xref: /freebsd/sys/netipsec/key.c (revision 0e1497aefd602cea581d2380d22e67dfdcac6b4e)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/route.h>
62 #include <net/raw_cb.h>
63 #include <net/vnet.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #endif
79 #ifdef INET6
80 #include <netinet6/in6_pcb.h>
81 #endif /* INET6 */
82 
83 #include <net/pfkeyv2.h>
84 #include <netipsec/keydb.h>
85 #include <netipsec/key.h>
86 #include <netipsec/keysock.h>
87 #include <netipsec/key_debug.h>
88 
89 #include <netipsec/ipsec.h>
90 #ifdef INET6
91 #include <netipsec/ipsec6.h>
92 #endif
93 
94 #include <netipsec/xform.h>
95 
96 #include <machine/stdarg.h>
97 
98 /* randomness */
99 #include <sys/random.h>
100 
101 #define FULLMASK	0xff
102 #define	_BITS(bytes)	((bytes) << 3)
103 
104 /*
105  * Note on SA reference counting:
106  * - SAs that are not in DEAD state will have (total external reference + 1)
107  *   following value in reference count field.  they cannot be freed and are
108  *   referenced from SA header.
109  * - SAs that are in DEAD state will have (total external reference)
110  *   in reference count field.  they are ready to be freed.  reference from
111  *   SA header will be removed in key_delsav(), when the reference count
112  *   field hits 0 (= no external reference other than from SA header.
113  */
114 
115 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
119 static VNET_DEFINE(u_int32_t, policy_id) = 0;
120 /*interval to initialize randseed,1(m)*/
121 static VNET_DEFINE(u_int, key_int_random) = 60;
122 /* interval to expire acquiring, 30(s)*/
123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124 /* counter for blocking SADB_ACQUIRE.*/
125 static VNET_DEFINE(int, key_blockacq_count) = 10;
126 /* lifetime for blocking SADB_ACQUIRE.*/
127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128 /* preferred old sa rather than new sa.*/
129 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
131 #define	V_key_spi_minval	VNET(key_spi_minval)
132 #define	V_key_spi_maxval	VNET(key_spi_maxval)
133 #define	V_policy_id		VNET(policy_id)
134 #define	V_key_int_random	VNET(key_int_random)
135 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
136 #define	V_key_blockacq_count	VNET(key_blockacq_count)
137 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
138 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139 
140 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141 #define	V_acq_seq		VNET(acq_seq)
142 
143 								/* SPD */
144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145 #define	V_sptree		VNET(sptree)
146 static struct mtx sptree_lock;
147 #define	SPTREE_LOCK_INIT() \
148 	mtx_init(&sptree_lock, "sptree", \
149 		"fast ipsec security policy database", MTX_DEF)
150 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154 
155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156 #define	V_sahtree		VNET(sahtree)
157 static struct mtx sahtree_lock;
158 #define	SAHTREE_LOCK_INIT() \
159 	mtx_init(&sahtree_lock, "sahtree", \
160 		"fast ipsec security association database", MTX_DEF)
161 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165 
166 							/* registed list */
167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168 #define	V_regtree		VNET(regtree)
169 static struct mtx regtree_lock;
170 #define	REGTREE_LOCK_INIT() \
171 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176 
177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178 #define	V_acqtree		VNET(acqtree)
179 static struct mtx acq_lock;
180 #define	ACQ_LOCK_INIT() \
181 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
184 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186 
187 							/* SP acquiring list */
188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189 #define	V_spacqtree		VNET(spacqtree)
190 static struct mtx spacq_lock;
191 #define	SPACQ_LOCK_INIT() \
192 	mtx_init(&spacq_lock, "spacqtree", \
193 		"fast ipsec security policy acquire list", MTX_DEF)
194 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198 
199 /* search order for SAs */
200 static const u_int saorder_state_valid_prefer_old[] = {
201 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202 };
203 static const u_int saorder_state_valid_prefer_new[] = {
204 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205 };
206 static const u_int saorder_state_alive[] = {
207 	/* except DEAD */
208 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209 };
210 static const u_int saorder_state_any[] = {
211 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213 };
214 
215 static const int minsize[] = {
216 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233 	0,				/* SADB_X_EXT_KMPRIVATE */
234 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242 };
243 static const int maxsize[] = {
244 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249 	0,				/* SADB_EXT_ADDRESS_SRC */
250 	0,				/* SADB_EXT_ADDRESS_DST */
251 	0,				/* SADB_EXT_ADDRESS_PROXY */
252 	0,				/* SADB_EXT_KEY_AUTH */
253 	0,				/* SADB_EXT_KEY_ENCRYPT */
254 	0,				/* SADB_EXT_IDENTITY_SRC */
255 	0,				/* SADB_EXT_IDENTITY_DST */
256 	0,				/* SADB_EXT_SENSITIVITY */
257 	0,				/* SADB_EXT_PROPOSAL */
258 	0,				/* SADB_EXT_SUPPORTED_AUTH */
259 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261 	0,				/* SADB_X_EXT_KMPRIVATE */
262 	0,				/* SADB_X_EXT_POLICY */
263 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 	0,				/* SADB_X_EXT_NAT_T_OAI */
268 	0,				/* SADB_X_EXT_NAT_T_OAR */
269 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270 };
271 
272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275 
276 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
277 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
278 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
279 
280 #ifdef SYSCTL_DECL
281 SYSCTL_DECL(_net_key);
282 #endif
283 
284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
285 	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
286 
287 /* max count of trial for the decision of spi value */
288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
290 
291 /* minimum spi value to allocate automatically. */
292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293 	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
294 
295 /* maximun spi value to allocate automatically. */
296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297 	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
298 
299 /* interval to initialize randseed */
300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301 	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
302 
303 /* lifetime for larval SA */
304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305 	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
306 
307 /* counter for blocking to send SADB_ACQUIRE to IKEd */
308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309 	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
310 
311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313 	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314 
315 /* ESP auth */
316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
317 	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
318 
319 /* minimum ESP key length */
320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321 	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
322 
323 /* minimum AH key length */
324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
325 	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
326 
327 /* perfered old SA rather than new SA */
328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329 	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
330 
331 #define __LIST_CHAINED(elm) \
332 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333 #define LIST_INSERT_TAIL(head, elm, type, field) \
334 do {\
335 	struct type *curelm = LIST_FIRST(head); \
336 	if (curelm == NULL) {\
337 		LIST_INSERT_HEAD(head, elm, field); \
338 	} else { \
339 		while (LIST_NEXT(curelm, field)) \
340 			curelm = LIST_NEXT(curelm, field);\
341 		LIST_INSERT_AFTER(curelm, elm, field);\
342 	}\
343 } while (0)
344 
345 #define KEY_CHKSASTATE(head, sav, name) \
346 do { \
347 	if ((head) != (sav)) {						\
348 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 			(name), (head), (sav)));			\
350 		continue;						\
351 	}								\
352 } while (0)
353 
354 #define KEY_CHKSPDIR(head, sp, name) \
355 do { \
356 	if ((head) != (sp)) {						\
357 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 			"anyway continue.\n",				\
359 			(name), (head), (sp)));				\
360 	}								\
361 } while (0)
362 
363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370 
371 /*
372  * set parameters into secpolicyindex buffer.
373  * Must allocate secpolicyindex buffer passed to this function.
374  */
375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376 do { \
377 	bzero((idx), sizeof(struct secpolicyindex));                         \
378 	(idx)->dir = (_dir);                                                 \
379 	(idx)->prefs = (ps);                                                 \
380 	(idx)->prefd = (pd);                                                 \
381 	(idx)->ul_proto = (ulp);                                             \
382 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
383 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
384 } while (0)
385 
386 /*
387  * set parameters into secasindex buffer.
388  * Must allocate secasindex buffer before calling this function.
389  */
390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391 do { \
392 	bzero((idx), sizeof(struct secasindex));                             \
393 	(idx)->proto = (p);                                                  \
394 	(idx)->mode = (m);                                                   \
395 	(idx)->reqid = (r);                                                  \
396 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
397 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
398 } while (0)
399 
400 /* key statistics */
401 struct _keystat {
402 	u_long getspi_count; /* the avarage of count to try to get new SPI */
403 } keystat;
404 
405 struct sadb_msghdr {
406 	struct sadb_msg *msg;
407 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 	int extoff[SADB_EXT_MAX + 1];
409 	int extlen[SADB_EXT_MAX + 1];
410 };
411 
412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413 static void key_freesp_so __P((struct secpolicy **));
414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415 static void key_delsp __P((struct secpolicy *));
416 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417 static void _key_delsp(struct secpolicy *sp);
418 static struct secpolicy *key_getspbyid __P((u_int32_t));
419 static u_int32_t key_newreqid __P((void));
420 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421 	const struct sadb_msghdr *, int, int, ...));
422 static int key_spdadd __P((struct socket *, struct mbuf *,
423 	const struct sadb_msghdr *));
424 static u_int32_t key_getnewspid __P((void));
425 static int key_spddelete __P((struct socket *, struct mbuf *,
426 	const struct sadb_msghdr *));
427 static int key_spddelete2 __P((struct socket *, struct mbuf *,
428 	const struct sadb_msghdr *));
429 static int key_spdget __P((struct socket *, struct mbuf *,
430 	const struct sadb_msghdr *));
431 static int key_spdflush __P((struct socket *, struct mbuf *,
432 	const struct sadb_msghdr *));
433 static int key_spddump __P((struct socket *, struct mbuf *,
434 	const struct sadb_msghdr *));
435 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436 	u_int8_t, u_int32_t, u_int32_t));
437 static u_int key_getspreqmsglen __P((struct secpolicy *));
438 static int key_spdexpire __P((struct secpolicy *));
439 static struct secashead *key_newsah __P((struct secasindex *));
440 static void key_delsah __P((struct secashead *));
441 static struct secasvar *key_newsav __P((struct mbuf *,
442 	const struct sadb_msghdr *, struct secashead *, int *,
443 	const char*, int));
444 #define	KEY_NEWSAV(m, sadb, sah, e)				\
445 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446 static void key_delsav __P((struct secasvar *));
447 static struct secashead *key_getsah __P((struct secasindex *));
448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450 static int key_setsaval __P((struct secasvar *, struct mbuf *,
451 	const struct sadb_msghdr *));
452 static int key_mature __P((struct secasvar *));
453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454 	u_int8_t, u_int32_t, u_int32_t));
455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456 	u_int32_t, pid_t, u_int16_t));
457 static struct mbuf *key_setsadbsa __P((struct secasvar *));
458 static struct mbuf *key_setsadbaddr __P((u_int16_t,
459 	const struct sockaddr *, u_int8_t, u_int16_t));
460 #ifdef IPSEC_NAT_T
461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462 static struct mbuf *key_setsadbxtype(u_int16_t);
463 #endif
464 static void key_porttosaddr(struct sockaddr *, u_int16_t);
465 #define	KEY_PORTTOSADDR(saddr, port)				\
466 	key_porttosaddr((struct sockaddr *)(saddr), (port))
467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469 	u_int32_t));
470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471 				     struct malloc_type *);
472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473 					    struct malloc_type *type);
474 #ifdef INET6
475 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476 #endif
477 
478 /* flags for key_cmpsaidx() */
479 #define CMP_HEAD	1	/* protocol, addresses. */
480 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
481 #define CMP_REQID	3	/* additionally HEAD, reaid. */
482 #define CMP_EXACTLY	4	/* all elements. */
483 static int key_cmpsaidx
484 	__P((const struct secasindex *, const struct secasindex *, int));
485 
486 static int key_cmpspidx_exactly
487 	__P((struct secpolicyindex *, struct secpolicyindex *));
488 static int key_cmpspidx_withmask
489 	__P((struct secpolicyindex *, struct secpolicyindex *));
490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491 static int key_bbcmp __P((const void *, const void *, u_int));
492 static u_int16_t key_satype2proto __P((u_int8_t));
493 static u_int8_t key_proto2satype __P((u_int16_t));
494 
495 static int key_getspi __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498 					struct secasindex *));
499 static int key_update __P((struct socket *, struct mbuf *,
500 	const struct sadb_msghdr *));
501 #ifdef IPSEC_DOSEQCHECK
502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503 #endif
504 static int key_add __P((struct socket *, struct mbuf *,
505 	const struct sadb_msghdr *));
506 static int key_setident __P((struct secashead *, struct mbuf *,
507 	const struct sadb_msghdr *));
508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509 	const struct sadb_msghdr *));
510 static int key_delete __P((struct socket *, struct mbuf *,
511 	const struct sadb_msghdr *));
512 static int key_get __P((struct socket *, struct mbuf *,
513 	const struct sadb_msghdr *));
514 
515 static void key_getcomb_setlifetime __P((struct sadb_comb *));
516 static struct mbuf *key_getcomb_esp __P((void));
517 static struct mbuf *key_getcomb_ah __P((void));
518 static struct mbuf *key_getcomb_ipcomp __P((void));
519 static struct mbuf *key_getprop __P((const struct secasindex *));
520 
521 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522 static struct secacq *key_newacq __P((const struct secasindex *));
523 static struct secacq *key_getacq __P((const struct secasindex *));
524 static struct secacq *key_getacqbyseq __P((u_int32_t));
525 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527 static int key_acquire2 __P((struct socket *, struct mbuf *,
528 	const struct sadb_msghdr *));
529 static int key_register __P((struct socket *, struct mbuf *,
530 	const struct sadb_msghdr *));
531 static int key_expire __P((struct secasvar *));
532 static int key_flush __P((struct socket *, struct mbuf *,
533 	const struct sadb_msghdr *));
534 static int key_dump __P((struct socket *, struct mbuf *,
535 	const struct sadb_msghdr *));
536 static int key_promisc __P((struct socket *, struct mbuf *,
537 	const struct sadb_msghdr *));
538 static int key_senderror __P((struct socket *, struct mbuf *, int));
539 static int key_validate_ext __P((const struct sadb_ext *, int));
540 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541 static struct mbuf *key_setlifetime(struct seclifetime *src,
542 				     u_int16_t exttype);
543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544 
545 #if 0
546 static const char *key_getfqdn __P((void));
547 static const char *key_getuserfqdn __P((void));
548 #endif
549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550 static struct mbuf *key_alloc_mbuf __P((int));
551 
552 static __inline void
553 sa_initref(struct secasvar *sav)
554 {
555 
556 	refcount_init(&sav->refcnt, 1);
557 }
558 static __inline void
559 sa_addref(struct secasvar *sav)
560 {
561 
562 	refcount_acquire(&sav->refcnt);
563 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564 }
565 static __inline int
566 sa_delref(struct secasvar *sav)
567 {
568 
569 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 	return (refcount_release(&sav->refcnt));
571 }
572 
573 #define	SP_ADDREF(p) do {						\
574 	(p)->refcnt++;							\
575 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
576 } while (0)
577 #define	SP_DELREF(p) do {						\
578 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
579 	(p)->refcnt--;							\
580 } while (0)
581 
582 
583 /*
584  * Update the refcnt while holding the SPTREE lock.
585  */
586 void
587 key_addref(struct secpolicy *sp)
588 {
589 	SPTREE_LOCK();
590 	SP_ADDREF(sp);
591 	SPTREE_UNLOCK();
592 }
593 
594 /*
595  * Return 0 when there are known to be no SP's for the specified
596  * direction.  Otherwise return 1.  This is used by IPsec code
597  * to optimize performance.
598  */
599 int
600 key_havesp(u_int dir)
601 {
602 
603 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605 }
606 
607 /* %%% IPsec policy management */
608 /*
609  * allocating a SP for OUTBOUND or INBOUND packet.
610  * Must call key_freesp() later.
611  * OUT:	NULL:	not found
612  *	others:	found and return the pointer.
613  */
614 struct secpolicy *
615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
616 {
617 	struct secpolicy *sp;
618 
619 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
620 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
621 		("invalid direction %u", dir));
622 
623 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
624 		printf("DP %s from %s:%u\n", __func__, where, tag));
625 
626 	/* get a SP entry */
627 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
628 		printf("*** objects\n");
629 		kdebug_secpolicyindex(spidx));
630 
631 	SPTREE_LOCK();
632 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
633 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 			printf("*** in SPD\n");
635 			kdebug_secpolicyindex(&sp->spidx));
636 
637 		if (sp->state == IPSEC_SPSTATE_DEAD)
638 			continue;
639 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
640 			goto found;
641 	}
642 	sp = NULL;
643 found:
644 	if (sp) {
645 		/* sanity check */
646 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
647 
648 		/* found a SPD entry */
649 		sp->lastused = time_second;
650 		SP_ADDREF(sp);
651 	}
652 	SPTREE_UNLOCK();
653 
654 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
655 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
656 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
657 	return sp;
658 }
659 
660 /*
661  * allocating a SP for OUTBOUND or INBOUND packet.
662  * Must call key_freesp() later.
663  * OUT:	NULL:	not found
664  *	others:	found and return the pointer.
665  */
666 struct secpolicy *
667 key_allocsp2(u_int32_t spi,
668 	     union sockaddr_union *dst,
669 	     u_int8_t proto,
670 	     u_int dir,
671 	     const char* where, int tag)
672 {
673 	struct secpolicy *sp;
674 
675 	IPSEC_ASSERT(dst != NULL, ("null dst"));
676 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
677 		("invalid direction %u", dir));
678 
679 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
680 		printf("DP %s from %s:%u\n", __func__, where, tag));
681 
682 	/* get a SP entry */
683 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
684 		printf("*** objects\n");
685 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
686 		kdebug_sockaddr(&dst->sa));
687 
688 	SPTREE_LOCK();
689 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
690 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
691 			printf("*** in SPD\n");
692 			kdebug_secpolicyindex(&sp->spidx));
693 
694 		if (sp->state == IPSEC_SPSTATE_DEAD)
695 			continue;
696 		/* compare simple values, then dst address */
697 		if (sp->spidx.ul_proto != proto)
698 			continue;
699 		/* NB: spi's must exist and match */
700 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
701 			continue;
702 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
703 			goto found;
704 	}
705 	sp = NULL;
706 found:
707 	if (sp) {
708 		/* sanity check */
709 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
710 
711 		/* found a SPD entry */
712 		sp->lastused = time_second;
713 		SP_ADDREF(sp);
714 	}
715 	SPTREE_UNLOCK();
716 
717 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
719 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
720 	return sp;
721 }
722 
723 #if 0
724 /*
725  * return a policy that matches this particular inbound packet.
726  * XXX slow
727  */
728 struct secpolicy *
729 key_gettunnel(const struct sockaddr *osrc,
730 	      const struct sockaddr *odst,
731 	      const struct sockaddr *isrc,
732 	      const struct sockaddr *idst,
733 	      const char* where, int tag)
734 {
735 	struct secpolicy *sp;
736 	const int dir = IPSEC_DIR_INBOUND;
737 	struct ipsecrequest *r1, *r2, *p;
738 	struct secpolicyindex spidx;
739 
740 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
741 		printf("DP %s from %s:%u\n", __func__, where, tag));
742 
743 	if (isrc->sa_family != idst->sa_family) {
744 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
745 			__func__, isrc->sa_family, idst->sa_family));
746 		sp = NULL;
747 		goto done;
748 	}
749 
750 	SPTREE_LOCK();
751 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
752 		if (sp->state == IPSEC_SPSTATE_DEAD)
753 			continue;
754 
755 		r1 = r2 = NULL;
756 		for (p = sp->req; p; p = p->next) {
757 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
758 				continue;
759 
760 			r1 = r2;
761 			r2 = p;
762 
763 			if (!r1) {
764 				/* here we look at address matches only */
765 				spidx = sp->spidx;
766 				if (isrc->sa_len > sizeof(spidx.src) ||
767 				    idst->sa_len > sizeof(spidx.dst))
768 					continue;
769 				bcopy(isrc, &spidx.src, isrc->sa_len);
770 				bcopy(idst, &spidx.dst, idst->sa_len);
771 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
772 					continue;
773 			} else {
774 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
775 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
776 					continue;
777 			}
778 
779 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
780 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
781 				continue;
782 
783 			goto found;
784 		}
785 	}
786 	sp = NULL;
787 found:
788 	if (sp) {
789 		sp->lastused = time_second;
790 		SP_ADDREF(sp);
791 	}
792 	SPTREE_UNLOCK();
793 done:
794 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
795 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
796 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
797 	return sp;
798 }
799 #endif
800 
801 /*
802  * allocating an SA entry for an *OUTBOUND* packet.
803  * checking each request entries in SP, and acquire an SA if need.
804  * OUT:	0: there are valid requests.
805  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
806  */
807 int
808 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
809 {
810 	u_int level;
811 	int error;
812 
813 	IPSEC_ASSERT(isr != NULL, ("null isr"));
814 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
815 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
816 		saidx->mode == IPSEC_MODE_TUNNEL,
817 		("unexpected policy %u", saidx->mode));
818 
819 	/*
820 	 * XXX guard against protocol callbacks from the crypto
821 	 * thread as they reference ipsecrequest.sav which we
822 	 * temporarily null out below.  Need to rethink how we
823 	 * handle bundled SA's in the callback thread.
824 	 */
825 	IPSECREQUEST_LOCK_ASSERT(isr);
826 
827 	/* get current level */
828 	level = ipsec_get_reqlevel(isr);
829 #if 0
830 	/*
831 	 * We do allocate new SA only if the state of SA in the holder is
832 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
833 	 */
834 	if (isr->sav != NULL) {
835 		if (isr->sav->sah == NULL)
836 			panic("%s: sah is null.\n", __func__);
837 		if (isr->sav == (struct secasvar *)LIST_FIRST(
838 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
839 			KEY_FREESAV(&isr->sav);
840 			isr->sav = NULL;
841 		}
842 	}
843 #else
844 	/*
845 	 * we free any SA stashed in the IPsec request because a different
846 	 * SA may be involved each time this request is checked, either
847 	 * because new SAs are being configured, or this request is
848 	 * associated with an unconnected datagram socket, or this request
849 	 * is associated with a system default policy.
850 	 *
851 	 * The operation may have negative impact to performance.  We may
852 	 * want to check cached SA carefully, rather than picking new SA
853 	 * every time.
854 	 */
855 	if (isr->sav != NULL) {
856 		KEY_FREESAV(&isr->sav);
857 		isr->sav = NULL;
858 	}
859 #endif
860 
861 	/*
862 	 * new SA allocation if no SA found.
863 	 * key_allocsa_policy should allocate the oldest SA available.
864 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
865 	 */
866 	if (isr->sav == NULL)
867 		isr->sav = key_allocsa_policy(saidx);
868 
869 	/* When there is SA. */
870 	if (isr->sav != NULL) {
871 		if (isr->sav->state != SADB_SASTATE_MATURE &&
872 		    isr->sav->state != SADB_SASTATE_DYING)
873 			return EINVAL;
874 		return 0;
875 	}
876 
877 	/* there is no SA */
878 	error = key_acquire(saidx, isr->sp);
879 	if (error != 0) {
880 		/* XXX What should I do ? */
881 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
882 			__func__, error));
883 		return error;
884 	}
885 
886 	if (level != IPSEC_LEVEL_REQUIRE) {
887 		/* XXX sigh, the interface to this routine is botched */
888 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
889 		return 0;
890 	} else {
891 		return ENOENT;
892 	}
893 }
894 
895 /*
896  * allocating a SA for policy entry from SAD.
897  * NOTE: searching SAD of aliving state.
898  * OUT:	NULL:	not found.
899  *	others:	found and return the pointer.
900  */
901 static struct secasvar *
902 key_allocsa_policy(const struct secasindex *saidx)
903 {
904 #define	N(a)	_ARRAYLEN(a)
905 	struct secashead *sah;
906 	struct secasvar *sav;
907 	u_int stateidx, arraysize;
908 	const u_int *state_valid;
909 
910 	state_valid = NULL;	/* silence gcc */
911 	arraysize = 0;		/* silence gcc */
912 
913 	SAHTREE_LOCK();
914 	LIST_FOREACH(sah, &V_sahtree, chain) {
915 		if (sah->state == SADB_SASTATE_DEAD)
916 			continue;
917 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
918 			if (V_key_preferred_oldsa) {
919 				state_valid = saorder_state_valid_prefer_old;
920 				arraysize = N(saorder_state_valid_prefer_old);
921 			} else {
922 				state_valid = saorder_state_valid_prefer_new;
923 				arraysize = N(saorder_state_valid_prefer_new);
924 			}
925 			break;
926 		}
927 	}
928 	SAHTREE_UNLOCK();
929 	if (sah == NULL)
930 		return NULL;
931 
932 	/* search valid state */
933 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
934 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
935 		if (sav != NULL)
936 			return sav;
937 	}
938 
939 	return NULL;
940 #undef N
941 }
942 
943 /*
944  * searching SAD with direction, protocol, mode and state.
945  * called by key_allocsa_policy().
946  * OUT:
947  *	NULL	: not found
948  *	others	: found, pointer to a SA.
949  */
950 static struct secasvar *
951 key_do_allocsa_policy(struct secashead *sah, u_int state)
952 {
953 	struct secasvar *sav, *nextsav, *candidate, *d;
954 
955 	/* initilize */
956 	candidate = NULL;
957 
958 	SAHTREE_LOCK();
959 	for (sav = LIST_FIRST(&sah->savtree[state]);
960 	     sav != NULL;
961 	     sav = nextsav) {
962 
963 		nextsav = LIST_NEXT(sav, chain);
964 
965 		/* sanity check */
966 		KEY_CHKSASTATE(sav->state, state, __func__);
967 
968 		/* initialize */
969 		if (candidate == NULL) {
970 			candidate = sav;
971 			continue;
972 		}
973 
974 		/* Which SA is the better ? */
975 
976 		IPSEC_ASSERT(candidate->lft_c != NULL,
977 			("null candidate lifetime"));
978 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
979 
980 		/* What the best method is to compare ? */
981 		if (V_key_preferred_oldsa) {
982 			if (candidate->lft_c->addtime >
983 					sav->lft_c->addtime) {
984 				candidate = sav;
985 			}
986 			continue;
987 			/*NOTREACHED*/
988 		}
989 
990 		/* preferred new sa rather than old sa */
991 		if (candidate->lft_c->addtime <
992 				sav->lft_c->addtime) {
993 			d = candidate;
994 			candidate = sav;
995 		} else
996 			d = sav;
997 
998 		/*
999 		 * prepared to delete the SA when there is more
1000 		 * suitable candidate and the lifetime of the SA is not
1001 		 * permanent.
