037 			__func__, sa->sa_family));
4038 		break;
4039 	}
4040 }
4041 
4042 /*
4043  * set data into sadb_x_policy
4044  */
4045 static struct mbuf *
4046 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority)
4047 {
4048 	struct mbuf *m;
4049 	struct sadb_x_policy *p;
4050 	size_t len;
4051 
4052 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4053 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
4054 	if (m == NULL)
4055 		return (NULL);
4056 	m_align(m, len);
4057 	m->m_len = len;
4058 	p = mtod(m, struct sadb_x_policy *);
4059 
4060 	bzero(p, len);
4061 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
4062 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4063 	p->sadb_x_policy_type = type;
4064 	p->sadb_x_policy_dir = dir;
4065 	p->sadb_x_policy_id = id;
4066 	p->sadb_x_policy_priority = priority;
4067 
4068 	return m;
4069 }
4070 
4071 /* %%% utilities */
4072 /* Take a key message (sadb_key) from the socket and turn it into one
4073  * of the kernel's key structures (seckey).
4074  *
4075  * IN: pointer to the src
4076  * OUT: NULL no more memory
4077  */
4078 struct seckey *
4079 key_dup_keymsg(const struct sadb_key *src, size_t len,
4080     struct malloc_type *type)
4081 {
4082 	struct seckey *dst;
4083 
4084 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4085 	if (dst != NULL) {
4086 		dst->bits = src->sadb_key_bits;
4087 		dst->key_data = malloc(len, type, M_NOWAIT);
4088 		if (dst->key_data != NULL) {
4089 			bcopy((const char *)(src + 1), dst->key_data, len);
4090 		} else {
4091 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4092 			    __func__));
4093 			free(dst, type);
4094 			dst = NULL;
4095 		}
4096 	} else {
4097 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
4098 		    __func__));
4099 	}
4100 	return (dst);
4101 }
4102 
4103 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
4104  * turn it into one of the kernel's lifetime structures (seclifetime).
4105  *
4106  * IN: pointer to the destination, source and malloc type
4107  * OUT: NULL, no more memory
4108  */
4109 
4110 static struct seclifetime *
4111 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type)
4112 {
4113 	struct seclifetime *dst;
4114 
4115 	dst = malloc(sizeof(*dst), type, M_NOWAIT);
4116 	if (dst == NULL) {
4117 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4118 		return (NULL);
4119 	}
4120 	dst->allocations = src->sadb_lifetime_allocations;
4121 	dst->bytes = src->sadb_lifetime_bytes;
4122 	dst->addtime = src->sadb_lifetime_addtime;
4123 	dst->usetime = src->sadb_lifetime_usetime;
4124 	return (dst);
4125 }
4126 
4127 /*
4128  * compare two secasindex structure.
4129  * flag can specify to compare 2 saidxes.
4130  * compare two secasindex structure without both mode and reqid.
4131  * don't compare port.
4132  * IN:
4133  *      saidx0: source, it can be in SAD.
4134  *      saidx1: object.
4135  * OUT:
4136  *      1 : equal
4137  *      0 : not equal
4138  */
4139 static int
4140 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1,
4141     int flag)
4142 {
4143 
4144 	/* sanity */
4145 	if (saidx0 == NULL && saidx1 == NULL)
4146 		return 1;
4147 
4148 	if (saidx0 == NULL || saidx1 == NULL)
4149 		return 0;
4150 
4151 	if (saidx0->proto != saidx1->proto)
4152 		return 0;
4153 
4154 	if (flag == CMP_EXACTLY) {
4155 		if (saidx0->mode != saidx1->mode)
4156 			return 0;
4157 		if (saidx0->reqid != saidx1->reqid)
4158 			return 0;
4159 		if (bcmp(&saidx0->src, &saidx1->src,
4160 		    saidx0->src.sa.sa_len) != 0 ||
4161 		    bcmp(&saidx0->dst, &saidx1->dst,
4162 		    saidx0->dst.sa.sa_len) != 0)
4163 			return 0;
4164 	} else {
4165 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4166 		if (flag == CMP_MODE_REQID || flag == CMP_REQID) {
4167 			/*
4168 			 * If reqid of SPD is non-zero, unique SA is required.
4169 			 * The result must be of same reqid in this case.
4170 			 */
4171 			if (saidx1->reqid != 0 &&
4172 			    saidx0->reqid != saidx1->reqid)
4173 				return 0;
4174 		}
4175 
4176 		if (flag == CMP_MODE_REQID) {
4177 			if (saidx0->mode != IPSEC_MODE_ANY
4178 			 && saidx0->mode != saidx1->mode)
4179 				return 0;
4180 		}
4181 
4182 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0)
4183 			return 0;
4184 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0)
4185 			return 0;
4186 	}
4187 
4188 	return 1;
4189 }
4190 
4191 /*
4192  * compare two secindex structure exactly.
4193  * IN:
4194  *	spidx0: source, it is often in SPD.
4195  *	spidx1: object, it is often from PFKEY message.
4196  * OUT:
4197  *	1 : equal
4198  *	0 : not equal
4199  */
4200 static int
4201 key_cmpspidx_exactly(struct secpolicyindex *spidx0,
4202     struct secpolicyindex *spidx1)
4203 {
4204 	/* sanity */
4205 	if (spidx0 == NULL && spidx1 == NULL)
4206 		return 1;
4207 
4208 	if (spidx0 == NULL || spidx1 == NULL)
4209 		return 0;
4210 
4211 	if (spidx0->prefs != spidx1->prefs
4212 	 || spidx0->prefd != spidx1->prefd
4213 	 || spidx0->ul_proto != spidx1->ul_proto
4214 	 || spidx0->dir != spidx1->dir)
4215 		return 0;
4216 
4217 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4218 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4219 }
4220 
4221 /*
4222  * compare two secindex structure with mask.
4223  * IN:
4224  *	spidx0: source, it is often in SPD.
4225  *	spidx1: object, it is often from IP header.
4226  * OUT:
4227  *	1 : equal
4228  *	0 : not equal
4229  */
4230 static int
4231 key_cmpspidx_withmask(struct secpolicyindex *spidx0,
4232     struct secpolicyindex *spidx1)
4233 {
4234 	/* sanity */
4235 	if (spidx0 == NULL && spidx1 == NULL)
4236 		return 1;
4237 
4238 	if (spidx0 == NULL || spidx1 == NULL)
4239 		return 0;
4240 
4241 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4242 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4243 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4244 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4245 		return 0;
4246 
4247 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4248 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4249 	 && spidx0->ul_proto != spidx1->ul_proto)
4250 		return 0;
4251 
4252 	switch (spidx0->src.sa.sa_family) {
4253 	case AF_INET:
4254 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4255 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4256 			return 0;
4257 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4258 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4259 			return 0;
4260 		break;
4261 	case AF_INET6:
4262 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4263 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4264 			return 0;
4265 		/*
4266 		 * scope_id check. if sin6_scope_id is 0, we regard it
4267 		 * as a wildcard scope, which matches any scope zone ID.
4268 		 */
4269 		if (spidx0->src.sin6.sin6_scope_id &&
4270 		    spidx1->src.sin6.sin6_scope_id &&
4271 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4272 			return 0;
4273 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4274 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4275 			return 0;
4276 		break;
4277 	default:
4278 		/* XXX */
4279 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4280 			return 0;
4281 		break;
4282 	}
4283 
4284 	switch (spidx0->dst.sa.sa_family) {
4285 	case AF_INET:
4286 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4287 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4288 			return 0;
4289 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4290 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4291 			return 0;
4292 		break;
4293 	case AF_INET6:
4294 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4295 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4296 			return 0;
4297 		/*
4298 		 * scope_id check. if sin6_scope_id is 0, we regard it
4299 		 * as a wildcard scope, which matches any scope zone ID.
4300 		 */
4301 		if (spidx0->dst.sin6.sin6_scope_id &&
4302 		    spidx1->dst.sin6.sin6_scope_id &&
4303 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4304 			return 0;
4305 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4306 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4307 			return 0;
4308 		break;
4309 	default:
4310 		/* XXX */
4311 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4312 			return 0;
4313 		break;
4314 	}
4315 
4316 	/* XXX Do we check other field ?  e.g. flowinfo */
4317 
4318 	return 1;
4319 }
4320 
4321 #ifdef satosin
4322 #undef satosin
4323 #endif
4324 #define satosin(s) ((const struct sockaddr_in *)s)
4325 #ifdef satosin6
4326 #undef satosin6
4327 #endif
4328 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4329 /* returns 0 on match */
4330 int
4331 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2,
4332     int port)
4333 {
4334 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4335 		return 1;
4336 
4337 	switch (sa1->sa_family) {
4338 #ifdef INET
4339 	case AF_INET:
4340 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4341 			return 1;
4342 		if (satosin(sa1)->sin_addr.s_addr !=
4343 		    satosin(sa2)->sin_addr.s_addr) {
4344 			return 1;
4345 		}
4346 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4347 			return 1;
4348 		break;
4349 #endif
4350 #ifdef INET6
4351 	case AF_INET6:
4352 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4353 			return 1;	/*EINVAL*/
4354 		if (satosin6(sa1)->sin6_scope_id !=
4355 		    satosin6(sa2)->sin6_scope_id) {
4356 			return 1;
4357 		}
4358 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4359 		    &satosin6(sa2)->sin6_addr)) {
4360 			return 1;
4361 		}
4362 		if (port &&
4363 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4364 			return 1;
4365 		}
4366 		break;
4367 #endif
4368 	default:
4369 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4370 			return 1;
4371 		break;
4372 	}
4373 
4374 	return 0;
4375 }
4376 
4377 /* returns 0 on match */
4378 int
4379 key_sockaddrcmp_withmask(const struct sockaddr *sa1,
4380     const struct sockaddr *sa2, size_t mask)
4381 {
4382 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4383 		return (1);
4384 
4385 	switch (sa1->sa_family) {
4386 #ifdef INET
4387 	case AF_INET:
4388 		return (!key_bbcmp(&satosin(sa1)->sin_addr,
4389 		    &satosin(sa2)->sin_addr, mask));
4390 #endif
4391 #ifdef INET6
4392 	case AF_INET6:
4393 		if (satosin6(sa1)->sin6_scope_id !=
4394 		    satosin6(sa2)->sin6_scope_id)
4395 			return (1);
4396 		return (!key_bbcmp(&satosin6(sa1)->sin6_addr,
4397 		    &satosin6(sa2)->sin6_addr, mask));
4398 #endif
4399 	}
4400 	return (1);
4401 }
4402 #undef satosin
4403 #undef satosin6
4404 
4405 /*
4406  * compare two buffers with mask.
4407  * IN:
4408  *	addr1: source
4409  *	addr2: object
4410  *	bits:  Number of bits to compare
4411  * OUT:
4412  *	1 : equal
4413  *	0 : not equal
4414  */
4415 static int
4416 key_bbcmp(const void *a1, const void *a2, u_int bits)
4417 {
4418 	const unsigned char *p1 = a1;
4419 	const unsigned char *p2 = a2;
4420 
4421 	/* XXX: This could be considerably faster if we compare a word
4422 	 * at a time, but it is complicated on LSB Endian machines */
4423 
4424 	/* Handle null pointers */
4425 	if (p1 == NULL || p2 == NULL)
4426 		return (p1 == p2);
4427 
4428 	while (bits >= 8) {
4429 		if (*p1++ != *p2++)
4430 			return 0;
4431 		bits -= 8;
4432 	}
4433 
4434 	if (bits > 0) {
4435 		u_int8_t mask = ~((1<<(8-bits))-1);
4436 		if ((*p1 & mask) != (*p2 & mask))
4437 			return 0;
4438 	}
4439 	return 1;	/* Match! */
4440 }
4441 
4442 static void
4443 key_flush_spd(time_t now)
4444 {
4445 	SPTREE_RLOCK_TRACKER;
4446 	struct secpolicy_list drainq;
4447 	struct secpolicy *sp, *nextsp;
4448 	u_int dir;
4449 
4450 	LIST_INIT(&drainq);
4451 	SPTREE_RLOCK();
4452 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4453 		TAILQ_FOREACH(sp, &V_sptree[dir], chain) {
4454 			if (sp->lifetime == 0 && sp->validtime == 0)
4455 				continue;
4456 			if ((sp->lifetime &&
4457 			    now - sp->created > sp->lifetime) ||
4458 			    (sp->validtime &&
4459 			    now - sp->lastused > sp->validtime)) {
4460 				/* Hold extra reference to send SPDEXPIRE */
4461 				SP_ADDREF(sp);
4462 				LIST_INSERT_HEAD(&drainq, sp, drainq);
4463 			}
4464 		}
4465 	}
4466 	SPTREE_RUNLOCK();
4467 	if (LIST_EMPTY(&drainq))
4468 		return;
4469 
4470 	SPTREE_WLOCK();
4471 	sp = LIST_FIRST(&drainq);
4472 	while (sp != NULL) {
4473 		nextsp = LIST_NEXT(sp, drainq);
4474 		/* Check that SP is still linked */
4475 		if (sp->state != IPSEC_SPSTATE_ALIVE) {
4476 			LIST_REMOVE(sp, drainq);
4477 			key_freesp(&sp); /* release extra reference */
4478 			sp = nextsp;
4479 			continue;
4480 		}
4481 		TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain);
4482 		V_spd_size--;
4483 		LIST_REMOVE(sp, idhash);
4484 		sp->state = IPSEC_SPSTATE_DEAD;
4485 		sp = nextsp;
4486 	}
4487 	V_sp_genid++;
4488 	SPTREE_WUNLOCK();
4489 	if (SPDCACHE_ENABLED())
4490 		spdcache_clear();
4491 
4492 	sp = LIST_FIRST(&drainq);
4493 	while (sp != NULL) {
4494 		nextsp = LIST_NEXT(sp, drainq);
4495 		key_spdexpire(sp);
4496 		key_freesp(&sp); /* release extra reference */
4497 		key_freesp(&sp); /* release last reference */
4498 		sp = nextsp;
4499 	}
4500 }
4501 
4502 static void
4503 key_flush_sad(time_t now)
4504 {
4505 	SAHTREE_RLOCK_TRACKER;
4506 	struct secashead_list emptyq;
4507 	struct secasvar_list drainq, hexpireq, sexpireq, freeq;
4508 	struct secashead *sah, *nextsah;
4509 	struct secasvar *sav, *nextsav;
4510 
4511 	LIST_INIT(&drainq);
4512 	LIST_INIT(&hexpireq);
4513 	LIST_INIT(&sexpireq);
4514 	LIST_INIT(&emptyq);
4515 
4516 	SAHTREE_RLOCK();
4517 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
4518 		/* Check for empty SAH */
4519 		if (TAILQ_EMPTY(&sah->savtree_larval) &&
4520 		    TAILQ_EMPTY(&sah->savtree_alive)) {
4521 			SAH_ADDREF(sah);
4522 			LIST_INSERT_HEAD(&emptyq, sah, drainq);
4523 			continue;
4524 		}
4525 		/* Add all stale LARVAL SAs into drainq */
4526 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
4527 			if (now - sav->created < V_key_larval_lifetime)
4528 				continue;
4529 			SAV_ADDREF(sav);
4530 			LIST_INSERT_HEAD(&drainq, sav, drainq);
4531 		}
4532 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
4533 			/* lifetimes aren't specified */
4534 			if (sav->lft_h == NULL)
4535 				continue;
4536 			SECASVAR_LOCK(sav);
4537 			/*
4538 			 * Check again with lock held, because it may
4539 			 * be updated by SADB_UPDATE.
4540 			 */
4541 			if (sav->lft_h == NULL) {
4542 				SECASVAR_UNLOCK(sav);
4543 				continue;
4544 			}
4545 			/*
4546 			 * RFC 2367:
4547 			 * HARD lifetimes MUST take precedence over SOFT
4548 			 * lifetimes, meaning if the HARD and SOFT lifetimes
4549 			 * are the same, the HARD lifetime will appear on the
4550 			 * EXPIRE message.
4551 			 */
4552 			/* check HARD lifetime */
4553 			if ((sav->lft_h->addtime != 0 &&
4554 			    now - sav->created > sav->lft_h->addtime) ||
4555 			    (sav->lft_h->usetime != 0 && sav->firstused &&
4556 			    now - sav->firstused > sav->lft_h->usetime) ||
4557 			    (sav->lft_h->bytes != 0 && counter_u64_fetch(
4558 			        sav->lft_c_bytes) > sav->lft_h->bytes)) {
4559 				SECASVAR_UNLOCK(sav);
4560 				SAV_ADDREF(sav);
4561 				LIST_INSERT_HEAD(&hexpireq, sav, drainq);
4562 				continue;
4563 			}
4564 			/* check SOFT lifetime (only for MATURE SAs) */
4565 			if (sav->state == SADB_SASTATE_MATURE && (
4566 			    (sav->lft_s->addtime != 0 &&
4567 			    now - sav->created > sav->lft_s->addtime) ||
4568 			    (sav->lft_s->usetime != 0 && sav->firstused &&
4569 			    now - sav->firstused > sav->lft_s->usetime) ||
4570 			    (sav->lft_s->bytes != 0 && counter_u64_fetch(
4571 				sav->lft_c_bytes) > sav->lft_s->bytes) ||
4572 			    (!(sav->flags & SADB_X_SAFLAGS_ESN) &&
4573 			    (sav->replay != NULL) && (
4574 			    (sav->replay->count > UINT32_80PCT) ||
4575 			    (sav->replay->last > UINT32_80PCT))))) {
4576 				SECASVAR_UNLOCK(sav);
4577 				SAV_ADDREF(sav);
4578 				LIST_INSERT_HEAD(&sexpireq, sav, drainq);
4579 				continue;
4580 			}
4581 			SECASVAR_UNLOCK(sav);
4582 		}
4583 	}
4584 	SAHTREE_RUNLOCK();
4585 
4586 	if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) &&
4587 	    LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq))
4588 		return;
4589 
4590 	LIST_INIT(&freeq);
4591 	SAHTREE_WLOCK();
4592 	/* Unlink stale LARVAL SAs */
4593 	sav = LIST_FIRST(&drainq);
4594 	while (sav != NULL) {
4595 		nextsav = LIST_NEXT(sav, drainq);
4596 		/* Check that SA is still LARVAL */
4597 		if (sav->state != SADB_SASTATE_LARVAL) {
4598 			LIST_REMOVE(sav, drainq);
4599 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4600 			sav = nextsav;
4601 			continue;
4602 		}
4603 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
4604 		LIST_REMOVE(sav, spihash);
4605 		sav->state = SADB_SASTATE_DEAD;
4606 		sav = nextsav;
4607 	}
4608 	/* Unlink all SAs with expired HARD lifetime */
4609 	sav = LIST_FIRST(&hexpireq);
4610 	while (sav != NULL) {
4611 		nextsav = LIST_NEXT(sav, drainq);
4612 		/* Check that SA is not unlinked */
4613 		if (sav->state == SADB_SASTATE_DEAD) {
4614 			LIST_REMOVE(sav, drainq);
4615 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4616 			sav = nextsav;
4617 			continue;
4618 		}
4619 		TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
4620 		LIST_REMOVE(sav, spihash);
4621 		sav->state = SADB_SASTATE_DEAD;
4622 		sav = nextsav;
4623 	}
4624 	/* Mark all SAs with expired SOFT lifetime as DYING */
4625 	sav = LIST_FIRST(&sexpireq);
4626 	while (sav != NULL) {
4627 		nextsav = LIST_NEXT(sav, drainq);
4628 		/* Check that SA is not unlinked */
4629 		if (sav->state == SADB_SASTATE_DEAD) {
4630 			LIST_REMOVE(sav, drainq);
4631 			LIST_INSERT_HEAD(&freeq, sav, drainq);
4632 			sav = nextsav;
4633 			continue;
4634 		}
4635 		/*
4636 		 * NOTE: this doesn't change SA order in the chain.
