1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef INET 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 275 276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 279 280 #ifdef SYSCTL_DECL 281 SYSCTL_DECL(_net_key); 282 #endif 283 284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 286 287 /* max count of trial for the decision of spi value */ 288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 290 291 /* minimum spi value to allocate automatically. */ 292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 294 295 /* maximun spi value to allocate automatically. */ 296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 298 299 /* interval to initialize randseed */ 300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 302 303 /* lifetime for larval SA */ 304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 306 307 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 310 311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 314 315 /* ESP auth */ 316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 318 319 /* minimum ESP key length */ 320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 322 323 /* minimum AH key length */ 324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 326 327 /* perfered old SA rather than new SA */ 328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 330 331 #define __LIST_CHAINED(elm) \ 332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 333 #define LIST_INSERT_TAIL(head, elm, type, field) \ 334 do {\ 335 struct type *curelm = LIST_FIRST(head); \ 336 if (curelm == NULL) {\ 337 LIST_INSERT_HEAD(head, elm, field); \ 338 } else { \ 339 while (LIST_NEXT(curelm, field)) \ 340 curelm = LIST_NEXT(curelm, field);\ 341 LIST_INSERT_AFTER(curelm, elm, field);\ 342 }\ 343 } while (0) 344 345 #define KEY_CHKSASTATE(head, sav, name) \ 346 do { \ 347 if ((head) != (sav)) { \ 348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 349 (name), (head), (sav))); \ 350 continue; \ 351 } \ 352 } while (0) 353 354 #define KEY_CHKSPDIR(head, sp, name) \ 355 do { \ 356 if ((head) != (sp)) { \ 357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 358 "anyway continue.\n", \ 359 (name), (head), (sp))); \ 360 } \ 361 } while (0) 362 363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 370 371 /* 372 * set parameters into secpolicyindex buffer. 373 * Must allocate secpolicyindex buffer passed to this function. 374 */ 375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 376 do { \ 377 bzero((idx), sizeof(struct secpolicyindex)); \ 378 (idx)->dir = (_dir); \ 379 (idx)->prefs = (ps); \ 380 (idx)->prefd = (pd); \ 381 (idx)->ul_proto = (ulp); \ 382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 384 } while (0) 385 386 /* 387 * set parameters into secasindex buffer. 388 * Must allocate secasindex buffer before calling this function. 389 */ 390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 391 do { \ 392 bzero((idx), sizeof(struct secasindex)); \ 393 (idx)->proto = (p); \ 394 (idx)->mode = (m); \ 395 (idx)->reqid = (r); \ 396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 398 } while (0) 399 400 /* key statistics */ 401 struct _keystat { 402 u_long getspi_count; /* the avarage of count to try to get new SPI */ 403 } keystat; 404 405 struct sadb_msghdr { 406 struct sadb_msg *msg; 407 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 408 int extoff[SADB_EXT_MAX + 1]; 409 int extlen[SADB_EXT_MAX + 1]; 410 }; 411 412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 413 static void key_freesp_so __P((struct secpolicy **)); 414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 415 static void key_delsp __P((struct secpolicy *)); 416 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 417 static void _key_delsp(struct secpolicy *sp); 418 static struct secpolicy *key_getspbyid __P((u_int32_t)); 419 static u_int32_t key_newreqid __P((void)); 420 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 421 const struct sadb_msghdr *, int, int, ...)); 422 static int key_spdadd __P((struct socket *, struct mbuf *, 423 const struct sadb_msghdr *)); 424 static u_int32_t key_getnewspid __P((void)); 425 static int key_spddelete __P((struct socket *, struct mbuf *, 426 const struct sadb_msghdr *)); 427 static int key_spddelete2 __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static int key_spdget __P((struct socket *, struct mbuf *, 430 const struct sadb_msghdr *)); 431 static int key_spdflush __P((struct socket *, struct mbuf *, 432 const struct sadb_msghdr *)); 433 static int key_spddump __P((struct socket *, struct mbuf *, 434 const struct sadb_msghdr *)); 435 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 436 u_int8_t, u_int32_t, u_int32_t)); 437 static u_int key_getspreqmsglen __P((struct secpolicy *)); 438 static int key_spdexpire __P((struct secpolicy *)); 439 static struct secashead *key_newsah __P((struct secasindex *)); 440 static void key_delsah __P((struct secashead *)); 441 static struct secasvar *key_newsav __P((struct mbuf *, 442 const struct sadb_msghdr *, struct secashead *, int *, 443 const char*, int)); 444 #define KEY_NEWSAV(m, sadb, sah, e) \ 445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 446 static void key_delsav __P((struct secasvar *)); 447 static struct secashead *key_getsah __P((struct secasindex *)); 448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 450 static int key_setsaval __P((struct secasvar *, struct mbuf *, 451 const struct sadb_msghdr *)); 452 static int key_mature __P((struct secasvar *)); 453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 454 u_int8_t, u_int32_t, u_int32_t)); 455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 456 u_int32_t, pid_t, u_int16_t)); 457 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 458 static struct mbuf *key_setsadbaddr __P((u_int16_t, 459 const struct sockaddr *, u_int8_t, u_int16_t)); 460 #ifdef IPSEC_NAT_T 461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 462 static struct mbuf *key_setsadbxtype(u_int16_t); 463 #endif 464 static void key_porttosaddr(struct sockaddr *, u_int16_t); 465 #define KEY_PORTTOSADDR(saddr, port) \ 466 key_porttosaddr((struct sockaddr *)(saddr), (port)) 467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 469 u_int32_t)); 470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 471 struct malloc_type *); 472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 473 struct malloc_type *type); 474 #ifdef INET6 475 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 476 #endif 477 478 /* flags for key_cmpsaidx() */ 479 #define CMP_HEAD 1 /* protocol, addresses. */ 480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 481 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 482 #define CMP_EXACTLY 4 /* all elements. */ 483 static int key_cmpsaidx 484 __P((const struct secasindex *, const struct secasindex *, int)); 485 486 static int key_cmpspidx_exactly 487 __P((struct secpolicyindex *, struct secpolicyindex *)); 488 static int key_cmpspidx_withmask 489 __P((struct secpolicyindex *, struct secpolicyindex *)); 490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 491 static int key_bbcmp __P((const void *, const void *, u_int)); 492 static u_int16_t key_satype2proto __P((u_int8_t)); 493 static u_int8_t key_proto2satype __P((u_int16_t)); 494 495 static int key_getspi __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 498 struct secasindex *)); 499 static int key_update __P((struct socket *, struct mbuf *, 500 const struct sadb_msghdr *)); 501 #ifdef IPSEC_DOSEQCHECK 502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 503 #endif 504 static int key_add __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 static int key_setident __P((struct secashead *, struct mbuf *, 507 const struct sadb_msghdr *)); 508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 509 const struct sadb_msghdr *)); 510 static int key_delete __P((struct socket *, struct mbuf *, 511 const struct sadb_msghdr *)); 512 static int key_get __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 515 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 516 static struct mbuf *key_getcomb_esp __P((void)); 517 static struct mbuf *key_getcomb_ah __P((void)); 518 static struct mbuf *key_getcomb_ipcomp __P((void)); 519 static struct mbuf *key_getprop __P((const struct secasindex *)); 520 521 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 522 static struct secacq *key_newacq __P((const struct secasindex *)); 523 static struct secacq *key_getacq __P((const struct secasindex *)); 524 static struct secacq *key_getacqbyseq __P((u_int32_t)); 525 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 526 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 527 static int key_acquire2 __P((struct socket *, struct mbuf *, 528 const struct sadb_msghdr *)); 529 static int key_register __P((struct socket *, struct mbuf *, 530 const struct sadb_msghdr *)); 531 static int key_expire __P((struct secasvar *)); 532 static int key_flush __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_dump __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_promisc __P((struct socket *, struct mbuf *, 537 const struct sadb_msghdr *)); 538 static int key_senderror __P((struct socket *, struct mbuf *, int)); 539 static int key_validate_ext __P((const struct sadb_ext *, int)); 540 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 541 static struct mbuf *key_setlifetime(struct seclifetime *src, 542 u_int16_t exttype); 543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 544 545 #if 0 546 static const char *key_getfqdn __P((void)); 547 static const char *key_getuserfqdn __P((void)); 548 #endif 549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 550 static struct mbuf *key_alloc_mbuf __P((int)); 551 552 static __inline void 553 sa_initref(struct secasvar *sav) 554 { 555 556 refcount_init(&sav->refcnt, 1); 557 } 558 static __inline void 559 sa_addref(struct secasvar *sav) 560 { 561 562 refcount_acquire(&sav->refcnt); 563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 564 } 565 static __inline int 566 sa_delref(struct secasvar *sav) 567 { 568 569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 570 return (refcount_release(&sav->refcnt)); 571 } 572 573 #define SP_ADDREF(p) do { \ 574 (p)->refcnt++; \ 575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 576 } while (0) 577 #define SP_DELREF(p) do { \ 578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 579 (p)->refcnt--; \ 580 } while (0) 581 582 583 /* 584 * Update the refcnt while holding the SPTREE lock. 585 */ 586 void 587 key_addref(struct secpolicy *sp) 588 { 589 SPTREE_LOCK(); 590 SP_ADDREF(sp); 591 SPTREE_UNLOCK(); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 616 { 617 struct secpolicy *sp; 618 619 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 621 ("invalid direction %u", dir)); 622 623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 624 printf("DP %s from %s:%u\n", __func__, where, tag)); 625 626 /* get a SP entry */ 627 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 628 printf("*** objects\n"); 629 kdebug_secpolicyindex(spidx)); 630 631 SPTREE_LOCK(); 632 LIST_FOREACH(sp, &V_sptree[dir], chain) { 633 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 634 printf("*** in SPD\n"); 635 kdebug_secpolicyindex(&sp->spidx)); 636 637 if (sp->state == IPSEC_SPSTATE_DEAD) 638 continue; 639 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 640 goto found; 641 } 642 sp = NULL; 643 found: 644 if (sp) { 645 /* sanity check */ 646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 647 648 /* found a SPD entry */ 649 sp->lastused = time_second; 650 SP_ADDREF(sp); 651 } 652 SPTREE_UNLOCK(); 653 654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 657 return sp; 658 } 659 660 /* 661 * allocating a SP for OUTBOUND or INBOUND packet. 662 * Must call key_freesp() later. 663 * OUT: NULL: not found 664 * others: found and return the pointer. 665 */ 666 struct secpolicy * 667 key_allocsp2(u_int32_t spi, 668 union sockaddr_union *dst, 669 u_int8_t proto, 670 u_int dir, 671 const char* where, int tag) 672 { 673 struct secpolicy *sp; 674 675 IPSEC_ASSERT(dst != NULL, ("null dst")); 676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 677 ("invalid direction %u", dir)); 678 679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 680 printf("DP %s from %s:%u\n", __func__, where, tag)); 681 682 /* get a SP entry */ 683 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 684 printf("*** objects\n"); 685 printf("spi %u proto %u dir %u\n", spi, proto, dir); 686 kdebug_sockaddr(&dst->sa)); 687 688 SPTREE_LOCK(); 689 LIST_FOREACH(sp, &V_sptree[dir], chain) { 690 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 691 printf("*** in SPD\n"); 692 kdebug_secpolicyindex(&sp->spidx)); 693 694 if (sp->state == IPSEC_SPSTATE_DEAD) 695 continue; 696 /* compare simple values, then dst address */ 697 if (sp->spidx.ul_proto != proto) 698 continue; 699 /* NB: spi's must exist and match */ 700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 701 continue; 702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 703 goto found; 704 } 705 sp = NULL; 706 found: 707 if (sp) { 708 /* sanity check */ 709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 710 711 /* found a SPD entry */ 712 sp->lastused = time_second; 713 SP_ADDREF(sp); 714 } 715 SPTREE_UNLOCK(); 716 717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 720 return sp; 721 } 722 723 #if 0 724 /* 725 * return a policy that matches this particular inbound packet. 726 * XXX slow 727 */ 728 struct secpolicy * 729 key_gettunnel(const struct sockaddr *osrc, 730 const struct sockaddr *odst, 731 const struct sockaddr *isrc, 732 const struct sockaddr *idst, 733 const char* where, int tag) 734 { 735 struct secpolicy *sp; 736 const int dir = IPSEC_DIR_INBOUND; 737 struct ipsecrequest *r1, *r2, *p; 738 struct secpolicyindex spidx; 739 740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 741 printf("DP %s from %s:%u\n", __func__, where, tag)); 742 743 if (isrc->sa_family != idst->sa_family) { 744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 745 __func__, isrc->sa_family, idst->sa_family)); 746 sp = NULL; 747 goto done; 748 } 749 750 SPTREE_LOCK(); 751 LIST_FOREACH(sp, &V_sptree[dir], chain) { 752 if (sp->state == IPSEC_SPSTATE_DEAD) 753 continue; 754 755 r1 = r2 = NULL; 756 for (p = sp->req; p; p = p->next) { 757 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 758 continue; 759 760 r1 = r2; 761 r2 = p; 762 763 if (!r1) { 764 /* here we look at address matches only */ 765 spidx = sp->spidx; 766 if (isrc->sa_len > sizeof(spidx.src) || 767 idst->sa_len > sizeof(spidx.dst)) 768 continue; 769 bcopy(isrc, &spidx.src, isrc->sa_len); 770 bcopy(idst, &spidx.dst, idst->sa_len); 771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 772 continue; 773 } else { 774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 776 continue; 777 } 778 779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 781 continue; 782 783 goto found; 784 } 785 } 786 sp = NULL; 787 found: 788 if (sp) { 789 sp->lastused = time_second; 790 SP_ADDREF(sp); 791 } 792 SPTREE_UNLOCK(); 793 done: 794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 797 return sp; 798 } 799 #endif 800 801 /* 802 * allocating an SA entry for an *OUTBOUND* packet. 803 * checking each request entries in SP, and acquire an SA if need. 804 * OUT: 0: there are valid requests. 805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 806 */ 807 int 808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 809 { 810 u_int level; 811 int error; 812 813 IPSEC_ASSERT(isr != NULL, ("null isr")); 814 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 815 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 816 saidx->mode == IPSEC_MODE_TUNNEL, 817 ("unexpected policy %u", saidx->mode)); 818 819 /* 820 * XXX guard against protocol callbacks from the crypto 821 * thread as they reference ipsecrequest.sav which we 822 * temporarily null out below. Need to rethink how we 823 * handle bundled SA's in the callback thread. 824 */ 825 IPSECREQUEST_LOCK_ASSERT(isr); 826 827 /* get current level */ 828 level = ipsec_get_reqlevel(isr); 829 #if 0 830 /* 831 * We do allocate new SA only if the state of SA in the holder is 832 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 833 */ 834 if (isr->sav != NULL) { 835 if (isr->sav->sah == NULL) 836 panic("%s: sah is null.\n", __func__); 837 if (isr->sav == (struct secasvar *)LIST_FIRST( 838 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 839 KEY_FREESAV(&isr->sav); 840 isr->sav = NULL; 841 } 842 } 843 #else 844 /* 845 * we free any SA stashed in the IPsec request because a different 846 * SA may be involved each time this request is checked, either 847 * because new SAs are being configured, or this request is 848 * associated with an unconnected datagram socket, or this request 849 * is associated with a system default policy. 850 * 851 * The operation may have negative impact to performance. We may 852 * want to check cached SA carefully, rather than picking new SA 853 * every time. 854 */ 855 if (isr->sav != NULL) { 856 KEY_FREESAV(&isr->sav); 857 isr->sav = NULL; 858 } 859 #endif 860 861 /* 862 * new SA allocation if no SA found. 863 * key_allocsa_policy should allocate the oldest SA available. 864 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 865 */ 866 if (isr->sav == NULL) 867 isr->sav = key_allocsa_policy(saidx); 868 869 /* When there is SA. */ 870 if (isr->sav != NULL) { 871 if (isr->sav->state != SADB_SASTATE_MATURE && 872 isr->sav->state != SADB_SASTATE_DYING) 873 return EINVAL; 874 return 0; 875 } 876 877 /* there is no SA */ 878 error = key_acquire(saidx, isr->sp); 879 if (error != 0) { 880 /* XXX What should I do ? */ 881 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 882 __func__, error)); 883 return error; 884 } 885 886 if (level != IPSEC_LEVEL_REQUIRE) { 887 /* XXX sigh, the interface to this routine is botched */ 888 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 889 return 0; 890 } else { 891 return ENOENT; 892 } 893 } 894 895 /* 896 * allocating a SA for policy entry from SAD. 897 * NOTE: searching SAD of aliving state. 898 * OUT: NULL: not found. 899 * others: found and return the pointer. 900 */ 901 static struct secasvar * 902 key_allocsa_policy(const struct secasindex *saidx) 903 { 904 #define N(a) _ARRAYLEN(a) 905 struct secashead *sah; 906 struct secasvar *sav; 907 u_int stateidx, arraysize; 908 const u_int *state_valid; 909 910 state_valid = NULL; /* silence gcc */ 911 arraysize = 0; /* silence gcc */ 912 913 SAHTREE_LOCK(); 914 LIST_FOREACH(sah, &V_sahtree, chain) { 915 if (sah->state == SADB_SASTATE_DEAD) 916 continue; 917 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 918 if (V_key_preferred_oldsa) { 919 state_valid = saorder_state_valid_prefer_old; 920 arraysize = N(saorder_state_valid_prefer_old); 921 } else { 922 state_valid = saorder_state_valid_prefer_new; 923 arraysize = N(saorder_state_valid_prefer_new); 924 } 925 break; 926 } 927 } 928 SAHTREE_UNLOCK(); 929 if (sah == NULL) 930 return NULL; 931 932 /* search valid state */ 933 for (stateidx = 0; stateidx < arraysize; stateidx++) { 934 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 935 if (sav != NULL) 936 return sav; 937 } 938 939 return NULL; 940 #undef N 941 } 942 943 /* 944 * searching SAD with direction, protocol, mode and state. 945 * called by key_allocsa_policy(). 946 * OUT: 947 * NULL : not found 948 * others : found, pointer to a SA. 949 */ 950 static struct secasvar * 951 key_do_allocsa_policy(struct secashead *sah, u_int state) 952 { 953 struct secasvar *sav, *nextsav, *candidate, *d; 954 955 /* initilize */ 956 candidate = NULL; 957 958 SAHTREE_LOCK(); 959 for (sav = LIST_FIRST(&sah->savtree[state]); 960 sav != NULL; 961 sav = nextsav) { 962 963 nextsav = LIST_NEXT(sav, chain); 964 965 /* sanity check */ 966 KEY_CHKSASTATE(sav->state, state, __func__); 967 968 /* initialize */ 969 if (candidate == NULL) { 970 candidate = sav; 971 continue; 972 } 973 974 /* Which SA is the better ? */ 975 976 IPSEC_ASSERT(candidate->lft_c != NULL, 977 ("null candidate lifetime")); 978 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 979 980 /* What the best method is to compare ? */ 981 if (V_key_preferred_oldsa) { 982 if (candidate->lft_c->addtime > 983 sav->lft_c->addtime) { 984 candidate = sav; 985 } 986 continue; 987 /*NOTREACHED*/ 988 } 989 990 /* preferred new sa rather than old sa */ 991 if (candidate->lft_c->addtime < 992 sav->lft_c->addtime) { 993 d = candidate; 994 candidate = sav; 995 } else 996 d = sav; 997 998 /* 999 * prepared to delete the SA when there is more 1000 * suitable candidate and the lifetime of the SA is not 1001 * permanent. 1002 */ 1003 if (d->lft_h->addtime != 0) { 1004 struct mbuf *m, *result; 1005 u_int8_t satype; 1006 1007 key_sa_chgstate(d, SADB_SASTATE_DEAD); 1008 1009 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 1010 1011 satype = key_proto2satype(d->sah->saidx.proto); 1012 if (satype == 0) 1013 goto msgfail; 1014 1015 m = key_setsadbmsg(SADB_DELETE, 0, 1016 satype, 0, 0, d->refcnt - 1); 1017 if (!m) 1018 goto msgfail; 1019 result = m; 1020 1021 /* set sadb_address for saidx's. */ 1022 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1023 &d->sah->saidx.src.sa, 1024 d->sah->saidx.src.sa.sa_len << 3, 1025 IPSEC_ULPROTO_ANY); 1026 if (!m) 1027 goto msgfail; 1028 m_cat(result, m); 1029 1030 /* set sadb_address for saidx's. */ 1031 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1032 &d->sah->saidx.dst.sa, 1033 d->sah->saidx.dst.sa.sa_len << 3, 1034 IPSEC_ULPROTO_ANY); 1035 if (!m) 1036 goto msgfail; 1037 m_cat(result, m); 1038 1039 /* create SA extension */ 1040 m = key_setsadbsa(d); 1041 if (!m) 1042 goto msgfail; 1043 m_cat(result, m); 1044 1045 if (result->m_len < sizeof(struct sadb_msg)) { 1046 result = m_pullup(result, 1047 sizeof(struct sadb_msg)); 1048 if (result == NULL) 1049 goto msgfail; 1050 } 1051 1052 result->m_pkthdr.len = 0; 1053 for (m = result; m; m = m->m_next) 1054 result->m_pkthdr.len += m->m_len; 1055 mtod(result, struct sadb_msg *)->sadb_msg_len = 1056 PFKEY_UNIT64(result->m_pkthdr.len); 1057 1058 if (key_sendup_mbuf(NULL, result, 1059 KEY_SENDUP_REGISTERED)) 1060 goto msgfail; 1061 msgfail: 1062 KEY_FREESAV(&d); 1063 } 1064 } 1065 if (candidate) { 1066 sa_addref(candidate); 1067 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1068 printf("DP %s cause refcnt++:%d SA:%p\n", 1069 __func__, candidate->refcnt, candidate)); 1070 } 1071 SAHTREE_UNLOCK(); 1072 1073 return candidate; 1074 } 1075 1076 /* 1077 * allocating a usable SA entry for a *INBOUND* packet. 1078 * Must call key_freesav() later. 1079 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1080 * NULL: not found, or error occured. 1081 * 1082 * In the comparison, no source address is used--for RFC2401 conformance. 1083 * To quote, from section 4.1: 1084 * A security association is uniquely identified by a triple consisting 1085 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1086 * security protocol (AH or ESP) identifier. 1087 * Note that, however, we do need to keep source address in IPsec SA. 1088 * IKE specification and PF_KEY specification do assume that we 1089 * keep source address in IPsec SA. We see a tricky situation here. 1090 */ 1091 struct secasvar * 1092 key_allocsa( 1093 union sockaddr_union *dst, 1094 u_int proto, 1095 u_int32_t spi, 1096 const char* where, int tag) 1097 { 1098 struct secashead *sah; 1099 struct secasvar *sav; 1100 u_int stateidx, arraysize, state; 1101 const u_int *saorder_state_valid; 1102 int chkport; 1103 1104 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1105 1106 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1107 printf("DP %s from %s:%u\n", __func__, where, tag)); 1108 1109 #ifdef IPSEC_NAT_T 1110 chkport = (dst->sa.sa_family == AF_INET && 1111 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1112 dst->sin.sin_port != 0); 1113 #else 1114 chkport = 0; 1115 #endif 1116 1117 /* 1118 * searching SAD. 1119 * XXX: to be checked internal IP header somewhere. Also when 1120 * IPsec tunnel packet is received. But ESP tunnel mode is 1121 * encrypted so we can't check internal IP header. 1122 */ 1123 SAHTREE_LOCK(); 1124 if (V_key_preferred_oldsa) { 1125 saorder_state_valid = saorder_state_valid_prefer_old; 1126 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1127 } else { 1128 saorder_state_valid = saorder_state_valid_prefer_new; 1129 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1130 } 1131 LIST_FOREACH(sah, &V_sahtree, chain) { 1132 /* search valid state */ 1133 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1134 state = saorder_state_valid[stateidx]; 1135 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1136 /* sanity check */ 1137 KEY_CHKSASTATE(sav->state, state, __func__); 1138 /* do not return entries w/ unusable state */ 1139 if (sav->state != SADB_SASTATE_MATURE && 1140 sav->state != SADB_SASTATE_DYING) 1141 continue; 1142 if (proto != sav->sah->saidx.proto) 1143 continue; 1144 if (spi != sav->spi) 1145 continue; 1146 #if 0 /* don't check src */ 1147 /* check src address */ 1148 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1149 continue; 1150 #endif 1151 /* check dst address */ 1152 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1153 continue; 1154 sa_addref(sav); 1155 goto done; 1156 } 1157 } 1158 } 1159 sav = NULL; 1160 done: 1161 SAHTREE_UNLOCK(); 1162 1163 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1164 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1165 sav, sav ? sav->refcnt : 0)); 1166 return sav; 1167 } 1168 1169 /* 1170 * Must be called after calling key_allocsp(). 1171 * For both the packet without socket and key_freeso(). 1172 */ 1173 void 1174 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1175 { 1176 struct secpolicy *sp = *spp; 1177 1178 IPSEC_ASSERT(sp != NULL, ("null sp")); 1179 1180 SPTREE_LOCK(); 1181 SP_DELREF(sp); 1182 1183 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1184 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1185 __func__, sp, sp->id, where, tag, sp->refcnt)); 1186 1187 if (sp->refcnt == 0) { 1188 *spp = NULL; 1189 key_delsp(sp); 1190 } 1191 SPTREE_UNLOCK(); 1192 } 1193 1194 /* 1195 * Must be called after calling key_allocsp(). 1196 * For the packet with socket. 