1002 		 */
1003 		if (d->lft_h->addtime != 0) {
1004 			struct mbuf *m, *result;
1005 			u_int8_t satype;
1006 
1007 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
1008 
1009 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
1010 
1011 			satype = key_proto2satype(d->sah->saidx.proto);
1012 			if (satype == 0)
1013 				goto msgfail;
1014 
1015 			m = key_setsadbmsg(SADB_DELETE, 0,
1016 			    satype, 0, 0, d->refcnt - 1);
1017 			if (!m)
1018 				goto msgfail;
1019 			result = m;
1020 
1021 			/* set sadb_address for saidx's. */
1022 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1023 				&d->sah->saidx.src.sa,
1024 				d->sah->saidx.src.sa.sa_len << 3,
1025 				IPSEC_ULPROTO_ANY);
1026 			if (!m)
1027 				goto msgfail;
1028 			m_cat(result, m);
1029 
1030 			/* set sadb_address for saidx's. */
1031 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1032 				&d->sah->saidx.dst.sa,
1033 				d->sah->saidx.dst.sa.sa_len << 3,
1034 				IPSEC_ULPROTO_ANY);
1035 			if (!m)
1036 				goto msgfail;
1037 			m_cat(result, m);
1038 
1039 			/* create SA extension */
1040 			m = key_setsadbsa(d);
1041 			if (!m)
1042 				goto msgfail;
1043 			m_cat(result, m);
1044 
1045 			if (result->m_len < sizeof(struct sadb_msg)) {
1046 				result = m_pullup(result,
1047 						sizeof(struct sadb_msg));
1048 				if (result == NULL)
1049 					goto msgfail;
1050 			}
1051 
1052 			result->m_pkthdr.len = 0;
1053 			for (m = result; m; m = m->m_next)
1054 				result->m_pkthdr.len += m->m_len;
1055 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1056 				PFKEY_UNIT64(result->m_pkthdr.len);
1057 
1058 			if (key_sendup_mbuf(NULL, result,
1059 					KEY_SENDUP_REGISTERED))
1060 				goto msgfail;
1061 		 msgfail:
1062 			KEY_FREESAV(&d);
1063 		}
1064 	}
1065 	if (candidate) {
1066 		sa_addref(candidate);
1067 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1068 			printf("DP %s cause refcnt++:%d SA:%p\n",
1069 				__func__, candidate->refcnt, candidate));
1070 	}
1071 	SAHTREE_UNLOCK();
1072 
1073 	return candidate;
1074 }
1075 
1076 /*
1077  * allocating a usable SA entry for a *INBOUND* packet.
1078  * Must call key_freesav() later.
1079  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1080  *	NULL:		not found, or error occured.
1081  *
1082  * In the comparison, no source address is used--for RFC2401 conformance.
1083  * To quote, from section 4.1:
1084  *	A security association is uniquely identified by a triple consisting
1085  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1086  *	security protocol (AH or ESP) identifier.
1087  * Note that, however, we do need to keep source address in IPsec SA.
1088  * IKE specification and PF_KEY specification do assume that we
1089  * keep source address in IPsec SA.  We see a tricky situation here.
1090  */
1091 struct secasvar *
1092 key_allocsa(
1093 	union sockaddr_union *dst,
1094 	u_int proto,
1095 	u_int32_t spi,
1096 	const char* where, int tag)
1097 {
1098 	struct secashead *sah;
1099 	struct secasvar *sav;
1100 	u_int stateidx, arraysize, state;
1101 	const u_int *saorder_state_valid;
1102 	int chkport;
1103 
1104 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1105 
1106 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1107 		printf("DP %s from %s:%u\n", __func__, where, tag));
1108 
1109 #ifdef IPSEC_NAT_T
1110         chkport = (dst->sa.sa_family == AF_INET &&
1111 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1112 	    dst->sin.sin_port != 0);
1113 #else
1114 	chkport = 0;
1115 #endif
1116 
1117 	/*
1118 	 * searching SAD.
1119 	 * XXX: to be checked internal IP header somewhere.  Also when
1120 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1121 	 * encrypted so we can't check internal IP header.
1122 	 */
1123 	SAHTREE_LOCK();
1124 	if (V_key_preferred_oldsa) {
1125 		saorder_state_valid = saorder_state_valid_prefer_old;
1126 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1127 	} else {
1128 		saorder_state_valid = saorder_state_valid_prefer_new;
1129 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1130 	}
1131 	LIST_FOREACH(sah, &V_sahtree, chain) {
1132 		/* search valid state */
1133 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1134 			state = saorder_state_valid[stateidx];
1135 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1136 				/* sanity check */
1137 				KEY_CHKSASTATE(sav->state, state, __func__);
1138 				/* do not return entries w/ unusable state */
1139 				if (sav->state != SADB_SASTATE_MATURE &&
1140 				    sav->state != SADB_SASTATE_DYING)
1141 					continue;
1142 				if (proto != sav->sah->saidx.proto)
1143 					continue;
1144 				if (spi != sav->spi)
1145 					continue;
1146 #if 0	/* don't check src */
1147 				/* check src address */
1148 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1149 					continue;
1150 #endif
1151 				/* check dst address */
1152 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1153 					continue;
1154 				sa_addref(sav);
1155 				goto done;
1156 			}
1157 		}
1158 	}
1159 	sav = NULL;
1160 done:
1161 	SAHTREE_UNLOCK();
1162 
1163 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1164 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1165 			sav, sav ? sav->refcnt : 0));
1166 	return sav;
1167 }
1168 
1169 /*
1170  * Must be called after calling key_allocsp().
1171  * For both the packet without socket and key_freeso().
1172  */
1173 void
1174 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1175 {
1176 	struct secpolicy *sp = *spp;
1177 
1178 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1179 
1180 	SPTREE_LOCK();
1181 	SP_DELREF(sp);
1182 
1183 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1184 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1185 			__func__, sp, sp->id, where, tag, sp->refcnt));
1186 
1187 	if (sp->refcnt == 0) {
1188 		*spp = NULL;
1189 		key_delsp(sp);
1190 	}
1191 	SPTREE_UNLOCK();
1192 }
1193 
1194 /*
1195  * Must be called after calling key_allocsp().
1196  * For the packet with socket.
1197  */
1198 void
1199 key_freeso(struct socket *so)
1200 {
1201 	IPSEC_ASSERT(so != NULL, ("null so"));
1202 
1203 	switch (so->so_proto->pr_domain->dom_family) {
1204 #if defined(INET) || defined(INET6)
1205 #ifdef INET
1206 	case PF_INET:
1207 #endif
1208 #ifdef INET6
1209 	case PF_INET6:
1210 #endif
1211 	    {
1212 		struct inpcb *pcb = sotoinpcb(so);
1213 
1214 		/* Does it have a PCB ? */
1215 		if (pcb == NULL)
1216 			return;
1217 		key_freesp_so(&pcb->inp_sp->sp_in);
1218 		key_freesp_so(&pcb->inp_sp->sp_out);
1219 	    }
1220 		break;
1221 #endif /* INET || INET6 */
1222 	default:
1223 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1224 		    __func__, so->so_proto->pr_domain->dom_family));
1225 		return;
1226 	}
1227 }
1228 
1229 static void
1230 key_freesp_so(struct secpolicy **sp)
1231 {
1232 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1233 
1234 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1235 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1236 		return;
1237 
1238 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1239 		("invalid policy %u", (*sp)->policy));
1240 	KEY_FREESP(sp);
1241 }
1242 
1243 /*
1244  * Must be called after calling key_allocsa().
1245  * This function is called by key_freesp() to free some SA allocated
1246  * for a policy.
1247  */
1248 void
1249 key_freesav(struct secasvar **psav, const char* where, int tag)
1250 {
1251 	struct secasvar *sav = *psav;
1252 
1253 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1254 
1255 	if (sa_delref(sav)) {
1256 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1257 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1258 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1259 		*psav = NULL;
1260 		key_delsav(sav);
1261 	} else {
1262 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1263 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1264 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1265 	}
1266 }
1267 
1268 /* %%% SPD management */
1269 /*
1270  * free security policy entry.
1271  */
1272 static void
1273 key_delsp(struct secpolicy *sp)
1274 {
1275 	struct ipsecrequest *isr, *nextisr;
1276 
1277 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1278 	SPTREE_LOCK_ASSERT();
1279 
1280 	sp->state = IPSEC_SPSTATE_DEAD;
1281 
1282 	IPSEC_ASSERT(sp->refcnt == 0,
1283 		("SP with references deleted (refcnt %u)", sp->refcnt));
1284 
1285 	/* remove from SP index */
1286 	if (__LIST_CHAINED(sp))
1287 		LIST_REMOVE(sp, chain);
1288 
1289 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1290 		if (isr->sav != NULL) {
1291 			KEY_FREESAV(&isr->sav);
1292 			isr->sav = NULL;
1293 		}
1294 
1295 		nextisr = isr->next;
1296 		ipsec_delisr(isr);
1297 	}
1298 	_key_delsp(sp);
1299 }
1300 
1301 /*
1302  * search SPD
1303  * OUT:	NULL	: not found
1304  *	others	: found, pointer to a SP.
1305  */
1306 static struct secpolicy *
1307 key_getsp(struct secpolicyindex *spidx)
1308 {
1309 	struct secpolicy *sp;
1310 
1311 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1312 
1313 	SPTREE_LOCK();
1314 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1315 		if (sp->state == IPSEC_SPSTATE_DEAD)
1316 			continue;
1317 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1318 			SP_ADDREF(sp);
1319 			break;
1320 		}
1321 	}
1322 	SPTREE_UNLOCK();
1323 
1324 	return sp;
1325 }
1326 
1327 /*
1328  * get SP by index.
1329  * OUT:	NULL	: not found
1330  *	others	: found, pointer to a SP.
1331  */
1332 static struct secpolicy *
1333 key_getspbyid(u_int32_t id)
1334 {
1335 	struct secpolicy *sp;
1336 
1337 	SPTREE_LOCK();
1338 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1339 		if (sp->state == IPSEC_SPSTATE_DEAD)
1340 			continue;
1341 		if (sp->id == id) {
1342 			SP_ADDREF(sp);
1343 			goto done;
1344 		}
1345 	}
1346 
1347 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1348 		if (sp->state == IPSEC_SPSTATE_DEAD)
1349 			continue;
1350 		if (sp->id == id) {
1351 			SP_ADDREF(sp);
1352 			goto done;
1353 		}
1354 	}
1355 done:
1356 	SPTREE_UNLOCK();
1357 
1358 	return sp;
1359 }
1360 
1361 struct secpolicy *
1362 key_newsp(const char* where, int tag)
1363 {
1364 	struct secpolicy *newsp = NULL;
1365 
1366 	newsp = (struct secpolicy *)
1367 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1368 	if (newsp) {
1369 		SECPOLICY_LOCK_INIT(newsp);
1370 		newsp->refcnt = 1;
1371 		newsp->req = NULL;
1372 	}
1373 
1374 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1375 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1376 			where, tag, newsp));
1377 	return newsp;
1378 }
1379 
1380 static void
1381 _key_delsp(struct secpolicy *sp)
1382 {
1383 	SECPOLICY_LOCK_DESTROY(sp);
1384 	free(sp, M_IPSEC_SP);
1385 }
1386 
1387 /*
1388  * create secpolicy structure from sadb_x_policy structure.
1389  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1390  * so must be set properly later.
1391  */
1392 struct secpolicy *
1393 key_msg2sp(xpl0, len, error)
1394 	struct sadb_x_policy *xpl0;
1395 	size_t len;
1396 	int *error;
1397 {
1398 	struct secpolicy *newsp;
1399 
1400 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1401 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1402 
1403 	if (len != PFKEY_EXTLEN(xpl0)) {
1404 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1405 		*error = EINVAL;
1406 		return NULL;
1407 	}
1408 
1409 	if ((newsp = KEY_NEWSP()) == NULL) {
1410 		*error = ENOBUFS;
1411 		return NULL;
1412 	}
1413 
1414 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1415 	newsp->policy = xpl0->sadb_x_policy_type;
1416 
1417 	/* check policy */
1418 	switch (xpl0->sadb_x_policy_type) {
1419 	case IPSEC_POLICY_DISCARD:
1420 	case IPSEC_POLICY_NONE:
1421 	case IPSEC_POLICY_ENTRUST:
1422 	case IPSEC_POLICY_BYPASS:
1423 		newsp->req = NULL;
1424 		break;
1425 
1426 	case IPSEC_POLICY_IPSEC:
1427 	    {
1428 		int tlen;
1429 		struct sadb_x_ipsecrequest *xisr;
1430 		struct ipsecrequest **p_isr = &newsp->req;
1431 
1432 		/* validity check */
1433 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1434 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1435 				__func__));
1436 			KEY_FREESP(&newsp);
1437 			*error = EINVAL;
1438 			return NULL;
1439 		}
1440 
1441 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1442 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1443 
1444 		while (tlen > 0) {
1445 			/* length check */
1446 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1447 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1448 					"length.\n", __func__));
1449 				KEY_FREESP(&newsp);
1450 				*error = EINVAL;
1451 				return NULL;
1452 			}
1453 
1454 			/* allocate request buffer */
1455 			/* NB: data structure is zero'd */
1456 			*p_isr = ipsec_newisr();
1457 			if ((*p_isr) == NULL) {
1458 				ipseclog((LOG_DEBUG,
1459 				    "%s: No more memory.\n", __func__));
1460 				KEY_FREESP(&newsp);
1461 				*error = ENOBUFS;
1462 				return NULL;
1463 			}
1464 
1465 			/* set values */
1466 			switch (xisr->sadb_x_ipsecrequest_proto) {
1467 			case IPPROTO_ESP:
1468 			case IPPROTO_AH:
1469 			case IPPROTO_IPCOMP:
1470 				break;
1471 			default:
1472 				ipseclog((LOG_DEBUG,
1473 				    "%s: invalid proto type=%u\n", __func__,
1474 				    xisr->sadb_x_ipsecrequest_proto));
1475 				KEY_FREESP(&newsp);
1476 				*error = EPROTONOSUPPORT;
1477 				return NULL;
1478 			}
1479 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1480 
1481 			switch (xisr->sadb_x_ipsecrequest_mode) {
1482 			case IPSEC_MODE_TRANSPORT:
1483 			case IPSEC_MODE_TUNNEL:
1484 				break;
1485 			case IPSEC_MODE_ANY:
1486 			default:
1487 				ipseclog((LOG_DEBUG,
1488 				    "%s: invalid mode=%u\n", __func__,
1489 				    xisr->sadb_x_ipsecrequest_mode));
1490 				KEY_FREESP(&newsp);
1491 				*error = EINVAL;
1492 				return NULL;
1493 			}
1494 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1495 
1496 			switch (xisr->sadb_x_ipsecrequest_level) {
1497 			case IPSEC_LEVEL_DEFAULT:
1498 			case IPSEC_LEVEL_USE:
1499 			case IPSEC_LEVEL_REQUIRE:
1500 				break;
1501 			case IPSEC_LEVEL_UNIQUE:
1502 				/* validity check */
1503 				/*
1504 				 * If range violation of reqid, kernel will
1505 				 * update it, don't refuse it.
1506 				 */
1507 				if (xisr->sadb_x_ipsecrequest_reqid
1508 						> IPSEC_MANUAL_REQID_MAX) {
1509 					ipseclog((LOG_DEBUG,
1510 					    "%s: reqid=%d range "
1511 					    "violation, updated by kernel.\n",
1512 					    __func__,
1513 					    xisr->sadb_x_ipsecrequest_reqid));
1514 					xisr->sadb_x_ipsecrequest_reqid = 0;
1515 				}
1516 
1517 				/* allocate new reqid id if reqid is zero. */
1518 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1519 					u_int32_t reqid;
1520 					if ((reqid = key_newreqid()) == 0) {
1521 						KEY_FREESP(&newsp);
1522 						*error = ENOBUFS;
1523 						return NULL;
1524 					}
1525 					(*p_isr)->saidx.reqid = reqid;
1526 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1527 				} else {
1528 				/* set it for manual keying. */
1529 					(*p_isr)->saidx.reqid =
1530 						xisr->sadb_x_ipsecrequest_reqid;
1531 				}
1532 				break;
1533 
1534 			default:
1535 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1536 					__func__,
1537 					xisr->sadb_x_ipsecrequest_level));
1538 				KEY_FREESP(&newsp);
1539 				*error = EINVAL;
1540 				return NULL;
1541 			}
1542 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1543 
1544 			/* set IP addresses if there */
1545 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1546 				struct sockaddr *paddr;
1547 
1548 				paddr = (struct sockaddr *)(xisr + 1);
1549 
1550 				/* validity check */
1551 				if (paddr->sa_len
1552 				    > sizeof((*p_isr)->saidx.src)) {
1553 					ipseclog((LOG_DEBUG, "%s: invalid "
1554 						"request address length.\n",
1555 						__func__));
1556 					KEY_FREESP(&newsp);
1557 					*error = EINVAL;
1558 					return NULL;
1559 				}
1560 				bcopy(paddr, &(*p_isr)->saidx.src,
1561 					paddr->sa_len);
1562 
1563 				paddr = (struct sockaddr *)((caddr_t)paddr
1564 							+ paddr->sa_len);
1565 
1566 				/* validity check */
1567 				if (paddr->sa_len
1568 				    > sizeof((*p_isr)->saidx.dst)) {
1569 					ipseclog((LOG_DEBUG, "%s: invalid "
1570 						"request address length.\n",
1571 						__func__));
1572 					KEY_FREESP(&newsp);
1573 					*error = EINVAL;
1574 					return NULL;
1575 				}
1576 				bcopy(paddr, &(*p_isr)->saidx.dst,
1577 					paddr->sa_len);
1578 			}
1579 
1580 			(*p_isr)->sp = newsp;
1581 
1582 			/* initialization for the next. */
1583 			p_isr = &(*p_isr)->next;
1584 			tlen -= xisr->sadb_x_ipsecrequest_len;
1585 
1586 			/* validity check */
1587 			if (tlen < 0) {
1588 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1589 					__func__));
1590 				KEY_FREESP(&newsp);
1591 				*error = EINVAL;
1592 				return NULL;
1593 			}
1594 
1595 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1596 			                 + xisr->sadb_x_ipsecrequest_len);
1597 		}
1598 	    }
1599 		break;
1600 	default:
1601 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1602 		KEY_FREESP(&newsp);
1603 		*error = EINVAL;
1604 		return NULL;
1605 	}
1606 
1607 	*error = 0;
1608 	return newsp;
1609 }
1610 
1611 static u_int32_t
1612 key_newreqid()
1613 {
1614 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1615 
1616 	auto_reqid = (auto_reqid == ~0
1617 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1618 
1619 	/* XXX should be unique check */
1620 
1621 	return auto_reqid;
1622 }
1623 
1624 /*
1625  * copy secpolicy struct to sadb_x_policy structure indicated.
1626  */
1627 struct mbuf *
1628 key_sp2msg(sp)
1629 	struct secpolicy *sp;
1630 {
1631 	struct sadb_x_policy *xpl;
1632 	int tlen;
1633 	caddr_t p;
1634 	struct mbuf *m;
1635 
1636 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1637 
1638 	tlen = key_getspreqmsglen(sp);
1639 
1640 	m = key_alloc_mbuf(tlen);
1641 	if (!m || m->m_next) {	/*XXX*/
1642 		if (m)
1643 			m_freem(m);
1644 		return NULL;
1645 	}
1646 
1647 	m->m_len = tlen;
1648 	m->m_next = NULL;
1649 	xpl = mtod(m, struct sadb_x_policy *);
1650 	bzero(xpl, tlen);
1651 
1652 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1653 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1654 	xpl->sadb_x_policy_type = sp->policy;
1655 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1656 	xpl->sadb_x_policy_id = sp->id;
1657 	p = (caddr_t)xpl + sizeof(*xpl);
1658 
1659 	/* if is the policy for ipsec ? */
1660 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1661 		struct sadb_x_ipsecrequest *xisr;
1662 		struct ipsecrequest *isr;
1663 
1664 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1665 
1666 			xisr = (struct sadb_x_ipsecrequest *)p;
1667 
1668 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1669 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1670 			xisr->sadb_x_ipsecrequest_level = isr->level;
1671 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1672 
1673 			p += sizeof(*xisr);
1674 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1675 			p += isr->saidx.src.sa.sa_len;
1676 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1677 			p += isr->saidx.src.sa.sa_len;
1678 
1679 			xisr->sadb_x_ipsecrequest_len =
1680 				PFKEY_ALIGN8(sizeof(*xisr)
1681 					+ isr->saidx.src.sa.sa_len
1682 					+ isr->saidx.dst.sa.sa_len);
1683 		}
1684 	}
1685 
1686 	return m;
1687 }
1688 
1689 /* m will not be freed nor modified */
1690 static struct mbuf *
1691 #ifdef __STDC__
1692 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1693 	int ndeep, int nitem, ...)
1694 #else
1695 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1696 	struct mbuf *m;
1697 	const struct sadb_msghdr *mhp;
1698 	int ndeep;
1699 	int nitem;
1700 	va_dcl
1701 #endif
1702 {
1703 	va_list ap;
1704 	int idx;
1705 	int i;
1706 	struct mbuf *result = NULL, *n;
1707 	int len;
1708 
1709 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1710 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1711 
1712 	va_start(ap, nitem);
1713 	for (i = 0; i < nitem; i++) {
1714 		idx = va_arg(ap, int);
1715 		if (idx < 0 || idx > SADB_EXT_MAX)
1716 			goto fail;
1717 		/* don't attempt to pull empty extension */
1718 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1719 			continue;
1720 		if (idx != SADB_EXT_RESERVED  &&
1721 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1722 			continue;
1723 
1724 		if (idx == SADB_EXT_RESERVED) {
1725 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1726 
1727 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1728 
1729 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1730 			if (!n)
1731 				goto fail;
1732 			n->m_len = len;
1733 			n->m_next = NULL;
1734 			m_copydata(m, 0, sizeof(struct sadb_msg),
1735 			    mtod(n, caddr_t));
1736 		} else if (i < ndeep) {
1737 			len = mhp->extlen[idx];
1738 			n = key_alloc_mbuf(len);
1739 			if (!n || n->m_next) {	/*XXX*/
1740 				if (n)
1741 					m_freem(n);
1742 				goto fail;
1743 			}
1744 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1745 			    mtod(n, caddr_t));
1746 		} else {
1747 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1748 			    M_DONTWAIT);
1749 		}
1750 		if (n == NULL)
1751 			goto fail;
1752 
1753 		if (result)
1754 			m_cat(result, n);
1755 		else
1756 			result = n;
1757 	}
1758 	va_end(ap);
1759 
1760 	if ((result->m_flags & M_PKTHDR) != 0) {
1761 		result->m_pkthdr.len = 0;
1762 		for (n = result; n; n = n->m_next)
1763 			result->m_pkthdr.len += n->m_len;
1764 	}
1765 
1766 	return result;
1767 
1768 fail:
1769 	m_freem(result);
1770 	return NULL;
1771 }
1772 
1773 /*
1774  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1775  * add an entry to SP database, when received
1776  *   <base, address(SD), (lifetime(H),) policy>
1777  * from the user(?).
1778  * Adding to SP database,
1779  * and send
1780  *   <base, address(SD), (lifetime(H),) policy>
1781  * to the socket which was send.
1782  *
1783  * SPDADD set a unique policy entry.
1784  * SPDSETIDX like SPDADD without a part of policy requests.
1785  * SPDUPDATE replace a unique policy entry.
1786  *
1787  * m will always be freed.
1788  */
1789 static int
1790 key_spdadd(so, m, mhp)
1791 	struct socket *so;
1792 	struct mbuf *m;
1793 	const struct sadb_msghdr *mhp;
1794 {
1795 	struct sadb_address *src0, *dst0;
1796 	struct sadb_x_policy *xpl0, *xpl;
1797 	struct sadb_lifetime *lft = NULL;
1798 	struct secpolicyindex spidx;
1799 	struct secpolicy *newsp;
1800 	int error;
1801 
1802 	IPSEC_ASSERT(so != NULL, ("null socket"));
1803 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1804 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1805 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1806 
1807 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1808 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1809 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1810 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1811 		return key_senderror(so, m, EINVAL);
1812 	}
1813 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1814 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1815 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1816 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1817 			__func__));
1818 		return key_senderror(so, m, EINVAL);
1819 	}
1820 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1821 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1822 			< sizeof(struct sadb_lifetime)) {
1823 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1824 				__func__));
1825 			return key_senderror(so, m, EINVAL);
1826 		}
1827 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1828 	}
1829 
1830 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1831 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1832 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1833 
1834 	/*
1835 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1836 	 * we are processing traffic endpoints.
1837 	 */
1838 
1839 	/* make secindex */
1840 	/* XXX boundary check against sa_len */
1841 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1842 	                src0 + 1,
1843 	                dst0 + 1,
1844 	                src0->sadb_address_prefixlen,
1845 	                dst0->sadb_address_prefixlen,
1846 	                src0->sadb_address_proto,
1847 	                &spidx);
1848 
1849 	/* checking the direciton. */
1850 	switch (xpl0->sadb_x_policy_dir) {
1851 	case IPSEC_DIR_INBOUND:
1852 	case IPSEC_DIR_OUTBOUND:
1853 		break;
1854 	default:
1855 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1856 		mhp->msg->sadb_msg_errno = EINVAL;
1857 		return 0;
1858 	}
1859 
1860 	/* check policy */
1861 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1862 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1863 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1864 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1865 		return key_senderror(so, m, EINVAL);
1866 	}
1867 
1868 	/* policy requests are mandatory when action is ipsec. */
1869         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1870 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1871 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1872 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1873 			__func__));
1874 		return key_senderror(so, m, EINVAL);
1875 	}
1876 
1877 	/*
1878 	 * checking there is SP already or not.