4637 		 */
4638 		sav->state = SADB_SASTATE_DYING;
4639 		sav = nextsav;
4640 	}
4641 	/* Unlink empty SAHs */
4642 	sah = LIST_FIRST(&emptyq);
4643 	while (sah != NULL) {
4644 		nextsah = LIST_NEXT(sah, drainq);
4645 		/* Check that SAH is still empty and not unlinked */
4646 		if (sah->state == SADB_SASTATE_DEAD ||
4647 		    !TAILQ_EMPTY(&sah->savtree_larval) ||
4648 		    !TAILQ_EMPTY(&sah->savtree_alive)) {
4649 			LIST_REMOVE(sah, drainq);
4650 			key_freesah(&sah); /* release extra reference */
4651 			sah = nextsah;
4652 			continue;
4653 		}
4654 		TAILQ_REMOVE(&V_sahtree, sah, chain);
4655 		LIST_REMOVE(sah, addrhash);
4656 		sah->state = SADB_SASTATE_DEAD;
4657 		sah = nextsah;
4658 	}
4659 	SAHTREE_WUNLOCK();
4660 
4661 	/* Send SPDEXPIRE messages */
4662 	sav = LIST_FIRST(&hexpireq);
4663 	while (sav != NULL) {
4664 		nextsav = LIST_NEXT(sav, drainq);
4665 		key_expire(sav, 1);
4666 		key_freesah(&sav->sah); /* release reference from SAV */
4667 		key_freesav(&sav); /* release extra reference */
4668 		key_freesav(&sav); /* release last reference */
4669 		sav = nextsav;
4670 	}
4671 	sav = LIST_FIRST(&sexpireq);
4672 	while (sav != NULL) {
4673 		nextsav = LIST_NEXT(sav, drainq);
4674 		key_expire(sav, 0);
4675 		key_freesav(&sav); /* release extra reference */
4676 		sav = nextsav;
4677 	}
4678 	/* Free stale LARVAL SAs */
4679 	sav = LIST_FIRST(&drainq);
4680 	while (sav != NULL) {
4681 		nextsav = LIST_NEXT(sav, drainq);
4682 		key_freesah(&sav->sah); /* release reference from SAV */
4683 		key_freesav(&sav); /* release extra reference */
4684 		key_freesav(&sav); /* release last reference */
4685 		sav = nextsav;
4686 	}
4687 	/* Free SAs that were unlinked/changed by someone else */
4688 	sav = LIST_FIRST(&freeq);
4689 	while (sav != NULL) {
4690 		nextsav = LIST_NEXT(sav, drainq);
4691 		key_freesav(&sav); /* release extra reference */
4692 		sav = nextsav;
4693 	}
4694 	/* Free empty SAH */
4695 	sah = LIST_FIRST(&emptyq);
4696 	while (sah != NULL) {
4697 		nextsah = LIST_NEXT(sah, drainq);
4698 		key_freesah(&sah); /* release extra reference */
4699 		key_freesah(&sah); /* release last reference */
4700 		sah = nextsah;
4701 	}
4702 }
4703 
4704 static void
4705 key_flush_acq(time_t now)
4706 {
4707 	struct secacq *acq, *nextacq;
4708 
4709 	/* ACQ tree */
4710 	ACQ_LOCK();
4711 	acq = LIST_FIRST(&V_acqtree);
4712 	while (acq != NULL) {
4713 		nextacq = LIST_NEXT(acq, chain);
4714 		if (now - acq->created > V_key_blockacq_lifetime) {
4715 			LIST_REMOVE(acq, chain);
4716 			LIST_REMOVE(acq, addrhash);
4717 			LIST_REMOVE(acq, seqhash);
4718 			free(acq, M_IPSEC_SAQ);
4719 		}
4720 		acq = nextacq;
4721 	}
4722 	ACQ_UNLOCK();
4723 }
4724 
4725 static void
4726 key_flush_spacq(time_t now)
4727 {
4728 	struct secspacq *acq, *nextacq;
4729 
4730 	/* SP ACQ tree */
4731 	SPACQ_LOCK();
4732 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4733 		nextacq = LIST_NEXT(acq, chain);
4734 		if (now - acq->created > V_key_blockacq_lifetime
4735 		 && __LIST_CHAINED(acq)) {
4736 			LIST_REMOVE(acq, chain);
4737 			free(acq, M_IPSEC_SAQ);
4738 		}
4739 	}
4740 	SPACQ_UNLOCK();
4741 }
4742 
4743 /*
4744  * time handler.
4745  * scanning SPD and SAD to check status for each entries,
4746  * and do to remove or to expire.
4747  * XXX: year 2038 problem may remain.
4748  */
4749 static void
4750 key_timehandler(void *arg)
4751 {
4752 	VNET_ITERATOR_DECL(vnet_iter);
4753 	time_t now = time_second;
4754 
4755 	VNET_LIST_RLOCK_NOSLEEP();
4756 	VNET_FOREACH(vnet_iter) {
4757 		CURVNET_SET(vnet_iter);
4758 		key_flush_spd(now);
4759 		key_flush_sad(now);
4760 		key_flush_acq(now);
4761 		key_flush_spacq(now);
4762 		CURVNET_RESTORE();
4763 	}
4764 	VNET_LIST_RUNLOCK_NOSLEEP();
4765 
4766 #ifndef IPSEC_DEBUG2
4767 	/* do exchange to tick time !! */
4768 	callout_schedule(&key_timer, hz);
4769 #endif /* IPSEC_DEBUG2 */
4770 }
4771 
4772 u_long
4773 key_random(void)
4774 {
4775 	u_long value;
4776 
4777 	arc4random_buf(&value, sizeof(value));
4778 	return value;
4779 }
4780 
4781 /*
4782  * map SADB_SATYPE_* to IPPROTO_*.
4783  * if satype == SADB_SATYPE then satype is mapped to ~0.
4784  * OUT:
4785  *	0: invalid satype.
4786  */
4787 static uint8_t
4788 key_satype2proto(uint8_t satype)
4789 {
4790 	switch (satype) {
4791 	case SADB_SATYPE_UNSPEC:
4792 		return IPSEC_PROTO_ANY;
4793 	case SADB_SATYPE_AH:
4794 		return IPPROTO_AH;
4795 	case SADB_SATYPE_ESP:
4796 		return IPPROTO_ESP;
4797 	case SADB_X_SATYPE_IPCOMP:
4798 		return IPPROTO_IPCOMP;
4799 	case SADB_X_SATYPE_TCPSIGNATURE:
4800 		return IPPROTO_TCP;
4801 	default:
4802 		return 0;
4803 	}
4804 	/* NOTREACHED */
4805 }
4806 
4807 /*
4808  * map IPPROTO_* to SADB_SATYPE_*
4809  * OUT:
4810  *	0: invalid protocol type.
4811  */
4812 static uint8_t
4813 key_proto2satype(uint8_t proto)
4814 {
4815 	switch (proto) {
4816 	case IPPROTO_AH:
4817 		return SADB_SATYPE_AH;
4818 	case IPPROTO_ESP:
4819 		return SADB_SATYPE_ESP;
4820 	case IPPROTO_IPCOMP:
4821 		return SADB_X_SATYPE_IPCOMP;
4822 	case IPPROTO_TCP:
4823 		return SADB_X_SATYPE_TCPSIGNATURE;
4824 	default:
4825 		return 0;
4826 	}
4827 	/* NOTREACHED */
4828 }
4829 
4830 /* %%% PF_KEY */
4831 /*
4832  * SADB_GETSPI processing is to receive
4833  *	<base, (SA2), src address, dst address, (SPI range)>
4834  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4835  * tree with the status of LARVAL, and send
4836  *	<base, SA(*), address(SD)>
4837  * to the IKMPd.
4838  *
4839  * IN:	mhp: pointer to the pointer to each header.
4840  * OUT:	NULL if fail.
4841  *	other if success, return pointer to the message to send.
4842  */
4843 static int
4844 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
4845 {
4846 	struct secasindex saidx;
4847 	struct sadb_address *src0, *dst0;
4848 	struct secasvar *sav;
4849 	uint32_t reqid, spi;
4850 	int error;
4851 	uint8_t mode, proto;
4852 
4853 	IPSEC_ASSERT(so != NULL, ("null socket"));
4854 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4855 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4856 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4857 
4858 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
4859 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)
4860 #ifdef PFKEY_STRICT_CHECKS
4861 	    || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE)
4862 #endif
4863 	    ) {
4864 		ipseclog((LOG_DEBUG,
4865 		    "%s: invalid message: missing required header.\n",
4866 		    __func__));
4867 		error = EINVAL;
4868 		goto fail;
4869 	}
4870 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
4871 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)
4872 #ifdef PFKEY_STRICT_CHECKS
4873 	    || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE)
4874 #endif
4875 	    ) {
4876 		ipseclog((LOG_DEBUG,
4877 		    "%s: invalid message: wrong header size.\n", __func__));
4878 		error = EINVAL;
4879 		goto fail;
4880 	}
4881 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
4882 		mode = IPSEC_MODE_ANY;
4883 		reqid = 0;
4884 	} else {
4885 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
4886 			ipseclog((LOG_DEBUG,
4887 			    "%s: invalid message: wrong header size.\n",
4888 			    __func__));
4889 			error = EINVAL;
4890 			goto fail;
4891 		}
4892 		mode = ((struct sadb_x_sa2 *)
4893 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4894 		reqid = ((struct sadb_x_sa2 *)
4895 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4896 	}
4897 
4898 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4899 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4900 
4901 	/* map satype to proto */
4902 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4903 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4904 			__func__));
4905 		error = EINVAL;
4906 		goto fail;
4907 	}
4908 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
4909 	    (struct sockaddr *)(dst0 + 1));
4910 	if (error != 0) {
4911 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
4912 		error = EINVAL;
4913 		goto fail;
4914 	}
4915 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4916 
4917 	/* SPI allocation */
4918 	SPI_ALLOC_LOCK();
4919 	spi = key_do_getnewspi(
4920 	    (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
4921 	if (spi == 0) {
4922 		/*
4923 		 * Requested SPI or SPI range is not available or
4924 		 * already used.
4925 		 */
4926 		SPI_ALLOC_UNLOCK();
4927 		error = EEXIST;
4928 		goto fail;
4929 	}
4930 	sav = key_newsav(mhp, &saidx, spi, &error);
4931 	SPI_ALLOC_UNLOCK();
4932 	if (sav == NULL)
4933 		goto fail;
4934 
4935 	if (sav->seq != 0) {
4936 		/*
4937 		 * RFC2367:
4938 		 * If the SADB_GETSPI message is in response to a
4939 		 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq
4940 		 * MUST be the same as the SADB_ACQUIRE message.
4941 		 *
4942 		 * XXXAE: However it doesn't definethe behaviour how to
4943 		 * check this and what to do if it doesn't match.
4944 		 * Also what we should do if it matches?
4945 		 *
4946 		 * We can compare saidx used in SADB_ACQUIRE with saidx
4947 		 * used in SADB_GETSPI, but this probably can break
4948 		 * existing software. For now just warn if it doesn't match.
4949 		 *
4950 		 * XXXAE: anyway it looks useless.
4951 		 */
4952 		key_acqdone(&saidx, sav->seq);
4953 	}
4954 	KEYDBG(KEY_STAMP,
4955 	    printf("%s: SA(%p)\n", __func__, sav));
4956 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
4957 
4958     {
4959 	struct mbuf *n, *nn;
4960 	struct sadb_sa *m_sa;
4961 	struct sadb_msg *newmsg;
4962 	int off, len;
4963 
4964 	/* create new sadb_msg to reply. */
4965 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4966 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4967 
4968 	MGETHDR(n, M_NOWAIT, MT_DATA);
4969 	if (len > MHLEN) {
4970 		if (!(MCLGET(n, M_NOWAIT))) {
4971 			m_freem(n);
4972 			n = NULL;
4973 		}
4974 	}
4975 	if (!n) {
4976 		error = ENOBUFS;
4977 		goto fail;
4978 	}
4979 
4980 	n->m_len = len;
4981 	n->m_next = NULL;
4982 	off = 0;
4983 
4984 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4985 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4986 
4987 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4988 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4989 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4990 	m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */
4991 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4992 
4993 	IPSEC_ASSERT(off == len,
4994 		("length inconsistency (off %u len %u)", off, len));
4995 
4996 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4997 	    SADB_EXT_ADDRESS_DST);
4998 	if (!n->m_next) {
4999 		m_freem(n);
5000 		error = ENOBUFS;
5001 		goto fail;
5002 	}
5003 
5004 	if (n->m_len < sizeof(struct sadb_msg)) {
5005 		n = m_pullup(n, sizeof(struct sadb_msg));
5006 		if (n == NULL)
5007 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5008 	}
5009 
5010 	n->m_pkthdr.len = 0;
5011 	for (nn = n; nn; nn = nn->m_next)
5012 		n->m_pkthdr.len += nn->m_len;
5013 
5014 	newmsg = mtod(n, struct sadb_msg *);
5015 	newmsg->sadb_msg_seq = sav->seq;
5016 	newmsg->sadb_msg_errno = 0;
5017 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5018 
5019 	m_freem(m);
5020 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5021     }
5022 
5023 fail:
5024 	return (key_senderror(so, m, error));
5025 }
5026 
5027 /*
5028  * allocating new SPI
5029  * called by key_getspi().
5030  * OUT:
5031  *	0:	failure.
5032  *	others: success, SPI in network byte order.
5033  */
5034 static uint32_t
5035 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx)
5036 {
5037 	uint32_t min, max, newspi, t;
5038 	int tries, limit;
5039 
5040 	SPI_ALLOC_LOCK_ASSERT();
5041 
5042 	/* set spi range to allocate */
5043 	if (spirange != NULL) {
5044 		min = spirange->sadb_spirange_min;
5045 		max = spirange->sadb_spirange_max;
5046 	} else {
5047 		min = V_key_spi_minval;
5048 		max = V_key_spi_maxval;
5049 	}
5050 	/* IPCOMP needs 2-byte SPI */
5051 	if (saidx->proto == IPPROTO_IPCOMP) {
5052 		if (min >= 0x10000)
5053 			min = 0xffff;
5054 		if (max >= 0x10000)
5055 			max = 0xffff;
5056 		if (min > max) {
5057 			t = min; min = max; max = t;
5058 		}
5059 	}
5060 
5061 	if (min == max) {
5062 		if (key_checkspidup(htonl(min))) {
5063 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
5064 			    __func__, min));
5065 			return 0;
5066 		}
5067 
5068 		tries = 1;
5069 		newspi = min;
5070 	} else {
5071 		/* init SPI */
5072 		newspi = 0;
5073 
5074 		limit = atomic_load_int(&V_key_spi_trycnt);
5075 		/* when requesting to allocate spi ranged */
5076 		for (tries = 0; tries < limit; tries++) {
5077 			/* generate pseudo-random SPI value ranged. */
5078 			newspi = min + (key_random() % (max - min + 1));
5079 			if (!key_checkspidup(htonl(newspi)))
5080 				break;
5081 		}
5082 
5083 		if (tries == limit || newspi == 0) {
5084 			ipseclog((LOG_DEBUG,
5085 			    "%s: failed to allocate SPI.\n", __func__));
5086 			return 0;
5087 		}
5088 	}
5089 
5090 	/* statistics */
5091 	keystat.getspi_count =
5092 	    (keystat.getspi_count + tries) / 2;
5093 
5094 	return (htonl(newspi));
5095 }
5096 
5097 /*
5098  * Find TCP-MD5 SA with corresponding secasindex.
5099  * If not found, return NULL and fill SPI with usable value if needed.
5100  */
5101 static struct secasvar *
5102 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi)
5103 {
5104 	SAHTREE_RLOCK_TRACKER;
5105 	struct secashead *sah;
5106 	struct secasvar *sav;
5107 
5108 	IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto"));
5109 	SAHTREE_RLOCK();
5110 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
5111 		if (sah->saidx.proto != IPPROTO_TCP)
5112 			continue;
5113 		if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) &&
5114 		    !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0))
5115 			break;
5116 	}
5117 	if (sah != NULL) {
5118 		if (V_key_preferred_oldsa)
5119 			sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue);
5120 		else
5121 			sav = TAILQ_FIRST(&sah->savtree_alive);
5122 		if (sav != NULL) {
5123 			SAV_ADDREF(sav);
5124 			SAHTREE_RUNLOCK();
5125 			return (sav);
5126 		}
5127 	}
5128 	if (spi == NULL) {
5129 		/* No SPI required */
5130 		SAHTREE_RUNLOCK();
5131 		return (NULL);
5132 	}
5133 	/* Check that SPI is unique */
5134 	LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) {
5135 		if (sav->spi == *spi)
5136 			break;
5137 	}
5138 	if (sav == NULL) {
5139 		SAHTREE_RUNLOCK();
5140 		/* SPI is already unique */
5141 		return (NULL);
5142 	}
5143 	SAHTREE_RUNLOCK();
5144 	/* XXX: not optimal */
5145 	*spi = key_do_getnewspi(NULL, saidx);
5146 	return (NULL);
5147 }
5148 
5149 static int
5150 key_updateaddresses(struct socket *so, struct mbuf *m,
5151     const struct sadb_msghdr *mhp, struct secasvar *sav,
5152     struct secasindex *saidx)
5153 {
5154 	struct sockaddr *newaddr;
5155 	struct secashead *sah;
5156 	struct secasvar *newsav, *tmp;
5157 	struct mbuf *n;
5158 	int error, isnew;
5159 
5160 	/* Check that we need to change SAH */
5161 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) {
5162 		newaddr = (struct sockaddr *)(
5163 		    ((struct sadb_address *)
5164 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1);
5165 		bcopy(newaddr, &saidx->src, newaddr->sa_len);
5166 		key_porttosaddr(&saidx->src.sa, 0);
5167 	}
5168 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5169 		newaddr = (struct sockaddr *)(
5170 		    ((struct sadb_address *)
5171 		    mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1);
5172 		bcopy(newaddr, &saidx->dst, newaddr->sa_len);
5173 		key_porttosaddr(&saidx->dst.sa, 0);
5174 	}
5175 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5176 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) {
5177 		error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa);
5178 		if (error != 0) {
5179 			ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n",
5180 			    __func__));
5181 			return (error);
5182 		}
5183 
5184 		sah = key_getsah(saidx);
5185 		if (sah == NULL) {
5186 			/* create a new SA index */
5187 			sah = key_newsah(saidx);
5188 			if (sah == NULL) {
5189 				ipseclog((LOG_DEBUG,
5190 				    "%s: No more memory.\n", __func__));
5191 				return (ENOBUFS);
5192 			}
5193 			isnew = 2; /* SAH is new */
5194 		} else
5195 			isnew = 1; /* existing SAH is referenced */
5196 	} else {
5197 		/*
5198 		 * src and dst addresses are still the same.
