1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 275 276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 279 280 #ifdef SYSCTL_DECL 281 SYSCTL_DECL(_net_key); 282 #endif 283 284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 286 287 /* max count of trial for the decision of spi value */ 288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 290 291 /* minimum spi value to allocate automatically. */ 292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 294 295 /* maximun spi value to allocate automatically. */ 296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 298 299 /* interval to initialize randseed */ 300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 302 303 /* lifetime for larval SA */ 304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 306 307 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 310 311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 314 315 /* ESP auth */ 316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 318 319 /* minimum ESP key length */ 320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 322 323 /* minimum AH key length */ 324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 326 327 /* perfered old SA rather than new SA */ 328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 330 331 #define __LIST_CHAINED(elm) \ 332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 333 #define LIST_INSERT_TAIL(head, elm, type, field) \ 334 do {\ 335 struct type *curelm = LIST_FIRST(head); \ 336 if (curelm == NULL) {\ 337 LIST_INSERT_HEAD(head, elm, field); \ 338 } else { \ 339 while (LIST_NEXT(curelm, field)) \ 340 curelm = LIST_NEXT(curelm, field);\ 341 LIST_INSERT_AFTER(curelm, elm, field);\ 342 }\ 343 } while (0) 344 345 #define KEY_CHKSASTATE(head, sav, name) \ 346 do { \ 347 if ((head) != (sav)) { \ 348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 349 (name), (head), (sav))); \ 350 continue; \ 351 } \ 352 } while (0) 353 354 #define KEY_CHKSPDIR(head, sp, name) \ 355 do { \ 356 if ((head) != (sp)) { \ 357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 358 "anyway continue.\n", \ 359 (name), (head), (sp))); \ 360 } \ 361 } while (0) 362 363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 370 371 /* 372 * set parameters into secpolicyindex buffer. 373 * Must allocate secpolicyindex buffer passed to this function. 374 */ 375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 376 do { \ 377 bzero((idx), sizeof(struct secpolicyindex)); \ 378 (idx)->dir = (_dir); \ 379 (idx)->prefs = (ps); \ 380 (idx)->prefd = (pd); \ 381 (idx)->ul_proto = (ulp); \ 382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 384 } while (0) 385 386 /* 387 * set parameters into secasindex buffer. 388 * Must allocate secasindex buffer before calling this function. 389 */ 390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 391 do { \ 392 bzero((idx), sizeof(struct secasindex)); \ 393 (idx)->proto = (p); \ 394 (idx)->mode = (m); \ 395 (idx)->reqid = (r); \ 396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 398 } while (0) 399 400 /* key statistics */ 401 struct _keystat { 402 u_long getspi_count; /* the avarage of count to try to get new SPI */ 403 } keystat; 404 405 struct sadb_msghdr { 406 struct sadb_msg *msg; 407 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 408 int extoff[SADB_EXT_MAX + 1]; 409 int extlen[SADB_EXT_MAX + 1]; 410 }; 411 412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 413 static void key_freesp_so __P((struct secpolicy **)); 414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 415 static void key_delsp __P((struct secpolicy *)); 416 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 417 static void _key_delsp(struct secpolicy *sp); 418 static struct secpolicy *key_getspbyid __P((u_int32_t)); 419 static u_int32_t key_newreqid __P((void)); 420 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 421 const struct sadb_msghdr *, int, int, ...)); 422 static int key_spdadd __P((struct socket *, struct mbuf *, 423 const struct sadb_msghdr *)); 424 static u_int32_t key_getnewspid __P((void)); 425 static int key_spddelete __P((struct socket *, struct mbuf *, 426 const struct sadb_msghdr *)); 427 static int key_spddelete2 __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static int key_spdget __P((struct socket *, struct mbuf *, 430 const struct sadb_msghdr *)); 431 static int key_spdflush __P((struct socket *, struct mbuf *, 432 const struct sadb_msghdr *)); 433 static int key_spddump __P((struct socket *, struct mbuf *, 434 const struct sadb_msghdr *)); 435 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 436 u_int8_t, u_int32_t, u_int32_t)); 437 static u_int key_getspreqmsglen __P((struct secpolicy *)); 438 static int key_spdexpire __P((struct secpolicy *)); 439 static struct secashead *key_newsah __P((struct secasindex *)); 440 static void key_delsah __P((struct secashead *)); 441 static struct secasvar *key_newsav __P((struct mbuf *, 442 const struct sadb_msghdr *, struct secashead *, int *, 443 const char*, int)); 444 #define KEY_NEWSAV(m, sadb, sah, e) \ 445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 446 static void key_delsav __P((struct secasvar *)); 447 static struct secashead *key_getsah __P((struct secasindex *)); 448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 450 static int key_setsaval __P((struct secasvar *, struct mbuf *, 451 const struct sadb_msghdr *)); 452 static int key_mature __P((struct secasvar *)); 453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 454 u_int8_t, u_int32_t, u_int32_t)); 455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 456 u_int32_t, pid_t, u_int16_t)); 457 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 458 static struct mbuf *key_setsadbaddr __P((u_int16_t, 459 const struct sockaddr *, u_int8_t, u_int16_t)); 460 #ifdef IPSEC_NAT_T 461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 462 static struct mbuf *key_setsadbxtype(u_int16_t); 463 #endif 464 static void key_porttosaddr(struct sockaddr *, u_int16_t); 465 #define KEY_PORTTOSADDR(saddr, port) \ 466 key_porttosaddr((struct sockaddr *)(saddr), (port)) 467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 469 u_int32_t)); 470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 471 struct malloc_type *); 472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 473 struct malloc_type *type); 474 #ifdef INET6 475 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 476 #endif 477 478 /* flags for key_cmpsaidx() */ 479 #define CMP_HEAD 1 /* protocol, addresses. */ 480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 481 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 482 #define CMP_EXACTLY 4 /* all elements. */ 483 static int key_cmpsaidx 484 __P((const struct secasindex *, const struct secasindex *, int)); 485 486 static int key_cmpspidx_exactly 487 __P((struct secpolicyindex *, struct secpolicyindex *)); 488 static int key_cmpspidx_withmask 489 __P((struct secpolicyindex *, struct secpolicyindex *)); 490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 491 static int key_bbcmp __P((const void *, const void *, u_int)); 492 static u_int16_t key_satype2proto __P((u_int8_t)); 493 static u_int8_t key_proto2satype __P((u_int16_t)); 494 495 static int key_getspi __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 498 struct secasindex *)); 499 static int key_update __P((struct socket *, struct mbuf *, 500 const struct sadb_msghdr *)); 501 #ifdef IPSEC_DOSEQCHECK 502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 503 #endif 504 static int key_add __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 static int key_setident __P((struct secashead *, struct mbuf *, 507 const struct sadb_msghdr *)); 508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 509 const struct sadb_msghdr *)); 510 static int key_delete __P((struct socket *, struct mbuf *, 511 const struct sadb_msghdr *)); 512 static int key_get __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 515 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 516 static struct mbuf *key_getcomb_esp __P((void)); 517 static struct mbuf *key_getcomb_ah __P((void)); 518 static struct mbuf *key_getcomb_ipcomp __P((void)); 519 static struct mbuf *key_getprop __P((const struct secasindex *)); 520 521 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 522 static struct secacq *key_newacq __P((const struct secasindex *)); 523 static struct secacq *key_getacq __P((const struct secasindex *)); 524 static struct secacq *key_getacqbyseq __P((u_int32_t)); 525 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 526 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 527 static int key_acquire2 __P((struct socket *, struct mbuf *, 528 const struct sadb_msghdr *)); 529 static int key_register __P((struct socket *, struct mbuf *, 530 const struct sadb_msghdr *)); 531 static int key_expire __P((struct secasvar *)); 532 static int key_flush __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_dump __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_promisc __P((struct socket *, struct mbuf *, 537 const struct sadb_msghdr *)); 538 static int key_senderror __P((struct socket *, struct mbuf *, int)); 539 static int key_validate_ext __P((const struct sadb_ext *, int)); 540 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 541 static struct mbuf *key_setlifetime(struct seclifetime *src, 542 u_int16_t exttype); 543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 544 545 #if 0 546 static const char *key_getfqdn __P((void)); 547 static const char *key_getuserfqdn __P((void)); 548 #endif 549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 550 static struct mbuf *key_alloc_mbuf __P((int)); 551 552 static __inline void 553 sa_initref(struct secasvar *sav) 554 { 555 556 refcount_init(&sav->refcnt, 1); 557 } 558 static __inline void 559 sa_addref(struct secasvar *sav) 560 { 561 562 refcount_acquire(&sav->refcnt); 563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 564 } 565 static __inline int 566 sa_delref(struct secasvar *sav) 567 { 568 569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 570 return (refcount_release(&sav->refcnt)); 571 } 572 573 #define SP_ADDREF(p) do { \ 574 (p)->refcnt++; \ 575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 576 } while (0) 577 #define SP_DELREF(p) do { \ 578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 579 (p)->refcnt--; \ 580 } while (0) 581 582 583 /* 584 * Update the refcnt while holding the SPTREE lock. 585 */ 586 void 587 key_addref(struct secpolicy *sp) 588 { 589 SPTREE_LOCK(); 590 SP_ADDREF(sp); 591 SPTREE_UNLOCK(); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 616 { 617 struct secpolicy *sp; 618 619 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 621 ("invalid direction %u", dir)); 622 623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 624 printf("DP %s from %s:%u\n", __func__, where, tag)); 625 626 /* get a SP entry */ 627 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 628 printf("*** objects\n"); 629 kdebug_secpolicyindex(spidx)); 630 631 SPTREE_LOCK(); 632 LIST_FOREACH(sp, &V_sptree[dir], chain) { 633 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 634 printf("*** in SPD\n"); 635 kdebug_secpolicyindex(&sp->spidx)); 636 637 if (sp->state == IPSEC_SPSTATE_DEAD) 638 continue; 639 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 640 goto found; 641 } 642 sp = NULL; 643 found: 644 if (sp) { 645 /* sanity check */ 646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 647 648 /* found a SPD entry */ 649 sp->lastused = time_second; 650 SP_ADDREF(sp); 651 } 652 SPTREE_UNLOCK(); 653 654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 657 return sp; 658 } 659 660 /* 661 * allocating a SP for OUTBOUND or INBOUND packet. 662 * Must call key_freesp() later. 663 * OUT: NULL: not found 664 * others: found and return the pointer. 665 */ 666 struct secpolicy * 667 key_allocsp2(u_int32_t spi, 668 union sockaddr_union *dst, 669 u_int8_t proto, 670 u_int dir, 671 const char* where, int tag) 672 { 673 struct secpolicy *sp; 674 675 IPSEC_ASSERT(dst != NULL, ("null dst")); 676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 677 ("invalid direction %u", dir)); 678 679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 680 printf("DP %s from %s:%u\n", __func__, where, tag)); 681 682 /* get a SP entry */ 683 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 684 printf("*** objects\n"); 685 printf("spi %u proto %u dir %u\n", spi, proto, dir); 686 kdebug_sockaddr(&dst->sa)); 687 688 SPTREE_LOCK(); 689 LIST_FOREACH(sp, &V_sptree[dir], chain) { 690 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 691 printf("*** in SPD\n"); 692 kdebug_secpolicyindex(&sp->spidx)); 693 694 if (sp->state == IPSEC_SPSTATE_DEAD) 695 continue; 696 /* compare simple values, then dst address */ 697 if (sp->spidx.ul_proto != proto) 698 continue; 699 /* NB: spi's must exist and match */ 700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 701 continue; 702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 703 goto found; 704 } 705 sp = NULL; 706 found: 707 if (sp) { 708 /* sanity check */ 709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 710 711 /* found a SPD entry */ 712 sp->lastused = time_second; 713 SP_ADDREF(sp); 714 } 715 SPTREE_UNLOCK(); 716 717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 720 return sp; 721 } 722 723 #if 0 724 /* 725 * return a policy that matches this particular inbound packet. 726 * XXX slow 727 */ 728 struct secpolicy * 729 key_gettunnel(const struct sockaddr *osrc, 730 const struct sockaddr *odst, 731 const struct sockaddr *isrc, 732 const struct sockaddr *idst, 733 const char* where, int tag) 734 { 735 struct secpolicy *sp; 736 const int dir = IPSEC_DIR_INBOUND; 737 struct ipsecrequest *r1, *r2, *p; 738 struct secpolicyindex spidx; 739 740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 741 printf("DP %s from %s:%u\n", __func__, where, tag)); 742 743 if (isrc->sa_family != idst->sa_family) { 744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 745 __func__, isrc->sa_family, idst->sa_family)); 746 sp = NULL; 747 goto done; 748 } 749 750 SPTREE_LOCK(); 751 LIST_FOREACH(sp, &V_sptree[dir], chain) { 752 if (sp->state == IPSEC_SPSTATE_DEAD) 753 continue; 754 755 r1 = r2 = NULL; 756 for (p = sp->req; p; p = p->next) { 757 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 758 continue; 759 760 r1 = r2; 761 r2 = p; 762 763 if (!r1) { 764 /* here we look at address matches only */ 765 spidx = sp->spidx; 766 if (isrc->sa_len > sizeof(spidx.src) || 767 idst->sa_len > sizeof(spidx.dst)) 768 continue; 769 bcopy(isrc, &spidx.src, isrc->sa_len); 770 bcopy(idst, &spidx.dst, idst->sa_len); 771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 772 continue; 773 } else { 774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 776 continue; 777 } 778 779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 781 continue; 782 783 goto found; 784 } 785 } 786 sp = NULL; 787 found: 788 if (sp) { 789 sp->lastused = time_second; 790 SP_ADDREF(sp); 791 } 792 SPTREE_UNLOCK(); 793 done: 794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 797 return sp; 798 } 799 #endif 800 801 /* 802 * allocating an SA entry for an *OUTBOUND* packet. 803 * checking each request entries in SP, and acquire an SA if need. 804 * OUT: 0: there are valid requests. 805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 806 */ 807 int 808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 809 { 810 u_int level; 811 int error; 812 struct secasvar *sav; 813 814 IPSEC_ASSERT(isr != NULL, ("null isr")); 815 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 817 saidx->mode == IPSEC_MODE_TUNNEL, 818 ("unexpected policy %u", saidx->mode)); 819 820 /* 821 * XXX guard against protocol callbacks from the crypto 822 * thread as they reference ipsecrequest.sav which we 823 * temporarily null out below. Need to rethink how we 824 * handle bundled SA's in the callback thread. 825 */ 826 IPSECREQUEST_LOCK_ASSERT(isr); 827 828 /* get current level */ 829 level = ipsec_get_reqlevel(isr); 830 831 /* 832 * We check new SA in the IPsec request because a different 833 * SA may be involved each time this request is checked, either 834 * because new SAs are being configured, or this request is 835 * associated with an unconnected datagram socket, or this request 836 * is associated with a system default policy. 837 * 838 * key_allocsa_policy should allocate the oldest SA available. 839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 840 */ 841 sav = key_allocsa_policy(saidx); 842 if (sav != isr->sav) { 843 /* SA need to be updated. */ 844 if (!IPSECREQUEST_UPGRADE(isr)) { 845 /* Kick everyone off. */ 846 IPSECREQUEST_UNLOCK(isr); 847 IPSECREQUEST_WLOCK(isr); 848 } 849 if (isr->sav != NULL) 850 KEY_FREESAV(&isr->sav); 851 isr->sav = sav; 852 IPSECREQUEST_DOWNGRADE(isr); 853 } else if (sav != NULL) 854 KEY_FREESAV(&sav); 855 856 /* When there is SA. */ 857 if (isr->sav != NULL) { 858 if (isr->sav->state != SADB_SASTATE_MATURE && 859 isr->sav->state != SADB_SASTATE_DYING) 860 return EINVAL; 861 return 0; 862 } 863 864 /* there is no SA */ 865 error = key_acquire(saidx, isr->sp); 866 if (error != 0) { 867 /* XXX What should I do ? */ 868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 869 __func__, error)); 870 return error; 871 } 872 873 if (level != IPSEC_LEVEL_REQUIRE) { 874 /* XXX sigh, the interface to this routine is botched */ 875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 876 return 0; 877 } else { 878 return ENOENT; 879 } 880 } 881 882 /* 883 * allocating a SA for policy entry from SAD. 884 * NOTE: searching SAD of aliving state. 885 * OUT: NULL: not found. 886 * others: found and return the pointer. 887 */ 888 static struct secasvar * 889 key_allocsa_policy(const struct secasindex *saidx) 890 { 891 #define N(a) _ARRAYLEN(a) 892 struct secashead *sah; 893 struct secasvar *sav; 894 u_int stateidx, arraysize; 895 const u_int *state_valid; 896 897 state_valid = NULL; /* silence gcc */ 898 arraysize = 0; /* silence gcc */ 899 900 SAHTREE_LOCK(); 901 LIST_FOREACH(sah, &V_sahtree, chain) { 902 if (sah->state == SADB_SASTATE_DEAD) 903 continue; 904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 905 if (V_key_preferred_oldsa) { 906 state_valid = saorder_state_valid_prefer_old; 907 arraysize = N(saorder_state_valid_prefer_old); 908 } else { 909 state_valid = saorder_state_valid_prefer_new; 910 arraysize = N(saorder_state_valid_prefer_new); 911 } 912 break; 913 } 914 } 915 SAHTREE_UNLOCK(); 916 if (sah == NULL) 917 return NULL; 918 919 /* search valid state */ 920 for (stateidx = 0; stateidx < arraysize; stateidx++) { 921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 922 if (sav != NULL) 923 return sav; 924 } 925 926 return NULL; 927 #undef N 928 } 929 930 /* 931 * searching SAD with direction, protocol, mode and state. 932 * called by key_allocsa_policy(). 933 * OUT: 934 * NULL : not found 935 * others : found, pointer to a SA. 936 */ 937 static struct secasvar * 938 key_do_allocsa_policy(struct secashead *sah, u_int state) 939 { 940 struct secasvar *sav, *nextsav, *candidate, *d; 941 942 /* initilize */ 943 candidate = NULL; 944 945 SAHTREE_LOCK(); 946 for (sav = LIST_FIRST(&sah->savtree[state]); 947 sav != NULL; 948 sav = nextsav) { 949 950 nextsav = LIST_NEXT(sav, chain); 951 952 /* sanity check */ 953 KEY_CHKSASTATE(sav->state, state, __func__); 954 955 /* initialize */ 956 if (candidate == NULL) { 957 candidate = sav; 958 continue; 959 } 960 961 /* Which SA is the better ? */ 962 963 IPSEC_ASSERT(candidate->lft_c != NULL, 964 ("null candidate lifetime")); 965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 966 967 /* What the best method is to compare ? */ 968 if (V_key_preferred_oldsa) { 969 if (candidate->lft_c->addtime > 970 sav->lft_c->addtime) { 971 candidate = sav; 972 } 973 continue; 974 /*NOTREACHED*/ 975 } 976 977 /* preferred new sa rather than old sa */ 978 if (candidate->lft_c->addtime < 979 sav->lft_c->addtime) { 980 d = candidate; 981 candidate = sav; 982 } else 983 d = sav; 984 985 /* 986 * prepared to delete the SA when there is more 987 * suitable candidate and the lifetime of the SA is not 988 * permanent. 989 */ 990 if (d->lft_h->addtime != 0) { 991 struct mbuf *m, *result; 992 u_int8_t satype; 993 994 key_sa_chgstate(d, SADB_SASTATE_DEAD); 995 996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 997 998 satype = key_proto2satype(d->sah->saidx.proto); 999 if (satype == 0) 1000 goto msgfail; 1001 1002 m = key_setsadbmsg(SADB_DELETE, 0, 1003 satype, 0, 0, d->refcnt - 1); 1004 if (!m) 1005 goto msgfail; 1006 result = m; 1007 1008 /* set sadb_address for saidx's. */ 1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1010 &d->sah->saidx.src.sa, 1011 d->sah->saidx.src.sa.sa_len << 3, 1012 IPSEC_ULPROTO_ANY); 1013 if (!m) 1014 goto msgfail; 1015 m_cat(result, m); 1016 1017 /* set sadb_address for saidx's. */ 1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1019 &d->sah->saidx.dst.sa, 1020 d->sah->saidx.dst.sa.sa_len << 3, 1021 IPSEC_ULPROTO_ANY); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 /* create SA extension */ 1027 m = key_setsadbsa(d); 1028 if (!m) 1029 goto msgfail; 1030 m_cat(result, m); 1031 1032 if (result->m_len < sizeof(struct sadb_msg)) { 1033 result = m_pullup(result, 1034 sizeof(struct sadb_msg)); 1035 if (result == NULL) 1036 goto msgfail; 1037 } 1038 1039 result->m_pkthdr.len = 0; 1040 for (m = result; m; m = m->m_next) 1041 result->m_pkthdr.len += m->m_len; 1042 mtod(result, struct sadb_msg *)->sadb_msg_len = 1043 PFKEY_UNIT64(result->m_pkthdr.len); 1044 1045 if (key_sendup_mbuf(NULL, result, 1046 KEY_SENDUP_REGISTERED)) 1047 goto msgfail; 1048 msgfail: 1049 KEY_FREESAV(&d); 1050 } 1051 } 1052 if (candidate) { 1053 sa_addref(candidate); 1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1055 printf("DP %s cause refcnt++:%d SA:%p\n", 1056 __func__, candidate->refcnt, candidate)); 1057 } 1058 SAHTREE_UNLOCK(); 1059 1060 return candidate; 1061 } 1062 1063 /* 1064 * allocating a usable SA entry for a *INBOUND* packet. 1065 * Must call key_freesav() later. 1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1067 * NULL: not found, or error occured. 1068 * 1069 * In the comparison, no source address is used--for RFC2401 conformance. 1070 * To quote, from section 4.1: 1071 * A security association is uniquely identified by a triple consisting 1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1073 * security protocol (AH or ESP) identifier. 1074 * Note that, however, we do need to keep source address in IPsec SA. 1075 * IKE specification and PF_KEY specification do assume that we 1076 * keep source address in IPsec SA. We see a tricky situation here. 1077 */ 1078 struct secasvar * 1079 key_allocsa( 1080 union sockaddr_union *dst, 1081 u_int proto, 1082 u_int32_t spi, 1083 const char* where, int tag) 1084 { 1085 struct secashead *sah; 1086 struct secasvar *sav; 1087 u_int stateidx, arraysize, state; 1088 const u_int *saorder_state_valid; 1089 int chkport; 1090 1091 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1092 1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1094 printf("DP %s from %s:%u\n", __func__, where, tag)); 1095 1096 #ifdef IPSEC_NAT_T 1097 chkport = (dst->sa.sa_family == AF_INET && 1098 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1099 dst->sin.sin_port != 0); 1100 #else 1101 chkport = 0; 1102 #endif 1103 1104 /* 1105 * searching SAD. 1106 * XXX: to be checked internal IP header somewhere. Also when 1107 * IPsec tunnel packet is received. But ESP tunnel mode is 1108 * encrypted so we can't check internal IP header. 1109 */ 1110 SAHTREE_LOCK(); 1111 if (V_key_preferred_oldsa) { 1112 saorder_state_valid = saorder_state_valid_prefer_old; 1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1114 } else { 1115 saorder_state_valid = saorder_state_valid_prefer_new; 1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1117 } 1118 LIST_FOREACH(sah, &V_sahtree, chain) { 1119 /* search valid state */ 1120 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1121 state = saorder_state_valid[stateidx]; 1122 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1123 /* sanity check */ 1124 KEY_CHKSASTATE(sav->state, state, __func__); 1125 /* do not return entries w/ unusable state */ 1126 if (sav->state != SADB_SASTATE_MATURE && 1127 sav->state != SADB_SASTATE_DYING) 1128 continue; 1129 if (proto != sav->sah->saidx.proto) 1130 continue; 1131 if (spi != sav->spi) 1132 continue; 1133 #if 0 /* don't check src */ 1134 /* check src address */ 1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1136 continue; 1137 #endif 1138 /* check dst address */ 1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1140 continue; 1141 sa_addref(sav); 1142 goto done; 1143 } 1144 } 1145 } 1146 sav = NULL; 1147 done: 1148 SAHTREE_UNLOCK(); 1149 1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1151 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1152 sav, sav ? sav->refcnt : 0)); 1153 return sav; 1154 } 1155 1156 /* 1157 * Must be called after calling key_allocsp(). 1158 * For both the packet without socket and key_freeso(). 1159 */ 1160 void 1161 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1162 { 1163 struct secpolicy *sp = *spp; 1164 1165 IPSEC_ASSERT(sp != NULL, ("null sp")); 1166 1167 SPTREE_LOCK(); 1168 SP_DELREF(sp); 1169 1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1172 __func__, sp, sp->id, where, tag, sp->refcnt)); 1173 1174 if (sp->refcnt == 0) { 1175 *spp = NULL; 1176 key_delsp(sp); 1177 } 1178 SPTREE_UNLOCK(); 1179 } 1180 1181 /* 1182 * Must be called after calling key_allocsp(). 1183 * For the packet with socket. 