1879 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1880 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1881 	 * then error.
1882 	 */
1883 	newsp = key_getsp(&spidx);
1884 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1885 		if (newsp) {
1886 			SPTREE_LOCK();
1887 			newsp->state = IPSEC_SPSTATE_DEAD;
1888 			SPTREE_UNLOCK();
1889 			KEY_FREESP(&newsp);
1890 		}
1891 	} else {
1892 		if (newsp != NULL) {
1893 			KEY_FREESP(&newsp);
1894 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1895 				__func__));
1896 			return key_senderror(so, m, EEXIST);
1897 		}
1898 	}
1899 
1900 	/* allocation new SP entry */
1901 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1902 		return key_senderror(so, m, error);
1903 	}
1904 
1905 	if ((newsp->id = key_getnewspid()) == 0) {
1906 		_key_delsp(newsp);
1907 		return key_senderror(so, m, ENOBUFS);
1908 	}
1909 
1910 	/* XXX boundary check against sa_len */
1911 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1912 	                src0 + 1,
1913 	                dst0 + 1,
1914 	                src0->sadb_address_prefixlen,
1915 	                dst0->sadb_address_prefixlen,
1916 	                src0->sadb_address_proto,
1917 	                &newsp->spidx);
1918 
1919 	/* sanity check on addr pair */
1920 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1921 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1922 		_key_delsp(newsp);
1923 		return key_senderror(so, m, EINVAL);
1924 	}
1925 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1926 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1927 		_key_delsp(newsp);
1928 		return key_senderror(so, m, EINVAL);
1929 	}
1930 #if 1
1931 	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1932 		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1933 			_key_delsp(newsp);
1934 			return key_senderror(so, m, EINVAL);
1935 		}
1936 	}
1937 #endif
1938 
1939 	newsp->created = time_second;
1940 	newsp->lastused = newsp->created;
1941 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1942 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1943 
1944 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1945 	newsp->state = IPSEC_SPSTATE_ALIVE;
1946 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1947 
1948 	/* delete the entry in spacqtree */
1949 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1950 		struct secspacq *spacq = key_getspacq(&spidx);
1951 		if (spacq != NULL) {
1952 			/* reset counter in order to deletion by timehandler. */
1953 			spacq->created = time_second;
1954 			spacq->count = 0;
1955 			SPACQ_UNLOCK();
1956 		}
1957     	}
1958 
1959     {
1960 	struct mbuf *n, *mpolicy;
1961 	struct sadb_msg *newmsg;
1962 	int off;
1963 
1964 	/*
1965 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1966 	 * we are sending traffic endpoints.
1967 	 */
1968 
1969 	/* create new sadb_msg to reply. */
1970 	if (lft) {
1971 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1972 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1973 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1974 	} else {
1975 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1976 		    SADB_X_EXT_POLICY,
1977 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1978 	}
1979 	if (!n)
1980 		return key_senderror(so, m, ENOBUFS);
1981 
1982 	if (n->m_len < sizeof(*newmsg)) {
1983 		n = m_pullup(n, sizeof(*newmsg));
1984 		if (!n)
1985 			return key_senderror(so, m, ENOBUFS);
1986 	}
1987 	newmsg = mtod(n, struct sadb_msg *);
1988 	newmsg->sadb_msg_errno = 0;
1989 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1990 
1991 	off = 0;
1992 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1993 	    sizeof(*xpl), &off);
1994 	if (mpolicy == NULL) {
1995 		/* n is already freed */
1996 		return key_senderror(so, m, ENOBUFS);
1997 	}
1998 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1999 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2000 		m_freem(n);
2001 		return key_senderror(so, m, EINVAL);
2002 	}
2003 	xpl->sadb_x_policy_id = newsp->id;
2004 
2005 	m_freem(m);
2006 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2007     }
2008 }
2009 
2010 /*
2011  * get new policy id.
2012  * OUT:
2013  *	0:	failure.
2014  *	others: success.
2015  */
2016 static u_int32_t
2017 key_getnewspid()
2018 {
2019 	u_int32_t newid = 0;
2020 	int count = V_key_spi_trycnt;	/* XXX */
2021 	struct secpolicy *sp;
2022 
2023 	/* when requesting to allocate spi ranged */
2024 	while (count--) {
2025 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2026 
2027 		if ((sp = key_getspbyid(newid)) == NULL)
2028 			break;
2029 
2030 		KEY_FREESP(&sp);
2031 	}
2032 
2033 	if (count == 0 || newid == 0) {
2034 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2035 			__func__));
2036 		return 0;
2037 	}
2038 
2039 	return newid;
2040 }
2041 
2042 /*
2043  * SADB_SPDDELETE processing
2044  * receive
2045  *   <base, address(SD), policy(*)>
2046  * from the user(?), and set SADB_SASTATE_DEAD,
2047  * and send,
2048  *   <base, address(SD), policy(*)>
2049  * to the ikmpd.
2050  * policy(*) including direction of policy.
2051  *
2052  * m will always be freed.
2053  */
2054 static int
2055 key_spddelete(so, m, mhp)
2056 	struct socket *so;
2057 	struct mbuf *m;
2058 	const struct sadb_msghdr *mhp;
2059 {
2060 	struct sadb_address *src0, *dst0;
2061 	struct sadb_x_policy *xpl0;
2062 	struct secpolicyindex spidx;
2063 	struct secpolicy *sp;
2064 
2065 	IPSEC_ASSERT(so != NULL, ("null so"));
2066 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2067 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2068 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2069 
2070 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2071 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2072 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2073 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2074 			__func__));
2075 		return key_senderror(so, m, EINVAL);
2076 	}
2077 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2078 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2079 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2080 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2081 			__func__));
2082 		return key_senderror(so, m, EINVAL);
2083 	}
2084 
2085 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2086 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2087 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2088 
2089 	/*
2090 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2091 	 * we are processing traffic endpoints.
2092 	 */
2093 
2094 	/* make secindex */
2095 	/* XXX boundary check against sa_len */
2096 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2097 	                src0 + 1,
2098 	                dst0 + 1,
2099 	                src0->sadb_address_prefixlen,
2100 	                dst0->sadb_address_prefixlen,
2101 	                src0->sadb_address_proto,
2102 	                &spidx);
2103 
2104 	/* checking the direciton. */
2105 	switch (xpl0->sadb_x_policy_dir) {
2106 	case IPSEC_DIR_INBOUND:
2107 	case IPSEC_DIR_OUTBOUND:
2108 		break;
2109 	default:
2110 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2111 		return key_senderror(so, m, EINVAL);
2112 	}
2113 
2114 	/* Is there SP in SPD ? */
2115 	if ((sp = key_getsp(&spidx)) == NULL) {
2116 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2117 		return key_senderror(so, m, EINVAL);
2118 	}
2119 
2120 	/* save policy id to buffer to be returned. */
2121 	xpl0->sadb_x_policy_id = sp->id;
2122 
2123 	SPTREE_LOCK();
2124 	sp->state = IPSEC_SPSTATE_DEAD;
2125 	SPTREE_UNLOCK();
2126 	KEY_FREESP(&sp);
2127 
2128     {
2129 	struct mbuf *n;
2130 	struct sadb_msg *newmsg;
2131 
2132 	/*
2133 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2134 	 * we are sending traffic endpoints.
2135 	 */
2136 
2137 	/* create new sadb_msg to reply. */
2138 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2139 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2140 	if (!n)
2141 		return key_senderror(so, m, ENOBUFS);
2142 
2143 	newmsg = mtod(n, struct sadb_msg *);
2144 	newmsg->sadb_msg_errno = 0;
2145 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2146 
2147 	m_freem(m);
2148 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2149     }
2150 }
2151 
2152 /*
2153  * SADB_SPDDELETE2 processing
2154  * receive
2155  *   <base, policy(*)>
2156  * from the user(?), and set SADB_SASTATE_DEAD,
2157  * and send,
2158  *   <base, policy(*)>
2159  * to the ikmpd.
2160  * policy(*) including direction of policy.
2161  *
2162  * m will always be freed.
2163  */
2164 static int
2165 key_spddelete2(so, m, mhp)
2166 	struct socket *so;
2167 	struct mbuf *m;
2168 	const struct sadb_msghdr *mhp;
2169 {
2170 	u_int32_t id;
2171 	struct secpolicy *sp;
2172 
2173 	IPSEC_ASSERT(so != NULL, ("null socket"));
2174 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2175 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2176 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2177 
2178 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2179 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2180 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2181 		return key_senderror(so, m, EINVAL);
2182 	}
2183 
2184 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2185 
2186 	/* Is there SP in SPD ? */
2187 	if ((sp = key_getspbyid(id)) == NULL) {
2188 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2189 		return key_senderror(so, m, EINVAL);
2190 	}
2191 
2192 	SPTREE_LOCK();
2193 	sp->state = IPSEC_SPSTATE_DEAD;
2194 	SPTREE_UNLOCK();
2195 	KEY_FREESP(&sp);
2196 
2197     {
2198 	struct mbuf *n, *nn;
2199 	struct sadb_msg *newmsg;
2200 	int off, len;
2201 
2202 	/* create new sadb_msg to reply. */
2203 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2204 
2205 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2206 	if (n && len > MHLEN) {
2207 		MCLGET(n, M_DONTWAIT);
2208 		if ((n->m_flags & M_EXT) == 0) {
2209 			m_freem(n);
2210 			n = NULL;
2211 		}
2212 	}
2213 	if (!n)
2214 		return key_senderror(so, m, ENOBUFS);
2215 
2216 	n->m_len = len;
2217 	n->m_next = NULL;
2218 	off = 0;
2219 
2220 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2221 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2222 
2223 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2224 		off, len));
2225 
2226 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2227 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2228 	if (!n->m_next) {
2229 		m_freem(n);
2230 		return key_senderror(so, m, ENOBUFS);
2231 	}
2232 
2233 	n->m_pkthdr.len = 0;
2234 	for (nn = n; nn; nn = nn->m_next)
2235 		n->m_pkthdr.len += nn->m_len;
2236 
2237 	newmsg = mtod(n, struct sadb_msg *);
2238 	newmsg->sadb_msg_errno = 0;
2239 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2240 
2241 	m_freem(m);
2242 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2243     }
2244 }
2245 
2246 /*
2247  * SADB_X_GET processing
2248  * receive
2249  *   <base, policy(*)>
2250  * from the user(?),
2251  * and send,
2252  *   <base, address(SD), policy>
2253  * to the ikmpd.
2254  * policy(*) including direction of policy.
2255  *
2256  * m will always be freed.
2257  */
2258 static int
2259 key_spdget(so, m, mhp)
2260 	struct socket *so;
2261 	struct mbuf *m;
2262 	const struct sadb_msghdr *mhp;
2263 {
2264 	u_int32_t id;
2265 	struct secpolicy *sp;
2266 	struct mbuf *n;
2267 
2268 	IPSEC_ASSERT(so != NULL, ("null socket"));
2269 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2270 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2271 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2272 
2273 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2274 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2275 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2276 			__func__));
2277 		return key_senderror(so, m, EINVAL);
2278 	}
2279 
2280 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2281 
2282 	/* Is there SP in SPD ? */
2283 	if ((sp = key_getspbyid(id)) == NULL) {
2284 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2285 		return key_senderror(so, m, ENOENT);
2286 	}
2287 
2288 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2289 	if (n != NULL) {
2290 		m_freem(m);
2291 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2292 	} else
2293 		return key_senderror(so, m, ENOBUFS);
2294 }
2295 
2296 /*
2297  * SADB_X_SPDACQUIRE processing.
2298  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2299  * send
2300  *   <base, policy(*)>
2301  * to KMD, and expect to receive
2302  *   <base> with SADB_X_SPDACQUIRE if error occured,
2303  * or
2304  *   <base, policy>
2305  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2306  * policy(*) is without policy requests.
2307  *
2308  *    0     : succeed
2309  *    others: error number
2310  */
2311 int
2312 key_spdacquire(sp)
2313 	struct secpolicy *sp;
2314 {
2315 	struct mbuf *result = NULL, *m;
2316 	struct secspacq *newspacq;
2317 
2318 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2319 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2320 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2321 		("policy not IPSEC %u", sp->policy));
2322 
2323 	/* Get an entry to check whether sent message or not. */
2324 	newspacq = key_getspacq(&sp->spidx);
2325 	if (newspacq != NULL) {
2326 		if (V_key_blockacq_count < newspacq->count) {
2327 			/* reset counter and do send message. */
2328 			newspacq->count = 0;
2329 		} else {
2330 			/* increment counter and do nothing. */
2331 			newspacq->count++;
2332 			return 0;
2333 		}
2334 		SPACQ_UNLOCK();
2335 	} else {
2336 		/* make new entry for blocking to send SADB_ACQUIRE. */
2337 		newspacq = key_newspacq(&sp->spidx);
2338 		if (newspacq == NULL)
2339 			return ENOBUFS;
2340 	}
2341 
2342 	/* create new sadb_msg to reply. */
2343 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2344 	if (!m)
2345 		return ENOBUFS;
2346 
2347 	result = m;
2348 
2349 	result->m_pkthdr.len = 0;
2350 	for (m = result; m; m = m->m_next)
2351 		result->m_pkthdr.len += m->m_len;
2352 
2353 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2354 	    PFKEY_UNIT64(result->m_pkthdr.len);
2355 
2356 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2357 }
2358 
2359 /*
2360  * SADB_SPDFLUSH processing
2361  * receive
2362  *   <base>
2363  * from the user, and free all entries in secpctree.
2364  * and send,
2365  *   <base>
2366  * to the user.
2367  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2368  *
2369  * m will always be freed.
2370  */
2371 static int
2372 key_spdflush(so, m, mhp)
2373 	struct socket *so;
2374 	struct mbuf *m;
2375 	const struct sadb_msghdr *mhp;
2376 {
2377 	struct sadb_msg *newmsg;
2378 	struct secpolicy *sp;
2379 	u_int dir;
2380 
2381 	IPSEC_ASSERT(so != NULL, ("null socket"));
2382 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2383 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2384 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2385 
2386 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2387 		return key_senderror(so, m, EINVAL);
2388 
2389 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2390 		SPTREE_LOCK();
2391 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2392 			sp->state = IPSEC_SPSTATE_DEAD;
2393 		SPTREE_UNLOCK();
2394 	}
2395 
2396 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2397 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2398 		return key_senderror(so, m, ENOBUFS);
2399 	}
2400 
2401 	if (m->m_next)
2402 		m_freem(m->m_next);
2403 	m->m_next = NULL;
2404 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2405 	newmsg = mtod(m, struct sadb_msg *);
2406 	newmsg->sadb_msg_errno = 0;
2407 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2408 
2409 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2410 }
2411 
2412 /*
2413  * SADB_SPDDUMP processing
2414  * receive
2415  *   <base>
2416  * from the user, and dump all SP leaves
2417  * and send,
2418  *   <base> .....
2419  * to the ikmpd.
2420  *
2421  * m will always be freed.
2422  */
2423 static int
2424 key_spddump(so, m, mhp)
2425 	struct socket *so;
2426 	struct mbuf *m;
2427 	const struct sadb_msghdr *mhp;
2428 {
2429 	struct secpolicy *sp;
2430 	int cnt;
2431 	u_int dir;
2432 	struct mbuf *n;
2433 
2434 	IPSEC_ASSERT(so != NULL, ("null socket"));
2435 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2436 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2437 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2438 
2439 	/* search SPD entry and get buffer size. */
2440 	cnt = 0;
2441 	SPTREE_LOCK();
2442 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2443 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2444 			cnt++;
2445 		}
2446 	}
2447 
2448 	if (cnt == 0) {
2449 		SPTREE_UNLOCK();
2450 		return key_senderror(so, m, ENOENT);
2451 	}
2452 
2453 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2454 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2455 			--cnt;
2456 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2457 			    mhp->msg->sadb_msg_pid);
2458 
2459 			if (n)
2460 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2461 		}
2462 	}
2463 
2464 	SPTREE_UNLOCK();
2465 	m_freem(m);
2466 	return 0;
2467 }
2468 
2469 static struct mbuf *
2470 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2471 {
2472 	struct mbuf *result = NULL, *m;
2473 	struct seclifetime lt;
2474 
2475 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2476 	if (!m)
2477 		goto fail;
2478 	result = m;
2479 
2480 	/*
2481 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2482 	 * we are sending traffic endpoints.
2483 	 */
2484 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2485 	    &sp->spidx.src.sa, sp->spidx.prefs,
2486 	    sp->spidx.ul_proto);
2487 	if (!m)
2488 		goto fail;
2489 	m_cat(result, m);
2490 
2491 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2492 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2493 	    sp->spidx.ul_proto);
2494 	if (!m)
2495 		goto fail;
2496 	m_cat(result, m);
2497 
2498 	m = key_sp2msg(sp);
2499 	if (!m)
2500 		goto fail;
2501 	m_cat(result, m);
2502 
2503 	if(sp->lifetime){
2504 		lt.addtime=sp->created;
2505 		lt.usetime= sp->lastused;
2506 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2507 		if (!m)
2508 			goto fail;
2509 		m_cat(result, m);
2510 
2511 		lt.addtime=sp->lifetime;
2512 		lt.usetime= sp->validtime;
2513 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2514 		if (!m)
2515 			goto fail;
2516 		m_cat(result, m);
2517 	}
2518 
2519 	if ((result->m_flags & M_PKTHDR) == 0)
2520 		goto fail;
2521 
2522 	if (result->m_len < sizeof(struct sadb_msg)) {
2523 		result = m_pullup(result, sizeof(struct sadb_msg));
2524 		if (result == NULL)
2525 			goto fail;
2526 	}
2527 
2528 	result->m_pkthdr.len = 0;
2529 	for (m = result; m; m = m->m_next)
2530 		result->m_pkthdr.len += m->m_len;
2531 
2532 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2533 	    PFKEY_UNIT64(result->m_pkthdr.len);
2534 
2535 	return result;
2536 
2537 fail:
2538 	m_freem(result);
2539 	return NULL;
2540 }
2541 
2542 /*
2543  * get PFKEY message length for security policy and request.
2544  */
2545 static u_int
2546 key_getspreqmsglen(sp)
2547 	struct secpolicy *sp;
2548 {
2549 	u_int tlen;
2550 
2551 	tlen = sizeof(struct sadb_x_policy);
2552 
2553 	/* if is the policy for ipsec ? */
2554 	if (sp->policy != IPSEC_POLICY_IPSEC)
2555 		return tlen;
2556 
2557 	/* get length of ipsec requests */
2558     {
2559 	struct ipsecrequest *isr;
2560 	int len;
2561 
2562 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2563 		len = sizeof(struct sadb_x_ipsecrequest)
2564 			+ isr->saidx.src.sa.sa_len
2565 			+ isr->saidx.dst.sa.sa_len;
2566 
2567 		tlen += PFKEY_ALIGN8(len);
2568 	}
2569     }
2570 
2571 	return tlen;
2572 }
2573 
2574 /*
2575  * SADB_SPDEXPIRE processing
2576  * send
2577  *   <base, address(SD), lifetime(CH), policy>
2578  * to KMD by PF_KEY.
2579  *
2580  * OUT:	0	: succeed
2581  *	others	: error number
2582  */
2583 static int
2584 key_spdexpire(sp)
2585 	struct secpolicy *sp;
2586 {
2587 	struct mbuf *result = NULL, *m;
2588 	int len;
2589 	int error = -1;
2590 	struct sadb_lifetime *lt;
2591 
2592 	/* XXX: Why do we lock ? */
2593 
2594 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2595 
2596 	/* set msg header */
2597 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2598 	if (!m) {
2599 		error = ENOBUFS;
2600 		goto fail;
2601 	}
2602 	result = m;
2603 
2604 	/* create lifetime extension (current and hard) */
2605 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2606 	m = key_alloc_mbuf(len);
2607 	if (!m || m->m_next) {	/*XXX*/
2608 		if (m)
2609 			m_freem(m);
2610 		error = ENOBUFS;
2611 		goto fail;
2612 	}
2613 	bzero(mtod(m, caddr_t), len);
2614 	lt = mtod(m, struct sadb_lifetime *);
2615 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2616 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2617 	lt->sadb_lifetime_allocations = 0;
2618 	lt->sadb_lifetime_bytes = 0;
2619 	lt->sadb_lifetime_addtime = sp->created;
2620 	lt->sadb_lifetime_usetime = sp->lastused;
2621 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2622 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2623 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2624 	lt->sadb_lifetime_allocations = 0;
2625 	lt->sadb_lifetime_bytes = 0;
2626 	lt->sadb_lifetime_addtime = sp->lifetime;
2627 	lt->sadb_lifetime_usetime = sp->validtime;
2628 	m_cat(result, m);
2629 
2630 	/*
2631 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2632 	 * we are sending traffic endpoints.
2633 	 */
2634 
2635 	/* set sadb_address for source */
2636 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2637 	    &sp->spidx.src.sa,
2638 	    sp->spidx.prefs, sp->spidx.ul_proto);
2639 	if (!m) {
2640 		error = ENOBUFS;
2641 		goto fail;
2642 	}
2643 	m_cat(result, m);
2644 
2645 	/* set sadb_address for destination */
2646 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2647 	    &sp->spidx.dst.sa,
2648 	    sp->spidx.prefd, sp->spidx.ul_proto);
2649 	if (!m) {
2650 		error = ENOBUFS;
2651 		goto fail;
2652 	}
2653 	m_cat(result, m);
2654 
2655 	/* set secpolicy */
2656 	m = key_sp2msg(sp);
2657 	if (!m) {
2658 		error = ENOBUFS;
2659 		goto fail;
2660 	}
2661 	m_cat(result, m);
2662 
2663 	if ((result->m_flags & M_PKTHDR) == 0) {
2664 		error = EINVAL;
2665 		goto fail;
2666 	}
2667 
2668 	if (result->m_len < sizeof(struct sadb_msg)) {
2669 		result = m_pullup(result, sizeof(struct sadb_msg));
2670 		if (result == NULL) {
2671 			error = ENOBUFS;
2672 			goto fail;
2673 		}
2674 	}
2675 
2676 	result->m_pkthdr.len = 0;
2677 	for (m = result; m; m = m->m_next)
2678 		result->m_pkthdr.len += m->m_len;
2679 
2680 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2681 	    PFKEY_UNIT64(result->m_pkthdr.len);
2682 
2683 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2684 
2685  fail:
2686 	if (result)
2687 		m_freem(result);
2688 	return error;
2689 }
2690 
2691 /* %%% SAD management */
2692 /*
2693  * allocating a memory for new SA head, and copy from the values of mhp.
2694  * OUT:	NULL	: failure due to the lack of memory.
2695  *	others	: pointer to new SA head.
2696  */
2697 static struct secashead *
2698 key_newsah(saidx)
2699 	struct secasindex *saidx;
2700 {
2701 	struct secashead *newsah;
2702 
2703 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2704 
2705 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2706 	if (newsah != NULL) {
2707 		int i;
2708 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2709 			LIST_INIT(&newsah->savtree[i]);
2710 		newsah->saidx = *saidx;
2711 
2712 		/* add to saidxtree */
2713 		newsah->state = SADB_SASTATE_MATURE;
2714 
2715 		SAHTREE_LOCK();
2716 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2717 		SAHTREE_UNLOCK();
2718 	}
2719 	return(newsah);
2720 }
2721 
2722 /*
2723  * delete SA index and all SA registerd.
2724  */
2725 static void
2726 key_delsah(sah)
2727 	struct secashead *sah;
2728 {
2729 	struct secasvar *sav, *nextsav;
2730 	u_int stateidx;
2731 	int zombie = 0;
2732 
2733 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2734 	SAHTREE_LOCK_ASSERT();
2735 
2736 	/* searching all SA registerd in the secindex. */
2737 	for (stateidx = 0;
2738 	     stateidx < _ARRAYLEN(saorder_state_any);
2739 	     stateidx++) {
2740 		u_int state = saorder_state_any[stateidx];
2741 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2742 			if (sav->refcnt == 0) {
2743 				/* sanity check */
2744 				KEY_CHKSASTATE(state, sav->state, __func__);
2745 				/*
2746 				 * do NOT call KEY_FREESAV here:
2747 				 * it will only delete the sav if refcnt == 1,
2748 				 * where we already know that refcnt == 0
2749 				 */
2750 				key_delsav(sav);
2751 			} else {
2752 				/* give up to delete this sa */
2753 				zombie++;
2754 			}
2755 		}
2756 	}
2757 	if (!zombie) {		/* delete only if there are savs */
2758 		/* remove from tree of SA index */
2759 		if (__LIST_CHAINED(sah))
2760 			LIST_REMOVE(sah, chain);
2761 		if (sah->route_cache.sa_route.ro_rt) {
2762 			RTFREE(sah->route_cache.sa_route.ro_rt);
2763 			sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2764 		}
2765 		free(sah, M_IPSEC_SAH);
2766 	}
2767 }
2768 
2769 /*
2770  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2771  * and copy the values of mhp into new buffer.
2772  * When SAD message type is GETSPI:
2773  *	to set sequence number from acq_seq++,
2774  *	to set zero to SPI.
2775  *	not to call key_setsava().
2776  * OUT:	NULL	: fail
2777  *	others	: pointer to new secasvar.
2778  *
2779  * does not modify mbuf.  does not free mbuf on error.