1197 */ 1198 void 1199 key_freeso(struct socket *so) 1200 { 1201 IPSEC_ASSERT(so != NULL, ("null so")); 1202 1203 switch (so->so_proto->pr_domain->dom_family) { 1204 #if defined(INET) || defined(INET6) 1205 #ifdef INET 1206 case PF_INET: 1207 #endif 1208 #ifdef INET6 1209 case PF_INET6: 1210 #endif 1211 { 1212 struct inpcb *pcb = sotoinpcb(so); 1213 1214 /* Does it have a PCB ? */ 1215 if (pcb == NULL) 1216 return; 1217 key_freesp_so(&pcb->inp_sp->sp_in); 1218 key_freesp_so(&pcb->inp_sp->sp_out); 1219 } 1220 break; 1221 #endif /* INET || INET6 */ 1222 default: 1223 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1224 __func__, so->so_proto->pr_domain->dom_family)); 1225 return; 1226 } 1227 } 1228 1229 static void 1230 key_freesp_so(struct secpolicy **sp) 1231 { 1232 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1233 1234 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1235 (*sp)->policy == IPSEC_POLICY_BYPASS) 1236 return; 1237 1238 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1239 ("invalid policy %u", (*sp)->policy)); 1240 KEY_FREESP(sp); 1241 } 1242 1243 /* 1244 * Must be called after calling key_allocsa(). 1245 * This function is called by key_freesp() to free some SA allocated 1246 * for a policy. 1247 */ 1248 void 1249 key_freesav(struct secasvar **psav, const char* where, int tag) 1250 { 1251 struct secasvar *sav = *psav; 1252 1253 IPSEC_ASSERT(sav != NULL, ("null sav")); 1254 1255 if (sa_delref(sav)) { 1256 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1257 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1258 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1259 *psav = NULL; 1260 key_delsav(sav); 1261 } else { 1262 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1263 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1264 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1265 } 1266 } 1267 1268 /* %%% SPD management */ 1269 /* 1270 * free security policy entry. 1271 */ 1272 static void 1273 key_delsp(struct secpolicy *sp) 1274 { 1275 struct ipsecrequest *isr, *nextisr; 1276 1277 IPSEC_ASSERT(sp != NULL, ("null sp")); 1278 SPTREE_LOCK_ASSERT(); 1279 1280 sp->state = IPSEC_SPSTATE_DEAD; 1281 1282 IPSEC_ASSERT(sp->refcnt == 0, 1283 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1284 1285 /* remove from SP index */ 1286 if (__LIST_CHAINED(sp)) 1287 LIST_REMOVE(sp, chain); 1288 1289 for (isr = sp->req; isr != NULL; isr = nextisr) { 1290 if (isr->sav != NULL) { 1291 KEY_FREESAV(&isr->sav); 1292 isr->sav = NULL; 1293 } 1294 1295 nextisr = isr->next; 1296 ipsec_delisr(isr); 1297 } 1298 _key_delsp(sp); 1299 } 1300 1301 /* 1302 * search SPD 1303 * OUT: NULL : not found 1304 * others : found, pointer to a SP. 1305 */ 1306 static struct secpolicy * 1307 key_getsp(struct secpolicyindex *spidx) 1308 { 1309 struct secpolicy *sp; 1310 1311 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1312 1313 SPTREE_LOCK(); 1314 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1315 if (sp->state == IPSEC_SPSTATE_DEAD) 1316 continue; 1317 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1318 SP_ADDREF(sp); 1319 break; 1320 } 1321 } 1322 SPTREE_UNLOCK(); 1323 1324 return sp; 1325 } 1326 1327 /* 1328 * get SP by index. 1329 * OUT: NULL : not found 1330 * others : found, pointer to a SP. 1331 */ 1332 static struct secpolicy * 1333 key_getspbyid(u_int32_t id) 1334 { 1335 struct secpolicy *sp; 1336 1337 SPTREE_LOCK(); 1338 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1339 if (sp->state == IPSEC_SPSTATE_DEAD) 1340 continue; 1341 if (sp->id == id) { 1342 SP_ADDREF(sp); 1343 goto done; 1344 } 1345 } 1346 1347 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1348 if (sp->state == IPSEC_SPSTATE_DEAD) 1349 continue; 1350 if (sp->id == id) { 1351 SP_ADDREF(sp); 1352 goto done; 1353 } 1354 } 1355 done: 1356 SPTREE_UNLOCK(); 1357 1358 return sp; 1359 } 1360 1361 struct secpolicy * 1362 key_newsp(const char* where, int tag) 1363 { 1364 struct secpolicy *newsp = NULL; 1365 1366 newsp = (struct secpolicy *) 1367 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1368 if (newsp) { 1369 SECPOLICY_LOCK_INIT(newsp); 1370 newsp->refcnt = 1; 1371 newsp->req = NULL; 1372 } 1373 1374 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1375 printf("DP %s from %s:%u return SP:%p\n", __func__, 1376 where, tag, newsp)); 1377 return newsp; 1378 } 1379 1380 static void 1381 _key_delsp(struct secpolicy *sp) 1382 { 1383 SECPOLICY_LOCK_DESTROY(sp); 1384 free(sp, M_IPSEC_SP); 1385 } 1386 1387 /* 1388 * create secpolicy structure from sadb_x_policy structure. 1389 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1390 * so must be set properly later. 1391 */ 1392 struct secpolicy * 1393 key_msg2sp(xpl0, len, error) 1394 struct sadb_x_policy *xpl0; 1395 size_t len; 1396 int *error; 1397 { 1398 struct secpolicy *newsp; 1399 1400 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1401 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1402 1403 if (len != PFKEY_EXTLEN(xpl0)) { 1404 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1405 *error = EINVAL; 1406 return NULL; 1407 } 1408 1409 if ((newsp = KEY_NEWSP()) == NULL) { 1410 *error = ENOBUFS; 1411 return NULL; 1412 } 1413 1414 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1415 newsp->policy = xpl0->sadb_x_policy_type; 1416 1417 /* check policy */ 1418 switch (xpl0->sadb_x_policy_type) { 1419 case IPSEC_POLICY_DISCARD: 1420 case IPSEC_POLICY_NONE: 1421 case IPSEC_POLICY_ENTRUST: 1422 case IPSEC_POLICY_BYPASS: 1423 newsp->req = NULL; 1424 break; 1425 1426 case IPSEC_POLICY_IPSEC: 1427 { 1428 int tlen; 1429 struct sadb_x_ipsecrequest *xisr; 1430 struct ipsecrequest **p_isr = &newsp->req; 1431 1432 /* validity check */ 1433 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1434 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1435 __func__)); 1436 KEY_FREESP(&newsp); 1437 *error = EINVAL; 1438 return NULL; 1439 } 1440 1441 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1442 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1443 1444 while (tlen > 0) { 1445 /* length check */ 1446 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1447 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1448 "length.\n", __func__)); 1449 KEY_FREESP(&newsp); 1450 *error = EINVAL; 1451 return NULL; 1452 } 1453 1454 /* allocate request buffer */ 1455 /* NB: data structure is zero'd */ 1456 *p_isr = ipsec_newisr(); 1457 if ((*p_isr) == NULL) { 1458 ipseclog((LOG_DEBUG, 1459 "%s: No more memory.\n", __func__)); 1460 KEY_FREESP(&newsp); 1461 *error = ENOBUFS; 1462 return NULL; 1463 } 1464 1465 /* set values */ 1466 switch (xisr->sadb_x_ipsecrequest_proto) { 1467 case IPPROTO_ESP: 1468 case IPPROTO_AH: 1469 case IPPROTO_IPCOMP: 1470 break; 1471 default: 1472 ipseclog((LOG_DEBUG, 1473 "%s: invalid proto type=%u\n", __func__, 1474 xisr->sadb_x_ipsecrequest_proto)); 1475 KEY_FREESP(&newsp); 1476 *error = EPROTONOSUPPORT; 1477 return NULL; 1478 } 1479 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1480 1481 switch (xisr->sadb_x_ipsecrequest_mode) { 1482 case IPSEC_MODE_TRANSPORT: 1483 case IPSEC_MODE_TUNNEL: 1484 break; 1485 case IPSEC_MODE_ANY: 1486 default: 1487 ipseclog((LOG_DEBUG, 1488 "%s: invalid mode=%u\n", __func__, 1489 xisr->sadb_x_ipsecrequest_mode)); 1490 KEY_FREESP(&newsp); 1491 *error = EINVAL; 1492 return NULL; 1493 } 1494 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1495 1496 switch (xisr->sadb_x_ipsecrequest_level) { 1497 case IPSEC_LEVEL_DEFAULT: 1498 case IPSEC_LEVEL_USE: 1499 case IPSEC_LEVEL_REQUIRE: 1500 break; 1501 case IPSEC_LEVEL_UNIQUE: 1502 /* validity check */ 1503 /* 1504 * If range violation of reqid, kernel will 1505 * update it, don't refuse it. 1506 */ 1507 if (xisr->sadb_x_ipsecrequest_reqid 1508 > IPSEC_MANUAL_REQID_MAX) { 1509 ipseclog((LOG_DEBUG, 1510 "%s: reqid=%d range " 1511 "violation, updated by kernel.\n", 1512 __func__, 1513 xisr->sadb_x_ipsecrequest_reqid)); 1514 xisr->sadb_x_ipsecrequest_reqid = 0; 1515 } 1516 1517 /* allocate new reqid id if reqid is zero. */ 1518 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1519 u_int32_t reqid; 1520 if ((reqid = key_newreqid()) == 0) { 1521 KEY_FREESP(&newsp); 1522 *error = ENOBUFS; 1523 return NULL; 1524 } 1525 (*p_isr)->saidx.reqid = reqid; 1526 xisr->sadb_x_ipsecrequest_reqid = reqid; 1527 } else { 1528 /* set it for manual keying. */ 1529 (*p_isr)->saidx.reqid = 1530 xisr->sadb_x_ipsecrequest_reqid; 1531 } 1532 break; 1533 1534 default: 1535 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1536 __func__, 1537 xisr->sadb_x_ipsecrequest_level)); 1538 KEY_FREESP(&newsp); 1539 *error = EINVAL; 1540 return NULL; 1541 } 1542 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1543 1544 /* set IP addresses if there */ 1545 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1546 struct sockaddr *paddr; 1547 1548 paddr = (struct sockaddr *)(xisr + 1); 1549 1550 /* validity check */ 1551 if (paddr->sa_len 1552 > sizeof((*p_isr)->saidx.src)) { 1553 ipseclog((LOG_DEBUG, "%s: invalid " 1554 "request address length.\n", 1555 __func__)); 1556 KEY_FREESP(&newsp); 1557 *error = EINVAL; 1558 return NULL; 1559 } 1560 bcopy(paddr, &(*p_isr)->saidx.src, 1561 paddr->sa_len); 1562 1563 paddr = (struct sockaddr *)((caddr_t)paddr 1564 + paddr->sa_len); 1565 1566 /* validity check */ 1567 if (paddr->sa_len 1568 > sizeof((*p_isr)->saidx.dst)) { 1569 ipseclog((LOG_DEBUG, "%s: invalid " 1570 "request address length.\n", 1571 __func__)); 1572 KEY_FREESP(&newsp); 1573 *error = EINVAL; 1574 return NULL; 1575 } 1576 bcopy(paddr, &(*p_isr)->saidx.dst, 1577 paddr->sa_len); 1578 } 1579 1580 (*p_isr)->sp = newsp; 1581 1582 /* initialization for the next. */ 1583 p_isr = &(*p_isr)->next; 1584 tlen -= xisr->sadb_x_ipsecrequest_len; 1585 1586 /* validity check */ 1587 if (tlen < 0) { 1588 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1589 __func__)); 1590 KEY_FREESP(&newsp); 1591 *error = EINVAL; 1592 return NULL; 1593 } 1594 1595 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1596 + xisr->sadb_x_ipsecrequest_len); 1597 } 1598 } 1599 break; 1600 default: 1601 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1602 KEY_FREESP(&newsp); 1603 *error = EINVAL; 1604 return NULL; 1605 } 1606 1607 *error = 0; 1608 return newsp; 1609 } 1610 1611 static u_int32_t 1612 key_newreqid() 1613 { 1614 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1615 1616 auto_reqid = (auto_reqid == ~0 1617 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1618 1619 /* XXX should be unique check */ 1620 1621 return auto_reqid; 1622 } 1623 1624 /* 1625 * copy secpolicy struct to sadb_x_policy structure indicated. 1626 */ 1627 struct mbuf * 1628 key_sp2msg(sp) 1629 struct secpolicy *sp; 1630 { 1631 struct sadb_x_policy *xpl; 1632 int tlen; 1633 caddr_t p; 1634 struct mbuf *m; 1635 1636 IPSEC_ASSERT(sp != NULL, ("null policy")); 1637 1638 tlen = key_getspreqmsglen(sp); 1639 1640 m = key_alloc_mbuf(tlen); 1641 if (!m || m->m_next) { /*XXX*/ 1642 if (m) 1643 m_freem(m); 1644 return NULL; 1645 } 1646 1647 m->m_len = tlen; 1648 m->m_next = NULL; 1649 xpl = mtod(m, struct sadb_x_policy *); 1650 bzero(xpl, tlen); 1651 1652 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1653 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1654 xpl->sadb_x_policy_type = sp->policy; 1655 xpl->sadb_x_policy_dir = sp->spidx.dir; 1656 xpl->sadb_x_policy_id = sp->id; 1657 p = (caddr_t)xpl + sizeof(*xpl); 1658 1659 /* if is the policy for ipsec ? */ 1660 if (sp->policy == IPSEC_POLICY_IPSEC) { 1661 struct sadb_x_ipsecrequest *xisr; 1662 struct ipsecrequest *isr; 1663 1664 for (isr = sp->req; isr != NULL; isr = isr->next) { 1665 1666 xisr = (struct sadb_x_ipsecrequest *)p; 1667 1668 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1669 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1670 xisr->sadb_x_ipsecrequest_level = isr->level; 1671 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1672 1673 p += sizeof(*xisr); 1674 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1675 p += isr->saidx.src.sa.sa_len; 1676 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1677 p += isr->saidx.src.sa.sa_len; 1678 1679 xisr->sadb_x_ipsecrequest_len = 1680 PFKEY_ALIGN8(sizeof(*xisr) 1681 + isr->saidx.src.sa.sa_len 1682 + isr->saidx.dst.sa.sa_len); 1683 } 1684 } 1685 1686 return m; 1687 } 1688 1689 /* m will not be freed nor modified */ 1690 static struct mbuf * 1691 #ifdef __STDC__ 1692 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1693 int ndeep, int nitem, ...) 1694 #else 1695 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1696 struct mbuf *m; 1697 const struct sadb_msghdr *mhp; 1698 int ndeep; 1699 int nitem; 1700 va_dcl 1701 #endif 1702 { 1703 va_list ap; 1704 int idx; 1705 int i; 1706 struct mbuf *result = NULL, *n; 1707 int len; 1708 1709 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1710 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1711 1712 va_start(ap, nitem); 1713 for (i = 0; i < nitem; i++) { 1714 idx = va_arg(ap, int); 1715 if (idx < 0 || idx > SADB_EXT_MAX) 1716 goto fail; 1717 /* don't attempt to pull empty extension */ 1718 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1719 continue; 1720 if (idx != SADB_EXT_RESERVED && 1721 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1722 continue; 1723 1724 if (idx == SADB_EXT_RESERVED) { 1725 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1726 1727 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1728 1729 MGETHDR(n, M_DONTWAIT, MT_DATA); 1730 if (!n) 1731 goto fail; 1732 n->m_len = len; 1733 n->m_next = NULL; 1734 m_copydata(m, 0, sizeof(struct sadb_msg), 1735 mtod(n, caddr_t)); 1736 } else if (i < ndeep) { 1737 len = mhp->extlen[idx]; 1738 n = key_alloc_mbuf(len); 1739 if (!n || n->m_next) { /*XXX*/ 1740 if (n) 1741 m_freem(n); 1742 goto fail; 1743 } 1744 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1745 mtod(n, caddr_t)); 1746 } else { 1747 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1748 M_DONTWAIT); 1749 } 1750 if (n == NULL) 1751 goto fail; 1752 1753 if (result) 1754 m_cat(result, n); 1755 else 1756 result = n; 1757 } 1758 va_end(ap); 1759 1760 if ((result->m_flags & M_PKTHDR) != 0) { 1761 result->m_pkthdr.len = 0; 1762 for (n = result; n; n = n->m_next) 1763 result->m_pkthdr.len += n->m_len; 1764 } 1765 1766 return result; 1767 1768 fail: 1769 m_freem(result); 1770 return NULL; 1771 } 1772 1773 /* 1774 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1775 * add an entry to SP database, when received 1776 * <base, address(SD), (lifetime(H),) policy> 1777 * from the user(?). 1778 * Adding to SP database, 1779 * and send 1780 * <base, address(SD), (lifetime(H),) policy> 1781 * to the socket which was send. 1782 * 1783 * SPDADD set a unique policy entry. 1784 * SPDSETIDX like SPDADD without a part of policy requests. 1785 * SPDUPDATE replace a unique policy entry. 1786 * 1787 * m will always be freed. 1788 */ 1789 static int 1790 key_spdadd(so, m, mhp) 1791 struct socket *so; 1792 struct mbuf *m; 1793 const struct sadb_msghdr *mhp; 1794 { 1795 struct sadb_address *src0, *dst0; 1796 struct sadb_x_policy *xpl0, *xpl; 1797 struct sadb_lifetime *lft = NULL; 1798 struct secpolicyindex spidx; 1799 struct secpolicy *newsp; 1800 int error; 1801 1802 IPSEC_ASSERT(so != NULL, ("null socket")); 1803 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1804 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1805 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1806 1807 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1808 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1809 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1810 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1811 return key_senderror(so, m, EINVAL); 1812 } 1813 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1814 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1815 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1816 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1817 __func__)); 1818 return key_senderror(so, m, EINVAL); 1819 } 1820 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1821 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1822 < sizeof(struct sadb_lifetime)) { 1823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1824 __func__)); 1825 return key_senderror(so, m, EINVAL); 1826 } 1827 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1828 } 1829 1830 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1831 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1832 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1833 1834 /* 1835 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1836 * we are processing traffic endpoints. 1837 */ 1838 1839 /* make secindex */ 1840 /* XXX boundary check against sa_len */ 1841 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1842 src0 + 1, 1843 dst0 + 1, 1844 src0->sadb_address_prefixlen, 1845 dst0->sadb_address_prefixlen, 1846 src0->sadb_address_proto, 1847 &spidx); 1848 1849 /* checking the direciton. */ 1850 switch (xpl0->sadb_x_policy_dir) { 1851 case IPSEC_DIR_INBOUND: 1852 case IPSEC_DIR_OUTBOUND: 1853 break; 1854 default: 1855 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1856 mhp->msg->sadb_msg_errno = EINVAL; 1857 return 0; 1858 } 1859 1860 /* check policy */ 1861 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1862 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1863 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1864 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1865 return key_senderror(so, m, EINVAL); 1866 } 1867 1868 /* policy requests are mandatory when action is ipsec. */ 1869 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1870 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1871 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1872 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1873 __func__)); 1874 return key_senderror(so, m, EINVAL); 1875 } 1876 1877 /* 1878 * checking there is SP already or not. 1879 * SPDUPDATE doesn't depend on whether there is a SP or not. 1880 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1881 * then error. 1882 */ 1883 newsp = key_getsp(&spidx); 1884 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1885 if (newsp) { 1886 SPTREE_LOCK(); 1887 newsp->state = IPSEC_SPSTATE_DEAD; 1888 SPTREE_UNLOCK(); 1889 KEY_FREESP(&newsp); 1890 } 1891 } else { 1892 if (newsp != NULL) { 1893 KEY_FREESP(&newsp); 1894 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1895 __func__)); 1896 return key_senderror(so, m, EEXIST); 1897 } 1898 } 1899 1900 /* allocation new SP entry */ 1901 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1902 return key_senderror(so, m, error); 1903 } 1904 1905 if ((newsp->id = key_getnewspid()) == 0) { 1906 _key_delsp(newsp); 1907 return key_senderror(so, m, ENOBUFS); 1908 } 1909 1910 /* XXX boundary check against sa_len */ 1911 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1912 src0 + 1, 1913 dst0 + 1, 1914 src0->sadb_address_prefixlen, 1915 dst0->sadb_address_prefixlen, 1916 src0->sadb_address_proto, 1917 &newsp->spidx); 1918 1919 /* sanity check on addr pair */ 1920 if (((struct sockaddr *)(src0 + 1))->sa_family != 1921 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1922 _key_delsp(newsp); 1923 return key_senderror(so, m, EINVAL); 1924 } 1925 if (((struct sockaddr *)(src0 + 1))->sa_len != 1926 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1927 _key_delsp(newsp); 1928 return key_senderror(so, m, EINVAL); 1929 } 1930 #if 1 1931 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1932 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1933 _key_delsp(newsp); 1934 return key_senderror(so, m, EINVAL); 1935 } 1936 } 1937 #endif 1938 1939 newsp->created = time_second; 1940 newsp->lastused = newsp->created; 1941 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1942 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1943 1944 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1945 newsp->state = IPSEC_SPSTATE_ALIVE; 1946 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1947 1948 /* delete the entry in spacqtree */ 1949 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1950 struct secspacq *spacq = key_getspacq(&spidx); 1951 if (spacq != NULL) { 1952 /* reset counter in order to deletion by timehandler. */ 1953 spacq->created = time_second; 1954 spacq->count = 0; 1955 SPACQ_UNLOCK(); 1956 } 1957 } 1958 1959 { 1960 struct mbuf *n, *mpolicy; 1961 struct sadb_msg *newmsg; 1962 int off; 1963 1964 /* 1965 * Note: do not send SADB_X_EXT_NAT_T_* here: 1966 * we are sending traffic endpoints. 1967 */ 1968 1969 /* create new sadb_msg to reply. */ 1970 if (lft) { 1971 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1972 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1973 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1974 } else { 1975 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1976 SADB_X_EXT_POLICY, 1977 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1978 } 1979 if (!n) 1980 return key_senderror(so, m, ENOBUFS); 1981 1982 if (n->m_len < sizeof(*newmsg)) { 1983 n = m_pullup(n, sizeof(*newmsg)); 1984 if (!n) 1985 return key_senderror(so, m, ENOBUFS); 1986 } 1987 newmsg = mtod(n, struct sadb_msg *); 1988 newmsg->sadb_msg_errno = 0; 1989 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1990 1991 off = 0; 1992 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1993 sizeof(*xpl), &off); 1994 if (mpolicy == NULL) { 1995 /* n is already freed */ 1996 return key_senderror(so, m, ENOBUFS); 1997 } 1998 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1999 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2000 m_freem(n); 2001 return key_senderror(so, m, EINVAL); 2002 } 2003 xpl->sadb_x_policy_id = newsp->id; 2004 2005 m_freem(m); 2006 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2007 } 2008 } 2009 2010 /* 2011 * get new policy id. 2012 * OUT: 2013 * 0: failure. 2014 * others: success. 2015 */ 2016 static u_int32_t 2017 key_getnewspid() 2018 { 2019 u_int32_t newid = 0; 2020 int count = V_key_spi_trycnt; /* XXX */ 2021 struct secpolicy *sp; 2022 2023 /* when requesting to allocate spi ranged */ 2024 while (count--) { 2025 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2026 2027 if ((sp = key_getspbyid(newid)) == NULL) 2028 break; 2029 2030 KEY_FREESP(&sp); 2031 } 2032 2033 if (count == 0 || newid == 0) { 2034 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2035 __func__)); 2036 return 0; 2037 } 2038 2039 return newid; 2040 } 2041 2042 /* 2043 * SADB_SPDDELETE processing 2044 * receive 2045 * <base, address(SD), policy(*)> 2046 * from the user(?), and set SADB_SASTATE_DEAD, 2047 * and send, 2048 * <base, address(SD), policy(*)> 2049 * to the ikmpd. 2050 * policy(*) including direction of policy. 2051 * 2052 * m will always be freed. 2053 */ 2054 static int 2055 key_spddelete(so, m, mhp) 2056 struct socket *so; 2057 struct mbuf *m; 2058 const struct sadb_msghdr *mhp; 2059 { 2060 struct sadb_address *src0, *dst0; 2061 struct sadb_x_policy *xpl0; 2062 struct secpolicyindex spidx; 2063 struct secpolicy *sp; 2064 2065 IPSEC_ASSERT(so != NULL, ("null so")); 2066 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2067 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2068 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2069 2070 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2071 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2072 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2073 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2074 __func__)); 2075 return key_senderror(so, m, EINVAL); 2076 } 2077 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2078 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2079 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2080 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2081 __func__)); 2082 return key_senderror(so, m, EINVAL); 2083 } 2084 2085 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2086 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2087 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2088 2089 /* 2090 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2091 * we are processing traffic endpoints. 2092 */ 2093 2094 /* make secindex */ 2095 /* XXX boundary check against sa_len */ 2096 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2097 src0 + 1, 2098 dst0 + 1, 2099 src0->sadb_address_prefixlen, 2100 dst0->sadb_address_prefixlen, 2101 src0->sadb_address_proto, 2102 &spidx); 2103 2104 /* checking the direciton. */ 2105 switch (xpl0->sadb_x_policy_dir) { 2106 case IPSEC_DIR_INBOUND: 2107 case IPSEC_DIR_OUTBOUND: 2108 break; 2109 default: 2110 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2111 return key_senderror(so, m, EINVAL); 2112 } 2113 2114 /* Is there SP in SPD ? */ 2115 if ((sp = key_getsp(&spidx)) == NULL) { 2116 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2117 return key_senderror(so, m, EINVAL); 2118 } 2119 2120 /* save policy id to buffer to be returned. */ 2121 xpl0->sadb_x_policy_id = sp->id; 2122 2123 SPTREE_LOCK(); 2124 sp->state = IPSEC_SPSTATE_DEAD; 2125 SPTREE_UNLOCK(); 2126 KEY_FREESP(&sp); 2127 2128 { 2129 struct mbuf *n; 2130 struct sadb_msg *newmsg; 2131 2132 /* 2133 * Note: do not send SADB_X_EXT_NAT_T_* here: 2134 * we are sending traffic endpoints. 2135 */ 2136 2137 /* create new sadb_msg to reply. */ 2138 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2139 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2140 if (!n) 2141 return key_senderror(so, m, ENOBUFS); 2142 2143 newmsg = mtod(n, struct sadb_msg *); 2144 newmsg->sadb_msg_errno = 0; 2145 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2146 2147 m_freem(m); 2148 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2149 } 2150 } 2151 2152 /* 2153 * SADB_SPDDELETE2 processing 2154 * receive 2155 * <base, policy(*)> 2156 * from the user(?), and set SADB_SASTATE_DEAD, 2157 * and send, 2158 * <base, policy(*)> 2159 * to the ikmpd. 2160 * policy(*) including direction of policy. 2161 * 2162 * m will always be freed. 