1184 */ 1185 void 1186 key_freeso(struct socket *so) 1187 { 1188 IPSEC_ASSERT(so != NULL, ("null so")); 1189 1190 switch (so->so_proto->pr_domain->dom_family) { 1191 #if defined(INET) || defined(INET6) 1192 #ifdef INET 1193 case PF_INET: 1194 #endif 1195 #ifdef INET6 1196 case PF_INET6: 1197 #endif 1198 { 1199 struct inpcb *pcb = sotoinpcb(so); 1200 1201 /* Does it have a PCB ? */ 1202 if (pcb == NULL) 1203 return; 1204 key_freesp_so(&pcb->inp_sp->sp_in); 1205 key_freesp_so(&pcb->inp_sp->sp_out); 1206 } 1207 break; 1208 #endif /* INET || INET6 */ 1209 default: 1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1211 __func__, so->so_proto->pr_domain->dom_family)); 1212 return; 1213 } 1214 } 1215 1216 static void 1217 key_freesp_so(struct secpolicy **sp) 1218 { 1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1220 1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1222 (*sp)->policy == IPSEC_POLICY_BYPASS) 1223 return; 1224 1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1226 ("invalid policy %u", (*sp)->policy)); 1227 KEY_FREESP(sp); 1228 } 1229 1230 void 1231 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1232 { 1233 1234 IPSEC_ASSERT(sav != NULL, ("null sav")); 1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1236 1237 sa_addref(sav); 1238 } 1239 1240 /* 1241 * Must be called after calling key_allocsa(). 1242 * This function is called by key_freesp() to free some SA allocated 1243 * for a policy. 1244 */ 1245 void 1246 key_freesav(struct secasvar **psav, const char* where, int tag) 1247 { 1248 struct secasvar *sav = *psav; 1249 1250 IPSEC_ASSERT(sav != NULL, ("null sav")); 1251 1252 if (sa_delref(sav)) { 1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1256 *psav = NULL; 1257 key_delsav(sav); 1258 } else { 1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1262 } 1263 } 1264 1265 /* %%% SPD management */ 1266 /* 1267 * free security policy entry. 1268 */ 1269 static void 1270 key_delsp(struct secpolicy *sp) 1271 { 1272 struct ipsecrequest *isr, *nextisr; 1273 1274 IPSEC_ASSERT(sp != NULL, ("null sp")); 1275 SPTREE_LOCK_ASSERT(); 1276 1277 sp->state = IPSEC_SPSTATE_DEAD; 1278 1279 IPSEC_ASSERT(sp->refcnt == 0, 1280 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1281 1282 /* remove from SP index */ 1283 if (__LIST_CHAINED(sp)) 1284 LIST_REMOVE(sp, chain); 1285 1286 for (isr = sp->req; isr != NULL; isr = nextisr) { 1287 if (isr->sav != NULL) { 1288 KEY_FREESAV(&isr->sav); 1289 isr->sav = NULL; 1290 } 1291 1292 nextisr = isr->next; 1293 ipsec_delisr(isr); 1294 } 1295 _key_delsp(sp); 1296 } 1297 1298 /* 1299 * search SPD 1300 * OUT: NULL : not found 1301 * others : found, pointer to a SP. 1302 */ 1303 static struct secpolicy * 1304 key_getsp(struct secpolicyindex *spidx) 1305 { 1306 struct secpolicy *sp; 1307 1308 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1309 1310 SPTREE_LOCK(); 1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1312 if (sp->state == IPSEC_SPSTATE_DEAD) 1313 continue; 1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1315 SP_ADDREF(sp); 1316 break; 1317 } 1318 } 1319 SPTREE_UNLOCK(); 1320 1321 return sp; 1322 } 1323 1324 /* 1325 * get SP by index. 1326 * OUT: NULL : not found 1327 * others : found, pointer to a SP. 1328 */ 1329 static struct secpolicy * 1330 key_getspbyid(u_int32_t id) 1331 { 1332 struct secpolicy *sp; 1333 1334 SPTREE_LOCK(); 1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1336 if (sp->state == IPSEC_SPSTATE_DEAD) 1337 continue; 1338 if (sp->id == id) { 1339 SP_ADDREF(sp); 1340 goto done; 1341 } 1342 } 1343 1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1345 if (sp->state == IPSEC_SPSTATE_DEAD) 1346 continue; 1347 if (sp->id == id) { 1348 SP_ADDREF(sp); 1349 goto done; 1350 } 1351 } 1352 done: 1353 SPTREE_UNLOCK(); 1354 1355 return sp; 1356 } 1357 1358 struct secpolicy * 1359 key_newsp(const char* where, int tag) 1360 { 1361 struct secpolicy *newsp = NULL; 1362 1363 newsp = (struct secpolicy *) 1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1365 if (newsp) { 1366 SECPOLICY_LOCK_INIT(newsp); 1367 newsp->refcnt = 1; 1368 newsp->req = NULL; 1369 } 1370 1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1372 printf("DP %s from %s:%u return SP:%p\n", __func__, 1373 where, tag, newsp)); 1374 return newsp; 1375 } 1376 1377 static void 1378 _key_delsp(struct secpolicy *sp) 1379 { 1380 SECPOLICY_LOCK_DESTROY(sp); 1381 free(sp, M_IPSEC_SP); 1382 } 1383 1384 /* 1385 * create secpolicy structure from sadb_x_policy structure. 1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1387 * so must be set properly later. 1388 */ 1389 struct secpolicy * 1390 key_msg2sp(xpl0, len, error) 1391 struct sadb_x_policy *xpl0; 1392 size_t len; 1393 int *error; 1394 { 1395 struct secpolicy *newsp; 1396 1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1399 1400 if (len != PFKEY_EXTLEN(xpl0)) { 1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1402 *error = EINVAL; 1403 return NULL; 1404 } 1405 1406 if ((newsp = KEY_NEWSP()) == NULL) { 1407 *error = ENOBUFS; 1408 return NULL; 1409 } 1410 1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1412 newsp->policy = xpl0->sadb_x_policy_type; 1413 1414 /* check policy */ 1415 switch (xpl0->sadb_x_policy_type) { 1416 case IPSEC_POLICY_DISCARD: 1417 case IPSEC_POLICY_NONE: 1418 case IPSEC_POLICY_ENTRUST: 1419 case IPSEC_POLICY_BYPASS: 1420 newsp->req = NULL; 1421 break; 1422 1423 case IPSEC_POLICY_IPSEC: 1424 { 1425 int tlen; 1426 struct sadb_x_ipsecrequest *xisr; 1427 struct ipsecrequest **p_isr = &newsp->req; 1428 1429 /* validity check */ 1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1432 __func__)); 1433 KEY_FREESP(&newsp); 1434 *error = EINVAL; 1435 return NULL; 1436 } 1437 1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1440 1441 while (tlen > 0) { 1442 /* length check */ 1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1445 "length.\n", __func__)); 1446 KEY_FREESP(&newsp); 1447 *error = EINVAL; 1448 return NULL; 1449 } 1450 1451 /* allocate request buffer */ 1452 /* NB: data structure is zero'd */ 1453 *p_isr = ipsec_newisr(); 1454 if ((*p_isr) == NULL) { 1455 ipseclog((LOG_DEBUG, 1456 "%s: No more memory.\n", __func__)); 1457 KEY_FREESP(&newsp); 1458 *error = ENOBUFS; 1459 return NULL; 1460 } 1461 1462 /* set values */ 1463 switch (xisr->sadb_x_ipsecrequest_proto) { 1464 case IPPROTO_ESP: 1465 case IPPROTO_AH: 1466 case IPPROTO_IPCOMP: 1467 break; 1468 default: 1469 ipseclog((LOG_DEBUG, 1470 "%s: invalid proto type=%u\n", __func__, 1471 xisr->sadb_x_ipsecrequest_proto)); 1472 KEY_FREESP(&newsp); 1473 *error = EPROTONOSUPPORT; 1474 return NULL; 1475 } 1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1477 1478 switch (xisr->sadb_x_ipsecrequest_mode) { 1479 case IPSEC_MODE_TRANSPORT: 1480 case IPSEC_MODE_TUNNEL: 1481 break; 1482 case IPSEC_MODE_ANY: 1483 default: 1484 ipseclog((LOG_DEBUG, 1485 "%s: invalid mode=%u\n", __func__, 1486 xisr->sadb_x_ipsecrequest_mode)); 1487 KEY_FREESP(&newsp); 1488 *error = EINVAL; 1489 return NULL; 1490 } 1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1492 1493 switch (xisr->sadb_x_ipsecrequest_level) { 1494 case IPSEC_LEVEL_DEFAULT: 1495 case IPSEC_LEVEL_USE: 1496 case IPSEC_LEVEL_REQUIRE: 1497 break; 1498 case IPSEC_LEVEL_UNIQUE: 1499 /* validity check */ 1500 /* 1501 * If range violation of reqid, kernel will 1502 * update it, don't refuse it. 1503 */ 1504 if (xisr->sadb_x_ipsecrequest_reqid 1505 > IPSEC_MANUAL_REQID_MAX) { 1506 ipseclog((LOG_DEBUG, 1507 "%s: reqid=%d range " 1508 "violation, updated by kernel.\n", 1509 __func__, 1510 xisr->sadb_x_ipsecrequest_reqid)); 1511 xisr->sadb_x_ipsecrequest_reqid = 0; 1512 } 1513 1514 /* allocate new reqid id if reqid is zero. */ 1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1516 u_int32_t reqid; 1517 if ((reqid = key_newreqid()) == 0) { 1518 KEY_FREESP(&newsp); 1519 *error = ENOBUFS; 1520 return NULL; 1521 } 1522 (*p_isr)->saidx.reqid = reqid; 1523 xisr->sadb_x_ipsecrequest_reqid = reqid; 1524 } else { 1525 /* set it for manual keying. */ 1526 (*p_isr)->saidx.reqid = 1527 xisr->sadb_x_ipsecrequest_reqid; 1528 } 1529 break; 1530 1531 default: 1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1533 __func__, 1534 xisr->sadb_x_ipsecrequest_level)); 1535 KEY_FREESP(&newsp); 1536 *error = EINVAL; 1537 return NULL; 1538 } 1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1540 1541 /* set IP addresses if there */ 1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1543 struct sockaddr *paddr; 1544 1545 paddr = (struct sockaddr *)(xisr + 1); 1546 1547 /* validity check */ 1548 if (paddr->sa_len 1549 > sizeof((*p_isr)->saidx.src)) { 1550 ipseclog((LOG_DEBUG, "%s: invalid " 1551 "request address length.\n", 1552 __func__)); 1553 KEY_FREESP(&newsp); 1554 *error = EINVAL; 1555 return NULL; 1556 } 1557 bcopy(paddr, &(*p_isr)->saidx.src, 1558 paddr->sa_len); 1559 1560 paddr = (struct sockaddr *)((caddr_t)paddr 1561 + paddr->sa_len); 1562 1563 /* validity check */ 1564 if (paddr->sa_len 1565 > sizeof((*p_isr)->saidx.dst)) { 1566 ipseclog((LOG_DEBUG, "%s: invalid " 1567 "request address length.\n", 1568 __func__)); 1569 KEY_FREESP(&newsp); 1570 *error = EINVAL; 1571 return NULL; 1572 } 1573 bcopy(paddr, &(*p_isr)->saidx.dst, 1574 paddr->sa_len); 1575 } 1576 1577 (*p_isr)->sp = newsp; 1578 1579 /* initialization for the next. */ 1580 p_isr = &(*p_isr)->next; 1581 tlen -= xisr->sadb_x_ipsecrequest_len; 1582 1583 /* validity check */ 1584 if (tlen < 0) { 1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1586 __func__)); 1587 KEY_FREESP(&newsp); 1588 *error = EINVAL; 1589 return NULL; 1590 } 1591 1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1593 + xisr->sadb_x_ipsecrequest_len); 1594 } 1595 } 1596 break; 1597 default: 1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1599 KEY_FREESP(&newsp); 1600 *error = EINVAL; 1601 return NULL; 1602 } 1603 1604 *error = 0; 1605 return newsp; 1606 } 1607 1608 static u_int32_t 1609 key_newreqid() 1610 { 1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1612 1613 auto_reqid = (auto_reqid == ~0 1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1615 1616 /* XXX should be unique check */ 1617 1618 return auto_reqid; 1619 } 1620 1621 /* 1622 * copy secpolicy struct to sadb_x_policy structure indicated. 1623 */ 1624 struct mbuf * 1625 key_sp2msg(sp) 1626 struct secpolicy *sp; 1627 { 1628 struct sadb_x_policy *xpl; 1629 int tlen; 1630 caddr_t p; 1631 struct mbuf *m; 1632 1633 IPSEC_ASSERT(sp != NULL, ("null policy")); 1634 1635 tlen = key_getspreqmsglen(sp); 1636 1637 m = key_alloc_mbuf(tlen); 1638 if (!m || m->m_next) { /*XXX*/ 1639 if (m) 1640 m_freem(m); 1641 return NULL; 1642 } 1643 1644 m->m_len = tlen; 1645 m->m_next = NULL; 1646 xpl = mtod(m, struct sadb_x_policy *); 1647 bzero(xpl, tlen); 1648 1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1651 xpl->sadb_x_policy_type = sp->policy; 1652 xpl->sadb_x_policy_dir = sp->spidx.dir; 1653 xpl->sadb_x_policy_id = sp->id; 1654 p = (caddr_t)xpl + sizeof(*xpl); 1655 1656 /* if is the policy for ipsec ? */ 1657 if (sp->policy == IPSEC_POLICY_IPSEC) { 1658 struct sadb_x_ipsecrequest *xisr; 1659 struct ipsecrequest *isr; 1660 1661 for (isr = sp->req; isr != NULL; isr = isr->next) { 1662 1663 xisr = (struct sadb_x_ipsecrequest *)p; 1664 1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1667 xisr->sadb_x_ipsecrequest_level = isr->level; 1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1669 1670 p += sizeof(*xisr); 1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1672 p += isr->saidx.src.sa.sa_len; 1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1674 p += isr->saidx.src.sa.sa_len; 1675 1676 xisr->sadb_x_ipsecrequest_len = 1677 PFKEY_ALIGN8(sizeof(*xisr) 1678 + isr->saidx.src.sa.sa_len 1679 + isr->saidx.dst.sa.sa_len); 1680 } 1681 } 1682 1683 return m; 1684 } 1685 1686 /* m will not be freed nor modified */ 1687 static struct mbuf * 1688 #ifdef __STDC__ 1689 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1690 int ndeep, int nitem, ...) 1691 #else 1692 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1693 struct mbuf *m; 1694 const struct sadb_msghdr *mhp; 1695 int ndeep; 1696 int nitem; 1697 va_dcl 1698 #endif 1699 { 1700 va_list ap; 1701 int idx; 1702 int i; 1703 struct mbuf *result = NULL, *n; 1704 int len; 1705 1706 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1708 1709 va_start(ap, nitem); 1710 for (i = 0; i < nitem; i++) { 1711 idx = va_arg(ap, int); 1712 if (idx < 0 || idx > SADB_EXT_MAX) 1713 goto fail; 1714 /* don't attempt to pull empty extension */ 1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1716 continue; 1717 if (idx != SADB_EXT_RESERVED && 1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1719 continue; 1720 1721 if (idx == SADB_EXT_RESERVED) { 1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1723 1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1725 1726 MGETHDR(n, M_DONTWAIT, MT_DATA); 1727 if (!n) 1728 goto fail; 1729 n->m_len = len; 1730 n->m_next = NULL; 1731 m_copydata(m, 0, sizeof(struct sadb_msg), 1732 mtod(n, caddr_t)); 1733 } else if (i < ndeep) { 1734 len = mhp->extlen[idx]; 1735 n = key_alloc_mbuf(len); 1736 if (!n || n->m_next) { /*XXX*/ 1737 if (n) 1738 m_freem(n); 1739 goto fail; 1740 } 1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1742 mtod(n, caddr_t)); 1743 } else { 1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1745 M_DONTWAIT); 1746 } 1747 if (n == NULL) 1748 goto fail; 1749 1750 if (result) 1751 m_cat(result, n); 1752 else 1753 result = n; 1754 } 1755 va_end(ap); 1756 1757 if ((result->m_flags & M_PKTHDR) != 0) { 1758 result->m_pkthdr.len = 0; 1759 for (n = result; n; n = n->m_next) 1760 result->m_pkthdr.len += n->m_len; 1761 } 1762 1763 return result; 1764 1765 fail: 1766 m_freem(result); 1767 va_end(ap); 1768 return NULL; 1769 } 1770 1771 /* 1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1773 * add an entry to SP database, when received 1774 * <base, address(SD), (lifetime(H),) policy> 1775 * from the user(?). 1776 * Adding to SP database, 1777 * and send 1778 * <base, address(SD), (lifetime(H),) policy> 1779 * to the socket which was send. 1780 * 1781 * SPDADD set a unique policy entry. 1782 * SPDSETIDX like SPDADD without a part of policy requests. 1783 * SPDUPDATE replace a unique policy entry. 1784 * 1785 * m will always be freed. 1786 */ 1787 static int 1788 key_spdadd(so, m, mhp) 1789 struct socket *so; 1790 struct mbuf *m; 1791 const struct sadb_msghdr *mhp; 1792 { 1793 struct sadb_address *src0, *dst0; 1794 struct sadb_x_policy *xpl0, *xpl; 1795 struct sadb_lifetime *lft = NULL; 1796 struct secpolicyindex spidx; 1797 struct secpolicy *newsp; 1798 int error; 1799 1800 IPSEC_ASSERT(so != NULL, ("null socket")); 1801 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1804 1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1809 return key_senderror(so, m, EINVAL); 1810 } 1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1815 __func__)); 1816 return key_senderror(so, m, EINVAL); 1817 } 1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1820 < sizeof(struct sadb_lifetime)) { 1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1822 __func__)); 1823 return key_senderror(so, m, EINVAL); 1824 } 1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1826 } 1827 1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1831 1832 /* 1833 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1834 * we are processing traffic endpoints. 1835 */ 1836 1837 /* make secindex */ 1838 /* XXX boundary check against sa_len */ 1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1840 src0 + 1, 1841 dst0 + 1, 1842 src0->sadb_address_prefixlen, 1843 dst0->sadb_address_prefixlen, 1844 src0->sadb_address_proto, 1845 &spidx); 1846 1847 /* checking the direciton. */ 1848 switch (xpl0->sadb_x_policy_dir) { 1849 case IPSEC_DIR_INBOUND: 1850 case IPSEC_DIR_OUTBOUND: 1851 break; 1852 default: 1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1854 mhp->msg->sadb_msg_errno = EINVAL; 1855 return 0; 1856 } 1857 1858 /* check policy */ 1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1863 return key_senderror(so, m, EINVAL); 1864 } 1865 1866 /* policy requests are mandatory when action is ipsec. */ 1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1871 __func__)); 1872 return key_senderror(so, m, EINVAL); 1873 } 1874 1875 /* 1876 * checking there is SP already or not. 1877 * SPDUPDATE doesn't depend on whether there is a SP or not. 1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1879 * then error. 1880 */ 1881 newsp = key_getsp(&spidx); 1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1883 if (newsp) { 1884 SPTREE_LOCK(); 1885 newsp->state = IPSEC_SPSTATE_DEAD; 1886 SPTREE_UNLOCK(); 1887 KEY_FREESP(&newsp); 1888 } 1889 } else { 1890 if (newsp != NULL) { 1891 KEY_FREESP(&newsp); 1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1893 __func__)); 1894 return key_senderror(so, m, EEXIST); 1895 } 1896 } 1897 1898 /* allocation new SP entry */ 1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1900 return key_senderror(so, m, error); 1901 } 1902 1903 if ((newsp->id = key_getnewspid()) == 0) { 1904 _key_delsp(newsp); 1905 return key_senderror(so, m, ENOBUFS); 1906 } 1907 1908 /* XXX boundary check against sa_len */ 1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1910 src0 + 1, 1911 dst0 + 1, 1912 src0->sadb_address_prefixlen, 1913 dst0->sadb_address_prefixlen, 1914 src0->sadb_address_proto, 1915 &newsp->spidx); 1916 1917 /* sanity check on addr pair */ 1918 if (((struct sockaddr *)(src0 + 1))->sa_family != 1919 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1920 _key_delsp(newsp); 1921 return key_senderror(so, m, EINVAL); 1922 } 1923 if (((struct sockaddr *)(src0 + 1))->sa_len != 1924 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1925 _key_delsp(newsp); 1926 return key_senderror(so, m, EINVAL); 1927 } 1928 #if 1 1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1931 _key_delsp(newsp); 1932 return key_senderror(so, m, EINVAL); 1933 } 1934 } 1935 #endif 1936 1937 newsp->created = time_second; 1938 newsp->lastused = newsp->created; 1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1941 1942 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1943 newsp->state = IPSEC_SPSTATE_ALIVE; 1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1945 1946 /* delete the entry in spacqtree */ 1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1948 struct secspacq *spacq = key_getspacq(&spidx); 1949 if (spacq != NULL) { 1950 /* reset counter in order to deletion by timehandler. */ 1951 spacq->created = time_second; 1952 spacq->count = 0; 1953 SPACQ_UNLOCK(); 1954 } 1955 } 1956 1957 { 1958 struct mbuf *n, *mpolicy; 1959 struct sadb_msg *newmsg; 1960 int off; 1961 1962 /* 1963 * Note: do not send SADB_X_EXT_NAT_T_* here: 1964 * we are sending traffic endpoints. 1965 */ 1966 1967 /* create new sadb_msg to reply. */ 1968 if (lft) { 1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1972 } else { 1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1974 SADB_X_EXT_POLICY, 1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1976 } 1977 if (!n) 1978 return key_senderror(so, m, ENOBUFS); 1979 1980 if (n->m_len < sizeof(*newmsg)) { 1981 n = m_pullup(n, sizeof(*newmsg)); 1982 if (!n) 1983 return key_senderror(so, m, ENOBUFS); 1984 } 1985 newmsg = mtod(n, struct sadb_msg *); 1986 newmsg->sadb_msg_errno = 0; 1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1988 1989 off = 0; 1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1991 sizeof(*xpl), &off); 1992 if (mpolicy == NULL) { 1993 /* n is already freed */ 1994 return key_senderror(so, m, ENOBUFS); 1995 } 1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1998 m_freem(n); 1999 return key_senderror(so, m, EINVAL); 2000 } 2001 xpl->sadb_x_policy_id = newsp->id; 2002 2003 m_freem(m); 2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2005 } 2006 } 2007 2008 /* 2009 * get new policy id. 2010 * OUT: 2011 * 0: failure. 2012 * others: success. 2013 */ 2014 static u_int32_t 2015 key_getnewspid() 2016 { 2017 u_int32_t newid = 0; 2018 int count = V_key_spi_trycnt; /* XXX */ 2019 struct secpolicy *sp; 2020 2021 /* when requesting to allocate spi ranged */ 2022 while (count--) { 2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2024 2025 if ((sp = key_getspbyid(newid)) == NULL) 2026 break; 2027 2028 KEY_FREESP(&sp); 2029 } 2030 2031 if (count == 0 || newid == 0) { 2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2033 __func__)); 2034 return 0; 2035 } 2036 2037 return newid; 2038 } 2039 2040 /* 2041 * SADB_SPDDELETE processing 2042 * receive 2043 * <base, address(SD), policy(*)> 2044 * from the user(?), and set SADB_SASTATE_DEAD, 2045 * and send, 2046 * <base, address(SD), policy(*)> 2047 * to the ikmpd. 2048 * policy(*) including direction of policy. 2049 * 2050 * m will always be freed. 2051 */ 2052 static int 2053 key_spddelete(so, m, mhp) 2054 struct socket *so; 2055 struct mbuf *m; 2056 const struct sadb_msghdr *mhp; 2057 { 2058 struct sadb_address *src0, *dst0; 2059 struct sadb_x_policy *xpl0; 2060 struct secpolicyindex spidx; 2061 struct secpolicy *sp; 2062 2063 IPSEC_ASSERT(so != NULL, ("null so")); 2064 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2067 2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2072 __func__)); 2073 return key_senderror(so, m, EINVAL); 2074 } 2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2079 __func__)); 2080 return key_senderror(so, m, EINVAL); 2081 } 2082 2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2086 2087 /* 2088 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2089 * we are processing traffic endpoints. 2090 */ 2091 2092 /* make secindex */ 2093 /* XXX boundary check against sa_len */ 2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2095 src0 + 1, 2096 dst0 + 1, 2097 src0->sadb_address_prefixlen, 2098 dst0->sadb_address_prefixlen, 2099 src0->sadb_address_proto, 2100 &spidx); 2101 2102 /* checking the direciton. */ 2103 switch (xpl0->sadb_x_policy_dir) { 2104 case IPSEC_DIR_INBOUND: 2105 case IPSEC_DIR_OUTBOUND: 2106 break; 2107 default: 2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2109 return key_senderror(so, m, EINVAL); 2110 } 2111 2112 /* Is there SP in SPD ? */ 2113 if ((sp = key_getsp(&spidx)) == NULL) { 2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2115 return key_senderror(so, m, EINVAL); 2116 } 2117 2118 /* save policy id to buffer to be returned. */ 2119 xpl0->sadb_x_policy_id = sp->id; 2120 2121 SPTREE_LOCK(); 2122 sp->state = IPSEC_SPSTATE_DEAD; 2123 SPTREE_UNLOCK(); 2124 KEY_FREESP(&sp); 2125 2126 { 2127 struct mbuf *n; 2128 struct sadb_msg *newmsg; 2129 2130 /* 2131 * Note: do not send SADB_X_EXT_NAT_T_* here: 2132 * we are sending traffic endpoints. 2133 */ 2134 2135 /* create new sadb_msg to reply. */ 2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2138 if (!n) 2139 return key_senderror(so, m, ENOBUFS); 2140 2141 newmsg = mtod(n, struct sadb_msg *); 2142 newmsg->sadb_msg_errno = 0; 2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2144 2145 m_freem(m); 2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2147 } 2148 } 2149 2150 /* 2151 * SADB_SPDDELETE2 processing 2152 * receive 2153 * <base, policy(*)> 2154 * from the user(?), and set SADB_SASTATE_DEAD, 2155 * and send, 2156 * <base, policy(*)> 2157 * to the ikmpd. 2158 * policy(*) including direction of policy. 2159 * 2160 * m will always be freed. 2161 */ 2162 static int 2163 key_spddelete2(so, m, mhp) 2164 struct socket *so; 2165 struct mbuf *m; 2166 const struct sadb_msghdr *mhp; 2167 { 2168 u_int32_t id; 2169 struct secpolicy *sp; 2170 2171 IPSEC_ASSERT(so != NULL, ("null socket")); 2172 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2175 2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2179 return key_senderror(so, m, EINVAL); 2180 } 2181 2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2183 2184 /* Is there SP in SPD ? */ 2185 if ((sp = key_getspbyid(id)) == NULL) { 2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2187 return key_senderror(so, m, EINVAL); 2188 } 2189 2190 SPTREE_LOCK(); 2191 sp->state = IPSEC_SPSTATE_DEAD; 2192 SPTREE_UNLOCK(); 2193 KEY_FREESP(&sp); 2194 2195 { 2196 struct mbuf *n, *nn; 2197 struct sadb_msg *newmsg; 2198 int off, len; 2199 2200 /* create new sadb_msg to reply. */ 2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2202 2203 MGETHDR(n, M_DONTWAIT, MT_DATA); 2204 if (n && len > MHLEN) { 2205 MCLGET(n, M_DONTWAIT); 2206 if ((n->m_flags & M_EXT) == 0) { 2207 m_freem(n); 2208 n = NULL; 2209 } 2210 } 2211 if (!n) 2212 return key_senderror(so, m, ENOBUFS); 2213 2214 n->m_len = len; 2215 n->m_next = NULL; 2216 off = 0; 2217 2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2220 2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2222 off, len)); 2223 2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2225 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2226 if (!n->m_next) { 2227 m_freem(n); 2228 return key_senderror(so, m, ENOBUFS); 2229 } 2230 2231 n->m_pkthdr.len = 0; 2232 for (nn = n; nn; nn = nn->m_next) 2233 n->m_pkthdr.len += nn->m_len; 2234 2235 newmsg = mtod(n, struct sadb_msg *); 2236 newmsg->sadb_msg_errno = 0; 2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2238 2239 m_freem(m); 2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2241 } 2242 } 2243 2244 /* 2245 * SADB_X_GET processing 2246 * receive 2247 * <base, policy(*)> 2248 * from the user(?), 2249 * and send, 2250 * <base, address(SD), policy> 2251 * to the ikmpd. 2252 * policy(*) including direction of policy. 2253 * 2254 * m will always be freed. 2255 */ 2256 static int 2257 key_spdget(so, m, mhp) 2258 struct socket *so; 2259 struct mbuf *m; 2260 const struct sadb_msghdr *mhp; 2261 { 2262 u_int32_t id; 2263 struct secpolicy *sp; 2264 struct mbuf *n; 2265 2266 IPSEC_ASSERT(so != NULL, ("null socket")); 2267 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2270 2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2274 __func__)); 2275 return key_senderror(so, m, EINVAL); 2276 } 2277 2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2279 2280 /* Is there SP in SPD ? */ 2281 if ((sp = key_getspbyid(id)) == NULL) { 2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2283 return key_senderror(so, m, ENOENT); 2284 } 2285 2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2287 KEY_FREESP(&sp); 2288 if (n != NULL) { 2289 m_freem(m); 2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2291 } else 2292 return key_senderror(so, m, ENOBUFS); 2293 } 2294 2295 /* 2296 * SADB_X_SPDACQUIRE processing. 