2780  */
2781 static struct secasvar *
2782 key_newsav(m, mhp, sah, errp, where, tag)
2783 	struct mbuf *m;
2784 	const struct sadb_msghdr *mhp;
2785 	struct secashead *sah;
2786 	int *errp;
2787 	const char* where;
2788 	int tag;
2789 {
2790 	struct secasvar *newsav;
2791 	const struct sadb_sa *xsa;
2792 
2793 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2794 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2795 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2796 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2797 
2798 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2799 	if (newsav == NULL) {
2800 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2801 		*errp = ENOBUFS;
2802 		goto done;
2803 	}
2804 
2805 	switch (mhp->msg->sadb_msg_type) {
2806 	case SADB_GETSPI:
2807 		newsav->spi = 0;
2808 
2809 #ifdef IPSEC_DOSEQCHECK
2810 		/* sync sequence number */
2811 		if (mhp->msg->sadb_msg_seq == 0)
2812 			newsav->seq =
2813 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2814 		else
2815 #endif
2816 			newsav->seq = mhp->msg->sadb_msg_seq;
2817 		break;
2818 
2819 	case SADB_ADD:
2820 		/* sanity check */
2821 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2822 			free(newsav, M_IPSEC_SA);
2823 			newsav = NULL;
2824 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2825 				__func__));
2826 			*errp = EINVAL;
2827 			goto done;
2828 		}
2829 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2830 		newsav->spi = xsa->sadb_sa_spi;
2831 		newsav->seq = mhp->msg->sadb_msg_seq;
2832 		break;
2833 	default:
2834 		free(newsav, M_IPSEC_SA);
2835 		newsav = NULL;
2836 		*errp = EINVAL;
2837 		goto done;
2838 	}
2839 
2840 
2841 	/* copy sav values */
2842 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2843 		*errp = key_setsaval(newsav, m, mhp);
2844 		if (*errp) {
2845 			free(newsav, M_IPSEC_SA);
2846 			newsav = NULL;
2847 			goto done;
2848 		}
2849 	}
2850 
2851 	SECASVAR_LOCK_INIT(newsav);
2852 
2853 	/* reset created */
2854 	newsav->created = time_second;
2855 	newsav->pid = mhp->msg->sadb_msg_pid;
2856 
2857 	/* add to satree */
2858 	newsav->sah = sah;
2859 	sa_initref(newsav);
2860 	newsav->state = SADB_SASTATE_LARVAL;
2861 
2862 	SAHTREE_LOCK();
2863 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2864 			secasvar, chain);
2865 	SAHTREE_UNLOCK();
2866 done:
2867 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2868 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2869 			where, tag, newsav));
2870 
2871 	return newsav;
2872 }
2873 
2874 /*
2875  * free() SA variable entry.
2876  */
2877 static void
2878 key_cleansav(struct secasvar *sav)
2879 {
2880 	/*
2881 	 * Cleanup xform state.  Note that zeroize'ing causes the
2882 	 * keys to be cleared; otherwise we must do it ourself.
2883 	 */
2884 	if (sav->tdb_xform != NULL) {
2885 		sav->tdb_xform->xf_zeroize(sav);
2886 		sav->tdb_xform = NULL;
2887 	} else {
2888 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2889 		if (sav->key_auth != NULL)
2890 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2891 		if (sav->key_enc != NULL)
2892 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2893 	}
2894 	if (sav->key_auth != NULL) {
2895 		if (sav->key_auth->key_data != NULL)
2896 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2897 		free(sav->key_auth, M_IPSEC_MISC);
2898 		sav->key_auth = NULL;
2899 	}
2900 	if (sav->key_enc != NULL) {
2901 		if (sav->key_enc->key_data != NULL)
2902 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2903 		free(sav->key_enc, M_IPSEC_MISC);
2904 		sav->key_enc = NULL;
2905 	}
2906 	if (sav->sched) {
2907 		bzero(sav->sched, sav->schedlen);
2908 		free(sav->sched, M_IPSEC_MISC);
2909 		sav->sched = NULL;
2910 	}
2911 	if (sav->replay != NULL) {
2912 		free(sav->replay, M_IPSEC_MISC);
2913 		sav->replay = NULL;
2914 	}
2915 	if (sav->lft_c != NULL) {
2916 		free(sav->lft_c, M_IPSEC_MISC);
2917 		sav->lft_c = NULL;
2918 	}
2919 	if (sav->lft_h != NULL) {
2920 		free(sav->lft_h, M_IPSEC_MISC);
2921 		sav->lft_h = NULL;
2922 	}
2923 	if (sav->lft_s != NULL) {
2924 		free(sav->lft_s, M_IPSEC_MISC);
2925 		sav->lft_s = NULL;
2926 	}
2927 }
2928 
2929 /*
2930  * free() SA variable entry.
2931  */
2932 static void
2933 key_delsav(sav)
2934 	struct secasvar *sav;
2935 {
2936 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2937 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2938 
2939 	/* remove from SA header */
2940 	if (__LIST_CHAINED(sav))
2941 		LIST_REMOVE(sav, chain);
2942 	key_cleansav(sav);
2943 	SECASVAR_LOCK_DESTROY(sav);
2944 	free(sav, M_IPSEC_SA);
2945 }
2946 
2947 /*
2948  * search SAD.
2949  * OUT:
2950  *	NULL	: not found
2951  *	others	: found, pointer to a SA.
2952  */
2953 static struct secashead *
2954 key_getsah(saidx)
2955 	struct secasindex *saidx;
2956 {
2957 	struct secashead *sah;
2958 
2959 	SAHTREE_LOCK();
2960 	LIST_FOREACH(sah, &V_sahtree, chain) {
2961 		if (sah->state == SADB_SASTATE_DEAD)
2962 			continue;
2963 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2964 			break;
2965 	}
2966 	SAHTREE_UNLOCK();
2967 
2968 	return sah;
2969 }
2970 
2971 /*
2972  * check not to be duplicated SPI.
2973  * NOTE: this function is too slow due to searching all SAD.
2974  * OUT:
2975  *	NULL	: not found
2976  *	others	: found, pointer to a SA.
2977  */
2978 static struct secasvar *
2979 key_checkspidup(saidx, spi)
2980 	struct secasindex *saidx;
2981 	u_int32_t spi;
2982 {
2983 	struct secashead *sah;
2984 	struct secasvar *sav;
2985 
2986 	/* check address family */
2987 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2988 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2989 			__func__));
2990 		return NULL;
2991 	}
2992 
2993 	sav = NULL;
2994 	/* check all SAD */
2995 	SAHTREE_LOCK();
2996 	LIST_FOREACH(sah, &V_sahtree, chain) {
2997 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2998 			continue;
2999 		sav = key_getsavbyspi(sah, spi);
3000 		if (sav != NULL)
3001 			break;
3002 	}
3003 	SAHTREE_UNLOCK();
3004 
3005 	return sav;
3006 }
3007 
3008 /*
3009  * search SAD litmited alive SA, protocol, SPI.
3010  * OUT:
3011  *	NULL	: not found
3012  *	others	: found, pointer to a SA.
3013  */
3014 static struct secasvar *
3015 key_getsavbyspi(sah, spi)
3016 	struct secashead *sah;
3017 	u_int32_t spi;
3018 {
3019 	struct secasvar *sav;
3020 	u_int stateidx, state;
3021 
3022 	sav = NULL;
3023 	SAHTREE_LOCK_ASSERT();
3024 	/* search all status */
3025 	for (stateidx = 0;
3026 	     stateidx < _ARRAYLEN(saorder_state_alive);
3027 	     stateidx++) {
3028 
3029 		state = saorder_state_alive[stateidx];
3030 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3031 
3032 			/* sanity check */
3033 			if (sav->state != state) {
3034 				ipseclog((LOG_DEBUG, "%s: "
3035 				    "invalid sav->state (queue: %d SA: %d)\n",
3036 				    __func__, state, sav->state));
3037 				continue;
3038 			}
3039 
3040 			if (sav->spi == spi)
3041 				return sav;
3042 		}
3043 	}
3044 
3045 	return NULL;
3046 }
3047 
3048 /*
3049  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3050  * You must update these if need.
3051  * OUT:	0:	success.
3052  *	!0:	failure.
3053  *
3054  * does not modify mbuf.  does not free mbuf on error.
3055  */
3056 static int
3057 key_setsaval(sav, m, mhp)
3058 	struct secasvar *sav;
3059 	struct mbuf *m;
3060 	const struct sadb_msghdr *mhp;
3061 {
3062 	int error = 0;
3063 
3064 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3065 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3066 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3067 
3068 	/* initialization */
3069 	sav->replay = NULL;
3070 	sav->key_auth = NULL;
3071 	sav->key_enc = NULL;
3072 	sav->sched = NULL;
3073 	sav->schedlen = 0;
3074 	sav->iv = NULL;
3075 	sav->lft_c = NULL;
3076 	sav->lft_h = NULL;
3077 	sav->lft_s = NULL;
3078 	sav->tdb_xform = NULL;		/* transform */
3079 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3080 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3081 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3082 	/*  Initialize even if NAT-T not compiled in: */
3083 	sav->natt_type = 0;
3084 	sav->natt_esp_frag_len = 0;
3085 
3086 	/* SA */
3087 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3088 		const struct sadb_sa *sa0;
3089 
3090 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3091 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3092 			error = EINVAL;
3093 			goto fail;
3094 		}
3095 
3096 		sav->alg_auth = sa0->sadb_sa_auth;
3097 		sav->alg_enc = sa0->sadb_sa_encrypt;
3098 		sav->flags = sa0->sadb_sa_flags;
3099 
3100 		/* replay window */
3101 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3102 			sav->replay = (struct secreplay *)
3103 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3104 			if (sav->replay == NULL) {
3105 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3106 					__func__));
3107 				error = ENOBUFS;
3108 				goto fail;
3109 			}
3110 			if (sa0->sadb_sa_replay != 0)
3111 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3112 			sav->replay->wsize = sa0->sadb_sa_replay;
3113 		}
3114 	}
3115 
3116 	/* Authentication keys */
3117 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3118 		const struct sadb_key *key0;
3119 		int len;
3120 
3121 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3122 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3123 
3124 		error = 0;
3125 		if (len < sizeof(*key0)) {
3126 			error = EINVAL;
3127 			goto fail;
3128 		}
3129 		switch (mhp->msg->sadb_msg_satype) {
3130 		case SADB_SATYPE_AH:
3131 		case SADB_SATYPE_ESP:
3132 		case SADB_X_SATYPE_TCPSIGNATURE:
3133 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3134 			    sav->alg_auth != SADB_X_AALG_NULL)
3135 				error = EINVAL;
3136 			break;
3137 		case SADB_X_SATYPE_IPCOMP:
3138 		default:
3139 			error = EINVAL;
3140 			break;
3141 		}
3142 		if (error) {
3143 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3144 				__func__));
3145 			goto fail;
3146 		}
3147 
3148 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3149 								M_IPSEC_MISC);
3150 		if (sav->key_auth == NULL ) {
3151 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3152 				  __func__));
3153 			error = ENOBUFS;
3154 			goto fail;
3155 		}
3156 	}
3157 
3158 	/* Encryption key */
3159 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3160 		const struct sadb_key *key0;
3161 		int len;
3162 
3163 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3164 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3165 
3166 		error = 0;
3167 		if (len < sizeof(*key0)) {
3168 			error = EINVAL;
3169 			goto fail;
3170 		}
3171 		switch (mhp->msg->sadb_msg_satype) {
3172 		case SADB_SATYPE_ESP:
3173 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3174 			    sav->alg_enc != SADB_EALG_NULL) {
3175 				error = EINVAL;
3176 				break;
3177 			}
3178 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3179 								       len,
3180 								       M_IPSEC_MISC);
3181 			if (sav->key_enc == NULL) {
3182 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3183 					__func__));
3184 				error = ENOBUFS;
3185 				goto fail;
3186 			}
3187 			break;
3188 		case SADB_X_SATYPE_IPCOMP:
3189 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3190 				error = EINVAL;
3191 			sav->key_enc = NULL;	/*just in case*/
3192 			break;
3193 		case SADB_SATYPE_AH:
3194 		case SADB_X_SATYPE_TCPSIGNATURE:
3195 		default:
3196 			error = EINVAL;
3197 			break;
3198 		}
3199 		if (error) {
3200 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3201 				__func__));
3202 			goto fail;
3203 		}
3204 	}
3205 
3206 	/* set iv */
3207 	sav->ivlen = 0;
3208 
3209 	switch (mhp->msg->sadb_msg_satype) {
3210 	case SADB_SATYPE_AH:
3211 		error = xform_init(sav, XF_AH);
3212 		break;
3213 	case SADB_SATYPE_ESP:
3214 		error = xform_init(sav, XF_ESP);
3215 		break;
3216 	case SADB_X_SATYPE_IPCOMP:
3217 		error = xform_init(sav, XF_IPCOMP);
3218 		break;
3219 	case SADB_X_SATYPE_TCPSIGNATURE:
3220 		error = xform_init(sav, XF_TCPSIGNATURE);
3221 		break;
3222 	}
3223 	if (error) {
3224 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3225 		        __func__, mhp->msg->sadb_msg_satype));
3226 		goto fail;
3227 	}
3228 
3229 	/* reset created */
3230 	sav->created = time_second;
3231 
3232 	/* make lifetime for CURRENT */
3233 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3234 	if (sav->lft_c == NULL) {
3235 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3236 		error = ENOBUFS;
3237 		goto fail;
3238 	}
3239 
3240 	sav->lft_c->allocations = 0;
3241 	sav->lft_c->bytes = 0;
3242 	sav->lft_c->addtime = time_second;
3243 	sav->lft_c->usetime = 0;
3244 
3245 	/* lifetimes for HARD and SOFT */
3246     {
3247 	const struct sadb_lifetime *lft0;
3248 
3249 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3250 	if (lft0 != NULL) {
3251 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3252 			error = EINVAL;
3253 			goto fail;
3254 		}
3255 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3256 		if (sav->lft_h == NULL) {
3257 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3258 			error = ENOBUFS;
3259 			goto fail;
3260 		}
3261 		/* to be initialize ? */
3262 	}
3263 
3264 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3265 	if (lft0 != NULL) {
3266 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3267 			error = EINVAL;
3268 			goto fail;
3269 		}
3270 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3271 		if (sav->lft_s == NULL) {
3272 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3273 			error = ENOBUFS;
3274 			goto fail;
3275 		}
3276 		/* to be initialize ? */
3277 	}
3278     }
3279 
3280 	return 0;
3281 
3282  fail:
3283 	/* initialization */
3284 	key_cleansav(sav);
3285 
3286 	return error;
3287 }
3288 
3289 /*
3290  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3291  * OUT:	0:	valid
3292  *	other:	errno
3293  */
3294 static int
3295 key_mature(struct secasvar *sav)
3296 {
3297 	int error;
3298 
3299 	/* check SPI value */
3300 	switch (sav->sah->saidx.proto) {
3301 	case IPPROTO_ESP:
3302 	case IPPROTO_AH:
3303 		/*
3304 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3305 		 * 1-255 reserved by IANA for future use,
3306 		 * 0 for implementation specific, local use.
3307 		 */
3308 		if (ntohl(sav->spi) <= 255) {
3309 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3310 			    __func__, (u_int32_t)ntohl(sav->spi)));
3311 			return EINVAL;
3312 		}
3313 		break;
3314 	}
3315 
3316 	/* check satype */
3317 	switch (sav->sah->saidx.proto) {
3318 	case IPPROTO_ESP:
3319 		/* check flags */
3320 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3321 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3322 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3323 				"given to old-esp.\n", __func__));
3324 			return EINVAL;
3325 		}
3326 		error = xform_init(sav, XF_ESP);
3327 		break;
3328 	case IPPROTO_AH:
3329 		/* check flags */
3330 		if (sav->flags & SADB_X_EXT_DERIV) {
3331 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3332 				"given to AH SA.\n", __func__));
3333 			return EINVAL;
3334 		}
3335 		if (sav->alg_enc != SADB_EALG_NONE) {
3336 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3337 				"mismated.\n", __func__));
3338 			return(EINVAL);
3339 		}
3340 		error = xform_init(sav, XF_AH);
3341 		break;
3342 	case IPPROTO_IPCOMP:
3343 		if (sav->alg_auth != SADB_AALG_NONE) {
3344 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3345 				"mismated.\n", __func__));
3346 			return(EINVAL);
3347 		}
3348 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3349 		 && ntohl(sav->spi) >= 0x10000) {
3350 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3351 				__func__));
3352 			return(EINVAL);
3353 		}
3354 		error = xform_init(sav, XF_IPCOMP);
3355 		break;
3356 	case IPPROTO_TCP:
3357 		if (sav->alg_enc != SADB_EALG_NONE) {
3358 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3359 				"mismated.\n", __func__));
3360 			return(EINVAL);
3361 		}
3362 		error = xform_init(sav, XF_TCPSIGNATURE);
3363 		break;
3364 	default:
3365 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3366 		error = EPROTONOSUPPORT;
3367 		break;
3368 	}
3369 	if (error == 0) {
3370 		SAHTREE_LOCK();
3371 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3372 		SAHTREE_UNLOCK();
3373 	}
3374 	return (error);
3375 }
3376 
3377 /*
3378  * subroutine for SADB_GET and SADB_DUMP.
3379  */
3380 static struct mbuf *
3381 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3382     u_int32_t seq, u_int32_t pid)
3383 {
3384 	struct mbuf *result = NULL, *tres = NULL, *m;
3385 	int i;
3386 	int dumporder[] = {
3387 		SADB_EXT_SA, SADB_X_EXT_SA2,
3388 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3389 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3390 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3391 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3392 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3393 #ifdef IPSEC_NAT_T
3394 		SADB_X_EXT_NAT_T_TYPE,
3395 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3396 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3397 		SADB_X_EXT_NAT_T_FRAG,
3398 #endif
3399 	};
3400 
3401 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3402 	if (m == NULL)
3403 		goto fail;
3404 	result = m;
3405 
3406 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3407 		m = NULL;
3408 		switch (dumporder[i]) {
3409 		case SADB_EXT_SA:
3410 			m = key_setsadbsa(sav);
3411 			if (!m)
3412 				goto fail;
3413 			break;
3414 
3415 		case SADB_X_EXT_SA2:
3416 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3417 					sav->replay ? sav->replay->count : 0,
3418 					sav->sah->saidx.reqid);
3419 			if (!m)
3420 				goto fail;
3421 			break;
3422 
3423 		case SADB_EXT_ADDRESS_SRC:
3424 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3425 			    &sav->sah->saidx.src.sa,
3426 			    FULLMASK, IPSEC_ULPROTO_ANY);
3427 			if (!m)
3428 				goto fail;
3429 			break;
3430 
3431 		case SADB_EXT_ADDRESS_DST:
3432 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3433 			    &sav->sah->saidx.dst.sa,
3434 			    FULLMASK, IPSEC_ULPROTO_ANY);
3435 			if (!m)
3436 				goto fail;
3437 			break;
3438 
3439 		case SADB_EXT_KEY_AUTH:
3440 			if (!sav->key_auth)
3441 				continue;
3442 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3443 			if (!m)
3444 				goto fail;
3445 			break;
3446 
3447 		case SADB_EXT_KEY_ENCRYPT:
3448 			if (!sav->key_enc)
3449 				continue;
3450 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3451 			if (!m)
3452 				goto fail;
3453 			break;
3454 
3455 		case SADB_EXT_LIFETIME_CURRENT:
3456 			if (!sav->lft_c)
3457 				continue;
3458 			m = key_setlifetime(sav->lft_c,
3459 					    SADB_EXT_LIFETIME_CURRENT);
3460 			if (!m)
3461 				goto fail;
3462 			break;
3463 
3464 		case SADB_EXT_LIFETIME_HARD:
3465 			if (!sav->lft_h)
3466 				continue;
3467 			m = key_setlifetime(sav->lft_h,
3468 					    SADB_EXT_LIFETIME_HARD);
3469 			if (!m)
3470 				goto fail;
3471 			break;
3472 
3473 		case SADB_EXT_LIFETIME_SOFT:
3474 			if (!sav->lft_s)
3475 				continue;
3476 			m = key_setlifetime(sav->lft_s,
3477 					    SADB_EXT_LIFETIME_SOFT);
3478 
3479 			if (!m)
3480 				goto fail;
3481 			break;
3482 
3483 #ifdef IPSEC_NAT_T
3484 		case SADB_X_EXT_NAT_T_TYPE:
3485 			m = key_setsadbxtype(sav->natt_type);
3486 			if (!m)
3487 				goto fail;
3488 			break;
3489 
3490 		case SADB_X_EXT_NAT_T_DPORT:
3491 			m = key_setsadbxport(
3492 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3493 			    SADB_X_EXT_NAT_T_DPORT);
3494 			if (!m)
3495 				goto fail;
3496 			break;
3497 
3498 		case SADB_X_EXT_NAT_T_SPORT:
3499 			m = key_setsadbxport(
3500 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3501 			    SADB_X_EXT_NAT_T_SPORT);
3502 			if (!m)
3503 				goto fail;
3504 			break;
3505 
3506 		case SADB_X_EXT_NAT_T_OAI:
3507 		case SADB_X_EXT_NAT_T_OAR:
3508 		case SADB_X_EXT_NAT_T_FRAG:
3509 			/* We do not (yet) support those. */
3510 			continue;
3511 #endif
3512 
3513 		case SADB_EXT_ADDRESS_PROXY:
3514 		case SADB_EXT_IDENTITY_SRC:
3515 		case SADB_EXT_IDENTITY_DST:
3516 			/* XXX: should we brought from SPD ? */
3517 		case SADB_EXT_SENSITIVITY:
3518 		default:
3519 			continue;
3520 		}
3521 
3522 		if (!m)
3523 			goto fail;
3524 		if (tres)
3525 			m_cat(m, tres);
3526 		tres = m;
3527 
3528 	}
3529 
3530 	m_cat(result, tres);
3531 	if (result->m_len < sizeof(struct sadb_msg)) {
3532 		result = m_pullup(result, sizeof(struct sadb_msg));
3533 		if (result == NULL)
3534 			goto fail;
3535 	}
3536 
3537 	result->m_pkthdr.len = 0;
3538 	for (m = result; m; m = m->m_next)
3539 		result->m_pkthdr.len += m->m_len;
3540 
3541 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3542 	    PFKEY_UNIT64(result->m_pkthdr.len);
3543 
3544 	return result;
3545 
3546 fail:
3547 	m_freem(result);
3548 	m_freem(tres);
3549 	return NULL;
3550 }
3551 
3552 /*
3553  * set data into sadb_msg.
3554  */
3555 static struct mbuf *
3556 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3557     pid_t pid, u_int16_t reserved)
3558 {
3559 	struct mbuf *m;
3560 	struct sadb_msg *p;
3561 	int len;
3562 
3563 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3564 	if (len > MCLBYTES)
3565 		return NULL;
3566 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3567 	if (m && len > MHLEN) {
3568 		MCLGET(m, M_DONTWAIT);
3569 		if ((m->m_flags & M_EXT) == 0) {
3570 			m_freem(m);
3571 			m = NULL;
3572 		}
3573 	}
3574 	if (!m)
3575 		return NULL;
3576 	m->m_pkthdr.len = m->m_len = len;
3577 	m->m_next = NULL;
3578 
3579 	p = mtod(m, struct sadb_msg *);
3580 
3581 	bzero(p, len);
3582 	p->sadb_msg_version = PF_KEY_V2;
3583 	p->sadb_msg_type = type;
3584 	p->sadb_msg_errno = 0;
3585 	p->sadb_msg_satype = satype;
3586 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3587 	p->sadb_msg_reserved = reserved;
3588 	p->sadb_msg_seq = seq;
3589 	p->sadb_msg_pid = (u_int32_t)pid;
3590 
3591 	return m;
3592 }
3593 
3594 /*
3595  * copy secasvar data into sadb_address.
3596  */
3597 static struct mbuf *
3598 key_setsadbsa(sav)
3599 	struct secasvar *sav;
3600 {
3601 	struct mbuf *m;
3602 	struct sadb_sa *p;
3603 	int len;
3604 
3605 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3606 	m = key_alloc_mbuf(len);
3607 	if (!m || m->m_next) {	/*XXX*/
3608 		if (m)
3609 			m_freem(m);
3610 		return NULL;
3611 	}
3612 
3613 	p = mtod(m, struct sadb_sa *);
3614 
3615 	bzero(p, len);
3616 	p->sadb_sa_len = PFKEY_UNIT64(len);
3617 	p->sadb_sa_exttype = SADB_EXT_SA;
3618 	p->sadb_sa_spi = sav->spi;
3619 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3620 	p->sadb_sa_state = sav->state;
3621 	p->sadb_sa_auth = sav->alg_auth;
3622 	p->sadb_sa_encrypt = sav->alg_enc;
3623 	p->sadb_sa_flags = sav->flags;
3624 
3625 	return m;
3626 }
3627 
3628 /*
3629  * set data into sadb_address.
3630  */
3631 static struct mbuf *
3632 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3633 {
3634 	struct mbuf *m;
3635 	struct sadb_address *p;
3636 	size_t len;
3637 
3638 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3639 	    PFKEY_ALIGN8(saddr->sa_len);
3640 	m = key_alloc_mbuf(len);
3641 	if (!m || m->m_next) {	/*XXX*/
3642 		if (m)
3643 			m_freem(m);
3644 		return NULL;
3645 	}
3646 
3647 	p = mtod(m, struct sadb_address *);
3648 
3649 	bzero(p, len);
3650 	p->sadb_address_len = PFKEY_UNIT64(len);
3651 	p->sadb_address_exttype = exttype;
3652 	p->sadb_address_proto = ul_proto;
3653 	if (prefixlen == FULLMASK) {
3654 		switch (saddr->sa_family) {
3655 		case AF_INET:
3656 			prefixlen = sizeof(struct in_addr) << 3;
3657 			break;
3658 		case AF_INET6:
3659 			prefixlen = sizeof(struct in6_addr) << 3;
3660 			break;
3661 		default:
3662 			; /*XXX*/
3663 		}
3664 	}
3665 	p->sadb_address_prefixlen = prefixlen;
3666 	p->sadb_address_reserved = 0;
3667 
3668 	bcopy(saddr,
3669 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3670 	    saddr->sa_len);
3671 
3672 	return m;
3673 }
3674 
3675 /*
3676  * set data into sadb_x_sa2.