2163 */ 2164 static int 2165 key_spddelete2(so, m, mhp) 2166 struct socket *so; 2167 struct mbuf *m; 2168 const struct sadb_msghdr *mhp; 2169 { 2170 u_int32_t id; 2171 struct secpolicy *sp; 2172 2173 IPSEC_ASSERT(so != NULL, ("null socket")); 2174 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2175 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2176 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2177 2178 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2179 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2180 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2181 return key_senderror(so, m, EINVAL); 2182 } 2183 2184 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2185 2186 /* Is there SP in SPD ? */ 2187 if ((sp = key_getspbyid(id)) == NULL) { 2188 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2189 return key_senderror(so, m, EINVAL); 2190 } 2191 2192 SPTREE_LOCK(); 2193 sp->state = IPSEC_SPSTATE_DEAD; 2194 SPTREE_UNLOCK(); 2195 KEY_FREESP(&sp); 2196 2197 { 2198 struct mbuf *n, *nn; 2199 struct sadb_msg *newmsg; 2200 int off, len; 2201 2202 /* create new sadb_msg to reply. */ 2203 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2204 2205 MGETHDR(n, M_DONTWAIT, MT_DATA); 2206 if (n && len > MHLEN) { 2207 MCLGET(n, M_DONTWAIT); 2208 if ((n->m_flags & M_EXT) == 0) { 2209 m_freem(n); 2210 n = NULL; 2211 } 2212 } 2213 if (!n) 2214 return key_senderror(so, m, ENOBUFS); 2215 2216 n->m_len = len; 2217 n->m_next = NULL; 2218 off = 0; 2219 2220 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2221 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2222 2223 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2224 off, len)); 2225 2226 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2227 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2228 if (!n->m_next) { 2229 m_freem(n); 2230 return key_senderror(so, m, ENOBUFS); 2231 } 2232 2233 n->m_pkthdr.len = 0; 2234 for (nn = n; nn; nn = nn->m_next) 2235 n->m_pkthdr.len += nn->m_len; 2236 2237 newmsg = mtod(n, struct sadb_msg *); 2238 newmsg->sadb_msg_errno = 0; 2239 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2240 2241 m_freem(m); 2242 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2243 } 2244 } 2245 2246 /* 2247 * SADB_X_GET processing 2248 * receive 2249 * <base, policy(*)> 2250 * from the user(?), 2251 * and send, 2252 * <base, address(SD), policy> 2253 * to the ikmpd. 2254 * policy(*) including direction of policy. 2255 * 2256 * m will always be freed. 2257 */ 2258 static int 2259 key_spdget(so, m, mhp) 2260 struct socket *so; 2261 struct mbuf *m; 2262 const struct sadb_msghdr *mhp; 2263 { 2264 u_int32_t id; 2265 struct secpolicy *sp; 2266 struct mbuf *n; 2267 2268 IPSEC_ASSERT(so != NULL, ("null socket")); 2269 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2270 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2271 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2272 2273 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2274 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2275 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2276 __func__)); 2277 return key_senderror(so, m, EINVAL); 2278 } 2279 2280 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2281 2282 /* Is there SP in SPD ? */ 2283 if ((sp = key_getspbyid(id)) == NULL) { 2284 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2285 return key_senderror(so, m, ENOENT); 2286 } 2287 2288 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2289 if (n != NULL) { 2290 m_freem(m); 2291 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2292 } else 2293 return key_senderror(so, m, ENOBUFS); 2294 } 2295 2296 /* 2297 * SADB_X_SPDACQUIRE processing. 2298 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2299 * send 2300 * <base, policy(*)> 2301 * to KMD, and expect to receive 2302 * <base> with SADB_X_SPDACQUIRE if error occured, 2303 * or 2304 * <base, policy> 2305 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2306 * policy(*) is without policy requests. 2307 * 2308 * 0 : succeed 2309 * others: error number 2310 */ 2311 int 2312 key_spdacquire(sp) 2313 struct secpolicy *sp; 2314 { 2315 struct mbuf *result = NULL, *m; 2316 struct secspacq *newspacq; 2317 2318 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2319 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2320 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2321 ("policy not IPSEC %u", sp->policy)); 2322 2323 /* Get an entry to check whether sent message or not. */ 2324 newspacq = key_getspacq(&sp->spidx); 2325 if (newspacq != NULL) { 2326 if (V_key_blockacq_count < newspacq->count) { 2327 /* reset counter and do send message. */ 2328 newspacq->count = 0; 2329 } else { 2330 /* increment counter and do nothing. */ 2331 newspacq->count++; 2332 return 0; 2333 } 2334 SPACQ_UNLOCK(); 2335 } else { 2336 /* make new entry for blocking to send SADB_ACQUIRE. */ 2337 newspacq = key_newspacq(&sp->spidx); 2338 if (newspacq == NULL) 2339 return ENOBUFS; 2340 } 2341 2342 /* create new sadb_msg to reply. */ 2343 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2344 if (!m) 2345 return ENOBUFS; 2346 2347 result = m; 2348 2349 result->m_pkthdr.len = 0; 2350 for (m = result; m; m = m->m_next) 2351 result->m_pkthdr.len += m->m_len; 2352 2353 mtod(result, struct sadb_msg *)->sadb_msg_len = 2354 PFKEY_UNIT64(result->m_pkthdr.len); 2355 2356 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2357 } 2358 2359 /* 2360 * SADB_SPDFLUSH processing 2361 * receive 2362 * <base> 2363 * from the user, and free all entries in secpctree. 2364 * and send, 2365 * <base> 2366 * to the user. 2367 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2368 * 2369 * m will always be freed. 2370 */ 2371 static int 2372 key_spdflush(so, m, mhp) 2373 struct socket *so; 2374 struct mbuf *m; 2375 const struct sadb_msghdr *mhp; 2376 { 2377 struct sadb_msg *newmsg; 2378 struct secpolicy *sp; 2379 u_int dir; 2380 2381 IPSEC_ASSERT(so != NULL, ("null socket")); 2382 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2383 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2384 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2385 2386 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2387 return key_senderror(so, m, EINVAL); 2388 2389 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2390 SPTREE_LOCK(); 2391 LIST_FOREACH(sp, &V_sptree[dir], chain) 2392 sp->state = IPSEC_SPSTATE_DEAD; 2393 SPTREE_UNLOCK(); 2394 } 2395 2396 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2397 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2398 return key_senderror(so, m, ENOBUFS); 2399 } 2400 2401 if (m->m_next) 2402 m_freem(m->m_next); 2403 m->m_next = NULL; 2404 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2405 newmsg = mtod(m, struct sadb_msg *); 2406 newmsg->sadb_msg_errno = 0; 2407 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2408 2409 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2410 } 2411 2412 /* 2413 * SADB_SPDDUMP processing 2414 * receive 2415 * <base> 2416 * from the user, and dump all SP leaves 2417 * and send, 2418 * <base> ..... 2419 * to the ikmpd. 2420 * 2421 * m will always be freed. 2422 */ 2423 static int 2424 key_spddump(so, m, mhp) 2425 struct socket *so; 2426 struct mbuf *m; 2427 const struct sadb_msghdr *mhp; 2428 { 2429 struct secpolicy *sp; 2430 int cnt; 2431 u_int dir; 2432 struct mbuf *n; 2433 2434 IPSEC_ASSERT(so != NULL, ("null socket")); 2435 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2436 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2437 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2438 2439 /* search SPD entry and get buffer size. */ 2440 cnt = 0; 2441 SPTREE_LOCK(); 2442 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2443 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2444 cnt++; 2445 } 2446 } 2447 2448 if (cnt == 0) { 2449 SPTREE_UNLOCK(); 2450 return key_senderror(so, m, ENOENT); 2451 } 2452 2453 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2454 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2455 --cnt; 2456 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2457 mhp->msg->sadb_msg_pid); 2458 2459 if (n) 2460 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2461 } 2462 } 2463 2464 SPTREE_UNLOCK(); 2465 m_freem(m); 2466 return 0; 2467 } 2468 2469 static struct mbuf * 2470 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2471 { 2472 struct mbuf *result = NULL, *m; 2473 struct seclifetime lt; 2474 2475 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2476 if (!m) 2477 goto fail; 2478 result = m; 2479 2480 /* 2481 * Note: do not send SADB_X_EXT_NAT_T_* here: 2482 * we are sending traffic endpoints. 2483 */ 2484 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2485 &sp->spidx.src.sa, sp->spidx.prefs, 2486 sp->spidx.ul_proto); 2487 if (!m) 2488 goto fail; 2489 m_cat(result, m); 2490 2491 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2492 &sp->spidx.dst.sa, sp->spidx.prefd, 2493 sp->spidx.ul_proto); 2494 if (!m) 2495 goto fail; 2496 m_cat(result, m); 2497 2498 m = key_sp2msg(sp); 2499 if (!m) 2500 goto fail; 2501 m_cat(result, m); 2502 2503 if(sp->lifetime){ 2504 lt.addtime=sp->created; 2505 lt.usetime= sp->lastused; 2506 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2507 if (!m) 2508 goto fail; 2509 m_cat(result, m); 2510 2511 lt.addtime=sp->lifetime; 2512 lt.usetime= sp->validtime; 2513 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2514 if (!m) 2515 goto fail; 2516 m_cat(result, m); 2517 } 2518 2519 if ((result->m_flags & M_PKTHDR) == 0) 2520 goto fail; 2521 2522 if (result->m_len < sizeof(struct sadb_msg)) { 2523 result = m_pullup(result, sizeof(struct sadb_msg)); 2524 if (result == NULL) 2525 goto fail; 2526 } 2527 2528 result->m_pkthdr.len = 0; 2529 for (m = result; m; m = m->m_next) 2530 result->m_pkthdr.len += m->m_len; 2531 2532 mtod(result, struct sadb_msg *)->sadb_msg_len = 2533 PFKEY_UNIT64(result->m_pkthdr.len); 2534 2535 return result; 2536 2537 fail: 2538 m_freem(result); 2539 return NULL; 2540 } 2541 2542 /* 2543 * get PFKEY message length for security policy and request. 2544 */ 2545 static u_int 2546 key_getspreqmsglen(sp) 2547 struct secpolicy *sp; 2548 { 2549 u_int tlen; 2550 2551 tlen = sizeof(struct sadb_x_policy); 2552 2553 /* if is the policy for ipsec ? */ 2554 if (sp->policy != IPSEC_POLICY_IPSEC) 2555 return tlen; 2556 2557 /* get length of ipsec requests */ 2558 { 2559 struct ipsecrequest *isr; 2560 int len; 2561 2562 for (isr = sp->req; isr != NULL; isr = isr->next) { 2563 len = sizeof(struct sadb_x_ipsecrequest) 2564 + isr->saidx.src.sa.sa_len 2565 + isr->saidx.dst.sa.sa_len; 2566 2567 tlen += PFKEY_ALIGN8(len); 2568 } 2569 } 2570 2571 return tlen; 2572 } 2573 2574 /* 2575 * SADB_SPDEXPIRE processing 2576 * send 2577 * <base, address(SD), lifetime(CH), policy> 2578 * to KMD by PF_KEY. 2579 * 2580 * OUT: 0 : succeed 2581 * others : error number 2582 */ 2583 static int 2584 key_spdexpire(sp) 2585 struct secpolicy *sp; 2586 { 2587 struct mbuf *result = NULL, *m; 2588 int len; 2589 int error = -1; 2590 struct sadb_lifetime *lt; 2591 2592 /* XXX: Why do we lock ? */ 2593 2594 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2595 2596 /* set msg header */ 2597 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2598 if (!m) { 2599 error = ENOBUFS; 2600 goto fail; 2601 } 2602 result = m; 2603 2604 /* create lifetime extension (current and hard) */ 2605 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2606 m = key_alloc_mbuf(len); 2607 if (!m || m->m_next) { /*XXX*/ 2608 if (m) 2609 m_freem(m); 2610 error = ENOBUFS; 2611 goto fail; 2612 } 2613 bzero(mtod(m, caddr_t), len); 2614 lt = mtod(m, struct sadb_lifetime *); 2615 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2616 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2617 lt->sadb_lifetime_allocations = 0; 2618 lt->sadb_lifetime_bytes = 0; 2619 lt->sadb_lifetime_addtime = sp->created; 2620 lt->sadb_lifetime_usetime = sp->lastused; 2621 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2622 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2623 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2624 lt->sadb_lifetime_allocations = 0; 2625 lt->sadb_lifetime_bytes = 0; 2626 lt->sadb_lifetime_addtime = sp->lifetime; 2627 lt->sadb_lifetime_usetime = sp->validtime; 2628 m_cat(result, m); 2629 2630 /* 2631 * Note: do not send SADB_X_EXT_NAT_T_* here: 2632 * we are sending traffic endpoints. 2633 */ 2634 2635 /* set sadb_address for source */ 2636 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2637 &sp->spidx.src.sa, 2638 sp->spidx.prefs, sp->spidx.ul_proto); 2639 if (!m) { 2640 error = ENOBUFS; 2641 goto fail; 2642 } 2643 m_cat(result, m); 2644 2645 /* set sadb_address for destination */ 2646 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2647 &sp->spidx.dst.sa, 2648 sp->spidx.prefd, sp->spidx.ul_proto); 2649 if (!m) { 2650 error = ENOBUFS; 2651 goto fail; 2652 } 2653 m_cat(result, m); 2654 2655 /* set secpolicy */ 2656 m = key_sp2msg(sp); 2657 if (!m) { 2658 error = ENOBUFS; 2659 goto fail; 2660 } 2661 m_cat(result, m); 2662 2663 if ((result->m_flags & M_PKTHDR) == 0) { 2664 error = EINVAL; 2665 goto fail; 2666 } 2667 2668 if (result->m_len < sizeof(struct sadb_msg)) { 2669 result = m_pullup(result, sizeof(struct sadb_msg)); 2670 if (result == NULL) { 2671 error = ENOBUFS; 2672 goto fail; 2673 } 2674 } 2675 2676 result->m_pkthdr.len = 0; 2677 for (m = result; m; m = m->m_next) 2678 result->m_pkthdr.len += m->m_len; 2679 2680 mtod(result, struct sadb_msg *)->sadb_msg_len = 2681 PFKEY_UNIT64(result->m_pkthdr.len); 2682 2683 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2684 2685 fail: 2686 if (result) 2687 m_freem(result); 2688 return error; 2689 } 2690 2691 /* %%% SAD management */ 2692 /* 2693 * allocating a memory for new SA head, and copy from the values of mhp. 2694 * OUT: NULL : failure due to the lack of memory. 2695 * others : pointer to new SA head. 2696 */ 2697 static struct secashead * 2698 key_newsah(saidx) 2699 struct secasindex *saidx; 2700 { 2701 struct secashead *newsah; 2702 2703 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2704 2705 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2706 if (newsah != NULL) { 2707 int i; 2708 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2709 LIST_INIT(&newsah->savtree[i]); 2710 newsah->saidx = *saidx; 2711 2712 /* add to saidxtree */ 2713 newsah->state = SADB_SASTATE_MATURE; 2714 2715 SAHTREE_LOCK(); 2716 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2717 SAHTREE_UNLOCK(); 2718 } 2719 return(newsah); 2720 } 2721 2722 /* 2723 * delete SA index and all SA registerd. 2724 */ 2725 static void 2726 key_delsah(sah) 2727 struct secashead *sah; 2728 { 2729 struct secasvar *sav, *nextsav; 2730 u_int stateidx; 2731 int zombie = 0; 2732 2733 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2734 SAHTREE_LOCK_ASSERT(); 2735 2736 /* searching all SA registerd in the secindex. */ 2737 for (stateidx = 0; 2738 stateidx < _ARRAYLEN(saorder_state_any); 2739 stateidx++) { 2740 u_int state = saorder_state_any[stateidx]; 2741 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2742 if (sav->refcnt == 0) { 2743 /* sanity check */ 2744 KEY_CHKSASTATE(state, sav->state, __func__); 2745 /* 2746 * do NOT call KEY_FREESAV here: 2747 * it will only delete the sav if refcnt == 1, 2748 * where we already know that refcnt == 0 2749 */ 2750 key_delsav(sav); 2751 } else { 2752 /* give up to delete this sa */ 2753 zombie++; 2754 } 2755 } 2756 } 2757 if (!zombie) { /* delete only if there are savs */ 2758 /* remove from tree of SA index */ 2759 if (__LIST_CHAINED(sah)) 2760 LIST_REMOVE(sah, chain); 2761 if (sah->route_cache.sa_route.ro_rt) { 2762 RTFREE(sah->route_cache.sa_route.ro_rt); 2763 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2764 } 2765 free(sah, M_IPSEC_SAH); 2766 } 2767 } 2768 2769 /* 2770 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2771 * and copy the values of mhp into new buffer. 2772 * When SAD message type is GETSPI: 2773 * to set sequence number from acq_seq++, 2774 * to set zero to SPI. 2775 * not to call key_setsava(). 2776 * OUT: NULL : fail 2777 * others : pointer to new secasvar. 2778 * 2779 * does not modify mbuf. does not free mbuf on error. 2780 */ 2781 static struct secasvar * 2782 key_newsav(m, mhp, sah, errp, where, tag) 2783 struct mbuf *m; 2784 const struct sadb_msghdr *mhp; 2785 struct secashead *sah; 2786 int *errp; 2787 const char* where; 2788 int tag; 2789 { 2790 struct secasvar *newsav; 2791 const struct sadb_sa *xsa; 2792 2793 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2794 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2795 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2796 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2797 2798 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2799 if (newsav == NULL) { 2800 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2801 *errp = ENOBUFS; 2802 goto done; 2803 } 2804 2805 switch (mhp->msg->sadb_msg_type) { 2806 case SADB_GETSPI: 2807 newsav->spi = 0; 2808 2809 #ifdef IPSEC_DOSEQCHECK 2810 /* sync sequence number */ 2811 if (mhp->msg->sadb_msg_seq == 0) 2812 newsav->seq = 2813 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2814 else 2815 #endif 2816 newsav->seq = mhp->msg->sadb_msg_seq; 2817 break; 2818 2819 case SADB_ADD: 2820 /* sanity check */ 2821 if (mhp->ext[SADB_EXT_SA] == NULL) { 2822 free(newsav, M_IPSEC_SA); 2823 newsav = NULL; 2824 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2825 __func__)); 2826 *errp = EINVAL; 2827 goto done; 2828 } 2829 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2830 newsav->spi = xsa->sadb_sa_spi; 2831 newsav->seq = mhp->msg->sadb_msg_seq; 2832 break; 2833 default: 2834 free(newsav, M_IPSEC_SA); 2835 newsav = NULL; 2836 *errp = EINVAL; 2837 goto done; 2838 } 2839 2840 2841 /* copy sav values */ 2842 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2843 *errp = key_setsaval(newsav, m, mhp); 2844 if (*errp) { 2845 free(newsav, M_IPSEC_SA); 2846 newsav = NULL; 2847 goto done; 2848 } 2849 } 2850 2851 SECASVAR_LOCK_INIT(newsav); 2852 2853 /* reset created */ 2854 newsav->created = time_second; 2855 newsav->pid = mhp->msg->sadb_msg_pid; 2856 2857 /* add to satree */ 2858 newsav->sah = sah; 2859 sa_initref(newsav); 2860 newsav->state = SADB_SASTATE_LARVAL; 2861 2862 SAHTREE_LOCK(); 2863 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2864 secasvar, chain); 2865 SAHTREE_UNLOCK(); 2866 done: 2867 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2868 printf("DP %s from %s:%u return SP:%p\n", __func__, 2869 where, tag, newsav)); 2870 2871 return newsav; 2872 } 2873 2874 /* 2875 * free() SA variable entry. 2876 */ 2877 static void 2878 key_cleansav(struct secasvar *sav) 2879 { 2880 /* 2881 * Cleanup xform state. Note that zeroize'ing causes the 2882 * keys to be cleared; otherwise we must do it ourself. 2883 */ 2884 if (sav->tdb_xform != NULL) { 2885 sav->tdb_xform->xf_zeroize(sav); 2886 sav->tdb_xform = NULL; 2887 } else { 2888 KASSERT(sav->iv == NULL, ("iv but no xform")); 2889 if (sav->key_auth != NULL) 2890 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2891 if (sav->key_enc != NULL) 2892 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2893 } 2894 if (sav->key_auth != NULL) { 2895 if (sav->key_auth->key_data != NULL) 2896 free(sav->key_auth->key_data, M_IPSEC_MISC); 2897 free(sav->key_auth, M_IPSEC_MISC); 2898 sav->key_auth = NULL; 2899 } 2900 if (sav->key_enc != NULL) { 2901 if (sav->key_enc->key_data != NULL) 2902 free(sav->key_enc->key_data, M_IPSEC_MISC); 2903 free(sav->key_enc, M_IPSEC_MISC); 2904 sav->key_enc = NULL; 2905 } 2906 if (sav->sched) { 2907 bzero(sav->sched, sav->schedlen); 2908 free(sav->sched, M_IPSEC_MISC); 2909 sav->sched = NULL; 2910 } 2911 if (sav->replay != NULL) { 2912 free(sav->replay, M_IPSEC_MISC); 2913 sav->replay = NULL; 2914 } 2915 if (sav->lft_c != NULL) { 2916 free(sav->lft_c, M_IPSEC_MISC); 2917 sav->lft_c = NULL; 2918 } 2919 if (sav->lft_h != NULL) { 2920 free(sav->lft_h, M_IPSEC_MISC); 2921 sav->lft_h = NULL; 2922 } 2923 if (sav->lft_s != NULL) { 2924 free(sav->lft_s, M_IPSEC_MISC); 2925 sav->lft_s = NULL; 2926 } 2927 } 2928 2929 /* 2930 * free() SA variable entry. 2931 */ 2932 static void 2933 key_delsav(sav) 2934 struct secasvar *sav; 2935 { 2936 IPSEC_ASSERT(sav != NULL, ("null sav")); 2937 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2938 2939 /* remove from SA header */ 2940 if (__LIST_CHAINED(sav)) 2941 LIST_REMOVE(sav, chain); 2942 key_cleansav(sav); 2943 SECASVAR_LOCK_DESTROY(sav); 2944 free(sav, M_IPSEC_SA); 2945 } 2946 2947 /* 2948 * search SAD. 2949 * OUT: 2950 * NULL : not found 2951 * others : found, pointer to a SA. 2952 */ 2953 static struct secashead * 2954 key_getsah(saidx) 2955 struct secasindex *saidx; 2956 { 2957 struct secashead *sah; 2958 2959 SAHTREE_LOCK(); 2960 LIST_FOREACH(sah, &V_sahtree, chain) { 2961 if (sah->state == SADB_SASTATE_DEAD) 2962 continue; 2963 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2964 break; 2965 } 2966 SAHTREE_UNLOCK(); 2967 2968 return sah; 2969 } 2970 2971 /* 2972 * check not to be duplicated SPI. 2973 * NOTE: this function is too slow due to searching all SAD. 2974 * OUT: 2975 * NULL : not found 2976 * others : found, pointer to a SA. 2977 */ 2978 static struct secasvar * 2979 key_checkspidup(saidx, spi) 2980 struct secasindex *saidx; 2981 u_int32_t spi; 2982 { 2983 struct secashead *sah; 2984 struct secasvar *sav; 2985 2986 /* check address family */ 2987 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2988 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2989 __func__)); 2990 return NULL; 2991 } 2992 2993 sav = NULL; 2994 /* check all SAD */ 2995 SAHTREE_LOCK(); 2996 LIST_FOREACH(sah, &V_sahtree, chain) { 2997 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2998 continue; 2999 sav = key_getsavbyspi(sah, spi); 3000 if (sav != NULL) 3001 break; 3002 } 3003 SAHTREE_UNLOCK(); 3004 3005 return sav; 3006 } 3007 3008 /* 3009 * search SAD litmited alive SA, protocol, SPI. 3010 * OUT: 3011 * NULL : not found 3012 * others : found, pointer to a SA. 3013 */ 3014 static struct secasvar * 3015 key_getsavbyspi(sah, spi) 3016 struct secashead *sah; 3017 u_int32_t spi; 3018 { 3019 struct secasvar *sav; 3020 u_int stateidx, state; 3021 3022 sav = NULL; 3023 SAHTREE_LOCK_ASSERT(); 3024 /* search all status */ 3025 for (stateidx = 0; 3026 stateidx < _ARRAYLEN(saorder_state_alive); 3027 stateidx++) { 3028 3029 state = saorder_state_alive[stateidx]; 3030 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3031 3032 /* sanity check */ 3033 if (sav->state != state) { 3034 ipseclog((LOG_DEBUG, "%s: " 3035 "invalid sav->state (queue: %d SA: %d)\n", 3036 __func__, state, sav->state)); 3037 continue; 3038 } 3039 3040 if (sav->spi == spi) 3041 return sav; 3042 } 3043 } 3044 3045 return NULL; 3046 } 3047 3048 /* 3049 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3050 * You must update these if need. 3051 * OUT: 0: success. 3052 * !0: failure. 3053 * 3054 * does not modify mbuf. does not free mbuf on error. 3055 */ 3056 static int 3057 key_setsaval(sav, m, mhp) 3058 struct secasvar *sav; 3059 struct mbuf *m; 3060 const struct sadb_msghdr *mhp; 3061 { 3062 int error = 0; 3063 3064 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3065 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3067 3068 /* initialization */ 3069 sav->replay = NULL; 3070 sav->key_auth = NULL; 3071 sav->key_enc = NULL; 3072 sav->sched = NULL; 3073 sav->schedlen = 0; 3074 sav->iv = NULL; 3075 sav->lft_c = NULL; 3076 sav->lft_h = NULL; 3077 sav->lft_s = NULL; 3078 sav->tdb_xform = NULL; /* transform */ 3079 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3080 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3081 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3082 /* Initialize even if NAT-T not compiled in: */ 3083 sav->natt_type = 0; 3084 sav->natt_esp_frag_len = 0; 3085 3086 /* SA */ 3087 if (mhp->ext[SADB_EXT_SA] != NULL) { 3088 const struct sadb_sa *sa0; 3089 3090 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3091 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3092 error = EINVAL; 3093 goto fail; 3094 } 3095 3096 sav->alg_auth = sa0->sadb_sa_auth; 3097 sav->alg_enc = sa0->sadb_sa_encrypt; 3098 sav->flags = sa0->sadb_sa_flags; 3099 3100 /* replay window */ 3101 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3102 sav->replay = (struct secreplay *) 3103 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3104 if (sav->replay == NULL) { 3105 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3106 __func__)); 3107 error = ENOBUFS; 3108 goto fail; 3109 } 3110 if (sa0->sadb_sa_replay != 0) 3111 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3112 sav->replay->wsize = sa0->sadb_sa_replay; 3113 } 3114 } 3115 3116 /* Authentication keys */ 3117 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3118 const struct sadb_key *key0; 3119 int len; 3120 3121 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3122 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3123 3124 error = 0; 3125 if (len < sizeof(*key0)) { 3126 error = EINVAL; 3127 goto fail; 3128 } 3129 switch (mhp->msg->sadb_msg_satype) { 3130 case SADB_SATYPE_AH: 3131 case SADB_SATYPE_ESP: 3132 case SADB_X_SATYPE_TCPSIGNATURE: 3133 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3134 sav->alg_auth != SADB_X_AALG_NULL) 3135 error = EINVAL; 3136 break; 3137 case SADB_X_SATYPE_IPCOMP: 3138 default: 3139 error = EINVAL; 3140 break; 3141 } 3142 if (error) { 3143 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3144 __func__)); 3145 goto fail; 3146 } 3147 3148 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3149 M_IPSEC_MISC); 3150 if (sav->key_auth == NULL ) { 3151 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3152 __func__)); 3153 error = ENOBUFS; 3154 goto fail; 3155 } 3156 } 3157 3158 /* Encryption key */ 3159 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3160 const struct sadb_key *key0; 3161 int len; 3162 3163 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3164 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3165 3166 error = 0; 3167 if (len < sizeof(*key0)) { 3168 error = EINVAL; 3169 goto fail; 3170 } 3171 switch (mhp->msg->sadb_msg_satype) { 3172 case SADB_SATYPE_ESP: 3173 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3174 sav->alg_enc != SADB_EALG_NULL) { 3175 error = EINVAL; 3176 break; 3177 } 3178 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3179 len, 3180 M_IPSEC_MISC); 3181 if (sav->key_enc == NULL) { 3182 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3183 __func__)); 3184 error = ENOBUFS; 3185 goto fail; 3186 } 3187 break; 3188 case SADB_X_SATYPE_IPCOMP: 3189 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3190 error = EINVAL; 3191 sav->key_enc = NULL; /*just in case*/ 3192 break; 3193 case SADB_SATYPE_AH: 3194 case SADB_X_SATYPE_TCPSIGNATURE: 3195 default: 3196 error = EINVAL; 3197 break; 3198 } 3199 if (error) { 3200 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3201 __func__)); 3202 goto fail; 3203 } 3204 } 3205 3206 /* set iv */ 3207 sav->ivlen = 0; 3208 3209 switch (mhp->msg->sadb_msg_satype) { 3210 case SADB_SATYPE_AH: 3211 error = xform_init(sav, XF_AH); 3212 break; 3213 case SADB_SATYPE_ESP: 3214 error = xform_init(sav, XF_ESP); 3215 break; 3216 case SADB_X_SATYPE_IPCOMP: 3217 error = xform_init(sav, XF_IPCOMP); 3218 break; 3219 case SADB_X_SATYPE_TCPSIGNATURE: 3220 error = xform_init(sav, XF_TCPSIGNATURE); 3221 break; 3222 } 3223 if (error) { 3224 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3225 __func__, mhp->msg->sadb_msg_satype)); 3226 goto fail; 3227 } 3228 3229 /* reset created */ 3230 sav->created = time_second; 3231 3232 /* make lifetime for CURRENT */ 3233 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3234 if (sav->lft_c == NULL) { 3235 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3236 error = ENOBUFS; 3237 goto fail; 3238 } 3239 3240 sav->lft_c->allocations = 0; 3241 sav->lft_c->bytes = 0; 3242 sav->lft_c->addtime = time_second; 3243 sav->lft_c->usetime = 0; 3244 3245 /* lifetimes for HARD and SOFT */ 3246 { 3247 const struct sadb_lifetime *lft0; 3248 3249 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3250 if (lft0 != NULL) { 3251 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3252 error = EINVAL; 3253 goto fail; 3254 } 3255 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3256 if (sav->lft_h == NULL) { 3257 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3258 error = ENOBUFS; 3259 goto fail; 3260 } 3261 /* to be initialize ? */ 3262 } 3263 3264 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3265 if (lft0 != NULL) { 3266 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3267 error = EINVAL; 3268 goto fail; 3269 } 3270 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3271 if (sav->lft_s == NULL) { 3272 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3273 error = ENOBUFS; 3274 goto fail; 3275 } 3276 /* to be initialize ? */ 3277 } 3278 } 3279 3280 return 0; 3281 3282 fail: 3283 /* initialization */ 3284 key_cleansav(sav); 3285 3286 return error; 3287 } 3288 3289 /* 3290 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3291 * OUT: 0: valid 3292 * other: errno 3293 */ 3294 static int 3295 key_mature(struct secasvar *sav) 3296 { 3297 int error; 3298 3299 /* check SPI value */ 3300 switch (sav->sah->saidx.proto) { 3301 case IPPROTO_ESP: 3302 case IPPROTO_AH: 3303 /* 3304 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3305 * 1-255 reserved by IANA for future use, 3306 * 0 for implementation specific, local use. 3307 */ 3308 if (ntohl(sav->spi) <= 255) { 3309 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3310 __func__, (u_int32_t)ntohl(sav->spi))); 3311 return EINVAL; 3312 } 3313 break; 3314 } 3315 3316 /* check satype */ 3317 switch (sav->sah->saidx.proto) { 3318 case IPPROTO_ESP: 3319 /* check flags */ 3320 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3321 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3322 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3323 "given to old-esp.