2297 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2298 * send 2299 * <base, policy(*)> 2300 * to KMD, and expect to receive 2301 * <base> with SADB_X_SPDACQUIRE if error occured, 2302 * or 2303 * <base, policy> 2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2305 * policy(*) is without policy requests. 2306 * 2307 * 0 : succeed 2308 * others: error number 2309 */ 2310 int 2311 key_spdacquire(sp) 2312 struct secpolicy *sp; 2313 { 2314 struct mbuf *result = NULL, *m; 2315 struct secspacq *newspacq; 2316 2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2320 ("policy not IPSEC %u", sp->policy)); 2321 2322 /* Get an entry to check whether sent message or not. */ 2323 newspacq = key_getspacq(&sp->spidx); 2324 if (newspacq != NULL) { 2325 if (V_key_blockacq_count < newspacq->count) { 2326 /* reset counter and do send message. */ 2327 newspacq->count = 0; 2328 } else { 2329 /* increment counter and do nothing. */ 2330 newspacq->count++; 2331 return 0; 2332 } 2333 SPACQ_UNLOCK(); 2334 } else { 2335 /* make new entry for blocking to send SADB_ACQUIRE. */ 2336 newspacq = key_newspacq(&sp->spidx); 2337 if (newspacq == NULL) 2338 return ENOBUFS; 2339 } 2340 2341 /* create new sadb_msg to reply. */ 2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2343 if (!m) 2344 return ENOBUFS; 2345 2346 result = m; 2347 2348 result->m_pkthdr.len = 0; 2349 for (m = result; m; m = m->m_next) 2350 result->m_pkthdr.len += m->m_len; 2351 2352 mtod(result, struct sadb_msg *)->sadb_msg_len = 2353 PFKEY_UNIT64(result->m_pkthdr.len); 2354 2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2356 } 2357 2358 /* 2359 * SADB_SPDFLUSH processing 2360 * receive 2361 * <base> 2362 * from the user, and free all entries in secpctree. 2363 * and send, 2364 * <base> 2365 * to the user. 2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2367 * 2368 * m will always be freed. 2369 */ 2370 static int 2371 key_spdflush(so, m, mhp) 2372 struct socket *so; 2373 struct mbuf *m; 2374 const struct sadb_msghdr *mhp; 2375 { 2376 struct sadb_msg *newmsg; 2377 struct secpolicy *sp; 2378 u_int dir; 2379 2380 IPSEC_ASSERT(so != NULL, ("null socket")); 2381 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2384 2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2386 return key_senderror(so, m, EINVAL); 2387 2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2389 SPTREE_LOCK(); 2390 LIST_FOREACH(sp, &V_sptree[dir], chain) 2391 sp->state = IPSEC_SPSTATE_DEAD; 2392 SPTREE_UNLOCK(); 2393 } 2394 2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2397 return key_senderror(so, m, ENOBUFS); 2398 } 2399 2400 if (m->m_next) 2401 m_freem(m->m_next); 2402 m->m_next = NULL; 2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2404 newmsg = mtod(m, struct sadb_msg *); 2405 newmsg->sadb_msg_errno = 0; 2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2407 2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2409 } 2410 2411 /* 2412 * SADB_SPDDUMP processing 2413 * receive 2414 * <base> 2415 * from the user, and dump all SP leaves 2416 * and send, 2417 * <base> ..... 2418 * to the ikmpd. 2419 * 2420 * m will always be freed. 2421 */ 2422 static int 2423 key_spddump(so, m, mhp) 2424 struct socket *so; 2425 struct mbuf *m; 2426 const struct sadb_msghdr *mhp; 2427 { 2428 struct secpolicy *sp; 2429 int cnt; 2430 u_int dir; 2431 struct mbuf *n; 2432 2433 IPSEC_ASSERT(so != NULL, ("null socket")); 2434 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2437 2438 /* search SPD entry and get buffer size. */ 2439 cnt = 0; 2440 SPTREE_LOCK(); 2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2442 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2443 cnt++; 2444 } 2445 } 2446 2447 if (cnt == 0) { 2448 SPTREE_UNLOCK(); 2449 return key_senderror(so, m, ENOENT); 2450 } 2451 2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2453 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2454 --cnt; 2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2456 mhp->msg->sadb_msg_pid); 2457 2458 if (n) 2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2460 } 2461 } 2462 2463 SPTREE_UNLOCK(); 2464 m_freem(m); 2465 return 0; 2466 } 2467 2468 static struct mbuf * 2469 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2470 { 2471 struct mbuf *result = NULL, *m; 2472 struct seclifetime lt; 2473 2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2475 if (!m) 2476 goto fail; 2477 result = m; 2478 2479 /* 2480 * Note: do not send SADB_X_EXT_NAT_T_* here: 2481 * we are sending traffic endpoints. 2482 */ 2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2484 &sp->spidx.src.sa, sp->spidx.prefs, 2485 sp->spidx.ul_proto); 2486 if (!m) 2487 goto fail; 2488 m_cat(result, m); 2489 2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2491 &sp->spidx.dst.sa, sp->spidx.prefd, 2492 sp->spidx.ul_proto); 2493 if (!m) 2494 goto fail; 2495 m_cat(result, m); 2496 2497 m = key_sp2msg(sp); 2498 if (!m) 2499 goto fail; 2500 m_cat(result, m); 2501 2502 if(sp->lifetime){ 2503 lt.addtime=sp->created; 2504 lt.usetime= sp->lastused; 2505 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2506 if (!m) 2507 goto fail; 2508 m_cat(result, m); 2509 2510 lt.addtime=sp->lifetime; 2511 lt.usetime= sp->validtime; 2512 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2513 if (!m) 2514 goto fail; 2515 m_cat(result, m); 2516 } 2517 2518 if ((result->m_flags & M_PKTHDR) == 0) 2519 goto fail; 2520 2521 if (result->m_len < sizeof(struct sadb_msg)) { 2522 result = m_pullup(result, sizeof(struct sadb_msg)); 2523 if (result == NULL) 2524 goto fail; 2525 } 2526 2527 result->m_pkthdr.len = 0; 2528 for (m = result; m; m = m->m_next) 2529 result->m_pkthdr.len += m->m_len; 2530 2531 mtod(result, struct sadb_msg *)->sadb_msg_len = 2532 PFKEY_UNIT64(result->m_pkthdr.len); 2533 2534 return result; 2535 2536 fail: 2537 m_freem(result); 2538 return NULL; 2539 } 2540 2541 /* 2542 * get PFKEY message length for security policy and request. 2543 */ 2544 static u_int 2545 key_getspreqmsglen(sp) 2546 struct secpolicy *sp; 2547 { 2548 u_int tlen; 2549 2550 tlen = sizeof(struct sadb_x_policy); 2551 2552 /* if is the policy for ipsec ? */ 2553 if (sp->policy != IPSEC_POLICY_IPSEC) 2554 return tlen; 2555 2556 /* get length of ipsec requests */ 2557 { 2558 struct ipsecrequest *isr; 2559 int len; 2560 2561 for (isr = sp->req; isr != NULL; isr = isr->next) { 2562 len = sizeof(struct sadb_x_ipsecrequest) 2563 + isr->saidx.src.sa.sa_len 2564 + isr->saidx.dst.sa.sa_len; 2565 2566 tlen += PFKEY_ALIGN8(len); 2567 } 2568 } 2569 2570 return tlen; 2571 } 2572 2573 /* 2574 * SADB_SPDEXPIRE processing 2575 * send 2576 * <base, address(SD), lifetime(CH), policy> 2577 * to KMD by PF_KEY. 2578 * 2579 * OUT: 0 : succeed 2580 * others : error number 2581 */ 2582 static int 2583 key_spdexpire(sp) 2584 struct secpolicy *sp; 2585 { 2586 struct mbuf *result = NULL, *m; 2587 int len; 2588 int error = -1; 2589 struct sadb_lifetime *lt; 2590 2591 /* XXX: Why do we lock ? */ 2592 2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2594 2595 /* set msg header */ 2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2597 if (!m) { 2598 error = ENOBUFS; 2599 goto fail; 2600 } 2601 result = m; 2602 2603 /* create lifetime extension (current and hard) */ 2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2605 m = key_alloc_mbuf(len); 2606 if (!m || m->m_next) { /*XXX*/ 2607 if (m) 2608 m_freem(m); 2609 error = ENOBUFS; 2610 goto fail; 2611 } 2612 bzero(mtod(m, caddr_t), len); 2613 lt = mtod(m, struct sadb_lifetime *); 2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2616 lt->sadb_lifetime_allocations = 0; 2617 lt->sadb_lifetime_bytes = 0; 2618 lt->sadb_lifetime_addtime = sp->created; 2619 lt->sadb_lifetime_usetime = sp->lastused; 2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2623 lt->sadb_lifetime_allocations = 0; 2624 lt->sadb_lifetime_bytes = 0; 2625 lt->sadb_lifetime_addtime = sp->lifetime; 2626 lt->sadb_lifetime_usetime = sp->validtime; 2627 m_cat(result, m); 2628 2629 /* 2630 * Note: do not send SADB_X_EXT_NAT_T_* here: 2631 * we are sending traffic endpoints. 2632 */ 2633 2634 /* set sadb_address for source */ 2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2636 &sp->spidx.src.sa, 2637 sp->spidx.prefs, sp->spidx.ul_proto); 2638 if (!m) { 2639 error = ENOBUFS; 2640 goto fail; 2641 } 2642 m_cat(result, m); 2643 2644 /* set sadb_address for destination */ 2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2646 &sp->spidx.dst.sa, 2647 sp->spidx.prefd, sp->spidx.ul_proto); 2648 if (!m) { 2649 error = ENOBUFS; 2650 goto fail; 2651 } 2652 m_cat(result, m); 2653 2654 /* set secpolicy */ 2655 m = key_sp2msg(sp); 2656 if (!m) { 2657 error = ENOBUFS; 2658 goto fail; 2659 } 2660 m_cat(result, m); 2661 2662 if ((result->m_flags & M_PKTHDR) == 0) { 2663 error = EINVAL; 2664 goto fail; 2665 } 2666 2667 if (result->m_len < sizeof(struct sadb_msg)) { 2668 result = m_pullup(result, sizeof(struct sadb_msg)); 2669 if (result == NULL) { 2670 error = ENOBUFS; 2671 goto fail; 2672 } 2673 } 2674 2675 result->m_pkthdr.len = 0; 2676 for (m = result; m; m = m->m_next) 2677 result->m_pkthdr.len += m->m_len; 2678 2679 mtod(result, struct sadb_msg *)->sadb_msg_len = 2680 PFKEY_UNIT64(result->m_pkthdr.len); 2681 2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2683 2684 fail: 2685 if (result) 2686 m_freem(result); 2687 return error; 2688 } 2689 2690 /* %%% SAD management */ 2691 /* 2692 * allocating a memory for new SA head, and copy from the values of mhp. 2693 * OUT: NULL : failure due to the lack of memory. 2694 * others : pointer to new SA head. 2695 */ 2696 static struct secashead * 2697 key_newsah(saidx) 2698 struct secasindex *saidx; 2699 { 2700 struct secashead *newsah; 2701 2702 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2703 2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2705 if (newsah != NULL) { 2706 int i; 2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2708 LIST_INIT(&newsah->savtree[i]); 2709 newsah->saidx = *saidx; 2710 2711 /* add to saidxtree */ 2712 newsah->state = SADB_SASTATE_MATURE; 2713 2714 SAHTREE_LOCK(); 2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2716 SAHTREE_UNLOCK(); 2717 } 2718 return(newsah); 2719 } 2720 2721 /* 2722 * delete SA index and all SA registerd. 2723 */ 2724 static void 2725 key_delsah(sah) 2726 struct secashead *sah; 2727 { 2728 struct secasvar *sav, *nextsav; 2729 u_int stateidx; 2730 int zombie = 0; 2731 2732 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2733 SAHTREE_LOCK_ASSERT(); 2734 2735 /* searching all SA registerd in the secindex. */ 2736 for (stateidx = 0; 2737 stateidx < _ARRAYLEN(saorder_state_any); 2738 stateidx++) { 2739 u_int state = saorder_state_any[stateidx]; 2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2741 if (sav->refcnt == 0) { 2742 /* sanity check */ 2743 KEY_CHKSASTATE(state, sav->state, __func__); 2744 /* 2745 * do NOT call KEY_FREESAV here: 2746 * it will only delete the sav if refcnt == 1, 2747 * where we already know that refcnt == 0 2748 */ 2749 key_delsav(sav); 2750 } else { 2751 /* give up to delete this sa */ 2752 zombie++; 2753 } 2754 } 2755 } 2756 if (!zombie) { /* delete only if there are savs */ 2757 /* remove from tree of SA index */ 2758 if (__LIST_CHAINED(sah)) 2759 LIST_REMOVE(sah, chain); 2760 if (sah->route_cache.sa_route.ro_rt) { 2761 RTFREE(sah->route_cache.sa_route.ro_rt); 2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2763 } 2764 free(sah, M_IPSEC_SAH); 2765 } 2766 } 2767 2768 /* 2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2770 * and copy the values of mhp into new buffer. 2771 * When SAD message type is GETSPI: 2772 * to set sequence number from acq_seq++, 2773 * to set zero to SPI. 2774 * not to call key_setsava(). 2775 * OUT: NULL : fail 2776 * others : pointer to new secasvar. 2777 * 2778 * does not modify mbuf. does not free mbuf on error. 2779 */ 2780 static struct secasvar * 2781 key_newsav(m, mhp, sah, errp, where, tag) 2782 struct mbuf *m; 2783 const struct sadb_msghdr *mhp; 2784 struct secashead *sah; 2785 int *errp; 2786 const char* where; 2787 int tag; 2788 { 2789 struct secasvar *newsav; 2790 const struct sadb_sa *xsa; 2791 2792 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2795 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2796 2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2798 if (newsav == NULL) { 2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2800 *errp = ENOBUFS; 2801 goto done; 2802 } 2803 2804 switch (mhp->msg->sadb_msg_type) { 2805 case SADB_GETSPI: 2806 newsav->spi = 0; 2807 2808 #ifdef IPSEC_DOSEQCHECK 2809 /* sync sequence number */ 2810 if (mhp->msg->sadb_msg_seq == 0) 2811 newsav->seq = 2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2813 else 2814 #endif 2815 newsav->seq = mhp->msg->sadb_msg_seq; 2816 break; 2817 2818 case SADB_ADD: 2819 /* sanity check */ 2820 if (mhp->ext[SADB_EXT_SA] == NULL) { 2821 free(newsav, M_IPSEC_SA); 2822 newsav = NULL; 2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2824 __func__)); 2825 *errp = EINVAL; 2826 goto done; 2827 } 2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2829 newsav->spi = xsa->sadb_sa_spi; 2830 newsav->seq = mhp->msg->sadb_msg_seq; 2831 break; 2832 default: 2833 free(newsav, M_IPSEC_SA); 2834 newsav = NULL; 2835 *errp = EINVAL; 2836 goto done; 2837 } 2838 2839 2840 /* copy sav values */ 2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2842 *errp = key_setsaval(newsav, m, mhp); 2843 if (*errp) { 2844 free(newsav, M_IPSEC_SA); 2845 newsav = NULL; 2846 goto done; 2847 } 2848 } 2849 2850 SECASVAR_LOCK_INIT(newsav); 2851 2852 /* reset created */ 2853 newsav->created = time_second; 2854 newsav->pid = mhp->msg->sadb_msg_pid; 2855 2856 /* add to satree */ 2857 newsav->sah = sah; 2858 sa_initref(newsav); 2859 newsav->state = SADB_SASTATE_LARVAL; 2860 2861 SAHTREE_LOCK(); 2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2863 secasvar, chain); 2864 SAHTREE_UNLOCK(); 2865 done: 2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2867 printf("DP %s from %s:%u return SP:%p\n", __func__, 2868 where, tag, newsav)); 2869 2870 return newsav; 2871 } 2872 2873 /* 2874 * free() SA variable entry. 2875 */ 2876 static void 2877 key_cleansav(struct secasvar *sav) 2878 { 2879 /* 2880 * Cleanup xform state. Note that zeroize'ing causes the 2881 * keys to be cleared; otherwise we must do it ourself. 2882 */ 2883 if (sav->tdb_xform != NULL) { 2884 sav->tdb_xform->xf_zeroize(sav); 2885 sav->tdb_xform = NULL; 2886 } else { 2887 KASSERT(sav->iv == NULL, ("iv but no xform")); 2888 if (sav->key_auth != NULL) 2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2890 if (sav->key_enc != NULL) 2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2892 } 2893 if (sav->key_auth != NULL) { 2894 if (sav->key_auth->key_data != NULL) 2895 free(sav->key_auth->key_data, M_IPSEC_MISC); 2896 free(sav->key_auth, M_IPSEC_MISC); 2897 sav->key_auth = NULL; 2898 } 2899 if (sav->key_enc != NULL) { 2900 if (sav->key_enc->key_data != NULL) 2901 free(sav->key_enc->key_data, M_IPSEC_MISC); 2902 free(sav->key_enc, M_IPSEC_MISC); 2903 sav->key_enc = NULL; 2904 } 2905 if (sav->sched) { 2906 bzero(sav->sched, sav->schedlen); 2907 free(sav->sched, M_IPSEC_MISC); 2908 sav->sched = NULL; 2909 } 2910 if (sav->replay != NULL) { 2911 free(sav->replay, M_IPSEC_MISC); 2912 sav->replay = NULL; 2913 } 2914 if (sav->lft_c != NULL) { 2915 free(sav->lft_c, M_IPSEC_MISC); 2916 sav->lft_c = NULL; 2917 } 2918 if (sav->lft_h != NULL) { 2919 free(sav->lft_h, M_IPSEC_MISC); 2920 sav->lft_h = NULL; 2921 } 2922 if (sav->lft_s != NULL) { 2923 free(sav->lft_s, M_IPSEC_MISC); 2924 sav->lft_s = NULL; 2925 } 2926 } 2927 2928 /* 2929 * free() SA variable entry. 2930 */ 2931 static void 2932 key_delsav(sav) 2933 struct secasvar *sav; 2934 { 2935 IPSEC_ASSERT(sav != NULL, ("null sav")); 2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2937 2938 /* remove from SA header */ 2939 if (__LIST_CHAINED(sav)) 2940 LIST_REMOVE(sav, chain); 2941 key_cleansav(sav); 2942 SECASVAR_LOCK_DESTROY(sav); 2943 free(sav, M_IPSEC_SA); 2944 } 2945 2946 /* 2947 * search SAD. 2948 * OUT: 2949 * NULL : not found 2950 * others : found, pointer to a SA. 2951 */ 2952 static struct secashead * 2953 key_getsah(saidx) 2954 struct secasindex *saidx; 2955 { 2956 struct secashead *sah; 2957 2958 SAHTREE_LOCK(); 2959 LIST_FOREACH(sah, &V_sahtree, chain) { 2960 if (sah->state == SADB_SASTATE_DEAD) 2961 continue; 2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2963 break; 2964 } 2965 SAHTREE_UNLOCK(); 2966 2967 return sah; 2968 } 2969 2970 /* 2971 * check not to be duplicated SPI. 2972 * NOTE: this function is too slow due to searching all SAD. 2973 * OUT: 2974 * NULL : not found 2975 * others : found, pointer to a SA. 2976 */ 2977 static struct secasvar * 2978 key_checkspidup(saidx, spi) 2979 struct secasindex *saidx; 2980 u_int32_t spi; 2981 { 2982 struct secashead *sah; 2983 struct secasvar *sav; 2984 2985 /* check address family */ 2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2988 __func__)); 2989 return NULL; 2990 } 2991 2992 sav = NULL; 2993 /* check all SAD */ 2994 SAHTREE_LOCK(); 2995 LIST_FOREACH(sah, &V_sahtree, chain) { 2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2997 continue; 2998 sav = key_getsavbyspi(sah, spi); 2999 if (sav != NULL) 3000 break; 3001 } 3002 SAHTREE_UNLOCK(); 3003 3004 return sav; 3005 } 3006 3007 /* 3008 * search SAD litmited alive SA, protocol, SPI. 3009 * OUT: 3010 * NULL : not found 3011 * others : found, pointer to a SA. 3012 */ 3013 static struct secasvar * 3014 key_getsavbyspi(sah, spi) 3015 struct secashead *sah; 3016 u_int32_t spi; 3017 { 3018 struct secasvar *sav; 3019 u_int stateidx, state; 3020 3021 sav = NULL; 3022 SAHTREE_LOCK_ASSERT(); 3023 /* search all status */ 3024 for (stateidx = 0; 3025 stateidx < _ARRAYLEN(saorder_state_alive); 3026 stateidx++) { 3027 3028 state = saorder_state_alive[stateidx]; 3029 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3030 3031 /* sanity check */ 3032 if (sav->state != state) { 3033 ipseclog((LOG_DEBUG, "%s: " 3034 "invalid sav->state (queue: %d SA: %d)\n", 3035 __func__, state, sav->state)); 3036 continue; 3037 } 3038 3039 if (sav->spi == spi) 3040 return sav; 3041 } 3042 } 3043 3044 return NULL; 3045 } 3046 3047 /* 3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3049 * You must update these if need. 3050 * OUT: 0: success. 3051 * !0: failure. 3052 * 3053 * does not modify mbuf. does not free mbuf on error. 3054 */ 3055 static int 3056 key_setsaval(sav, m, mhp) 3057 struct secasvar *sav; 3058 struct mbuf *m; 3059 const struct sadb_msghdr *mhp; 3060 { 3061 int error = 0; 3062 3063 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3066 3067 /* initialization */ 3068 sav->replay = NULL; 3069 sav->key_auth = NULL; 3070 sav->key_enc = NULL; 3071 sav->sched = NULL; 3072 sav->schedlen = 0; 3073 sav->iv = NULL; 3074 sav->lft_c = NULL; 3075 sav->lft_h = NULL; 3076 sav->lft_s = NULL; 3077 sav->tdb_xform = NULL; /* transform */ 3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3080 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3081 /* Initialize even if NAT-T not compiled in: */ 3082 sav->natt_type = 0; 3083 sav->natt_esp_frag_len = 0; 3084 3085 /* SA */ 3086 if (mhp->ext[SADB_EXT_SA] != NULL) { 3087 const struct sadb_sa *sa0; 3088 3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3091 error = EINVAL; 3092 goto fail; 3093 } 3094 3095 sav->alg_auth = sa0->sadb_sa_auth; 3096 sav->alg_enc = sa0->sadb_sa_encrypt; 3097 sav->flags = sa0->sadb_sa_flags; 3098 3099 /* replay window */ 3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3101 sav->replay = (struct secreplay *) 3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3103 if (sav->replay == NULL) { 3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3105 __func__)); 3106 error = ENOBUFS; 3107 goto fail; 3108 } 3109 if (sa0->sadb_sa_replay != 0) 3110 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3111 sav->replay->wsize = sa0->sadb_sa_replay; 3112 } 3113 } 3114 3115 /* Authentication keys */ 3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3117 const struct sadb_key *key0; 3118 int len; 3119 3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3121 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3122 3123 error = 0; 3124 if (len < sizeof(*key0)) { 3125 error = EINVAL; 3126 goto fail; 3127 } 3128 switch (mhp->msg->sadb_msg_satype) { 3129 case SADB_SATYPE_AH: 3130 case SADB_SATYPE_ESP: 3131 case SADB_X_SATYPE_TCPSIGNATURE: 3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3133 sav->alg_auth != SADB_X_AALG_NULL) 3134 error = EINVAL; 3135 break; 3136 case SADB_X_SATYPE_IPCOMP: 3137 default: 3138 error = EINVAL; 3139 break; 3140 } 3141 if (error) { 3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3143 __func__)); 3144 goto fail; 3145 } 3146 3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3148 M_IPSEC_MISC); 3149 if (sav->key_auth == NULL ) { 3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3151 __func__)); 3152 error = ENOBUFS; 3153 goto fail; 3154 } 3155 } 3156 3157 /* Encryption key */ 3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3159 const struct sadb_key *key0; 3160 int len; 3161 3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3164 3165 error = 0; 3166 if (len < sizeof(*key0)) { 3167 error = EINVAL; 3168 goto fail; 3169 } 3170 switch (mhp->msg->sadb_msg_satype) { 3171 case SADB_SATYPE_ESP: 3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3173 sav->alg_enc != SADB_EALG_NULL) { 3174 error = EINVAL; 3175 break; 3176 } 3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3178 len, 3179 M_IPSEC_MISC); 3180 if (sav->key_enc == NULL) { 3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3182 __func__)); 3183 error = ENOBUFS; 3184 goto fail; 3185 } 3186 break; 3187 case SADB_X_SATYPE_IPCOMP: 3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3189 error = EINVAL; 3190 sav->key_enc = NULL; /*just in case*/ 3191 break; 3192 case SADB_SATYPE_AH: 3193 case SADB_X_SATYPE_TCPSIGNATURE: 3194 default: 3195 error = EINVAL; 3196 break; 3197 } 3198 if (error) { 3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3200 __func__)); 3201 goto fail; 3202 } 3203 } 3204 3205 /* set iv */ 3206 sav->ivlen = 0; 3207 3208 switch (mhp->msg->sadb_msg_satype) { 3209 case SADB_SATYPE_AH: 3210 error = xform_init(sav, XF_AH); 3211 break; 3212 case SADB_SATYPE_ESP: 3213 error = xform_init(sav, XF_ESP); 3214 break; 3215 case SADB_X_SATYPE_IPCOMP: 3216 error = xform_init(sav, XF_IPCOMP); 3217 break; 3218 case SADB_X_SATYPE_TCPSIGNATURE: 3219 error = xform_init(sav, XF_TCPSIGNATURE); 3220 break; 3221 } 3222 if (error) { 3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3224 __func__, mhp->msg->sadb_msg_satype)); 3225 goto fail; 3226 } 3227 3228 /* reset created */ 3229 sav->created = time_second; 3230 3231 /* make lifetime for CURRENT */ 3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3233 if (sav->lft_c == NULL) { 3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3235 error = ENOBUFS; 3236 goto fail; 3237 } 3238 3239 sav->lft_c->allocations = 0; 3240 sav->lft_c->bytes = 0; 3241 sav->lft_c->addtime = time_second; 3242 sav->lft_c->usetime = 0; 3243 3244 /* lifetimes for HARD and SOFT */ 3245 { 3246 const struct sadb_lifetime *lft0; 3247 3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3249 if (lft0 != NULL) { 3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3251 error = EINVAL; 3252 goto fail; 3253 } 3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3255 if (sav->lft_h == NULL) { 3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3257 error = ENOBUFS; 3258 goto fail; 3259 } 3260 /* to be initialize ? */ 3261 } 3262 3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3264 if (lft0 != NULL) { 3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3266 error = EINVAL; 3267 goto fail; 3268 } 3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3270 if (sav->lft_s == NULL) { 3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3272 error = ENOBUFS; 3273 goto fail; 3274 } 3275 /* to be initialize ? */ 3276 } 3277 } 3278 3279 return 0; 3280 3281 fail: 3282 /* initialization */ 3283 key_cleansav(sav); 3284 3285 return error; 3286 } 3287 3288 /* 3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3290 * OUT: 0: valid 3291 * other: errno 3292 */ 3293 static int 3294 key_mature(struct secasvar *sav) 3295 { 3296 int error; 3297 3298 /* check SPI value */ 3299 switch (sav->sah->saidx.proto) { 3300 case IPPROTO_ESP: 3301 case IPPROTO_AH: 3302 /* 3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3304 * 1-255 reserved by IANA for future use, 3305 * 0 for implementation specific, local use. 3306 */ 3307 if (ntohl(sav->spi) <= 255) { 3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3309 __func__, (u_int32_t)ntohl(sav->spi))); 3310 return EINVAL; 3311 } 3312 break; 3313 } 3314 3315 /* check satype */ 3316 switch (sav->sah->saidx.proto) { 3317 case IPPROTO_ESP: 3318 /* check flags */ 3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3322 "given to old-esp.\n", __func__)); 3323 return EINVAL; 3324 } 3325 error = xform_init(sav, XF_ESP); 3326 break; 3327 case IPPROTO_AH: 3328 /* check flags */ 3329 if (sav->flags & SADB_X_EXT_DERIV) { 3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3331 "given to AH SA.\n", __func__)); 3332 return EINVAL; 3333 } 3334 if (sav->alg_enc != SADB_EALG_NONE) { 3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3336 "mismated.