3677  */
3678 static struct mbuf *
3679 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3680 {
3681 	struct mbuf *m;
3682 	struct sadb_x_sa2 *p;
3683 	size_t len;
3684 
3685 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3686 	m = key_alloc_mbuf(len);
3687 	if (!m || m->m_next) {	/*XXX*/
3688 		if (m)
3689 			m_freem(m);
3690 		return NULL;
3691 	}
3692 
3693 	p = mtod(m, struct sadb_x_sa2 *);
3694 
3695 	bzero(p, len);
3696 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3697 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3698 	p->sadb_x_sa2_mode = mode;
3699 	p->sadb_x_sa2_reserved1 = 0;
3700 	p->sadb_x_sa2_reserved2 = 0;
3701 	p->sadb_x_sa2_sequence = seq;
3702 	p->sadb_x_sa2_reqid = reqid;
3703 
3704 	return m;
3705 }
3706 
3707 #ifdef IPSEC_NAT_T
3708 /*
3709  * Set a type in sadb_x_nat_t_type.
3710  */
3711 static struct mbuf *
3712 key_setsadbxtype(u_int16_t type)
3713 {
3714 	struct mbuf *m;
3715 	size_t len;
3716 	struct sadb_x_nat_t_type *p;
3717 
3718 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3719 
3720 	m = key_alloc_mbuf(len);
3721 	if (!m || m->m_next) {	/*XXX*/
3722 		if (m)
3723 			m_freem(m);
3724 		return (NULL);
3725 	}
3726 
3727 	p = mtod(m, struct sadb_x_nat_t_type *);
3728 
3729 	bzero(p, len);
3730 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3731 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3732 	p->sadb_x_nat_t_type_type = type;
3733 
3734 	return (m);
3735 }
3736 /*
3737  * Set a port in sadb_x_nat_t_port.
3738  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3739  */
3740 static struct mbuf *
3741 key_setsadbxport(u_int16_t port, u_int16_t type)
3742 {
3743 	struct mbuf *m;
3744 	size_t len;
3745 	struct sadb_x_nat_t_port *p;
3746 
3747 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3748 
3749 	m = key_alloc_mbuf(len);
3750 	if (!m || m->m_next) {	/*XXX*/
3751 		if (m)
3752 			m_freem(m);
3753 		return (NULL);
3754 	}
3755 
3756 	p = mtod(m, struct sadb_x_nat_t_port *);
3757 
3758 	bzero(p, len);
3759 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3760 	p->sadb_x_nat_t_port_exttype = type;
3761 	p->sadb_x_nat_t_port_port = port;
3762 
3763 	return (m);
3764 }
3765 
3766 /*
3767  * Get port from sockaddr. Port is in network byte order.
3768  */
3769 u_int16_t
3770 key_portfromsaddr(struct sockaddr *sa)
3771 {
3772 
3773 	switch (sa->sa_family) {
3774 #ifdef INET
3775 	case AF_INET:
3776 		return ((struct sockaddr_in *)sa)->sin_port;
3777 #endif
3778 #ifdef INET6
3779 	case AF_INET6:
3780 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3781 #endif
3782 	}
3783 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3784 		printf("DP %s unexpected address family %d\n",
3785 			__func__, sa->sa_family));
3786 	return (0);
3787 }
3788 #endif /* IPSEC_NAT_T */
3789 
3790 /*
3791  * Set port in struct sockaddr. Port is in network byte order.
3792  */
3793 static void
3794 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3795 {
3796 
3797 	switch (sa->sa_family) {
3798 #ifdef INET
3799 	case AF_INET:
3800 		((struct sockaddr_in *)sa)->sin_port = port;
3801 		break;
3802 #endif
3803 #ifdef INET6
3804 	case AF_INET6:
3805 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3806 		break;
3807 #endif
3808 	default:
3809 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3810 			__func__, sa->sa_family));
3811 		break;
3812 	}
3813 }
3814 
3815 /*
3816  * set data into sadb_x_policy
3817  */
3818 static struct mbuf *
3819 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3820 {
3821 	struct mbuf *m;
3822 	struct sadb_x_policy *p;
3823 	size_t len;
3824 
3825 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3826 	m = key_alloc_mbuf(len);
3827 	if (!m || m->m_next) {	/*XXX*/
3828 		if (m)
3829 			m_freem(m);
3830 		return NULL;
3831 	}
3832 
3833 	p = mtod(m, struct sadb_x_policy *);
3834 
3835 	bzero(p, len);
3836 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3837 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3838 	p->sadb_x_policy_type = type;
3839 	p->sadb_x_policy_dir = dir;
3840 	p->sadb_x_policy_id = id;
3841 
3842 	return m;
3843 }
3844 
3845 /* %%% utilities */
3846 /* Take a key message (sadb_key) from the socket and turn it into one
3847  * of the kernel's key structures (seckey).
3848  *
3849  * IN: pointer to the src
3850  * OUT: NULL no more memory
3851  */
3852 struct seckey *
3853 key_dup_keymsg(const struct sadb_key *src, u_int len,
3854 	       struct malloc_type *type)
3855 {
3856 	struct seckey *dst;
3857 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3858 	if (dst != NULL) {
3859 		dst->bits = src->sadb_key_bits;
3860 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3861 		if (dst->key_data != NULL) {
3862 			bcopy((const char *)src + sizeof(struct sadb_key),
3863 			      dst->key_data, len);
3864 		} else {
3865 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3866 				  __func__));
3867 			free(dst, type);
3868 			dst = NULL;
3869 		}
3870 	} else {
3871 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3872 			  __func__));
3873 
3874 	}
3875 	return dst;
3876 }
3877 
3878 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3879  * turn it into one of the kernel's lifetime structures (seclifetime).
3880  *
3881  * IN: pointer to the destination, source and malloc type
3882  * OUT: NULL, no more memory
3883  */
3884 
3885 static struct seclifetime *
3886 key_dup_lifemsg(const struct sadb_lifetime *src,
3887 		 struct malloc_type *type)
3888 {
3889 	struct seclifetime *dst = NULL;
3890 
3891 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3892 					   type, M_NOWAIT);
3893 	if (dst == NULL) {
3894 		/* XXX counter */
3895 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3896 	} else {
3897 		dst->allocations = src->sadb_lifetime_allocations;
3898 		dst->bytes = src->sadb_lifetime_bytes;
3899 		dst->addtime = src->sadb_lifetime_addtime;
3900 		dst->usetime = src->sadb_lifetime_usetime;
3901 	}
3902 	return dst;
3903 }
3904 
3905 /* compare my own address
3906  * OUT:	1: true, i.e. my address.
3907  *	0: false
3908  */
3909 int
3910 key_ismyaddr(sa)
3911 	struct sockaddr *sa;
3912 {
3913 #ifdef INET
3914 	struct sockaddr_in *sin;
3915 	struct in_ifaddr *ia;
3916 #endif
3917 
3918 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3919 
3920 	switch (sa->sa_family) {
3921 #ifdef INET
3922 	case AF_INET:
3923 		sin = (struct sockaddr_in *)sa;
3924 		IN_IFADDR_RLOCK();
3925 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3926 		     ia = ia->ia_link.tqe_next)
3927 		{
3928 			if (sin->sin_family == ia->ia_addr.sin_family &&
3929 			    sin->sin_len == ia->ia_addr.sin_len &&
3930 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3931 			{
3932 				IN_IFADDR_RUNLOCK();
3933 				return 1;
3934 			}
3935 		}
3936 		IN_IFADDR_RUNLOCK();
3937 		break;
3938 #endif
3939 #ifdef INET6
3940 	case AF_INET6:
3941 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3942 #endif
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 #ifdef INET6
3949 /*
3950  * compare my own address for IPv6.
3951  * 1: ours
3952  * 0: other
3953  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3954  */
3955 #include <netinet6/in6_var.h>
3956 
3957 static int
3958 key_ismyaddr6(sin6)
3959 	struct sockaddr_in6 *sin6;
3960 {
3961 	struct in6_ifaddr *ia;
3962 #if 0
3963 	struct in6_multi *in6m;
3964 #endif
3965 
3966 	IN6_IFADDR_RLOCK();
3967 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3968 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3969 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3970 			IN6_IFADDR_RUNLOCK();
3971 			return 1;
3972 		}
3973 
3974 #if 0
3975 		/*
3976 		 * XXX Multicast
3977 		 * XXX why do we care about multlicast here while we don't care
3978 		 * about IPv4 multicast??
3979 		 * XXX scope
3980 		 */
3981 		in6m = NULL;
3982 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3983 		if (in6m) {
3984 			IN6_IFADDR_RUNLOCK();
3985 			return 1;
3986 		}
3987 #endif
3988 	}
3989 	IN6_IFADDR_RUNLOCK();
3990 
3991 	/* loopback, just for safety */
3992 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3993 		return 1;
3994 
3995 	return 0;
3996 }
3997 #endif /*INET6*/
3998 
3999 /*
4000  * compare two secasindex structure.
4001  * flag can specify to compare 2 saidxes.
4002  * compare two secasindex structure without both mode and reqid.
4003  * don't compare port.
4004  * IN:
4005  *      saidx0: source, it can be in SAD.
4006  *      saidx1: object.
4007  * OUT:
4008  *      1 : equal
4009  *      0 : not equal
4010  */
4011 static int
4012 key_cmpsaidx(
4013 	const struct secasindex *saidx0,
4014 	const struct secasindex *saidx1,
4015 	int flag)
4016 {
4017 	int chkport = 0;
4018 
4019 	/* sanity */
4020 	if (saidx0 == NULL && saidx1 == NULL)
4021 		return 1;
4022 
4023 	if (saidx0 == NULL || saidx1 == NULL)
4024 		return 0;
4025 
4026 	if (saidx0->proto != saidx1->proto)
4027 		return 0;
4028 
4029 	if (flag == CMP_EXACTLY) {
4030 		if (saidx0->mode != saidx1->mode)
4031 			return 0;
4032 		if (saidx0->reqid != saidx1->reqid)
4033 			return 0;
4034 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4035 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4036 			return 0;
4037 	} else {
4038 
4039 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4040 		if (flag == CMP_MODE_REQID
4041 		  ||flag == CMP_REQID) {
4042 			/*
4043 			 * If reqid of SPD is non-zero, unique SA is required.
4044 			 * The result must be of same reqid in this case.
4045 			 */
4046 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4047 				return 0;
4048 		}
4049 
4050 		if (flag == CMP_MODE_REQID) {
4051 			if (saidx0->mode != IPSEC_MODE_ANY
4052 			 && saidx0->mode != saidx1->mode)
4053 				return 0;
4054 		}
4055 
4056 #ifdef IPSEC_NAT_T
4057 		/*
4058 		 * If NAT-T is enabled, check ports for tunnel mode.
4059 		 * Do not check ports if they are set to zero in the SPD.
4060 		 * Also do not do it for transport mode, as there is no
4061 		 * port information available in the SP.
4062 		 */
4063 		if (saidx1->mode == IPSEC_MODE_TUNNEL &&
4064 		    saidx1->src.sa.sa_family == AF_INET &&
4065 		    saidx1->dst.sa.sa_family == AF_INET &&
4066 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4067 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4068 			chkport = 1;
4069 #endif /* IPSEC_NAT_T */
4070 
4071 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4072 			return 0;
4073 		}
4074 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4075 			return 0;
4076 		}
4077 	}
4078 
4079 	return 1;
4080 }
4081 
4082 /*
4083  * compare two secindex structure exactly.
4084  * IN:
4085  *	spidx0: source, it is often in SPD.
4086  *	spidx1: object, it is often from PFKEY message.
4087  * OUT:
4088  *	1 : equal
4089  *	0 : not equal
4090  */
4091 static int
4092 key_cmpspidx_exactly(
4093 	struct secpolicyindex *spidx0,
4094 	struct secpolicyindex *spidx1)
4095 {
4096 	/* sanity */
4097 	if (spidx0 == NULL && spidx1 == NULL)
4098 		return 1;
4099 
4100 	if (spidx0 == NULL || spidx1 == NULL)
4101 		return 0;
4102 
4103 	if (spidx0->prefs != spidx1->prefs
4104 	 || spidx0->prefd != spidx1->prefd
4105 	 || spidx0->ul_proto != spidx1->ul_proto)
4106 		return 0;
4107 
4108 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4109 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4110 }
4111 
4112 /*
4113  * compare two secindex structure with mask.
4114  * IN:
4115  *	spidx0: source, it is often in SPD.
4116  *	spidx1: object, it is often from IP header.
4117  * OUT:
4118  *	1 : equal
4119  *	0 : not equal
4120  */
4121 static int
4122 key_cmpspidx_withmask(
4123 	struct secpolicyindex *spidx0,
4124 	struct secpolicyindex *spidx1)
4125 {
4126 	/* sanity */
4127 	if (spidx0 == NULL && spidx1 == NULL)
4128 		return 1;
4129 
4130 	if (spidx0 == NULL || spidx1 == NULL)
4131 		return 0;
4132 
4133 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4134 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4135 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4136 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4137 		return 0;
4138 
4139 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4140 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4141 	 && spidx0->ul_proto != spidx1->ul_proto)
4142 		return 0;
4143 
4144 	switch (spidx0->src.sa.sa_family) {
4145 	case AF_INET:
4146 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4147 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4148 			return 0;
4149 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4150 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4151 			return 0;
4152 		break;
4153 	case AF_INET6:
4154 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4155 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4156 			return 0;
4157 		/*
4158 		 * scope_id check. if sin6_scope_id is 0, we regard it
4159 		 * as a wildcard scope, which matches any scope zone ID.
4160 		 */
4161 		if (spidx0->src.sin6.sin6_scope_id &&
4162 		    spidx1->src.sin6.sin6_scope_id &&
4163 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4164 			return 0;
4165 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4166 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4167 			return 0;
4168 		break;
4169 	default:
4170 		/* XXX */
4171 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4172 			return 0;
4173 		break;
4174 	}
4175 
4176 	switch (spidx0->dst.sa.sa_family) {
4177 	case AF_INET:
4178 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4179 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4180 			return 0;
4181 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4182 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4183 			return 0;
4184 		break;
4185 	case AF_INET6:
4186 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4187 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4188 			return 0;
4189 		/*
4190 		 * scope_id check. if sin6_scope_id is 0, we regard it
4191 		 * as a wildcard scope, which matches any scope zone ID.
4192 		 */
4193 		if (spidx0->dst.sin6.sin6_scope_id &&
4194 		    spidx1->dst.sin6.sin6_scope_id &&
4195 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4196 			return 0;
4197 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4198 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4199 			return 0;
4200 		break;
4201 	default:
4202 		/* XXX */
4203 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4204 			return 0;
4205 		break;
4206 	}
4207 
4208 	/* XXX Do we check other field ?  e.g. flowinfo */
4209 
4210 	return 1;
4211 }
4212 
4213 /* returns 0 on match */
4214 static int
4215 key_sockaddrcmp(
4216 	const struct sockaddr *sa1,
4217 	const struct sockaddr *sa2,
4218 	int port)
4219 {
4220 #ifdef satosin
4221 #undef satosin
4222 #endif
4223 #define satosin(s) ((const struct sockaddr_in *)s)
4224 #ifdef satosin6
4225 #undef satosin6
4226 #endif
4227 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4228 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4229 		return 1;
4230 
4231 	switch (sa1->sa_family) {
4232 	case AF_INET:
4233 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4234 			return 1;
4235 		if (satosin(sa1)->sin_addr.s_addr !=
4236 		    satosin(sa2)->sin_addr.s_addr) {
4237 			return 1;
4238 		}
4239 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4240 			return 1;
4241 		break;
4242 	case AF_INET6:
4243 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4244 			return 1;	/*EINVAL*/
4245 		if (satosin6(sa1)->sin6_scope_id !=
4246 		    satosin6(sa2)->sin6_scope_id) {
4247 			return 1;
4248 		}
4249 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4250 		    &satosin6(sa2)->sin6_addr)) {
4251 			return 1;
4252 		}
4253 		if (port &&
4254 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4255 			return 1;
4256 		}
4257 		break;
4258 	default:
4259 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4260 			return 1;
4261 		break;
4262 	}
4263 
4264 	return 0;
4265 #undef satosin
4266 #undef satosin6
4267 }
4268 
4269 /*
4270  * compare two buffers with mask.
4271  * IN:
4272  *	addr1: source
4273  *	addr2: object
4274  *	bits:  Number of bits to compare
4275  * OUT:
4276  *	1 : equal
4277  *	0 : not equal
4278  */
4279 static int
4280 key_bbcmp(const void *a1, const void *a2, u_int bits)
4281 {
4282 	const unsigned char *p1 = a1;
4283 	const unsigned char *p2 = a2;
4284 
4285 	/* XXX: This could be considerably faster if we compare a word
4286 	 * at a time, but it is complicated on LSB Endian machines */
4287 
4288 	/* Handle null pointers */
4289 	if (p1 == NULL || p2 == NULL)
4290 		return (p1 == p2);
4291 
4292 	while (bits >= 8) {
4293 		if (*p1++ != *p2++)
4294 			return 0;
4295 		bits -= 8;
4296 	}
4297 
4298 	if (bits > 0) {
4299 		u_int8_t mask = ~((1<<(8-bits))-1);
4300 		if ((*p1 & mask) != (*p2 & mask))
4301 			return 0;
4302 	}
4303 	return 1;	/* Match! */
4304 }
4305 
4306 static void
4307 key_flush_spd(time_t now)
4308 {
4309 	static u_int16_t sptree_scangen = 0;
4310 	u_int16_t gen = sptree_scangen++;
4311 	struct secpolicy *sp;
4312 	u_int dir;
4313 
4314 	/* SPD */
4315 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4316 restart:
4317 		SPTREE_LOCK();
4318 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4319 			if (sp->scangen == gen)		/* previously handled */
4320 				continue;
4321 			sp->scangen = gen;
4322 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4323 			    sp->refcnt == 1) {
4324 				/*
4325 				 * Ensure that we only decrease refcnt once,
4326 				 * when we're the last consumer.
4327 				 * Directly call SP_DELREF/key_delsp instead
4328 				 * of KEY_FREESP to avoid unlocking/relocking
4329 				 * SPTREE_LOCK before key_delsp: may refcnt
4330 				 * be increased again during that time ?
4331 				 * NB: also clean entries created by
4332 				 * key_spdflush
4333 				 */
4334 				SP_DELREF(sp);
4335 				key_delsp(sp);
4336 				SPTREE_UNLOCK();
4337 				goto restart;
4338 			}
4339 			if (sp->lifetime == 0 && sp->validtime == 0)
4340 				continue;
4341 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4342 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4343 				sp->state = IPSEC_SPSTATE_DEAD;
4344 				SPTREE_UNLOCK();
4345 				key_spdexpire(sp);
4346 				goto restart;
4347 			}
4348 		}
4349 		SPTREE_UNLOCK();
4350 	}
4351 }
4352 
4353 static void
4354 key_flush_sad(time_t now)
4355 {
4356 	struct secashead *sah, *nextsah;
4357 	struct secasvar *sav, *nextsav;
4358 
4359 	/* SAD */
4360 	SAHTREE_LOCK();
4361 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4362 		/* if sah has been dead, then delete it and process next sah. */
4363 		if (sah->state == SADB_SASTATE_DEAD) {
4364 			key_delsah(sah);
4365 			continue;
4366 		}
4367 
4368 		/* if LARVAL entry doesn't become MATURE, delete it. */
4369 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4370 			/* Need to also check refcnt for a larval SA ??? */
4371 			if (now - sav->created > V_key_larval_lifetime)
4372 				KEY_FREESAV(&sav);
4373 		}
4374 
4375 		/*
4376 		 * check MATURE entry to start to send expire message
4377 		 * whether or not.
4378 		 */
4379 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4380 			/* we don't need to check. */
4381 			if (sav->lft_s == NULL)
4382 				continue;
4383 
4384 			/* sanity check */
4385 			if (sav->lft_c == NULL) {
4386 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4387 					"time, why?\n", __func__));
4388 				continue;
4389 			}
4390 
4391 			/* check SOFT lifetime */
4392 			if (sav->lft_s->addtime != 0 &&
4393 			    now - sav->created > sav->lft_s->addtime) {
4394 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4395 				/*
4396 				 * Actually, only send expire message if
4397 				 * SA has been used, as it was done before,
4398 				 * but should we always send such message,
4399 				 * and let IKE daemon decide if it should be
4400 				 * renegotiated or not ?
4401 				 * XXX expire message will actually NOT be
4402 				 * sent if SA is only used after soft
4403 				 * lifetime has been reached, see below
4404 				 * (DYING state)
4405 				 */
4406 				if (sav->lft_c->usetime != 0)
4407 					key_expire(sav);
4408 			}
4409 			/* check SOFT lifetime by bytes */
4410 			/*
4411 			 * XXX I don't know the way to delete this SA
4412 			 * when new SA is installed.  Caution when it's
4413 			 * installed too big lifetime by time.
4414 			 */
4415 			else if (sav->lft_s->bytes != 0 &&
4416 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4417 
4418 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4419 				/*
4420 				 * XXX If we keep to send expire
4421 				 * message in the status of
4422 				 * DYING. Do remove below code.
4423 				 */
4424 				key_expire(sav);
4425 			}
4426 		}
4427 
4428 		/* check DYING entry to change status to DEAD. */
4429 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4430 			/* we don't need to check. */
4431 			if (sav->lft_h == NULL)
4432 				continue;
4433 
4434 			/* sanity check */
4435 			if (sav->lft_c == NULL) {
4436 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4437 					"time, why?\n", __func__));
4438 				continue;
4439 			}
4440 
4441 			if (sav->lft_h->addtime != 0 &&
4442 			    now - sav->created > sav->lft_h->addtime) {
4443 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4444 				KEY_FREESAV(&sav);
4445 			}
4446 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4447 			else if (sav->lft_s != NULL
4448 			      && sav->lft_s->addtime != 0
4449 			      && now - sav->created > sav->lft_s->addtime) {
4450 				/*
4451 				 * XXX: should be checked to be
4452 				 * installed the valid SA.
4453 				 */
4454 
4455 				/*
4456 				 * If there is no SA then sending
4457 				 * expire message.
4458 				 */
4459 				key_expire(sav);
4460 			}
4461 #endif
4462 			/* check HARD lifetime by bytes */
4463 			else if (sav->lft_h->bytes != 0 &&
4464 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4465 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4466 				KEY_FREESAV(&sav);
4467 			}
4468 		}
4469 
4470 		/* delete entry in DEAD */
4471 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4472 			/* sanity check */
4473 			if (sav->state != SADB_SASTATE_DEAD) {
4474 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4475 					"(queue: %d SA: %d): kill it anyway\n",
4476 					__func__,
4477 					SADB_SASTATE_DEAD, sav->state));
4478 			}
4479 			/*
4480 			 * do not call key_freesav() here.
4481 			 * sav should already be freed, and sav->refcnt
4482 			 * shows other references to sav
4483 			 * (such as from SPD).
4484 			 */
4485 		}
4486 	}
4487 	SAHTREE_UNLOCK();
4488 }
4489 
4490 static void
4491 key_flush_acq(time_t now)
4492 {
4493 	struct secacq *acq, *nextacq;
4494 
4495 	/* ACQ tree */
4496 	ACQ_LOCK();
4497 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4498 		nextacq = LIST_NEXT(acq, chain);
4499 		if (now - acq->created > V_key_blockacq_lifetime
4500 		 && __LIST_CHAINED(acq)) {
4501 			LIST_REMOVE(acq, chain);
4502 			free(acq, M_IPSEC_SAQ);
4503 		}
4504 	}
4505 	ACQ_UNLOCK();
4506 }
4507 
4508 static void
4509 key_flush_spacq(time_t now)
4510 {
4511 	struct secspacq *acq, *nextacq;
4512 
4513 	/* SP ACQ tree */
4514 	SPACQ_LOCK();
4515 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4516 		nextacq = LIST_NEXT(acq, chain);
4517 		if (now - acq->created > V_key_blockacq_lifetime
4518 		 && __LIST_CHAINED(acq)) {
4519 			LIST_REMOVE(acq, chain);
4520 			free(acq, M_IPSEC_SAQ);
4521 		}
4522 	}
4523 	SPACQ_UNLOCK();
4524 }
4525 
4526 /*
4527  * time handler.
4528  * scanning SPD and SAD to check status for each entries,
4529  * and do to remove or to expire.
4530  * XXX: year 2038 problem may remain.
4531  */
4532 void
4533 key_timehandler(void)
4534 {
4535 	VNET_ITERATOR_DECL(vnet_iter);
4536 	time_t now = time_second;
4537 
4538 	VNET_LIST_RLOCK_NOSLEEP();
4539 	VNET_FOREACH(vnet_iter) {
4540 		CURVNET_SET(vnet_iter);
4541 		key_flush_spd(now);
4542 		key_flush_sad(now);
4543 		key_flush_acq(now);
4544 		key_flush_spacq(now);
4545 		CURVNET_RESTORE();
4546 	}
4547 	VNET_LIST_RUNLOCK_NOSLEEP();
4548 
4549 #ifndef IPSEC_DEBUG2
4550 	/* do exchange to tick time !! */
4551 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4552 #endif /* IPSEC_DEBUG2 */
4553 }
4554 
4555 u_long
4556 key_random()
4557 {
4558 	u_long value;
4559 
4560 	key_randomfill(&value, sizeof(value));
4561 	return value;
4562 }
4563 
4564 void
4565 key_randomfill(p, l)
4566 	void *p;
4567 	size_t l;
4568 {
4569 	size_t n;
4570 	u_long v;
4571 	static int warn = 1;
4572 
4573 	n = 0;
4574 	n = (size_t)read_random(p, (u_int)l);
4575 	/* last resort */
4576 	while (n < l) {
4577 		v = random();
4578 		bcopy(&v, (u_int8_t *)p + n,
4579 		    l - n < sizeof(v) ? l - n : sizeof(v));
4580 		n += sizeof(v);
4581 
4582 		if (warn) {
4583 			printf("WARNING: pseudo-random number generator "
4584 			    "used for IPsec processing\n");
4585 			warn = 0;
4586 		}
4587 	}
4588 }
4589 
4590 /*
4591  * map SADB_SATYPE_* to IPPROTO_*.