\n", __func__)); 3324 return EINVAL; 3325 } 3326 error = xform_init(sav, XF_ESP); 3327 break; 3328 case IPPROTO_AH: 3329 /* check flags */ 3330 if (sav->flags & SADB_X_EXT_DERIV) { 3331 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3332 "given to AH SA.\n", __func__)); 3333 return EINVAL; 3334 } 3335 if (sav->alg_enc != SADB_EALG_NONE) { 3336 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3337 "mismated.\n", __func__)); 3338 return(EINVAL); 3339 } 3340 error = xform_init(sav, XF_AH); 3341 break; 3342 case IPPROTO_IPCOMP: 3343 if (sav->alg_auth != SADB_AALG_NONE) { 3344 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3345 "mismated.\n", __func__)); 3346 return(EINVAL); 3347 } 3348 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3349 && ntohl(sav->spi) >= 0x10000) { 3350 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3351 __func__)); 3352 return(EINVAL); 3353 } 3354 error = xform_init(sav, XF_IPCOMP); 3355 break; 3356 case IPPROTO_TCP: 3357 if (sav->alg_enc != SADB_EALG_NONE) { 3358 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3359 "mismated.\n", __func__)); 3360 return(EINVAL); 3361 } 3362 error = xform_init(sav, XF_TCPSIGNATURE); 3363 break; 3364 default: 3365 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3366 error = EPROTONOSUPPORT; 3367 break; 3368 } 3369 if (error == 0) { 3370 SAHTREE_LOCK(); 3371 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3372 SAHTREE_UNLOCK(); 3373 } 3374 return (error); 3375 } 3376 3377 /* 3378 * subroutine for SADB_GET and SADB_DUMP. 3379 */ 3380 static struct mbuf * 3381 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3382 u_int32_t seq, u_int32_t pid) 3383 { 3384 struct mbuf *result = NULL, *tres = NULL, *m; 3385 int i; 3386 int dumporder[] = { 3387 SADB_EXT_SA, SADB_X_EXT_SA2, 3388 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3389 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3390 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3391 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3392 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3393 #ifdef IPSEC_NAT_T 3394 SADB_X_EXT_NAT_T_TYPE, 3395 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3396 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3397 SADB_X_EXT_NAT_T_FRAG, 3398 #endif 3399 }; 3400 3401 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3402 if (m == NULL) 3403 goto fail; 3404 result = m; 3405 3406 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3407 m = NULL; 3408 switch (dumporder[i]) { 3409 case SADB_EXT_SA: 3410 m = key_setsadbsa(sav); 3411 if (!m) 3412 goto fail; 3413 break; 3414 3415 case SADB_X_EXT_SA2: 3416 m = key_setsadbxsa2(sav->sah->saidx.mode, 3417 sav->replay ? sav->replay->count : 0, 3418 sav->sah->saidx.reqid); 3419 if (!m) 3420 goto fail; 3421 break; 3422 3423 case SADB_EXT_ADDRESS_SRC: 3424 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3425 &sav->sah->saidx.src.sa, 3426 FULLMASK, IPSEC_ULPROTO_ANY); 3427 if (!m) 3428 goto fail; 3429 break; 3430 3431 case SADB_EXT_ADDRESS_DST: 3432 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3433 &sav->sah->saidx.dst.sa, 3434 FULLMASK, IPSEC_ULPROTO_ANY); 3435 if (!m) 3436 goto fail; 3437 break; 3438 3439 case SADB_EXT_KEY_AUTH: 3440 if (!sav->key_auth) 3441 continue; 3442 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3443 if (!m) 3444 goto fail; 3445 break; 3446 3447 case SADB_EXT_KEY_ENCRYPT: 3448 if (!sav->key_enc) 3449 continue; 3450 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3451 if (!m) 3452 goto fail; 3453 break; 3454 3455 case SADB_EXT_LIFETIME_CURRENT: 3456 if (!sav->lft_c) 3457 continue; 3458 m = key_setlifetime(sav->lft_c, 3459 SADB_EXT_LIFETIME_CURRENT); 3460 if (!m) 3461 goto fail; 3462 break; 3463 3464 case SADB_EXT_LIFETIME_HARD: 3465 if (!sav->lft_h) 3466 continue; 3467 m = key_setlifetime(sav->lft_h, 3468 SADB_EXT_LIFETIME_HARD); 3469 if (!m) 3470 goto fail; 3471 break; 3472 3473 case SADB_EXT_LIFETIME_SOFT: 3474 if (!sav->lft_s) 3475 continue; 3476 m = key_setlifetime(sav->lft_s, 3477 SADB_EXT_LIFETIME_SOFT); 3478 3479 if (!m) 3480 goto fail; 3481 break; 3482 3483 #ifdef IPSEC_NAT_T 3484 case SADB_X_EXT_NAT_T_TYPE: 3485 m = key_setsadbxtype(sav->natt_type); 3486 if (!m) 3487 goto fail; 3488 break; 3489 3490 case SADB_X_EXT_NAT_T_DPORT: 3491 m = key_setsadbxport( 3492 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3493 SADB_X_EXT_NAT_T_DPORT); 3494 if (!m) 3495 goto fail; 3496 break; 3497 3498 case SADB_X_EXT_NAT_T_SPORT: 3499 m = key_setsadbxport( 3500 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3501 SADB_X_EXT_NAT_T_SPORT); 3502 if (!m) 3503 goto fail; 3504 break; 3505 3506 case SADB_X_EXT_NAT_T_OAI: 3507 case SADB_X_EXT_NAT_T_OAR: 3508 case SADB_X_EXT_NAT_T_FRAG: 3509 /* We do not (yet) support those. */ 3510 continue; 3511 #endif 3512 3513 case SADB_EXT_ADDRESS_PROXY: 3514 case SADB_EXT_IDENTITY_SRC: 3515 case SADB_EXT_IDENTITY_DST: 3516 /* XXX: should we brought from SPD ? */ 3517 case SADB_EXT_SENSITIVITY: 3518 default: 3519 continue; 3520 } 3521 3522 if (!m) 3523 goto fail; 3524 if (tres) 3525 m_cat(m, tres); 3526 tres = m; 3527 3528 } 3529 3530 m_cat(result, tres); 3531 if (result->m_len < sizeof(struct sadb_msg)) { 3532 result = m_pullup(result, sizeof(struct sadb_msg)); 3533 if (result == NULL) 3534 goto fail; 3535 } 3536 3537 result->m_pkthdr.len = 0; 3538 for (m = result; m; m = m->m_next) 3539 result->m_pkthdr.len += m->m_len; 3540 3541 mtod(result, struct sadb_msg *)->sadb_msg_len = 3542 PFKEY_UNIT64(result->m_pkthdr.len); 3543 3544 return result; 3545 3546 fail: 3547 m_freem(result); 3548 m_freem(tres); 3549 return NULL; 3550 } 3551 3552 /* 3553 * set data into sadb_msg. 3554 */ 3555 static struct mbuf * 3556 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3557 pid_t pid, u_int16_t reserved) 3558 { 3559 struct mbuf *m; 3560 struct sadb_msg *p; 3561 int len; 3562 3563 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3564 if (len > MCLBYTES) 3565 return NULL; 3566 MGETHDR(m, M_DONTWAIT, MT_DATA); 3567 if (m && len > MHLEN) { 3568 MCLGET(m, M_DONTWAIT); 3569 if ((m->m_flags & M_EXT) == 0) { 3570 m_freem(m); 3571 m = NULL; 3572 } 3573 } 3574 if (!m) 3575 return NULL; 3576 m->m_pkthdr.len = m->m_len = len; 3577 m->m_next = NULL; 3578 3579 p = mtod(m, struct sadb_msg *); 3580 3581 bzero(p, len); 3582 p->sadb_msg_version = PF_KEY_V2; 3583 p->sadb_msg_type = type; 3584 p->sadb_msg_errno = 0; 3585 p->sadb_msg_satype = satype; 3586 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3587 p->sadb_msg_reserved = reserved; 3588 p->sadb_msg_seq = seq; 3589 p->sadb_msg_pid = (u_int32_t)pid; 3590 3591 return m; 3592 } 3593 3594 /* 3595 * copy secasvar data into sadb_address. 3596 */ 3597 static struct mbuf * 3598 key_setsadbsa(sav) 3599 struct secasvar *sav; 3600 { 3601 struct mbuf *m; 3602 struct sadb_sa *p; 3603 int len; 3604 3605 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3606 m = key_alloc_mbuf(len); 3607 if (!m || m->m_next) { /*XXX*/ 3608 if (m) 3609 m_freem(m); 3610 return NULL; 3611 } 3612 3613 p = mtod(m, struct sadb_sa *); 3614 3615 bzero(p, len); 3616 p->sadb_sa_len = PFKEY_UNIT64(len); 3617 p->sadb_sa_exttype = SADB_EXT_SA; 3618 p->sadb_sa_spi = sav->spi; 3619 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3620 p->sadb_sa_state = sav->state; 3621 p->sadb_sa_auth = sav->alg_auth; 3622 p->sadb_sa_encrypt = sav->alg_enc; 3623 p->sadb_sa_flags = sav->flags; 3624 3625 return m; 3626 } 3627 3628 /* 3629 * set data into sadb_address. 3630 */ 3631 static struct mbuf * 3632 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3633 { 3634 struct mbuf *m; 3635 struct sadb_address *p; 3636 size_t len; 3637 3638 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3639 PFKEY_ALIGN8(saddr->sa_len); 3640 m = key_alloc_mbuf(len); 3641 if (!m || m->m_next) { /*XXX*/ 3642 if (m) 3643 m_freem(m); 3644 return NULL; 3645 } 3646 3647 p = mtod(m, struct sadb_address *); 3648 3649 bzero(p, len); 3650 p->sadb_address_len = PFKEY_UNIT64(len); 3651 p->sadb_address_exttype = exttype; 3652 p->sadb_address_proto = ul_proto; 3653 if (prefixlen == FULLMASK) { 3654 switch (saddr->sa_family) { 3655 case AF_INET: 3656 prefixlen = sizeof(struct in_addr) << 3; 3657 break; 3658 case AF_INET6: 3659 prefixlen = sizeof(struct in6_addr) << 3; 3660 break; 3661 default: 3662 ; /*XXX*/ 3663 } 3664 } 3665 p->sadb_address_prefixlen = prefixlen; 3666 p->sadb_address_reserved = 0; 3667 3668 bcopy(saddr, 3669 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3670 saddr->sa_len); 3671 3672 return m; 3673 } 3674 3675 /* 3676 * set data into sadb_x_sa2. 3677 */ 3678 static struct mbuf * 3679 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3680 { 3681 struct mbuf *m; 3682 struct sadb_x_sa2 *p; 3683 size_t len; 3684 3685 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3686 m = key_alloc_mbuf(len); 3687 if (!m || m->m_next) { /*XXX*/ 3688 if (m) 3689 m_freem(m); 3690 return NULL; 3691 } 3692 3693 p = mtod(m, struct sadb_x_sa2 *); 3694 3695 bzero(p, len); 3696 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3697 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3698 p->sadb_x_sa2_mode = mode; 3699 p->sadb_x_sa2_reserved1 = 0; 3700 p->sadb_x_sa2_reserved2 = 0; 3701 p->sadb_x_sa2_sequence = seq; 3702 p->sadb_x_sa2_reqid = reqid; 3703 3704 return m; 3705 } 3706 3707 #ifdef IPSEC_NAT_T 3708 /* 3709 * Set a type in sadb_x_nat_t_type. 3710 */ 3711 static struct mbuf * 3712 key_setsadbxtype(u_int16_t type) 3713 { 3714 struct mbuf *m; 3715 size_t len; 3716 struct sadb_x_nat_t_type *p; 3717 3718 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3719 3720 m = key_alloc_mbuf(len); 3721 if (!m || m->m_next) { /*XXX*/ 3722 if (m) 3723 m_freem(m); 3724 return (NULL); 3725 } 3726 3727 p = mtod(m, struct sadb_x_nat_t_type *); 3728 3729 bzero(p, len); 3730 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3731 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3732 p->sadb_x_nat_t_type_type = type; 3733 3734 return (m); 3735 } 3736 /* 3737 * Set a port in sadb_x_nat_t_port. 3738 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3739 */ 3740 static struct mbuf * 3741 key_setsadbxport(u_int16_t port, u_int16_t type) 3742 { 3743 struct mbuf *m; 3744 size_t len; 3745 struct sadb_x_nat_t_port *p; 3746 3747 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3748 3749 m = key_alloc_mbuf(len); 3750 if (!m || m->m_next) { /*XXX*/ 3751 if (m) 3752 m_freem(m); 3753 return (NULL); 3754 } 3755 3756 p = mtod(m, struct sadb_x_nat_t_port *); 3757 3758 bzero(p, len); 3759 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3760 p->sadb_x_nat_t_port_exttype = type; 3761 p->sadb_x_nat_t_port_port = port; 3762 3763 return (m); 3764 } 3765 3766 /* 3767 * Get port from sockaddr. Port is in network byte order. 3768 */ 3769 u_int16_t 3770 key_portfromsaddr(struct sockaddr *sa) 3771 { 3772 3773 switch (sa->sa_family) { 3774 #ifdef INET 3775 case AF_INET: 3776 return ((struct sockaddr_in *)sa)->sin_port; 3777 #endif 3778 #ifdef INET6 3779 case AF_INET6: 3780 return ((struct sockaddr_in6 *)sa)->sin6_port; 3781 #endif 3782 } 3783 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3784 printf("DP %s unexpected address family %d\n", 3785 __func__, sa->sa_family)); 3786 return (0); 3787 } 3788 #endif /* IPSEC_NAT_T */ 3789 3790 /* 3791 * Set port in struct sockaddr. Port is in network byte order. 3792 */ 3793 static void 3794 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3795 { 3796 3797 switch (sa->sa_family) { 3798 #ifdef INET 3799 case AF_INET: 3800 ((struct sockaddr_in *)sa)->sin_port = port; 3801 break; 3802 #endif 3803 #ifdef INET6 3804 case AF_INET6: 3805 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3806 break; 3807 #endif 3808 default: 3809 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3810 __func__, sa->sa_family)); 3811 break; 3812 } 3813 } 3814 3815 /* 3816 * set data into sadb_x_policy 3817 */ 3818 static struct mbuf * 3819 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3820 { 3821 struct mbuf *m; 3822 struct sadb_x_policy *p; 3823 size_t len; 3824 3825 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3826 m = key_alloc_mbuf(len); 3827 if (!m || m->m_next) { /*XXX*/ 3828 if (m) 3829 m_freem(m); 3830 return NULL; 3831 } 3832 3833 p = mtod(m, struct sadb_x_policy *); 3834 3835 bzero(p, len); 3836 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3837 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3838 p->sadb_x_policy_type = type; 3839 p->sadb_x_policy_dir = dir; 3840 p->sadb_x_policy_id = id; 3841 3842 return m; 3843 } 3844 3845 /* %%% utilities */ 3846 /* Take a key message (sadb_key) from the socket and turn it into one 3847 * of the kernel's key structures (seckey). 3848 * 3849 * IN: pointer to the src 3850 * OUT: NULL no more memory 3851 */ 3852 struct seckey * 3853 key_dup_keymsg(const struct sadb_key *src, u_int len, 3854 struct malloc_type *type) 3855 { 3856 struct seckey *dst; 3857 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3858 if (dst != NULL) { 3859 dst->bits = src->sadb_key_bits; 3860 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3861 if (dst->key_data != NULL) { 3862 bcopy((const char *)src + sizeof(struct sadb_key), 3863 dst->key_data, len); 3864 } else { 3865 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3866 __func__)); 3867 free(dst, type); 3868 dst = NULL; 3869 } 3870 } else { 3871 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3872 __func__)); 3873 3874 } 3875 return dst; 3876 } 3877 3878 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3879 * turn it into one of the kernel's lifetime structures (seclifetime). 3880 * 3881 * IN: pointer to the destination, source and malloc type 3882 * OUT: NULL, no more memory 3883 */ 3884 3885 static struct seclifetime * 3886 key_dup_lifemsg(const struct sadb_lifetime *src, 3887 struct malloc_type *type) 3888 { 3889 struct seclifetime *dst = NULL; 3890 3891 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3892 type, M_NOWAIT); 3893 if (dst == NULL) { 3894 /* XXX counter */ 3895 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3896 } else { 3897 dst->allocations = src->sadb_lifetime_allocations; 3898 dst->bytes = src->sadb_lifetime_bytes; 3899 dst->addtime = src->sadb_lifetime_addtime; 3900 dst->usetime = src->sadb_lifetime_usetime; 3901 } 3902 return dst; 3903 } 3904 3905 /* compare my own address 3906 * OUT: 1: true, i.e. my address. 3907 * 0: false 3908 */ 3909 int 3910 key_ismyaddr(sa) 3911 struct sockaddr *sa; 3912 { 3913 #ifdef INET 3914 struct sockaddr_in *sin; 3915 struct in_ifaddr *ia; 3916 #endif 3917 3918 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3919 3920 switch (sa->sa_family) { 3921 #ifdef INET 3922 case AF_INET: 3923 sin = (struct sockaddr_in *)sa; 3924 IN_IFADDR_RLOCK(); 3925 for (ia = V_in_ifaddrhead.tqh_first; ia; 3926 ia = ia->ia_link.tqe_next) 3927 { 3928 if (sin->sin_family == ia->ia_addr.sin_family && 3929 sin->sin_len == ia->ia_addr.sin_len && 3930 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3931 { 3932 IN_IFADDR_RUNLOCK(); 3933 return 1; 3934 } 3935 } 3936 IN_IFADDR_RUNLOCK(); 3937 break; 3938 #endif 3939 #ifdef INET6 3940 case AF_INET6: 3941 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3942 #endif 3943 } 3944 3945 return 0; 3946 } 3947 3948 #ifdef INET6 3949 /* 3950 * compare my own address for IPv6. 3951 * 1: ours 3952 * 0: other 3953 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3954 */ 3955 #include <netinet6/in6_var.h> 3956 3957 static int 3958 key_ismyaddr6(sin6) 3959 struct sockaddr_in6 *sin6; 3960 { 3961 struct in6_ifaddr *ia; 3962 #if 0 3963 struct in6_multi *in6m; 3964 #endif 3965 3966 IN6_IFADDR_RLOCK(); 3967 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3968 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3969 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3970 IN6_IFADDR_RUNLOCK(); 3971 return 1; 3972 } 3973 3974 #if 0 3975 /* 3976 * XXX Multicast 3977 * XXX why do we care about multlicast here while we don't care 3978 * about IPv4 multicast?? 3979 * XXX scope 3980 */ 3981 in6m = NULL; 3982 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3983 if (in6m) { 3984 IN6_IFADDR_RUNLOCK(); 3985 return 1; 3986 } 3987 #endif 3988 } 3989 IN6_IFADDR_RUNLOCK(); 3990 3991 /* loopback, just for safety */ 3992 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3993 return 1; 3994 3995 return 0; 3996 } 3997 #endif /*INET6*/ 3998 3999 /* 4000 * compare two secasindex structure. 4001 * flag can specify to compare 2 saidxes. 4002 * compare two secasindex structure without both mode and reqid. 4003 * don't compare port. 4004 * IN: 4005 * saidx0: source, it can be in SAD. 4006 * saidx1: object. 4007 * OUT: 4008 * 1 : equal 4009 * 0 : not equal 4010 */ 4011 static int 4012 key_cmpsaidx( 4013 const struct secasindex *saidx0, 4014 const struct secasindex *saidx1, 4015 int flag) 4016 { 4017 int chkport = 0; 4018 4019 /* sanity */ 4020 if (saidx0 == NULL && saidx1 == NULL) 4021 return 1; 4022 4023 if (saidx0 == NULL || saidx1 == NULL) 4024 return 0; 4025 4026 if (saidx0->proto != saidx1->proto) 4027 return 0; 4028 4029 if (flag == CMP_EXACTLY) { 4030 if (saidx0->mode != saidx1->mode) 4031 return 0; 4032 if (saidx0->reqid != saidx1->reqid) 4033 return 0; 4034 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4035 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4036 return 0; 4037 } else { 4038 4039 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4040 if (flag == CMP_MODE_REQID 4041 ||flag == CMP_REQID) { 4042 /* 4043 * If reqid of SPD is non-zero, unique SA is required. 4044 * The result must be of same reqid in this case. 4045 */ 4046 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4047 return 0; 4048 } 4049 4050 if (flag == CMP_MODE_REQID) { 4051 if (saidx0->mode != IPSEC_MODE_ANY 4052 && saidx0->mode != saidx1->mode) 4053 return 0; 4054 } 4055 4056 #ifdef IPSEC_NAT_T 4057 /* 4058 * If NAT-T is enabled, check ports for tunnel mode. 4059 * Do not check ports if they are set to zero in the SPD. 4060 * Also do not do it for transport mode, as there is no 4061 * port information available in the SP. 4062 */ 4063 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4064 saidx1->src.sa.sa_family == AF_INET && 4065 saidx1->dst.sa.sa_family == AF_INET && 4066 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4067 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4068 chkport = 1; 4069 #endif /* IPSEC_NAT_T */ 4070 4071 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4072 return 0; 4073 } 4074 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4075 return 0; 4076 } 4077 } 4078 4079 return 1; 4080 } 4081 4082 /* 4083 * compare two secindex structure exactly. 4084 * IN: 4085 * spidx0: source, it is often in SPD. 4086 * spidx1: object, it is often from PFKEY message. 4087 * OUT: 4088 * 1 : equal 4089 * 0 : not equal 4090 */ 4091 static int 4092 key_cmpspidx_exactly( 4093 struct secpolicyindex *spidx0, 4094 struct secpolicyindex *spidx1) 4095 { 4096 /* sanity */ 4097 if (spidx0 == NULL && spidx1 == NULL) 4098 return 1; 4099 4100 if (spidx0 == NULL || spidx1 == NULL) 4101 return 0; 4102 4103 if (spidx0->prefs != spidx1->prefs 4104 || spidx0->prefd != spidx1->prefd 4105 || spidx0->ul_proto != spidx1->ul_proto) 4106 return 0; 4107 4108 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4109 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4110 } 4111 4112 /* 4113 * compare two secindex structure with mask. 4114 * IN: 4115 * spidx0: source, it is often in SPD. 4116 * spidx1: object, it is often from IP header. 4117 * OUT: 4118 * 1 : equal 4119 * 0 : not equal 4120 */ 4121 static int 4122 key_cmpspidx_withmask( 4123 struct secpolicyindex *spidx0, 4124 struct secpolicyindex *spidx1) 4125 { 4126 /* sanity */ 4127 if (spidx0 == NULL && spidx1 == NULL) 4128 return 1; 4129 4130 if (spidx0 == NULL || spidx1 == NULL) 4131 return 0; 4132 4133 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4134 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4135 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4136 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4137 return 0; 4138 4139 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4140 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4141 && spidx0->ul_proto != spidx1->ul_proto) 4142 return 0; 4143 4144 switch (spidx0->src.sa.sa_family) { 4145 case AF_INET: 4146 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4147 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4148 return 0; 4149 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4150 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4151 return 0; 4152 break; 4153 case AF_INET6: 4154 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4155 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4156 return 0; 4157 /* 4158 * scope_id check. if sin6_scope_id is 0, we regard it 4159 * as a wildcard scope, which matches any scope zone ID. 4160 */ 4161 if (spidx0->src.sin6.sin6_scope_id && 4162 spidx1->src.sin6.sin6_scope_id && 4163 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4164 return 0; 4165 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4166 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4167 return 0; 4168 break; 4169 default: 4170 /* XXX */ 4171 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4172 return 0; 4173 break; 4174 } 4175 4176 switch (spidx0->dst.sa.sa_family) { 4177 case AF_INET: 4178 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4179 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4180 return 0; 4181 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4182 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4183 return 0; 4184 break; 4185 case AF_INET6: 4186 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4187 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4188 return 0; 4189 /* 4190 * scope_id check. if sin6_scope_id is 0, we regard it 4191 * as a wildcard scope, which matches any scope zone ID. 4192 */ 4193 if (spidx0->dst.sin6.sin6_scope_id && 4194 spidx1->dst.sin6.sin6_scope_id && 4195 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4196 return 0; 4197 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4198 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4199 return 0; 4200 break; 4201 default: 4202 /* XXX */ 4203 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4204 return 0; 4205 break; 4206 } 4207 4208 /* XXX Do we check other field ? e.g. flowinfo */ 4209 4210 return 1; 4211 } 4212 4213 /* returns 0 on match */ 4214 static int 4215 key_sockaddrcmp( 4216 const struct sockaddr *sa1, 4217 const struct sockaddr *sa2, 4218 int port) 4219 { 4220 #ifdef satosin 4221 #undef satosin 4222 #endif 4223 #define satosin(s) ((const struct sockaddr_in *)s) 4224 #ifdef satosin6 4225 #undef satosin6 4226 #endif 4227 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4228 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4229 return 1; 4230 4231 switch (sa1->sa_family) { 4232 case AF_INET: 4233 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4234 return 1; 4235 if (satosin(sa1)->sin_addr.s_addr != 4236 satosin(sa2)->sin_addr.s_addr) { 4237 return 1; 4238 } 4239 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4240 return 1; 4241 break; 4242 case AF_INET6: 4243 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4244 return 1; /*EINVAL*/ 4245 if (satosin6(sa1)->sin6_scope_id != 4246 satosin6(sa2)->sin6_scope_id) { 4247 return 1; 4248 } 4249 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4250 &satosin6(sa2)->sin6_addr)) { 4251 return 1; 4252 } 4253 if (port && 4254 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4255 return 1; 4256 } 4257 break; 4258 default: 4259 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4260 return 1; 4261 break; 4262 } 4263 4264 return 0; 4265 #undef satosin 4266 #undef satosin6 4267 } 4268 4269 /* 4270 * compare two buffers with mask. 4271 * IN: 4272 * addr1: source 4273 * addr2: object 4274 * bits: Number of bits to compare 4275 * OUT: 4276 * 1 : equal 4277 * 0 : not equal 4278 */ 4279 static int 4280 key_bbcmp(const void *a1, const void *a2, u_int bits) 4281 { 4282 const unsigned char *p1 = a1; 4283 const unsigned char *p2 = a2; 4284 4285 /* XXX: This could be considerably faster if we compare a word 4286 * at a time, but it is complicated on LSB Endian machines */ 4287 4288 /* Handle null pointers */ 4289 if (p1 == NULL || p2 == NULL) 4290 return (p1 == p2); 4291 4292 while (bits >= 8) { 4293 if (*p1++ != *p2++) 4294 return 0; 4295 bits -= 8; 4296 } 4297 4298 if (bits > 0) { 4299 u_int8_t mask = ~((1<<(8-bits))-1); 4300 if ((*p1 & mask) != (*p2 & mask)) 4301 return 0; 4302 } 4303 return 1; /* Match! */ 4304 } 4305 4306 static void 4307 key_flush_spd(time_t now) 4308 { 4309 static u_int16_t sptree_scangen = 0; 4310 u_int16_t gen = sptree_scangen++; 4311 struct secpolicy *sp; 4312 u_int dir; 4313 4314 /* SPD */ 4315 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4316 restart: 4317 SPTREE_LOCK(); 4318 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4319 if (sp->scangen == gen) /* previously handled */ 4320 continue; 4321 sp->scangen = gen; 4322 if (sp->state == IPSEC_SPSTATE_DEAD && 4323 sp->refcnt == 1) { 4324 /* 4325 * Ensure that we only decrease refcnt once, 4326 * when we're the last consumer. 