5199 		 * Do we want to change NAT-T config?
5200 		 */
5201 		if (sav->sah->saidx.proto != IPPROTO_ESP ||
5202 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5203 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5204 		    SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5205 			ipseclog((LOG_DEBUG,
5206 			    "%s: invalid message: missing required header.\n",
5207 			    __func__));
5208 			return (EINVAL);
5209 		}
5210 		/* We hold reference to SA, thus SAH will be referenced too. */
5211 		sah = sav->sah;
5212 		isnew = 0;
5213 	}
5214 
5215 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA,
5216 	    M_NOWAIT | M_ZERO);
5217 	if (newsav == NULL) {
5218 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5219 		error = ENOBUFS;
5220 		goto fail;
5221 	}
5222 
5223 	/* Clone SA's content into newsav */
5224 	SAV_INITREF(newsav);
5225 	bcopy(sav, newsav, offsetof(struct secasvar, chain));
5226 	/*
5227 	 * We create new NAT-T config if it is needed.
5228 	 * Old NAT-T config will be freed by key_cleansav() when
5229 	 * last reference to SA will be released.
5230 	 */
5231 	newsav->natt = NULL;
5232 	newsav->sah = sah;
5233 	newsav->state = SADB_SASTATE_MATURE;
5234 	error = key_setnatt(newsav, mhp);
5235 	if (error != 0)
5236 		goto fail;
5237 
5238 	SAHTREE_WLOCK();
5239 	/* Check that SA is still alive */
5240 	if (sav->state == SADB_SASTATE_DEAD) {
5241 		/* SA was unlinked */
5242 		SAHTREE_WUNLOCK();
5243 		error = ESRCH;
5244 		goto fail;
5245 	}
5246 
5247 	/* Unlink SA from SAH and SPI hash */
5248 	IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0,
5249 	    ("SA is already cloned"));
5250 	IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE ||
5251 	    sav->state == SADB_SASTATE_DYING,
5252 	    ("Wrong SA state %u\n", sav->state));
5253 	TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain);
5254 	LIST_REMOVE(sav, spihash);
5255 	sav->state = SADB_SASTATE_DEAD;
5256 
5257 	/*
5258 	 * Link new SA with SAH. Keep SAs ordered by
5259 	 * create time (newer are first).
5260 	 */
5261 	TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) {
5262 		if (newsav->created > tmp->created) {
5263 			TAILQ_INSERT_BEFORE(tmp, newsav, chain);
5264 			break;
5265 		}
5266 	}
5267 	if (tmp == NULL)
5268 		TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain);
5269 
5270 	/* Add new SA into SPI hash. */
5271 	LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash);
5272 
5273 	/* Add new SAH into SADB. */
5274 	if (isnew == 2) {
5275 		TAILQ_INSERT_HEAD(&V_sahtree, sah, chain);
5276 		LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash);
5277 		sah->state = SADB_SASTATE_MATURE;
5278 		SAH_ADDREF(sah); /* newsav references new SAH */
5279 	}
5280 	/*
5281 	 * isnew == 1 -> @sah was referenced by key_getsah().
5282 	 * isnew == 0 -> we use the same @sah, that was used by @sav,
5283 	 *	and we use its reference for @newsav.
5284 	 */
5285 	SECASVAR_LOCK(sav);
5286 	/* XXX: replace cntr with pointer? */
5287 	newsav->cntr = sav->cntr;
5288 	sav->flags |= SADB_X_EXT_F_CLONED;
5289 	SECASVAR_UNLOCK(sav);
5290 
5291 	SAHTREE_WUNLOCK();
5292 
5293 	KEYDBG(KEY_STAMP,
5294 	    printf("%s: SA(%p) cloned into SA(%p)\n",
5295 	    __func__, sav, newsav));
5296 	KEYDBG(KEY_DATA, kdebug_secasv(newsav));
5297 
5298 	key_freesav(&sav); /* release last reference */
5299 
5300 	/* set msg buf from mhp */
5301 	n = key_getmsgbuf_x1(m, mhp);
5302 	if (n == NULL) {
5303 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5304 		return (ENOBUFS);
5305 	}
5306 	m_freem(m);
5307 	key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5308 	return (0);
5309 fail:
5310 	if (isnew != 0)
5311 		key_freesah(&sah);
5312 	if (newsav != NULL) {
5313 		if (newsav->natt != NULL)
5314 			free(newsav->natt, M_IPSEC_MISC);
5315 		free(newsav, M_IPSEC_SA);
5316 	}
5317 	return (error);
5318 }
5319 
5320 /*
5321  * SADB_UPDATE processing
5322  * receive
5323  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5324  *       key(AE), (identity(SD),) (sensitivity)>
5325  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5326  * and send
5327  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5328  *       (identity(SD),) (sensitivity)>
5329  * to the ikmpd.
5330  *
5331  * m will always be freed.
5332  */
5333 static int
5334 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5335 {
5336 	struct secasindex saidx;
5337 	struct sadb_address *src0, *dst0;
5338 	struct sadb_sa *sa0;
5339 	struct secasvar *sav;
5340 	uint32_t reqid;
5341 	int error;
5342 	uint8_t mode, proto;
5343 
5344 	IPSEC_ASSERT(so != NULL, ("null socket"));
5345 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5346 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5347 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5348 
5349 	/* map satype to proto */
5350 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5351 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5352 		    __func__));
5353 		return key_senderror(so, m, EINVAL);
5354 	}
5355 
5356 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5357 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5358 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5359 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5360 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5361 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5362 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5363 		ipseclog((LOG_DEBUG,
5364 		    "%s: invalid message: missing required header.\n",
5365 		    __func__));
5366 		return key_senderror(so, m, EINVAL);
5367 	}
5368 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5369 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5370 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5371 		ipseclog((LOG_DEBUG,
5372 		    "%s: invalid message: wrong header size.\n", __func__));
5373 		return key_senderror(so, m, EINVAL);
5374 	}
5375 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5376 		mode = IPSEC_MODE_ANY;
5377 		reqid = 0;
5378 	} else {
5379 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5380 			ipseclog((LOG_DEBUG,
5381 			    "%s: invalid message: wrong header size.\n",
5382 			    __func__));
5383 			return key_senderror(so, m, EINVAL);
5384 		}
5385 		mode = ((struct sadb_x_sa2 *)
5386 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5387 		reqid = ((struct sadb_x_sa2 *)
5388 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5389 	}
5390 
5391 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5392 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5393 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5394 
5395 	/*
5396 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5397 	 * SADB_UPDATE message.
5398 	 */
5399 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5400 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5401 #ifdef PFKEY_STRICT_CHECKS
5402 		return key_senderror(so, m, EINVAL);
5403 #endif
5404 	}
5405 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5406 	    (struct sockaddr *)(dst0 + 1));
5407 	if (error != 0) {
5408 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5409 		return key_senderror(so, m, error);
5410 	}
5411 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5412 	sav = key_getsavbyspi(sa0->sadb_sa_spi);
5413 	if (sav == NULL) {
5414 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n",
5415 		    __func__, ntohl(sa0->sadb_sa_spi)));
5416 		return key_senderror(so, m, EINVAL);
5417 	}
5418 	/*
5419 	 * Check that SADB_UPDATE issued by the same process that did
5420 	 * SADB_GETSPI or SADB_ADD.
5421 	 */
5422 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5423 		ipseclog((LOG_DEBUG,
5424 		    "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__,
5425 		    ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid));
5426 		key_freesav(&sav);
5427 		return key_senderror(so, m, EINVAL);
5428 	}
5429 	/* saidx should match with SA. */
5430 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) {
5431 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n",
5432 		    __func__, ntohl(sav->spi)));
5433 		key_freesav(&sav);
5434 		return key_senderror(so, m, ESRCH);
5435 	}
5436 
5437 	if (sav->state == SADB_SASTATE_LARVAL) {
5438 		if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5439 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) ||
5440 		    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5441 		    SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) {
5442 			ipseclog((LOG_DEBUG,
5443 			    "%s: invalid message: missing required header.\n",
5444 			    __func__));
5445 			key_freesav(&sav);
5446 			return key_senderror(so, m, EINVAL);
5447 		}
5448 		/*
5449 		 * We can set any values except src, dst and SPI.
5450 		 */
5451 		error = key_setsaval(sav, mhp);
5452 		if (error != 0) {
5453 			key_freesav(&sav);
5454 			return (key_senderror(so, m, error));
5455 		}
5456 		/* Change SA state to MATURE */
5457 		SAHTREE_WLOCK();
5458 		if (sav->state != SADB_SASTATE_LARVAL) {
5459 			/* SA was deleted or another thread made it MATURE. */
5460 			SAHTREE_WUNLOCK();
5461 			key_freesav(&sav);
5462 			return (key_senderror(so, m, ESRCH));
5463 		}
5464 		/*
5465 		 * NOTE: we keep SAs in savtree_alive ordered by created
5466 		 * time. When SA's state changed from LARVAL to MATURE,
5467 		 * we update its created time in key_setsaval() and move
5468 		 * it into head of savtree_alive.
5469 		 */
5470 		TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain);
5471 		TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain);
5472 		sav->state = SADB_SASTATE_MATURE;
5473 		SAHTREE_WUNLOCK();
5474 	} else {
5475 		/*
5476 		 * For DYING and MATURE SA we can change only state
5477 		 * and lifetimes. Report EINVAL if something else attempted
5478 		 * to change.
5479 		 */
5480 		if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5481 		    !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) {
5482 			key_freesav(&sav);
5483 			return (key_senderror(so, m, EINVAL));
5484 		}
5485 		error = key_updatelifetimes(sav, mhp);
5486 		if (error != 0) {
5487 			key_freesav(&sav);
5488 			return (key_senderror(so, m, error));
5489 		}
5490 		/*
5491 		 * This is FreeBSD extension to RFC2367.
5492 		 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or
5493 		 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change
5494 		 * SA addresses (for example to implement MOBIKE protocol
5495 		 * as described in RFC4555). Also we allow to change
5496 		 * NAT-T config.
5497 		 */
5498 		if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) ||
5499 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) ||
5500 		    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5501 		    sav->natt != NULL) {
5502 			error = key_updateaddresses(so, m, mhp, sav, &saidx);
5503 			key_freesav(&sav);
5504 			if (error != 0)
5505 				return (key_senderror(so, m, error));
5506 			return (0);
5507 		}
5508 		/* Check that SA is still alive */
5509 		SAHTREE_WLOCK();
5510 		if (sav->state == SADB_SASTATE_DEAD) {
5511 			/* SA was unlinked */
5512 			SAHTREE_WUNLOCK();
5513 			key_freesav(&sav);
5514 			return (key_senderror(so, m, ESRCH));
5515 		}
5516 		/*
5517 		 * NOTE: there is possible state moving from DYING to MATURE,
5518 		 * but this doesn't change created time, so we won't reorder
5519 		 * this SA.
5520 		 */
5521 		sav->state = SADB_SASTATE_MATURE;
5522 		SAHTREE_WUNLOCK();
5523 	}
5524 	KEYDBG(KEY_STAMP,
5525 	    printf("%s: SA(%p)\n", __func__, sav));
5526 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5527 	key_freesav(&sav);
5528 
5529     {
5530 	struct mbuf *n;
5531 
5532 	/* set msg buf from mhp */
5533 	n = key_getmsgbuf_x1(m, mhp);
5534 	if (n == NULL) {
5535 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5536 		return key_senderror(so, m, ENOBUFS);
5537 	}
5538 
5539 	m_freem(m);
5540 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5541     }
5542 }
5543 
5544 /*
5545  * SADB_ADD processing
5546  * add an entry to SA database, when received
5547  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5548  *       key(AE), (identity(SD),) (sensitivity)>
5549  * from the ikmpd,
5550  * and send
5551  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5552  *       (identity(SD),) (sensitivity)>
5553  * to the ikmpd.
5554  *
5555  * IGNORE identity and sensitivity messages.
5556  *
5557  * m will always be freed.
5558  */
5559 static int
5560 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5561 {
5562 	struct secasindex saidx;
5563 	struct sadb_address *src0, *dst0;
5564 	struct sadb_sa *sa0;
5565 	struct secasvar *sav;
5566 	uint32_t reqid, spi;
5567 	uint8_t mode, proto;
5568 	int error;
5569 
5570 	IPSEC_ASSERT(so != NULL, ("null socket"));
5571 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5572 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5573 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5574 
5575 	/* map satype to proto */
5576 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5577 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5578 		    __func__));
5579 		return key_senderror(so, m, EINVAL);
5580 	}
5581 
5582 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
5583 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
5584 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
5585 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && (
5586 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) ||
5587 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) ||
5588 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && (
5589 		SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) ||
5590 		SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) ||
5591 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) &&
5592 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) ||
5593 	    (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) &&
5594 		!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) {
5595 		ipseclog((LOG_DEBUG,
5596 		    "%s: invalid message: missing required header.\n",
5597 		    __func__));
5598 		return key_senderror(so, m, EINVAL);
5599 	}
5600 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
5601 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
5602 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
5603 		ipseclog((LOG_DEBUG,
5604 		    "%s: invalid message: wrong header size.\n", __func__));
5605 		return key_senderror(so, m, EINVAL);
5606 	}
5607 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
5608 		mode = IPSEC_MODE_ANY;
5609 		reqid = 0;
5610 	} else {
5611 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
5612 			ipseclog((LOG_DEBUG,
5613 			    "%s: invalid message: wrong header size.\n",
5614 			    __func__));
5615 			return key_senderror(so, m, EINVAL);
5616 		}
5617 		mode = ((struct sadb_x_sa2 *)
5618 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5619 		reqid = ((struct sadb_x_sa2 *)
5620 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5621 	}
5622 
5623 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5624 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5625 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5626 
5627 	/*
5628 	 * Only SADB_SASTATE_MATURE SAs may be submitted in an
5629 	 * SADB_ADD message.
5630 	 */
5631 	if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) {
5632 		ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__));
5633 #ifdef PFKEY_STRICT_CHECKS
5634 		return key_senderror(so, m, EINVAL);
5635 #endif
5636 	}
5637 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
5638 	    (struct sockaddr *)(dst0 + 1));
5639 	if (error != 0) {
5640 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
5641 		return key_senderror(so, m, error);
5642 	}
5643 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5644 	spi = sa0->sadb_sa_spi;
5645 	/*
5646 	 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using
5647 	 * secasindex.
5648 	 * XXXAE: IPComp seems also doesn't use SPI.
5649 	 */
5650 	SPI_ALLOC_LOCK();
5651 	if (proto == IPPROTO_TCP) {
5652 		sav = key_getsav_tcpmd5(&saidx, &spi);
5653 		if (sav == NULL && spi == 0) {
5654 			SPI_ALLOC_UNLOCK();
5655 			/* Failed to allocate SPI */
5656 			ipseclog((LOG_DEBUG, "%s: SA already exists.\n",
5657 			    __func__));
5658 			return key_senderror(so, m, EEXIST);
5659 		}
5660 		/* XXX: SPI that we report back can have another value */
5661 	} else {
5662 		/* We can create new SA only if SPI is different. */
5663 		sav = key_getsavbyspi(spi);
5664 	}
5665 	if (sav != NULL) {
5666 		SPI_ALLOC_UNLOCK();
5667 		key_freesav(&sav);
5668 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5669 		return key_senderror(so, m, EEXIST);
5670 	}
5671 
5672 	sav = key_newsav(mhp, &saidx, spi, &error);
5673 	SPI_ALLOC_UNLOCK();
5674 	if (sav == NULL)
5675 		return key_senderror(so, m, error);
5676 	KEYDBG(KEY_STAMP,
5677 	    printf("%s: return SA(%p)\n", __func__, sav));
5678 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
5679 	/*
5680 	 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule
5681 	 * ACQ for deletion.
5682 	 */
5683 	if (sav->seq != 0)
5684 		key_acqdone(&saidx, sav->seq);
5685 
5686     {
5687 	/*
5688 	 * Don't call key_freesav() on error here, as we would like to
5689 	 * keep the SA in the database.
5690 	 */
5691 	struct mbuf *n;
5692 
5693 	/* set msg buf from mhp */
5694 	n = key_getmsgbuf_x1(m, mhp);
5695 	if (n == NULL) {
5696 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5697 		return key_senderror(so, m, ENOBUFS);
5698 	}
5699 
5700 	m_freem(m);
5701 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5702     }
5703 }
5704 
5705 /*
5706  * NAT-T support.
5707  * IKEd may request the use ESP in UDP encapsulation when it detects the
5708  * presence of NAT. It uses NAT-T extension headers for such SAs to specify
5709  * parameters needed for encapsulation and decapsulation. These PF_KEY
5710  * extension headers are not standardized, so this comment addresses our
5711  * implementation.
5712  * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only
5713  * UDP_ENCAP_ESPINUDP as described in RFC3948.
5714  * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for
5715  * UDP header. We use these ports in UDP encapsulation procedure, also we
5716  * can check them in UDP decapsulation procedure.
5717  * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or
5718  * responder. These addresses can be used for transport mode to adjust
5719  * checksum after decapsulation and decryption. Since original IP addresses
5720  * used by peer usually different (we detected presence of NAT), TCP/UDP
5721  * pseudo header checksum and IP header checksum was calculated using original
5722  * addresses. After decapsulation and decryption we need to adjust checksum
5723  * to have correct datagram.
5724  *
5725  * We expect presence of NAT-T extension headers only in SADB_ADD and
5726  * SADB_UPDATE messages. We report NAT-T extension headers in replies
5727  * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages.