4592  * if satype == SADB_SATYPE then satype is mapped to ~0.
4593  * OUT:
4594  *	0: invalid satype.
4595  */
4596 static u_int16_t
4597 key_satype2proto(u_int8_t satype)
4598 {
4599 	switch (satype) {
4600 	case SADB_SATYPE_UNSPEC:
4601 		return IPSEC_PROTO_ANY;
4602 	case SADB_SATYPE_AH:
4603 		return IPPROTO_AH;
4604 	case SADB_SATYPE_ESP:
4605 		return IPPROTO_ESP;
4606 	case SADB_X_SATYPE_IPCOMP:
4607 		return IPPROTO_IPCOMP;
4608 	case SADB_X_SATYPE_TCPSIGNATURE:
4609 		return IPPROTO_TCP;
4610 	default:
4611 		return 0;
4612 	}
4613 	/* NOTREACHED */
4614 }
4615 
4616 /*
4617  * map IPPROTO_* to SADB_SATYPE_*
4618  * OUT:
4619  *	0: invalid protocol type.
4620  */
4621 static u_int8_t
4622 key_proto2satype(u_int16_t proto)
4623 {
4624 	switch (proto) {
4625 	case IPPROTO_AH:
4626 		return SADB_SATYPE_AH;
4627 	case IPPROTO_ESP:
4628 		return SADB_SATYPE_ESP;
4629 	case IPPROTO_IPCOMP:
4630 		return SADB_X_SATYPE_IPCOMP;
4631 	case IPPROTO_TCP:
4632 		return SADB_X_SATYPE_TCPSIGNATURE;
4633 	default:
4634 		return 0;
4635 	}
4636 	/* NOTREACHED */
4637 }
4638 
4639 /* %%% PF_KEY */
4640 /*
4641  * SADB_GETSPI processing is to receive
4642  *	<base, (SA2), src address, dst address, (SPI range)>
4643  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4644  * tree with the status of LARVAL, and send
4645  *	<base, SA(*), address(SD)>
4646  * to the IKMPd.
4647  *
4648  * IN:	mhp: pointer to the pointer to each header.
4649  * OUT:	NULL if fail.
4650  *	other if success, return pointer to the message to send.
4651  */
4652 static int
4653 key_getspi(so, m, mhp)
4654 	struct socket *so;
4655 	struct mbuf *m;
4656 	const struct sadb_msghdr *mhp;
4657 {
4658 	struct sadb_address *src0, *dst0;
4659 	struct secasindex saidx;
4660 	struct secashead *newsah;
4661 	struct secasvar *newsav;
4662 	u_int8_t proto;
4663 	u_int32_t spi;
4664 	u_int8_t mode;
4665 	u_int32_t reqid;
4666 	int error;
4667 
4668 	IPSEC_ASSERT(so != NULL, ("null socket"));
4669 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4670 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4671 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4672 
4673 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4674 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4675 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4676 			__func__));
4677 		return key_senderror(so, m, EINVAL);
4678 	}
4679 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4680 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4681 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4682 			__func__));
4683 		return key_senderror(so, m, EINVAL);
4684 	}
4685 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4686 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4687 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4688 	} else {
4689 		mode = IPSEC_MODE_ANY;
4690 		reqid = 0;
4691 	}
4692 
4693 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4694 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4695 
4696 	/* map satype to proto */
4697 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4698 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4699 			__func__));
4700 		return key_senderror(so, m, EINVAL);
4701 	}
4702 
4703 	/*
4704 	 * Make sure the port numbers are zero.
4705 	 * In case of NAT-T we will update them later if needed.
4706 	 */
4707 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4708 	case AF_INET:
4709 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4710 		    sizeof(struct sockaddr_in))
4711 			return key_senderror(so, m, EINVAL);
4712 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4713 		break;
4714 	case AF_INET6:
4715 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4716 		    sizeof(struct sockaddr_in6))
4717 			return key_senderror(so, m, EINVAL);
4718 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4719 		break;
4720 	default:
4721 		; /*???*/
4722 	}
4723 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4724 	case AF_INET:
4725 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4726 		    sizeof(struct sockaddr_in))
4727 			return key_senderror(so, m, EINVAL);
4728 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4729 		break;
4730 	case AF_INET6:
4731 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4732 		    sizeof(struct sockaddr_in6))
4733 			return key_senderror(so, m, EINVAL);
4734 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4735 		break;
4736 	default:
4737 		; /*???*/
4738 	}
4739 
4740 	/* XXX boundary check against sa_len */
4741 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4742 
4743 #ifdef IPSEC_NAT_T
4744 	/*
4745 	 * Handle NAT-T info if present.
4746 	 * We made sure the port numbers are zero above, so we do
4747 	 * not have to worry in case we do not update them.
4748 	 */
4749 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4750 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4751 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4752 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4753 
4754 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4755 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4756 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4757 		struct sadb_x_nat_t_type *type;
4758 		struct sadb_x_nat_t_port *sport, *dport;
4759 
4760 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4761 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4762 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4763 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4764 			    "passed.\n", __func__));
4765 			return key_senderror(so, m, EINVAL);
4766 		}
4767 
4768 		sport = (struct sadb_x_nat_t_port *)
4769 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4770 		dport = (struct sadb_x_nat_t_port *)
4771 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4772 
4773 		if (sport)
4774 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4775 		if (dport)
4776 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4777 	}
4778 #endif
4779 
4780 	/* SPI allocation */
4781 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4782 	                       &saidx);
4783 	if (spi == 0)
4784 		return key_senderror(so, m, EINVAL);
4785 
4786 	/* get a SA index */
4787 	if ((newsah = key_getsah(&saidx)) == NULL) {
4788 		/* create a new SA index */
4789 		if ((newsah = key_newsah(&saidx)) == NULL) {
4790 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4791 			return key_senderror(so, m, ENOBUFS);
4792 		}
4793 	}
4794 
4795 	/* get a new SA */
4796 	/* XXX rewrite */
4797 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4798 	if (newsav == NULL) {
4799 		/* XXX don't free new SA index allocated in above. */
4800 		return key_senderror(so, m, error);
4801 	}
4802 
4803 	/* set spi */
4804 	newsav->spi = htonl(spi);
4805 
4806 	/* delete the entry in acqtree */
4807 	if (mhp->msg->sadb_msg_seq != 0) {
4808 		struct secacq *acq;
4809 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4810 			/* reset counter in order to deletion by timehandler. */
4811 			acq->created = time_second;
4812 			acq->count = 0;
4813 		}
4814     	}
4815 
4816     {
4817 	struct mbuf *n, *nn;
4818 	struct sadb_sa *m_sa;
4819 	struct sadb_msg *newmsg;
4820 	int off, len;
4821 
4822 	/* create new sadb_msg to reply. */
4823 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4824 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4825 
4826 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4827 	if (len > MHLEN) {
4828 		MCLGET(n, M_DONTWAIT);
4829 		if ((n->m_flags & M_EXT) == 0) {
4830 			m_freem(n);
4831 			n = NULL;
4832 		}
4833 	}
4834 	if (!n)
4835 		return key_senderror(so, m, ENOBUFS);
4836 
4837 	n->m_len = len;
4838 	n->m_next = NULL;
4839 	off = 0;
4840 
4841 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4842 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4843 
4844 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4845 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4846 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4847 	m_sa->sadb_sa_spi = htonl(spi);
4848 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4849 
4850 	IPSEC_ASSERT(off == len,
4851 		("length inconsistency (off %u len %u)", off, len));
4852 
4853 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4854 	    SADB_EXT_ADDRESS_DST);
4855 	if (!n->m_next) {
4856 		m_freem(n);
4857 		return key_senderror(so, m, ENOBUFS);
4858 	}
4859 
4860 	if (n->m_len < sizeof(struct sadb_msg)) {
4861 		n = m_pullup(n, sizeof(struct sadb_msg));
4862 		if (n == NULL)
4863 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4864 	}
4865 
4866 	n->m_pkthdr.len = 0;
4867 	for (nn = n; nn; nn = nn->m_next)
4868 		n->m_pkthdr.len += nn->m_len;
4869 
4870 	newmsg = mtod(n, struct sadb_msg *);
4871 	newmsg->sadb_msg_seq = newsav->seq;
4872 	newmsg->sadb_msg_errno = 0;
4873 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4874 
4875 	m_freem(m);
4876 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4877     }
4878 }
4879 
4880 /*
4881  * allocating new SPI
4882  * called by key_getspi().
4883  * OUT:
4884  *	0:	failure.
4885  *	others: success.
4886  */
4887 static u_int32_t
4888 key_do_getnewspi(spirange, saidx)
4889 	struct sadb_spirange *spirange;
4890 	struct secasindex *saidx;
4891 {
4892 	u_int32_t newspi;
4893 	u_int32_t min, max;
4894 	int count = V_key_spi_trycnt;
4895 
4896 	/* set spi range to allocate */
4897 	if (spirange != NULL) {
4898 		min = spirange->sadb_spirange_min;
4899 		max = spirange->sadb_spirange_max;
4900 	} else {
4901 		min = V_key_spi_minval;
4902 		max = V_key_spi_maxval;
4903 	}
4904 	/* IPCOMP needs 2-byte SPI */
4905 	if (saidx->proto == IPPROTO_IPCOMP) {
4906 		u_int32_t t;
4907 		if (min >= 0x10000)
4908 			min = 0xffff;
4909 		if (max >= 0x10000)
4910 			max = 0xffff;
4911 		if (min > max) {
4912 			t = min; min = max; max = t;
4913 		}
4914 	}
4915 
4916 	if (min == max) {
4917 		if (key_checkspidup(saidx, min) != NULL) {
4918 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4919 				__func__, min));
4920 			return 0;
4921 		}
4922 
4923 		count--; /* taking one cost. */
4924 		newspi = min;
4925 
4926 	} else {
4927 
4928 		/* init SPI */
4929 		newspi = 0;
4930 
4931 		/* when requesting to allocate spi ranged */
4932 		while (count--) {
4933 			/* generate pseudo-random SPI value ranged. */
4934 			newspi = min + (key_random() % (max - min + 1));
4935 
4936 			if (key_checkspidup(saidx, newspi) == NULL)
4937 				break;
4938 		}
4939 
4940 		if (count == 0 || newspi == 0) {
4941 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4942 				__func__));
4943 			return 0;
4944 		}
4945 	}
4946 
4947 	/* statistics */
4948 	keystat.getspi_count =
4949 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4950 
4951 	return newspi;
4952 }
4953 
4954 /*
4955  * SADB_UPDATE processing
4956  * receive
4957  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4958  *       key(AE), (identity(SD),) (sensitivity)>
4959  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4960  * and send
4961  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4962  *       (identity(SD),) (sensitivity)>
4963  * to the ikmpd.
4964  *
4965  * m will always be freed.
4966  */
4967 static int
4968 key_update(so, m, mhp)
4969 	struct socket *so;
4970 	struct mbuf *m;
4971 	const struct sadb_msghdr *mhp;
4972 {
4973 	struct sadb_sa *sa0;
4974 	struct sadb_address *src0, *dst0;
4975 #ifdef IPSEC_NAT_T
4976 	struct sadb_x_nat_t_type *type;
4977 	struct sadb_x_nat_t_port *sport, *dport;
4978 	struct sadb_address *iaddr, *raddr;
4979 	struct sadb_x_nat_t_frag *frag;
4980 #endif
4981 	struct secasindex saidx;
4982 	struct secashead *sah;
4983 	struct secasvar *sav;
4984 	u_int16_t proto;
4985 	u_int8_t mode;
4986 	u_int32_t reqid;
4987 	int error;
4988 
4989 	IPSEC_ASSERT(so != NULL, ("null socket"));
4990 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4991 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4992 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4993 
4994 	/* map satype to proto */
4995 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4996 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4997 			__func__));
4998 		return key_senderror(so, m, EINVAL);
4999 	}
5000 
5001 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5002 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5003 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5004 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5005 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5006 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5007 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5008 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5009 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5010 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5011 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5012 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5013 			__func__));
5014 		return key_senderror(so, m, EINVAL);
5015 	}
5016 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5017 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5018 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5019 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5020 			__func__));
5021 		return key_senderror(so, m, EINVAL);
5022 	}
5023 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5024 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5025 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5026 	} else {
5027 		mode = IPSEC_MODE_ANY;
5028 		reqid = 0;
5029 	}
5030 	/* XXX boundary checking for other extensions */
5031 
5032 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5033 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5034 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5035 
5036 	/* XXX boundary check against sa_len */
5037 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5038 
5039 	/*
5040 	 * Make sure the port numbers are zero.
5041 	 * In case of NAT-T we will update them later if needed.
5042 	 */
5043 	KEY_PORTTOSADDR(&saidx.src, 0);
5044 	KEY_PORTTOSADDR(&saidx.dst, 0);
5045 
5046 #ifdef IPSEC_NAT_T
5047 	/*
5048 	 * Handle NAT-T info if present.
5049 	 */
5050 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5051 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5052 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5053 
5054 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5055 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5056 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5057 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5058 			    __func__));
5059 			return key_senderror(so, m, EINVAL);
5060 		}
5061 
5062 		type = (struct sadb_x_nat_t_type *)
5063 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5064 		sport = (struct sadb_x_nat_t_port *)
5065 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5066 		dport = (struct sadb_x_nat_t_port *)
5067 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5068 	} else {
5069 		type = 0;
5070 		sport = dport = 0;
5071 	}
5072 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5073 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5074 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5075 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5076 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5077 			    __func__));
5078 			return key_senderror(so, m, EINVAL);
5079 		}
5080 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5081 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5082 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5083 	} else {
5084 		iaddr = raddr = NULL;
5085 	}
5086 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5087 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5088 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5089 			    __func__));
5090 			return key_senderror(so, m, EINVAL);
5091 		}
5092 		frag = (struct sadb_x_nat_t_frag *)
5093 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5094 	} else {
5095 		frag = 0;
5096 	}
5097 #endif
5098 
5099 	/* get a SA header */
5100 	if ((sah = key_getsah(&saidx)) == NULL) {
5101 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5102 		return key_senderror(so, m, ENOENT);
5103 	}
5104 
5105 	/* set spidx if there */
5106 	/* XXX rewrite */
5107 	error = key_setident(sah, m, mhp);
5108 	if (error)
5109 		return key_senderror(so, m, error);
5110 
5111 	/* find a SA with sequence number. */
5112 #ifdef IPSEC_DOSEQCHECK
5113 	if (mhp->msg->sadb_msg_seq != 0
5114 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5115 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5116 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5117 		return key_senderror(so, m, ENOENT);
5118 	}
5119 #else
5120 	SAHTREE_LOCK();
5121 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5122 	SAHTREE_UNLOCK();
5123 	if (sav == NULL) {
5124 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5125 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5126 		return key_senderror(so, m, EINVAL);
5127 	}
5128 #endif
5129 
5130 	/* validity check */
5131 	if (sav->sah->saidx.proto != proto) {
5132 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5133 			"(DB=%u param=%u)\n", __func__,
5134 			sav->sah->saidx.proto, proto));
5135 		return key_senderror(so, m, EINVAL);
5136 	}
5137 #ifdef IPSEC_DOSEQCHECK
5138 	if (sav->spi != sa0->sadb_sa_spi) {
5139 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5140 		    __func__,
5141 		    (u_int32_t)ntohl(sav->spi),
5142 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5143 		return key_senderror(so, m, EINVAL);
5144 	}
5145 #endif
5146 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5147 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5148 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5149 		return key_senderror(so, m, EINVAL);
5150 	}
5151 
5152 	/* copy sav values */
5153 	error = key_setsaval(sav, m, mhp);
5154 	if (error) {
5155 		KEY_FREESAV(&sav);
5156 		return key_senderror(so, m, error);
5157 	}
5158 
5159 #ifdef IPSEC_NAT_T
5160 	/*
5161 	 * Handle more NAT-T info if present,
5162 	 * now that we have a sav to fill.
5163 	 */
5164 	if (type)
5165 		sav->natt_type = type->sadb_x_nat_t_type_type;
5166 
5167 	if (sport)
5168 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5169 		    sport->sadb_x_nat_t_port_port);
5170 	if (dport)
5171 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5172 		    dport->sadb_x_nat_t_port_port);
5173 
5174 #if 0
5175 	/*
5176 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5177 	 * We should actually check for a minimum MTU here, if we
5178 	 * want to support it in ip_output.
5179 	 */
5180 	if (frag)
5181 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5182 #endif
5183 #endif
5184 
5185 	/* check SA values to be mature. */
5186 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5187 		KEY_FREESAV(&sav);
5188 		return key_senderror(so, m, 0);
5189 	}
5190 
5191     {
5192 	struct mbuf *n;
5193 
5194 	/* set msg buf from mhp */
5195 	n = key_getmsgbuf_x1(m, mhp);
5196 	if (n == NULL) {
5197 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5198 		return key_senderror(so, m, ENOBUFS);
5199 	}
5200 
5201 	m_freem(m);
5202 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5203     }
5204 }
5205 
5206 /*
5207  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5208  * only called by key_update().
5209  * OUT:
5210  *	NULL	: not found
5211  *	others	: found, pointer to a SA.
5212  */
5213 #ifdef IPSEC_DOSEQCHECK
5214 static struct secasvar *
5215 key_getsavbyseq(sah, seq)
5216 	struct secashead *sah;
5217 	u_int32_t seq;
5218 {
5219 	struct secasvar *sav;
5220 	u_int state;
5221 
5222 	state = SADB_SASTATE_LARVAL;
5223 
5224 	/* search SAD with sequence number ? */
5225 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5226 
5227 		KEY_CHKSASTATE(state, sav->state, __func__);
5228 
5229 		if (sav->seq == seq) {
5230 			sa_addref(sav);
5231 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5232 				printf("DP %s cause refcnt++:%d SA:%p\n",
5233 					__func__, sav->refcnt, sav));
5234 			return sav;
5235 		}
5236 	}
5237 
5238 	return NULL;
5239 }
5240 #endif
5241 
5242 /*
5243  * SADB_ADD processing
5244  * add an entry to SA database, when received
5245  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5246  *       key(AE), (identity(SD),) (sensitivity)>
5247  * from the ikmpd,
5248  * and send
5249  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5250  *       (identity(SD),) (sensitivity)>
5251  * to the ikmpd.
5252  *
5253  * IGNORE identity and sensitivity messages.
5254  *
5255  * m will always be freed.
5256  */
5257 static int
5258 key_add(so, m, mhp)
5259 	struct socket *so;
5260 	struct mbuf *m;
5261 	const struct sadb_msghdr *mhp;
5262 {
5263 	struct sadb_sa *sa0;
5264 	struct sadb_address *src0, *dst0;
5265 #ifdef IPSEC_NAT_T
5266 	struct sadb_x_nat_t_type *type;
5267 	struct sadb_address *iaddr, *raddr;
5268 	struct sadb_x_nat_t_frag *frag;
5269 #endif
5270 	struct secasindex saidx;
5271 	struct secashead *newsah;
5272 	struct secasvar *newsav;
5273 	u_int16_t proto;
5274 	u_int8_t mode;
5275 	u_int32_t reqid;
5276 	int error;
5277 
5278 	IPSEC_ASSERT(so != NULL, ("null socket"));
5279 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5280 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5281 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5282 
5283 	/* map satype to proto */
5284 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5285 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5286 			__func__));
5287 		return key_senderror(so, m, EINVAL);
5288 	}
5289 
5290 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5291 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5292 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5293 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5294 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5295 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5296 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5297 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5298 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5299 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5300 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5301 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5302 			__func__));
5303 		return key_senderror(so, m, EINVAL);
5304 	}
5305 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5306 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5307 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5308 		/* XXX need more */
5309 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5310 			__func__));
5311 		return key_senderror(so, m, EINVAL);
5312 	}
5313 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5314 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5315 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5316 	} else {
5317 		mode = IPSEC_MODE_ANY;
5318 		reqid = 0;
5319 	}
5320 
5321 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5322 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5323 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5324 
5325 	/* XXX boundary check against sa_len */
5326 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5327 
5328 	/*
5329 	 * Make sure the port numbers are zero.
5330 	 * In case of NAT-T we will update them later if needed.
5331 	 */
5332 	KEY_PORTTOSADDR(&saidx.src, 0);
5333 	KEY_PORTTOSADDR(&saidx.dst, 0);
5334 
5335 #ifdef IPSEC_NAT_T
5336 	/*
5337 	 * Handle NAT-T info if present.
5338 	 */
5339 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5340 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5341 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5342 		struct sadb_x_nat_t_port *sport, *dport;
5343 
5344 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5345 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5346 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5347 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5348 			    __func__));
5349 			return key_senderror(so, m, EINVAL);
5350 		}
5351 
5352 		type = (struct sadb_x_nat_t_type *)
5353 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5354 		sport = (struct sadb_x_nat_t_port *)
5355 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5356 		dport = (struct sadb_x_nat_t_port *)
5357 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5358 
5359 		if (sport)
5360 			KEY_PORTTOSADDR(&saidx.src,
5361 			    sport->sadb_x_nat_t_port_port);
5362 		if (dport)
5363 			KEY_PORTTOSADDR(&saidx.dst,
5364 			    dport->sadb_x_nat_t_port_port);
5365 	} else {
5366 		type = 0;
5367 	}
5368 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5369 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5370 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5371 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5372 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5373 			    __func__));
5374 			return key_senderror(so, m, EINVAL);
5375 		}
5376 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5377 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5378 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5379 	} else {
5380 		iaddr = raddr = NULL;
5381 	}
5382 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5383 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5384 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5385 			    __func__));
5386 			return key_senderror(so, m, EINVAL);
5387 		}
5388 		frag = (struct sadb_x_nat_t_frag *)
5389 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5390 	} else {
5391 		frag = 0;
5392 	}
5393 #endif
5394 
5395 	/* get a SA header */
5396 	if ((newsah = key_getsah(&saidx)) == NULL) {
5397 		/* create a new SA header */
5398 		if ((newsah = key_newsah(&saidx)) == NULL) {
5399 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5400 			return key_senderror(so, m, ENOBUFS);
5401 		}
5402 	}
5403 
5404 	/* set spidx if there */
5405 	/* XXX rewrite */
5406 	error = key_setident(newsah, m, mhp);
5407 	if (error) {
5408 		return key_senderror(so, m, error);
5409 	}
5410 
5411 	/* create new SA entry. */
5412 	/* We can create new SA only if SPI is differenct. */
5413 	SAHTREE_LOCK();
5414 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5415 	SAHTREE_UNLOCK();
5416 	if (newsav != NULL) {
5417 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5418 		return key_senderror(so, m, EEXIST);
5419 	}
5420 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5421 	if (newsav == NULL) {
5422 		return key_senderror(so, m, error);
5423 	}
5424 
5425 #ifdef IPSEC_NAT_T
5426 	/*
5427 	 * Handle more NAT-T info if present,
5428 	 * now that we have a sav to fill.
5429 	 */
5430 	if (type)
5431 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5432 
5433 #if 0
5434 	/*
5435 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5436 	 * We should actually check for a minimum MTU here, if we
5437 	 * want to support it in ip_output.
5438 	 */
5439 	if (frag)
5440 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5441 #endif
5442 #endif
5443 
5444 	/* check SA values to be mature. */
5445 	if ((error = key_mature(newsav)) != 0) {
5446 		KEY_FREESAV(&newsav);
5447 		return key_senderror(so, m, error);
5448 	}
5449 
5450 	/*
5451 	 * don't call key_freesav() here, as we would like to keep the SA
5452 	 * in the database on success.
5453 	 */
5454 
5455     {
5456 	struct mbuf *n;
5457 
5458 	/* set msg buf from mhp */
5459 	n = key_getmsgbuf_x1(m, mhp);
5460 	if (n == NULL) {
5461 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5462 		return key_senderror(so, m, ENOBUFS);
5463 	}
5464 
5465 	m_freem(m);
5466 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5467     }
5468 }
5469 
5470 /* m is retained */
5471 static int
5472 key_setident(sah, m, mhp)
5473 	struct secashead *sah;
5474 	struct mbuf *m;
5475 	const struct sadb_msghdr *mhp;
5476 {
5477 	const struct sadb_ident *idsrc, *iddst;
5478 	int idsrclen, iddstlen;
5479 
5480 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5481 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5482 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5483 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5484 
5485 	/* don't make buffer if not there */
5486 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5487 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5488 		sah->idents = NULL;
5489 		sah->identd = NULL;
5490 		return 0;
5491 	}
5492 
5493 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5494 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5495 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5496 		return EINVAL;
5497 	}
5498 
5499 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5500 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5501 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5502 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5503 
5504 	/* validity check */
5505 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5506 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5507 		return EINVAL;
5508 	}
5509 
5510 	switch (idsrc->sadb_ident_type) {
5511 	case SADB_IDENTTYPE_PREFIX:
5512 	case SADB_IDENTTYPE_FQDN:
5513 	case SADB_IDENTTYPE_USERFQDN:
5514 	default:
5515 		/* XXX do nothing */
5516 		sah->idents = NULL;
5517 		sah->identd = NULL;
5518 	 	return 0;
5519 	}
5520 
5521 	/* make structure */
5522 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5523 	if (sah->idents == NULL) {
5524 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5525 		return ENOBUFS;
5526 	}
5527 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5528 	if (sah->identd == NULL) {
5529 		free(sah->idents, M_IPSEC_MISC);
5530 		sah->idents = NULL;
5531 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5532 		return ENOBUFS;
5533 	}
5534 	sah->idents->type = idsrc->sadb_ident_type;
5535 	sah->idents->id = idsrc->sadb_ident_id;
5536 
5537 	sah->identd->type = iddst->sadb_ident_type;
5538 	sah->identd->id = iddst->sadb_ident_id;
5539 
5540 	return 0;
5541 }
5542 
5543 /*
5544  * m will not be freed on return.
5545  * it is caller's responsibility to free the result.