4327 * Directly call SP_DELREF/key_delsp instead 4328 * of KEY_FREESP to avoid unlocking/relocking 4329 * SPTREE_LOCK before key_delsp: may refcnt 4330 * be increased again during that time ? 4331 * NB: also clean entries created by 4332 * key_spdflush 4333 */ 4334 SP_DELREF(sp); 4335 key_delsp(sp); 4336 SPTREE_UNLOCK(); 4337 goto restart; 4338 } 4339 if (sp->lifetime == 0 && sp->validtime == 0) 4340 continue; 4341 if ((sp->lifetime && now - sp->created > sp->lifetime) 4342 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4343 sp->state = IPSEC_SPSTATE_DEAD; 4344 SPTREE_UNLOCK(); 4345 key_spdexpire(sp); 4346 goto restart; 4347 } 4348 } 4349 SPTREE_UNLOCK(); 4350 } 4351 } 4352 4353 static void 4354 key_flush_sad(time_t now) 4355 { 4356 struct secashead *sah, *nextsah; 4357 struct secasvar *sav, *nextsav; 4358 4359 /* SAD */ 4360 SAHTREE_LOCK(); 4361 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4362 /* if sah has been dead, then delete it and process next sah. */ 4363 if (sah->state == SADB_SASTATE_DEAD) { 4364 key_delsah(sah); 4365 continue; 4366 } 4367 4368 /* if LARVAL entry doesn't become MATURE, delete it. */ 4369 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4370 /* Need to also check refcnt for a larval SA ??? */ 4371 if (now - sav->created > V_key_larval_lifetime) 4372 KEY_FREESAV(&sav); 4373 } 4374 4375 /* 4376 * check MATURE entry to start to send expire message 4377 * whether or not. 4378 */ 4379 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4380 /* we don't need to check. */ 4381 if (sav->lft_s == NULL) 4382 continue; 4383 4384 /* sanity check */ 4385 if (sav->lft_c == NULL) { 4386 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4387 "time, why?\n", __func__)); 4388 continue; 4389 } 4390 4391 /* check SOFT lifetime */ 4392 if (sav->lft_s->addtime != 0 && 4393 now - sav->created > sav->lft_s->addtime) { 4394 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4395 /* 4396 * Actually, only send expire message if 4397 * SA has been used, as it was done before, 4398 * but should we always send such message, 4399 * and let IKE daemon decide if it should be 4400 * renegotiated or not ? 4401 * XXX expire message will actually NOT be 4402 * sent if SA is only used after soft 4403 * lifetime has been reached, see below 4404 * (DYING state) 4405 */ 4406 if (sav->lft_c->usetime != 0) 4407 key_expire(sav); 4408 } 4409 /* check SOFT lifetime by bytes */ 4410 /* 4411 * XXX I don't know the way to delete this SA 4412 * when new SA is installed. Caution when it's 4413 * installed too big lifetime by time. 4414 */ 4415 else if (sav->lft_s->bytes != 0 && 4416 sav->lft_s->bytes < sav->lft_c->bytes) { 4417 4418 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4419 /* 4420 * XXX If we keep to send expire 4421 * message in the status of 4422 * DYING. Do remove below code. 4423 */ 4424 key_expire(sav); 4425 } 4426 } 4427 4428 /* check DYING entry to change status to DEAD. */ 4429 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4430 /* we don't need to check. */ 4431 if (sav->lft_h == NULL) 4432 continue; 4433 4434 /* sanity check */ 4435 if (sav->lft_c == NULL) { 4436 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4437 "time, why?\n", __func__)); 4438 continue; 4439 } 4440 4441 if (sav->lft_h->addtime != 0 && 4442 now - sav->created > sav->lft_h->addtime) { 4443 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4444 KEY_FREESAV(&sav); 4445 } 4446 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4447 else if (sav->lft_s != NULL 4448 && sav->lft_s->addtime != 0 4449 && now - sav->created > sav->lft_s->addtime) { 4450 /* 4451 * XXX: should be checked to be 4452 * installed the valid SA. 4453 */ 4454 4455 /* 4456 * If there is no SA then sending 4457 * expire message. 4458 */ 4459 key_expire(sav); 4460 } 4461 #endif 4462 /* check HARD lifetime by bytes */ 4463 else if (sav->lft_h->bytes != 0 && 4464 sav->lft_h->bytes < sav->lft_c->bytes) { 4465 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4466 KEY_FREESAV(&sav); 4467 } 4468 } 4469 4470 /* delete entry in DEAD */ 4471 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4472 /* sanity check */ 4473 if (sav->state != SADB_SASTATE_DEAD) { 4474 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4475 "(queue: %d SA: %d): kill it anyway\n", 4476 __func__, 4477 SADB_SASTATE_DEAD, sav->state)); 4478 } 4479 /* 4480 * do not call key_freesav() here. 4481 * sav should already be freed, and sav->refcnt 4482 * shows other references to sav 4483 * (such as from SPD). 4484 */ 4485 } 4486 } 4487 SAHTREE_UNLOCK(); 4488 } 4489 4490 static void 4491 key_flush_acq(time_t now) 4492 { 4493 struct secacq *acq, *nextacq; 4494 4495 /* ACQ tree */ 4496 ACQ_LOCK(); 4497 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4498 nextacq = LIST_NEXT(acq, chain); 4499 if (now - acq->created > V_key_blockacq_lifetime 4500 && __LIST_CHAINED(acq)) { 4501 LIST_REMOVE(acq, chain); 4502 free(acq, M_IPSEC_SAQ); 4503 } 4504 } 4505 ACQ_UNLOCK(); 4506 } 4507 4508 static void 4509 key_flush_spacq(time_t now) 4510 { 4511 struct secspacq *acq, *nextacq; 4512 4513 /* SP ACQ tree */ 4514 SPACQ_LOCK(); 4515 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4516 nextacq = LIST_NEXT(acq, chain); 4517 if (now - acq->created > V_key_blockacq_lifetime 4518 && __LIST_CHAINED(acq)) { 4519 LIST_REMOVE(acq, chain); 4520 free(acq, M_IPSEC_SAQ); 4521 } 4522 } 4523 SPACQ_UNLOCK(); 4524 } 4525 4526 /* 4527 * time handler. 4528 * scanning SPD and SAD to check status for each entries, 4529 * and do to remove or to expire. 4530 * XXX: year 2038 problem may remain. 4531 */ 4532 void 4533 key_timehandler(void) 4534 { 4535 VNET_ITERATOR_DECL(vnet_iter); 4536 time_t now = time_second; 4537 4538 VNET_LIST_RLOCK_NOSLEEP(); 4539 VNET_FOREACH(vnet_iter) { 4540 CURVNET_SET(vnet_iter); 4541 key_flush_spd(now); 4542 key_flush_sad(now); 4543 key_flush_acq(now); 4544 key_flush_spacq(now); 4545 CURVNET_RESTORE(); 4546 } 4547 VNET_LIST_RUNLOCK_NOSLEEP(); 4548 4549 #ifndef IPSEC_DEBUG2 4550 /* do exchange to tick time !! */ 4551 (void)timeout((void *)key_timehandler, (void *)0, hz); 4552 #endif /* IPSEC_DEBUG2 */ 4553 } 4554 4555 u_long 4556 key_random() 4557 { 4558 u_long value; 4559 4560 key_randomfill(&value, sizeof(value)); 4561 return value; 4562 } 4563 4564 void 4565 key_randomfill(p, l) 4566 void *p; 4567 size_t l; 4568 { 4569 size_t n; 4570 u_long v; 4571 static int warn = 1; 4572 4573 n = 0; 4574 n = (size_t)read_random(p, (u_int)l); 4575 /* last resort */ 4576 while (n < l) { 4577 v = random(); 4578 bcopy(&v, (u_int8_t *)p + n, 4579 l - n < sizeof(v) ? l - n : sizeof(v)); 4580 n += sizeof(v); 4581 4582 if (warn) { 4583 printf("WARNING: pseudo-random number generator " 4584 "used for IPsec processing\n"); 4585 warn = 0; 4586 } 4587 } 4588 } 4589 4590 /* 4591 * map SADB_SATYPE_* to IPPROTO_*. 4592 * if satype == SADB_SATYPE then satype is mapped to ~0. 4593 * OUT: 4594 * 0: invalid satype. 4595 */ 4596 static u_int16_t 4597 key_satype2proto(u_int8_t satype) 4598 { 4599 switch (satype) { 4600 case SADB_SATYPE_UNSPEC: 4601 return IPSEC_PROTO_ANY; 4602 case SADB_SATYPE_AH: 4603 return IPPROTO_AH; 4604 case SADB_SATYPE_ESP: 4605 return IPPROTO_ESP; 4606 case SADB_X_SATYPE_IPCOMP: 4607 return IPPROTO_IPCOMP; 4608 case SADB_X_SATYPE_TCPSIGNATURE: 4609 return IPPROTO_TCP; 4610 default: 4611 return 0; 4612 } 4613 /* NOTREACHED */ 4614 } 4615 4616 /* 4617 * map IPPROTO_* to SADB_SATYPE_* 4618 * OUT: 4619 * 0: invalid protocol type. 4620 */ 4621 static u_int8_t 4622 key_proto2satype(u_int16_t proto) 4623 { 4624 switch (proto) { 4625 case IPPROTO_AH: 4626 return SADB_SATYPE_AH; 4627 case IPPROTO_ESP: 4628 return SADB_SATYPE_ESP; 4629 case IPPROTO_IPCOMP: 4630 return SADB_X_SATYPE_IPCOMP; 4631 case IPPROTO_TCP: 4632 return SADB_X_SATYPE_TCPSIGNATURE; 4633 default: 4634 return 0; 4635 } 4636 /* NOTREACHED */ 4637 } 4638 4639 /* %%% PF_KEY */ 4640 /* 4641 * SADB_GETSPI processing is to receive 4642 * <base, (SA2), src address, dst address, (SPI range)> 4643 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4644 * tree with the status of LARVAL, and send 4645 * <base, SA(*), address(SD)> 4646 * to the IKMPd. 4647 * 4648 * IN: mhp: pointer to the pointer to each header. 4649 * OUT: NULL if fail. 4650 * other if success, return pointer to the message to send. 4651 */ 4652 static int 4653 key_getspi(so, m, mhp) 4654 struct socket *so; 4655 struct mbuf *m; 4656 const struct sadb_msghdr *mhp; 4657 { 4658 struct sadb_address *src0, *dst0; 4659 struct secasindex saidx; 4660 struct secashead *newsah; 4661 struct secasvar *newsav; 4662 u_int8_t proto; 4663 u_int32_t spi; 4664 u_int8_t mode; 4665 u_int32_t reqid; 4666 int error; 4667 4668 IPSEC_ASSERT(so != NULL, ("null socket")); 4669 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4670 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4671 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4672 4673 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4674 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4675 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4676 __func__)); 4677 return key_senderror(so, m, EINVAL); 4678 } 4679 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4680 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4681 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4682 __func__)); 4683 return key_senderror(so, m, EINVAL); 4684 } 4685 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4686 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4687 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4688 } else { 4689 mode = IPSEC_MODE_ANY; 4690 reqid = 0; 4691 } 4692 4693 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4694 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4695 4696 /* map satype to proto */ 4697 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4698 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4699 __func__)); 4700 return key_senderror(so, m, EINVAL); 4701 } 4702 4703 /* 4704 * Make sure the port numbers are zero. 4705 * In case of NAT-T we will update them later if needed. 4706 */ 4707 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4708 case AF_INET: 4709 if (((struct sockaddr *)(src0 + 1))->sa_len != 4710 sizeof(struct sockaddr_in)) 4711 return key_senderror(so, m, EINVAL); 4712 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4713 break; 4714 case AF_INET6: 4715 if (((struct sockaddr *)(src0 + 1))->sa_len != 4716 sizeof(struct sockaddr_in6)) 4717 return key_senderror(so, m, EINVAL); 4718 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4719 break; 4720 default: 4721 ; /*???*/ 4722 } 4723 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4724 case AF_INET: 4725 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4726 sizeof(struct sockaddr_in)) 4727 return key_senderror(so, m, EINVAL); 4728 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4729 break; 4730 case AF_INET6: 4731 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4732 sizeof(struct sockaddr_in6)) 4733 return key_senderror(so, m, EINVAL); 4734 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4735 break; 4736 default: 4737 ; /*???*/ 4738 } 4739 4740 /* XXX boundary check against sa_len */ 4741 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4742 4743 #ifdef IPSEC_NAT_T 4744 /* 4745 * Handle NAT-T info if present. 4746 * We made sure the port numbers are zero above, so we do 4747 * not have to worry in case we do not update them. 4748 */ 4749 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4750 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4751 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4752 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4753 4754 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4755 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4756 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4757 struct sadb_x_nat_t_type *type; 4758 struct sadb_x_nat_t_port *sport, *dport; 4759 4760 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4761 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4762 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4763 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4764 "passed.\n", __func__)); 4765 return key_senderror(so, m, EINVAL); 4766 } 4767 4768 sport = (struct sadb_x_nat_t_port *) 4769 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4770 dport = (struct sadb_x_nat_t_port *) 4771 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4772 4773 if (sport) 4774 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4775 if (dport) 4776 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4777 } 4778 #endif 4779 4780 /* SPI allocation */ 4781 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4782 &saidx); 4783 if (spi == 0) 4784 return key_senderror(so, m, EINVAL); 4785 4786 /* get a SA index */ 4787 if ((newsah = key_getsah(&saidx)) == NULL) { 4788 /* create a new SA index */ 4789 if ((newsah = key_newsah(&saidx)) == NULL) { 4790 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4791 return key_senderror(so, m, ENOBUFS); 4792 } 4793 } 4794 4795 /* get a new SA */ 4796 /* XXX rewrite */ 4797 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4798 if (newsav == NULL) { 4799 /* XXX don't free new SA index allocated in above. */ 4800 return key_senderror(so, m, error); 4801 } 4802 4803 /* set spi */ 4804 newsav->spi = htonl(spi); 4805 4806 /* delete the entry in acqtree */ 4807 if (mhp->msg->sadb_msg_seq != 0) { 4808 struct secacq *acq; 4809 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4810 /* reset counter in order to deletion by timehandler. */ 4811 acq->created = time_second; 4812 acq->count = 0; 4813 } 4814 } 4815 4816 { 4817 struct mbuf *n, *nn; 4818 struct sadb_sa *m_sa; 4819 struct sadb_msg *newmsg; 4820 int off, len; 4821 4822 /* create new sadb_msg to reply. */ 4823 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4824 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4825 4826 MGETHDR(n, M_DONTWAIT, MT_DATA); 4827 if (len > MHLEN) { 4828 MCLGET(n, M_DONTWAIT); 4829 if ((n->m_flags & M_EXT) == 0) { 4830 m_freem(n); 4831 n = NULL; 4832 } 4833 } 4834 if (!n) 4835 return key_senderror(so, m, ENOBUFS); 4836 4837 n->m_len = len; 4838 n->m_next = NULL; 4839 off = 0; 4840 4841 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4842 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4843 4844 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4845 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4846 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4847 m_sa->sadb_sa_spi = htonl(spi); 4848 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4849 4850 IPSEC_ASSERT(off == len, 4851 ("length inconsistency (off %u len %u)", off, len)); 4852 4853 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4854 SADB_EXT_ADDRESS_DST); 4855 if (!n->m_next) { 4856 m_freem(n); 4857 return key_senderror(so, m, ENOBUFS); 4858 } 4859 4860 if (n->m_len < sizeof(struct sadb_msg)) { 4861 n = m_pullup(n, sizeof(struct sadb_msg)); 4862 if (n == NULL) 4863 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4864 } 4865 4866 n->m_pkthdr.len = 0; 4867 for (nn = n; nn; nn = nn->m_next) 4868 n->m_pkthdr.len += nn->m_len; 4869 4870 newmsg = mtod(n, struct sadb_msg *); 4871 newmsg->sadb_msg_seq = newsav->seq; 4872 newmsg->sadb_msg_errno = 0; 4873 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4874 4875 m_freem(m); 4876 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4877 } 4878 } 4879 4880 /* 4881 * allocating new SPI 4882 * called by key_getspi(). 4883 * OUT: 4884 * 0: failure. 4885 * others: success. 4886 */ 4887 static u_int32_t 4888 key_do_getnewspi(spirange, saidx) 4889 struct sadb_spirange *spirange; 4890 struct secasindex *saidx; 4891 { 4892 u_int32_t newspi; 4893 u_int32_t min, max; 4894 int count = V_key_spi_trycnt; 4895 4896 /* set spi range to allocate */ 4897 if (spirange != NULL) { 4898 min = spirange->sadb_spirange_min; 4899 max = spirange->sadb_spirange_max; 4900 } else { 4901 min = V_key_spi_minval; 4902 max = V_key_spi_maxval; 4903 } 4904 /* IPCOMP needs 2-byte SPI */ 4905 if (saidx->proto == IPPROTO_IPCOMP) { 4906 u_int32_t t; 4907 if (min >= 0x10000) 4908 min = 0xffff; 4909 if (max >= 0x10000) 4910 max = 0xffff; 4911 if (min > max) { 4912 t = min; min = max; max = t; 4913 } 4914 } 4915 4916 if (min == max) { 4917 if (key_checkspidup(saidx, min) != NULL) { 4918 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4919 __func__, min)); 4920 return 0; 4921 } 4922 4923 count--; /* taking one cost. */ 4924 newspi = min; 4925 4926 } else { 4927 4928 /* init SPI */ 4929 newspi = 0; 4930 4931 /* when requesting to allocate spi ranged */ 4932 while (count--) { 4933 /* generate pseudo-random SPI value ranged. */ 4934 newspi = min + (key_random() % (max - min + 1)); 4935 4936 if (key_checkspidup(saidx, newspi) == NULL) 4937 break; 4938 } 4939 4940 if (count == 0 || newspi == 0) { 4941 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4942 __func__)); 4943 return 0; 4944 } 4945 } 4946 4947 /* statistics */ 4948 keystat.getspi_count = 4949 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4950 4951 return newspi; 4952 } 4953 4954 /* 4955 * SADB_UPDATE processing 4956 * receive 4957 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4958 * key(AE), (identity(SD),) (sensitivity)> 4959 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4960 * and send 4961 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4962 * (identity(SD),) (sensitivity)> 4963 * to the ikmpd. 4964 * 4965 * m will always be freed. 4966 */ 4967 static int 4968 key_update(so, m, mhp) 4969 struct socket *so; 4970 struct mbuf *m; 4971 const struct sadb_msghdr *mhp; 4972 { 4973 struct sadb_sa *sa0; 4974 struct sadb_address *src0, *dst0; 4975 #ifdef IPSEC_NAT_T 4976 struct sadb_x_nat_t_type *type; 4977 struct sadb_x_nat_t_port *sport, *dport; 4978 struct sadb_address *iaddr, *raddr; 4979 struct sadb_x_nat_t_frag *frag; 4980 #endif 4981 struct secasindex saidx; 4982 struct secashead *sah; 4983 struct secasvar *sav; 4984 u_int16_t proto; 4985 u_int8_t mode; 4986 u_int32_t reqid; 4987 int error; 4988 4989 IPSEC_ASSERT(so != NULL, ("null socket")); 4990 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4991 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4992 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4993 4994 /* map satype to proto */ 4995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4996 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4997 __func__)); 4998 return key_senderror(so, m, EINVAL); 4999 } 5000 5001 if (mhp->ext[SADB_EXT_SA] == NULL || 5002 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5003 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5004 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5005 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5006 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5007 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5008 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5009 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5010 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5011 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5012 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5013 __func__)); 5014 return key_senderror(so, m, EINVAL); 5015 } 5016 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5017 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5018 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5019 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5020 __func__)); 5021 return key_senderror(so, m, EINVAL); 5022 } 5023 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5024 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5025 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5026 } else { 5027 mode = IPSEC_MODE_ANY; 5028 reqid = 0; 5029 } 5030 /* XXX boundary checking for other extensions */ 5031 5032 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5033 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5034 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5035 5036 /* XXX boundary check against sa_len */ 5037 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5038 5039 /* 5040 * Make sure the port numbers are zero. 5041 * In case of NAT-T we will update them later if needed. 5042 */ 5043 KEY_PORTTOSADDR(&saidx.src, 0); 5044 KEY_PORTTOSADDR(&saidx.dst, 0); 5045 5046 #ifdef IPSEC_NAT_T 5047 /* 5048 * Handle NAT-T info if present. 5049 */ 5050 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5051 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5052 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5053 5054 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5055 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5056 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5057 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5058 __func__)); 5059 return key_senderror(so, m, EINVAL); 5060 } 5061 5062 type = (struct sadb_x_nat_t_type *) 5063 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5064 sport = (struct sadb_x_nat_t_port *) 5065 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5066 dport = (struct sadb_x_nat_t_port *) 5067 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5068 } else { 5069 type = 0; 5070 sport = dport = 0; 5071 } 5072 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5073 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5074 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5075 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5076 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5077 __func__)); 5078 return key_senderror(so, m, EINVAL); 5079 } 5080 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5081 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5082 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5083 } else { 5084 iaddr = raddr = NULL; 5085 } 5086 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5087 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5088 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5089 __func__)); 5090 return key_senderror(so, m, EINVAL); 5091 } 5092 frag = (struct sadb_x_nat_t_frag *) 5093 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5094 } else { 5095 frag = 0; 5096 } 5097 #endif 5098 5099 /* get a SA header */ 5100 if ((sah = key_getsah(&saidx)) == NULL) { 5101 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5102 return key_senderror(so, m, ENOENT); 5103 } 5104 5105 /* set spidx if there */ 5106 /* XXX rewrite */ 5107 error = key_setident(sah, m, mhp); 5108 if (error) 5109 return key_senderror(so, m, error); 5110 5111 /* find a SA with sequence number. */ 5112 #ifdef IPSEC_DOSEQCHECK 5113 if (mhp->msg->sadb_msg_seq != 0 5114 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5115 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5116 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5117 return key_senderror(so, m, ENOENT); 5118 } 5119 #else 5120 SAHTREE_LOCK(); 5121 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5122 SAHTREE_UNLOCK(); 5123 if (sav == NULL) { 5124 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5125 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5126 return key_senderror(so, m, EINVAL); 5127 } 5128 #endif 5129 5130 /* validity check */ 5131 if (sav->sah->saidx.proto != proto) { 5132 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5133 "(DB=%u param=%u)\n", __func__, 5134 sav->sah->saidx.proto, proto)); 5135 return key_senderror(so, m, EINVAL); 5136 } 5137 #ifdef IPSEC_DOSEQCHECK 5138 if (sav->spi != sa0->sadb_sa_spi) { 5139 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5140 __func__, 5141 (u_int32_t)ntohl(sav->spi), 5142 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5143 return key_senderror(so, m, EINVAL); 5144 } 5145 #endif 5146 if (sav->pid != mhp->msg->sadb_msg_pid) { 5147 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5148 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5149 return key_senderror(so, m, EINVAL); 5150 } 5151 5152 /* copy sav values */ 5153 error = key_setsaval(sav, m, mhp); 5154 if (error) { 5155 KEY_FREESAV(&sav); 5156 return key_senderror(so, m, error); 5157 } 5158 5159 #ifdef IPSEC_NAT_T 5160 /* 5161 * Handle more NAT-T info if present, 5162 * now that we have a sav to fill. 5163 */ 5164 if (type) 5165 sav->natt_type = type->sadb_x_nat_t_type_type; 5166 5167 if (sport) 5168 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5169 sport->sadb_x_nat_t_port_port); 5170 if (dport) 5171 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5172 dport->sadb_x_nat_t_port_port); 5173 5174 #if 0 5175 /* 5176 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5177 * We should actually check for a minimum MTU here, if we 5178 * want to support it in ip_output. 5179 */ 5180 if (frag) 5181 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5182 #endif 5183 #endif 5184 5185 /* check SA values to be mature. */ 5186 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5187 KEY_FREESAV(&sav); 5188 return key_senderror(so, m, 0); 5189 } 5190 5191 { 5192 struct mbuf *n; 5193 5194 /* set msg buf from mhp */ 5195 n = key_getmsgbuf_x1(m, mhp); 5196 if (n == NULL) { 5197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5198 return key_senderror(so, m, ENOBUFS); 5199 } 5200 5201 m_freem(m); 5202 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5203 } 5204 } 5205 5206 /* 5207 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5208 * only called by key_update(). 