5728  */
5729 static int
5730 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp)
5731 {
5732 	struct sadb_x_nat_t_port *port;
5733 	struct sadb_x_nat_t_type *type;
5734 	struct sadb_address *oai, *oar;
5735 	struct sockaddr *sa;
5736 	uint32_t addr;
5737 	uint16_t cksum;
5738 
5739 	IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized"));
5740 	/*
5741 	 * Ignore NAT-T headers if sproto isn't ESP.
5742 	 */
5743 	if (sav->sah->saidx.proto != IPPROTO_ESP)
5744 		return (0);
5745 
5746 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) &&
5747 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) &&
5748 	    !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5749 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) ||
5750 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) ||
5751 		    SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) {
5752 			ipseclog((LOG_DEBUG,
5753 			    "%s: invalid message: wrong header size.\n",
5754 			    __func__));
5755 			return (EINVAL);
5756 		}
5757 	} else
5758 		return (0);
5759 
5760 	type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5761 	if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) {
5762 		ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n",
5763 		    __func__, type->sadb_x_nat_t_type_type));
5764 		return (EINVAL);
5765 	}
5766 	/*
5767 	 * Allocate storage for NAT-T config.
5768 	 * On error it will be released by key_cleansav().
5769 	 */
5770 	sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC,
5771 	    M_NOWAIT | M_ZERO);
5772 	if (sav->natt == NULL) {
5773 		PFKEYSTAT_INC(in_nomem);
5774 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5775 		return (ENOBUFS);
5776 	}
5777 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5778 	if (port->sadb_x_nat_t_port_port == 0) {
5779 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n",
5780 		    __func__));
5781 		return (EINVAL);
5782 	}
5783 	sav->natt->sport = port->sadb_x_nat_t_port_port;
5784 	port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5785 	if (port->sadb_x_nat_t_port_port == 0) {
5786 		ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n",
5787 		    __func__));
5788 		return (EINVAL);
5789 	}
5790 	sav->natt->dport = port->sadb_x_nat_t_port_port;
5791 
5792 	/*
5793 	 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional
5794 	 * and needed only for transport mode IPsec.
5795 	 * Usually NAT translates only one address, but it is possible,
5796 	 * that both addresses could be translated.
5797 	 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA.
5798 	 */
5799 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) {
5800 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) {
5801 			ipseclog((LOG_DEBUG,
5802 			    "%s: invalid message: wrong header size.\n",
5803 			    __func__));
5804 			return (EINVAL);
5805 		}
5806 		oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5807 	} else
5808 		oai = NULL;
5809 	if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) {
5810 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) {
5811 			ipseclog((LOG_DEBUG,
5812 			    "%s: invalid message: wrong header size.\n",
5813 			    __func__));
5814 			return (EINVAL);
5815 		}
5816 		oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5817 	} else
5818 		oar = NULL;
5819 
5820 	/* Initialize addresses only for transport mode */
5821 	if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) {
5822 		cksum = 0;
5823 		if (oai != NULL) {
5824 			/* Currently we support only AF_INET */
5825 			sa = (struct sockaddr *)(oai + 1);
5826 			if (sa->sa_family != AF_INET ||
5827 			    sa->sa_len != sizeof(struct sockaddr_in)) {
5828 				ipseclog((LOG_DEBUG,
5829 				    "%s: wrong NAT-OAi header.\n",
5830 				    __func__));
5831 				return (EINVAL);
5832 			}
5833 			/* Ignore address if it the same */
5834 			if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5835 			    sav->sah->saidx.src.sin.sin_addr.s_addr) {
5836 				bcopy(sa, &sav->natt->oai.sa, sa->sa_len);
5837 				sav->natt->flags |= IPSEC_NATT_F_OAI;
5838 				/* Calculate checksum delta */
5839 				addr = sav->sah->saidx.src.sin.sin_addr.s_addr;
5840 				cksum = in_addword(cksum, ~addr >> 16);
5841 				cksum = in_addword(cksum, ~addr & 0xffff);
5842 				addr = sav->natt->oai.sin.sin_addr.s_addr;
5843 				cksum = in_addword(cksum, addr >> 16);
5844 				cksum = in_addword(cksum, addr & 0xffff);
5845 			}
5846 		}
5847 		if (oar != NULL) {
5848 			/* Currently we support only AF_INET */
5849 			sa = (struct sockaddr *)(oar + 1);
5850 			if (sa->sa_family != AF_INET ||
5851 			    sa->sa_len != sizeof(struct sockaddr_in)) {
5852 				ipseclog((LOG_DEBUG,
5853 				    "%s: wrong NAT-OAr header.\n",
5854 				    __func__));
5855 				return (EINVAL);
5856 			}
5857 			/* Ignore address if it the same */
5858 			if (((struct sockaddr_in *)sa)->sin_addr.s_addr !=
5859 			    sav->sah->saidx.dst.sin.sin_addr.s_addr) {
5860 				bcopy(sa, &sav->natt->oar.sa, sa->sa_len);
5861 				sav->natt->flags |= IPSEC_NATT_F_OAR;
5862 				/* Calculate checksum delta */
5863 				addr = sav->sah->saidx.dst.sin.sin_addr.s_addr;
5864 				cksum = in_addword(cksum, ~addr >> 16);
5865 				cksum = in_addword(cksum, ~addr & 0xffff);
5866 				addr = sav->natt->oar.sin.sin_addr.s_addr;
5867 				cksum = in_addword(cksum, addr >> 16);
5868 				cksum = in_addword(cksum, addr & 0xffff);
5869 			}
5870 		}
5871 		sav->natt->cksum = cksum;
5872 	}
5873 	return (0);
5874 }
5875 
5876 static int
5877 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp)
5878 {
5879 	const struct sadb_ident *idsrc, *iddst;
5880 
5881 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5882 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5883 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5884 
5885 	/* don't make buffer if not there */
5886 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) &&
5887 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5888 		sah->idents = NULL;
5889 		sah->identd = NULL;
5890 		return (0);
5891 	}
5892 
5893 	if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) ||
5894 	    SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) {
5895 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5896 		return (EINVAL);
5897 	}
5898 
5899 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5900 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5901 
5902 	/* validity check */
5903 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5904 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5905 		return EINVAL;
5906 	}
5907 
5908 	switch (idsrc->sadb_ident_type) {
5909 	case SADB_IDENTTYPE_PREFIX:
5910 	case SADB_IDENTTYPE_FQDN:
5911 	case SADB_IDENTTYPE_USERFQDN:
5912 	default:
5913 		/* XXX do nothing */
5914 		sah->idents = NULL;
5915 		sah->identd = NULL;
5916 	 	return 0;
5917 	}
5918 
5919 	/* make structure */
5920 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5921 	if (sah->idents == NULL) {
5922 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5923 		return ENOBUFS;
5924 	}
5925 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5926 	if (sah->identd == NULL) {
5927 		free(sah->idents, M_IPSEC_MISC);
5928 		sah->idents = NULL;
5929 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5930 		return ENOBUFS;
5931 	}
5932 	sah->idents->type = idsrc->sadb_ident_type;
5933 	sah->idents->id = idsrc->sadb_ident_id;
5934 
5935 	sah->identd->type = iddst->sadb_ident_type;
5936 	sah->identd->id = iddst->sadb_ident_id;
5937 
5938 	return 0;
5939 }
5940 
5941 /*
5942  * m will not be freed on return.
5943  * it is caller's responsibility to free the result.
5944  *
5945  * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers
5946  * from the request in defined order.
5947  */
5948 static struct mbuf *
5949 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5950 {
5951 	struct mbuf *n;
5952 
5953 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5954 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5955 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5956 
5957 	/* create new sadb_msg to reply. */
5958 	n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED,
5959 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5960 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5961 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5962 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5963 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5964 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5965 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC,
5966 	    SADB_X_EXT_NEW_ADDRESS_DST);
5967 	if (!n)
5968 		return NULL;
5969 
5970 	if (n->m_len < sizeof(struct sadb_msg)) {
5971 		n = m_pullup(n, sizeof(struct sadb_msg));
5972 		if (n == NULL)
5973 			return NULL;
5974 	}
5975 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5976 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5977 	    PFKEY_UNIT64(n->m_pkthdr.len);
5978 
5979 	return n;
5980 }
5981 
5982 /*
5983  * SADB_DELETE processing
5984  * receive
5985  *   <base, SA(*), address(SD)>
5986  * from the ikmpd, and set SADB_SASTATE_DEAD,
5987  * and send,
5988  *   <base, SA(*), address(SD)>
5989  * to the ikmpd.
5990  *
5991  * m will always be freed.
5992  */
5993 static int
5994 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5995 {
5996 	struct secasindex saidx;
5997 	struct sadb_address *src0, *dst0;
5998 	struct secasvar *sav;
5999 	struct sadb_sa *sa0;
6000 	uint8_t proto;
6001 
6002 	IPSEC_ASSERT(so != NULL, ("null socket"));
6003 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6004 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6005 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6006 
6007 	/* map satype to proto */
6008 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6009 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6010 		    __func__));
6011 		return key_senderror(so, m, EINVAL);
6012 	}
6013 
6014 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6015 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
6016 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6017 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6018 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6019 		    __func__));
6020 		return key_senderror(so, m, EINVAL);
6021 	}
6022 
6023 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
6024 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
6025 
6026 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6027 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6028 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6029 		return (key_senderror(so, m, EINVAL));
6030 	}
6031 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6032 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) {
6033 		/*
6034 		 * Caller wants us to delete all non-LARVAL SAs
6035 		 * that match the src/dst.  This is used during
6036 		 * IKE INITIAL-CONTACT.
6037 		 * XXXAE: this looks like some extension to RFC2367.
6038 		 */
6039 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
6040 		return (key_delete_all(so, m, mhp, &saidx));
6041 	}
6042 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) {
6043 		ipseclog((LOG_DEBUG,
6044 		    "%s: invalid message: wrong header size.\n", __func__));
6045 		return (key_senderror(so, m, EINVAL));
6046 	}
6047 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6048 	SPI_ALLOC_LOCK();
6049 	if (proto == IPPROTO_TCP)
6050 		sav = key_getsav_tcpmd5(&saidx, NULL);
6051 	else
6052 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6053 	SPI_ALLOC_UNLOCK();
6054 	if (sav == NULL) {
6055 		ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n",
6056 		    __func__, ntohl(sa0->sadb_sa_spi)));
6057 		return (key_senderror(so, m, ESRCH));
6058 	}
6059 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6060 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6061 		    __func__, ntohl(sav->spi)));
6062 		key_freesav(&sav);
6063 		return (key_senderror(so, m, ESRCH));
6064 	}
6065 	KEYDBG(KEY_STAMP,
6066 	    printf("%s: SA(%p)\n", __func__, sav));
6067 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
6068 	key_unlinksav(sav);
6069 	key_freesav(&sav);
6070 
6071     {
6072 	struct mbuf *n;
6073 	struct sadb_msg *newmsg;
6074 
6075 	/* create new sadb_msg to reply. */
6076 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6077 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6078 	if (!n)
6079 		return key_senderror(so, m, ENOBUFS);
6080 
6081 	if (n->m_len < sizeof(struct sadb_msg)) {
6082 		n = m_pullup(n, sizeof(struct sadb_msg));
6083 		if (n == NULL)
6084 			return key_senderror(so, m, ENOBUFS);
6085 	}
6086 	newmsg = mtod(n, struct sadb_msg *);
6087 	newmsg->sadb_msg_errno = 0;
6088 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6089 
6090 	m_freem(m);
6091 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6092     }
6093 }
6094 
6095 /*
6096  * delete all SAs for src/dst.  Called from key_delete().
6097  */
6098 static int
6099 key_delete_all(struct socket *so, struct mbuf *m,
6100     const struct sadb_msghdr *mhp, struct secasindex *saidx)
6101 {
6102 	struct secasvar_queue drainq;
6103 	struct secashead *sah;
6104 	struct secasvar *sav, *nextsav;
6105 
6106 	TAILQ_INIT(&drainq);
6107 	SAHTREE_WLOCK();
6108 	LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) {
6109 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0)
6110 			continue;
6111 		/* Move all ALIVE SAs into drainq */
6112 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6113 	}
6114 	/* Unlink all queued SAs from SPI hash */
6115 	TAILQ_FOREACH(sav, &drainq, chain) {
6116 		sav->state = SADB_SASTATE_DEAD;
6117 		LIST_REMOVE(sav, spihash);
6118 	}
6119 	SAHTREE_WUNLOCK();
6120 	/* Now we can release reference for all SAs in drainq */
6121 	sav = TAILQ_FIRST(&drainq);
6122 	while (sav != NULL) {
6123 		KEYDBG(KEY_STAMP,
6124 		    printf("%s: SA(%p)\n", __func__, sav));
6125 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6126 		nextsav = TAILQ_NEXT(sav, chain);
6127 		key_freesah(&sav->sah); /* release reference from SAV */
6128 		key_freesav(&sav); /* release last reference */
6129 		sav = nextsav;
6130 	}
6131 
6132     {
6133 	struct mbuf *n;
6134 	struct sadb_msg *newmsg;
6135 
6136 	/* create new sadb_msg to reply. */
6137 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6138 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6139 	if (!n)
6140 		return key_senderror(so, m, ENOBUFS);
6141 
6142 	if (n->m_len < sizeof(struct sadb_msg)) {
6143 		n = m_pullup(n, sizeof(struct sadb_msg));
6144 		if (n == NULL)
6145 			return key_senderror(so, m, ENOBUFS);
6146 	}
6147 	newmsg = mtod(n, struct sadb_msg *);
6148 	newmsg->sadb_msg_errno = 0;
6149 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
6150 
6151 	m_freem(m);
6152 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6153     }
6154 }
6155 
6156 /*
6157  * Delete all alive SAs for corresponding xform.
6158  * Larval SAs have not initialized tdb_xform, so it is safe to leave them
6159  * here when xform disappears.
6160  */
6161 void
6162 key_delete_xform(const struct xformsw *xsp)
6163 {
6164 	struct secasvar_queue drainq;
6165 	struct secashead *sah;
6166 	struct secasvar *sav, *nextsav;
6167 
6168 	TAILQ_INIT(&drainq);
6169 	SAHTREE_WLOCK();
6170 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
6171 		sav = TAILQ_FIRST(&sah->savtree_alive);
6172 		if (sav == NULL)
6173 			continue;
6174 		if (sav->tdb_xform != xsp)
6175 			continue;
6176 		/*
6177 		 * It is supposed that all SAs in the chain are related to
6178 		 * one xform.
6179 		 */
6180 		TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain);
6181 	}
6182 	/* Unlink all queued SAs from SPI hash */
6183 	TAILQ_FOREACH(sav, &drainq, chain) {
6184 		sav->state = SADB_SASTATE_DEAD;
6185 		LIST_REMOVE(sav, spihash);
6186 	}
6187 	SAHTREE_WUNLOCK();
6188 
6189 	/* Now we can release reference for all SAs in drainq */
6190 	sav = TAILQ_FIRST(&drainq);
6191 	while (sav != NULL) {
6192 		KEYDBG(KEY_STAMP,
6193 		    printf("%s: SA(%p)\n", __func__, sav));
6194 		KEYDBG(KEY_DATA, kdebug_secasv(sav));
6195 		nextsav = TAILQ_NEXT(sav, chain);
6196 		key_freesah(&sav->sah); /* release reference from SAV */
6197 		key_freesav(&sav); /* release last reference */
6198 		sav = nextsav;
6199 	}
6200 }
6201 
6202 /*
6203  * SADB_GET processing
6204  * receive
6205  *   <base, SA(*), address(SD)>
6206  * from the ikmpd, and get a SP and a SA to respond,
6207  * and send,
6208  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6209  *       (identity(SD),) (sensitivity)>
6210  * to the ikmpd.
6211  *
6212  * m will always be freed.
6213  */
6214 static int
6215 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6216 {
6217 	struct secasindex saidx;
6218 	struct sadb_address *src0, *dst0;
6219 	struct sadb_sa *sa0;
6220 	struct secasvar *sav;
6221 	uint8_t proto;
6222 
6223 	IPSEC_ASSERT(so != NULL, ("null socket"));
6224 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6225 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6226 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6227 
6228 	/* map satype to proto */
6229 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6230 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6231 			__func__));
6232 		return key_senderror(so, m, EINVAL);
6233 	}
6234 
6235 	if (SADB_CHECKHDR(mhp, SADB_EXT_SA) ||
6236 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
6237 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) {
6238 		ipseclog((LOG_DEBUG,
6239 		    "%s: invalid message: missing required header.\n",
6240 		    __func__));
6241 		return key_senderror(so, m, EINVAL);
6242 	}
6243 	if (SADB_CHECKLEN(mhp, SADB_EXT_SA) ||
6244 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
6245 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) {
6246 		ipseclog((LOG_DEBUG,
6247 		    "%s: invalid message: wrong header size.\n", __func__));
6248 		return key_senderror(so, m, EINVAL);
6249 	}
6250 
6251 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
6252 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6253 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6254 
6255 	if (key_checksockaddrs((struct sockaddr *)(src0 + 1),
6256 	    (struct sockaddr *)(dst0 + 1)) != 0) {
6257 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
6258 		return key_senderror(so, m, EINVAL);
6259 	}
6260 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6261 
6262 	SPI_ALLOC_LOCK();
6263 	if (proto == IPPROTO_TCP)
6264 		sav = key_getsav_tcpmd5(&saidx, NULL);
6265 	else
6266 		sav = key_getsavbyspi(sa0->sadb_sa_spi);
6267 	SPI_ALLOC_UNLOCK();
6268 	if (sav == NULL) {
6269 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
6270 		return key_senderror(so, m, ESRCH);
6271 	}
6272 	if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) {
6273 		ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n",
6274 		    __func__, ntohl(sa0->sadb_sa_spi)));
6275 		key_freesav(&sav);
6276 		return (key_senderror(so, m, ESRCH));
6277 	}
6278 
6279     {
6280 	struct mbuf *n;
6281 	uint8_t satype;
6282 
6283 	/* map proto to satype */
6284 	if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
6285 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
6286 		    __func__));
6287 		key_freesav(&sav);
6288 		return key_senderror(so, m, EINVAL);
6289 	}
6290 
6291 	/* create new sadb_msg to reply. */
6292 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6293 	    mhp->msg->sadb_msg_pid);
6294 
6295 	key_freesav(&sav);
6296 	if (!n)
6297 		return key_senderror(so, m, ENOBUFS);
6298 
6299 	m_freem(m);
6300 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6301     }
6302 }
6303 
6304 /* XXX make it sysctl-configurable? */
6305 static void
6306 key_getcomb_setlifetime(struct sadb_comb *comb)
6307 {
6308 
6309 	comb->sadb_comb_soft_allocations = 1;
6310 	comb->sadb_comb_hard_allocations = 1;
6311 	comb->sadb_comb_soft_bytes = 0;
6312 	comb->sadb_comb_hard_bytes = 0;
6313 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6314 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
6315 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
6316 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6317 }
6318 
6319 /*
6320  * XXX reorder combinations by preference
6321  * XXX no idea if the user wants ESP authentication or not
6322  */
6323 static struct mbuf *
6324 key_getcomb_ealg(void)
6325 {
6326 	struct sadb_comb *comb;
6327 	const struct enc_xform *algo;
6328 	struct mbuf *result = NULL, *m, *n;
6329 	int encmin;
6330 	int i, off, o;
6331 	int totlen;
6332 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6333 
6334 	m = NULL;
6335 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6336 		algo = enc_algorithm_lookup(i);
6337 		if (algo == NULL)
6338 			continue;
6339 
6340 		/* discard algorithms with key size smaller than system min */
6341 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6342 			continue;
6343 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6344 			encmin = V_ipsec_esp_keymin;
6345 		else
6346 			encmin = _BITS(algo->minkey);
6347 
6348 		if (V_ipsec_esp_auth)
6349 			m = key_getcomb_ah();
6350 		else {
6351 			IPSEC_ASSERT(l <= MLEN,
6352 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6353 			MGET(m, M_NOWAIT, MT_DATA);
6354 			if (m) {
6355 				M_ALIGN(m, l);
6356 				m->m_len = l;
6357 				m->m_next = NULL;
6358 				bzero(mtod(m, caddr_t), m->m_len);
6359 			}
6360 		}
6361 		if (!m)
6362 			goto fail;
6363 
6364 		totlen = 0;
6365 		for (n = m; n; n = n->m_next)
6366 			totlen += n->m_len;
6367 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6368 
6369 		for (off = 0; off < totlen; off += l) {
6370 			n = m_pulldown(m, off, l, &o);
6371 			if (!n) {
6372 				/* m is already freed */
6373 				goto fail;
6374 			}
6375 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6376 			bzero(comb, sizeof(*comb));
6377 			key_getcomb_setlifetime(comb);
6378 			comb->sadb_comb_encrypt = i;
6379 			comb->sadb_comb_encrypt_minbits = encmin;
6380 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6381 		}
6382 
6383 		if (!result)
6384 			result = m;
6385 		else
6386 			m_cat(result, m);
6387 	}
6388 
6389 	return result;
6390 
6391  fail:
6392 	if (result)
6393 		m_freem(result);
6394 	return NULL;
6395 }
6396 
6397 static void
6398 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min,
6399     u_int16_t* max)
6400 {
6401 
6402 	*min = *max = ah->hashsize;
6403 	if (ah->keysize == 0) {
6404 		/*
6405 		 * Transform takes arbitrary key size but algorithm
6406 		 * key size is restricted.  Enforce this here.