5546  */
5547 static struct mbuf *
5548 key_getmsgbuf_x1(m, mhp)
5549 	struct mbuf *m;
5550 	const struct sadb_msghdr *mhp;
5551 {
5552 	struct mbuf *n;
5553 
5554 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5555 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5556 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5557 
5558 	/* create new sadb_msg to reply. */
5559 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5560 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5561 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5562 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5563 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5564 	if (!n)
5565 		return NULL;
5566 
5567 	if (n->m_len < sizeof(struct sadb_msg)) {
5568 		n = m_pullup(n, sizeof(struct sadb_msg));
5569 		if (n == NULL)
5570 			return NULL;
5571 	}
5572 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5573 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5574 	    PFKEY_UNIT64(n->m_pkthdr.len);
5575 
5576 	return n;
5577 }
5578 
5579 static int key_delete_all __P((struct socket *, struct mbuf *,
5580 	const struct sadb_msghdr *, u_int16_t));
5581 
5582 /*
5583  * SADB_DELETE processing
5584  * receive
5585  *   <base, SA(*), address(SD)>
5586  * from the ikmpd, and set SADB_SASTATE_DEAD,
5587  * and send,
5588  *   <base, SA(*), address(SD)>
5589  * to the ikmpd.
5590  *
5591  * m will always be freed.
5592  */
5593 static int
5594 key_delete(so, m, mhp)
5595 	struct socket *so;
5596 	struct mbuf *m;
5597 	const struct sadb_msghdr *mhp;
5598 {
5599 	struct sadb_sa *sa0;
5600 	struct sadb_address *src0, *dst0;
5601 	struct secasindex saidx;
5602 	struct secashead *sah;
5603 	struct secasvar *sav = NULL;
5604 	u_int16_t proto;
5605 
5606 	IPSEC_ASSERT(so != NULL, ("null socket"));
5607 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5608 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5609 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5610 
5611 	/* map satype to proto */
5612 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5613 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5614 			__func__));
5615 		return key_senderror(so, m, EINVAL);
5616 	}
5617 
5618 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5619 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5620 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5621 			__func__));
5622 		return key_senderror(so, m, EINVAL);
5623 	}
5624 
5625 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5626 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5627 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5628 			__func__));
5629 		return key_senderror(so, m, EINVAL);
5630 	}
5631 
5632 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5633 		/*
5634 		 * Caller wants us to delete all non-LARVAL SAs
5635 		 * that match the src/dst.  This is used during
5636 		 * IKE INITIAL-CONTACT.
5637 		 */
5638 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5639 		return key_delete_all(so, m, mhp, proto);
5640 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5641 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5642 			__func__));
5643 		return key_senderror(so, m, EINVAL);
5644 	}
5645 
5646 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5647 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5648 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5649 
5650 	/* XXX boundary check against sa_len */
5651 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5652 
5653 	/*
5654 	 * Make sure the port numbers are zero.
5655 	 * In case of NAT-T we will update them later if needed.
5656 	 */
5657 	KEY_PORTTOSADDR(&saidx.src, 0);
5658 	KEY_PORTTOSADDR(&saidx.dst, 0);
5659 
5660 #ifdef IPSEC_NAT_T
5661 	/*
5662 	 * Handle NAT-T info if present.
5663 	 */
5664 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5665 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5666 		struct sadb_x_nat_t_port *sport, *dport;
5667 
5668 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5669 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5670 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5671 			    __func__));
5672 			return key_senderror(so, m, EINVAL);
5673 		}
5674 
5675 		sport = (struct sadb_x_nat_t_port *)
5676 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5677 		dport = (struct sadb_x_nat_t_port *)
5678 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5679 
5680 		if (sport)
5681 			KEY_PORTTOSADDR(&saidx.src,
5682 			    sport->sadb_x_nat_t_port_port);
5683 		if (dport)
5684 			KEY_PORTTOSADDR(&saidx.dst,
5685 			    dport->sadb_x_nat_t_port_port);
5686 	}
5687 #endif
5688 
5689 	/* get a SA header */
5690 	SAHTREE_LOCK();
5691 	LIST_FOREACH(sah, &V_sahtree, chain) {
5692 		if (sah->state == SADB_SASTATE_DEAD)
5693 			continue;
5694 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5695 			continue;
5696 
5697 		/* get a SA with SPI. */
5698 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5699 		if (sav)
5700 			break;
5701 	}
5702 	if (sah == NULL) {
5703 		SAHTREE_UNLOCK();
5704 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5705 		return key_senderror(so, m, ENOENT);
5706 	}
5707 
5708 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5709 	KEY_FREESAV(&sav);
5710 	SAHTREE_UNLOCK();
5711 
5712     {
5713 	struct mbuf *n;
5714 	struct sadb_msg *newmsg;
5715 
5716 	/* create new sadb_msg to reply. */
5717 	/* XXX-BZ NAT-T extensions? */
5718 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5719 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5720 	if (!n)
5721 		return key_senderror(so, m, ENOBUFS);
5722 
5723 	if (n->m_len < sizeof(struct sadb_msg)) {
5724 		n = m_pullup(n, sizeof(struct sadb_msg));
5725 		if (n == NULL)
5726 			return key_senderror(so, m, ENOBUFS);
5727 	}
5728 	newmsg = mtod(n, struct sadb_msg *);
5729 	newmsg->sadb_msg_errno = 0;
5730 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5731 
5732 	m_freem(m);
5733 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5734     }
5735 }
5736 
5737 /*
5738  * delete all SAs for src/dst.  Called from key_delete().
5739  */
5740 static int
5741 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5742     u_int16_t proto)
5743 {
5744 	struct sadb_address *src0, *dst0;
5745 	struct secasindex saidx;
5746 	struct secashead *sah;
5747 	struct secasvar *sav, *nextsav;
5748 	u_int stateidx, state;
5749 
5750 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5751 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5752 
5753 	/* XXX boundary check against sa_len */
5754 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5755 
5756 	/*
5757 	 * Make sure the port numbers are zero.
5758 	 * In case of NAT-T we will update them later if needed.
5759 	 */
5760 	KEY_PORTTOSADDR(&saidx.src, 0);
5761 	KEY_PORTTOSADDR(&saidx.dst, 0);
5762 
5763 #ifdef IPSEC_NAT_T
5764 	/*
5765 	 * Handle NAT-T info if present.
5766 	 */
5767 
5768 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5769 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5770 		struct sadb_x_nat_t_port *sport, *dport;
5771 
5772 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5773 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5774 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5775 			    __func__));
5776 			return key_senderror(so, m, EINVAL);
5777 		}
5778 
5779 		sport = (struct sadb_x_nat_t_port *)
5780 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5781 		dport = (struct sadb_x_nat_t_port *)
5782 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5783 
5784 		if (sport)
5785 			KEY_PORTTOSADDR(&saidx.src,
5786 			    sport->sadb_x_nat_t_port_port);
5787 		if (dport)
5788 			KEY_PORTTOSADDR(&saidx.dst,
5789 			    dport->sadb_x_nat_t_port_port);
5790 	}
5791 #endif
5792 
5793 	SAHTREE_LOCK();
5794 	LIST_FOREACH(sah, &V_sahtree, chain) {
5795 		if (sah->state == SADB_SASTATE_DEAD)
5796 			continue;
5797 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5798 			continue;
5799 
5800 		/* Delete all non-LARVAL SAs. */
5801 		for (stateidx = 0;
5802 		     stateidx < _ARRAYLEN(saorder_state_alive);
5803 		     stateidx++) {
5804 			state = saorder_state_alive[stateidx];
5805 			if (state == SADB_SASTATE_LARVAL)
5806 				continue;
5807 			for (sav = LIST_FIRST(&sah->savtree[state]);
5808 			     sav != NULL; sav = nextsav) {
5809 				nextsav = LIST_NEXT(sav, chain);
5810 				/* sanity check */
5811 				if (sav->state != state) {
5812 					ipseclog((LOG_DEBUG, "%s: invalid "
5813 						"sav->state (queue %d SA %d)\n",
5814 						__func__, state, sav->state));
5815 					continue;
5816 				}
5817 
5818 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5819 				KEY_FREESAV(&sav);
5820 			}
5821 		}
5822 	}
5823 	SAHTREE_UNLOCK();
5824     {
5825 	struct mbuf *n;
5826 	struct sadb_msg *newmsg;
5827 
5828 	/* create new sadb_msg to reply. */
5829 	/* XXX-BZ NAT-T extensions? */
5830 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5831 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5832 	if (!n)
5833 		return key_senderror(so, m, ENOBUFS);
5834 
5835 	if (n->m_len < sizeof(struct sadb_msg)) {
5836 		n = m_pullup(n, sizeof(struct sadb_msg));
5837 		if (n == NULL)
5838 			return key_senderror(so, m, ENOBUFS);
5839 	}
5840 	newmsg = mtod(n, struct sadb_msg *);
5841 	newmsg->sadb_msg_errno = 0;
5842 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5843 
5844 	m_freem(m);
5845 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5846     }
5847 }
5848 
5849 /*
5850  * SADB_GET processing
5851  * receive
5852  *   <base, SA(*), address(SD)>
5853  * from the ikmpd, and get a SP and a SA to respond,
5854  * and send,
5855  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5856  *       (identity(SD),) (sensitivity)>
5857  * to the ikmpd.
5858  *
5859  * m will always be freed.
5860  */
5861 static int
5862 key_get(so, m, mhp)
5863 	struct socket *so;
5864 	struct mbuf *m;
5865 	const struct sadb_msghdr *mhp;
5866 {
5867 	struct sadb_sa *sa0;
5868 	struct sadb_address *src0, *dst0;
5869 	struct secasindex saidx;
5870 	struct secashead *sah;
5871 	struct secasvar *sav = NULL;
5872 	u_int16_t proto;
5873 
5874 	IPSEC_ASSERT(so != NULL, ("null socket"));
5875 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5876 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5877 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5878 
5879 	/* map satype to proto */
5880 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5881 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5882 			__func__));
5883 		return key_senderror(so, m, EINVAL);
5884 	}
5885 
5886 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5887 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5888 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5889 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5890 			__func__));
5891 		return key_senderror(so, m, EINVAL);
5892 	}
5893 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5894 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5895 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5896 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5897 			__func__));
5898 		return key_senderror(so, m, EINVAL);
5899 	}
5900 
5901 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5902 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5903 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5904 
5905 	/* XXX boundary check against sa_len */
5906 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5907 
5908 	/*
5909 	 * Make sure the port numbers are zero.
5910 	 * In case of NAT-T we will update them later if needed.
5911 	 */
5912 	KEY_PORTTOSADDR(&saidx.src, 0);
5913 	KEY_PORTTOSADDR(&saidx.dst, 0);
5914 
5915 #ifdef IPSEC_NAT_T
5916 	/*
5917 	 * Handle NAT-T info if present.
5918 	 */
5919 
5920 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5921 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5922 		struct sadb_x_nat_t_port *sport, *dport;
5923 
5924 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5925 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5926 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5927 			    __func__));
5928 			return key_senderror(so, m, EINVAL);
5929 		}
5930 
5931 		sport = (struct sadb_x_nat_t_port *)
5932 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5933 		dport = (struct sadb_x_nat_t_port *)
5934 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5935 
5936 		if (sport)
5937 			KEY_PORTTOSADDR(&saidx.src,
5938 			    sport->sadb_x_nat_t_port_port);
5939 		if (dport)
5940 			KEY_PORTTOSADDR(&saidx.dst,
5941 			    dport->sadb_x_nat_t_port_port);
5942 	}
5943 #endif
5944 
5945 	/* get a SA header */
5946 	SAHTREE_LOCK();
5947 	LIST_FOREACH(sah, &V_sahtree, chain) {
5948 		if (sah->state == SADB_SASTATE_DEAD)
5949 			continue;
5950 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5951 			continue;
5952 
5953 		/* get a SA with SPI. */
5954 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5955 		if (sav)
5956 			break;
5957 	}
5958 	SAHTREE_UNLOCK();
5959 	if (sah == NULL) {
5960 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5961 		return key_senderror(so, m, ENOENT);
5962 	}
5963 
5964     {
5965 	struct mbuf *n;
5966 	u_int8_t satype;
5967 
5968 	/* map proto to satype */
5969 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5970 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5971 			__func__));
5972 		return key_senderror(so, m, EINVAL);
5973 	}
5974 
5975 	/* create new sadb_msg to reply. */
5976 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5977 	    mhp->msg->sadb_msg_pid);
5978 	if (!n)
5979 		return key_senderror(so, m, ENOBUFS);
5980 
5981 	m_freem(m);
5982 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5983     }
5984 }
5985 
5986 /* XXX make it sysctl-configurable? */
5987 static void
5988 key_getcomb_setlifetime(comb)
5989 	struct sadb_comb *comb;
5990 {
5991 
5992 	comb->sadb_comb_soft_allocations = 1;
5993 	comb->sadb_comb_hard_allocations = 1;
5994 	comb->sadb_comb_soft_bytes = 0;
5995 	comb->sadb_comb_hard_bytes = 0;
5996 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5997 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5998 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5999 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6000 }
6001 
6002 /*
6003  * XXX reorder combinations by preference
6004  * XXX no idea if the user wants ESP authentication or not
6005  */
6006 static struct mbuf *
6007 key_getcomb_esp()
6008 {
6009 	struct sadb_comb *comb;
6010 	struct enc_xform *algo;
6011 	struct mbuf *result = NULL, *m, *n;
6012 	int encmin;
6013 	int i, off, o;
6014 	int totlen;
6015 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6016 
6017 	m = NULL;
6018 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6019 		algo = esp_algorithm_lookup(i);
6020 		if (algo == NULL)
6021 			continue;
6022 
6023 		/* discard algorithms with key size smaller than system min */
6024 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6025 			continue;
6026 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6027 			encmin = V_ipsec_esp_keymin;
6028 		else
6029 			encmin = _BITS(algo->minkey);
6030 
6031 		if (V_ipsec_esp_auth)
6032 			m = key_getcomb_ah();
6033 		else {
6034 			IPSEC_ASSERT(l <= MLEN,
6035 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6036 			MGET(m, M_DONTWAIT, MT_DATA);
6037 			if (m) {
6038 				M_ALIGN(m, l);
6039 				m->m_len = l;
6040 				m->m_next = NULL;
6041 				bzero(mtod(m, caddr_t), m->m_len);
6042 			}
6043 		}
6044 		if (!m)
6045 			goto fail;
6046 
6047 		totlen = 0;
6048 		for (n = m; n; n = n->m_next)
6049 			totlen += n->m_len;
6050 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6051 
6052 		for (off = 0; off < totlen; off += l) {
6053 			n = m_pulldown(m, off, l, &o);
6054 			if (!n) {
6055 				/* m is already freed */
6056 				goto fail;
6057 			}
6058 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6059 			bzero(comb, sizeof(*comb));
6060 			key_getcomb_setlifetime(comb);
6061 			comb->sadb_comb_encrypt = i;
6062 			comb->sadb_comb_encrypt_minbits = encmin;
6063 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6064 		}
6065 
6066 		if (!result)
6067 			result = m;
6068 		else
6069 			m_cat(result, m);
6070 	}
6071 
6072 	return result;
6073 
6074  fail:
6075 	if (result)
6076 		m_freem(result);
6077 	return NULL;
6078 }
6079 
6080 static void
6081 key_getsizes_ah(
6082 	const struct auth_hash *ah,
6083 	int alg,
6084 	u_int16_t* min,
6085 	u_int16_t* max)
6086 {
6087 
6088 	*min = *max = ah->keysize;
6089 	if (ah->keysize == 0) {
6090 		/*
6091 		 * Transform takes arbitrary key size but algorithm
6092 		 * key size is restricted.  Enforce this here.
6093 		 */
6094 		switch (alg) {
6095 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6096 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6097 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6098 		default:
6099 			DPRINTF(("%s: unknown AH algorithm %u\n",
6100 				__func__, alg));
6101 			break;
6102 		}
6103 	}
6104 }
6105 
6106 /*
6107  * XXX reorder combinations by preference
6108  */
6109 static struct mbuf *
6110 key_getcomb_ah()
6111 {
6112 	struct sadb_comb *comb;
6113 	struct auth_hash *algo;
6114 	struct mbuf *m;
6115 	u_int16_t minkeysize, maxkeysize;
6116 	int i;
6117 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6118 
6119 	m = NULL;
6120 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6121 #if 1
6122 		/* we prefer HMAC algorithms, not old algorithms */
6123 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
6124 			continue;
6125 #endif
6126 		algo = ah_algorithm_lookup(i);
6127 		if (!algo)
6128 			continue;
6129 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6130 		/* discard algorithms with key size smaller than system min */
6131 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6132 			continue;
6133 
6134 		if (!m) {
6135 			IPSEC_ASSERT(l <= MLEN,
6136 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6137 			MGET(m, M_DONTWAIT, MT_DATA);
6138 			if (m) {
6139 				M_ALIGN(m, l);
6140 				m->m_len = l;
6141 				m->m_next = NULL;
6142 			}
6143 		} else
6144 			M_PREPEND(m, l, M_DONTWAIT);
6145 		if (!m)
6146 			return NULL;
6147 
6148 		comb = mtod(m, struct sadb_comb *);
6149 		bzero(comb, sizeof(*comb));
6150 		key_getcomb_setlifetime(comb);
6151 		comb->sadb_comb_auth = i;
6152 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6153 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6154 	}
6155 
6156 	return m;
6157 }
6158 
6159 /*
6160  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6161  * XXX reorder combinations by preference
6162  */
6163 static struct mbuf *
6164 key_getcomb_ipcomp()
6165 {
6166 	struct sadb_comb *comb;
6167 	struct comp_algo *algo;
6168 	struct mbuf *m;
6169 	int i;
6170 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6171 
6172 	m = NULL;
6173 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6174 		algo = ipcomp_algorithm_lookup(i);
6175 		if (!algo)
6176 			continue;
6177 
6178 		if (!m) {
6179 			IPSEC_ASSERT(l <= MLEN,
6180 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6181 			MGET(m, M_DONTWAIT, MT_DATA);
6182 			if (m) {
6183 				M_ALIGN(m, l);
6184 				m->m_len = l;
6185 				m->m_next = NULL;
6186 			}
6187 		} else
6188 			M_PREPEND(m, l, M_DONTWAIT);
6189 		if (!m)
6190 			return NULL;
6191 
6192 		comb = mtod(m, struct sadb_comb *);
6193 		bzero(comb, sizeof(*comb));
6194 		key_getcomb_setlifetime(comb);
6195 		comb->sadb_comb_encrypt = i;
6196 		/* what should we set into sadb_comb_*_{min,max}bits? */
6197 	}
6198 
6199 	return m;
6200 }
6201 
6202 /*
6203  * XXX no way to pass mode (transport/tunnel) to userland
6204  * XXX replay checking?
6205  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6206  */
6207 static struct mbuf *
6208 key_getprop(saidx)
6209 	const struct secasindex *saidx;
6210 {
6211 	struct sadb_prop *prop;
6212 	struct mbuf *m, *n;
6213 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6214 	int totlen;
6215 
6216 	switch (saidx->proto)  {
6217 	case IPPROTO_ESP:
6218 		m = key_getcomb_esp();
6219 		break;
6220 	case IPPROTO_AH:
6221 		m = key_getcomb_ah();
6222 		break;
6223 	case IPPROTO_IPCOMP:
6224 		m = key_getcomb_ipcomp();
6225 		break;
6226 	default:
6227 		return NULL;
6228 	}
6229 
6230 	if (!m)
6231 		return NULL;
6232 	M_PREPEND(m, l, M_DONTWAIT);
6233 	if (!m)
6234 		return NULL;
6235 
6236 	totlen = 0;
6237 	for (n = m; n; n = n->m_next)
6238 		totlen += n->m_len;
6239 
6240 	prop = mtod(m, struct sadb_prop *);
6241 	bzero(prop, sizeof(*prop));
6242 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6243 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6244 	prop->sadb_prop_replay = 32;	/* XXX */
6245 
6246 	return m;
6247 }
6248 
6249 /*
6250  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6251  * send
6252  *   <base, SA, address(SD), (address(P)), x_policy,
6253  *       (identity(SD),) (sensitivity,) proposal>
6254  * to KMD, and expect to receive
6255  *   <base> with SADB_ACQUIRE if error occured,
6256  * or
6257  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6258  * from KMD by PF_KEY.
6259  *
6260  * XXX x_policy is outside of RFC2367 (KAME extension).
6261  * XXX sensitivity is not supported.
6262  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6263  * see comment for key_getcomb_ipcomp().
6264  *
6265  * OUT:
6266  *    0     : succeed
6267  *    others: error number
6268  */
6269 static int
6270 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6271 {
6272 	struct mbuf *result = NULL, *m;
6273 	struct secacq *newacq;
6274 	u_int8_t satype;
6275 	int error = -1;
6276 	u_int32_t seq;
6277 
6278 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6279 	satype = key_proto2satype(saidx->proto);
6280 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6281 
6282 	/*
6283 	 * We never do anything about acquirng SA.  There is anather
6284 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6285 	 * getting something message from IKEd.  In later case, to be
6286 	 * managed with ACQUIRING list.
6287 	 */
6288 	/* Get an entry to check whether sending message or not. */
6289 	if ((newacq = key_getacq(saidx)) != NULL) {
6290 		if (V_key_blockacq_count < newacq->count) {
6291 			/* reset counter and do send message. */
6292 			newacq->count = 0;
6293 		} else {
6294 			/* increment counter and do nothing. */
6295 			newacq->count++;
6296 			return 0;
6297 		}
6298 	} else {
6299 		/* make new entry for blocking to send SADB_ACQUIRE. */
6300 		if ((newacq = key_newacq(saidx)) == NULL)
6301 			return ENOBUFS;
6302 	}
6303 
6304 
6305 	seq = newacq->seq;
6306 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6307 	if (!m) {
6308 		error = ENOBUFS;
6309 		goto fail;
6310 	}
6311 	result = m;
6312 
6313 	/*
6314 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6315 	 * anything related to NAT-T at this time.
6316 	 */
6317 
6318 	/* set sadb_address for saidx's. */
6319 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6320 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6321 	if (!m) {
6322 		error = ENOBUFS;
6323 		goto fail;
6324 	}
6325 	m_cat(result, m);
6326 
6327 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6328 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6329 	if (!m) {
6330 		error = ENOBUFS;
6331 		goto fail;
6332 	}
6333 	m_cat(result, m);
6334 
6335 	/* XXX proxy address (optional) */
6336 
6337 	/* set sadb_x_policy */
6338 	if (sp) {
6339 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6340 		if (!m) {
6341 			error = ENOBUFS;
6342 			goto fail;
6343 		}
6344 		m_cat(result, m);
6345 	}
6346 
6347 	/* XXX identity (optional) */
6348 #if 0
6349 	if (idexttype && fqdn) {
6350 		/* create identity extension (FQDN) */
6351 		struct sadb_ident *id;
6352 		int fqdnlen;
6353 
6354 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6355 		id = (struct sadb_ident *)p;
6356 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6357 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6358 		id->sadb_ident_exttype = idexttype;
6359 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6360 		bcopy(fqdn, id + 1, fqdnlen);
6361 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6362 	}
6363 
6364 	if (idexttype) {
6365 		/* create identity extension (USERFQDN) */
6366 		struct sadb_ident *id;
6367 		int userfqdnlen;
6368 
6369 		if (userfqdn) {
6370 			/* +1 for terminating-NUL */
6371 			userfqdnlen = strlen(userfqdn) + 1;
6372 		} else
6373 			userfqdnlen = 0;
6374 		id = (struct sadb_ident *)p;
6375 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6376 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6377 		id->sadb_ident_exttype = idexttype;
6378 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6379 		/* XXX is it correct? */
6380 		if (curproc && curproc->p_cred)
6381 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6382 		if (userfqdn && userfqdnlen)
6383 			bcopy(userfqdn, id + 1, userfqdnlen);
6384 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6385 	}
6386 #endif
6387 
6388 	/* XXX sensitivity (optional) */
6389 
6390 	/* create proposal/combination extension */
6391 	m = key_getprop(saidx);
6392 #if 0
6393 	/*
6394 	 * spec conformant: always attach proposal/combination extension,
6395 	 * the problem is that we have no way to attach it for ipcomp,
6396 	 * due to the way sadb_comb is declared in RFC2367.
6397 	 */
6398 	if (!m) {
6399 		error = ENOBUFS;
6400 		goto fail;
6401 	}
6402 	m_cat(result, m);
6403 #else
6404 	/*
6405 	 * outside of spec; make proposal/combination extension optional.