\n", __func__)); 3337 return(EINVAL); 3338 } 3339 error = xform_init(sav, XF_AH); 3340 break; 3341 case IPPROTO_IPCOMP: 3342 if (sav->alg_auth != SADB_AALG_NONE) { 3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3344 "mismated.\n", __func__)); 3345 return(EINVAL); 3346 } 3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3348 && ntohl(sav->spi) >= 0x10000) { 3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3350 __func__)); 3351 return(EINVAL); 3352 } 3353 error = xform_init(sav, XF_IPCOMP); 3354 break; 3355 case IPPROTO_TCP: 3356 if (sav->alg_enc != SADB_EALG_NONE) { 3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3358 "mismated.\n", __func__)); 3359 return(EINVAL); 3360 } 3361 error = xform_init(sav, XF_TCPSIGNATURE); 3362 break; 3363 default: 3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3365 error = EPROTONOSUPPORT; 3366 break; 3367 } 3368 if (error == 0) { 3369 SAHTREE_LOCK(); 3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3371 SAHTREE_UNLOCK(); 3372 } 3373 return (error); 3374 } 3375 3376 /* 3377 * subroutine for SADB_GET and SADB_DUMP. 3378 */ 3379 static struct mbuf * 3380 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3381 u_int32_t seq, u_int32_t pid) 3382 { 3383 struct mbuf *result = NULL, *tres = NULL, *m; 3384 int i; 3385 int dumporder[] = { 3386 SADB_EXT_SA, SADB_X_EXT_SA2, 3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3392 #ifdef IPSEC_NAT_T 3393 SADB_X_EXT_NAT_T_TYPE, 3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3396 SADB_X_EXT_NAT_T_FRAG, 3397 #endif 3398 }; 3399 3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3401 if (m == NULL) 3402 goto fail; 3403 result = m; 3404 3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3406 m = NULL; 3407 switch (dumporder[i]) { 3408 case SADB_EXT_SA: 3409 m = key_setsadbsa(sav); 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 case SADB_X_EXT_SA2: 3415 m = key_setsadbxsa2(sav->sah->saidx.mode, 3416 sav->replay ? sav->replay->count : 0, 3417 sav->sah->saidx.reqid); 3418 if (!m) 3419 goto fail; 3420 break; 3421 3422 case SADB_EXT_ADDRESS_SRC: 3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3424 &sav->sah->saidx.src.sa, 3425 FULLMASK, IPSEC_ULPROTO_ANY); 3426 if (!m) 3427 goto fail; 3428 break; 3429 3430 case SADB_EXT_ADDRESS_DST: 3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3432 &sav->sah->saidx.dst.sa, 3433 FULLMASK, IPSEC_ULPROTO_ANY); 3434 if (!m) 3435 goto fail; 3436 break; 3437 3438 case SADB_EXT_KEY_AUTH: 3439 if (!sav->key_auth) 3440 continue; 3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3442 if (!m) 3443 goto fail; 3444 break; 3445 3446 case SADB_EXT_KEY_ENCRYPT: 3447 if (!sav->key_enc) 3448 continue; 3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3450 if (!m) 3451 goto fail; 3452 break; 3453 3454 case SADB_EXT_LIFETIME_CURRENT: 3455 if (!sav->lft_c) 3456 continue; 3457 m = key_setlifetime(sav->lft_c, 3458 SADB_EXT_LIFETIME_CURRENT); 3459 if (!m) 3460 goto fail; 3461 break; 3462 3463 case SADB_EXT_LIFETIME_HARD: 3464 if (!sav->lft_h) 3465 continue; 3466 m = key_setlifetime(sav->lft_h, 3467 SADB_EXT_LIFETIME_HARD); 3468 if (!m) 3469 goto fail; 3470 break; 3471 3472 case SADB_EXT_LIFETIME_SOFT: 3473 if (!sav->lft_s) 3474 continue; 3475 m = key_setlifetime(sav->lft_s, 3476 SADB_EXT_LIFETIME_SOFT); 3477 3478 if (!m) 3479 goto fail; 3480 break; 3481 3482 #ifdef IPSEC_NAT_T 3483 case SADB_X_EXT_NAT_T_TYPE: 3484 m = key_setsadbxtype(sav->natt_type); 3485 if (!m) 3486 goto fail; 3487 break; 3488 3489 case SADB_X_EXT_NAT_T_DPORT: 3490 m = key_setsadbxport( 3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3492 SADB_X_EXT_NAT_T_DPORT); 3493 if (!m) 3494 goto fail; 3495 break; 3496 3497 case SADB_X_EXT_NAT_T_SPORT: 3498 m = key_setsadbxport( 3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3500 SADB_X_EXT_NAT_T_SPORT); 3501 if (!m) 3502 goto fail; 3503 break; 3504 3505 case SADB_X_EXT_NAT_T_OAI: 3506 case SADB_X_EXT_NAT_T_OAR: 3507 case SADB_X_EXT_NAT_T_FRAG: 3508 /* We do not (yet) support those. */ 3509 continue; 3510 #endif 3511 3512 case SADB_EXT_ADDRESS_PROXY: 3513 case SADB_EXT_IDENTITY_SRC: 3514 case SADB_EXT_IDENTITY_DST: 3515 /* XXX: should we brought from SPD ? */ 3516 case SADB_EXT_SENSITIVITY: 3517 default: 3518 continue; 3519 } 3520 3521 if (!m) 3522 goto fail; 3523 if (tres) 3524 m_cat(m, tres); 3525 tres = m; 3526 3527 } 3528 3529 m_cat(result, tres); 3530 if (result->m_len < sizeof(struct sadb_msg)) { 3531 result = m_pullup(result, sizeof(struct sadb_msg)); 3532 if (result == NULL) 3533 goto fail; 3534 } 3535 3536 result->m_pkthdr.len = 0; 3537 for (m = result; m; m = m->m_next) 3538 result->m_pkthdr.len += m->m_len; 3539 3540 mtod(result, struct sadb_msg *)->sadb_msg_len = 3541 PFKEY_UNIT64(result->m_pkthdr.len); 3542 3543 return result; 3544 3545 fail: 3546 m_freem(result); 3547 m_freem(tres); 3548 return NULL; 3549 } 3550 3551 /* 3552 * set data into sadb_msg. 3553 */ 3554 static struct mbuf * 3555 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3556 pid_t pid, u_int16_t reserved) 3557 { 3558 struct mbuf *m; 3559 struct sadb_msg *p; 3560 int len; 3561 3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3563 if (len > MCLBYTES) 3564 return NULL; 3565 MGETHDR(m, M_DONTWAIT, MT_DATA); 3566 if (m && len > MHLEN) { 3567 MCLGET(m, M_DONTWAIT); 3568 if ((m->m_flags & M_EXT) == 0) { 3569 m_freem(m); 3570 m = NULL; 3571 } 3572 } 3573 if (!m) 3574 return NULL; 3575 m->m_pkthdr.len = m->m_len = len; 3576 m->m_next = NULL; 3577 3578 p = mtod(m, struct sadb_msg *); 3579 3580 bzero(p, len); 3581 p->sadb_msg_version = PF_KEY_V2; 3582 p->sadb_msg_type = type; 3583 p->sadb_msg_errno = 0; 3584 p->sadb_msg_satype = satype; 3585 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3586 p->sadb_msg_reserved = reserved; 3587 p->sadb_msg_seq = seq; 3588 p->sadb_msg_pid = (u_int32_t)pid; 3589 3590 return m; 3591 } 3592 3593 /* 3594 * copy secasvar data into sadb_address. 3595 */ 3596 static struct mbuf * 3597 key_setsadbsa(sav) 3598 struct secasvar *sav; 3599 { 3600 struct mbuf *m; 3601 struct sadb_sa *p; 3602 int len; 3603 3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3605 m = key_alloc_mbuf(len); 3606 if (!m || m->m_next) { /*XXX*/ 3607 if (m) 3608 m_freem(m); 3609 return NULL; 3610 } 3611 3612 p = mtod(m, struct sadb_sa *); 3613 3614 bzero(p, len); 3615 p->sadb_sa_len = PFKEY_UNIT64(len); 3616 p->sadb_sa_exttype = SADB_EXT_SA; 3617 p->sadb_sa_spi = sav->spi; 3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3619 p->sadb_sa_state = sav->state; 3620 p->sadb_sa_auth = sav->alg_auth; 3621 p->sadb_sa_encrypt = sav->alg_enc; 3622 p->sadb_sa_flags = sav->flags; 3623 3624 return m; 3625 } 3626 3627 /* 3628 * set data into sadb_address. 3629 */ 3630 static struct mbuf * 3631 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3632 { 3633 struct mbuf *m; 3634 struct sadb_address *p; 3635 size_t len; 3636 3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3638 PFKEY_ALIGN8(saddr->sa_len); 3639 m = key_alloc_mbuf(len); 3640 if (!m || m->m_next) { /*XXX*/ 3641 if (m) 3642 m_freem(m); 3643 return NULL; 3644 } 3645 3646 p = mtod(m, struct sadb_address *); 3647 3648 bzero(p, len); 3649 p->sadb_address_len = PFKEY_UNIT64(len); 3650 p->sadb_address_exttype = exttype; 3651 p->sadb_address_proto = ul_proto; 3652 if (prefixlen == FULLMASK) { 3653 switch (saddr->sa_family) { 3654 case AF_INET: 3655 prefixlen = sizeof(struct in_addr) << 3; 3656 break; 3657 case AF_INET6: 3658 prefixlen = sizeof(struct in6_addr) << 3; 3659 break; 3660 default: 3661 ; /*XXX*/ 3662 } 3663 } 3664 p->sadb_address_prefixlen = prefixlen; 3665 p->sadb_address_reserved = 0; 3666 3667 bcopy(saddr, 3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3669 saddr->sa_len); 3670 3671 return m; 3672 } 3673 3674 /* 3675 * set data into sadb_x_sa2. 3676 */ 3677 static struct mbuf * 3678 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3679 { 3680 struct mbuf *m; 3681 struct sadb_x_sa2 *p; 3682 size_t len; 3683 3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3685 m = key_alloc_mbuf(len); 3686 if (!m || m->m_next) { /*XXX*/ 3687 if (m) 3688 m_freem(m); 3689 return NULL; 3690 } 3691 3692 p = mtod(m, struct sadb_x_sa2 *); 3693 3694 bzero(p, len); 3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3697 p->sadb_x_sa2_mode = mode; 3698 p->sadb_x_sa2_reserved1 = 0; 3699 p->sadb_x_sa2_reserved2 = 0; 3700 p->sadb_x_sa2_sequence = seq; 3701 p->sadb_x_sa2_reqid = reqid; 3702 3703 return m; 3704 } 3705 3706 #ifdef IPSEC_NAT_T 3707 /* 3708 * Set a type in sadb_x_nat_t_type. 3709 */ 3710 static struct mbuf * 3711 key_setsadbxtype(u_int16_t type) 3712 { 3713 struct mbuf *m; 3714 size_t len; 3715 struct sadb_x_nat_t_type *p; 3716 3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3718 3719 m = key_alloc_mbuf(len); 3720 if (!m || m->m_next) { /*XXX*/ 3721 if (m) 3722 m_freem(m); 3723 return (NULL); 3724 } 3725 3726 p = mtod(m, struct sadb_x_nat_t_type *); 3727 3728 bzero(p, len); 3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3731 p->sadb_x_nat_t_type_type = type; 3732 3733 return (m); 3734 } 3735 /* 3736 * Set a port in sadb_x_nat_t_port. 3737 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3738 */ 3739 static struct mbuf * 3740 key_setsadbxport(u_int16_t port, u_int16_t type) 3741 { 3742 struct mbuf *m; 3743 size_t len; 3744 struct sadb_x_nat_t_port *p; 3745 3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3747 3748 m = key_alloc_mbuf(len); 3749 if (!m || m->m_next) { /*XXX*/ 3750 if (m) 3751 m_freem(m); 3752 return (NULL); 3753 } 3754 3755 p = mtod(m, struct sadb_x_nat_t_port *); 3756 3757 bzero(p, len); 3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3759 p->sadb_x_nat_t_port_exttype = type; 3760 p->sadb_x_nat_t_port_port = port; 3761 3762 return (m); 3763 } 3764 3765 /* 3766 * Get port from sockaddr. Port is in network byte order. 3767 */ 3768 u_int16_t 3769 key_portfromsaddr(struct sockaddr *sa) 3770 { 3771 3772 switch (sa->sa_family) { 3773 #ifdef INET 3774 case AF_INET: 3775 return ((struct sockaddr_in *)sa)->sin_port; 3776 #endif 3777 #ifdef INET6 3778 case AF_INET6: 3779 return ((struct sockaddr_in6 *)sa)->sin6_port; 3780 #endif 3781 } 3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3783 printf("DP %s unexpected address family %d\n", 3784 __func__, sa->sa_family)); 3785 return (0); 3786 } 3787 #endif /* IPSEC_NAT_T */ 3788 3789 /* 3790 * Set port in struct sockaddr. Port is in network byte order. 3791 */ 3792 static void 3793 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3794 { 3795 3796 switch (sa->sa_family) { 3797 #ifdef INET 3798 case AF_INET: 3799 ((struct sockaddr_in *)sa)->sin_port = port; 3800 break; 3801 #endif 3802 #ifdef INET6 3803 case AF_INET6: 3804 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3805 break; 3806 #endif 3807 default: 3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3809 __func__, sa->sa_family)); 3810 break; 3811 } 3812 } 3813 3814 /* 3815 * set data into sadb_x_policy 3816 */ 3817 static struct mbuf * 3818 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3819 { 3820 struct mbuf *m; 3821 struct sadb_x_policy *p; 3822 size_t len; 3823 3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3825 m = key_alloc_mbuf(len); 3826 if (!m || m->m_next) { /*XXX*/ 3827 if (m) 3828 m_freem(m); 3829 return NULL; 3830 } 3831 3832 p = mtod(m, struct sadb_x_policy *); 3833 3834 bzero(p, len); 3835 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3837 p->sadb_x_policy_type = type; 3838 p->sadb_x_policy_dir = dir; 3839 p->sadb_x_policy_id = id; 3840 3841 return m; 3842 } 3843 3844 /* %%% utilities */ 3845 /* Take a key message (sadb_key) from the socket and turn it into one 3846 * of the kernel's key structures (seckey). 3847 * 3848 * IN: pointer to the src 3849 * OUT: NULL no more memory 3850 */ 3851 struct seckey * 3852 key_dup_keymsg(const struct sadb_key *src, u_int len, 3853 struct malloc_type *type) 3854 { 3855 struct seckey *dst; 3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3857 if (dst != NULL) { 3858 dst->bits = src->sadb_key_bits; 3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3860 if (dst->key_data != NULL) { 3861 bcopy((const char *)src + sizeof(struct sadb_key), 3862 dst->key_data, len); 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 free(dst, type); 3867 dst = NULL; 3868 } 3869 } else { 3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3871 __func__)); 3872 3873 } 3874 return dst; 3875 } 3876 3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3878 * turn it into one of the kernel's lifetime structures (seclifetime). 3879 * 3880 * IN: pointer to the destination, source and malloc type 3881 * OUT: NULL, no more memory 3882 */ 3883 3884 static struct seclifetime * 3885 key_dup_lifemsg(const struct sadb_lifetime *src, 3886 struct malloc_type *type) 3887 { 3888 struct seclifetime *dst = NULL; 3889 3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3891 type, M_NOWAIT); 3892 if (dst == NULL) { 3893 /* XXX counter */ 3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3895 } else { 3896 dst->allocations = src->sadb_lifetime_allocations; 3897 dst->bytes = src->sadb_lifetime_bytes; 3898 dst->addtime = src->sadb_lifetime_addtime; 3899 dst->usetime = src->sadb_lifetime_usetime; 3900 } 3901 return dst; 3902 } 3903 3904 /* compare my own address 3905 * OUT: 1: true, i.e. my address. 3906 * 0: false 3907 */ 3908 int 3909 key_ismyaddr(sa) 3910 struct sockaddr *sa; 3911 { 3912 #ifdef INET 3913 struct sockaddr_in *sin; 3914 struct in_ifaddr *ia; 3915 #endif 3916 3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3918 3919 switch (sa->sa_family) { 3920 #ifdef INET 3921 case AF_INET: 3922 sin = (struct sockaddr_in *)sa; 3923 IN_IFADDR_RLOCK(); 3924 for (ia = V_in_ifaddrhead.tqh_first; ia; 3925 ia = ia->ia_link.tqe_next) 3926 { 3927 if (sin->sin_family == ia->ia_addr.sin_family && 3928 sin->sin_len == ia->ia_addr.sin_len && 3929 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3930 { 3931 IN_IFADDR_RUNLOCK(); 3932 return 1; 3933 } 3934 } 3935 IN_IFADDR_RUNLOCK(); 3936 break; 3937 #endif 3938 #ifdef INET6 3939 case AF_INET6: 3940 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3941 #endif 3942 } 3943 3944 return 0; 3945 } 3946 3947 #ifdef INET6 3948 /* 3949 * compare my own address for IPv6. 3950 * 1: ours 3951 * 0: other 3952 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3953 */ 3954 #include <netinet6/in6_var.h> 3955 3956 static int 3957 key_ismyaddr6(sin6) 3958 struct sockaddr_in6 *sin6; 3959 { 3960 struct in6_ifaddr *ia; 3961 #if 0 3962 struct in6_multi *in6m; 3963 #endif 3964 3965 IN6_IFADDR_RLOCK(); 3966 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3967 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3968 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3969 IN6_IFADDR_RUNLOCK(); 3970 return 1; 3971 } 3972 3973 #if 0 3974 /* 3975 * XXX Multicast 3976 * XXX why do we care about multlicast here while we don't care 3977 * about IPv4 multicast?? 3978 * XXX scope 3979 */ 3980 in6m = NULL; 3981 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3982 if (in6m) { 3983 IN6_IFADDR_RUNLOCK(); 3984 return 1; 3985 } 3986 #endif 3987 } 3988 IN6_IFADDR_RUNLOCK(); 3989 3990 /* loopback, just for safety */ 3991 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3992 return 1; 3993 3994 return 0; 3995 } 3996 #endif /*INET6*/ 3997 3998 /* 3999 * compare two secasindex structure. 4000 * flag can specify to compare 2 saidxes. 4001 * compare two secasindex structure without both mode and reqid. 4002 * don't compare port. 4003 * IN: 4004 * saidx0: source, it can be in SAD. 4005 * saidx1: object. 4006 * OUT: 4007 * 1 : equal 4008 * 0 : not equal 4009 */ 4010 static int 4011 key_cmpsaidx( 4012 const struct secasindex *saidx0, 4013 const struct secasindex *saidx1, 4014 int flag) 4015 { 4016 int chkport = 0; 4017 4018 /* sanity */ 4019 if (saidx0 == NULL && saidx1 == NULL) 4020 return 1; 4021 4022 if (saidx0 == NULL || saidx1 == NULL) 4023 return 0; 4024 4025 if (saidx0->proto != saidx1->proto) 4026 return 0; 4027 4028 if (flag == CMP_EXACTLY) { 4029 if (saidx0->mode != saidx1->mode) 4030 return 0; 4031 if (saidx0->reqid != saidx1->reqid) 4032 return 0; 4033 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4034 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4035 return 0; 4036 } else { 4037 4038 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4039 if (flag == CMP_MODE_REQID 4040 ||flag == CMP_REQID) { 4041 /* 4042 * If reqid of SPD is non-zero, unique SA is required. 4043 * The result must be of same reqid in this case. 4044 */ 4045 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4046 return 0; 4047 } 4048 4049 if (flag == CMP_MODE_REQID) { 4050 if (saidx0->mode != IPSEC_MODE_ANY 4051 && saidx0->mode != saidx1->mode) 4052 return 0; 4053 } 4054 4055 #ifdef IPSEC_NAT_T 4056 /* 4057 * If NAT-T is enabled, check ports for tunnel mode. 4058 * Do not check ports if they are set to zero in the SPD. 4059 * Also do not do it for transport mode, as there is no 4060 * port information available in the SP. 4061 */ 4062 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4063 saidx1->src.sa.sa_family == AF_INET && 4064 saidx1->dst.sa.sa_family == AF_INET && 4065 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4066 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4067 chkport = 1; 4068 #endif /* IPSEC_NAT_T */ 4069 4070 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4071 return 0; 4072 } 4073 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4074 return 0; 4075 } 4076 } 4077 4078 return 1; 4079 } 4080 4081 /* 4082 * compare two secindex structure exactly. 4083 * IN: 4084 * spidx0: source, it is often in SPD. 4085 * spidx1: object, it is often from PFKEY message. 4086 * OUT: 4087 * 1 : equal 4088 * 0 : not equal 4089 */ 4090 static int 4091 key_cmpspidx_exactly( 4092 struct secpolicyindex *spidx0, 4093 struct secpolicyindex *spidx1) 4094 { 4095 /* sanity */ 4096 if (spidx0 == NULL && spidx1 == NULL) 4097 return 1; 4098 4099 if (spidx0 == NULL || spidx1 == NULL) 4100 return 0; 4101 4102 if (spidx0->prefs != spidx1->prefs 4103 || spidx0->prefd != spidx1->prefd 4104 || spidx0->ul_proto != spidx1->ul_proto) 4105 return 0; 4106 4107 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4108 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4109 } 4110 4111 /* 4112 * compare two secindex structure with mask. 4113 * IN: 4114 * spidx0: source, it is often in SPD. 4115 * spidx1: object, it is often from IP header. 4116 * OUT: 4117 * 1 : equal 4118 * 0 : not equal 4119 */ 4120 static int 4121 key_cmpspidx_withmask( 4122 struct secpolicyindex *spidx0, 4123 struct secpolicyindex *spidx1) 4124 { 4125 /* sanity */ 4126 if (spidx0 == NULL && spidx1 == NULL) 4127 return 1; 4128 4129 if (spidx0 == NULL || spidx1 == NULL) 4130 return 0; 4131 4132 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4133 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4134 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4135 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4136 return 0; 4137 4138 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4139 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4140 && spidx0->ul_proto != spidx1->ul_proto) 4141 return 0; 4142 4143 switch (spidx0->src.sa.sa_family) { 4144 case AF_INET: 4145 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4146 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4147 return 0; 4148 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4149 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4150 return 0; 4151 break; 4152 case AF_INET6: 4153 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4154 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4155 return 0; 4156 /* 4157 * scope_id check. if sin6_scope_id is 0, we regard it 4158 * as a wildcard scope, which matches any scope zone ID. 4159 */ 4160 if (spidx0->src.sin6.sin6_scope_id && 4161 spidx1->src.sin6.sin6_scope_id && 4162 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4163 return 0; 4164 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4165 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4166 return 0; 4167 break; 4168 default: 4169 /* XXX */ 4170 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4171 return 0; 4172 break; 4173 } 4174 4175 switch (spidx0->dst.sa.sa_family) { 4176 case AF_INET: 4177 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4178 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4179 return 0; 4180 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4181 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4182 return 0; 4183 break; 4184 case AF_INET6: 4185 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4186 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4187 return 0; 4188 /* 4189 * scope_id check. if sin6_scope_id is 0, we regard it 4190 * as a wildcard scope, which matches any scope zone ID. 4191 */ 4192 if (spidx0->dst.sin6.sin6_scope_id && 4193 spidx1->dst.sin6.sin6_scope_id && 4194 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4195 return 0; 4196 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4197 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4198 return 0; 4199 break; 4200 default: 4201 /* XXX */ 4202 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4203 return 0; 4204 break; 4205 } 4206 4207 /* XXX Do we check other field ? e.g. flowinfo */ 4208 4209 return 1; 4210 } 4211 4212 /* returns 0 on match */ 4213 static int 4214 key_sockaddrcmp( 4215 const struct sockaddr *sa1, 4216 const struct sockaddr *sa2, 4217 int port) 4218 { 4219 #ifdef satosin 4220 #undef satosin 4221 #endif 4222 #define satosin(s) ((const struct sockaddr_in *)s) 4223 #ifdef satosin6 4224 #undef satosin6 4225 #endif 4226 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4227 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4228 return 1; 4229 4230 switch (sa1->sa_family) { 4231 case AF_INET: 4232 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4233 return 1; 4234 if (satosin(sa1)->sin_addr.s_addr != 4235 satosin(sa2)->sin_addr.s_addr) { 4236 return 1; 4237 } 4238 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4239 return 1; 4240 break; 4241 case AF_INET6: 4242 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4243 return 1; /*EINVAL*/ 4244 if (satosin6(sa1)->sin6_scope_id != 4245 satosin6(sa2)->sin6_scope_id) { 4246 return 1; 4247 } 4248 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4249 &satosin6(sa2)->sin6_addr)) { 4250 return 1; 4251 } 4252 if (port && 4253 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4254 return 1; 4255 } 4256 break; 4257 default: 4258 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4259 return 1; 4260 break; 4261 } 4262 4263 return 0; 4264 #undef satosin 4265 #undef satosin6 4266 } 4267 4268 /* 4269 * compare two buffers with mask. 4270 * IN: 4271 * addr1: source 4272 * addr2: object 4273 * bits: Number of bits to compare 4274 * OUT: 4275 * 1 : equal 4276 * 0 : not equal 4277 */ 4278 static int 4279 key_bbcmp(const void *a1, const void *a2, u_int bits) 4280 { 4281 const unsigned char *p1 = a1; 4282 const unsigned char *p2 = a2; 4283 4284 /* XXX: This could be considerably faster if we compare a word 4285 * at a time, but it is complicated on LSB Endian machines */ 4286 4287 /* Handle null pointers */ 4288 if (p1 == NULL || p2 == NULL) 4289 return (p1 == p2); 4290 4291 while (bits >= 8) { 4292 if (*p1++ != *p2++) 4293 return 0; 4294 bits -= 8; 4295 } 4296 4297 if (bits > 0) { 4298 u_int8_t mask = ~((1<<(8-bits))-1); 4299 if ((*p1 & mask) != (*p2 & mask)) 4300 return 0; 4301 } 4302 return 1; /* Match! */ 4303 } 4304 4305 static void 4306 key_flush_spd(time_t now) 4307 { 4308 static u_int16_t sptree_scangen = 0; 4309 u_int16_t gen = sptree_scangen++; 4310 struct secpolicy *sp; 4311 u_int dir; 4312 4313 /* SPD */ 4314 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4315 restart: 4316 SPTREE_LOCK(); 4317 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4318 if (sp->scangen == gen) /* previously handled */ 4319 continue; 4320 sp->scangen = gen; 4321 if (sp->state == IPSEC_SPSTATE_DEAD && 4322 sp->refcnt == 1) { 4323 /* 4324 * Ensure that we only decrease refcnt once, 4325 * when we're the last consumer. 4326 * Directly call SP_DELREF/key_delsp instead 4327 * of KEY_FREESP to avoid unlocking/relocking 4328 * SPTREE_LOCK before key_delsp: may refcnt 4329 * be increased again during that time ? 4330 * NB: also clean entries created by 4331 * key_spdflush 4332 */ 4333 SP_DELREF(sp); 4334 key_delsp(sp); 4335 SPTREE_UNLOCK(); 4336 goto restart; 4337 } 4338 if (sp->lifetime == 0 && sp->validtime == 0) 4339 continue; 4340 if ((sp->lifetime && now - sp->created > sp->lifetime) 4341 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4342 sp->state = IPSEC_SPSTATE_DEAD; 4343 SPTREE_UNLOCK(); 4344 key_spdexpire(sp); 4345 goto restart; 4346 } 4347 } 4348 SPTREE_UNLOCK(); 4349 } 4350 } 4351 4352 static void 4353 key_flush_sad(time_t now) 4354 { 4355 struct secashead *sah, *nextsah; 4356 struct secasvar *sav, *nextsav; 4357 4358 /* SAD */ 4359 SAHTREE_LOCK(); 4360 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4361 /* if sah has been dead, then delete it and process next sah. */ 4362 if (sah->state == SADB_SASTATE_DEAD) { 4363 key_delsah(sah); 4364 continue; 4365 } 4366 4367 /* if LARVAL entry doesn't become MATURE, delete it. */ 4368 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4369 /* Need to also check refcnt for a larval SA ??? */ 4370 if (now - sav->created > V_key_larval_lifetime) 4371 KEY_FREESAV(&sav); 4372 } 4373 4374 /* 4375 * check MATURE entry to start to send expire message 4376 * whether or not. 4377 */ 4378 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4379 /* we don't need to check. */ 4380 if (sav->lft_s == NULL) 4381 continue; 4382 4383 /* sanity check */ 4384 if (sav->lft_c == NULL) { 4385 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4386 "time, why?