6407 		 */
6408 		switch (alg) {
6409 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6410 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6411 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6412 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6413 		default:
6414 			DPRINTF(("%s: unknown AH algorithm %u\n",
6415 				__func__, alg));
6416 			break;
6417 		}
6418 	}
6419 }
6420 
6421 /*
6422  * XXX reorder combinations by preference
6423  */
6424 static struct mbuf *
6425 key_getcomb_ah()
6426 {
6427 	const struct auth_hash *algo;
6428 	struct sadb_comb *comb;
6429 	struct mbuf *m;
6430 	u_int16_t minkeysize, maxkeysize;
6431 	int i;
6432 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6433 
6434 	m = NULL;
6435 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6436 #if 1
6437 		/* we prefer HMAC algorithms, not old algorithms */
6438 		if (i != SADB_AALG_SHA1HMAC &&
6439 		    i != SADB_X_AALG_SHA2_256 &&
6440 		    i != SADB_X_AALG_SHA2_384 &&
6441 		    i != SADB_X_AALG_SHA2_512)
6442 			continue;
6443 #endif
6444 		algo = auth_algorithm_lookup(i);
6445 		if (!algo)
6446 			continue;
6447 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6448 		/* discard algorithms with key size smaller than system min */
6449 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6450 			continue;
6451 
6452 		if (!m) {
6453 			IPSEC_ASSERT(l <= MLEN,
6454 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6455 			MGET(m, M_NOWAIT, MT_DATA);
6456 			if (m) {
6457 				M_ALIGN(m, l);
6458 				m->m_len = l;
6459 				m->m_next = NULL;
6460 			}
6461 		} else
6462 			M_PREPEND(m, l, M_NOWAIT);
6463 		if (!m)
6464 			return NULL;
6465 
6466 		comb = mtod(m, struct sadb_comb *);
6467 		bzero(comb, sizeof(*comb));
6468 		key_getcomb_setlifetime(comb);
6469 		comb->sadb_comb_auth = i;
6470 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6471 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6472 	}
6473 
6474 	return m;
6475 }
6476 
6477 /*
6478  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6479  * XXX reorder combinations by preference
6480  */
6481 static struct mbuf *
6482 key_getcomb_ipcomp()
6483 {
6484 	const struct comp_algo *algo;
6485 	struct sadb_comb *comb;
6486 	struct mbuf *m;
6487 	int i;
6488 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6489 
6490 	m = NULL;
6491 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6492 		algo = comp_algorithm_lookup(i);
6493 		if (!algo)
6494 			continue;
6495 
6496 		if (!m) {
6497 			IPSEC_ASSERT(l <= MLEN,
6498 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6499 			MGET(m, M_NOWAIT, MT_DATA);
6500 			if (m) {
6501 				M_ALIGN(m, l);
6502 				m->m_len = l;
6503 				m->m_next = NULL;
6504 			}
6505 		} else
6506 			M_PREPEND(m, l, M_NOWAIT);
6507 		if (!m)
6508 			return NULL;
6509 
6510 		comb = mtod(m, struct sadb_comb *);
6511 		bzero(comb, sizeof(*comb));
6512 		key_getcomb_setlifetime(comb);
6513 		comb->sadb_comb_encrypt = i;
6514 		/* what should we set into sadb_comb_*_{min,max}bits? */
6515 	}
6516 
6517 	return m;
6518 }
6519 
6520 /*
6521  * XXX no way to pass mode (transport/tunnel) to userland
6522  * XXX replay checking?
6523  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6524  */
6525 static struct mbuf *
6526 key_getprop(const struct secasindex *saidx)
6527 {
6528 	struct sadb_prop *prop;
6529 	struct mbuf *m, *n;
6530 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6531 	int totlen;
6532 
6533 	switch (saidx->proto)  {
6534 	case IPPROTO_ESP:
6535 		m = key_getcomb_ealg();
6536 		break;
6537 	case IPPROTO_AH:
6538 		m = key_getcomb_ah();
6539 		break;
6540 	case IPPROTO_IPCOMP:
6541 		m = key_getcomb_ipcomp();
6542 		break;
6543 	default:
6544 		return NULL;
6545 	}
6546 
6547 	if (!m)
6548 		return NULL;
6549 	M_PREPEND(m, l, M_NOWAIT);
6550 	if (!m)
6551 		return NULL;
6552 
6553 	totlen = 0;
6554 	for (n = m; n; n = n->m_next)
6555 		totlen += n->m_len;
6556 
6557 	prop = mtod(m, struct sadb_prop *);
6558 	bzero(prop, sizeof(*prop));
6559 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6560 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6561 	prop->sadb_prop_replay = 32;	/* XXX */
6562 
6563 	return m;
6564 }
6565 
6566 /*
6567  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6568  * send
6569  *   <base, SA, address(SD), (address(P)), x_policy,
6570  *       (identity(SD),) (sensitivity,) proposal>
6571  * to KMD, and expect to receive
6572  *   <base> with SADB_ACQUIRE if error occurred,
6573  * or
6574  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6575  * from KMD by PF_KEY.
6576  *
6577  * XXX x_policy is outside of RFC2367 (KAME extension).
6578  * XXX sensitivity is not supported.
6579  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6580  * see comment for key_getcomb_ipcomp().
6581  *
6582  * OUT:
6583  *    0     : succeed
6584  *    others: error number
6585  */
6586 static int
6587 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6588 {
6589 	union sockaddr_union addr;
6590 	struct mbuf *result, *m;
6591 	uint32_t seq;
6592 	int error;
6593 	uint16_t ul_proto;
6594 	uint8_t mask, satype;
6595 
6596 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6597 	satype = key_proto2satype(saidx->proto);
6598 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6599 
6600 	error = -1;
6601 	result = NULL;
6602 	ul_proto = IPSEC_ULPROTO_ANY;
6603 
6604 	/* Get seq number to check whether sending message or not. */
6605 	seq = key_getacq(saidx, &error);
6606 	if (seq == 0)
6607 		return (error);
6608 
6609 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6610 	if (!m) {
6611 		error = ENOBUFS;
6612 		goto fail;
6613 	}
6614 	result = m;
6615 
6616 	/*
6617 	 * set sadb_address for saidx's.
6618 	 *
6619 	 * Note that if sp is supplied, then we're being called from
6620 	 * key_allocsa_policy() and should supply port and protocol
6621 	 * information.
6622 	 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too.
6623 	 * XXXAE: probably we can handle this in the ipsec[46]_allocsa().
6624 	 * XXXAE: it looks like we should save this info in the ACQ entry.
6625 	 */
6626 	if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP ||
6627 	    sp->spidx.ul_proto == IPPROTO_UDP))
6628 		ul_proto = sp->spidx.ul_proto;
6629 
6630 	addr = saidx->src;
6631 	mask = FULLMASK;
6632 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6633 		switch (sp->spidx.src.sa.sa_family) {
6634 		case AF_INET:
6635 			if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) {
6636 				addr.sin.sin_port = sp->spidx.src.sin.sin_port;
6637 				mask = sp->spidx.prefs;
6638 			}
6639 			break;
6640 		case AF_INET6:
6641 			if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) {
6642 				addr.sin6.sin6_port =
6643 				    sp->spidx.src.sin6.sin6_port;
6644 				mask = sp->spidx.prefs;
6645 			}
6646 			break;
6647 		default:
6648 			break;
6649 		}
6650 	}
6651 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto);
6652 	if (!m) {
6653 		error = ENOBUFS;
6654 		goto fail;
6655 	}
6656 	m_cat(result, m);
6657 
6658 	addr = saidx->dst;
6659 	mask = FULLMASK;
6660 	if (ul_proto != IPSEC_ULPROTO_ANY) {
6661 		switch (sp->spidx.dst.sa.sa_family) {
6662 		case AF_INET:
6663 			if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) {
6664 				addr.sin.sin_port = sp->spidx.dst.sin.sin_port;
6665 				mask = sp->spidx.prefd;
6666 			}
6667 			break;
6668 		case AF_INET6:
6669 			if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) {
6670 				addr.sin6.sin6_port =
6671 				    sp->spidx.dst.sin6.sin6_port;
6672 				mask = sp->spidx.prefd;
6673 			}
6674 			break;
6675 		default:
6676 			break;
6677 		}
6678 	}
6679 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto);
6680 	if (!m) {
6681 		error = ENOBUFS;
6682 		goto fail;
6683 	}
6684 	m_cat(result, m);
6685 
6686 	/* XXX proxy address (optional) */
6687 
6688 	/*
6689 	 * Set sadb_x_policy. This is KAME extension to RFC2367.
6690 	 */
6691 	if (sp != NULL) {
6692 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
6693 		    sp->priority);
6694 		if (!m) {
6695 			error = ENOBUFS;
6696 			goto fail;
6697 		}
6698 		m_cat(result, m);
6699 	}
6700 
6701 	/*
6702 	 * Set sadb_x_sa2 extension if saidx->reqid is not zero.
6703 	 * This is FreeBSD extension to RFC2367.
6704 	 */
6705 	if (saidx->reqid != 0) {
6706 		m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid);
6707 		if (m == NULL) {
6708 			error = ENOBUFS;
6709 			goto fail;
6710 		}
6711 		m_cat(result, m);
6712 	}
6713 	/* XXX identity (optional) */
6714 #if 0
6715 	if (idexttype && fqdn) {
6716 		/* create identity extension (FQDN) */
6717 		struct sadb_ident *id;
6718 		int fqdnlen;
6719 
6720 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6721 		id = (struct sadb_ident *)p;
6722 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6723 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6724 		id->sadb_ident_exttype = idexttype;
6725 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6726 		bcopy(fqdn, id + 1, fqdnlen);
6727 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6728 	}
6729 
6730 	if (idexttype) {
6731 		/* create identity extension (USERFQDN) */
6732 		struct sadb_ident *id;
6733 		int userfqdnlen;
6734 
6735 		if (userfqdn) {
6736 			/* +1 for terminating-NUL */
6737 			userfqdnlen = strlen(userfqdn) + 1;
6738 		} else
6739 			userfqdnlen = 0;
6740 		id = (struct sadb_ident *)p;
6741 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6742 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6743 		id->sadb_ident_exttype = idexttype;
6744 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6745 		/* XXX is it correct? */
6746 		if (curproc && curproc->p_cred)
6747 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6748 		if (userfqdn && userfqdnlen)
6749 			bcopy(userfqdn, id + 1, userfqdnlen);
6750 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6751 	}
6752 #endif
6753 
6754 	/* XXX sensitivity (optional) */
6755 
6756 	/* create proposal/combination extension */
6757 	m = key_getprop(saidx);
6758 #if 0
6759 	/*
6760 	 * spec conformant: always attach proposal/combination extension,
6761 	 * the problem is that we have no way to attach it for ipcomp,
6762 	 * due to the way sadb_comb is declared in RFC2367.
6763 	 */
6764 	if (!m) {
6765 		error = ENOBUFS;
6766 		goto fail;
6767 	}
6768 	m_cat(result, m);
6769 #else
6770 	/*
6771 	 * outside of spec; make proposal/combination extension optional.
6772 	 */
6773 	if (m)
6774 		m_cat(result, m);
6775 #endif
6776 
6777 	if ((result->m_flags & M_PKTHDR) == 0) {
6778 		error = EINVAL;
6779 		goto fail;
6780 	}
6781 
6782 	if (result->m_len < sizeof(struct sadb_msg)) {
6783 		result = m_pullup(result, sizeof(struct sadb_msg));
6784 		if (result == NULL) {
6785 			error = ENOBUFS;
6786 			goto fail;
6787 		}
6788 	}
6789 
6790 	result->m_pkthdr.len = 0;
6791 	for (m = result; m; m = m->m_next)
6792 		result->m_pkthdr.len += m->m_len;
6793 
6794 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6795 	    PFKEY_UNIT64(result->m_pkthdr.len);
6796 
6797 	KEYDBG(KEY_STAMP,
6798 	    printf("%s: SP(%p)\n", __func__, sp));
6799 	KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL));
6800 
6801 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6802 
6803  fail:
6804 	if (result)
6805 		m_freem(result);
6806 	return error;
6807 }
6808 
6809 static uint32_t
6810 key_newacq(const struct secasindex *saidx, int *perror)
6811 {
6812 	struct secacq *acq;
6813 	uint32_t seq;
6814 
6815 	acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO);
6816 	if (acq == NULL) {
6817 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6818 		*perror = ENOBUFS;
6819 		return (0);
6820 	}
6821 
6822 	/* copy secindex */
6823 	bcopy(saidx, &acq->saidx, sizeof(acq->saidx));
6824 	acq->created = time_second;
6825 	acq->count = 0;
6826 
6827 	/* add to acqtree */
6828 	ACQ_LOCK();
6829 	seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6830 	LIST_INSERT_HEAD(&V_acqtree, acq, chain);
6831 	LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash);
6832 	LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash);
6833 	ACQ_UNLOCK();
6834 	*perror = 0;
6835 	return (seq);
6836 }
6837 
6838 static uint32_t
6839 key_getacq(const struct secasindex *saidx, int *perror)
6840 {
6841 	struct secacq *acq;
6842 	uint32_t seq;
6843 
6844 	ACQ_LOCK();
6845 	LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) {
6846 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) {
6847 			if (acq->count > V_key_blockacq_count) {
6848 				/*
6849 				 * Reset counter and send message.
6850 				 * Also reset created time to keep ACQ for
6851 				 * this saidx.
6852 				 */
6853 				acq->created = time_second;
6854 				acq->count = 0;
6855 				seq = acq->seq;
6856 			} else {
6857 				/*
6858 				 * Increment counter and do nothing.
6859 				 * We send SADB_ACQUIRE message only
6860 				 * for each V_key_blockacq_count packet.
6861 				 */
6862 				acq->count++;
6863 				seq = 0;
6864 			}
6865 			break;
6866 		}
6867 	}
6868 	ACQ_UNLOCK();
6869 	if (acq != NULL) {
6870 		*perror = 0;
6871 		return (seq);
6872 	}
6873 	/* allocate new  entry */
6874 	return (key_newacq(saidx, perror));
6875 }
6876 
6877 static int
6878 key_acqreset(uint32_t seq)
6879 {
6880 	struct secacq *acq;
6881 
6882 	ACQ_LOCK();
6883 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6884 		if (acq->seq == seq) {
6885 			acq->count = 0;
6886 			acq->created = time_second;
6887 			break;
6888 		}
6889 	}
6890 	ACQ_UNLOCK();
6891 	if (acq == NULL)
6892 		return (ESRCH);
6893 	return (0);
6894 }
6895 /*
6896  * Mark ACQ entry as stale to remove it in key_flush_acq().
6897  * Called after successful SADB_GETSPI message.
6898  */
6899 static int
6900 key_acqdone(const struct secasindex *saidx, uint32_t seq)
6901 {
6902 	struct secacq *acq;
6903 
6904 	ACQ_LOCK();
6905 	LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) {
6906 		if (acq->seq == seq)
6907 			break;
6908 	}
6909 	if (acq != NULL) {
6910 		if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) {
6911 			ipseclog((LOG_DEBUG,
6912 			    "%s: Mismatched saidx for ACQ %u\n", __func__, seq));
6913 			acq = NULL;
6914 		} else {
6915 			acq->created = 0;
6916 		}
6917 	} else {
6918 		ipseclog((LOG_DEBUG,
6919 		    "%s: ACQ %u is not found.\n", __func__, seq));
6920 	}
6921 	ACQ_UNLOCK();
6922 	if (acq == NULL)
6923 		return (ESRCH);
6924 	return (0);
6925 }
6926 
6927 static struct secspacq *
6928 key_newspacq(struct secpolicyindex *spidx)
6929 {
6930 	struct secspacq *acq;
6931 
6932 	/* get new entry */
6933 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6934 	if (acq == NULL) {
6935 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6936 		return NULL;
6937 	}
6938 
6939 	/* copy secindex */
6940 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6941 	acq->created = time_second;
6942 	acq->count = 0;
6943 
6944 	/* add to spacqtree */
6945 	SPACQ_LOCK();
6946 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6947 	SPACQ_UNLOCK();
6948 
6949 	return acq;
6950 }
6951 
6952 static struct secspacq *
6953 key_getspacq(struct secpolicyindex *spidx)
6954 {
6955 	struct secspacq *acq;
6956 
6957 	SPACQ_LOCK();
6958 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6959 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6960 			/* NB: return holding spacq_lock */
6961 			return acq;
6962 		}
6963 	}
6964 	SPACQ_UNLOCK();
6965 
6966 	return NULL;
6967 }
6968 
6969 /*
6970  * SADB_ACQUIRE processing,
6971  * in first situation, is receiving
6972  *   <base>
6973  * from the ikmpd, and clear sequence of its secasvar entry.