5209 * OUT: 5210 * NULL : not found 5211 * others : found, pointer to a SA. 5212 */ 5213 #ifdef IPSEC_DOSEQCHECK 5214 static struct secasvar * 5215 key_getsavbyseq(sah, seq) 5216 struct secashead *sah; 5217 u_int32_t seq; 5218 { 5219 struct secasvar *sav; 5220 u_int state; 5221 5222 state = SADB_SASTATE_LARVAL; 5223 5224 /* search SAD with sequence number ? */ 5225 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5226 5227 KEY_CHKSASTATE(state, sav->state, __func__); 5228 5229 if (sav->seq == seq) { 5230 sa_addref(sav); 5231 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5232 printf("DP %s cause refcnt++:%d SA:%p\n", 5233 __func__, sav->refcnt, sav)); 5234 return sav; 5235 } 5236 } 5237 5238 return NULL; 5239 } 5240 #endif 5241 5242 /* 5243 * SADB_ADD processing 5244 * add an entry to SA database, when received 5245 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5246 * key(AE), (identity(SD),) (sensitivity)> 5247 * from the ikmpd, 5248 * and send 5249 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5250 * (identity(SD),) (sensitivity)> 5251 * to the ikmpd. 5252 * 5253 * IGNORE identity and sensitivity messages. 5254 * 5255 * m will always be freed. 5256 */ 5257 static int 5258 key_add(so, m, mhp) 5259 struct socket *so; 5260 struct mbuf *m; 5261 const struct sadb_msghdr *mhp; 5262 { 5263 struct sadb_sa *sa0; 5264 struct sadb_address *src0, *dst0; 5265 #ifdef IPSEC_NAT_T 5266 struct sadb_x_nat_t_type *type; 5267 struct sadb_address *iaddr, *raddr; 5268 struct sadb_x_nat_t_frag *frag; 5269 #endif 5270 struct secasindex saidx; 5271 struct secashead *newsah; 5272 struct secasvar *newsav; 5273 u_int16_t proto; 5274 u_int8_t mode; 5275 u_int32_t reqid; 5276 int error; 5277 5278 IPSEC_ASSERT(so != NULL, ("null socket")); 5279 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5280 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5281 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5282 5283 /* map satype to proto */ 5284 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5285 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5286 __func__)); 5287 return key_senderror(so, m, EINVAL); 5288 } 5289 5290 if (mhp->ext[SADB_EXT_SA] == NULL || 5291 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5292 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5294 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5295 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5296 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5299 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5300 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5301 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5302 __func__)); 5303 return key_senderror(so, m, EINVAL); 5304 } 5305 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5306 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5307 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5308 /* XXX need more */ 5309 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5310 __func__)); 5311 return key_senderror(so, m, EINVAL); 5312 } 5313 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5314 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5315 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5316 } else { 5317 mode = IPSEC_MODE_ANY; 5318 reqid = 0; 5319 } 5320 5321 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5322 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5323 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5324 5325 /* XXX boundary check against sa_len */ 5326 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5327 5328 /* 5329 * Make sure the port numbers are zero. 5330 * In case of NAT-T we will update them later if needed. 5331 */ 5332 KEY_PORTTOSADDR(&saidx.src, 0); 5333 KEY_PORTTOSADDR(&saidx.dst, 0); 5334 5335 #ifdef IPSEC_NAT_T 5336 /* 5337 * Handle NAT-T info if present. 5338 */ 5339 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5340 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5341 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5342 struct sadb_x_nat_t_port *sport, *dport; 5343 5344 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5345 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5346 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5347 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5348 __func__)); 5349 return key_senderror(so, m, EINVAL); 5350 } 5351 5352 type = (struct sadb_x_nat_t_type *) 5353 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5354 sport = (struct sadb_x_nat_t_port *) 5355 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5356 dport = (struct sadb_x_nat_t_port *) 5357 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5358 5359 if (sport) 5360 KEY_PORTTOSADDR(&saidx.src, 5361 sport->sadb_x_nat_t_port_port); 5362 if (dport) 5363 KEY_PORTTOSADDR(&saidx.dst, 5364 dport->sadb_x_nat_t_port_port); 5365 } else { 5366 type = 0; 5367 } 5368 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5369 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5370 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5371 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5372 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5373 __func__)); 5374 return key_senderror(so, m, EINVAL); 5375 } 5376 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5377 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5378 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5379 } else { 5380 iaddr = raddr = NULL; 5381 } 5382 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5383 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5384 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5385 __func__)); 5386 return key_senderror(so, m, EINVAL); 5387 } 5388 frag = (struct sadb_x_nat_t_frag *) 5389 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5390 } else { 5391 frag = 0; 5392 } 5393 #endif 5394 5395 /* get a SA header */ 5396 if ((newsah = key_getsah(&saidx)) == NULL) { 5397 /* create a new SA header */ 5398 if ((newsah = key_newsah(&saidx)) == NULL) { 5399 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5400 return key_senderror(so, m, ENOBUFS); 5401 } 5402 } 5403 5404 /* set spidx if there */ 5405 /* XXX rewrite */ 5406 error = key_setident(newsah, m, mhp); 5407 if (error) { 5408 return key_senderror(so, m, error); 5409 } 5410 5411 /* create new SA entry. */ 5412 /* We can create new SA only if SPI is differenct. */ 5413 SAHTREE_LOCK(); 5414 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5415 SAHTREE_UNLOCK(); 5416 if (newsav != NULL) { 5417 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5418 return key_senderror(so, m, EEXIST); 5419 } 5420 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5421 if (newsav == NULL) { 5422 return key_senderror(so, m, error); 5423 } 5424 5425 #ifdef IPSEC_NAT_T 5426 /* 5427 * Handle more NAT-T info if present, 5428 * now that we have a sav to fill. 5429 */ 5430 if (type) 5431 newsav->natt_type = type->sadb_x_nat_t_type_type; 5432 5433 #if 0 5434 /* 5435 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5436 * We should actually check for a minimum MTU here, if we 5437 * want to support it in ip_output. 5438 */ 5439 if (frag) 5440 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5441 #endif 5442 #endif 5443 5444 /* check SA values to be mature. */ 5445 if ((error = key_mature(newsav)) != 0) { 5446 KEY_FREESAV(&newsav); 5447 return key_senderror(so, m, error); 5448 } 5449 5450 /* 5451 * don't call key_freesav() here, as we would like to keep the SA 5452 * in the database on success. 5453 */ 5454 5455 { 5456 struct mbuf *n; 5457 5458 /* set msg buf from mhp */ 5459 n = key_getmsgbuf_x1(m, mhp); 5460 if (n == NULL) { 5461 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5462 return key_senderror(so, m, ENOBUFS); 5463 } 5464 5465 m_freem(m); 5466 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5467 } 5468 } 5469 5470 /* m is retained */ 5471 static int 5472 key_setident(sah, m, mhp) 5473 struct secashead *sah; 5474 struct mbuf *m; 5475 const struct sadb_msghdr *mhp; 5476 { 5477 const struct sadb_ident *idsrc, *iddst; 5478 int idsrclen, iddstlen; 5479 5480 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5481 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5482 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5483 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5484 5485 /* don't make buffer if not there */ 5486 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5487 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5488 sah->idents = NULL; 5489 sah->identd = NULL; 5490 return 0; 5491 } 5492 5493 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5494 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5495 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5496 return EINVAL; 5497 } 5498 5499 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5500 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5501 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5502 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5503 5504 /* validity check */ 5505 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5506 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5507 return EINVAL; 5508 } 5509 5510 switch (idsrc->sadb_ident_type) { 5511 case SADB_IDENTTYPE_PREFIX: 5512 case SADB_IDENTTYPE_FQDN: 5513 case SADB_IDENTTYPE_USERFQDN: 5514 default: 5515 /* XXX do nothing */ 5516 sah->idents = NULL; 5517 sah->identd = NULL; 5518 return 0; 5519 } 5520 5521 /* make structure */ 5522 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5523 if (sah->idents == NULL) { 5524 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5525 return ENOBUFS; 5526 } 5527 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5528 if (sah->identd == NULL) { 5529 free(sah->idents, M_IPSEC_MISC); 5530 sah->idents = NULL; 5531 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5532 return ENOBUFS; 5533 } 5534 sah->idents->type = idsrc->sadb_ident_type; 5535 sah->idents->id = idsrc->sadb_ident_id; 5536 5537 sah->identd->type = iddst->sadb_ident_type; 5538 sah->identd->id = iddst->sadb_ident_id; 5539 5540 return 0; 5541 } 5542 5543 /* 5544 * m will not be freed on return. 5545 * it is caller's responsibility to free the result. 5546 */ 5547 static struct mbuf * 5548 key_getmsgbuf_x1(m, mhp) 5549 struct mbuf *m; 5550 const struct sadb_msghdr *mhp; 5551 { 5552 struct mbuf *n; 5553 5554 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5555 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5556 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5557 5558 /* create new sadb_msg to reply. */ 5559 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5560 SADB_EXT_SA, SADB_X_EXT_SA2, 5561 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5562 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5563 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5564 if (!n) 5565 return NULL; 5566 5567 if (n->m_len < sizeof(struct sadb_msg)) { 5568 n = m_pullup(n, sizeof(struct sadb_msg)); 5569 if (n == NULL) 5570 return NULL; 5571 } 5572 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5573 mtod(n, struct sadb_msg *)->sadb_msg_len = 5574 PFKEY_UNIT64(n->m_pkthdr.len); 5575 5576 return n; 5577 } 5578 5579 static int key_delete_all __P((struct socket *, struct mbuf *, 5580 const struct sadb_msghdr *, u_int16_t)); 5581 5582 /* 5583 * SADB_DELETE processing 5584 * receive 5585 * <base, SA(*), address(SD)> 5586 * from the ikmpd, and set SADB_SASTATE_DEAD, 5587 * and send, 5588 * <base, SA(*), address(SD)> 5589 * to the ikmpd. 5590 * 5591 * m will always be freed. 5592 */ 5593 static int 5594 key_delete(so, m, mhp) 5595 struct socket *so; 5596 struct mbuf *m; 5597 const struct sadb_msghdr *mhp; 5598 { 5599 struct sadb_sa *sa0; 5600 struct sadb_address *src0, *dst0; 5601 struct secasindex saidx; 5602 struct secashead *sah; 5603 struct secasvar *sav = NULL; 5604 u_int16_t proto; 5605 5606 IPSEC_ASSERT(so != NULL, ("null socket")); 5607 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5608 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5609 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5610 5611 /* map satype to proto */ 5612 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5613 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5614 __func__)); 5615 return key_senderror(so, m, EINVAL); 5616 } 5617 5618 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5619 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5621 __func__)); 5622 return key_senderror(so, m, EINVAL); 5623 } 5624 5625 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5626 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5627 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5628 __func__)); 5629 return key_senderror(so, m, EINVAL); 5630 } 5631 5632 if (mhp->ext[SADB_EXT_SA] == NULL) { 5633 /* 5634 * Caller wants us to delete all non-LARVAL SAs 5635 * that match the src/dst. This is used during 5636 * IKE INITIAL-CONTACT. 5637 */ 5638 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5639 return key_delete_all(so, m, mhp, proto); 5640 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5641 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5642 __func__)); 5643 return key_senderror(so, m, EINVAL); 5644 } 5645 5646 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5647 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5648 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5649 5650 /* XXX boundary check against sa_len */ 5651 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5652 5653 /* 5654 * Make sure the port numbers are zero. 5655 * In case of NAT-T we will update them later if needed. 5656 */ 5657 KEY_PORTTOSADDR(&saidx.src, 0); 5658 KEY_PORTTOSADDR(&saidx.dst, 0); 5659 5660 #ifdef IPSEC_NAT_T 5661 /* 5662 * Handle NAT-T info if present. 5663 */ 5664 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5665 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5666 struct sadb_x_nat_t_port *sport, *dport; 5667 5668 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5669 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5670 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5671 __func__)); 5672 return key_senderror(so, m, EINVAL); 5673 } 5674 5675 sport = (struct sadb_x_nat_t_port *) 5676 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5677 dport = (struct sadb_x_nat_t_port *) 5678 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5679 5680 if (sport) 5681 KEY_PORTTOSADDR(&saidx.src, 5682 sport->sadb_x_nat_t_port_port); 5683 if (dport) 5684 KEY_PORTTOSADDR(&saidx.dst, 5685 dport->sadb_x_nat_t_port_port); 5686 } 5687 #endif 5688 5689 /* get a SA header */ 5690 SAHTREE_LOCK(); 5691 LIST_FOREACH(sah, &V_sahtree, chain) { 5692 if (sah->state == SADB_SASTATE_DEAD) 5693 continue; 5694 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5695 continue; 5696 5697 /* get a SA with SPI. */ 5698 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5699 if (sav) 5700 break; 5701 } 5702 if (sah == NULL) { 5703 SAHTREE_UNLOCK(); 5704 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5705 return key_senderror(so, m, ENOENT); 5706 } 5707 5708 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5709 KEY_FREESAV(&sav); 5710 SAHTREE_UNLOCK(); 5711 5712 { 5713 struct mbuf *n; 5714 struct sadb_msg *newmsg; 5715 5716 /* create new sadb_msg to reply. */ 5717 /* XXX-BZ NAT-T extensions? */ 5718 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5719 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5720 if (!n) 5721 return key_senderror(so, m, ENOBUFS); 5722 5723 if (n->m_len < sizeof(struct sadb_msg)) { 5724 n = m_pullup(n, sizeof(struct sadb_msg)); 5725 if (n == NULL) 5726 return key_senderror(so, m, ENOBUFS); 5727 } 5728 newmsg = mtod(n, struct sadb_msg *); 5729 newmsg->sadb_msg_errno = 0; 5730 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5731 5732 m_freem(m); 5733 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5734 } 5735 } 5736 5737 /* 5738 * delete all SAs for src/dst. Called from key_delete(). 5739 */ 5740 static int 5741 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5742 u_int16_t proto) 5743 { 5744 struct sadb_address *src0, *dst0; 5745 struct secasindex saidx; 5746 struct secashead *sah; 5747 struct secasvar *sav, *nextsav; 5748 u_int stateidx, state; 5749 5750 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5751 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5752 5753 /* XXX boundary check against sa_len */ 5754 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5755 5756 /* 5757 * Make sure the port numbers are zero. 5758 * In case of NAT-T we will update them later if needed. 5759 */ 5760 KEY_PORTTOSADDR(&saidx.src, 0); 5761 KEY_PORTTOSADDR(&saidx.dst, 0); 5762 5763 #ifdef IPSEC_NAT_T 5764 /* 5765 * Handle NAT-T info if present. 5766 */ 5767 5768 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5769 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5770 struct sadb_x_nat_t_port *sport, *dport; 5771 5772 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5773 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5774 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5775 __func__)); 5776 return key_senderror(so, m, EINVAL); 5777 } 5778 5779 sport = (struct sadb_x_nat_t_port *) 5780 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5781 dport = (struct sadb_x_nat_t_port *) 5782 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5783 5784 if (sport) 5785 KEY_PORTTOSADDR(&saidx.src, 5786 sport->sadb_x_nat_t_port_port); 5787 if (dport) 5788 KEY_PORTTOSADDR(&saidx.dst, 5789 dport->sadb_x_nat_t_port_port); 5790 } 5791 #endif 5792 5793 SAHTREE_LOCK(); 5794 LIST_FOREACH(sah, &V_sahtree, chain) { 5795 if (sah->state == SADB_SASTATE_DEAD) 5796 continue; 5797 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5798 continue; 5799 5800 /* Delete all non-LARVAL SAs. */ 5801 for (stateidx = 0; 5802 stateidx < _ARRAYLEN(saorder_state_alive); 5803 stateidx++) { 5804 state = saorder_state_alive[stateidx]; 5805 if (state == SADB_SASTATE_LARVAL) 5806 continue; 5807 for (sav = LIST_FIRST(&sah->savtree[state]); 5808 sav != NULL; sav = nextsav) { 5809 nextsav = LIST_NEXT(sav, chain); 5810 /* sanity check */ 5811 if (sav->state != state) { 5812 ipseclog((LOG_DEBUG, "%s: invalid " 5813 "sav->state (queue %d SA %d)\n", 5814 __func__, state, sav->state)); 5815 continue; 5816 } 5817 5818 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5819 KEY_FREESAV(&sav); 5820 } 5821 } 5822 } 5823 SAHTREE_UNLOCK(); 5824 { 5825 struct mbuf *n; 5826 struct sadb_msg *newmsg; 5827 5828 /* create new sadb_msg to reply. */ 5829 /* XXX-BZ NAT-T extensions? */ 5830 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5831 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5832 if (!n) 5833 return key_senderror(so, m, ENOBUFS); 5834 5835 if (n->m_len < sizeof(struct sadb_msg)) { 5836 n = m_pullup(n, sizeof(struct sadb_msg)); 5837 if (n == NULL) 5838 return key_senderror(so, m, ENOBUFS); 5839 } 5840 newmsg = mtod(n, struct sadb_msg *); 5841 newmsg->sadb_msg_errno = 0; 5842 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5843 5844 m_freem(m); 5845 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5846 } 5847 } 5848 5849 /* 5850 * SADB_GET processing 5851 * receive 5852 * <base, SA(*), address(SD)> 5853 * from the ikmpd, and get a SP and a SA to respond, 5854 * and send, 5855 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5856 * (identity(SD),) (sensitivity)> 5857 * to the ikmpd. 5858 * 5859 * m will always be freed. 5860 */ 5861 static int 5862 key_get(so, m, mhp) 5863 struct socket *so; 5864 struct mbuf *m; 5865 const struct sadb_msghdr *mhp; 5866 { 5867 struct sadb_sa *sa0; 5868 struct sadb_address *src0, *dst0; 5869 struct secasindex saidx; 5870 struct secashead *sah; 5871 struct secasvar *sav = NULL; 5872 u_int16_t proto; 5873 5874 IPSEC_ASSERT(so != NULL, ("null socket")); 5875 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5876 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5877 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5878 5879 /* map satype to proto */ 5880 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5881 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5882 __func__)); 5883 return key_senderror(so, m, EINVAL); 5884 } 5885 5886 if (mhp->ext[SADB_EXT_SA] == NULL || 5887 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5888 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5889 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5890 __func__)); 5891 return key_senderror(so, m, EINVAL); 5892 } 5893 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5894 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5895 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5896 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5897 __func__)); 5898 return key_senderror(so, m, EINVAL); 5899 } 5900 5901 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5902 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5903 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5904 5905 /* XXX boundary check against sa_len */ 5906 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5907 5908 /* 5909 * Make sure the port numbers are zero. 5910 * In case of NAT-T we will update them later if needed. 5911 */ 5912 KEY_PORTTOSADDR(&saidx.src, 0); 5913 KEY_PORTTOSADDR(&saidx.dst, 0); 5914 5915 #ifdef IPSEC_NAT_T 5916 /* 5917 * Handle NAT-T info if present. 5918 */ 5919 5920 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5921 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5922 struct sadb_x_nat_t_port *sport, *dport; 5923 5924 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5925 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5926 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5927 __func__)); 5928 return key_senderror(so, m, EINVAL); 5929 } 5930 5931 sport = (struct sadb_x_nat_t_port *) 5932 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5933 dport = (struct sadb_x_nat_t_port *) 5934 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5935 5936 if (sport) 5937 KEY_PORTTOSADDR(&saidx.src, 5938 sport->sadb_x_nat_t_port_port); 5939 if (dport) 5940 KEY_PORTTOSADDR(&saidx.dst, 5941 dport->sadb_x_nat_t_port_port); 5942 } 5943 #endif 5944 5945 /* get a SA header */ 5946 SAHTREE_LOCK(); 5947 LIST_FOREACH(sah, &V_sahtree, chain) { 5948 if (sah->state == SADB_SASTATE_DEAD) 5949 continue; 5950 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5951 continue; 5952 5953 /* get a SA with SPI. */ 5954 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5955 if (sav) 5956 break; 5957 } 5958 SAHTREE_UNLOCK(); 5959 if (sah == NULL) { 5960 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5961 return key_senderror(so, m, ENOENT); 5962 } 5963 5964 { 5965 struct mbuf *n; 5966 u_int8_t satype; 5967 5968 /* map proto to satype */ 5969 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5970 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5971 __func__)); 5972 return key_senderror(so, m, EINVAL); 5973 } 5974 5975 /* create new sadb_msg to reply. */ 5976 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5977 mhp->msg->sadb_msg_pid); 5978 if (!n) 5979 return key_senderror(so, m, ENOBUFS); 5980 5981 m_freem(m); 5982 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5983 } 5984 } 5985 5986 /* XXX make it sysctl-configurable? */ 5987 static void 5988 key_getcomb_setlifetime(comb) 5989 struct sadb_comb *comb; 5990 { 5991 5992 comb->sadb_comb_soft_allocations = 1; 5993 comb->sadb_comb_hard_allocations = 1; 5994 comb->sadb_comb_soft_bytes = 0; 5995 comb->sadb_comb_hard_bytes = 0; 5996 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5997 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5998 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5999 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6000 } 6001 6002 /* 6003 * XXX reorder combinations by preference 6004 * XXX no idea if the user wants ESP authentication or not 6005 */ 6006 static struct mbuf * 6007 key_getcomb_esp() 6008 { 6009 struct sadb_comb *comb; 6010 struct enc_xform *algo; 6011 struct mbuf *result = NULL, *m, *n; 6012 int encmin; 6013 int i, off, o; 6014 int totlen; 6015 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6016 6017 m = NULL; 6018 for (i = 1; i <= SADB_EALG_MAX; i++) { 6019 algo = esp_algorithm_lookup(i); 6020 if (algo == NULL) 6021 continue; 6022 6023 /* discard algorithms with key size smaller than system min */ 6024 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6025 continue; 6026 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6027 encmin = V_ipsec_esp_keymin; 6028 else 6029 encmin = _BITS(algo->minkey); 6030 6031 if (V_ipsec_esp_auth) 6032 m = key_getcomb_ah(); 6033 else { 6034 IPSEC_ASSERT(l <= MLEN, 6035 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6036 MGET(m, M_DONTWAIT, MT_DATA); 6037 if (m) { 6038 M_ALIGN(m, l); 6039 m->m_len = l; 6040 m->m_next = NULL; 6041 bzero(mtod(m, caddr_t), m->m_len); 6042 } 6043 } 6044 if (!m) 6045 goto fail; 6046 6047 totlen = 0; 6048 for (n = m; n; n = n->m_next) 6049 totlen += n->m_len; 6050 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6051 6052 for (off = 0; off < totlen; off += l) { 6053 n = m_pulldown(m, off, l, &o); 6054 if (!n) { 6055 /* m is already freed */ 6056 goto fail; 6057 } 6058 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6059 bzero(comb, sizeof(*comb)); 6060 key_getcomb_setlifetime(comb); 6061 comb->sadb_comb_encrypt = i; 6062 comb->sadb_comb_encrypt_minbits = encmin; 6063 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6064 } 6065 6066 if (!result) 6067 result = m; 6068 else 6069 m_cat(result, m); 6070 } 6071 6072 return result; 6073 6074 fail: 6075 if (result) 6076 m_freem(result); 6077 return NULL; 6078 } 6079 6080 static void 6081 key_getsizes_ah( 6082 const struct auth_hash *ah, 6083 int alg, 6084 u_int16_t* min, 6085 u_int16_t* max) 6086 { 6087 6088 *min = *max = ah->keysize; 6089 if (ah->keysize == 0) { 6090 /* 6091 * Transform takes arbitrary key size but algorithm 6092 * key size is restricted. Enforce this here. 6093 */ 6094 switch (alg) { 6095 case SADB_X_AALG_MD5: *min = *max = 16; break; 6096 case SADB_X_AALG_SHA: *min = *max = 20; break; 6097 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6098 default: 6099 DPRINTF(("%s: unknown AH algorithm %u\n", 6100 __func__, alg)); 6101 break; 6102 } 6103 } 6104 } 6105 6106 /* 6107 * XXX reorder combinations by preference 6108 */ 6109 static struct mbuf * 6110 key_getcomb_ah() 6111 { 6112 struct sadb_comb *comb; 6113 struct auth_hash *algo; 6114 struct mbuf *m; 6115 u_int16_t minkeysize, maxkeysize; 6116 int i; 6117 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6118 6119 m = NULL; 6120 for (i = 1; i <= SADB_AALG_MAX; i++) { 6121 #if 1 6122 /* we prefer HMAC algorithms, not old algorithms */ 6123 if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) 6124 continue; 6125 #endif 6126 algo = ah_algorithm_lookup(i); 6127 if (!algo) 6128 continue; 6129 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6130 /* discard algorithms with key size smaller than system min */ 6131 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6132 continue; 6133 6134 if (!m) { 6135 IPSEC_ASSERT(l <= MLEN, 6136 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6137 MGET(m, M_DONTWAIT, MT_DATA); 6138 if (m) { 6139 M_ALIGN(m, l); 6140 m->m_len = l; 6141 m->m_next = NULL; 6142 } 6143 } else 6144 M_PREPEND(m, l, M_DONTWAIT); 6145 if (!m) 6146 return NULL; 6147 6148 comb = mtod(m, struct sadb_comb *); 6149 bzero(comb, sizeof(*comb)); 6150 key_getcomb_setlifetime(comb); 6151 comb->sadb_comb_auth = i; 6152 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6153 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6154 } 6155 6156 return m; 6157 } 6158 6159 /* 6160 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6161 * XXX reorder combinations by preference 6162 */ 6163 static struct mbuf * 6164 key_getcomb_ipcomp() 6165 { 6166 struct sadb_comb *comb; 6167 struct comp_algo *algo; 6168 struct mbuf *m; 6169 int i; 6170 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6171 6172 m = NULL; 6173 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6174 algo = ipcomp_algorithm_lookup(i); 6175 if (!algo) 6176 continue; 6177 6178 if (!m) { 6179 IPSEC_ASSERT(l <= MLEN, 6180 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6181 MGET(m, M_DONTWAIT, MT_DATA); 6182 if (m) { 6183 M_ALIGN(m, l); 6184 m->m_len = l; 6185 m->m_next = NULL; 6186 } 6187 } else 6188 M_PREPEND(m, l, M_DONTWAIT); 6189 if (!m) 6190 return NULL; 6191 6192 comb = mtod(m, struct sadb_comb *); 6193 bzero(comb, sizeof(*comb)); 6194 key_getcomb_setlifetime(comb); 6195 comb->sadb_comb_encrypt = i; 6196 /* what should we set into sadb_comb_*_{min,max}bits? */ 6197 } 6198 6199 return m; 6200 } 6201 6202 /* 6203 * XXX no way to pass mode (transport/tunnel) to userland 6204 * XXX replay checking? 