\n", __func__)); 4387 continue; 4388 } 4389 4390 /* check SOFT lifetime */ 4391 if (sav->lft_s->addtime != 0 && 4392 now - sav->created > sav->lft_s->addtime) { 4393 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4394 /* 4395 * Actually, only send expire message if 4396 * SA has been used, as it was done before, 4397 * but should we always send such message, 4398 * and let IKE daemon decide if it should be 4399 * renegotiated or not ? 4400 * XXX expire message will actually NOT be 4401 * sent if SA is only used after soft 4402 * lifetime has been reached, see below 4403 * (DYING state) 4404 */ 4405 if (sav->lft_c->usetime != 0) 4406 key_expire(sav); 4407 } 4408 /* check SOFT lifetime by bytes */ 4409 /* 4410 * XXX I don't know the way to delete this SA 4411 * when new SA is installed. Caution when it's 4412 * installed too big lifetime by time. 4413 */ 4414 else if (sav->lft_s->bytes != 0 && 4415 sav->lft_s->bytes < sav->lft_c->bytes) { 4416 4417 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4418 /* 4419 * XXX If we keep to send expire 4420 * message in the status of 4421 * DYING. Do remove below code. 4422 */ 4423 key_expire(sav); 4424 } 4425 } 4426 4427 /* check DYING entry to change status to DEAD. */ 4428 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4429 /* we don't need to check. */ 4430 if (sav->lft_h == NULL) 4431 continue; 4432 4433 /* sanity check */ 4434 if (sav->lft_c == NULL) { 4435 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4436 "time, why?\n", __func__)); 4437 continue; 4438 } 4439 4440 if (sav->lft_h->addtime != 0 && 4441 now - sav->created > sav->lft_h->addtime) { 4442 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4443 KEY_FREESAV(&sav); 4444 } 4445 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4446 else if (sav->lft_s != NULL 4447 && sav->lft_s->addtime != 0 4448 && now - sav->created > sav->lft_s->addtime) { 4449 /* 4450 * XXX: should be checked to be 4451 * installed the valid SA. 4452 */ 4453 4454 /* 4455 * If there is no SA then sending 4456 * expire message. 4457 */ 4458 key_expire(sav); 4459 } 4460 #endif 4461 /* check HARD lifetime by bytes */ 4462 else if (sav->lft_h->bytes != 0 && 4463 sav->lft_h->bytes < sav->lft_c->bytes) { 4464 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4465 KEY_FREESAV(&sav); 4466 } 4467 } 4468 4469 /* delete entry in DEAD */ 4470 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4471 /* sanity check */ 4472 if (sav->state != SADB_SASTATE_DEAD) { 4473 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4474 "(queue: %d SA: %d): kill it anyway\n", 4475 __func__, 4476 SADB_SASTATE_DEAD, sav->state)); 4477 } 4478 /* 4479 * do not call key_freesav() here. 4480 * sav should already be freed, and sav->refcnt 4481 * shows other references to sav 4482 * (such as from SPD). 4483 */ 4484 } 4485 } 4486 SAHTREE_UNLOCK(); 4487 } 4488 4489 static void 4490 key_flush_acq(time_t now) 4491 { 4492 struct secacq *acq, *nextacq; 4493 4494 /* ACQ tree */ 4495 ACQ_LOCK(); 4496 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4497 nextacq = LIST_NEXT(acq, chain); 4498 if (now - acq->created > V_key_blockacq_lifetime 4499 && __LIST_CHAINED(acq)) { 4500 LIST_REMOVE(acq, chain); 4501 free(acq, M_IPSEC_SAQ); 4502 } 4503 } 4504 ACQ_UNLOCK(); 4505 } 4506 4507 static void 4508 key_flush_spacq(time_t now) 4509 { 4510 struct secspacq *acq, *nextacq; 4511 4512 /* SP ACQ tree */ 4513 SPACQ_LOCK(); 4514 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4515 nextacq = LIST_NEXT(acq, chain); 4516 if (now - acq->created > V_key_blockacq_lifetime 4517 && __LIST_CHAINED(acq)) { 4518 LIST_REMOVE(acq, chain); 4519 free(acq, M_IPSEC_SAQ); 4520 } 4521 } 4522 SPACQ_UNLOCK(); 4523 } 4524 4525 /* 4526 * time handler. 4527 * scanning SPD and SAD to check status for each entries, 4528 * and do to remove or to expire. 4529 * XXX: year 2038 problem may remain. 4530 */ 4531 void 4532 key_timehandler(void) 4533 { 4534 VNET_ITERATOR_DECL(vnet_iter); 4535 time_t now = time_second; 4536 4537 VNET_LIST_RLOCK_NOSLEEP(); 4538 VNET_FOREACH(vnet_iter) { 4539 CURVNET_SET(vnet_iter); 4540 key_flush_spd(now); 4541 key_flush_sad(now); 4542 key_flush_acq(now); 4543 key_flush_spacq(now); 4544 CURVNET_RESTORE(); 4545 } 4546 VNET_LIST_RUNLOCK_NOSLEEP(); 4547 4548 #ifndef IPSEC_DEBUG2 4549 /* do exchange to tick time !! */ 4550 (void)timeout((void *)key_timehandler, (void *)0, hz); 4551 #endif /* IPSEC_DEBUG2 */ 4552 } 4553 4554 u_long 4555 key_random() 4556 { 4557 u_long value; 4558 4559 key_randomfill(&value, sizeof(value)); 4560 return value; 4561 } 4562 4563 void 4564 key_randomfill(p, l) 4565 void *p; 4566 size_t l; 4567 { 4568 size_t n; 4569 u_long v; 4570 static int warn = 1; 4571 4572 n = 0; 4573 n = (size_t)read_random(p, (u_int)l); 4574 /* last resort */ 4575 while (n < l) { 4576 v = random(); 4577 bcopy(&v, (u_int8_t *)p + n, 4578 l - n < sizeof(v) ? l - n : sizeof(v)); 4579 n += sizeof(v); 4580 4581 if (warn) { 4582 printf("WARNING: pseudo-random number generator " 4583 "used for IPsec processing\n"); 4584 warn = 0; 4585 } 4586 } 4587 } 4588 4589 /* 4590 * map SADB_SATYPE_* to IPPROTO_*. 4591 * if satype == SADB_SATYPE then satype is mapped to ~0. 4592 * OUT: 4593 * 0: invalid satype. 4594 */ 4595 static u_int16_t 4596 key_satype2proto(u_int8_t satype) 4597 { 4598 switch (satype) { 4599 case SADB_SATYPE_UNSPEC: 4600 return IPSEC_PROTO_ANY; 4601 case SADB_SATYPE_AH: 4602 return IPPROTO_AH; 4603 case SADB_SATYPE_ESP: 4604 return IPPROTO_ESP; 4605 case SADB_X_SATYPE_IPCOMP: 4606 return IPPROTO_IPCOMP; 4607 case SADB_X_SATYPE_TCPSIGNATURE: 4608 return IPPROTO_TCP; 4609 default: 4610 return 0; 4611 } 4612 /* NOTREACHED */ 4613 } 4614 4615 /* 4616 * map IPPROTO_* to SADB_SATYPE_* 4617 * OUT: 4618 * 0: invalid protocol type. 4619 */ 4620 static u_int8_t 4621 key_proto2satype(u_int16_t proto) 4622 { 4623 switch (proto) { 4624 case IPPROTO_AH: 4625 return SADB_SATYPE_AH; 4626 case IPPROTO_ESP: 4627 return SADB_SATYPE_ESP; 4628 case IPPROTO_IPCOMP: 4629 return SADB_X_SATYPE_IPCOMP; 4630 case IPPROTO_TCP: 4631 return SADB_X_SATYPE_TCPSIGNATURE; 4632 default: 4633 return 0; 4634 } 4635 /* NOTREACHED */ 4636 } 4637 4638 /* %%% PF_KEY */ 4639 /* 4640 * SADB_GETSPI processing is to receive 4641 * <base, (SA2), src address, dst address, (SPI range)> 4642 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4643 * tree with the status of LARVAL, and send 4644 * <base, SA(*), address(SD)> 4645 * to the IKMPd. 4646 * 4647 * IN: mhp: pointer to the pointer to each header. 4648 * OUT: NULL if fail. 4649 * other if success, return pointer to the message to send. 4650 */ 4651 static int 4652 key_getspi(so, m, mhp) 4653 struct socket *so; 4654 struct mbuf *m; 4655 const struct sadb_msghdr *mhp; 4656 { 4657 struct sadb_address *src0, *dst0; 4658 struct secasindex saidx; 4659 struct secashead *newsah; 4660 struct secasvar *newsav; 4661 u_int8_t proto; 4662 u_int32_t spi; 4663 u_int8_t mode; 4664 u_int32_t reqid; 4665 int error; 4666 4667 IPSEC_ASSERT(so != NULL, ("null socket")); 4668 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4669 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4670 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4671 4672 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4673 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4674 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4675 __func__)); 4676 return key_senderror(so, m, EINVAL); 4677 } 4678 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4679 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4680 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4681 __func__)); 4682 return key_senderror(so, m, EINVAL); 4683 } 4684 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4685 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4686 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4687 } else { 4688 mode = IPSEC_MODE_ANY; 4689 reqid = 0; 4690 } 4691 4692 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4693 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4694 4695 /* map satype to proto */ 4696 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4697 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4698 __func__)); 4699 return key_senderror(so, m, EINVAL); 4700 } 4701 4702 /* 4703 * Make sure the port numbers are zero. 4704 * In case of NAT-T we will update them later if needed. 4705 */ 4706 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4707 case AF_INET: 4708 if (((struct sockaddr *)(src0 + 1))->sa_len != 4709 sizeof(struct sockaddr_in)) 4710 return key_senderror(so, m, EINVAL); 4711 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4712 break; 4713 case AF_INET6: 4714 if (((struct sockaddr *)(src0 + 1))->sa_len != 4715 sizeof(struct sockaddr_in6)) 4716 return key_senderror(so, m, EINVAL); 4717 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4718 break; 4719 default: 4720 ; /*???*/ 4721 } 4722 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4723 case AF_INET: 4724 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4725 sizeof(struct sockaddr_in)) 4726 return key_senderror(so, m, EINVAL); 4727 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4728 break; 4729 case AF_INET6: 4730 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4731 sizeof(struct sockaddr_in6)) 4732 return key_senderror(so, m, EINVAL); 4733 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4734 break; 4735 default: 4736 ; /*???*/ 4737 } 4738 4739 /* XXX boundary check against sa_len */ 4740 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4741 4742 #ifdef IPSEC_NAT_T 4743 /* 4744 * Handle NAT-T info if present. 4745 * We made sure the port numbers are zero above, so we do 4746 * not have to worry in case we do not update them. 4747 */ 4748 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4749 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4750 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4751 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4752 4753 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4754 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4755 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4756 struct sadb_x_nat_t_type *type; 4757 struct sadb_x_nat_t_port *sport, *dport; 4758 4759 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4760 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4761 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4762 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4763 "passed.\n", __func__)); 4764 return key_senderror(so, m, EINVAL); 4765 } 4766 4767 sport = (struct sadb_x_nat_t_port *) 4768 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4769 dport = (struct sadb_x_nat_t_port *) 4770 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4771 4772 if (sport) 4773 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4774 if (dport) 4775 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4776 } 4777 #endif 4778 4779 /* SPI allocation */ 4780 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4781 &saidx); 4782 if (spi == 0) 4783 return key_senderror(so, m, EINVAL); 4784 4785 /* get a SA index */ 4786 if ((newsah = key_getsah(&saidx)) == NULL) { 4787 /* create a new SA index */ 4788 if ((newsah = key_newsah(&saidx)) == NULL) { 4789 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4790 return key_senderror(so, m, ENOBUFS); 4791 } 4792 } 4793 4794 /* get a new SA */ 4795 /* XXX rewrite */ 4796 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4797 if (newsav == NULL) { 4798 /* XXX don't free new SA index allocated in above. */ 4799 return key_senderror(so, m, error); 4800 } 4801 4802 /* set spi */ 4803 newsav->spi = htonl(spi); 4804 4805 /* delete the entry in acqtree */ 4806 if (mhp->msg->sadb_msg_seq != 0) { 4807 struct secacq *acq; 4808 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4809 /* reset counter in order to deletion by timehandler. */ 4810 acq->created = time_second; 4811 acq->count = 0; 4812 } 4813 } 4814 4815 { 4816 struct mbuf *n, *nn; 4817 struct sadb_sa *m_sa; 4818 struct sadb_msg *newmsg; 4819 int off, len; 4820 4821 /* create new sadb_msg to reply. */ 4822 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4823 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4824 4825 MGETHDR(n, M_DONTWAIT, MT_DATA); 4826 if (len > MHLEN) { 4827 MCLGET(n, M_DONTWAIT); 4828 if ((n->m_flags & M_EXT) == 0) { 4829 m_freem(n); 4830 n = NULL; 4831 } 4832 } 4833 if (!n) 4834 return key_senderror(so, m, ENOBUFS); 4835 4836 n->m_len = len; 4837 n->m_next = NULL; 4838 off = 0; 4839 4840 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4841 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4842 4843 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4844 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4845 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4846 m_sa->sadb_sa_spi = htonl(spi); 4847 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4848 4849 IPSEC_ASSERT(off == len, 4850 ("length inconsistency (off %u len %u)", off, len)); 4851 4852 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4853 SADB_EXT_ADDRESS_DST); 4854 if (!n->m_next) { 4855 m_freem(n); 4856 return key_senderror(so, m, ENOBUFS); 4857 } 4858 4859 if (n->m_len < sizeof(struct sadb_msg)) { 4860 n = m_pullup(n, sizeof(struct sadb_msg)); 4861 if (n == NULL) 4862 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4863 } 4864 4865 n->m_pkthdr.len = 0; 4866 for (nn = n; nn; nn = nn->m_next) 4867 n->m_pkthdr.len += nn->m_len; 4868 4869 newmsg = mtod(n, struct sadb_msg *); 4870 newmsg->sadb_msg_seq = newsav->seq; 4871 newmsg->sadb_msg_errno = 0; 4872 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4873 4874 m_freem(m); 4875 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4876 } 4877 } 4878 4879 /* 4880 * allocating new SPI 4881 * called by key_getspi(). 4882 * OUT: 4883 * 0: failure. 4884 * others: success. 4885 */ 4886 static u_int32_t 4887 key_do_getnewspi(spirange, saidx) 4888 struct sadb_spirange *spirange; 4889 struct secasindex *saidx; 4890 { 4891 u_int32_t newspi; 4892 u_int32_t min, max; 4893 int count = V_key_spi_trycnt; 4894 4895 /* set spi range to allocate */ 4896 if (spirange != NULL) { 4897 min = spirange->sadb_spirange_min; 4898 max = spirange->sadb_spirange_max; 4899 } else { 4900 min = V_key_spi_minval; 4901 max = V_key_spi_maxval; 4902 } 4903 /* IPCOMP needs 2-byte SPI */ 4904 if (saidx->proto == IPPROTO_IPCOMP) { 4905 u_int32_t t; 4906 if (min >= 0x10000) 4907 min = 0xffff; 4908 if (max >= 0x10000) 4909 max = 0xffff; 4910 if (min > max) { 4911 t = min; min = max; max = t; 4912 } 4913 } 4914 4915 if (min == max) { 4916 if (key_checkspidup(saidx, min) != NULL) { 4917 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4918 __func__, min)); 4919 return 0; 4920 } 4921 4922 count--; /* taking one cost. */ 4923 newspi = min; 4924 4925 } else { 4926 4927 /* init SPI */ 4928 newspi = 0; 4929 4930 /* when requesting to allocate spi ranged */ 4931 while (count--) { 4932 /* generate pseudo-random SPI value ranged. */ 4933 newspi = min + (key_random() % (max - min + 1)); 4934 4935 if (key_checkspidup(saidx, newspi) == NULL) 4936 break; 4937 } 4938 4939 if (count == 0 || newspi == 0) { 4940 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4941 __func__)); 4942 return 0; 4943 } 4944 } 4945 4946 /* statistics */ 4947 keystat.getspi_count = 4948 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4949 4950 return newspi; 4951 } 4952 4953 /* 4954 * SADB_UPDATE processing 4955 * receive 4956 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4957 * key(AE), (identity(SD),) (sensitivity)> 4958 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4959 * and send 4960 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4961 * (identity(SD),) (sensitivity)> 4962 * to the ikmpd. 4963 * 4964 * m will always be freed. 4965 */ 4966 static int 4967 key_update(so, m, mhp) 4968 struct socket *so; 4969 struct mbuf *m; 4970 const struct sadb_msghdr *mhp; 4971 { 4972 struct sadb_sa *sa0; 4973 struct sadb_address *src0, *dst0; 4974 #ifdef IPSEC_NAT_T 4975 struct sadb_x_nat_t_type *type; 4976 struct sadb_x_nat_t_port *sport, *dport; 4977 struct sadb_address *iaddr, *raddr; 4978 struct sadb_x_nat_t_frag *frag; 4979 #endif 4980 struct secasindex saidx; 4981 struct secashead *sah; 4982 struct secasvar *sav; 4983 u_int16_t proto; 4984 u_int8_t mode; 4985 u_int32_t reqid; 4986 int error; 4987 4988 IPSEC_ASSERT(so != NULL, ("null socket")); 4989 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4990 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4991 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4992 4993 /* map satype to proto */ 4994 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4995 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4996 __func__)); 4997 return key_senderror(so, m, EINVAL); 4998 } 4999 5000 if (mhp->ext[SADB_EXT_SA] == NULL || 5001 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5002 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5003 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5004 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5005 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5006 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5007 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5008 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5009 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5010 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5011 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5012 __func__)); 5013 return key_senderror(so, m, EINVAL); 5014 } 5015 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5016 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5017 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5018 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5019 __func__)); 5020 return key_senderror(so, m, EINVAL); 5021 } 5022 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5023 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5024 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5025 } else { 5026 mode = IPSEC_MODE_ANY; 5027 reqid = 0; 5028 } 5029 /* XXX boundary checking for other extensions */ 5030 5031 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5032 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5033 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5034 5035 /* XXX boundary check against sa_len */ 5036 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5037 5038 /* 5039 * Make sure the port numbers are zero. 5040 * In case of NAT-T we will update them later if needed. 5041 */ 5042 KEY_PORTTOSADDR(&saidx.src, 0); 5043 KEY_PORTTOSADDR(&saidx.dst, 0); 5044 5045 #ifdef IPSEC_NAT_T 5046 /* 5047 * Handle NAT-T info if present. 5048 */ 5049 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5050 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5051 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5052 5053 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5054 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5055 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5056 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5057 __func__)); 5058 return key_senderror(so, m, EINVAL); 5059 } 5060 5061 type = (struct sadb_x_nat_t_type *) 5062 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5063 sport = (struct sadb_x_nat_t_port *) 5064 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5065 dport = (struct sadb_x_nat_t_port *) 5066 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5067 } else { 5068 type = 0; 5069 sport = dport = 0; 5070 } 5071 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5072 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5073 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5074 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5075 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5076 __func__)); 5077 return key_senderror(so, m, EINVAL); 5078 } 5079 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5080 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5081 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5082 } else { 5083 iaddr = raddr = NULL; 5084 } 5085 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5086 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5087 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5088 __func__)); 5089 return key_senderror(so, m, EINVAL); 5090 } 5091 frag = (struct sadb_x_nat_t_frag *) 5092 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5093 } else { 5094 frag = 0; 5095 } 5096 #endif 5097 5098 /* get a SA header */ 5099 if ((sah = key_getsah(&saidx)) == NULL) { 5100 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5101 return key_senderror(so, m, ENOENT); 5102 } 5103 5104 /* set spidx if there */ 5105 /* XXX rewrite */ 5106 error = key_setident(sah, m, mhp); 5107 if (error) 5108 return key_senderror(so, m, error); 5109 5110 /* find a SA with sequence number. */ 5111 #ifdef IPSEC_DOSEQCHECK 5112 if (mhp->msg->sadb_msg_seq != 0 5113 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5114 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5115 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5116 return key_senderror(so, m, ENOENT); 5117 } 5118 #else 5119 SAHTREE_LOCK(); 5120 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5121 SAHTREE_UNLOCK(); 5122 if (sav == NULL) { 5123 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5124 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5125 return key_senderror(so, m, EINVAL); 5126 } 5127 #endif 5128 5129 /* validity check */ 5130 if (sav->sah->saidx.proto != proto) { 5131 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5132 "(DB=%u param=%u)\n", __func__, 5133 sav->sah->saidx.proto, proto)); 5134 return key_senderror(so, m, EINVAL); 5135 } 5136 #ifdef IPSEC_DOSEQCHECK 5137 if (sav->spi != sa0->sadb_sa_spi) { 5138 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5139 __func__, 5140 (u_int32_t)ntohl(sav->spi), 5141 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5142 return key_senderror(so, m, EINVAL); 5143 } 5144 #endif 5145 if (sav->pid != mhp->msg->sadb_msg_pid) { 5146 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5147 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5148 return key_senderror(so, m, EINVAL); 5149 } 5150 5151 /* copy sav values */ 5152 error = key_setsaval(sav, m, mhp); 5153 if (error) { 5154 KEY_FREESAV(&sav); 5155 return key_senderror(so, m, error); 5156 } 5157 5158 #ifdef IPSEC_NAT_T 5159 /* 5160 * Handle more NAT-T info if present, 5161 * now that we have a sav to fill. 5162 */ 5163 if (type) 5164 sav->natt_type = type->sadb_x_nat_t_type_type; 5165 5166 if (sport) 5167 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5168 sport->sadb_x_nat_t_port_port); 5169 if (dport) 5170 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5171 dport->sadb_x_nat_t_port_port); 5172 5173 #if 0 5174 /* 5175 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5176 * We should actually check for a minimum MTU here, if we 5177 * want to support it in ip_output. 5178 */ 5179 if (frag) 5180 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5181 #endif 5182 #endif 5183 5184 /* check SA values to be mature. */ 5185 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5186 KEY_FREESAV(&sav); 5187 return key_senderror(so, m, 0); 5188 } 5189 5190 { 5191 struct mbuf *n; 5192 5193 /* set msg buf from mhp */ 5194 n = key_getmsgbuf_x1(m, mhp); 5195 if (n == NULL) { 5196 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5197 return key_senderror(so, m, ENOBUFS); 5198 } 5199 5200 m_freem(m); 5201 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5202 } 5203 } 5204 5205 /* 5206 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5207 * only called by key_update(). 5208 * OUT: 5209 * NULL : not found 5210 * others : found, pointer to a SA. 5211 */ 5212 #ifdef IPSEC_DOSEQCHECK 5213 static struct secasvar * 5214 key_getsavbyseq(sah, seq) 5215 struct secashead *sah; 5216 u_int32_t seq; 5217 { 5218 struct secasvar *sav; 5219 u_int state; 5220 5221 state = SADB_SASTATE_LARVAL; 5222 5223 /* search SAD with sequence number ? */ 5224 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5225 5226 KEY_CHKSASTATE(state, sav->state, __func__); 5227 5228 if (sav->seq == seq) { 5229 sa_addref(sav); 5230 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5231 printf("DP %s cause refcnt++:%d SA:%p\n", 5232 __func__, sav->refcnt, sav)); 5233 return sav; 5234 } 5235 } 5236 5237 return NULL; 5238 } 5239 #endif 5240 5241 /* 5242 * SADB_ADD processing 5243 * add an entry to SA database, when received 5244 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5245 * key(AE), (identity(SD),) (sensitivity)> 5246 * from the ikmpd, 5247 * and send 5248 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5249 * (identity(SD),) (sensitivity)> 5250 * to the ikmpd. 5251 * 5252 * IGNORE identity and sensitivity messages. 5253 * 5254 * m will always be freed. 