6974  *
6975  * In second situation, is receiving
6976  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6977  * from a user land process, and return
6978  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6979  * to the socket.
6980  *
6981  * m will always be freed.
6982  */
6983 static int
6984 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
6985 {
6986 	SAHTREE_RLOCK_TRACKER;
6987 	struct sadb_address *src0, *dst0;
6988 	struct secasindex saidx;
6989 	struct secashead *sah;
6990 	uint32_t reqid;
6991 	int error;
6992 	uint8_t mode, proto;
6993 
6994 	IPSEC_ASSERT(so != NULL, ("null socket"));
6995 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6996 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6997 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6998 
6999 	/*
7000 	 * Error message from KMd.
7001 	 * We assume that if error was occurred in IKEd, the length of PFKEY
7002 	 * message is equal to the size of sadb_msg structure.
7003 	 * We do not raise error even if error occurred in this function.
7004 	 */
7005 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
7006 		/* check sequence number */
7007 		if (mhp->msg->sadb_msg_seq == 0 ||
7008 		    mhp->msg->sadb_msg_errno == 0) {
7009 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
7010 				"number and errno.\n", __func__));
7011 		} else {
7012 			/*
7013 			 * IKEd reported that error occurred.
7014 			 * XXXAE: what it expects from the kernel?
7015 			 * Probably we should send SADB_ACQUIRE again?
7016 			 * If so, reset ACQ's state.
7017 			 * XXXAE: it looks useless.
7018 			 */
7019 			key_acqreset(mhp->msg->sadb_msg_seq);
7020 		}
7021 		m_freem(m);
7022 		return (0);
7023 	}
7024 
7025 	/*
7026 	 * This message is from user land.
7027 	 */
7028 
7029 	/* map satype to proto */
7030 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7031 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7032 		    __func__));
7033 		return key_senderror(so, m, EINVAL);
7034 	}
7035 
7036 	if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) ||
7037 	    SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) ||
7038 	    SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) {
7039 		ipseclog((LOG_DEBUG,
7040 		    "%s: invalid message: missing required header.\n",
7041 		    __func__));
7042 		return key_senderror(so, m, EINVAL);
7043 	}
7044 	if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) ||
7045 	    SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) ||
7046 	    SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) {
7047 		ipseclog((LOG_DEBUG,
7048 		    "%s: invalid message: wrong header size.\n", __func__));
7049 		return key_senderror(so, m, EINVAL);
7050 	}
7051 
7052 	if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) {
7053 		mode = IPSEC_MODE_ANY;
7054 		reqid = 0;
7055 	} else {
7056 		if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) {
7057 			ipseclog((LOG_DEBUG,
7058 			    "%s: invalid message: wrong header size.\n",
7059 			    __func__));
7060 			return key_senderror(so, m, EINVAL);
7061 		}
7062 		mode = ((struct sadb_x_sa2 *)
7063 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
7064 		reqid = ((struct sadb_x_sa2 *)
7065 		    mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
7066 	}
7067 
7068 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
7069 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
7070 
7071 	error = key_checksockaddrs((struct sockaddr *)(src0 + 1),
7072 	    (struct sockaddr *)(dst0 + 1));
7073 	if (error != 0) {
7074 		ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__));
7075 		return key_senderror(so, m, EINVAL);
7076 	}
7077 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
7078 
7079 	/* get a SA index */
7080 	SAHTREE_RLOCK();
7081 	LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) {
7082 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
7083 			break;
7084 	}
7085 	SAHTREE_RUNLOCK();
7086 	if (sah != NULL) {
7087 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
7088 		return key_senderror(so, m, EEXIST);
7089 	}
7090 
7091 	error = key_acquire(&saidx, NULL);
7092 	if (error != 0) {
7093 		ipseclog((LOG_DEBUG,
7094 		    "%s: error %d returned from key_acquire()\n",
7095 			__func__, error));
7096 		return key_senderror(so, m, error);
7097 	}
7098 	m_freem(m);
7099 	return (0);
7100 }
7101 
7102 /*
7103  * SADB_REGISTER processing.
7104  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7105  * receive
7106  *   <base>
7107  * from the ikmpd, and register a socket to send PF_KEY messages,
7108  * and send
7109  *   <base, supported>
7110  * to KMD by PF_KEY.
7111  * If socket is detached, must free from regnode.
7112  *
7113  * m will always be freed.
7114  */
7115 static int
7116 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7117 {
7118 	struct secreg *reg, *newreg = NULL;
7119 
7120 	IPSEC_ASSERT(so != NULL, ("null socket"));
7121 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7122 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7123 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7124 
7125 	/* check for invalid register message */
7126 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
7127 		return key_senderror(so, m, EINVAL);
7128 
7129 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7130 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7131 		goto setmsg;
7132 
7133 	/* check whether existing or not */
7134 	REGTREE_LOCK();
7135 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
7136 		if (reg->so == so) {
7137 			REGTREE_UNLOCK();
7138 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
7139 				__func__));
7140 			return key_senderror(so, m, EEXIST);
7141 		}
7142 	}
7143 
7144 	/* create regnode */
7145 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
7146 	if (newreg == NULL) {
7147 		REGTREE_UNLOCK();
7148 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7149 		return key_senderror(so, m, ENOBUFS);
7150 	}
7151 
7152 	newreg->so = so;
7153 	((struct keycb *)sotorawcb(so))->kp_registered++;
7154 
7155 	/* add regnode to regtree. */
7156 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
7157 	REGTREE_UNLOCK();
7158 
7159   setmsg:
7160     {
7161 	struct mbuf *n;
7162 	struct sadb_msg *newmsg;
7163 	struct sadb_supported *sup;
7164 	u_int len, alen, elen;
7165 	int off;
7166 	int i;
7167 	struct sadb_alg *alg;
7168 
7169 	/* create new sadb_msg to reply. */
7170 	alen = 0;
7171 	for (i = 1; i <= SADB_AALG_MAX; i++) {
7172 		if (auth_algorithm_lookup(i))
7173 			alen += sizeof(struct sadb_alg);
7174 	}
7175 	if (alen)
7176 		alen += sizeof(struct sadb_supported);
7177 	elen = 0;
7178 	for (i = 1; i <= SADB_EALG_MAX; i++) {
7179 		if (enc_algorithm_lookup(i))
7180 			elen += sizeof(struct sadb_alg);
7181 	}
7182 	if (elen)
7183 		elen += sizeof(struct sadb_supported);
7184 
7185 	len = sizeof(struct sadb_msg) + alen + elen;
7186 
7187 	if (len > MCLBYTES)
7188 		return key_senderror(so, m, ENOBUFS);
7189 
7190 	MGETHDR(n, M_NOWAIT, MT_DATA);
7191 	if (n != NULL && len > MHLEN) {
7192 		if (!(MCLGET(n, M_NOWAIT))) {
7193 			m_freem(n);
7194 			n = NULL;
7195 		}
7196 	}
7197 	if (!n)
7198 		return key_senderror(so, m, ENOBUFS);
7199 
7200 	n->m_pkthdr.len = n->m_len = len;
7201 	n->m_next = NULL;
7202 	off = 0;
7203 
7204 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
7205 	newmsg = mtod(n, struct sadb_msg *);
7206 	newmsg->sadb_msg_errno = 0;
7207 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
7208 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7209 
7210 	/* for authentication algorithm */
7211 	if (alen) {
7212 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7213 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
7214 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7215 		off += PFKEY_ALIGN8(sizeof(*sup));
7216 
7217 		for (i = 1; i <= SADB_AALG_MAX; i++) {
7218 			const struct auth_hash *aalgo;
7219 			u_int16_t minkeysize, maxkeysize;
7220 
7221 			aalgo = auth_algorithm_lookup(i);
7222 			if (!aalgo)
7223 				continue;
7224 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7225 			alg->sadb_alg_id = i;
7226 			alg->sadb_alg_ivlen = 0;
7227 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7228 			alg->sadb_alg_minbits = _BITS(minkeysize);
7229 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
7230 			off += PFKEY_ALIGN8(sizeof(*alg));
7231 		}
7232 	}
7233 
7234 	/* for encryption algorithm */
7235 	if (elen) {
7236 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
7237 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
7238 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7239 		off += PFKEY_ALIGN8(sizeof(*sup));
7240 
7241 		for (i = 1; i <= SADB_EALG_MAX; i++) {
7242 			const struct enc_xform *ealgo;
7243 
7244 			ealgo = enc_algorithm_lookup(i);
7245 			if (!ealgo)
7246 				continue;
7247 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
7248 			alg->sadb_alg_id = i;
7249 			alg->sadb_alg_ivlen = ealgo->ivsize;
7250 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7251 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7252 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7253 		}
7254 	}
7255 
7256 	IPSEC_ASSERT(off == len,
7257 		("length assumption failed (off %u len %u)", off, len));
7258 
7259 	m_freem(m);
7260 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7261     }
7262 }
7263 
7264 /*
7265  * free secreg entry registered.
7266  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7267  */
7268 void
7269 key_freereg(struct socket *so)
7270 {
7271 	struct secreg *reg;
7272 	int i;
7273 
7274 	IPSEC_ASSERT(so != NULL, ("NULL so"));
7275 
7276 	/*
7277 	 * check whether existing or not.
7278 	 * check all type of SA, because there is a potential that
7279 	 * one socket is registered to multiple type of SA.
7280 	 */
7281 	REGTREE_LOCK();
7282 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7283 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7284 			if (reg->so == so && __LIST_CHAINED(reg)) {
7285 				LIST_REMOVE(reg, chain);
7286 				free(reg, M_IPSEC_SAR);
7287 				break;
7288 			}
7289 		}
7290 	}
7291 	REGTREE_UNLOCK();
7292 }
7293 
7294 /*
7295  * SADB_EXPIRE processing
7296  * send
7297  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7298  * to KMD by PF_KEY.
7299  * NOTE: We send only soft lifetime extension.
7300  *
7301  * OUT:	0	: succeed
7302  *	others	: error number
7303  */
7304 static int
7305 key_expire(struct secasvar *sav, int hard)
7306 {
7307 	struct mbuf *result = NULL, *m;
7308 	struct sadb_lifetime *lt;
7309 	uint32_t replay_count;
7310 	int error, len;
7311 	uint8_t satype;
7312 
7313 	IPSEC_ASSERT (sav != NULL, ("null sav"));
7314 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
7315 
7316 	KEYDBG(KEY_STAMP,
7317 	    printf("%s: SA(%p) expired %s lifetime\n", __func__,
7318 		sav, hard ? "hard": "soft"));
7319 	KEYDBG(KEY_DATA, kdebug_secasv(sav));
7320 	/* set msg header */
7321 	satype = key_proto2satype(sav->sah->saidx.proto);
7322 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
7323 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
7324 	if (!m) {
7325 		error = ENOBUFS;
7326 		goto fail;
7327 	}
7328 	result = m;
7329 
7330 	/* create SA extension */
7331 	m = key_setsadbsa(sav);
7332 	if (!m) {
7333 		error = ENOBUFS;
7334 		goto fail;
7335 	}
7336 	m_cat(result, m);
7337 
7338 	/* create SA extension */
7339 	SECASVAR_LOCK(sav);
7340 	replay_count = sav->replay ? sav->replay->count : 0;
7341 	SECASVAR_UNLOCK(sav);
7342 
7343 	m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count,
7344 			sav->sah->saidx.reqid);
7345 	if (!m) {
7346 		error = ENOBUFS;
7347 		goto fail;
7348 	}
7349 	m_cat(result, m);
7350 
7351 	if (sav->replay && sav->replay->wsize > UINT8_MAX) {
7352 		m = key_setsadbxsareplay(sav->replay->wsize);
7353 		if (!m) {
7354 			error = ENOBUFS;
7355 			goto fail;
7356 		}
7357 		m_cat(result, m);
7358 	}
7359 
7360 	/* create lifetime extension (current and soft) */
7361 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7362 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7363 	if (m == NULL) {
7364 		error = ENOBUFS;
7365 		goto fail;
7366 	}
7367 	m_align(m, len);
7368 	m->m_len = len;
7369 	bzero(mtod(m, caddr_t), len);
7370 	lt = mtod(m, struct sadb_lifetime *);
7371 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7372 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7373 	lt->sadb_lifetime_allocations =
7374 	    (uint32_t)counter_u64_fetch(sav->lft_c_allocations);
7375 	lt->sadb_lifetime_bytes =
7376 	    counter_u64_fetch(sav->lft_c_bytes);
7377 	lt->sadb_lifetime_addtime = sav->created;
7378 	lt->sadb_lifetime_usetime = sav->firstused;
7379 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
7380 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7381 	if (hard) {
7382 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
7383 		lt->sadb_lifetime_allocations = sav->lft_h->allocations;
7384 		lt->sadb_lifetime_bytes = sav->lft_h->bytes;
7385 		lt->sadb_lifetime_addtime = sav->lft_h->addtime;
7386 		lt->sadb_lifetime_usetime = sav->lft_h->usetime;
7387 	} else {
7388 		lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
7389 		lt->sadb_lifetime_allocations = sav->lft_s->allocations;
7390 		lt->sadb_lifetime_bytes = sav->lft_s->bytes;
7391 		lt->sadb_lifetime_addtime = sav->lft_s->addtime;
7392 		lt->sadb_lifetime_usetime = sav->lft_s->usetime;
7393 	}
7394 	m_cat(result, m);
7395 
7396 	/* set sadb_address for source */
7397 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
7398 	    &sav->sah->saidx.src.sa,
7399 	    FULLMASK, IPSEC_ULPROTO_ANY);
7400 	if (!m) {
7401 		error = ENOBUFS;
7402 		goto fail;
7403 	}
7404 	m_cat(result, m);
7405 
7406 	/* set sadb_address for destination */
7407 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
7408 	    &sav->sah->saidx.dst.sa,
7409 	    FULLMASK, IPSEC_ULPROTO_ANY);
7410 	if (!m) {
7411 		error = ENOBUFS;
7412 		goto fail;
7413 	}
7414 	m_cat(result, m);
7415 
7416 	/*
7417 	 * XXX-BZ Handle NAT-T extensions here.
7418 	 * XXXAE: it doesn't seem quite useful. IKEs should not depend on
7419 	 * this information, we report only significant SA fields.
7420 	 */
7421 
7422 	if ((result->m_flags & M_PKTHDR) == 0) {
7423 		error = EINVAL;
7424 		goto fail;
7425 	}
7426 
7427 	if (result->m_len < sizeof(struct sadb_msg)) {
7428 		result = m_pullup(result, sizeof(struct sadb_msg));
7429 		if (result == NULL) {
7430 			error = ENOBUFS;
7431 			goto fail;
7432 		}
7433 	}
7434 
7435 	result->m_pkthdr.len = 0;
7436 	for (m = result; m; m = m->m_next)
7437 		result->m_pkthdr.len += m->m_len;
7438 
7439 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7440 	    PFKEY_UNIT64(result->m_pkthdr.len);
7441 
7442 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7443 
7444  fail:
7445 	if (result)
7446 		m_freem(result);
7447 	return error;
7448 }
7449 
7450 static void
7451 key_freesah_flushed(struct secashead_queue *flushq)
7452 {
7453 	struct secashead *sah, *nextsah;
7454 	struct secasvar *sav, *nextsav;
7455 
7456 	sah = TAILQ_FIRST(flushq);
7457 	while (sah != NULL) {
7458 		sav = TAILQ_FIRST(&sah->savtree_larval);
7459 		while (sav != NULL) {
7460 			nextsav = TAILQ_NEXT(sav, chain);
7461 			TAILQ_REMOVE(&sah->savtree_larval, sav, chain);
7462 			key_freesav(&sav); /* release last reference */
7463 			key_freesah(&sah); /* release reference from SAV */
7464 			sav = nextsav;
7465 		}
7466 		sav = TAILQ_FIRST(&sah->savtree_alive);
7467 		while (sav != NULL) {
7468 			nextsav = TAILQ_NEXT(sav, chain);
7469 			TAILQ_REMOVE(&sah->savtree_alive, sav, chain);
7470 			key_freesav(&sav); /* release last reference */
7471 			key_freesah(&sah); /* release reference from SAV */
7472 			sav = nextsav;
7473 		}
7474 		nextsah = TAILQ_NEXT(sah, chain);
7475 		key_freesah(&sah);	/* release last reference */
7476 		sah = nextsah;
7477 	}
7478 }
7479 
7480 /*
7481  * SADB_FLUSH processing
7482  * receive
7483  *   <base>
7484  * from the ikmpd, and free all entries in secastree.
7485  * and send,
7486  *   <base>
7487  * to the ikmpd.
7488  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7489  *
7490  * m will always be freed.
7491  */
7492 static int
7493 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7494 {
7495 	struct secashead_queue flushq;
7496 	struct sadb_msg *newmsg;
7497 	struct secashead *sah, *nextsah;
7498 	struct secasvar *sav;
7499 	uint8_t proto;
7500 	int i;
7501 
7502 	IPSEC_ASSERT(so != NULL, ("null socket"));
7503 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7504 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7505 
7506 	/* map satype to proto */
7507 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7508 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7509 			__func__));
7510 		return key_senderror(so, m, EINVAL);
7511 	}
7512 	KEYDBG(KEY_STAMP,
7513 	    printf("%s: proto %u\n", __func__, proto));
7514 
7515 	TAILQ_INIT(&flushq);
7516 	if (proto == IPSEC_PROTO_ANY) {
7517 		/* no SATYPE specified, i.e. flushing all SA. */
7518 		SAHTREE_WLOCK();
7519 		/* Move all SAHs into flushq */
7520 		TAILQ_CONCAT(&flushq, &V_sahtree, chain);
7521 		/* Flush all buckets in SPI hash */
7522 		for (i = 0; i < V_savhash_mask + 1; i++)
7523 			LIST_INIT(&V_savhashtbl[i]);
7524 		/* Flush all buckets in SAHADDRHASH */
7525 		for (i = 0; i < V_sahaddrhash_mask + 1; i++)
7526 			LIST_INIT(&V_sahaddrhashtbl[i]);
7527 		/* Mark all SAHs as unlinked */
7528 		TAILQ_FOREACH(sah, &flushq, chain) {
7529 			sah->state = SADB_SASTATE_DEAD;
7530 			/*
7531 			 * Callout handler makes its job using
7532 			 * RLOCK and drain queues. In case, when this
7533 			 * function will be called just before it
7534 			 * acquires WLOCK, we need to mark SAs as
7535 			 * unlinked to prevent second unlink.