6205 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6206 */ 6207 static struct mbuf * 6208 key_getprop(saidx) 6209 const struct secasindex *saidx; 6210 { 6211 struct sadb_prop *prop; 6212 struct mbuf *m, *n; 6213 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6214 int totlen; 6215 6216 switch (saidx->proto) { 6217 case IPPROTO_ESP: 6218 m = key_getcomb_esp(); 6219 break; 6220 case IPPROTO_AH: 6221 m = key_getcomb_ah(); 6222 break; 6223 case IPPROTO_IPCOMP: 6224 m = key_getcomb_ipcomp(); 6225 break; 6226 default: 6227 return NULL; 6228 } 6229 6230 if (!m) 6231 return NULL; 6232 M_PREPEND(m, l, M_DONTWAIT); 6233 if (!m) 6234 return NULL; 6235 6236 totlen = 0; 6237 for (n = m; n; n = n->m_next) 6238 totlen += n->m_len; 6239 6240 prop = mtod(m, struct sadb_prop *); 6241 bzero(prop, sizeof(*prop)); 6242 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6243 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6244 prop->sadb_prop_replay = 32; /* XXX */ 6245 6246 return m; 6247 } 6248 6249 /* 6250 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6251 * send 6252 * <base, SA, address(SD), (address(P)), x_policy, 6253 * (identity(SD),) (sensitivity,) proposal> 6254 * to KMD, and expect to receive 6255 * <base> with SADB_ACQUIRE if error occured, 6256 * or 6257 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6258 * from KMD by PF_KEY. 6259 * 6260 * XXX x_policy is outside of RFC2367 (KAME extension). 6261 * XXX sensitivity is not supported. 6262 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6263 * see comment for key_getcomb_ipcomp(). 6264 * 6265 * OUT: 6266 * 0 : succeed 6267 * others: error number 6268 */ 6269 static int 6270 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6271 { 6272 struct mbuf *result = NULL, *m; 6273 struct secacq *newacq; 6274 u_int8_t satype; 6275 int error = -1; 6276 u_int32_t seq; 6277 6278 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6279 satype = key_proto2satype(saidx->proto); 6280 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6281 6282 /* 6283 * We never do anything about acquirng SA. There is anather 6284 * solution that kernel blocks to send SADB_ACQUIRE message until 6285 * getting something message from IKEd. In later case, to be 6286 * managed with ACQUIRING list. 6287 */ 6288 /* Get an entry to check whether sending message or not. */ 6289 if ((newacq = key_getacq(saidx)) != NULL) { 6290 if (V_key_blockacq_count < newacq->count) { 6291 /* reset counter and do send message. */ 6292 newacq->count = 0; 6293 } else { 6294 /* increment counter and do nothing. */ 6295 newacq->count++; 6296 return 0; 6297 } 6298 } else { 6299 /* make new entry for blocking to send SADB_ACQUIRE. */ 6300 if ((newacq = key_newacq(saidx)) == NULL) 6301 return ENOBUFS; 6302 } 6303 6304 6305 seq = newacq->seq; 6306 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6307 if (!m) { 6308 error = ENOBUFS; 6309 goto fail; 6310 } 6311 result = m; 6312 6313 /* 6314 * No SADB_X_EXT_NAT_T_* here: we do not know 6315 * anything related to NAT-T at this time. 6316 */ 6317 6318 /* set sadb_address for saidx's. */ 6319 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6320 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6321 if (!m) { 6322 error = ENOBUFS; 6323 goto fail; 6324 } 6325 m_cat(result, m); 6326 6327 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6328 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6329 if (!m) { 6330 error = ENOBUFS; 6331 goto fail; 6332 } 6333 m_cat(result, m); 6334 6335 /* XXX proxy address (optional) */ 6336 6337 /* set sadb_x_policy */ 6338 if (sp) { 6339 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6340 if (!m) { 6341 error = ENOBUFS; 6342 goto fail; 6343 } 6344 m_cat(result, m); 6345 } 6346 6347 /* XXX identity (optional) */ 6348 #if 0 6349 if (idexttype && fqdn) { 6350 /* create identity extension (FQDN) */ 6351 struct sadb_ident *id; 6352 int fqdnlen; 6353 6354 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6355 id = (struct sadb_ident *)p; 6356 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6357 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6358 id->sadb_ident_exttype = idexttype; 6359 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6360 bcopy(fqdn, id + 1, fqdnlen); 6361 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6362 } 6363 6364 if (idexttype) { 6365 /* create identity extension (USERFQDN) */ 6366 struct sadb_ident *id; 6367 int userfqdnlen; 6368 6369 if (userfqdn) { 6370 /* +1 for terminating-NUL */ 6371 userfqdnlen = strlen(userfqdn) + 1; 6372 } else 6373 userfqdnlen = 0; 6374 id = (struct sadb_ident *)p; 6375 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6376 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6377 id->sadb_ident_exttype = idexttype; 6378 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6379 /* XXX is it correct? */ 6380 if (curproc && curproc->p_cred) 6381 id->sadb_ident_id = curproc->p_cred->p_ruid; 6382 if (userfqdn && userfqdnlen) 6383 bcopy(userfqdn, id + 1, userfqdnlen); 6384 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6385 } 6386 #endif 6387 6388 /* XXX sensitivity (optional) */ 6389 6390 /* create proposal/combination extension */ 6391 m = key_getprop(saidx); 6392 #if 0 6393 /* 6394 * spec conformant: always attach proposal/combination extension, 6395 * the problem is that we have no way to attach it for ipcomp, 6396 * due to the way sadb_comb is declared in RFC2367. 6397 */ 6398 if (!m) { 6399 error = ENOBUFS; 6400 goto fail; 6401 } 6402 m_cat(result, m); 6403 #else 6404 /* 6405 * outside of spec; make proposal/combination extension optional. 6406 */ 6407 if (m) 6408 m_cat(result, m); 6409 #endif 6410 6411 if ((result->m_flags & M_PKTHDR) == 0) { 6412 error = EINVAL; 6413 goto fail; 6414 } 6415 6416 if (result->m_len < sizeof(struct sadb_msg)) { 6417 result = m_pullup(result, sizeof(struct sadb_msg)); 6418 if (result == NULL) { 6419 error = ENOBUFS; 6420 goto fail; 6421 } 6422 } 6423 6424 result->m_pkthdr.len = 0; 6425 for (m = result; m; m = m->m_next) 6426 result->m_pkthdr.len += m->m_len; 6427 6428 mtod(result, struct sadb_msg *)->sadb_msg_len = 6429 PFKEY_UNIT64(result->m_pkthdr.len); 6430 6431 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6432 6433 fail: 6434 if (result) 6435 m_freem(result); 6436 return error; 6437 } 6438 6439 static struct secacq * 6440 key_newacq(const struct secasindex *saidx) 6441 { 6442 struct secacq *newacq; 6443 6444 /* get new entry */ 6445 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6446 if (newacq == NULL) { 6447 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6448 return NULL; 6449 } 6450 6451 /* copy secindex */ 6452 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6453 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6454 newacq->created = time_second; 6455 newacq->count = 0; 6456 6457 /* add to acqtree */ 6458 ACQ_LOCK(); 6459 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6460 ACQ_UNLOCK(); 6461 6462 return newacq; 6463 } 6464 6465 static struct secacq * 6466 key_getacq(const struct secasindex *saidx) 6467 { 6468 struct secacq *acq; 6469 6470 ACQ_LOCK(); 6471 LIST_FOREACH(acq, &V_acqtree, chain) { 6472 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6473 break; 6474 } 6475 ACQ_UNLOCK(); 6476 6477 return acq; 6478 } 6479 6480 static struct secacq * 6481 key_getacqbyseq(seq) 6482 u_int32_t seq; 6483 { 6484 struct secacq *acq; 6485 6486 ACQ_LOCK(); 6487 LIST_FOREACH(acq, &V_acqtree, chain) { 6488 if (acq->seq == seq) 6489 break; 6490 } 6491 ACQ_UNLOCK(); 6492 6493 return acq; 6494 } 6495 6496 static struct secspacq * 6497 key_newspacq(spidx) 6498 struct secpolicyindex *spidx; 6499 { 6500 struct secspacq *acq; 6501 6502 /* get new entry */ 6503 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6504 if (acq == NULL) { 6505 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6506 return NULL; 6507 } 6508 6509 /* copy secindex */ 6510 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6511 acq->created = time_second; 6512 acq->count = 0; 6513 6514 /* add to spacqtree */ 6515 SPACQ_LOCK(); 6516 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6517 SPACQ_UNLOCK(); 6518 6519 return acq; 6520 } 6521 6522 static struct secspacq * 6523 key_getspacq(spidx) 6524 struct secpolicyindex *spidx; 6525 { 6526 struct secspacq *acq; 6527 6528 SPACQ_LOCK(); 6529 LIST_FOREACH(acq, &V_spacqtree, chain) { 6530 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6531 /* NB: return holding spacq_lock */ 6532 return acq; 6533 } 6534 } 6535 SPACQ_UNLOCK(); 6536 6537 return NULL; 6538 } 6539 6540 /* 6541 * SADB_ACQUIRE processing, 6542 * in first situation, is receiving 6543 * <base> 6544 * from the ikmpd, and clear sequence of its secasvar entry. 6545 * 6546 * In second situation, is receiving 6547 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6548 * from a user land process, and return 6549 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6550 * to the socket. 6551 * 6552 * m will always be freed. 6553 */ 6554 static int 6555 key_acquire2(so, m, mhp) 6556 struct socket *so; 6557 struct mbuf *m; 6558 const struct sadb_msghdr *mhp; 6559 { 6560 const struct sadb_address *src0, *dst0; 6561 struct secasindex saidx; 6562 struct secashead *sah; 6563 u_int16_t proto; 6564 int error; 6565 6566 IPSEC_ASSERT(so != NULL, ("null socket")); 6567 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6568 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6569 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6570 6571 /* 6572 * Error message from KMd. 6573 * We assume that if error was occured in IKEd, the length of PFKEY 6574 * message is equal to the size of sadb_msg structure. 6575 * We do not raise error even if error occured in this function. 6576 */ 6577 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6578 struct secacq *acq; 6579 6580 /* check sequence number */ 6581 if (mhp->msg->sadb_msg_seq == 0) { 6582 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6583 "number.\n", __func__)); 6584 m_freem(m); 6585 return 0; 6586 } 6587 6588 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6589 /* 6590 * the specified larval SA is already gone, or we got 6591 * a bogus sequence number. we can silently ignore it. 6592 */ 6593 m_freem(m); 6594 return 0; 6595 } 6596 6597 /* reset acq counter in order to deletion by timehander. */ 6598 acq->created = time_second; 6599 acq->count = 0; 6600 m_freem(m); 6601 return 0; 6602 } 6603 6604 /* 6605 * This message is from user land. 6606 */ 6607 6608 /* map satype to proto */ 6609 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6610 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6611 __func__)); 6612 return key_senderror(so, m, EINVAL); 6613 } 6614 6615 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6616 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6617 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6618 /* error */ 6619 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6620 __func__)); 6621 return key_senderror(so, m, EINVAL); 6622 } 6623 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6624 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6625 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6626 /* error */ 6627 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6628 __func__)); 6629 return key_senderror(so, m, EINVAL); 6630 } 6631 6632 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6633 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6634 6635 /* XXX boundary check against sa_len */ 6636 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6637 6638 /* 6639 * Make sure the port numbers are zero. 6640 * In case of NAT-T we will update them later if needed. 6641 */ 6642 KEY_PORTTOSADDR(&saidx.src, 0); 6643 KEY_PORTTOSADDR(&saidx.dst, 0); 6644 6645 #ifndef IPSEC_NAT_T 6646 /* 6647 * Handle NAT-T info if present. 6648 */ 6649 6650 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6651 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6652 struct sadb_x_nat_t_port *sport, *dport; 6653 6654 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6655 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6656 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6657 __func__)); 6658 return key_senderror(so, m, EINVAL); 6659 } 6660 6661 sport = (struct sadb_x_nat_t_port *) 6662 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6663 dport = (struct sadb_x_nat_t_port *) 6664 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6665 6666 if (sport) 6667 KEY_PORTTOSADDR(&saidx.src, 6668 sport->sadb_x_nat_t_port_port); 6669 if (dport) 6670 KEY_PORTTOSADDR(&saidx.dst, 6671 dport->sadb_x_nat_t_port_port); 6672 } 6673 #endif 6674 6675 /* get a SA index */ 6676 SAHTREE_LOCK(); 6677 LIST_FOREACH(sah, &V_sahtree, chain) { 6678 if (sah->state == SADB_SASTATE_DEAD) 6679 continue; 6680 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6681 break; 6682 } 6683 SAHTREE_UNLOCK(); 6684 if (sah != NULL) { 6685 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6686 return key_senderror(so, m, EEXIST); 6687 } 6688 6689 error = key_acquire(&saidx, NULL); 6690 if (error != 0) { 6691 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6692 __func__, mhp->msg->sadb_msg_errno)); 6693 return key_senderror(so, m, error); 6694 } 6695 6696 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6697 } 6698 6699 /* 6700 * SADB_REGISTER processing. 6701 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6702 * receive 6703 * <base> 6704 * from the ikmpd, and register a socket to send PF_KEY messages, 6705 * and send 6706 * <base, supported> 6707 * to KMD by PF_KEY. 6708 * If socket is detached, must free from regnode. 6709 * 6710 * m will always be freed. 6711 */ 6712 static int 6713 key_register(so, m, mhp) 6714 struct socket *so; 6715 struct mbuf *m; 6716 const struct sadb_msghdr *mhp; 6717 { 6718 struct secreg *reg, *newreg = 0; 6719 6720 IPSEC_ASSERT(so != NULL, ("null socket")); 6721 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6722 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6723 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6724 6725 /* check for invalid register message */ 6726 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6727 return key_senderror(so, m, EINVAL); 6728 6729 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6730 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6731 goto setmsg; 6732 6733 /* check whether existing or not */ 6734 REGTREE_LOCK(); 6735 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6736 if (reg->so == so) { 6737 REGTREE_UNLOCK(); 6738 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6739 __func__)); 6740 return key_senderror(so, m, EEXIST); 6741 } 6742 } 6743 6744 /* create regnode */ 6745 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6746 if (newreg == NULL) { 6747 REGTREE_UNLOCK(); 6748 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6749 return key_senderror(so, m, ENOBUFS); 6750 } 6751 6752 newreg->so = so; 6753 ((struct keycb *)sotorawcb(so))->kp_registered++; 6754 6755 /* add regnode to regtree. */ 6756 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6757 REGTREE_UNLOCK(); 6758 6759 setmsg: 6760 { 6761 struct mbuf *n; 6762 struct sadb_msg *newmsg; 6763 struct sadb_supported *sup; 6764 u_int len, alen, elen; 6765 int off; 6766 int i; 6767 struct sadb_alg *alg; 6768 6769 /* create new sadb_msg to reply. */ 6770 alen = 0; 6771 for (i = 1; i <= SADB_AALG_MAX; i++) { 6772 if (ah_algorithm_lookup(i)) 6773 alen += sizeof(struct sadb_alg); 6774 } 6775 if (alen) 6776 alen += sizeof(struct sadb_supported); 6777 elen = 0; 6778 for (i = 1; i <= SADB_EALG_MAX; i++) { 6779 if (esp_algorithm_lookup(i)) 6780 elen += sizeof(struct sadb_alg); 6781 } 6782 if (elen) 6783 elen += sizeof(struct sadb_supported); 6784 6785 len = sizeof(struct sadb_msg) + alen + elen; 6786 6787 if (len > MCLBYTES) 6788 return key_senderror(so, m, ENOBUFS); 6789 6790 MGETHDR(n, M_DONTWAIT, MT_DATA); 6791 if (len > MHLEN) { 6792 MCLGET(n, M_DONTWAIT); 6793 if ((n->m_flags & M_EXT) == 0) { 6794 m_freem(n); 6795 n = NULL; 6796 } 6797 } 6798 if (!n) 6799 return key_senderror(so, m, ENOBUFS); 6800 6801 n->m_pkthdr.len = n->m_len = len; 6802 n->m_next = NULL; 6803 off = 0; 6804 6805 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6806 newmsg = mtod(n, struct sadb_msg *); 6807 newmsg->sadb_msg_errno = 0; 6808 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6809 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6810 6811 /* for authentication algorithm */ 6812 if (alen) { 6813 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6814 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6815 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6816 off += PFKEY_ALIGN8(sizeof(*sup)); 6817 6818 for (i = 1; i <= SADB_AALG_MAX; i++) { 6819 struct auth_hash *aalgo; 6820 u_int16_t minkeysize, maxkeysize; 6821 6822 aalgo = ah_algorithm_lookup(i); 6823 if (!aalgo) 6824 continue; 6825 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6826 alg->sadb_alg_id = i; 6827 alg->sadb_alg_ivlen = 0; 6828 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6829 alg->sadb_alg_minbits = _BITS(minkeysize); 6830 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6831 off += PFKEY_ALIGN8(sizeof(*alg)); 6832 } 6833 } 6834 6835 /* for encryption algorithm */ 6836 if (elen) { 6837 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6838 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6839 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6840 off += PFKEY_ALIGN8(sizeof(*sup)); 6841 6842 for (i = 1; i <= SADB_EALG_MAX; i++) { 6843 struct enc_xform *ealgo; 6844 6845 ealgo = esp_algorithm_lookup(i); 6846 if (!ealgo) 6847 continue; 6848 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6849 alg->sadb_alg_id = i; 6850 alg->sadb_alg_ivlen = ealgo->blocksize; 6851 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6852 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6853 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6854 } 6855 } 6856 6857 IPSEC_ASSERT(off == len, 6858 ("length assumption failed (off %u len %u)", off, len)); 6859 6860 m_freem(m); 6861 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6862 } 6863 } 6864 6865 /* 6866 * free secreg entry registered. 6867 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6868 */ 6869 void 6870 key_freereg(struct socket *so) 6871 { 6872 struct secreg *reg; 6873 int i; 6874 6875 IPSEC_ASSERT(so != NULL, ("NULL so")); 6876 6877 /* 6878 * check whether existing or not. 6879 * check all type of SA, because there is a potential that 6880 * one socket is registered to multiple type of SA. 6881 */ 6882 REGTREE_LOCK(); 6883 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6884 LIST_FOREACH(reg, &V_regtree[i], chain) { 6885 if (reg->so == so && __LIST_CHAINED(reg)) { 6886 LIST_REMOVE(reg, chain); 6887 free(reg, M_IPSEC_SAR); 6888 break; 6889 } 6890 } 6891 } 6892 REGTREE_UNLOCK(); 6893 } 6894 6895 /* 6896 * SADB_EXPIRE processing 6897 * send 6898 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6899 * to KMD by PF_KEY. 6900 * NOTE: We send only soft lifetime extension. 6901 * 6902 * OUT: 0 : succeed 6903 * others : error number 6904 */ 6905 static int 6906 key_expire(struct secasvar *sav) 6907 { 6908 int s; 6909 int satype; 6910 struct mbuf *result = NULL, *m; 6911 int len; 6912 int error = -1; 6913 struct sadb_lifetime *lt; 6914 6915 /* XXX: Why do we lock ? */ 6916 s = splnet(); /*called from softclock()*/ 6917 6918 IPSEC_ASSERT (sav != NULL, ("null sav")); 6919 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6920 6921 /* set msg header */ 6922 satype = key_proto2satype(sav->sah->saidx.proto); 6923 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6924 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6925 if (!m) { 6926 error = ENOBUFS; 6927 goto fail; 6928 } 6929 result = m; 6930 6931 /* create SA extension */ 6932 m = key_setsadbsa(sav); 6933 if (!m) { 6934 error = ENOBUFS; 6935 goto fail; 6936 } 6937 m_cat(result, m); 6938 6939 /* create SA extension */ 6940 m = key_setsadbxsa2(sav->sah->saidx.mode, 6941 sav->replay ? sav->replay->count : 0, 6942 sav->sah->saidx.reqid); 6943 if (!m) { 6944 error = ENOBUFS; 6945 goto fail; 6946 } 6947 m_cat(result, m); 6948 6949 /* create lifetime extension (current and soft) */ 6950 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6951 m = key_alloc_mbuf(len); 6952 if (!m || m->m_next) { /*XXX*/ 6953 if (m) 6954 m_freem(m); 6955 error = ENOBUFS; 6956 goto fail; 6957 } 6958 bzero(mtod(m, caddr_t), len); 6959 lt = mtod(m, struct sadb_lifetime *); 6960 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6961 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6962 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6963 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6964 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6965 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6966 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6967 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6968 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6969 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6970 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6971 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6972 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6973 m_cat(result, m); 6974 6975 /* set sadb_address for source */ 6976 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6977 &sav->sah->saidx.src.sa, 6978 FULLMASK, IPSEC_ULPROTO_ANY); 6979 if (!m) { 6980 error = ENOBUFS; 6981 goto fail; 6982 } 6983 m_cat(result, m); 6984 6985 /* set sadb_address for destination */ 6986 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6987 &sav->sah->saidx.dst.sa, 6988 FULLMASK, IPSEC_ULPROTO_ANY); 6989 if (!m) { 6990 error = ENOBUFS; 6991 goto fail; 6992 } 6993 m_cat(result, m); 6994 6995 /* 6996 * XXX-BZ Handle NAT-T extensions here. 6997 */ 6998 6999 if ((result->m_flags & M_PKTHDR) == 0) { 7000 error = EINVAL; 7001 goto fail; 7002 } 7003 7004 if (result->m_len < sizeof(struct sadb_msg)) { 7005 result = m_pullup(result, sizeof(struct sadb_msg)); 7006 if (result == NULL) { 7007 error = ENOBUFS; 7008 goto fail; 7009 } 7010 } 7011 7012 result->m_pkthdr.len = 0; 7013 for (m = result; m; m = m->m_next) 7014 result->m_pkthdr.len += m->m_len; 7015 7016 mtod(result, struct sadb_msg *)->sadb_msg_len = 7017 PFKEY_UNIT64(result->m_pkthdr.len); 7018 7019 splx(s); 7020 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7021 7022 fail: 7023 if (result) 7024 m_freem(result); 7025 splx(s); 7026 return error; 7027 } 7028 7029 /* 7030 * SADB_FLUSH processing 7031 * receive 7032 * <base> 7033 * from the ikmpd, and free all entries in secastree. 7034 * and send, 7035 * <base> 7036 * to the ikmpd. 7037 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7038 * 7039 * m will always be freed. 