5255 */ 5256 static int 5257 key_add(so, m, mhp) 5258 struct socket *so; 5259 struct mbuf *m; 5260 const struct sadb_msghdr *mhp; 5261 { 5262 struct sadb_sa *sa0; 5263 struct sadb_address *src0, *dst0; 5264 #ifdef IPSEC_NAT_T 5265 struct sadb_x_nat_t_type *type; 5266 struct sadb_address *iaddr, *raddr; 5267 struct sadb_x_nat_t_frag *frag; 5268 #endif 5269 struct secasindex saidx; 5270 struct secashead *newsah; 5271 struct secasvar *newsav; 5272 u_int16_t proto; 5273 u_int8_t mode; 5274 u_int32_t reqid; 5275 int error; 5276 5277 IPSEC_ASSERT(so != NULL, ("null socket")); 5278 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5279 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5280 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5281 5282 /* map satype to proto */ 5283 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5284 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5285 __func__)); 5286 return key_senderror(so, m, EINVAL); 5287 } 5288 5289 if (mhp->ext[SADB_EXT_SA] == NULL || 5290 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5291 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5292 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5293 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5294 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5295 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5296 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5297 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5298 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5299 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5300 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5301 __func__)); 5302 return key_senderror(so, m, EINVAL); 5303 } 5304 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5305 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5306 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5307 /* XXX need more */ 5308 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5309 __func__)); 5310 return key_senderror(so, m, EINVAL); 5311 } 5312 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5313 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5314 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5315 } else { 5316 mode = IPSEC_MODE_ANY; 5317 reqid = 0; 5318 } 5319 5320 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5321 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5322 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5323 5324 /* XXX boundary check against sa_len */ 5325 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5326 5327 /* 5328 * Make sure the port numbers are zero. 5329 * In case of NAT-T we will update them later if needed. 5330 */ 5331 KEY_PORTTOSADDR(&saidx.src, 0); 5332 KEY_PORTTOSADDR(&saidx.dst, 0); 5333 5334 #ifdef IPSEC_NAT_T 5335 /* 5336 * Handle NAT-T info if present. 5337 */ 5338 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5339 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5340 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5341 struct sadb_x_nat_t_port *sport, *dport; 5342 5343 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5344 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5345 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5346 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5347 __func__)); 5348 return key_senderror(so, m, EINVAL); 5349 } 5350 5351 type = (struct sadb_x_nat_t_type *) 5352 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5353 sport = (struct sadb_x_nat_t_port *) 5354 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5355 dport = (struct sadb_x_nat_t_port *) 5356 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5357 5358 if (sport) 5359 KEY_PORTTOSADDR(&saidx.src, 5360 sport->sadb_x_nat_t_port_port); 5361 if (dport) 5362 KEY_PORTTOSADDR(&saidx.dst, 5363 dport->sadb_x_nat_t_port_port); 5364 } else { 5365 type = 0; 5366 } 5367 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5368 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5369 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5370 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5371 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5372 __func__)); 5373 return key_senderror(so, m, EINVAL); 5374 } 5375 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5376 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5377 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5378 } else { 5379 iaddr = raddr = NULL; 5380 } 5381 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5382 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5383 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5384 __func__)); 5385 return key_senderror(so, m, EINVAL); 5386 } 5387 frag = (struct sadb_x_nat_t_frag *) 5388 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5389 } else { 5390 frag = 0; 5391 } 5392 #endif 5393 5394 /* get a SA header */ 5395 if ((newsah = key_getsah(&saidx)) == NULL) { 5396 /* create a new SA header */ 5397 if ((newsah = key_newsah(&saidx)) == NULL) { 5398 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5399 return key_senderror(so, m, ENOBUFS); 5400 } 5401 } 5402 5403 /* set spidx if there */ 5404 /* XXX rewrite */ 5405 error = key_setident(newsah, m, mhp); 5406 if (error) { 5407 return key_senderror(so, m, error); 5408 } 5409 5410 /* create new SA entry. */ 5411 /* We can create new SA only if SPI is differenct. */ 5412 SAHTREE_LOCK(); 5413 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5414 SAHTREE_UNLOCK(); 5415 if (newsav != NULL) { 5416 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5417 return key_senderror(so, m, EEXIST); 5418 } 5419 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5420 if (newsav == NULL) { 5421 return key_senderror(so, m, error); 5422 } 5423 5424 #ifdef IPSEC_NAT_T 5425 /* 5426 * Handle more NAT-T info if present, 5427 * now that we have a sav to fill. 5428 */ 5429 if (type) 5430 newsav->natt_type = type->sadb_x_nat_t_type_type; 5431 5432 #if 0 5433 /* 5434 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5435 * We should actually check for a minimum MTU here, if we 5436 * want to support it in ip_output. 5437 */ 5438 if (frag) 5439 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5440 #endif 5441 #endif 5442 5443 /* check SA values to be mature. */ 5444 if ((error = key_mature(newsav)) != 0) { 5445 KEY_FREESAV(&newsav); 5446 return key_senderror(so, m, error); 5447 } 5448 5449 /* 5450 * don't call key_freesav() here, as we would like to keep the SA 5451 * in the database on success. 5452 */ 5453 5454 { 5455 struct mbuf *n; 5456 5457 /* set msg buf from mhp */ 5458 n = key_getmsgbuf_x1(m, mhp); 5459 if (n == NULL) { 5460 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5461 return key_senderror(so, m, ENOBUFS); 5462 } 5463 5464 m_freem(m); 5465 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5466 } 5467 } 5468 5469 /* m is retained */ 5470 static int 5471 key_setident(sah, m, mhp) 5472 struct secashead *sah; 5473 struct mbuf *m; 5474 const struct sadb_msghdr *mhp; 5475 { 5476 const struct sadb_ident *idsrc, *iddst; 5477 int idsrclen, iddstlen; 5478 5479 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5480 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5481 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5482 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5483 5484 /* don't make buffer if not there */ 5485 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5486 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5487 sah->idents = NULL; 5488 sah->identd = NULL; 5489 return 0; 5490 } 5491 5492 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5493 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5494 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5495 return EINVAL; 5496 } 5497 5498 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5499 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5500 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5501 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5502 5503 /* validity check */ 5504 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5505 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5506 return EINVAL; 5507 } 5508 5509 switch (idsrc->sadb_ident_type) { 5510 case SADB_IDENTTYPE_PREFIX: 5511 case SADB_IDENTTYPE_FQDN: 5512 case SADB_IDENTTYPE_USERFQDN: 5513 default: 5514 /* XXX do nothing */ 5515 sah->idents = NULL; 5516 sah->identd = NULL; 5517 return 0; 5518 } 5519 5520 /* make structure */ 5521 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5522 if (sah->idents == NULL) { 5523 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5524 return ENOBUFS; 5525 } 5526 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5527 if (sah->identd == NULL) { 5528 free(sah->idents, M_IPSEC_MISC); 5529 sah->idents = NULL; 5530 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5531 return ENOBUFS; 5532 } 5533 sah->idents->type = idsrc->sadb_ident_type; 5534 sah->idents->id = idsrc->sadb_ident_id; 5535 5536 sah->identd->type = iddst->sadb_ident_type; 5537 sah->identd->id = iddst->sadb_ident_id; 5538 5539 return 0; 5540 } 5541 5542 /* 5543 * m will not be freed on return. 5544 * it is caller's responsibility to free the result. 5545 */ 5546 static struct mbuf * 5547 key_getmsgbuf_x1(m, mhp) 5548 struct mbuf *m; 5549 const struct sadb_msghdr *mhp; 5550 { 5551 struct mbuf *n; 5552 5553 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5554 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5555 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5556 5557 /* create new sadb_msg to reply. */ 5558 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5559 SADB_EXT_SA, SADB_X_EXT_SA2, 5560 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5561 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5562 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5563 if (!n) 5564 return NULL; 5565 5566 if (n->m_len < sizeof(struct sadb_msg)) { 5567 n = m_pullup(n, sizeof(struct sadb_msg)); 5568 if (n == NULL) 5569 return NULL; 5570 } 5571 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5572 mtod(n, struct sadb_msg *)->sadb_msg_len = 5573 PFKEY_UNIT64(n->m_pkthdr.len); 5574 5575 return n; 5576 } 5577 5578 static int key_delete_all __P((struct socket *, struct mbuf *, 5579 const struct sadb_msghdr *, u_int16_t)); 5580 5581 /* 5582 * SADB_DELETE processing 5583 * receive 5584 * <base, SA(*), address(SD)> 5585 * from the ikmpd, and set SADB_SASTATE_DEAD, 5586 * and send, 5587 * <base, SA(*), address(SD)> 5588 * to the ikmpd. 5589 * 5590 * m will always be freed. 5591 */ 5592 static int 5593 key_delete(so, m, mhp) 5594 struct socket *so; 5595 struct mbuf *m; 5596 const struct sadb_msghdr *mhp; 5597 { 5598 struct sadb_sa *sa0; 5599 struct sadb_address *src0, *dst0; 5600 struct secasindex saidx; 5601 struct secashead *sah; 5602 struct secasvar *sav = NULL; 5603 u_int16_t proto; 5604 5605 IPSEC_ASSERT(so != NULL, ("null socket")); 5606 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5607 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5608 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5609 5610 /* map satype to proto */ 5611 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5612 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5613 __func__)); 5614 return key_senderror(so, m, EINVAL); 5615 } 5616 5617 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5618 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5619 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5620 __func__)); 5621 return key_senderror(so, m, EINVAL); 5622 } 5623 5624 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5625 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5627 __func__)); 5628 return key_senderror(so, m, EINVAL); 5629 } 5630 5631 if (mhp->ext[SADB_EXT_SA] == NULL) { 5632 /* 5633 * Caller wants us to delete all non-LARVAL SAs 5634 * that match the src/dst. This is used during 5635 * IKE INITIAL-CONTACT. 5636 */ 5637 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5638 return key_delete_all(so, m, mhp, proto); 5639 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5640 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5641 __func__)); 5642 return key_senderror(so, m, EINVAL); 5643 } 5644 5645 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5646 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5647 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5648 5649 /* XXX boundary check against sa_len */ 5650 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5651 5652 /* 5653 * Make sure the port numbers are zero. 5654 * In case of NAT-T we will update them later if needed. 5655 */ 5656 KEY_PORTTOSADDR(&saidx.src, 0); 5657 KEY_PORTTOSADDR(&saidx.dst, 0); 5658 5659 #ifdef IPSEC_NAT_T 5660 /* 5661 * Handle NAT-T info if present. 5662 */ 5663 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5664 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5665 struct sadb_x_nat_t_port *sport, *dport; 5666 5667 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5668 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5669 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5670 __func__)); 5671 return key_senderror(so, m, EINVAL); 5672 } 5673 5674 sport = (struct sadb_x_nat_t_port *) 5675 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5676 dport = (struct sadb_x_nat_t_port *) 5677 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5678 5679 if (sport) 5680 KEY_PORTTOSADDR(&saidx.src, 5681 sport->sadb_x_nat_t_port_port); 5682 if (dport) 5683 KEY_PORTTOSADDR(&saidx.dst, 5684 dport->sadb_x_nat_t_port_port); 5685 } 5686 #endif 5687 5688 /* get a SA header */ 5689 SAHTREE_LOCK(); 5690 LIST_FOREACH(sah, &V_sahtree, chain) { 5691 if (sah->state == SADB_SASTATE_DEAD) 5692 continue; 5693 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5694 continue; 5695 5696 /* get a SA with SPI. */ 5697 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5698 if (sav) 5699 break; 5700 } 5701 if (sah == NULL) { 5702 SAHTREE_UNLOCK(); 5703 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5704 return key_senderror(so, m, ENOENT); 5705 } 5706 5707 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5708 KEY_FREESAV(&sav); 5709 SAHTREE_UNLOCK(); 5710 5711 { 5712 struct mbuf *n; 5713 struct sadb_msg *newmsg; 5714 5715 /* create new sadb_msg to reply. */ 5716 /* XXX-BZ NAT-T extensions? */ 5717 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5718 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5719 if (!n) 5720 return key_senderror(so, m, ENOBUFS); 5721 5722 if (n->m_len < sizeof(struct sadb_msg)) { 5723 n = m_pullup(n, sizeof(struct sadb_msg)); 5724 if (n == NULL) 5725 return key_senderror(so, m, ENOBUFS); 5726 } 5727 newmsg = mtod(n, struct sadb_msg *); 5728 newmsg->sadb_msg_errno = 0; 5729 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5730 5731 m_freem(m); 5732 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5733 } 5734 } 5735 5736 /* 5737 * delete all SAs for src/dst. Called from key_delete(). 5738 */ 5739 static int 5740 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5741 u_int16_t proto) 5742 { 5743 struct sadb_address *src0, *dst0; 5744 struct secasindex saidx; 5745 struct secashead *sah; 5746 struct secasvar *sav, *nextsav; 5747 u_int stateidx, state; 5748 5749 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5750 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5751 5752 /* XXX boundary check against sa_len */ 5753 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5754 5755 /* 5756 * Make sure the port numbers are zero. 5757 * In case of NAT-T we will update them later if needed. 5758 */ 5759 KEY_PORTTOSADDR(&saidx.src, 0); 5760 KEY_PORTTOSADDR(&saidx.dst, 0); 5761 5762 #ifdef IPSEC_NAT_T 5763 /* 5764 * Handle NAT-T info if present. 5765 */ 5766 5767 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5768 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5769 struct sadb_x_nat_t_port *sport, *dport; 5770 5771 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5772 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5773 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5774 __func__)); 5775 return key_senderror(so, m, EINVAL); 5776 } 5777 5778 sport = (struct sadb_x_nat_t_port *) 5779 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5780 dport = (struct sadb_x_nat_t_port *) 5781 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5782 5783 if (sport) 5784 KEY_PORTTOSADDR(&saidx.src, 5785 sport->sadb_x_nat_t_port_port); 5786 if (dport) 5787 KEY_PORTTOSADDR(&saidx.dst, 5788 dport->sadb_x_nat_t_port_port); 5789 } 5790 #endif 5791 5792 SAHTREE_LOCK(); 5793 LIST_FOREACH(sah, &V_sahtree, chain) { 5794 if (sah->state == SADB_SASTATE_DEAD) 5795 continue; 5796 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5797 continue; 5798 5799 /* Delete all non-LARVAL SAs. */ 5800 for (stateidx = 0; 5801 stateidx < _ARRAYLEN(saorder_state_alive); 5802 stateidx++) { 5803 state = saorder_state_alive[stateidx]; 5804 if (state == SADB_SASTATE_LARVAL) 5805 continue; 5806 for (sav = LIST_FIRST(&sah->savtree[state]); 5807 sav != NULL; sav = nextsav) { 5808 nextsav = LIST_NEXT(sav, chain); 5809 /* sanity check */ 5810 if (sav->state != state) { 5811 ipseclog((LOG_DEBUG, "%s: invalid " 5812 "sav->state (queue %d SA %d)\n", 5813 __func__, state, sav->state)); 5814 continue; 5815 } 5816 5817 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5818 KEY_FREESAV(&sav); 5819 } 5820 } 5821 } 5822 SAHTREE_UNLOCK(); 5823 { 5824 struct mbuf *n; 5825 struct sadb_msg *newmsg; 5826 5827 /* create new sadb_msg to reply. */ 5828 /* XXX-BZ NAT-T extensions? */ 5829 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5830 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5831 if (!n) 5832 return key_senderror(so, m, ENOBUFS); 5833 5834 if (n->m_len < sizeof(struct sadb_msg)) { 5835 n = m_pullup(n, sizeof(struct sadb_msg)); 5836 if (n == NULL) 5837 return key_senderror(so, m, ENOBUFS); 5838 } 5839 newmsg = mtod(n, struct sadb_msg *); 5840 newmsg->sadb_msg_errno = 0; 5841 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5842 5843 m_freem(m); 5844 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5845 } 5846 } 5847 5848 /* 5849 * SADB_GET processing 5850 * receive 5851 * <base, SA(*), address(SD)> 5852 * from the ikmpd, and get a SP and a SA to respond, 5853 * and send, 5854 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5855 * (identity(SD),) (sensitivity)> 5856 * to the ikmpd. 5857 * 5858 * m will always be freed. 5859 */ 5860 static int 5861 key_get(so, m, mhp) 5862 struct socket *so; 5863 struct mbuf *m; 5864 const struct sadb_msghdr *mhp; 5865 { 5866 struct sadb_sa *sa0; 5867 struct sadb_address *src0, *dst0; 5868 struct secasindex saidx; 5869 struct secashead *sah; 5870 struct secasvar *sav = NULL; 5871 u_int16_t proto; 5872 5873 IPSEC_ASSERT(so != NULL, ("null socket")); 5874 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5875 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5876 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5877 5878 /* map satype to proto */ 5879 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5880 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5881 __func__)); 5882 return key_senderror(so, m, EINVAL); 5883 } 5884 5885 if (mhp->ext[SADB_EXT_SA] == NULL || 5886 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5887 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5888 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5889 __func__)); 5890 return key_senderror(so, m, EINVAL); 5891 } 5892 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5893 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5894 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5895 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5896 __func__)); 5897 return key_senderror(so, m, EINVAL); 5898 } 5899 5900 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5901 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5902 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5903 5904 /* XXX boundary check against sa_len */ 5905 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5906 5907 /* 5908 * Make sure the port numbers are zero. 5909 * In case of NAT-T we will update them later if needed. 5910 */ 5911 KEY_PORTTOSADDR(&saidx.src, 0); 5912 KEY_PORTTOSADDR(&saidx.dst, 0); 5913 5914 #ifdef IPSEC_NAT_T 5915 /* 5916 * Handle NAT-T info if present. 5917 */ 5918 5919 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5920 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5921 struct sadb_x_nat_t_port *sport, *dport; 5922 5923 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5924 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5925 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5926 __func__)); 5927 return key_senderror(so, m, EINVAL); 5928 } 5929 5930 sport = (struct sadb_x_nat_t_port *) 5931 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5932 dport = (struct sadb_x_nat_t_port *) 5933 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5934 5935 if (sport) 5936 KEY_PORTTOSADDR(&saidx.src, 5937 sport->sadb_x_nat_t_port_port); 5938 if (dport) 5939 KEY_PORTTOSADDR(&saidx.dst, 5940 dport->sadb_x_nat_t_port_port); 5941 } 5942 #endif 5943 5944 /* get a SA header */ 5945 SAHTREE_LOCK(); 5946 LIST_FOREACH(sah, &V_sahtree, chain) { 5947 if (sah->state == SADB_SASTATE_DEAD) 5948 continue; 5949 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5950 continue; 5951 5952 /* get a SA with SPI. */ 5953 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5954 if (sav) 5955 break; 5956 } 5957 SAHTREE_UNLOCK(); 5958 if (sah == NULL) { 5959 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5960 return key_senderror(so, m, ENOENT); 5961 } 5962 5963 { 5964 struct mbuf *n; 5965 u_int8_t satype; 5966 5967 /* map proto to satype */ 5968 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5969 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5970 __func__)); 5971 return key_senderror(so, m, EINVAL); 5972 } 5973 5974 /* create new sadb_msg to reply. */ 5975 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5976 mhp->msg->sadb_msg_pid); 5977 if (!n) 5978 return key_senderror(so, m, ENOBUFS); 5979 5980 m_freem(m); 5981 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5982 } 5983 } 5984 5985 /* XXX make it sysctl-configurable? */ 5986 static void 5987 key_getcomb_setlifetime(comb) 5988 struct sadb_comb *comb; 5989 { 5990 5991 comb->sadb_comb_soft_allocations = 1; 5992 comb->sadb_comb_hard_allocations = 1; 5993 comb->sadb_comb_soft_bytes = 0; 5994 comb->sadb_comb_hard_bytes = 0; 5995 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5996 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5997 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5998 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5999 } 6000 6001 /* 6002 * XXX reorder combinations by preference 6003 * XXX no idea if the user wants ESP authentication or not 6004 */ 6005 static struct mbuf * 6006 key_getcomb_esp() 6007 { 6008 struct sadb_comb *comb; 6009 struct enc_xform *algo; 6010 struct mbuf *result = NULL, *m, *n; 6011 int encmin; 6012 int i, off, o; 6013 int totlen; 6014 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6015 6016 m = NULL; 6017 for (i = 1; i <= SADB_EALG_MAX; i++) { 6018 algo = esp_algorithm_lookup(i); 6019 if (algo == NULL) 6020 continue; 6021 6022 /* discard algorithms with key size smaller than system min */ 6023 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6024 continue; 6025 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6026 encmin = V_ipsec_esp_keymin; 6027 else 6028 encmin = _BITS(algo->minkey); 6029 6030 if (V_ipsec_esp_auth) 6031 m = key_getcomb_ah(); 6032 else { 6033 IPSEC_ASSERT(l <= MLEN, 6034 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6035 MGET(m, M_DONTWAIT, MT_DATA); 6036 if (m) { 6037 M_ALIGN(m, l); 6038 m->m_len = l; 6039 m->m_next = NULL; 6040 bzero(mtod(m, caddr_t), m->m_len); 6041 } 6042 } 6043 if (!m) 6044 goto fail; 6045 6046 totlen = 0; 6047 for (n = m; n; n = n->m_next) 6048 totlen += n->m_len; 6049 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6050 6051 for (off = 0; off < totlen; off += l) { 6052 n = m_pulldown(m, off, l, &o); 6053 if (!n) { 6054 /* m is already freed */ 6055 goto fail; 6056 } 6057 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6058 bzero(comb, sizeof(*comb)); 6059 key_getcomb_setlifetime(comb); 6060 comb->sadb_comb_encrypt = i; 6061 comb->sadb_comb_encrypt_minbits = encmin; 6062 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6063 } 6064 6065 if (!result) 6066 result = m; 6067 else 6068 m_cat(result, m); 6069 } 6070 6071 return result; 6072 6073 fail: 6074 if (result) 6075 m_freem(result); 6076 return NULL; 6077 } 6078 6079 static void 6080 key_getsizes_ah( 6081 const struct auth_hash *ah, 6082 int alg, 6083 u_int16_t* min, 6084 u_int16_t* max) 6085 { 6086 6087 *min = *max = ah->keysize; 6088 if (ah->keysize == 0) { 6089 /* 6090 * Transform takes arbitrary key size but algorithm 6091 * key size is restricted. Enforce this here. 6092 */ 6093 switch (alg) { 6094 case SADB_X_AALG_MD5: *min = *max = 16; break; 6095 case SADB_X_AALG_SHA: *min = *max = 20; break; 6096 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6097 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6098 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6099 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6100 default: 6101 DPRINTF(("%s: unknown AH algorithm %u\n", 6102 __func__, alg)); 6103 break; 6104 } 6105 } 6106 } 6107 6108 /* 6109 * XXX reorder combinations by preference 6110 */ 6111 static struct mbuf * 6112 key_getcomb_ah() 6113 { 6114 struct sadb_comb *comb; 6115 struct auth_hash *algo; 6116 struct mbuf *m; 6117 u_int16_t minkeysize, maxkeysize; 6118 int i; 6119 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6120 6121 m = NULL; 6122 for (i = 1; i <= SADB_AALG_MAX; i++) { 6123 #if 1 6124 /* we prefer HMAC algorithms, not old algorithms */ 6125 if (i != SADB_AALG_SHA1HMAC && 6126 i != SADB_AALG_MD5HMAC && 6127 i != SADB_X_AALG_SHA2_256 && 6128 i != SADB_X_AALG_SHA2_384 && 6129 i != SADB_X_AALG_SHA2_512) 6130 continue; 6131 #endif 6132 algo = ah_algorithm_lookup(i); 6133 if (!algo) 6134 continue; 6135 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6136 /* discard algorithms with key size smaller than system min */ 6137 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6138 continue; 6139 6140 if (!m) { 6141 IPSEC_ASSERT(l <= MLEN, 6142 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6143 MGET(m, M_DONTWAIT, MT_DATA); 6144 if (m) { 6145 M_ALIGN(m, l); 6146 m->m_len = l; 6147 m->m_next = NULL; 6148 } 6149 } else 6150 M_PREPEND(m, l, M_DONTWAIT); 6151 if (!m) 6152 return NULL; 6153 6154 comb = mtod(m, struct sadb_comb *); 6155 bzero(comb, sizeof(*comb)); 6156 key_getcomb_setlifetime(comb); 6157 comb->sadb_comb_auth = i; 6158 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6159 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6160 } 6161 6162 return m; 6163 } 6164 6165 /* 6166 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6167 * XXX reorder combinations by preference 6168 */ 6169 static struct mbuf * 6170 key_getcomb_ipcomp() 6171 { 6172 struct sadb_comb *comb; 6173 struct comp_algo *algo; 6174 struct mbuf *m; 6175 int i; 6176 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6177 6178 m = NULL; 6179 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6180 algo = ipcomp_algorithm_lookup(i); 6181 if (!algo) 6182 continue; 6183 6184 if (!m) { 6185 IPSEC_ASSERT(l <= MLEN, 6186 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6187 MGET(m, M_DONTWAIT, MT_DATA); 6188 if (m) { 6189 M_ALIGN(m, l); 6190 m->m_len = l; 6191 m->m_next = NULL; 6192 } 6193 } else 6194 M_PREPEND(m, l, M_DONTWAIT); 6195 if (!m) 6196 return NULL; 6197 6198 comb = mtod(m, struct sadb_comb *); 6199 bzero(comb, sizeof(*comb)); 6200 key_getcomb_setlifetime(comb); 6201 comb->sadb_comb_encrypt = i; 6202 /* what should we set into sadb_comb_*_{min,max}bits? */ 6203 } 6204 6205 return m; 6206 } 6207 6208 /* 6209 * XXX no way to pass mode (transport/tunnel) to userland 6210 * XXX replay checking? 