7536 			 */
7537 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7538 				sav->state = SADB_SASTATE_DEAD;
7539 			}
7540 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7541 				sav->state = SADB_SASTATE_DEAD;
7542 			}
7543 		}
7544 		SAHTREE_WUNLOCK();
7545 	} else {
7546 		SAHTREE_WLOCK();
7547 		sah = TAILQ_FIRST(&V_sahtree);
7548 		while (sah != NULL) {
7549 			IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD,
7550 			    ("DEAD SAH %p in SADB_FLUSH", sah));
7551 			nextsah = TAILQ_NEXT(sah, chain);
7552 			if (sah->saidx.proto != proto) {
7553 				sah = nextsah;
7554 				continue;
7555 			}
7556 			sah->state = SADB_SASTATE_DEAD;
7557 			TAILQ_REMOVE(&V_sahtree, sah, chain);
7558 			LIST_REMOVE(sah, addrhash);
7559 			/* Unlink all SAs from SPI hash */
7560 			TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7561 				LIST_REMOVE(sav, spihash);
7562 				sav->state = SADB_SASTATE_DEAD;
7563 			}
7564 			TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7565 				LIST_REMOVE(sav, spihash);
7566 				sav->state = SADB_SASTATE_DEAD;
7567 			}
7568 			/* Add SAH into flushq */
7569 			TAILQ_INSERT_HEAD(&flushq, sah, chain);
7570 			sah = nextsah;
7571 		}
7572 		SAHTREE_WUNLOCK();
7573 	}
7574 
7575 	key_freesah_flushed(&flushq);
7576 	/* Free all queued SAs and SAHs */
7577 	if (m->m_len < sizeof(struct sadb_msg) ||
7578 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7579 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7580 		return key_senderror(so, m, ENOBUFS);
7581 	}
7582 
7583 	if (m->m_next)
7584 		m_freem(m->m_next);
7585 	m->m_next = NULL;
7586 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7587 	newmsg = mtod(m, struct sadb_msg *);
7588 	newmsg->sadb_msg_errno = 0;
7589 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7590 
7591 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7592 }
7593 
7594 /*
7595  * SADB_DUMP processing
7596  * dump all entries including status of DEAD in SAD.
7597  * receive
7598  *   <base>
7599  * from the ikmpd, and dump all secasvar leaves
7600  * and send,
7601  *   <base> .....
7602  * to the ikmpd.
7603  *
7604  * m will always be freed.
7605  */
7606 static int
7607 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7608 {
7609 	SAHTREE_RLOCK_TRACKER;
7610 	struct secashead *sah;
7611 	struct secasvar *sav;
7612 	struct mbuf *n;
7613 	uint32_t cnt;
7614 	uint8_t proto, satype;
7615 
7616 	IPSEC_ASSERT(so != NULL, ("null socket"));
7617 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7618 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7619 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7620 
7621 	/* map satype to proto */
7622 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7623 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7624 		    __func__));
7625 		return key_senderror(so, m, EINVAL);
7626 	}
7627 
7628 	/* count sav entries to be sent to the userland. */
7629 	cnt = 0;
7630 	SAHTREE_RLOCK();
7631 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7632 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7633 		    proto != sah->saidx.proto)
7634 			continue;
7635 
7636 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain)
7637 			cnt++;
7638 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain)
7639 			cnt++;
7640 	}
7641 
7642 	if (cnt == 0) {
7643 		SAHTREE_RUNLOCK();
7644 		return key_senderror(so, m, ENOENT);
7645 	}
7646 
7647 	/* send this to the userland, one at a time. */
7648 	TAILQ_FOREACH(sah, &V_sahtree, chain) {
7649 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7650 		    proto != sah->saidx.proto)
7651 			continue;
7652 
7653 		/* map proto to satype */
7654 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7655 			SAHTREE_RUNLOCK();
7656 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7657 			    "SAD.\n", __func__));
7658 			return key_senderror(so, m, EINVAL);
7659 		}
7660 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
7661 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7662 			    --cnt, mhp->msg->sadb_msg_pid);
7663 			if (n == NULL) {
7664 				SAHTREE_RUNLOCK();
7665 				return key_senderror(so, m, ENOBUFS);
7666 			}
7667 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7668 		}
7669 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
7670 			n = key_setdumpsa(sav, SADB_DUMP, satype,
7671 			    --cnt, mhp->msg->sadb_msg_pid);
7672 			if (n == NULL) {
7673 				SAHTREE_RUNLOCK();
7674 				return key_senderror(so, m, ENOBUFS);
7675 			}
7676 			key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7677 		}
7678 	}
7679 	SAHTREE_RUNLOCK();
7680 	m_freem(m);
7681 	return (0);
7682 }
7683 /*
7684  * SADB_X_PROMISC processing
7685  *
7686  * m will always be freed.
7687  */
7688 static int
7689 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
7690 {
7691 	int olen;
7692 
7693 	IPSEC_ASSERT(so != NULL, ("null socket"));
7694 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7695 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7696 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7697 
7698 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7699 
7700 	if (olen < sizeof(struct sadb_msg)) {
7701 #if 1
7702 		return key_senderror(so, m, EINVAL);
7703 #else
7704 		m_freem(m);
7705 		return 0;
7706 #endif
7707 	} else if (olen == sizeof(struct sadb_msg)) {
7708 		/* enable/disable promisc mode */
7709 		struct keycb *kp;
7710 
7711 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7712 			return key_senderror(so, m, EINVAL);
7713 		mhp->msg->sadb_msg_errno = 0;
7714 		switch (mhp->msg->sadb_msg_satype) {
7715 		case 0:
7716 		case 1:
7717 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7718 			break;
7719 		default:
7720 			return key_senderror(so, m, EINVAL);
7721 		}
7722 
7723 		/* send the original message back to everyone */
7724 		mhp->msg->sadb_msg_errno = 0;
7725 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7726 	} else {
7727 		/* send packet as is */
7728 
7729 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7730 
7731 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7732 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7733 	}
7734 }
7735 
7736 static int (*key_typesw[])(struct socket *, struct mbuf *,
7737 		const struct sadb_msghdr *) = {
7738 	NULL,		/* SADB_RESERVED */
7739 	key_getspi,	/* SADB_GETSPI */
7740 	key_update,	/* SADB_UPDATE */
7741 	key_add,	/* SADB_ADD */
7742 	key_delete,	/* SADB_DELETE */
7743 	key_get,	/* SADB_GET */
7744 	key_acquire2,	/* SADB_ACQUIRE */
7745 	key_register,	/* SADB_REGISTER */
7746 	NULL,		/* SADB_EXPIRE */
7747 	key_flush,	/* SADB_FLUSH */
7748 	key_dump,	/* SADB_DUMP */
7749 	key_promisc,	/* SADB_X_PROMISC */
7750 	NULL,		/* SADB_X_PCHANGE */
7751 	key_spdadd,	/* SADB_X_SPDUPDATE */
7752 	key_spdadd,	/* SADB_X_SPDADD */
7753 	key_spddelete,	/* SADB_X_SPDDELETE */
7754 	key_spdget,	/* SADB_X_SPDGET */
7755 	NULL,		/* SADB_X_SPDACQUIRE */
7756 	key_spddump,	/* SADB_X_SPDDUMP */
7757 	key_spdflush,	/* SADB_X_SPDFLUSH */
7758 	key_spdadd,	/* SADB_X_SPDSETIDX */
7759 	NULL,		/* SADB_X_SPDEXPIRE */
7760 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7761 };
7762 
7763 /*
7764  * parse sadb_msg buffer to process PFKEYv2,
7765  * and create a data to response if needed.
7766  * I think to be dealed with mbuf directly.
7767  * IN:
7768  *     msgp  : pointer to pointer to a received buffer pulluped.
7769  *             This is rewrited to response.
7770  *     so    : pointer to socket.
7771  * OUT:
7772  *    length for buffer to send to user process.
7773  */
7774 int
7775 key_parse(struct mbuf *m, struct socket *so)
7776 {
7777 	struct sadb_msg *msg;
7778 	struct sadb_msghdr mh;
7779 	u_int orglen;
7780 	int error;
7781 	int target;
7782 
7783 	IPSEC_ASSERT(so != NULL, ("null socket"));
7784 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7785 
7786 	if (m->m_len < sizeof(struct sadb_msg)) {
7787 		m = m_pullup(m, sizeof(struct sadb_msg));
7788 		if (!m)
7789 			return ENOBUFS;
7790 	}
7791 	msg = mtod(m, struct sadb_msg *);
7792 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7793 	target = KEY_SENDUP_ONE;
7794 
7795 	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) {
7796 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7797 		PFKEYSTAT_INC(out_invlen);
7798 		error = EINVAL;
7799 		goto senderror;
7800 	}
7801 
7802 	if (msg->sadb_msg_version != PF_KEY_V2) {
7803 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7804 		    __func__, msg->sadb_msg_version));
7805 		PFKEYSTAT_INC(out_invver);
7806 		error = EINVAL;
7807 		goto senderror;
7808 	}
7809 
7810 	if (msg->sadb_msg_type > SADB_MAX) {
7811 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7812 		    __func__, msg->sadb_msg_type));
7813 		PFKEYSTAT_INC(out_invmsgtype);
7814 		error = EINVAL;
7815 		goto senderror;
7816 	}
7817 
7818 	/* for old-fashioned code - should be nuked */
7819 	if (m->m_pkthdr.len > MCLBYTES) {
7820 		m_freem(m);
7821 		return ENOBUFS;
7822 	}
7823 	if (m->m_next) {
7824 		struct mbuf *n;
7825 
7826 		MGETHDR(n, M_NOWAIT, MT_DATA);
7827 		if (n && m->m_pkthdr.len > MHLEN) {
7828 			if (!(MCLGET(n, M_NOWAIT))) {
7829 				m_free(n);
7830 				n = NULL;
7831 			}
7832 		}
7833 		if (!n) {
7834 			m_freem(m);
7835 			return ENOBUFS;
7836 		}
7837 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7838 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7839 		n->m_next = NULL;
7840 		m_freem(m);
7841 		m = n;
7842 	}
7843 
7844 	/* align the mbuf chain so that extensions are in contiguous region. */
7845 	error = key_align(m, &mh);
7846 	if (error)
7847 		return error;
7848 
7849 	msg = mh.msg;
7850 
7851 	/* We use satype as scope mask for spddump */
7852 	if (msg->sadb_msg_type == SADB_X_SPDDUMP) {
7853 		switch (msg->sadb_msg_satype) {
7854 		case IPSEC_POLICYSCOPE_ANY:
7855 		case IPSEC_POLICYSCOPE_GLOBAL:
7856 		case IPSEC_POLICYSCOPE_IFNET:
7857 		case IPSEC_POLICYSCOPE_PCB:
7858 			break;
7859 		default:
7860 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7861 			    __func__, msg->sadb_msg_type));
7862 			PFKEYSTAT_INC(out_invsatype);
7863 			error = EINVAL;
7864 			goto senderror;
7865 		}
7866 	} else {
7867 		switch (msg->sadb_msg_satype) { /* check SA type */
7868 		case SADB_SATYPE_UNSPEC:
7869 			switch (msg->sadb_msg_type) {
7870 			case SADB_GETSPI:
7871 			case SADB_UPDATE:
7872 			case SADB_ADD:
7873 			case SADB_DELETE:
7874 			case SADB_GET:
7875 			case SADB_ACQUIRE:
7876 			case SADB_EXPIRE:
7877 				ipseclog((LOG_DEBUG, "%s: must specify satype "
7878 				    "when msg type=%u.\n", __func__,
7879 				    msg->sadb_msg_type));
7880 				PFKEYSTAT_INC(out_invsatype);
7881 				error = EINVAL;
7882 				goto senderror;
7883 			}
7884 			break;
7885 		case SADB_SATYPE_AH:
7886 		case SADB_SATYPE_ESP:
7887 		case SADB_X_SATYPE_IPCOMP:
7888 		case SADB_X_SATYPE_TCPSIGNATURE:
7889 			switch (msg->sadb_msg_type) {
7890 			case SADB_X_SPDADD:
7891 			case SADB_X_SPDDELETE:
7892 			case SADB_X_SPDGET:
7893 			case SADB_X_SPDFLUSH:
7894 			case SADB_X_SPDSETIDX:
7895 			case SADB_X_SPDUPDATE:
7896 			case SADB_X_SPDDELETE2:
7897 				ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7898 				    __func__, msg->sadb_msg_type));
7899 				PFKEYSTAT_INC(out_invsatype);
7900 				error = EINVAL;
7901 				goto senderror;
7902 			}
7903 			break;
7904 		case SADB_SATYPE_RSVP:
7905 		case SADB_SATYPE_OSPFV2:
7906 		case SADB_SATYPE_RIPV2:
7907 		case SADB_SATYPE_MIP:
7908 			ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7909 			    __func__, msg->sadb_msg_satype));
7910 			PFKEYSTAT_INC(out_invsatype);
7911 			error = EOPNOTSUPP;
7912 			goto senderror;
7913 		case 1:	/* XXX: What does it do? */
7914 			if (msg->sadb_msg_type == SADB_X_PROMISC)
7915 				break;
7916 			/*FALLTHROUGH*/
7917 		default:
7918 			ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7919 			    __func__, msg->sadb_msg_satype));
7920 			PFKEYSTAT_INC(out_invsatype);
7921 			error = EINVAL;
7922 			goto senderror;
7923 		}
7924 	}
7925 
7926 	/* check field of upper layer protocol and address family */
7927 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7928 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7929 		struct sadb_address *src0, *dst0;
7930 		u_int plen;
7931 
7932 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7933 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7934 
7935 		/* check upper layer protocol */
7936 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7937 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7938 				"mismatched.\n", __func__));
7939 			PFKEYSTAT_INC(out_invaddr);
7940 			error = EINVAL;
7941 			goto senderror;
7942 		}
7943 
7944 		/* check family */
7945 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7946 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7947 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7948 				__func__));
7949 			PFKEYSTAT_INC(out_invaddr);
7950 			error = EINVAL;
7951 			goto senderror;
7952 		}
7953 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7954 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7955 			ipseclog((LOG_DEBUG, "%s: address struct size "
7956 				"mismatched.\n", __func__));
7957 			PFKEYSTAT_INC(out_invaddr);
7958 			error = EINVAL;
7959 			goto senderror;
7960 		}
7961 
7962 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7963 		case AF_INET:
7964 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7965 			    sizeof(struct sockaddr_in)) {
7966 				PFKEYSTAT_INC(out_invaddr);
7967 				error = EINVAL;
7968 				goto senderror;
7969 			}
7970 			break;
7971 		case AF_INET6:
7972 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7973 			    sizeof(struct sockaddr_in6)) {
7974 				PFKEYSTAT_INC(out_invaddr);
7975 				error = EINVAL;
7976 				goto senderror;
7977 			}
7978 			break;
7979 		default:
7980 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7981 				__func__));
7982 			PFKEYSTAT_INC(out_invaddr);
7983 			error = EAFNOSUPPORT;
7984 			goto senderror;
7985 		}
7986 
7987 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7988 		case AF_INET:
7989 			plen = sizeof(struct in_addr) << 3;
7990 			break;
7991 		case AF_INET6:
7992 			plen = sizeof(struct in6_addr) << 3;
7993 			break;
7994 		default:
7995 			plen = 0;	/*fool gcc*/
7996 			break;
7997 		}
7998 
7999 		/* check max prefix length */
8000 		if (src0->sadb_address_prefixlen > plen ||
8001 		    dst0->sadb_address_prefixlen > plen) {
8002 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
8003 				__func__));
8004 			PFKEYSTAT_INC(out_invaddr);
8005 			error = EINVAL;
8006 			goto senderror;
8007 		}
8008 
8009 		/*
8010 		 * prefixlen == 0 is valid because there can be a case when
8011 		 * all addresses are matched.
8012 		 */
8013 	}
8014 
8015 	if (msg->sadb_msg_type >= nitems(key_typesw) ||
8016 	    key_typesw[msg->sadb_msg_type] == NULL) {
8017 		PFKEYSTAT_INC(out_invmsgtype);
8018 		error = EINVAL;
8019 		goto senderror;
8020 	}
8021 
8022 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
8023 
8024 senderror:
8025 	msg->sadb_msg_errno = error;
8026 	return key_sendup_mbuf(so, m, target);
8027 }
8028 
8029 static int
8030 key_senderror(struct socket *so, struct mbuf *m, int code)
8031 {
8032 	struct sadb_msg *msg;
8033 
8034 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8035 		("mbuf too small, len %u", m->m_len));
8036 
8037 	msg = mtod(m, struct sadb_msg *);
8038 	msg->sadb_msg_errno = code;
8039 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
8040 }
8041 
8042 /*
8043  * set the pointer to each header into message buffer.
8044  * m will be freed on error.
8045  * XXX larger-than-MCLBYTES extension?
8046  */
8047 static int
8048 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
8049 {
8050 	struct mbuf *n;
8051 	struct sadb_ext *ext;
8052 	size_t off, end;
8053 	int extlen;
8054 	int toff;
8055 
8056 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
8057 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
8058 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
8059 		("mbuf too small, len %u", m->m_len));
8060 
8061 	/* initialize */
8062 	bzero(mhp, sizeof(*mhp));
8063 
8064 	mhp->msg = mtod(m, struct sadb_msg *);
8065 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
8066 
8067 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
8068 	extlen = end;	/*just in case extlen is not updated*/
8069 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
8070 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
8071 		if (!n) {
8072 			/* m is already freed */
8073 			return ENOBUFS;
8074 		}
8075 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8076 
8077 		/* set pointer */
8078 		switch (ext->sadb_ext_type) {
8079 		case SADB_EXT_SA:
8080 		case SADB_EXT_ADDRESS_SRC:
8081 		case SADB_EXT_ADDRESS_DST:
8082 		case SADB_EXT_ADDRESS_PROXY:
8083 		case SADB_EXT_LIFETIME_CURRENT:
8084 		case SADB_EXT_LIFETIME_HARD:
8085 		case SADB_EXT_LIFETIME_SOFT:
8086 		case SADB_EXT_KEY_AUTH:
8087 		case SADB_EXT_KEY_ENCRYPT:
8088 		case SADB_EXT_IDENTITY_SRC:
8089 		case SADB_EXT_IDENTITY_DST:
8090 		case SADB_EXT_SENSITIVITY:
8091 		case SADB_EXT_PROPOSAL:
8092 		case SADB_EXT_SUPPORTED_AUTH:
8093 		case SADB_EXT_SUPPORTED_ENCRYPT:
8094 		case SADB_EXT_SPIRANGE:
8095 		case SADB_X_EXT_POLICY:
8096 		case SADB_X_EXT_SA2:
8097 		case SADB_X_EXT_NAT_T_TYPE:
8098 		case SADB_X_EXT_NAT_T_SPORT:
8099 		case SADB_X_EXT_NAT_T_DPORT:
8100 		case SADB_X_EXT_NAT_T_OAI:
8101 		case SADB_X_EXT_NAT_T_OAR:
8102 		case SADB_X_EXT_NAT_T_FRAG:
8103 		case SADB_X_EXT_SA_REPLAY:
8104 		case SADB_X_EXT_NEW_ADDRESS_SRC:
8105 		case SADB_X_EXT_NEW_ADDRESS_DST:
8106 			/* duplicate check */
8107 			/*
8108 			 * XXX Are there duplication payloads of either
8109 			 * KEY_AUTH or KEY_ENCRYPT ?