7040 */ 7041 static int 7042 key_flush(so, m, mhp) 7043 struct socket *so; 7044 struct mbuf *m; 7045 const struct sadb_msghdr *mhp; 7046 { 7047 struct sadb_msg *newmsg; 7048 struct secashead *sah, *nextsah; 7049 struct secasvar *sav, *nextsav; 7050 u_int16_t proto; 7051 u_int8_t state; 7052 u_int stateidx; 7053 7054 IPSEC_ASSERT(so != NULL, ("null socket")); 7055 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7056 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7057 7058 /* map satype to proto */ 7059 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7060 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7061 __func__)); 7062 return key_senderror(so, m, EINVAL); 7063 } 7064 7065 /* no SATYPE specified, i.e. flushing all SA. */ 7066 SAHTREE_LOCK(); 7067 for (sah = LIST_FIRST(&V_sahtree); 7068 sah != NULL; 7069 sah = nextsah) { 7070 nextsah = LIST_NEXT(sah, chain); 7071 7072 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7073 && proto != sah->saidx.proto) 7074 continue; 7075 7076 for (stateidx = 0; 7077 stateidx < _ARRAYLEN(saorder_state_alive); 7078 stateidx++) { 7079 state = saorder_state_any[stateidx]; 7080 for (sav = LIST_FIRST(&sah->savtree[state]); 7081 sav != NULL; 7082 sav = nextsav) { 7083 7084 nextsav = LIST_NEXT(sav, chain); 7085 7086 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7087 KEY_FREESAV(&sav); 7088 } 7089 } 7090 7091 sah->state = SADB_SASTATE_DEAD; 7092 } 7093 SAHTREE_UNLOCK(); 7094 7095 if (m->m_len < sizeof(struct sadb_msg) || 7096 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7097 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7098 return key_senderror(so, m, ENOBUFS); 7099 } 7100 7101 if (m->m_next) 7102 m_freem(m->m_next); 7103 m->m_next = NULL; 7104 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7105 newmsg = mtod(m, struct sadb_msg *); 7106 newmsg->sadb_msg_errno = 0; 7107 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7108 7109 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7110 } 7111 7112 /* 7113 * SADB_DUMP processing 7114 * dump all entries including status of DEAD in SAD. 7115 * receive 7116 * <base> 7117 * from the ikmpd, and dump all secasvar leaves 7118 * and send, 7119 * <base> ..... 7120 * to the ikmpd. 7121 * 7122 * m will always be freed. 7123 */ 7124 static int 7125 key_dump(so, m, mhp) 7126 struct socket *so; 7127 struct mbuf *m; 7128 const struct sadb_msghdr *mhp; 7129 { 7130 struct secashead *sah; 7131 struct secasvar *sav; 7132 u_int16_t proto; 7133 u_int stateidx; 7134 u_int8_t satype; 7135 u_int8_t state; 7136 int cnt; 7137 struct sadb_msg *newmsg; 7138 struct mbuf *n; 7139 7140 IPSEC_ASSERT(so != NULL, ("null socket")); 7141 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7142 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7143 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7144 7145 /* map satype to proto */ 7146 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7147 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7148 __func__)); 7149 return key_senderror(so, m, EINVAL); 7150 } 7151 7152 /* count sav entries to be sent to the userland. */ 7153 cnt = 0; 7154 SAHTREE_LOCK(); 7155 LIST_FOREACH(sah, &V_sahtree, chain) { 7156 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7157 && proto != sah->saidx.proto) 7158 continue; 7159 7160 for (stateidx = 0; 7161 stateidx < _ARRAYLEN(saorder_state_any); 7162 stateidx++) { 7163 state = saorder_state_any[stateidx]; 7164 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7165 cnt++; 7166 } 7167 } 7168 } 7169 7170 if (cnt == 0) { 7171 SAHTREE_UNLOCK(); 7172 return key_senderror(so, m, ENOENT); 7173 } 7174 7175 /* send this to the userland, one at a time. */ 7176 newmsg = NULL; 7177 LIST_FOREACH(sah, &V_sahtree, chain) { 7178 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7179 && proto != sah->saidx.proto) 7180 continue; 7181 7182 /* map proto to satype */ 7183 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7184 SAHTREE_UNLOCK(); 7185 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7186 "SAD.\n", __func__)); 7187 return key_senderror(so, m, EINVAL); 7188 } 7189 7190 for (stateidx = 0; 7191 stateidx < _ARRAYLEN(saorder_state_any); 7192 stateidx++) { 7193 state = saorder_state_any[stateidx]; 7194 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7195 n = key_setdumpsa(sav, SADB_DUMP, satype, 7196 --cnt, mhp->msg->sadb_msg_pid); 7197 if (!n) { 7198 SAHTREE_UNLOCK(); 7199 return key_senderror(so, m, ENOBUFS); 7200 } 7201 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7202 } 7203 } 7204 } 7205 SAHTREE_UNLOCK(); 7206 7207 m_freem(m); 7208 return 0; 7209 } 7210 7211 /* 7212 * SADB_X_PROMISC processing 7213 * 7214 * m will always be freed. 7215 */ 7216 static int 7217 key_promisc(so, m, mhp) 7218 struct socket *so; 7219 struct mbuf *m; 7220 const struct sadb_msghdr *mhp; 7221 { 7222 int olen; 7223 7224 IPSEC_ASSERT(so != NULL, ("null socket")); 7225 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7226 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7227 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7228 7229 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7230 7231 if (olen < sizeof(struct sadb_msg)) { 7232 #if 1 7233 return key_senderror(so, m, EINVAL); 7234 #else 7235 m_freem(m); 7236 return 0; 7237 #endif 7238 } else if (olen == sizeof(struct sadb_msg)) { 7239 /* enable/disable promisc mode */ 7240 struct keycb *kp; 7241 7242 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7243 return key_senderror(so, m, EINVAL); 7244 mhp->msg->sadb_msg_errno = 0; 7245 switch (mhp->msg->sadb_msg_satype) { 7246 case 0: 7247 case 1: 7248 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7249 break; 7250 default: 7251 return key_senderror(so, m, EINVAL); 7252 } 7253 7254 /* send the original message back to everyone */ 7255 mhp->msg->sadb_msg_errno = 0; 7256 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7257 } else { 7258 /* send packet as is */ 7259 7260 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7261 7262 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7263 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7264 } 7265 } 7266 7267 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7268 const struct sadb_msghdr *)) = { 7269 NULL, /* SADB_RESERVED */ 7270 key_getspi, /* SADB_GETSPI */ 7271 key_update, /* SADB_UPDATE */ 7272 key_add, /* SADB_ADD */ 7273 key_delete, /* SADB_DELETE */ 7274 key_get, /* SADB_GET */ 7275 key_acquire2, /* SADB_ACQUIRE */ 7276 key_register, /* SADB_REGISTER */ 7277 NULL, /* SADB_EXPIRE */ 7278 key_flush, /* SADB_FLUSH */ 7279 key_dump, /* SADB_DUMP */ 7280 key_promisc, /* SADB_X_PROMISC */ 7281 NULL, /* SADB_X_PCHANGE */ 7282 key_spdadd, /* SADB_X_SPDUPDATE */ 7283 key_spdadd, /* SADB_X_SPDADD */ 7284 key_spddelete, /* SADB_X_SPDDELETE */ 7285 key_spdget, /* SADB_X_SPDGET */ 7286 NULL, /* SADB_X_SPDACQUIRE */ 7287 key_spddump, /* SADB_X_SPDDUMP */ 7288 key_spdflush, /* SADB_X_SPDFLUSH */ 7289 key_spdadd, /* SADB_X_SPDSETIDX */ 7290 NULL, /* SADB_X_SPDEXPIRE */ 7291 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7292 }; 7293 7294 /* 7295 * parse sadb_msg buffer to process PFKEYv2, 7296 * and create a data to response if needed. 7297 * I think to be dealed with mbuf directly. 7298 * IN: 7299 * msgp : pointer to pointer to a received buffer pulluped. 7300 * This is rewrited to response. 7301 * so : pointer to socket. 7302 * OUT: 7303 * length for buffer to send to user process. 7304 */ 7305 int 7306 key_parse(m, so) 7307 struct mbuf *m; 7308 struct socket *so; 7309 { 7310 struct sadb_msg *msg; 7311 struct sadb_msghdr mh; 7312 u_int orglen; 7313 int error; 7314 int target; 7315 7316 IPSEC_ASSERT(so != NULL, ("null socket")); 7317 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7318 7319 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7320 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7321 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7322 kdebug_sadb(msg)); 7323 #endif 7324 7325 if (m->m_len < sizeof(struct sadb_msg)) { 7326 m = m_pullup(m, sizeof(struct sadb_msg)); 7327 if (!m) 7328 return ENOBUFS; 7329 } 7330 msg = mtod(m, struct sadb_msg *); 7331 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7332 target = KEY_SENDUP_ONE; 7333 7334 if ((m->m_flags & M_PKTHDR) == 0 || 7335 m->m_pkthdr.len != m->m_pkthdr.len) { 7336 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7337 V_pfkeystat.out_invlen++; 7338 error = EINVAL; 7339 goto senderror; 7340 } 7341 7342 if (msg->sadb_msg_version != PF_KEY_V2) { 7343 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7344 __func__, msg->sadb_msg_version)); 7345 V_pfkeystat.out_invver++; 7346 error = EINVAL; 7347 goto senderror; 7348 } 7349 7350 if (msg->sadb_msg_type > SADB_MAX) { 7351 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7352 __func__, msg->sadb_msg_type)); 7353 V_pfkeystat.out_invmsgtype++; 7354 error = EINVAL; 7355 goto senderror; 7356 } 7357 7358 /* for old-fashioned code - should be nuked */ 7359 if (m->m_pkthdr.len > MCLBYTES) { 7360 m_freem(m); 7361 return ENOBUFS; 7362 } 7363 if (m->m_next) { 7364 struct mbuf *n; 7365 7366 MGETHDR(n, M_DONTWAIT, MT_DATA); 7367 if (n && m->m_pkthdr.len > MHLEN) { 7368 MCLGET(n, M_DONTWAIT); 7369 if ((n->m_flags & M_EXT) == 0) { 7370 m_free(n); 7371 n = NULL; 7372 } 7373 } 7374 if (!n) { 7375 m_freem(m); 7376 return ENOBUFS; 7377 } 7378 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7379 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7380 n->m_next = NULL; 7381 m_freem(m); 7382 m = n; 7383 } 7384 7385 /* align the mbuf chain so that extensions are in contiguous region. */ 7386 error = key_align(m, &mh); 7387 if (error) 7388 return error; 7389 7390 msg = mh.msg; 7391 7392 /* check SA type */ 7393 switch (msg->sadb_msg_satype) { 7394 case SADB_SATYPE_UNSPEC: 7395 switch (msg->sadb_msg_type) { 7396 case SADB_GETSPI: 7397 case SADB_UPDATE: 7398 case SADB_ADD: 7399 case SADB_DELETE: 7400 case SADB_GET: 7401 case SADB_ACQUIRE: 7402 case SADB_EXPIRE: 7403 ipseclog((LOG_DEBUG, "%s: must specify satype " 7404 "when msg type=%u.\n", __func__, 7405 msg->sadb_msg_type)); 7406 V_pfkeystat.out_invsatype++; 7407 error = EINVAL; 7408 goto senderror; 7409 } 7410 break; 7411 case SADB_SATYPE_AH: 7412 case SADB_SATYPE_ESP: 7413 case SADB_X_SATYPE_IPCOMP: 7414 case SADB_X_SATYPE_TCPSIGNATURE: 7415 switch (msg->sadb_msg_type) { 7416 case SADB_X_SPDADD: 7417 case SADB_X_SPDDELETE: 7418 case SADB_X_SPDGET: 7419 case SADB_X_SPDDUMP: 7420 case SADB_X_SPDFLUSH: 7421 case SADB_X_SPDSETIDX: 7422 case SADB_X_SPDUPDATE: 7423 case SADB_X_SPDDELETE2: 7424 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7425 __func__, msg->sadb_msg_type)); 7426 V_pfkeystat.out_invsatype++; 7427 error = EINVAL; 7428 goto senderror; 7429 } 7430 break; 7431 case SADB_SATYPE_RSVP: 7432 case SADB_SATYPE_OSPFV2: 7433 case SADB_SATYPE_RIPV2: 7434 case SADB_SATYPE_MIP: 7435 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7436 __func__, msg->sadb_msg_satype)); 7437 V_pfkeystat.out_invsatype++; 7438 error = EOPNOTSUPP; 7439 goto senderror; 7440 case 1: /* XXX: What does it do? */ 7441 if (msg->sadb_msg_type == SADB_X_PROMISC) 7442 break; 7443 /*FALLTHROUGH*/ 7444 default: 7445 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7446 __func__, msg->sadb_msg_satype)); 7447 V_pfkeystat.out_invsatype++; 7448 error = EINVAL; 7449 goto senderror; 7450 } 7451 7452 /* check field of upper layer protocol and address family */ 7453 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7454 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7455 struct sadb_address *src0, *dst0; 7456 u_int plen; 7457 7458 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7459 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7460 7461 /* check upper layer protocol */ 7462 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7463 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7464 "mismatched.\n", __func__)); 7465 V_pfkeystat.out_invaddr++; 7466 error = EINVAL; 7467 goto senderror; 7468 } 7469 7470 /* check family */ 7471 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7472 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7473 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7474 __func__)); 7475 V_pfkeystat.out_invaddr++; 7476 error = EINVAL; 7477 goto senderror; 7478 } 7479 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7480 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7481 ipseclog((LOG_DEBUG, "%s: address struct size " 7482 "mismatched.\n", __func__)); 7483 V_pfkeystat.out_invaddr++; 7484 error = EINVAL; 7485 goto senderror; 7486 } 7487 7488 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7489 case AF_INET: 7490 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7491 sizeof(struct sockaddr_in)) { 7492 V_pfkeystat.out_invaddr++; 7493 error = EINVAL; 7494 goto senderror; 7495 } 7496 break; 7497 case AF_INET6: 7498 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7499 sizeof(struct sockaddr_in6)) { 7500 V_pfkeystat.out_invaddr++; 7501 error = EINVAL; 7502 goto senderror; 7503 } 7504 break; 7505 default: 7506 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7507 __func__)); 7508 V_pfkeystat.out_invaddr++; 7509 error = EAFNOSUPPORT; 7510 goto senderror; 7511 } 7512 7513 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7514 case AF_INET: 7515 plen = sizeof(struct in_addr) << 3; 7516 break; 7517 case AF_INET6: 7518 plen = sizeof(struct in6_addr) << 3; 7519 break; 7520 default: 7521 plen = 0; /*fool gcc*/ 7522 break; 7523 } 7524 7525 /* check max prefix length */ 7526 if (src0->sadb_address_prefixlen > plen || 7527 dst0->sadb_address_prefixlen > plen) { 7528 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7529 __func__)); 7530 V_pfkeystat.out_invaddr++; 7531 error = EINVAL; 7532 goto senderror; 7533 } 7534 7535 /* 7536 * prefixlen == 0 is valid because there can be a case when 7537 * all addresses are matched. 7538 */ 7539 } 7540 7541 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7542 key_typesw[msg->sadb_msg_type] == NULL) { 7543 V_pfkeystat.out_invmsgtype++; 7544 error = EINVAL; 7545 goto senderror; 7546 } 7547 7548 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7549 7550 senderror: 7551 msg->sadb_msg_errno = error; 7552 return key_sendup_mbuf(so, m, target); 7553 } 7554 7555 static int 7556 key_senderror(so, m, code) 7557 struct socket *so; 7558 struct mbuf *m; 7559 int code; 7560 { 7561 struct sadb_msg *msg; 7562 7563 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7564 ("mbuf too small, len %u", m->m_len)); 7565 7566 msg = mtod(m, struct sadb_msg *); 7567 msg->sadb_msg_errno = code; 7568 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7569 } 7570 7571 /* 7572 * set the pointer to each header into message buffer. 7573 * m will be freed on error. 7574 * XXX larger-than-MCLBYTES extension? 7575 */ 7576 static int 7577 key_align(m, mhp) 7578 struct mbuf *m; 7579 struct sadb_msghdr *mhp; 7580 { 7581 struct mbuf *n; 7582 struct sadb_ext *ext; 7583 size_t off, end; 7584 int extlen; 7585 int toff; 7586 7587 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7588 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7589 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7590 ("mbuf too small, len %u", m->m_len)); 7591 7592 /* initialize */ 7593 bzero(mhp, sizeof(*mhp)); 7594 7595 mhp->msg = mtod(m, struct sadb_msg *); 7596 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7597 7598 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7599 extlen = end; /*just in case extlen is not updated*/ 7600 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7601 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7602 if (!n) { 7603 /* m is already freed */ 7604 return ENOBUFS; 7605 } 7606 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7607 7608 /* set pointer */ 7609 switch (ext->sadb_ext_type) { 7610 case SADB_EXT_SA: 7611 case SADB_EXT_ADDRESS_SRC: 7612 case SADB_EXT_ADDRESS_DST: 7613 case SADB_EXT_ADDRESS_PROXY: 7614 case SADB_EXT_LIFETIME_CURRENT: 7615 case SADB_EXT_LIFETIME_HARD: 7616 case SADB_EXT_LIFETIME_SOFT: 7617 case SADB_EXT_KEY_AUTH: 7618 case SADB_EXT_KEY_ENCRYPT: 7619 case SADB_EXT_IDENTITY_SRC: 7620 case SADB_EXT_IDENTITY_DST: 7621 case SADB_EXT_SENSITIVITY: 7622 case SADB_EXT_PROPOSAL: 7623 case SADB_EXT_SUPPORTED_AUTH: 7624 case SADB_EXT_SUPPORTED_ENCRYPT: 7625 case SADB_EXT_SPIRANGE: 7626 case SADB_X_EXT_POLICY: 7627 case SADB_X_EXT_SA2: 7628 #ifdef IPSEC_NAT_T 7629 case SADB_X_EXT_NAT_T_TYPE: 7630 case SADB_X_EXT_NAT_T_SPORT: 7631 case SADB_X_EXT_NAT_T_DPORT: 7632 case SADB_X_EXT_NAT_T_OAI: 7633 case SADB_X_EXT_NAT_T_OAR: 7634 case SADB_X_EXT_NAT_T_FRAG: 7635 #endif 7636 /* duplicate check */ 7637 /* 7638 * XXX Are there duplication payloads of either 7639 * KEY_AUTH or KEY_ENCRYPT ? 7640 */ 7641 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7642 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7643 "%u\n", __func__, ext->sadb_ext_type)); 7644 m_freem(m); 7645 V_pfkeystat.out_dupext++; 7646 return EINVAL; 7647 } 7648 break; 7649 default: 7650 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7651 __func__, ext->sadb_ext_type)); 7652 m_freem(m); 7653 V_pfkeystat.out_invexttype++; 7654 return EINVAL; 7655 } 7656 7657 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7658 7659 if (key_validate_ext(ext, extlen)) { 7660 m_freem(m); 7661 V_pfkeystat.out_invlen++; 7662 return EINVAL; 7663 } 7664 7665 n = m_pulldown(m, off, extlen, &toff); 7666 if (!n) { 7667 /* m is already freed */ 7668 return ENOBUFS; 7669 } 7670 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7671 7672 mhp->ext[ext->sadb_ext_type] = ext; 7673 mhp->extoff[ext->sadb_ext_type] = off; 7674 mhp->extlen[ext->sadb_ext_type] = extlen; 7675 } 7676 7677 if (off != end) { 7678 m_freem(m); 7679 V_pfkeystat.out_invlen++; 7680 return EINVAL; 7681 } 7682 7683 return 0; 7684 } 7685 7686 static int 7687 key_validate_ext(ext, len) 7688 const struct sadb_ext *ext; 7689 int len; 7690 { 7691 const struct sockaddr *sa; 7692 enum { NONE, ADDR } checktype = NONE; 7693 int baselen = 0; 7694 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7695 7696 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7697 return EINVAL; 7698 7699 /* if it does not match minimum/maximum length, bail */ 7700 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7701 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7702 return EINVAL; 7703 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7704 return EINVAL; 7705 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7706 return EINVAL; 7707 7708 /* more checks based on sadb_ext_type XXX need more */ 7709 switch (ext->sadb_ext_type) { 7710 case SADB_EXT_ADDRESS_SRC: 7711 case SADB_EXT_ADDRESS_DST: 7712 case SADB_EXT_ADDRESS_PROXY: 7713 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7714 checktype = ADDR; 7715 break; 7716 case SADB_EXT_IDENTITY_SRC: 7717 case SADB_EXT_IDENTITY_DST: 7718 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7719 SADB_X_IDENTTYPE_ADDR) { 7720 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7721 checktype = ADDR; 7722 } else 7723 checktype = NONE; 7724 break; 7725 default: 7726 checktype = NONE; 7727 break; 7728 } 7729 7730 switch (checktype) { 7731 case NONE: 7732 break; 7733 case ADDR: 7734 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7735 if (len < baselen + sal) 7736 return EINVAL; 7737 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7738 return EINVAL; 7739 break; 7740 } 7741 7742 return 0; 7743 } 7744 7745 void 7746 key_init(void) 7747 { 7748 int i; 7749 7750 for (i = 0; i < IPSEC_DIR_MAX; i++) 7751 LIST_INIT(&V_sptree[i]); 7752 7753 LIST_INIT(&V_sahtree); 7754 7755 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7756 LIST_INIT(&V_regtree[i]); 7757 7758 LIST_INIT(&V_acqtree); 7759 LIST_INIT(&V_spacqtree); 7760 7761 /* system default */ 7762 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7763 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7764 7765 if (!IS_DEFAULT_VNET(curvnet)) 7766 return; 7767 7768 SPTREE_LOCK_INIT(); 7769 REGTREE_LOCK_INIT(); 7770 SAHTREE_LOCK_INIT(); 7771 ACQ_LOCK_INIT(); 7772 SPACQ_LOCK_INIT(); 7773 7774 #ifndef IPSEC_DEBUG2 7775 timeout((void *)key_timehandler, (void *)0, hz); 7776 #endif /*IPSEC_DEBUG2*/ 7777 7778 /* initialize key statistics */ 7779 keystat.getspi_count = 1; 7780 7781 printf("IPsec: Initialized Security Association Processing.\n"); 7782 } 7783 7784 #ifdef VIMAGE 7785 void 7786 key_destroy(void) 7787 { 7788 struct secpolicy *sp, *nextsp; 7789 struct secacq *acq, *nextacq; 7790 struct secspacq *spacq, *nextspacq; 7791 struct secashead *sah, *nextsah; 7792 struct secreg *reg; 7793 int i; 7794 7795 SPTREE_LOCK(); 7796 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7797 for (sp = LIST_FIRST(&V_sptree[i]); 7798 sp != NULL; sp = nextsp) { 7799 nextsp = LIST_NEXT(sp, chain); 7800 if (__LIST_CHAINED(sp)) { 7801 LIST_REMOVE(sp, chain); 7802 free(sp, M_IPSEC_SP); 7803 } 7804 } 7805 } 7806 SPTREE_UNLOCK(); 7807 7808 SAHTREE_LOCK(); 7809 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7810 nextsah = LIST_NEXT(sah, chain); 7811 if (__LIST_CHAINED(sah)) { 7812 LIST_REMOVE(sah, chain); 7813 free(sah, M_IPSEC_SAH); 7814 } 7815 } 7816 SAHTREE_UNLOCK(); 7817 7818 REGTREE_LOCK(); 7819 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7820 LIST_FOREACH(reg, &V_regtree[i], chain) { 7821 if (__LIST_CHAINED(reg)) { 7822 LIST_REMOVE(reg, chain); 7823 free(reg, M_IPSEC_SAR); 7824 break; 7825 } 7826 } 7827 } 7828 REGTREE_UNLOCK(); 7829 7830 ACQ_LOCK(); 7831 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7832 nextacq = LIST_NEXT(acq, chain); 7833 if (__LIST_CHAINED(acq)) { 7834 LIST_REMOVE(acq, chain); 7835 free(acq, M_IPSEC_SAQ); 7836 } 7837 } 7838 ACQ_UNLOCK(); 7839 7840 SPACQ_LOCK(); 7841 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7842 spacq = nextspacq) { 7843 nextspacq = LIST_NEXT(spacq, chain); 7844 if (__LIST_CHAINED(spacq)) { 7845 LIST_REMOVE(spacq, chain); 7846 free(spacq, M_IPSEC_SAQ); 7847 } 7848 } 7849 SPACQ_UNLOCK(); 7850 } 7851 #endif 7852 7853 /* 7854 * XXX: maybe This function is called after INBOUND IPsec processing. 7855 * 7856 * Special check for tunnel-mode packets. 7857 * We must make some checks for consistency between inner and outer IP header. 7858 * 7859 * xxx more checks to be provided 7860 */ 7861 int 7862 key_checktunnelsanity(sav, family, src, dst) 7863 struct secasvar *sav; 7864 u_int family; 7865 caddr_t src; 7866 caddr_t dst; 7867 { 7868 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7869 7870 /* XXX: check inner IP header */ 7871 7872 return 1; 7873 } 7874 7875 /* record data transfer on SA, and update timestamps */ 7876 void 7877 key_sa_recordxfer(sav, m) 7878 struct secasvar *sav; 7879 struct mbuf *m; 7880 { 7881 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7882 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7883 if (!sav->lft_c) 7884 return; 7885 7886 /* 7887 * XXX Currently, there is a difference of bytes size 7888 * between inbound and outbound processing. 7889 */ 7890 sav->lft_c->bytes += m->m_pkthdr.len; 7891 /* to check bytes lifetime is done in key_timehandler(). */ 7892 7893 /* 7894 * We use the number of packets as the unit of 7895 * allocations. We increment the variable 7896 * whenever {esp,ah}_{in,out}put is called. 7897 */ 7898 sav->lft_c->allocations++; 7899 /* XXX check for expires? */ 7900 7901 /* 7902 * NOTE: We record CURRENT usetime by using wall clock, 7903 * in seconds. HARD and SOFT lifetime are measured by the time 7904 * difference (again in seconds) from usetime. 7905 * 7906 * usetime 7907 * v expire expire 7908 * -----+-----+--------+---> t 7909 * <--------------> HARD 7910 * <-----> SOFT 7911 */ 7912 sav->lft_c->usetime = time_second; 7913 /* XXX check for expires? */ 7914 7915 return; 7916 } 7917 7918 /* dumb version */ 7919 void 7920 key_sa_routechange(dst) 7921 struct sockaddr *dst; 7922 { 7923 struct secashead *sah; 7924 struct route *ro; 7925 7926 SAHTREE_LOCK(); 7927 LIST_FOREACH(sah, &V_sahtree, chain) { 7928 ro = &sah->route_cache.sa_route; 7929 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7930 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7931 RTFREE(ro->ro_rt); 7932 ro->ro_rt = (struct rtentry *)NULL; 7933 } 7934 } 7935 SAHTREE_UNLOCK(); 7936 } 7937 7938 static void 7939 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7940 { 7941 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7942 SAHTREE_LOCK_ASSERT(); 7943 7944 if (sav->state != state) { 7945 if (__LIST_CHAINED(sav)) 7946 LIST_REMOVE(sav, chain); 7947 sav->state = state; 7948 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7949 } 7950 } 7951 7952 void 7953 key_sa_stir_iv(sav) 7954 struct secasvar *sav; 7955 { 7956 7957 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7958 key_randomfill(sav->iv, sav->ivlen); 7959 } 7960 7961 /* XXX too much? */ 7962 static struct mbuf * 7963 key_alloc_mbuf(l) 7964 int l; 7965 { 7966 struct mbuf *m = NULL, *n; 7967 int len, t; 7968 7969 len = l; 7970 while (len > 0) { 7971 MGET(n, M_DONTWAIT, MT_DATA); 7972 if (n && len > MLEN) 7973 MCLGET(n, M_DONTWAIT); 7974 if (!n) { 7975 m_freem(m); 7976 return NULL; 7977 } 7978 7979 n->m_next = NULL; 7980 n->m_len = 0; 7981 n->m_len = M_TRAILINGSPACE(n); 7982 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7983 if (n->m_len > len) { 7984 t = (n->m_len - len) & ~(sizeof(long) - 1); 7985 n->m_data += t; 7986 n->m_len = len; 7987 } 7988 7989 len -= n->m_len; 7990 7991 if (m) 7992 m_cat(m, n); 7993 else 7994 m = n; 7995 } 7996 7997 return m; 7998 } 7999 8000 /* 8001 * Take one of the kernel's security keys and convert it into a PF_KEY 8002 * structure within an mbuf, suitable for sending up to a waiting 8003 * application in user land. 8004 * 8005 * IN: 8006 * src: A pointer to a kernel security key. 8007 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8008 * OUT: 8009 * a valid mbuf or NULL indicating an error 8010 * 8011 */ 8012 8013 static struct mbuf * 8014 key_setkey(struct seckey *src, u_int16_t exttype) 8015 { 8016 struct mbuf *m; 8017 struct sadb_key *p; 8018 int len; 8019 8020 if (src == NULL) 8021 return NULL; 8022 8023 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8024 m = key_alloc_mbuf(len); 8025 if (m == NULL) 8026 return NULL; 8027 p = mtod(m, struct sadb_key *); 8028 bzero(p, len); 8029 p->sadb_key_len = PFKEY_UNIT64(len); 8030 p->sadb_key_exttype = exttype; 8031 p->sadb_key_bits = src->bits; 8032 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8033 8034 return m; 8035 } 8036 8037 /* 8038 * Take one of the kernel's lifetime data structures and convert it 8039 * into a PF_KEY structure within an mbuf, suitable for sending up to 8040 * a waiting application in user land. 8041 * 8042 * IN: 8043 * src: A pointer to a kernel lifetime structure. 8044 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8045 * data structures for more information. 8046 * OUT: 8047 * a valid mbuf or NULL indicating an error 8048 * 8049 */ 8050 8051 static struct mbuf * 8052 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 8053 { 8054 struct mbuf *m = NULL; 8055 struct sadb_lifetime *p; 8056 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8057 8058 if (src == NULL) 8059 return NULL; 8060 8061 m = key_alloc_mbuf(len); 8062 if (m == NULL) 8063 return m; 8064 p = mtod(m, struct sadb_lifetime *); 8065 8066 bzero(p, len); 8067 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8068 p->sadb_lifetime_exttype = exttype; 8069 p->sadb_lifetime_allocations = src->allocations; 8070 p->sadb_lifetime_bytes = src->bytes; 8071 p->sadb_lifetime_addtime = src->addtime; 8072 p->sadb_lifetime_usetime = src->usetime; 8073 8074 return m; 8075 8076 } 8077