6211 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6212 */ 6213 static struct mbuf * 6214 key_getprop(saidx) 6215 const struct secasindex *saidx; 6216 { 6217 struct sadb_prop *prop; 6218 struct mbuf *m, *n; 6219 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6220 int totlen; 6221 6222 switch (saidx->proto) { 6223 case IPPROTO_ESP: 6224 m = key_getcomb_esp(); 6225 break; 6226 case IPPROTO_AH: 6227 m = key_getcomb_ah(); 6228 break; 6229 case IPPROTO_IPCOMP: 6230 m = key_getcomb_ipcomp(); 6231 break; 6232 default: 6233 return NULL; 6234 } 6235 6236 if (!m) 6237 return NULL; 6238 M_PREPEND(m, l, M_DONTWAIT); 6239 if (!m) 6240 return NULL; 6241 6242 totlen = 0; 6243 for (n = m; n; n = n->m_next) 6244 totlen += n->m_len; 6245 6246 prop = mtod(m, struct sadb_prop *); 6247 bzero(prop, sizeof(*prop)); 6248 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6249 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6250 prop->sadb_prop_replay = 32; /* XXX */ 6251 6252 return m; 6253 } 6254 6255 /* 6256 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6257 * send 6258 * <base, SA, address(SD), (address(P)), x_policy, 6259 * (identity(SD),) (sensitivity,) proposal> 6260 * to KMD, and expect to receive 6261 * <base> with SADB_ACQUIRE if error occured, 6262 * or 6263 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6264 * from KMD by PF_KEY. 6265 * 6266 * XXX x_policy is outside of RFC2367 (KAME extension). 6267 * XXX sensitivity is not supported. 6268 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6269 * see comment for key_getcomb_ipcomp(). 6270 * 6271 * OUT: 6272 * 0 : succeed 6273 * others: error number 6274 */ 6275 static int 6276 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6277 { 6278 struct mbuf *result = NULL, *m; 6279 struct secacq *newacq; 6280 u_int8_t satype; 6281 int error = -1; 6282 u_int32_t seq; 6283 6284 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6285 satype = key_proto2satype(saidx->proto); 6286 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6287 6288 /* 6289 * We never do anything about acquirng SA. There is anather 6290 * solution that kernel blocks to send SADB_ACQUIRE message until 6291 * getting something message from IKEd. In later case, to be 6292 * managed with ACQUIRING list. 6293 */ 6294 /* Get an entry to check whether sending message or not. */ 6295 if ((newacq = key_getacq(saidx)) != NULL) { 6296 if (V_key_blockacq_count < newacq->count) { 6297 /* reset counter and do send message. */ 6298 newacq->count = 0; 6299 } else { 6300 /* increment counter and do nothing. */ 6301 newacq->count++; 6302 return 0; 6303 } 6304 } else { 6305 /* make new entry for blocking to send SADB_ACQUIRE. */ 6306 if ((newacq = key_newacq(saidx)) == NULL) 6307 return ENOBUFS; 6308 } 6309 6310 6311 seq = newacq->seq; 6312 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6313 if (!m) { 6314 error = ENOBUFS; 6315 goto fail; 6316 } 6317 result = m; 6318 6319 /* 6320 * No SADB_X_EXT_NAT_T_* here: we do not know 6321 * anything related to NAT-T at this time. 6322 */ 6323 6324 /* set sadb_address for saidx's. */ 6325 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6326 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6327 if (!m) { 6328 error = ENOBUFS; 6329 goto fail; 6330 } 6331 m_cat(result, m); 6332 6333 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6334 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6335 if (!m) { 6336 error = ENOBUFS; 6337 goto fail; 6338 } 6339 m_cat(result, m); 6340 6341 /* XXX proxy address (optional) */ 6342 6343 /* set sadb_x_policy */ 6344 if (sp) { 6345 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6346 if (!m) { 6347 error = ENOBUFS; 6348 goto fail; 6349 } 6350 m_cat(result, m); 6351 } 6352 6353 /* XXX identity (optional) */ 6354 #if 0 6355 if (idexttype && fqdn) { 6356 /* create identity extension (FQDN) */ 6357 struct sadb_ident *id; 6358 int fqdnlen; 6359 6360 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6361 id = (struct sadb_ident *)p; 6362 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6363 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6364 id->sadb_ident_exttype = idexttype; 6365 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6366 bcopy(fqdn, id + 1, fqdnlen); 6367 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6368 } 6369 6370 if (idexttype) { 6371 /* create identity extension (USERFQDN) */ 6372 struct sadb_ident *id; 6373 int userfqdnlen; 6374 6375 if (userfqdn) { 6376 /* +1 for terminating-NUL */ 6377 userfqdnlen = strlen(userfqdn) + 1; 6378 } else 6379 userfqdnlen = 0; 6380 id = (struct sadb_ident *)p; 6381 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6382 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6383 id->sadb_ident_exttype = idexttype; 6384 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6385 /* XXX is it correct? */ 6386 if (curproc && curproc->p_cred) 6387 id->sadb_ident_id = curproc->p_cred->p_ruid; 6388 if (userfqdn && userfqdnlen) 6389 bcopy(userfqdn, id + 1, userfqdnlen); 6390 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6391 } 6392 #endif 6393 6394 /* XXX sensitivity (optional) */ 6395 6396 /* create proposal/combination extension */ 6397 m = key_getprop(saidx); 6398 #if 0 6399 /* 6400 * spec conformant: always attach proposal/combination extension, 6401 * the problem is that we have no way to attach it for ipcomp, 6402 * due to the way sadb_comb is declared in RFC2367. 6403 */ 6404 if (!m) { 6405 error = ENOBUFS; 6406 goto fail; 6407 } 6408 m_cat(result, m); 6409 #else 6410 /* 6411 * outside of spec; make proposal/combination extension optional. 6412 */ 6413 if (m) 6414 m_cat(result, m); 6415 #endif 6416 6417 if ((result->m_flags & M_PKTHDR) == 0) { 6418 error = EINVAL; 6419 goto fail; 6420 } 6421 6422 if (result->m_len < sizeof(struct sadb_msg)) { 6423 result = m_pullup(result, sizeof(struct sadb_msg)); 6424 if (result == NULL) { 6425 error = ENOBUFS; 6426 goto fail; 6427 } 6428 } 6429 6430 result->m_pkthdr.len = 0; 6431 for (m = result; m; m = m->m_next) 6432 result->m_pkthdr.len += m->m_len; 6433 6434 mtod(result, struct sadb_msg *)->sadb_msg_len = 6435 PFKEY_UNIT64(result->m_pkthdr.len); 6436 6437 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6438 6439 fail: 6440 if (result) 6441 m_freem(result); 6442 return error; 6443 } 6444 6445 static struct secacq * 6446 key_newacq(const struct secasindex *saidx) 6447 { 6448 struct secacq *newacq; 6449 6450 /* get new entry */ 6451 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6452 if (newacq == NULL) { 6453 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6454 return NULL; 6455 } 6456 6457 /* copy secindex */ 6458 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6459 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6460 newacq->created = time_second; 6461 newacq->count = 0; 6462 6463 /* add to acqtree */ 6464 ACQ_LOCK(); 6465 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6466 ACQ_UNLOCK(); 6467 6468 return newacq; 6469 } 6470 6471 static struct secacq * 6472 key_getacq(const struct secasindex *saidx) 6473 { 6474 struct secacq *acq; 6475 6476 ACQ_LOCK(); 6477 LIST_FOREACH(acq, &V_acqtree, chain) { 6478 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6479 break; 6480 } 6481 ACQ_UNLOCK(); 6482 6483 return acq; 6484 } 6485 6486 static struct secacq * 6487 key_getacqbyseq(seq) 6488 u_int32_t seq; 6489 { 6490 struct secacq *acq; 6491 6492 ACQ_LOCK(); 6493 LIST_FOREACH(acq, &V_acqtree, chain) { 6494 if (acq->seq == seq) 6495 break; 6496 } 6497 ACQ_UNLOCK(); 6498 6499 return acq; 6500 } 6501 6502 static struct secspacq * 6503 key_newspacq(spidx) 6504 struct secpolicyindex *spidx; 6505 { 6506 struct secspacq *acq; 6507 6508 /* get new entry */ 6509 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6510 if (acq == NULL) { 6511 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6512 return NULL; 6513 } 6514 6515 /* copy secindex */ 6516 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6517 acq->created = time_second; 6518 acq->count = 0; 6519 6520 /* add to spacqtree */ 6521 SPACQ_LOCK(); 6522 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6523 SPACQ_UNLOCK(); 6524 6525 return acq; 6526 } 6527 6528 static struct secspacq * 6529 key_getspacq(spidx) 6530 struct secpolicyindex *spidx; 6531 { 6532 struct secspacq *acq; 6533 6534 SPACQ_LOCK(); 6535 LIST_FOREACH(acq, &V_spacqtree, chain) { 6536 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6537 /* NB: return holding spacq_lock */ 6538 return acq; 6539 } 6540 } 6541 SPACQ_UNLOCK(); 6542 6543 return NULL; 6544 } 6545 6546 /* 6547 * SADB_ACQUIRE processing, 6548 * in first situation, is receiving 6549 * <base> 6550 * from the ikmpd, and clear sequence of its secasvar entry. 6551 * 6552 * In second situation, is receiving 6553 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6554 * from a user land process, and return 6555 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6556 * to the socket. 6557 * 6558 * m will always be freed. 6559 */ 6560 static int 6561 key_acquire2(so, m, mhp) 6562 struct socket *so; 6563 struct mbuf *m; 6564 const struct sadb_msghdr *mhp; 6565 { 6566 const struct sadb_address *src0, *dst0; 6567 struct secasindex saidx; 6568 struct secashead *sah; 6569 u_int16_t proto; 6570 int error; 6571 6572 IPSEC_ASSERT(so != NULL, ("null socket")); 6573 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6574 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6575 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6576 6577 /* 6578 * Error message from KMd. 6579 * We assume that if error was occured in IKEd, the length of PFKEY 6580 * message is equal to the size of sadb_msg structure. 6581 * We do not raise error even if error occured in this function. 6582 */ 6583 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6584 struct secacq *acq; 6585 6586 /* check sequence number */ 6587 if (mhp->msg->sadb_msg_seq == 0) { 6588 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6589 "number.\n", __func__)); 6590 m_freem(m); 6591 return 0; 6592 } 6593 6594 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6595 /* 6596 * the specified larval SA is already gone, or we got 6597 * a bogus sequence number. we can silently ignore it. 6598 */ 6599 m_freem(m); 6600 return 0; 6601 } 6602 6603 /* reset acq counter in order to deletion by timehander. */ 6604 acq->created = time_second; 6605 acq->count = 0; 6606 m_freem(m); 6607 return 0; 6608 } 6609 6610 /* 6611 * This message is from user land. 6612 */ 6613 6614 /* map satype to proto */ 6615 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6616 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6617 __func__)); 6618 return key_senderror(so, m, EINVAL); 6619 } 6620 6621 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6622 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6623 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6624 /* error */ 6625 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6626 __func__)); 6627 return key_senderror(so, m, EINVAL); 6628 } 6629 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6630 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6631 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6632 /* error */ 6633 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6634 __func__)); 6635 return key_senderror(so, m, EINVAL); 6636 } 6637 6638 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6639 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6640 6641 /* XXX boundary check against sa_len */ 6642 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6643 6644 /* 6645 * Make sure the port numbers are zero. 6646 * In case of NAT-T we will update them later if needed. 6647 */ 6648 KEY_PORTTOSADDR(&saidx.src, 0); 6649 KEY_PORTTOSADDR(&saidx.dst, 0); 6650 6651 #ifndef IPSEC_NAT_T 6652 /* 6653 * Handle NAT-T info if present. 6654 */ 6655 6656 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6657 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6658 struct sadb_x_nat_t_port *sport, *dport; 6659 6660 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6661 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6662 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6663 __func__)); 6664 return key_senderror(so, m, EINVAL); 6665 } 6666 6667 sport = (struct sadb_x_nat_t_port *) 6668 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6669 dport = (struct sadb_x_nat_t_port *) 6670 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6671 6672 if (sport) 6673 KEY_PORTTOSADDR(&saidx.src, 6674 sport->sadb_x_nat_t_port_port); 6675 if (dport) 6676 KEY_PORTTOSADDR(&saidx.dst, 6677 dport->sadb_x_nat_t_port_port); 6678 } 6679 #endif 6680 6681 /* get a SA index */ 6682 SAHTREE_LOCK(); 6683 LIST_FOREACH(sah, &V_sahtree, chain) { 6684 if (sah->state == SADB_SASTATE_DEAD) 6685 continue; 6686 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6687 break; 6688 } 6689 SAHTREE_UNLOCK(); 6690 if (sah != NULL) { 6691 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6692 return key_senderror(so, m, EEXIST); 6693 } 6694 6695 error = key_acquire(&saidx, NULL); 6696 if (error != 0) { 6697 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6698 __func__, mhp->msg->sadb_msg_errno)); 6699 return key_senderror(so, m, error); 6700 } 6701 6702 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6703 } 6704 6705 /* 6706 * SADB_REGISTER processing. 6707 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6708 * receive 6709 * <base> 6710 * from the ikmpd, and register a socket to send PF_KEY messages, 6711 * and send 6712 * <base, supported> 6713 * to KMD by PF_KEY. 6714 * If socket is detached, must free from regnode. 6715 * 6716 * m will always be freed. 6717 */ 6718 static int 6719 key_register(so, m, mhp) 6720 struct socket *so; 6721 struct mbuf *m; 6722 const struct sadb_msghdr *mhp; 6723 { 6724 struct secreg *reg, *newreg = 0; 6725 6726 IPSEC_ASSERT(so != NULL, ("null socket")); 6727 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6728 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6729 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6730 6731 /* check for invalid register message */ 6732 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6733 return key_senderror(so, m, EINVAL); 6734 6735 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6736 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6737 goto setmsg; 6738 6739 /* check whether existing or not */ 6740 REGTREE_LOCK(); 6741 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6742 if (reg->so == so) { 6743 REGTREE_UNLOCK(); 6744 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6745 __func__)); 6746 return key_senderror(so, m, EEXIST); 6747 } 6748 } 6749 6750 /* create regnode */ 6751 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6752 if (newreg == NULL) { 6753 REGTREE_UNLOCK(); 6754 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6755 return key_senderror(so, m, ENOBUFS); 6756 } 6757 6758 newreg->so = so; 6759 ((struct keycb *)sotorawcb(so))->kp_registered++; 6760 6761 /* add regnode to regtree. */ 6762 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6763 REGTREE_UNLOCK(); 6764 6765 setmsg: 6766 { 6767 struct mbuf *n; 6768 struct sadb_msg *newmsg; 6769 struct sadb_supported *sup; 6770 u_int len, alen, elen; 6771 int off; 6772 int i; 6773 struct sadb_alg *alg; 6774 6775 /* create new sadb_msg to reply. */ 6776 alen = 0; 6777 for (i = 1; i <= SADB_AALG_MAX; i++) { 6778 if (ah_algorithm_lookup(i)) 6779 alen += sizeof(struct sadb_alg); 6780 } 6781 if (alen) 6782 alen += sizeof(struct sadb_supported); 6783 elen = 0; 6784 for (i = 1; i <= SADB_EALG_MAX; i++) { 6785 if (esp_algorithm_lookup(i)) 6786 elen += sizeof(struct sadb_alg); 6787 } 6788 if (elen) 6789 elen += sizeof(struct sadb_supported); 6790 6791 len = sizeof(struct sadb_msg) + alen + elen; 6792 6793 if (len > MCLBYTES) 6794 return key_senderror(so, m, ENOBUFS); 6795 6796 MGETHDR(n, M_DONTWAIT, MT_DATA); 6797 if (len > MHLEN) { 6798 MCLGET(n, M_DONTWAIT); 6799 if ((n->m_flags & M_EXT) == 0) { 6800 m_freem(n); 6801 n = NULL; 6802 } 6803 } 6804 if (!n) 6805 return key_senderror(so, m, ENOBUFS); 6806 6807 n->m_pkthdr.len = n->m_len = len; 6808 n->m_next = NULL; 6809 off = 0; 6810 6811 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6812 newmsg = mtod(n, struct sadb_msg *); 6813 newmsg->sadb_msg_errno = 0; 6814 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6815 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6816 6817 /* for authentication algorithm */ 6818 if (alen) { 6819 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6820 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6821 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6822 off += PFKEY_ALIGN8(sizeof(*sup)); 6823 6824 for (i = 1; i <= SADB_AALG_MAX; i++) { 6825 struct auth_hash *aalgo; 6826 u_int16_t minkeysize, maxkeysize; 6827 6828 aalgo = ah_algorithm_lookup(i); 6829 if (!aalgo) 6830 continue; 6831 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6832 alg->sadb_alg_id = i; 6833 alg->sadb_alg_ivlen = 0; 6834 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6835 alg->sadb_alg_minbits = _BITS(minkeysize); 6836 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6837 off += PFKEY_ALIGN8(sizeof(*alg)); 6838 } 6839 } 6840 6841 /* for encryption algorithm */ 6842 if (elen) { 6843 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6844 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6845 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6846 off += PFKEY_ALIGN8(sizeof(*sup)); 6847 6848 for (i = 1; i <= SADB_EALG_MAX; i++) { 6849 struct enc_xform *ealgo; 6850 6851 ealgo = esp_algorithm_lookup(i); 6852 if (!ealgo) 6853 continue; 6854 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6855 alg->sadb_alg_id = i; 6856 alg->sadb_alg_ivlen = ealgo->blocksize; 6857 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6858 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6859 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6860 } 6861 } 6862 6863 IPSEC_ASSERT(off == len, 6864 ("length assumption failed (off %u len %u)", off, len)); 6865 6866 m_freem(m); 6867 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6868 } 6869 } 6870 6871 /* 6872 * free secreg entry registered. 6873 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6874 */ 6875 void 6876 key_freereg(struct socket *so) 6877 { 6878 struct secreg *reg; 6879 int i; 6880 6881 IPSEC_ASSERT(so != NULL, ("NULL so")); 6882 6883 /* 6884 * check whether existing or not. 6885 * check all type of SA, because there is a potential that 6886 * one socket is registered to multiple type of SA. 6887 */ 6888 REGTREE_LOCK(); 6889 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6890 LIST_FOREACH(reg, &V_regtree[i], chain) { 6891 if (reg->so == so && __LIST_CHAINED(reg)) { 6892 LIST_REMOVE(reg, chain); 6893 free(reg, M_IPSEC_SAR); 6894 break; 6895 } 6896 } 6897 } 6898 REGTREE_UNLOCK(); 6899 } 6900 6901 /* 6902 * SADB_EXPIRE processing 6903 * send 6904 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6905 * to KMD by PF_KEY. 6906 * NOTE: We send only soft lifetime extension. 6907 * 6908 * OUT: 0 : succeed 6909 * others : error number 6910 */ 6911 static int 6912 key_expire(struct secasvar *sav) 6913 { 6914 int s; 6915 int satype; 6916 struct mbuf *result = NULL, *m; 6917 int len; 6918 int error = -1; 6919 struct sadb_lifetime *lt; 6920 6921 /* XXX: Why do we lock ? */ 6922 s = splnet(); /*called from softclock()*/ 6923 6924 IPSEC_ASSERT (sav != NULL, ("null sav")); 6925 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6926 6927 /* set msg header */ 6928 satype = key_proto2satype(sav->sah->saidx.proto); 6929 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6930 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6931 if (!m) { 6932 error = ENOBUFS; 6933 goto fail; 6934 } 6935 result = m; 6936 6937 /* create SA extension */ 6938 m = key_setsadbsa(sav); 6939 if (!m) { 6940 error = ENOBUFS; 6941 goto fail; 6942 } 6943 m_cat(result, m); 6944 6945 /* create SA extension */ 6946 m = key_setsadbxsa2(sav->sah->saidx.mode, 6947 sav->replay ? sav->replay->count : 0, 6948 sav->sah->saidx.reqid); 6949 if (!m) { 6950 error = ENOBUFS; 6951 goto fail; 6952 } 6953 m_cat(result, m); 6954 6955 /* create lifetime extension (current and soft) */ 6956 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6957 m = key_alloc_mbuf(len); 6958 if (!m || m->m_next) { /*XXX*/ 6959 if (m) 6960 m_freem(m); 6961 error = ENOBUFS; 6962 goto fail; 6963 } 6964 bzero(mtod(m, caddr_t), len); 6965 lt = mtod(m, struct sadb_lifetime *); 6966 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6967 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6968 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6969 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6970 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6971 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6972 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6973 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6974 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6975 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6976 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6977 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6978 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6979 m_cat(result, m); 6980 6981 /* set sadb_address for source */ 6982 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6983 &sav->sah->saidx.src.sa, 6984 FULLMASK, IPSEC_ULPROTO_ANY); 6985 if (!m) { 6986 error = ENOBUFS; 6987 goto fail; 6988 } 6989 m_cat(result, m); 6990 6991 /* set sadb_address for destination */ 6992 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6993 &sav->sah->saidx.dst.sa, 6994 FULLMASK, IPSEC_ULPROTO_ANY); 6995 if (!m) { 6996 error = ENOBUFS; 6997 goto fail; 6998 } 6999 m_cat(result, m); 7000 7001 /* 7002 * XXX-BZ Handle NAT-T extensions here. 7003 */ 7004 7005 if ((result->m_flags & M_PKTHDR) == 0) { 7006 error = EINVAL; 7007 goto fail; 7008 } 7009 7010 if (result->m_len < sizeof(struct sadb_msg)) { 7011 result = m_pullup(result, sizeof(struct sadb_msg)); 7012 if (result == NULL) { 7013 error = ENOBUFS; 7014 goto fail; 7015 } 7016 } 7017 7018 result->m_pkthdr.len = 0; 7019 for (m = result; m; m = m->m_next) 7020 result->m_pkthdr.len += m->m_len; 7021 7022 mtod(result, struct sadb_msg *)->sadb_msg_len = 7023 PFKEY_UNIT64(result->m_pkthdr.len); 7024 7025 splx(s); 7026 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7027 7028 fail: 7029 if (result) 7030 m_freem(result); 7031 splx(s); 7032 return error; 7033 } 7034 7035 /* 7036 * SADB_FLUSH processing 7037 * receive 7038 * <base> 7039 * from the ikmpd, and free all entries in secastree. 7040 * and send, 7041 * <base> 7042 * to the ikmpd. 7043 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7044 * 7045 * m will always be freed. 7046 */ 7047 static int 7048 key_flush(so, m, mhp) 7049 struct socket *so; 7050 struct mbuf *m; 7051 const struct sadb_msghdr *mhp; 7052 { 7053 struct sadb_msg *newmsg; 7054 struct secashead *sah, *nextsah; 7055 struct secasvar *sav, *nextsav; 7056 u_int16_t proto; 7057 u_int8_t state; 7058 u_int stateidx; 7059 7060 IPSEC_ASSERT(so != NULL, ("null socket")); 7061 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7062 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7063 7064 /* map satype to proto */ 7065 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7066 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7067 __func__)); 7068 return key_senderror(so, m, EINVAL); 7069 } 7070 7071 /* no SATYPE specified, i.e. flushing all SA. */ 7072 SAHTREE_LOCK(); 7073 for (sah = LIST_FIRST(&V_sahtree); 7074 sah != NULL; 7075 sah = nextsah) { 7076 nextsah = LIST_NEXT(sah, chain); 7077 7078 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7079 && proto != sah->saidx.proto) 7080 continue; 7081 7082 for (stateidx = 0; 7083 stateidx < _ARRAYLEN(saorder_state_alive); 7084 stateidx++) { 7085 state = saorder_state_any[stateidx]; 7086 for (sav = LIST_FIRST(&sah->savtree[state]); 7087 sav != NULL; 7088 sav = nextsav) { 7089 7090 nextsav = LIST_NEXT(sav, chain); 7091 7092 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7093 KEY_FREESAV(&sav); 7094 } 7095 } 7096 7097 sah->state = SADB_SASTATE_DEAD; 7098 } 7099 SAHTREE_UNLOCK(); 7100 7101 if (m->m_len < sizeof(struct sadb_msg) || 7102 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7103 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7104 return key_senderror(so, m, ENOBUFS); 7105 } 7106 7107 if (m->m_next) 7108 m_freem(m->m_next); 7109 m->m_next = NULL; 7110 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7111 newmsg = mtod(m, struct sadb_msg *); 7112 newmsg->sadb_msg_errno = 0; 7113 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7114 7115 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7116 } 7117 7118 /* 7119 * SADB_DUMP processing 7120 * dump all entries including status of DEAD in SAD. 7121 * receive 7122 * <base> 7123 * from the ikmpd, and dump all secasvar leaves 7124 * and send, 7125 * <base> ..... 