8110 			 */
8111 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
8112 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
8113 					"%u\n", __func__, ext->sadb_ext_type));
8114 				m_freem(m);
8115 				PFKEYSTAT_INC(out_dupext);
8116 				return EINVAL;
8117 			}
8118 			break;
8119 		default:
8120 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
8121 				__func__, ext->sadb_ext_type));
8122 			m_freem(m);
8123 			PFKEYSTAT_INC(out_invexttype);
8124 			return EINVAL;
8125 		}
8126 
8127 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8128 
8129 		if (key_validate_ext(ext, extlen)) {
8130 			m_freem(m);
8131 			PFKEYSTAT_INC(out_invlen);
8132 			return EINVAL;
8133 		}
8134 
8135 		n = m_pulldown(m, off, extlen, &toff);
8136 		if (!n) {
8137 			/* m is already freed */
8138 			return ENOBUFS;
8139 		}
8140 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
8141 
8142 		mhp->ext[ext->sadb_ext_type] = ext;
8143 		mhp->extoff[ext->sadb_ext_type] = off;
8144 		mhp->extlen[ext->sadb_ext_type] = extlen;
8145 	}
8146 
8147 	if (off != end) {
8148 		m_freem(m);
8149 		PFKEYSTAT_INC(out_invlen);
8150 		return EINVAL;
8151 	}
8152 
8153 	return 0;
8154 }
8155 
8156 static int
8157 key_validate_ext(const struct sadb_ext *ext, int len)
8158 {
8159 	const struct sockaddr *sa;
8160 	enum { NONE, ADDR } checktype = NONE;
8161 	int baselen = 0;
8162 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8163 
8164 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8165 		return EINVAL;
8166 
8167 	/* if it does not match minimum/maximum length, bail */
8168 	if (ext->sadb_ext_type >= nitems(minsize) ||
8169 	    ext->sadb_ext_type >= nitems(maxsize))
8170 		return EINVAL;
8171 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8172 		return EINVAL;
8173 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8174 		return EINVAL;
8175 
8176 	/* more checks based on sadb_ext_type XXX need more */
8177 	switch (ext->sadb_ext_type) {
8178 	case SADB_EXT_ADDRESS_SRC:
8179 	case SADB_EXT_ADDRESS_DST:
8180 	case SADB_EXT_ADDRESS_PROXY:
8181 	case SADB_X_EXT_NAT_T_OAI:
8182 	case SADB_X_EXT_NAT_T_OAR:
8183 	case SADB_X_EXT_NEW_ADDRESS_SRC:
8184 	case SADB_X_EXT_NEW_ADDRESS_DST:
8185 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8186 		checktype = ADDR;
8187 		break;
8188 	case SADB_EXT_IDENTITY_SRC:
8189 	case SADB_EXT_IDENTITY_DST:
8190 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8191 		    SADB_X_IDENTTYPE_ADDR) {
8192 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8193 			checktype = ADDR;
8194 		} else
8195 			checktype = NONE;
8196 		break;
8197 	default:
8198 		checktype = NONE;
8199 		break;
8200 	}
8201 
8202 	switch (checktype) {
8203 	case NONE:
8204 		break;
8205 	case ADDR:
8206 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8207 		if (len < baselen + sal)
8208 			return EINVAL;
8209 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8210 			return EINVAL;
8211 		break;
8212 	}
8213 
8214 	return 0;
8215 }
8216 
8217 void
8218 spdcache_init(void)
8219 {
8220 	int i;
8221 
8222 	TUNABLE_INT_FETCH("net.key.spdcache.maxentries",
8223 	    &V_key_spdcache_maxentries);
8224 	TUNABLE_INT_FETCH("net.key.spdcache.threshold",
8225 	    &V_key_spdcache_threshold);
8226 
8227 	if (V_key_spdcache_maxentries) {
8228 		V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries,
8229 		    SPDCACHE_MAX_ENTRIES_PER_HASH);
8230 		V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries /
8231 		    SPDCACHE_MAX_ENTRIES_PER_HASH,
8232 		    M_IPSEC_SPDCACHE, &V_spdcachehash_mask);
8233 		V_key_spdcache_maxentries = (V_spdcachehash_mask + 1)
8234 		    * SPDCACHE_MAX_ENTRIES_PER_HASH;
8235 
8236 		V_spdcache_lock = malloc(sizeof(struct mtx) *
8237 		    (V_spdcachehash_mask + 1),
8238 		    M_IPSEC_SPDCACHE, M_WAITOK|M_ZERO);
8239 
8240 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8241 			SPDCACHE_LOCK_INIT(i);
8242 	}
8243 }
8244 
8245 struct spdcache_entry *
8246 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp)
8247 {
8248 	struct spdcache_entry *entry;
8249 
8250 	entry = malloc(sizeof(struct spdcache_entry),
8251 		    M_IPSEC_SPDCACHE, M_NOWAIT|M_ZERO);
8252 	if (entry == NULL)
8253 		return NULL;
8254 
8255 	if (sp != NULL)
8256 		SP_ADDREF(sp);
8257 
8258 	entry->spidx = *spidx;
8259 	entry->sp = sp;
8260 
8261 	return (entry);
8262 }
8263 
8264 void
8265 spdcache_entry_free(struct spdcache_entry *entry)
8266 {
8267 
8268 	if (entry->sp != NULL)
8269 		key_freesp(&entry->sp);
8270 	free(entry, M_IPSEC_SPDCACHE);
8271 }
8272 
8273 void
8274 spdcache_clear(void)
8275 {
8276 	struct spdcache_entry *entry;
8277 	int i;
8278 
8279 	for (i = 0; i < V_spdcachehash_mask + 1; ++i) {
8280 		SPDCACHE_LOCK(i);
8281 		while (!LIST_EMPTY(&V_spdcachehashtbl[i])) {
8282 			entry = LIST_FIRST(&V_spdcachehashtbl[i]);
8283 			LIST_REMOVE(entry, chain);
8284 			spdcache_entry_free(entry);
8285 		}
8286 		SPDCACHE_UNLOCK(i);
8287 	}
8288 }
8289 
8290 #ifdef VIMAGE
8291 void
8292 spdcache_destroy(void)
8293 {
8294 	int i;
8295 
8296 	if (SPDCACHE_ENABLED()) {
8297 		spdcache_clear();
8298 		hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask);
8299 
8300 		for (i = 0; i < V_spdcachehash_mask + 1; ++i)
8301 			SPDCACHE_LOCK_DESTROY(i);
8302 
8303 		free(V_spdcache_lock, M_IPSEC_SPDCACHE);
8304 	}
8305 }
8306 #endif
8307 
8308 static void
8309 key_vnet_init(void *arg __unused)
8310 {
8311 	int i;
8312 
8313 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8314 		TAILQ_INIT(&V_sptree[i]);
8315 		TAILQ_INIT(&V_sptree_ifnet[i]);
8316 	}
8317 
8318 	TAILQ_INIT(&V_sahtree);
8319 	V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask);
8320 	V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask);
8321 	V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH,
8322 	    &V_sahaddrhash_mask);
8323 	V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8324 	    &V_acqaddrhash_mask);
8325 	V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ,
8326 	    &V_acqseqhash_mask);
8327 
8328 	spdcache_init();
8329 
8330 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
8331 		LIST_INIT(&V_regtree[i]);
8332 
8333 	LIST_INIT(&V_acqtree);
8334 	LIST_INIT(&V_spacqtree);
8335 }
8336 VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8337     key_vnet_init, NULL);
8338 
8339 static void
8340 key_init(void *arg __unused)
8341 {
8342 
8343 	ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c",
8344 	    sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL,
8345 	    UMA_ALIGN_PTR, UMA_ZONE_PCPU);
8346 
8347 	SPTREE_LOCK_INIT();
8348 	REGTREE_LOCK_INIT();
8349 	SAHTREE_LOCK_INIT();
8350 	ACQ_LOCK_INIT();
8351 	SPACQ_LOCK_INIT();
8352 	SPI_ALLOC_LOCK_INIT();
8353 
8354 #ifndef IPSEC_DEBUG2
8355 	callout_init(&key_timer, 1);
8356 	callout_reset(&key_timer, hz, key_timehandler, NULL);
8357 #endif /*IPSEC_DEBUG2*/
8358 
8359 	/* initialize key statistics */
8360 	keystat.getspi_count = 1;
8361 
8362 	if (bootverbose)
8363 		printf("IPsec: Initialized Security Association Processing.\n");
8364 }
8365 SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL);
8366 
8367 #ifdef VIMAGE
8368 static void
8369 key_vnet_destroy(void *arg __unused)
8370 {
8371 	struct secashead_queue sahdrainq;
8372 	struct secpolicy_queue drainq;
8373 	struct secpolicy *sp, *nextsp;
8374 	struct secacq *acq, *nextacq;
8375 	struct secspacq *spacq, *nextspacq;
8376 	struct secashead *sah;
8377 	struct secasvar *sav;
8378 	struct secreg *reg;
8379 	int i;
8380 
8381 	/*
8382 	 * XXX: can we just call free() for each object without
8383 	 * walking through safe way with releasing references?
8384 	 */
8385 	TAILQ_INIT(&drainq);
8386 	SPTREE_WLOCK();
8387 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8388 		TAILQ_CONCAT(&drainq, &V_sptree[i], chain);
8389 		TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain);
8390 	}
8391 	for (i = 0; i < V_sphash_mask + 1; i++)
8392 		LIST_INIT(&V_sphashtbl[i]);
8393 	SPTREE_WUNLOCK();
8394 	spdcache_destroy();
8395 
8396 	sp = TAILQ_FIRST(&drainq);
8397 	while (sp != NULL) {
8398 		nextsp = TAILQ_NEXT(sp, chain);
8399 		key_freesp(&sp);
8400 		sp = nextsp;
8401 	}
8402 
8403 	TAILQ_INIT(&sahdrainq);
8404 	SAHTREE_WLOCK();
8405 	TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain);
8406 	for (i = 0; i < V_savhash_mask + 1; i++)
8407 		LIST_INIT(&V_savhashtbl[i]);
8408 	for (i = 0; i < V_sahaddrhash_mask + 1; i++)
8409 		LIST_INIT(&V_sahaddrhashtbl[i]);
8410 	TAILQ_FOREACH(sah, &sahdrainq, chain) {
8411 		sah->state = SADB_SASTATE_DEAD;
8412 		TAILQ_FOREACH(sav, &sah->savtree_larval, chain) {
8413 			sav->state = SADB_SASTATE_DEAD;
8414 		}
8415 		TAILQ_FOREACH(sav, &sah->savtree_alive, chain) {
8416 			sav->state = SADB_SASTATE_DEAD;
8417 		}
8418 	}
8419 	SAHTREE_WUNLOCK();
8420 
8421 	key_freesah_flushed(&sahdrainq);
8422 	hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask);
8423 	hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask);
8424 	hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask);
8425 
8426 	REGTREE_LOCK();
8427 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8428 		LIST_FOREACH(reg, &V_regtree[i], chain) {
8429 			if (__LIST_CHAINED(reg)) {
8430 				LIST_REMOVE(reg, chain);
8431 				free(reg, M_IPSEC_SAR);
8432 				break;
8433 			}
8434 		}
8435 	}
8436 	REGTREE_UNLOCK();
8437 
8438 	ACQ_LOCK();
8439 	acq = LIST_FIRST(&V_acqtree);
8440 	while (acq != NULL) {
8441 		nextacq = LIST_NEXT(acq, chain);
8442 		LIST_REMOVE(acq, chain);
8443 		free(acq, M_IPSEC_SAQ);
8444 		acq = nextacq;
8445 	}
8446 	for (i = 0; i < V_acqaddrhash_mask + 1; i++)
8447 		LIST_INIT(&V_acqaddrhashtbl[i]);
8448 	for (i = 0; i < V_acqseqhash_mask + 1; i++)
8449 		LIST_INIT(&V_acqseqhashtbl[i]);
8450 	ACQ_UNLOCK();
8451 
8452 	SPACQ_LOCK();
8453 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
8454 	    spacq = nextspacq) {
8455 		nextspacq = LIST_NEXT(spacq, chain);
8456 		if (__LIST_CHAINED(spacq)) {
8457 			LIST_REMOVE(spacq, chain);
8458 			free(spacq, M_IPSEC_SAQ);
8459 		}
8460 	}
8461 	SPACQ_UNLOCK();
8462 	hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask);
8463 	hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask);
8464 }
8465 VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND,
8466     key_vnet_destroy, NULL);
8467 #endif
8468 
8469 /*
8470  * XXX: as long as domains are not unloadable, this function is never called,
8471  * provided for consistensy and future unload support.
8472  */
8473 static void
8474 key_destroy(void *arg __unused)
8475 {
8476 	uma_zdestroy(ipsec_key_lft_zone);
8477 
8478 #ifndef IPSEC_DEBUG2
8479 	callout_drain(&key_timer);
8480 #endif
8481 	SPTREE_LOCK_DESTROY();
8482 	REGTREE_LOCK_DESTROY();
8483 	SAHTREE_LOCK_DESTROY();
8484 	ACQ_LOCK_DESTROY();
8485 	SPACQ_LOCK_DESTROY();
8486 	SPI_ALLOC_LOCK_DESTROY();
8487 }
8488 SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL);
8489 
8490 /* record data transfer on SA, and update timestamps */
8491 void
8492 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8493 {
8494 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
8495 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
8496 
8497 	/*
8498 	 * XXX Currently, there is a difference of bytes size
8499 	 * between inbound and outbound processing.
8500 	 */
8501 	counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len);
8502 
8503 	/*
8504 	 * We use the number of packets as the unit of
8505 	 * allocations.  We increment the variable
8506 	 * whenever {esp,ah}_{in,out}put is called.
8507 	 */
8508 	counter_u64_add(sav->lft_c_allocations, 1);
8509 
8510 	/*
8511 	 * NOTE: We record CURRENT usetime by using wall clock,
8512 	 * in seconds.  HARD and SOFT lifetime are measured by the time
8513 	 * difference (again in seconds) from usetime.
8514 	 *
8515 	 *	usetime
8516 	 *	v     expire   expire
8517 	 * -----+-----+--------+---> t
8518 	 *	<--------------> HARD
8519 	 *	<-----> SOFT
8520 	 */
8521 	if (sav->firstused == 0)
8522 		sav->firstused = time_second;
8523 }
8524 
8525 /*
8526  * Take one of the kernel's security keys and convert it into a PF_KEY
8527  * structure within an mbuf, suitable for sending up to a waiting
8528  * application in user land.
8529  *
8530  * IN:
8531  *    src: A pointer to a kernel security key.
8532  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8533  * OUT:
8534  *    a valid mbuf or NULL indicating an error
8535  *
8536  */
8537 
8538 static struct mbuf *
8539 key_setkey(struct seckey *src, uint16_t exttype)
8540 {
8541 	struct mbuf *m;
8542 	struct sadb_key *p;
8543 	int len;
8544 
8545 	if (src == NULL)
8546 		return NULL;
8547 
8548 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8549 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8550 	if (m == NULL)
8551 		return NULL;
8552 	m_align(m, len);
8553 	m->m_len = len;
8554 	p = mtod(m, struct sadb_key *);
8555 	bzero(p, len);
8556 	p->sadb_key_len = PFKEY_UNIT64(len);
8557 	p->sadb_key_exttype = exttype;
8558 	p->sadb_key_bits = src->bits;
8559 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8560 
8561 	return m;
8562 }
8563 
8564 /*
8565  * Take one of the kernel's lifetime data structures and convert it
8566  * into a PF_KEY structure within an mbuf, suitable for sending up to
8567  * a waiting application in user land.
8568  *
8569  * IN:
8570  *    src: A pointer to a kernel lifetime structure.
8571  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8572  *             data structures for more information.
8573  * OUT:
8574  *    a valid mbuf or NULL indicating an error
8575  *
8576  */
8577 
8578 static struct mbuf *
8579 key_setlifetime(struct seclifetime *src, uint16_t exttype)
8580 {
8581 	struct mbuf *m = NULL;
8582 	struct sadb_lifetime *p;
8583 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8584 
8585 	if (src == NULL)
8586 		return NULL;
8587 
8588 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8589 	if (m == NULL)
8590 		return m;
8591 	m_align(m, len);
8592 	m->m_len = len;
8593 	p = mtod(m, struct sadb_lifetime *);
8594 
8595 	bzero(p, len);
8596 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8597 	p->sadb_lifetime_exttype = exttype;
8598 	p->sadb_lifetime_allocations = src->allocations;
8599 	p->sadb_lifetime_bytes = src->bytes;
8600 	p->sadb_lifetime_addtime = src->addtime;
8601 	p->sadb_lifetime_usetime = src->usetime;
8602 
8603 	return m;
8604 
8605 }
8606 
8607 const struct enc_xform *
8608 enc_algorithm_lookup(int alg)
8609 {
8610 	int i;
8611 
8612 	for (i = 0; i < nitems(supported_ealgs); i++)
8613 		if (alg == supported_ealgs[i].sadb_alg)
8614 			return (supported_ealgs[i].xform);
8615 	return (NULL);
8616 }
8617 
8618 const struct auth_hash *
8619 auth_algorithm_lookup(int alg)
8620 {
8621 	int i;
8622 
8623 	for (i = 0; i < nitems(supported_aalgs); i++)
8624 		if (alg == supported_aalgs[i].sadb_alg)
8625 			return (supported_aalgs[i].xform);
8626 	return (NULL);
8627 }
8628 
8629 const struct comp_algo *
8630 comp_algorithm_lookup(int alg)
8631 {
8632 	int i;
8633 
8634 	for (i = 0; i < nitems(supported_calgs); i++)
8635 		if (alg == supported_calgs[i].sadb_alg)
8636 			return (supported_calgs[i].xform);
8637 	return (NULL);
8638 }
8639