7126 * to the ikmpd. 7127 * 7128 * m will always be freed. 7129 */ 7130 static int 7131 key_dump(so, m, mhp) 7132 struct socket *so; 7133 struct mbuf *m; 7134 const struct sadb_msghdr *mhp; 7135 { 7136 struct secashead *sah; 7137 struct secasvar *sav; 7138 u_int16_t proto; 7139 u_int stateidx; 7140 u_int8_t satype; 7141 u_int8_t state; 7142 int cnt; 7143 struct sadb_msg *newmsg; 7144 struct mbuf *n; 7145 7146 IPSEC_ASSERT(so != NULL, ("null socket")); 7147 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7148 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7149 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7150 7151 /* map satype to proto */ 7152 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7153 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7154 __func__)); 7155 return key_senderror(so, m, EINVAL); 7156 } 7157 7158 /* count sav entries to be sent to the userland. */ 7159 cnt = 0; 7160 SAHTREE_LOCK(); 7161 LIST_FOREACH(sah, &V_sahtree, chain) { 7162 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7163 && proto != sah->saidx.proto) 7164 continue; 7165 7166 for (stateidx = 0; 7167 stateidx < _ARRAYLEN(saorder_state_any); 7168 stateidx++) { 7169 state = saorder_state_any[stateidx]; 7170 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7171 cnt++; 7172 } 7173 } 7174 } 7175 7176 if (cnt == 0) { 7177 SAHTREE_UNLOCK(); 7178 return key_senderror(so, m, ENOENT); 7179 } 7180 7181 /* send this to the userland, one at a time. */ 7182 newmsg = NULL; 7183 LIST_FOREACH(sah, &V_sahtree, chain) { 7184 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7185 && proto != sah->saidx.proto) 7186 continue; 7187 7188 /* map proto to satype */ 7189 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7190 SAHTREE_UNLOCK(); 7191 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7192 "SAD.\n", __func__)); 7193 return key_senderror(so, m, EINVAL); 7194 } 7195 7196 for (stateidx = 0; 7197 stateidx < _ARRAYLEN(saorder_state_any); 7198 stateidx++) { 7199 state = saorder_state_any[stateidx]; 7200 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7201 n = key_setdumpsa(sav, SADB_DUMP, satype, 7202 --cnt, mhp->msg->sadb_msg_pid); 7203 if (!n) { 7204 SAHTREE_UNLOCK(); 7205 return key_senderror(so, m, ENOBUFS); 7206 } 7207 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7208 } 7209 } 7210 } 7211 SAHTREE_UNLOCK(); 7212 7213 m_freem(m); 7214 return 0; 7215 } 7216 7217 /* 7218 * SADB_X_PROMISC processing 7219 * 7220 * m will always be freed. 7221 */ 7222 static int 7223 key_promisc(so, m, mhp) 7224 struct socket *so; 7225 struct mbuf *m; 7226 const struct sadb_msghdr *mhp; 7227 { 7228 int olen; 7229 7230 IPSEC_ASSERT(so != NULL, ("null socket")); 7231 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7232 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7233 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7234 7235 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7236 7237 if (olen < sizeof(struct sadb_msg)) { 7238 #if 1 7239 return key_senderror(so, m, EINVAL); 7240 #else 7241 m_freem(m); 7242 return 0; 7243 #endif 7244 } else if (olen == sizeof(struct sadb_msg)) { 7245 /* enable/disable promisc mode */ 7246 struct keycb *kp; 7247 7248 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7249 return key_senderror(so, m, EINVAL); 7250 mhp->msg->sadb_msg_errno = 0; 7251 switch (mhp->msg->sadb_msg_satype) { 7252 case 0: 7253 case 1: 7254 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7255 break; 7256 default: 7257 return key_senderror(so, m, EINVAL); 7258 } 7259 7260 /* send the original message back to everyone */ 7261 mhp->msg->sadb_msg_errno = 0; 7262 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7263 } else { 7264 /* send packet as is */ 7265 7266 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7267 7268 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7269 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7270 } 7271 } 7272 7273 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7274 const struct sadb_msghdr *)) = { 7275 NULL, /* SADB_RESERVED */ 7276 key_getspi, /* SADB_GETSPI */ 7277 key_update, /* SADB_UPDATE */ 7278 key_add, /* SADB_ADD */ 7279 key_delete, /* SADB_DELETE */ 7280 key_get, /* SADB_GET */ 7281 key_acquire2, /* SADB_ACQUIRE */ 7282 key_register, /* SADB_REGISTER */ 7283 NULL, /* SADB_EXPIRE */ 7284 key_flush, /* SADB_FLUSH */ 7285 key_dump, /* SADB_DUMP */ 7286 key_promisc, /* SADB_X_PROMISC */ 7287 NULL, /* SADB_X_PCHANGE */ 7288 key_spdadd, /* SADB_X_SPDUPDATE */ 7289 key_spdadd, /* SADB_X_SPDADD */ 7290 key_spddelete, /* SADB_X_SPDDELETE */ 7291 key_spdget, /* SADB_X_SPDGET */ 7292 NULL, /* SADB_X_SPDACQUIRE */ 7293 key_spddump, /* SADB_X_SPDDUMP */ 7294 key_spdflush, /* SADB_X_SPDFLUSH */ 7295 key_spdadd, /* SADB_X_SPDSETIDX */ 7296 NULL, /* SADB_X_SPDEXPIRE */ 7297 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7298 }; 7299 7300 /* 7301 * parse sadb_msg buffer to process PFKEYv2, 7302 * and create a data to response if needed. 7303 * I think to be dealed with mbuf directly. 7304 * IN: 7305 * msgp : pointer to pointer to a received buffer pulluped. 7306 * This is rewrited to response. 7307 * so : pointer to socket. 7308 * OUT: 7309 * length for buffer to send to user process. 7310 */ 7311 int 7312 key_parse(m, so) 7313 struct mbuf *m; 7314 struct socket *so; 7315 { 7316 struct sadb_msg *msg; 7317 struct sadb_msghdr mh; 7318 u_int orglen; 7319 int error; 7320 int target; 7321 7322 IPSEC_ASSERT(so != NULL, ("null socket")); 7323 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7324 7325 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7326 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7327 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7328 kdebug_sadb(msg)); 7329 #endif 7330 7331 if (m->m_len < sizeof(struct sadb_msg)) { 7332 m = m_pullup(m, sizeof(struct sadb_msg)); 7333 if (!m) 7334 return ENOBUFS; 7335 } 7336 msg = mtod(m, struct sadb_msg *); 7337 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7338 target = KEY_SENDUP_ONE; 7339 7340 if ((m->m_flags & M_PKTHDR) == 0 || 7341 m->m_pkthdr.len != m->m_pkthdr.len) { 7342 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7343 V_pfkeystat.out_invlen++; 7344 error = EINVAL; 7345 goto senderror; 7346 } 7347 7348 if (msg->sadb_msg_version != PF_KEY_V2) { 7349 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7350 __func__, msg->sadb_msg_version)); 7351 V_pfkeystat.out_invver++; 7352 error = EINVAL; 7353 goto senderror; 7354 } 7355 7356 if (msg->sadb_msg_type > SADB_MAX) { 7357 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7358 __func__, msg->sadb_msg_type)); 7359 V_pfkeystat.out_invmsgtype++; 7360 error = EINVAL; 7361 goto senderror; 7362 } 7363 7364 /* for old-fashioned code - should be nuked */ 7365 if (m->m_pkthdr.len > MCLBYTES) { 7366 m_freem(m); 7367 return ENOBUFS; 7368 } 7369 if (m->m_next) { 7370 struct mbuf *n; 7371 7372 MGETHDR(n, M_DONTWAIT, MT_DATA); 7373 if (n && m->m_pkthdr.len > MHLEN) { 7374 MCLGET(n, M_DONTWAIT); 7375 if ((n->m_flags & M_EXT) == 0) { 7376 m_free(n); 7377 n = NULL; 7378 } 7379 } 7380 if (!n) { 7381 m_freem(m); 7382 return ENOBUFS; 7383 } 7384 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7385 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7386 n->m_next = NULL; 7387 m_freem(m); 7388 m = n; 7389 } 7390 7391 /* align the mbuf chain so that extensions are in contiguous region. */ 7392 error = key_align(m, &mh); 7393 if (error) 7394 return error; 7395 7396 msg = mh.msg; 7397 7398 /* check SA type */ 7399 switch (msg->sadb_msg_satype) { 7400 case SADB_SATYPE_UNSPEC: 7401 switch (msg->sadb_msg_type) { 7402 case SADB_GETSPI: 7403 case SADB_UPDATE: 7404 case SADB_ADD: 7405 case SADB_DELETE: 7406 case SADB_GET: 7407 case SADB_ACQUIRE: 7408 case SADB_EXPIRE: 7409 ipseclog((LOG_DEBUG, "%s: must specify satype " 7410 "when msg type=%u.\n", __func__, 7411 msg->sadb_msg_type)); 7412 V_pfkeystat.out_invsatype++; 7413 error = EINVAL; 7414 goto senderror; 7415 } 7416 break; 7417 case SADB_SATYPE_AH: 7418 case SADB_SATYPE_ESP: 7419 case SADB_X_SATYPE_IPCOMP: 7420 case SADB_X_SATYPE_TCPSIGNATURE: 7421 switch (msg->sadb_msg_type) { 7422 case SADB_X_SPDADD: 7423 case SADB_X_SPDDELETE: 7424 case SADB_X_SPDGET: 7425 case SADB_X_SPDDUMP: 7426 case SADB_X_SPDFLUSH: 7427 case SADB_X_SPDSETIDX: 7428 case SADB_X_SPDUPDATE: 7429 case SADB_X_SPDDELETE2: 7430 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7431 __func__, msg->sadb_msg_type)); 7432 V_pfkeystat.out_invsatype++; 7433 error = EINVAL; 7434 goto senderror; 7435 } 7436 break; 7437 case SADB_SATYPE_RSVP: 7438 case SADB_SATYPE_OSPFV2: 7439 case SADB_SATYPE_RIPV2: 7440 case SADB_SATYPE_MIP: 7441 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7442 __func__, msg->sadb_msg_satype)); 7443 V_pfkeystat.out_invsatype++; 7444 error = EOPNOTSUPP; 7445 goto senderror; 7446 case 1: /* XXX: What does it do? */ 7447 if (msg->sadb_msg_type == SADB_X_PROMISC) 7448 break; 7449 /*FALLTHROUGH*/ 7450 default: 7451 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7452 __func__, msg->sadb_msg_satype)); 7453 V_pfkeystat.out_invsatype++; 7454 error = EINVAL; 7455 goto senderror; 7456 } 7457 7458 /* check field of upper layer protocol and address family */ 7459 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7460 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7461 struct sadb_address *src0, *dst0; 7462 u_int plen; 7463 7464 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7465 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7466 7467 /* check upper layer protocol */ 7468 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7469 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7470 "mismatched.\n", __func__)); 7471 V_pfkeystat.out_invaddr++; 7472 error = EINVAL; 7473 goto senderror; 7474 } 7475 7476 /* check family */ 7477 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7478 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7479 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7480 __func__)); 7481 V_pfkeystat.out_invaddr++; 7482 error = EINVAL; 7483 goto senderror; 7484 } 7485 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7486 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7487 ipseclog((LOG_DEBUG, "%s: address struct size " 7488 "mismatched.\n", __func__)); 7489 V_pfkeystat.out_invaddr++; 7490 error = EINVAL; 7491 goto senderror; 7492 } 7493 7494 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7495 case AF_INET: 7496 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7497 sizeof(struct sockaddr_in)) { 7498 V_pfkeystat.out_invaddr++; 7499 error = EINVAL; 7500 goto senderror; 7501 } 7502 break; 7503 case AF_INET6: 7504 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7505 sizeof(struct sockaddr_in6)) { 7506 V_pfkeystat.out_invaddr++; 7507 error = EINVAL; 7508 goto senderror; 7509 } 7510 break; 7511 default: 7512 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7513 __func__)); 7514 V_pfkeystat.out_invaddr++; 7515 error = EAFNOSUPPORT; 7516 goto senderror; 7517 } 7518 7519 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7520 case AF_INET: 7521 plen = sizeof(struct in_addr) << 3; 7522 break; 7523 case AF_INET6: 7524 plen = sizeof(struct in6_addr) << 3; 7525 break; 7526 default: 7527 plen = 0; /*fool gcc*/ 7528 break; 7529 } 7530 7531 /* check max prefix length */ 7532 if (src0->sadb_address_prefixlen > plen || 7533 dst0->sadb_address_prefixlen > plen) { 7534 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7535 __func__)); 7536 V_pfkeystat.out_invaddr++; 7537 error = EINVAL; 7538 goto senderror; 7539 } 7540 7541 /* 7542 * prefixlen == 0 is valid because there can be a case when 7543 * all addresses are matched. 7544 */ 7545 } 7546 7547 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7548 key_typesw[msg->sadb_msg_type] == NULL) { 7549 V_pfkeystat.out_invmsgtype++; 7550 error = EINVAL; 7551 goto senderror; 7552 } 7553 7554 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7555 7556 senderror: 7557 msg->sadb_msg_errno = error; 7558 return key_sendup_mbuf(so, m, target); 7559 } 7560 7561 static int 7562 key_senderror(so, m, code) 7563 struct socket *so; 7564 struct mbuf *m; 7565 int code; 7566 { 7567 struct sadb_msg *msg; 7568 7569 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7570 ("mbuf too small, len %u", m->m_len)); 7571 7572 msg = mtod(m, struct sadb_msg *); 7573 msg->sadb_msg_errno = code; 7574 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7575 } 7576 7577 /* 7578 * set the pointer to each header into message buffer. 7579 * m will be freed on error. 7580 * XXX larger-than-MCLBYTES extension? 7581 */ 7582 static int 7583 key_align(m, mhp) 7584 struct mbuf *m; 7585 struct sadb_msghdr *mhp; 7586 { 7587 struct mbuf *n; 7588 struct sadb_ext *ext; 7589 size_t off, end; 7590 int extlen; 7591 int toff; 7592 7593 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7594 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7595 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7596 ("mbuf too small, len %u", m->m_len)); 7597 7598 /* initialize */ 7599 bzero(mhp, sizeof(*mhp)); 7600 7601 mhp->msg = mtod(m, struct sadb_msg *); 7602 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7603 7604 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7605 extlen = end; /*just in case extlen is not updated*/ 7606 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7607 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7608 if (!n) { 7609 /* m is already freed */ 7610 return ENOBUFS; 7611 } 7612 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7613 7614 /* set pointer */ 7615 switch (ext->sadb_ext_type) { 7616 case SADB_EXT_SA: 7617 case SADB_EXT_ADDRESS_SRC: 7618 case SADB_EXT_ADDRESS_DST: 7619 case SADB_EXT_ADDRESS_PROXY: 7620 case SADB_EXT_LIFETIME_CURRENT: 7621 case SADB_EXT_LIFETIME_HARD: 7622 case SADB_EXT_LIFETIME_SOFT: 7623 case SADB_EXT_KEY_AUTH: 7624 case SADB_EXT_KEY_ENCRYPT: 7625 case SADB_EXT_IDENTITY_SRC: 7626 case SADB_EXT_IDENTITY_DST: 7627 case SADB_EXT_SENSITIVITY: 7628 case SADB_EXT_PROPOSAL: 7629 case SADB_EXT_SUPPORTED_AUTH: 7630 case SADB_EXT_SUPPORTED_ENCRYPT: 7631 case SADB_EXT_SPIRANGE: 7632 case SADB_X_EXT_POLICY: 7633 case SADB_X_EXT_SA2: 7634 #ifdef IPSEC_NAT_T 7635 case SADB_X_EXT_NAT_T_TYPE: 7636 case SADB_X_EXT_NAT_T_SPORT: 7637 case SADB_X_EXT_NAT_T_DPORT: 7638 case SADB_X_EXT_NAT_T_OAI: 7639 case SADB_X_EXT_NAT_T_OAR: 7640 case SADB_X_EXT_NAT_T_FRAG: 7641 #endif 7642 /* duplicate check */ 7643 /* 7644 * XXX Are there duplication payloads of either 7645 * KEY_AUTH or KEY_ENCRYPT ? 7646 */ 7647 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7648 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7649 "%u\n", __func__, ext->sadb_ext_type)); 7650 m_freem(m); 7651 V_pfkeystat.out_dupext++; 7652 return EINVAL; 7653 } 7654 break; 7655 default: 7656 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7657 __func__, ext->sadb_ext_type)); 7658 m_freem(m); 7659 V_pfkeystat.out_invexttype++; 7660 return EINVAL; 7661 } 7662 7663 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7664 7665 if (key_validate_ext(ext, extlen)) { 7666 m_freem(m); 7667 V_pfkeystat.out_invlen++; 7668 return EINVAL; 7669 } 7670 7671 n = m_pulldown(m, off, extlen, &toff); 7672 if (!n) { 7673 /* m is already freed */ 7674 return ENOBUFS; 7675 } 7676 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7677 7678 mhp->ext[ext->sadb_ext_type] = ext; 7679 mhp->extoff[ext->sadb_ext_type] = off; 7680 mhp->extlen[ext->sadb_ext_type] = extlen; 7681 } 7682 7683 if (off != end) { 7684 m_freem(m); 7685 V_pfkeystat.out_invlen++; 7686 return EINVAL; 7687 } 7688 7689 return 0; 7690 } 7691 7692 static int 7693 key_validate_ext(ext, len) 7694 const struct sadb_ext *ext; 7695 int len; 7696 { 7697 const struct sockaddr *sa; 7698 enum { NONE, ADDR } checktype = NONE; 7699 int baselen = 0; 7700 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7701 7702 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7703 return EINVAL; 7704 7705 /* if it does not match minimum/maximum length, bail */ 7706 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7707 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7708 return EINVAL; 7709 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7710 return EINVAL; 7711 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7712 return EINVAL; 7713 7714 /* more checks based on sadb_ext_type XXX need more */ 7715 switch (ext->sadb_ext_type) { 7716 case SADB_EXT_ADDRESS_SRC: 7717 case SADB_EXT_ADDRESS_DST: 7718 case SADB_EXT_ADDRESS_PROXY: 7719 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7720 checktype = ADDR; 7721 break; 7722 case SADB_EXT_IDENTITY_SRC: 7723 case SADB_EXT_IDENTITY_DST: 7724 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7725 SADB_X_IDENTTYPE_ADDR) { 7726 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7727 checktype = ADDR; 7728 } else 7729 checktype = NONE; 7730 break; 7731 default: 7732 checktype = NONE; 7733 break; 7734 } 7735 7736 switch (checktype) { 7737 case NONE: 7738 break; 7739 case ADDR: 7740 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7741 if (len < baselen + sal) 7742 return EINVAL; 7743 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7744 return EINVAL; 7745 break; 7746 } 7747 7748 return 0; 7749 } 7750 7751 void 7752 key_init(void) 7753 { 7754 int i; 7755 7756 for (i = 0; i < IPSEC_DIR_MAX; i++) 7757 LIST_INIT(&V_sptree[i]); 7758 7759 LIST_INIT(&V_sahtree); 7760 7761 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7762 LIST_INIT(&V_regtree[i]); 7763 7764 LIST_INIT(&V_acqtree); 7765 LIST_INIT(&V_spacqtree); 7766 7767 /* system default */ 7768 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7769 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7770 7771 if (!IS_DEFAULT_VNET(curvnet)) 7772 return; 7773 7774 SPTREE_LOCK_INIT(); 7775 REGTREE_LOCK_INIT(); 7776 SAHTREE_LOCK_INIT(); 7777 ACQ_LOCK_INIT(); 7778 SPACQ_LOCK_INIT(); 7779 7780 #ifndef IPSEC_DEBUG2 7781 timeout((void *)key_timehandler, (void *)0, hz); 7782 #endif /*IPSEC_DEBUG2*/ 7783 7784 /* initialize key statistics */ 7785 keystat.getspi_count = 1; 7786 7787 printf("IPsec: Initialized Security Association Processing.\n"); 7788 } 7789 7790 #ifdef VIMAGE 7791 void 7792 key_destroy(void) 7793 { 7794 struct secpolicy *sp, *nextsp; 7795 struct secacq *acq, *nextacq; 7796 struct secspacq *spacq, *nextspacq; 7797 struct secashead *sah, *nextsah; 7798 struct secreg *reg; 7799 int i; 7800 7801 SPTREE_LOCK(); 7802 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7803 for (sp = LIST_FIRST(&V_sptree[i]); 7804 sp != NULL; sp = nextsp) { 7805 nextsp = LIST_NEXT(sp, chain); 7806 if (__LIST_CHAINED(sp)) { 7807 LIST_REMOVE(sp, chain); 7808 free(sp, M_IPSEC_SP); 7809 } 7810 } 7811 } 7812 SPTREE_UNLOCK(); 7813 7814 SAHTREE_LOCK(); 7815 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7816 nextsah = LIST_NEXT(sah, chain); 7817 if (__LIST_CHAINED(sah)) { 7818 LIST_REMOVE(sah, chain); 7819 free(sah, M_IPSEC_SAH); 7820 } 7821 } 7822 SAHTREE_UNLOCK(); 7823 7824 REGTREE_LOCK(); 7825 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7826 LIST_FOREACH(reg, &V_regtree[i], chain) { 7827 if (__LIST_CHAINED(reg)) { 7828 LIST_REMOVE(reg, chain); 7829 free(reg, M_IPSEC_SAR); 7830 break; 7831 } 7832 } 7833 } 7834 REGTREE_UNLOCK(); 7835 7836 ACQ_LOCK(); 7837 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7838 nextacq = LIST_NEXT(acq, chain); 7839 if (__LIST_CHAINED(acq)) { 7840 LIST_REMOVE(acq, chain); 7841 free(acq, M_IPSEC_SAQ); 7842 } 7843 } 7844 ACQ_UNLOCK(); 7845 7846 SPACQ_LOCK(); 7847 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7848 spacq = nextspacq) { 7849 nextspacq = LIST_NEXT(spacq, chain); 7850 if (__LIST_CHAINED(spacq)) { 7851 LIST_REMOVE(spacq, chain); 7852 free(spacq, M_IPSEC_SAQ); 7853 } 7854 } 7855 SPACQ_UNLOCK(); 7856 } 7857 #endif 7858 7859 /* 7860 * XXX: maybe This function is called after INBOUND IPsec processing. 7861 * 7862 * Special check for tunnel-mode packets. 7863 * We must make some checks for consistency between inner and outer IP header. 7864 * 7865 * xxx more checks to be provided 7866 */ 7867 int 7868 key_checktunnelsanity(sav, family, src, dst) 7869 struct secasvar *sav; 7870 u_int family; 7871 caddr_t src; 7872 caddr_t dst; 7873 { 7874 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7875 7876 /* XXX: check inner IP header */ 7877 7878 return 1; 7879 } 7880 7881 /* record data transfer on SA, and update timestamps */ 7882 void 7883 key_sa_recordxfer(sav, m) 7884 struct secasvar *sav; 7885 struct mbuf *m; 7886 { 7887 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7888 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7889 if (!sav->lft_c) 7890 return; 7891 7892 /* 7893 * XXX Currently, there is a difference of bytes size 7894 * between inbound and outbound processing. 7895 */ 7896 sav->lft_c->bytes += m->m_pkthdr.len; 7897 /* to check bytes lifetime is done in key_timehandler(). */ 7898 7899 /* 7900 * We use the number of packets as the unit of 7901 * allocations. We increment the variable 7902 * whenever {esp,ah}_{in,out}put is called. 7903 */ 7904 sav->lft_c->allocations++; 7905 /* XXX check for expires? */ 7906 7907 /* 7908 * NOTE: We record CURRENT usetime by using wall clock, 7909 * in seconds. HARD and SOFT lifetime are measured by the time 7910 * difference (again in seconds) from usetime. 7911 * 7912 * usetime 7913 * v expire expire 7914 * -----+-----+--------+---> t 7915 * <--------------> HARD 7916 * <-----> SOFT 7917 */ 7918 sav->lft_c->usetime = time_second; 7919 /* XXX check for expires? */ 7920 7921 return; 7922 } 7923 7924 /* dumb version */ 7925 void 7926 key_sa_routechange(dst) 7927 struct sockaddr *dst; 7928 { 7929 struct secashead *sah; 7930 struct route *ro; 7931 7932 SAHTREE_LOCK(); 7933 LIST_FOREACH(sah, &V_sahtree, chain) { 7934 ro = &sah->route_cache.sa_route; 7935 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7936 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7937 RTFREE(ro->ro_rt); 7938 ro->ro_rt = (struct rtentry *)NULL; 7939 } 7940 } 7941 SAHTREE_UNLOCK(); 7942 } 7943 7944 static void 7945 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7946 { 7947 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7948 SAHTREE_LOCK_ASSERT(); 7949 7950 if (sav->state != state) { 7951 if (__LIST_CHAINED(sav)) 7952 LIST_REMOVE(sav, chain); 7953 sav->state = state; 7954 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7955 } 7956 } 7957 7958 void 7959 key_sa_stir_iv(sav) 7960 struct secasvar *sav; 7961 { 7962 7963 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7964 key_randomfill(sav->iv, sav->ivlen); 7965 } 7966 7967 /* XXX too much? */ 7968 static struct mbuf * 7969 key_alloc_mbuf(l) 7970 int l; 7971 { 7972 struct mbuf *m = NULL, *n; 7973 int len, t; 7974 7975 len = l; 7976 while (len > 0) { 7977 MGET(n, M_DONTWAIT, MT_DATA); 7978 if (n && len > MLEN) 7979 MCLGET(n, M_DONTWAIT); 7980 if (!n) { 7981 m_freem(m); 7982 return NULL; 7983 } 7984 7985 n->m_next = NULL; 7986 n->m_len = 0; 7987 n->m_len = M_TRAILINGSPACE(n); 7988 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7989 if (n->m_len > len) { 7990 t = (n->m_len - len) & ~(sizeof(long) - 1); 7991 n->m_data += t; 7992 n->m_len = len; 7993 } 7994 7995 len -= n->m_len; 7996 7997 if (m) 7998 m_cat(m, n); 7999 else 8000 m = n; 8001 } 8002 8003 return m; 8004 } 8005 8006 /* 8007 * Take one of the kernel's security keys and convert it into a PF_KEY 8008 * structure within an mbuf, suitable for sending up to a waiting 8009 * application in user land. 8010 * 8011 * IN: 8012 * src: A pointer to a kernel security key. 8013 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8014 * OUT: 8015 * a valid mbuf or NULL indicating an error 8016 * 8017 */ 8018 8019 static struct mbuf * 8020 key_setkey(struct seckey *src, u_int16_t exttype) 8021 { 8022 struct mbuf *m; 8023 struct sadb_key *p; 8024 int len; 8025 8026 if (src == NULL) 8027 return NULL; 8028 8029 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8030 m = key_alloc_mbuf(len); 8031 if (m == NULL) 8032 return NULL; 8033 p = mtod(m, struct sadb_key *); 8034 bzero(p, len); 8035 p->sadb_key_len = PFKEY_UNIT64(len); 8036 p->sadb_key_exttype = exttype; 8037 p->sadb_key_bits = src->bits; 8038 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8039 8040 return m; 8041 } 8042 8043 /* 8044 * Take one of the kernel's lifetime data structures and convert it 8045 * into a PF_KEY structure within an mbuf, suitable for sending up to 8046 * a waiting application in user land. 8047 * 8048 * IN: 8049 * src: A pointer to a kernel lifetime structure. 8050 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8051 * data structures for more information. 8052 * OUT: 8053 * a valid mbuf or NULL indicating an error 8054 * 8055 */ 8056 8057 static struct mbuf * 8058 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8059 { 8060 struct mbuf *m = NULL; 8061 struct sadb_lifetime *p; 8062 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8063 8064 if (src == NULL) 8065 return NULL; 8066 8067 m = key_alloc_mbuf(len); 8068 if (m == NULL) 8069 return m; 8070 p = mtod(m, struct sadb_lifetime *); 8071 8072 bzero(p, len); 8073 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8074 p->sadb_lifetime_exttype = exttype; 8075 p->sadb_lifetime_allocations = src->allocations; 8076 p->sadb_lifetime_bytes = src->bytes; 8077 p->sadb_lifetime_addtime = src->addtime; 8078 p->sadb_lifetime_usetime = src->usetime; 8079 8080 return m; 8081 8082 } 8083