6406 	 */
6407 	if (m)
6408 		m_cat(result, m);
6409 #endif
6410 
6411 	if ((result->m_flags & M_PKTHDR) == 0) {
6412 		error = EINVAL;
6413 		goto fail;
6414 	}
6415 
6416 	if (result->m_len < sizeof(struct sadb_msg)) {
6417 		result = m_pullup(result, sizeof(struct sadb_msg));
6418 		if (result == NULL) {
6419 			error = ENOBUFS;
6420 			goto fail;
6421 		}
6422 	}
6423 
6424 	result->m_pkthdr.len = 0;
6425 	for (m = result; m; m = m->m_next)
6426 		result->m_pkthdr.len += m->m_len;
6427 
6428 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6429 	    PFKEY_UNIT64(result->m_pkthdr.len);
6430 
6431 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6432 
6433  fail:
6434 	if (result)
6435 		m_freem(result);
6436 	return error;
6437 }
6438 
6439 static struct secacq *
6440 key_newacq(const struct secasindex *saidx)
6441 {
6442 	struct secacq *newacq;
6443 
6444 	/* get new entry */
6445 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6446 	if (newacq == NULL) {
6447 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6448 		return NULL;
6449 	}
6450 
6451 	/* copy secindex */
6452 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6453 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6454 	newacq->created = time_second;
6455 	newacq->count = 0;
6456 
6457 	/* add to acqtree */
6458 	ACQ_LOCK();
6459 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6460 	ACQ_UNLOCK();
6461 
6462 	return newacq;
6463 }
6464 
6465 static struct secacq *
6466 key_getacq(const struct secasindex *saidx)
6467 {
6468 	struct secacq *acq;
6469 
6470 	ACQ_LOCK();
6471 	LIST_FOREACH(acq, &V_acqtree, chain) {
6472 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6473 			break;
6474 	}
6475 	ACQ_UNLOCK();
6476 
6477 	return acq;
6478 }
6479 
6480 static struct secacq *
6481 key_getacqbyseq(seq)
6482 	u_int32_t seq;
6483 {
6484 	struct secacq *acq;
6485 
6486 	ACQ_LOCK();
6487 	LIST_FOREACH(acq, &V_acqtree, chain) {
6488 		if (acq->seq == seq)
6489 			break;
6490 	}
6491 	ACQ_UNLOCK();
6492 
6493 	return acq;
6494 }
6495 
6496 static struct secspacq *
6497 key_newspacq(spidx)
6498 	struct secpolicyindex *spidx;
6499 {
6500 	struct secspacq *acq;
6501 
6502 	/* get new entry */
6503 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6504 	if (acq == NULL) {
6505 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6506 		return NULL;
6507 	}
6508 
6509 	/* copy secindex */
6510 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6511 	acq->created = time_second;
6512 	acq->count = 0;
6513 
6514 	/* add to spacqtree */
6515 	SPACQ_LOCK();
6516 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6517 	SPACQ_UNLOCK();
6518 
6519 	return acq;
6520 }
6521 
6522 static struct secspacq *
6523 key_getspacq(spidx)
6524 	struct secpolicyindex *spidx;
6525 {
6526 	struct secspacq *acq;
6527 
6528 	SPACQ_LOCK();
6529 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6530 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6531 			/* NB: return holding spacq_lock */
6532 			return acq;
6533 		}
6534 	}
6535 	SPACQ_UNLOCK();
6536 
6537 	return NULL;
6538 }
6539 
6540 /*
6541  * SADB_ACQUIRE processing,
6542  * in first situation, is receiving
6543  *   <base>
6544  * from the ikmpd, and clear sequence of its secasvar entry.
6545  *
6546  * In second situation, is receiving
6547  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6548  * from a user land process, and return
6549  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6550  * to the socket.
6551  *
6552  * m will always be freed.
6553  */
6554 static int
6555 key_acquire2(so, m, mhp)
6556 	struct socket *so;
6557 	struct mbuf *m;
6558 	const struct sadb_msghdr *mhp;
6559 {
6560 	const struct sadb_address *src0, *dst0;
6561 	struct secasindex saidx;
6562 	struct secashead *sah;
6563 	u_int16_t proto;
6564 	int error;
6565 
6566 	IPSEC_ASSERT(so != NULL, ("null socket"));
6567 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6568 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6569 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6570 
6571 	/*
6572 	 * Error message from KMd.
6573 	 * We assume that if error was occured in IKEd, the length of PFKEY
6574 	 * message is equal to the size of sadb_msg structure.
6575 	 * We do not raise error even if error occured in this function.
6576 	 */
6577 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6578 		struct secacq *acq;
6579 
6580 		/* check sequence number */
6581 		if (mhp->msg->sadb_msg_seq == 0) {
6582 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6583 				"number.\n", __func__));
6584 			m_freem(m);
6585 			return 0;
6586 		}
6587 
6588 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6589 			/*
6590 			 * the specified larval SA is already gone, or we got
6591 			 * a bogus sequence number.  we can silently ignore it.
6592 			 */
6593 			m_freem(m);
6594 			return 0;
6595 		}
6596 
6597 		/* reset acq counter in order to deletion by timehander. */
6598 		acq->created = time_second;
6599 		acq->count = 0;
6600 		m_freem(m);
6601 		return 0;
6602 	}
6603 
6604 	/*
6605 	 * This message is from user land.
6606 	 */
6607 
6608 	/* map satype to proto */
6609 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6610 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6611 			__func__));
6612 		return key_senderror(so, m, EINVAL);
6613 	}
6614 
6615 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6616 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6617 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6618 		/* error */
6619 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6620 			__func__));
6621 		return key_senderror(so, m, EINVAL);
6622 	}
6623 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6624 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6625 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6626 		/* error */
6627 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6628 			__func__));
6629 		return key_senderror(so, m, EINVAL);
6630 	}
6631 
6632 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6633 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6634 
6635 	/* XXX boundary check against sa_len */
6636 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6637 
6638 	/*
6639 	 * Make sure the port numbers are zero.
6640 	 * In case of NAT-T we will update them later if needed.
6641 	 */
6642 	KEY_PORTTOSADDR(&saidx.src, 0);
6643 	KEY_PORTTOSADDR(&saidx.dst, 0);
6644 
6645 #ifndef IPSEC_NAT_T
6646 	/*
6647 	 * Handle NAT-T info if present.
6648 	 */
6649 
6650 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6651 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6652 		struct sadb_x_nat_t_port *sport, *dport;
6653 
6654 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6655 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6656 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6657 			    __func__));
6658 			return key_senderror(so, m, EINVAL);
6659 		}
6660 
6661 		sport = (struct sadb_x_nat_t_port *)
6662 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6663 		dport = (struct sadb_x_nat_t_port *)
6664 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6665 
6666 		if (sport)
6667 			KEY_PORTTOSADDR(&saidx.src,
6668 			    sport->sadb_x_nat_t_port_port);
6669 		if (dport)
6670 			KEY_PORTTOSADDR(&saidx.dst,
6671 			    dport->sadb_x_nat_t_port_port);
6672 	}
6673 #endif
6674 
6675 	/* get a SA index */
6676 	SAHTREE_LOCK();
6677 	LIST_FOREACH(sah, &V_sahtree, chain) {
6678 		if (sah->state == SADB_SASTATE_DEAD)
6679 			continue;
6680 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6681 			break;
6682 	}
6683 	SAHTREE_UNLOCK();
6684 	if (sah != NULL) {
6685 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6686 		return key_senderror(so, m, EEXIST);
6687 	}
6688 
6689 	error = key_acquire(&saidx, NULL);
6690 	if (error != 0) {
6691 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6692 			__func__, mhp->msg->sadb_msg_errno));
6693 		return key_senderror(so, m, error);
6694 	}
6695 
6696 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6697 }
6698 
6699 /*
6700  * SADB_REGISTER processing.
6701  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6702  * receive
6703  *   <base>
6704  * from the ikmpd, and register a socket to send PF_KEY messages,
6705  * and send
6706  *   <base, supported>
6707  * to KMD by PF_KEY.
6708  * If socket is detached, must free from regnode.
6709  *
6710  * m will always be freed.
6711  */
6712 static int
6713 key_register(so, m, mhp)
6714 	struct socket *so;
6715 	struct mbuf *m;
6716 	const struct sadb_msghdr *mhp;
6717 {
6718 	struct secreg *reg, *newreg = 0;
6719 
6720 	IPSEC_ASSERT(so != NULL, ("null socket"));
6721 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6722 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6723 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6724 
6725 	/* check for invalid register message */
6726 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6727 		return key_senderror(so, m, EINVAL);
6728 
6729 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6730 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6731 		goto setmsg;
6732 
6733 	/* check whether existing or not */
6734 	REGTREE_LOCK();
6735 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6736 		if (reg->so == so) {
6737 			REGTREE_UNLOCK();
6738 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6739 				__func__));
6740 			return key_senderror(so, m, EEXIST);
6741 		}
6742 	}
6743 
6744 	/* create regnode */
6745 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6746 	if (newreg == NULL) {
6747 		REGTREE_UNLOCK();
6748 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6749 		return key_senderror(so, m, ENOBUFS);
6750 	}
6751 
6752 	newreg->so = so;
6753 	((struct keycb *)sotorawcb(so))->kp_registered++;
6754 
6755 	/* add regnode to regtree. */
6756 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6757 	REGTREE_UNLOCK();
6758 
6759   setmsg:
6760     {
6761 	struct mbuf *n;
6762 	struct sadb_msg *newmsg;
6763 	struct sadb_supported *sup;
6764 	u_int len, alen, elen;
6765 	int off;
6766 	int i;
6767 	struct sadb_alg *alg;
6768 
6769 	/* create new sadb_msg to reply. */
6770 	alen = 0;
6771 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6772 		if (ah_algorithm_lookup(i))
6773 			alen += sizeof(struct sadb_alg);
6774 	}
6775 	if (alen)
6776 		alen += sizeof(struct sadb_supported);
6777 	elen = 0;
6778 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6779 		if (esp_algorithm_lookup(i))
6780 			elen += sizeof(struct sadb_alg);
6781 	}
6782 	if (elen)
6783 		elen += sizeof(struct sadb_supported);
6784 
6785 	len = sizeof(struct sadb_msg) + alen + elen;
6786 
6787 	if (len > MCLBYTES)
6788 		return key_senderror(so, m, ENOBUFS);
6789 
6790 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6791 	if (len > MHLEN) {
6792 		MCLGET(n, M_DONTWAIT);
6793 		if ((n->m_flags & M_EXT) == 0) {
6794 			m_freem(n);
6795 			n = NULL;
6796 		}
6797 	}
6798 	if (!n)
6799 		return key_senderror(so, m, ENOBUFS);
6800 
6801 	n->m_pkthdr.len = n->m_len = len;
6802 	n->m_next = NULL;
6803 	off = 0;
6804 
6805 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6806 	newmsg = mtod(n, struct sadb_msg *);
6807 	newmsg->sadb_msg_errno = 0;
6808 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6809 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6810 
6811 	/* for authentication algorithm */
6812 	if (alen) {
6813 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6814 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6815 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6816 		off += PFKEY_ALIGN8(sizeof(*sup));
6817 
6818 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6819 			struct auth_hash *aalgo;
6820 			u_int16_t minkeysize, maxkeysize;
6821 
6822 			aalgo = ah_algorithm_lookup(i);
6823 			if (!aalgo)
6824 				continue;
6825 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6826 			alg->sadb_alg_id = i;
6827 			alg->sadb_alg_ivlen = 0;
6828 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6829 			alg->sadb_alg_minbits = _BITS(minkeysize);
6830 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6831 			off += PFKEY_ALIGN8(sizeof(*alg));
6832 		}
6833 	}
6834 
6835 	/* for encryption algorithm */
6836 	if (elen) {
6837 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6838 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6839 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6840 		off += PFKEY_ALIGN8(sizeof(*sup));
6841 
6842 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6843 			struct enc_xform *ealgo;
6844 
6845 			ealgo = esp_algorithm_lookup(i);
6846 			if (!ealgo)
6847 				continue;
6848 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6849 			alg->sadb_alg_id = i;
6850 			alg->sadb_alg_ivlen = ealgo->blocksize;
6851 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6852 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6853 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6854 		}
6855 	}
6856 
6857 	IPSEC_ASSERT(off == len,
6858 		("length assumption failed (off %u len %u)", off, len));
6859 
6860 	m_freem(m);
6861 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6862     }
6863 }
6864 
6865 /*
6866  * free secreg entry registered.
6867  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6868  */
6869 void
6870 key_freereg(struct socket *so)
6871 {
6872 	struct secreg *reg;
6873 	int i;
6874 
6875 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6876 
6877 	/*
6878 	 * check whether existing or not.
6879 	 * check all type of SA, because there is a potential that
6880 	 * one socket is registered to multiple type of SA.
6881 	 */
6882 	REGTREE_LOCK();
6883 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6884 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6885 			if (reg->so == so && __LIST_CHAINED(reg)) {
6886 				LIST_REMOVE(reg, chain);
6887 				free(reg, M_IPSEC_SAR);
6888 				break;
6889 			}
6890 		}
6891 	}
6892 	REGTREE_UNLOCK();
6893 }
6894 
6895 /*
6896  * SADB_EXPIRE processing
6897  * send
6898  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6899  * to KMD by PF_KEY.
6900  * NOTE: We send only soft lifetime extension.
6901  *
6902  * OUT:	0	: succeed
6903  *	others	: error number
6904  */
6905 static int
6906 key_expire(struct secasvar *sav)
6907 {
6908 	int s;
6909 	int satype;
6910 	struct mbuf *result = NULL, *m;
6911 	int len;
6912 	int error = -1;
6913 	struct sadb_lifetime *lt;
6914 
6915 	/* XXX: Why do we lock ? */
6916 	s = splnet();	/*called from softclock()*/
6917 
6918 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6919 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6920 
6921 	/* set msg header */
6922 	satype = key_proto2satype(sav->sah->saidx.proto);
6923 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6924 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6925 	if (!m) {
6926 		error = ENOBUFS;
6927 		goto fail;
6928 	}
6929 	result = m;
6930 
6931 	/* create SA extension */
6932 	m = key_setsadbsa(sav);
6933 	if (!m) {
6934 		error = ENOBUFS;
6935 		goto fail;
6936 	}
6937 	m_cat(result, m);
6938 
6939 	/* create SA extension */
6940 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6941 			sav->replay ? sav->replay->count : 0,
6942 			sav->sah->saidx.reqid);
6943 	if (!m) {
6944 		error = ENOBUFS;
6945 		goto fail;
6946 	}
6947 	m_cat(result, m);
6948 
6949 	/* create lifetime extension (current and soft) */
6950 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6951 	m = key_alloc_mbuf(len);
6952 	if (!m || m->m_next) {	/*XXX*/
6953 		if (m)
6954 			m_freem(m);
6955 		error = ENOBUFS;
6956 		goto fail;
6957 	}
6958 	bzero(mtod(m, caddr_t), len);
6959 	lt = mtod(m, struct sadb_lifetime *);
6960 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6961 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6962 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6963 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6964 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6965 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6966 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6967 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6968 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6969 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6970 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6971 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6972 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6973 	m_cat(result, m);
6974 
6975 	/* set sadb_address for source */
6976 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6977 	    &sav->sah->saidx.src.sa,
6978 	    FULLMASK, IPSEC_ULPROTO_ANY);
6979 	if (!m) {
6980 		error = ENOBUFS;
6981 		goto fail;
6982 	}
6983 	m_cat(result, m);
6984 
6985 	/* set sadb_address for destination */
6986 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6987 	    &sav->sah->saidx.dst.sa,
6988 	    FULLMASK, IPSEC_ULPROTO_ANY);
6989 	if (!m) {
6990 		error = ENOBUFS;
6991 		goto fail;
6992 	}
6993 	m_cat(result, m);
6994 
6995 	/*
6996 	 * XXX-BZ Handle NAT-T extensions here.
6997 	 */
6998 
6999 	if ((result->m_flags & M_PKTHDR) == 0) {
7000 		error = EINVAL;
7001 		goto fail;
7002 	}
7003 
7004 	if (result->m_len < sizeof(struct sadb_msg)) {
7005 		result = m_pullup(result, sizeof(struct sadb_msg));
7006 		if (result == NULL) {
7007 			error = ENOBUFS;
7008 			goto fail;
7009 		}
7010 	}
7011 
7012 	result->m_pkthdr.len = 0;
7013 	for (m = result; m; m = m->m_next)
7014 		result->m_pkthdr.len += m->m_len;
7015 
7016 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7017 	    PFKEY_UNIT64(result->m_pkthdr.len);
7018 
7019 	splx(s);
7020 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7021 
7022  fail:
7023 	if (result)
7024 		m_freem(result);
7025 	splx(s);
7026 	return error;
7027 }
7028 
7029 /*
7030  * SADB_FLUSH processing
7031  * receive
7032  *   <base>
7033  * from the ikmpd, and free all entries in secastree.
7034  * and send,
7035  *   <base>
7036  * to the ikmpd.
7037  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7038  *
7039  * m will always be freed.
7040  */
7041 static int
7042 key_flush(so, m, mhp)
7043 	struct socket *so;
7044 	struct mbuf *m;
7045 	const struct sadb_msghdr *mhp;
7046 {
7047 	struct sadb_msg *newmsg;
7048 	struct secashead *sah, *nextsah;
7049 	struct secasvar *sav, *nextsav;
7050 	u_int16_t proto;
7051 	u_int8_t state;
7052 	u_int stateidx;
7053 
7054 	IPSEC_ASSERT(so != NULL, ("null socket"));
7055 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7056 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7057 
7058 	/* map satype to proto */
7059 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7060 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7061 			__func__));
7062 		return key_senderror(so, m, EINVAL);
7063 	}
7064 
7065 	/* no SATYPE specified, i.e. flushing all SA. */
7066 	SAHTREE_LOCK();
7067 	for (sah = LIST_FIRST(&V_sahtree);
7068 	     sah != NULL;
7069 	     sah = nextsah) {
7070 		nextsah = LIST_NEXT(sah, chain);
7071 
7072 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7073 		 && proto != sah->saidx.proto)
7074 			continue;
7075 
7076 		for (stateidx = 0;
7077 		     stateidx < _ARRAYLEN(saorder_state_alive);
7078 		     stateidx++) {
7079 			state = saorder_state_any[stateidx];
7080 			for (sav = LIST_FIRST(&sah->savtree[state]);
7081 			     sav != NULL;
7082 			     sav = nextsav) {
7083 
7084 				nextsav = LIST_NEXT(sav, chain);
7085 
7086 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7087 				KEY_FREESAV(&sav);
7088 			}
7089 		}
7090 
7091 		sah->state = SADB_SASTATE_DEAD;
7092 	}
7093 	SAHTREE_UNLOCK();
7094 
7095 	if (m->m_len < sizeof(struct sadb_msg) ||
7096 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7097 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7098 		return key_senderror(so, m, ENOBUFS);
7099 	}
7100 
7101 	if (m->m_next)
7102 		m_freem(m->m_next);
7103 	m->m_next = NULL;
7104 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7105 	newmsg = mtod(m, struct sadb_msg *);
7106 	newmsg->sadb_msg_errno = 0;
7107 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7108 
7109 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7110 }
7111 
7112 /*
7113  * SADB_DUMP processing
7114  * dump all entries including status of DEAD in SAD.
7115  * receive
7116  *   <base>
7117  * from the ikmpd, and dump all secasvar leaves
7118  * and send,
7119  *   <base> .....
7120  * to the ikmpd.
7121  *
7122  * m will always be freed.
7123  */
7124 static int
7125 key_dump(so, m, mhp)
7126 	struct socket *so;
7127 	struct mbuf *m;
7128 	const struct sadb_msghdr *mhp;
7129 {
7130 	struct secashead *sah;
7131 	struct secasvar *sav;
7132 	u_int16_t proto;
7133 	u_int stateidx;
7134 	u_int8_t satype;
7135 	u_int8_t state;
7136 	int cnt;
7137 	struct sadb_msg *newmsg;
7138 	struct mbuf *n;
7139 
7140 	IPSEC_ASSERT(so != NULL, ("null socket"));
7141 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7142 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7143 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7144 
7145 	/* map satype to proto */
7146 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7147 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7148 			__func__));
7149 		return key_senderror(so, m, EINVAL);
7150 	}
7151 
7152 	/* count sav entries to be sent to the userland. */
7153 	cnt = 0;
7154 	SAHTREE_LOCK();
7155 	LIST_FOREACH(sah, &V_sahtree, chain) {
7156 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7157 		 && proto != sah->saidx.proto)
7158 			continue;
7159 
7160 		for (stateidx = 0;
7161 		     stateidx < _ARRAYLEN(saorder_state_any);
7162 		     stateidx++) {
7163 			state = saorder_state_any[stateidx];
7164 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7165 				cnt++;
7166 			}
7167 		}
7168 	}
7169 
7170 	if (cnt == 0) {
7171 		SAHTREE_UNLOCK();
7172 		return key_senderror(so, m, ENOENT);
7173 	}
7174 
7175 	/* send this to the userland, one at a time. */
7176 	newmsg = NULL;
7177 	LIST_FOREACH(sah, &V_sahtree, chain) {
7178 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7179 		 && proto != sah->saidx.proto)
7180 			continue;
7181 
7182 		/* map proto to satype */
7183 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7184 			SAHTREE_UNLOCK();
7185 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7186 				"SAD.\n", __func__));
7187 			return key_senderror(so, m, EINVAL);
7188 		}
7189 
7190 		for (stateidx = 0;
7191 		     stateidx < _ARRAYLEN(saorder_state_any);
7192 		     stateidx++) {
7193 			state = saorder_state_any[stateidx];
7194 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7195 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7196 				    --cnt, mhp->msg->sadb_msg_pid);
7197 				if (!n) {
7198 					SAHTREE_UNLOCK();
7199 					return key_senderror(so, m, ENOBUFS);
7200 				}
7201 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7202 			}
7203 		}
7204 	}
7205 	SAHTREE_UNLOCK();
7206 
7207 	m_freem(m);
7208 	return 0;
7209 }
7210 
7211 /*
7212  * SADB_X_PROMISC processing
7213  *
7214  * m will always be freed.
7215  */
7216 static int
7217 key_promisc(so, m, mhp)
7218 	struct socket *so;
7219 	struct mbuf *m;
7220 	const struct sadb_msghdr *mhp;
7221 {
7222 	int olen;
7223 
7224 	IPSEC_ASSERT(so != NULL, ("null socket"));
7225 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7226 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7227 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7228 
7229 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7230 
7231 	if (olen < sizeof(struct sadb_msg)) {
7232 #if 1
7233 		return key_senderror(so, m, EINVAL);
7234 #else
7235 		m_freem(m);
7236 		return 0;
7237 #endif
7238 	} else if (olen == sizeof(struct sadb_msg)) {
7239 		/* enable/disable promisc mode */
7240 		struct keycb *kp;
7241 
7242 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7243 			return key_senderror(so, m, EINVAL);
7244 		mhp->msg->sadb_msg_errno = 0;
7245 		switch (mhp->msg->sadb_msg_satype) {
7246 		case 0:
7247 		case 1:
7248 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7249 			break;
7250 		default:
7251 			return key_senderror(so, m, EINVAL);
7252 		}
7253 
7254 		/* send the original message back to everyone */
7255 		mhp->msg->sadb_msg_errno = 0;
7256 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7257 	} else {
7258 		/* send packet as is */
7259 
7260 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7261 
7262 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7263 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7264 	}
7265 }
7266 
7267 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7268 		const struct sadb_msghdr *)) = {
7269 	NULL,		/* SADB_RESERVED */
7270 	key_getspi,	/* SADB_GETSPI */
7271 	key_update,	/* SADB_UPDATE */
7272 	key_add,	/* SADB_ADD */
7273 	key_delete,	/* SADB_DELETE */
7274 	key_get,	/* SADB_GET */
7275 	key_acquire2,	/* SADB_ACQUIRE */
7276 	key_register,	/* SADB_REGISTER */
7277 	NULL,		/* SADB_EXPIRE */
7278 	key_flush,	/* SADB_FLUSH */
7279 	key_dump,	/* SADB_DUMP */
7280 	key_promisc,	/* SADB_X_PROMISC */
7281 	NULL,		/* SADB_X_PCHANGE */
7282 	key_spdadd,	/* SADB_X_SPDUPDATE */
7283 	key_spdadd,	/* SADB_X_SPDADD */
7284 	key_spddelete,	/* SADB_X_SPDDELETE */
7285 	key_spdget,	/* SADB_X_SPDGET */
7286 	NULL,		/* SADB_X_SPDACQUIRE */
7287 	key_spddump,	/* SADB_X_SPDDUMP */
7288 	key_spdflush,	/* SADB_X_SPDFLUSH */
7289 	key_spdadd,	/* SADB_X_SPDSETIDX */
7290 	NULL,		/* SADB_X_SPDEXPIRE */
7291 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7292 };
7293 
7294 /*
7295  * parse sadb_msg buffer to process PFKEYv2,
7296  * and create a data to response if needed.
7297  * I think to be dealed with mbuf directly.
7298  * IN:
7299  *     msgp  : pointer to pointer to a received buffer pulluped.
7300  *             This is rewrited to response.
7301  *     so    : pointer to socket.
7302  * OUT:
7303  *    length for buffer to send to user process.
7304  */
7305 int
7306 key_parse(m, so)
7307 	struct mbuf *m;
7308 	struct socket *so;
7309 {
7310 	struct sadb_msg *msg;
7311 	struct sadb_msghdr mh;
7312 	u_int orglen;
7313 	int error;
7314 	int target;
7315 
7316 	IPSEC_ASSERT(so != NULL, ("null socket"));
7317 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7318 
7319 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7320 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7321 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7322 		kdebug_sadb(msg));
7323 #endif
7324 
7325 	if (m->m_len < sizeof(struct sadb_msg)) {
7326 		m = m_pullup(m, sizeof(struct sadb_msg));
7327 		if (!m)
7328 			return ENOBUFS;
7329 	}
7330 	msg = mtod(m, struct sadb_msg *);
7331 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7332 	target = KEY_SENDUP_ONE;
7333 
7334 	if ((m->m_flags & M_PKTHDR) == 0 ||
7335 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7336 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7337 		V_pfkeystat.out_invlen++;
7338 		error = EINVAL;
7339 		goto senderror;
7340 	}
7341 
7342 	if (msg->sadb_msg_version != PF_KEY_V2) {
7343 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7344 		    __func__, msg->sadb_msg_version));
7345 		V_pfkeystat.out_invver++;
7346 		error = EINVAL;
7347 		goto senderror;
7348 	}
7349 
7350 	if (msg->sadb_msg_type > SADB_MAX) {
7351 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7352 		    __func__, msg->sadb_msg_type));
7353 		V_pfkeystat.out_invmsgtype++;
7354 		error = EINVAL;
7355 		goto senderror;
7356 	}
7357 
7358 	/* for old-fashioned code - should be nuked */
7359 	if (m->m_pkthdr.len > MCLBYTES) {
7360 		m_freem(m);
7361 		return ENOBUFS;
7362 	}
7363 	if (m->m_next) {
7364 		struct mbuf *n;
7365 
7366 		MGETHDR(n, M_DONTWAIT, MT_DATA);
7367 		if (n && m->m_pkthdr.len > MHLEN) {
7368 			MCLGET(n, M_DONTWAIT);
7369 			if ((n->m_flags & M_EXT) == 0) {
7370 				m_free(n);
7371 				n = NULL;
7372 			}
7373 		}
7374 		if (!n) {
7375 			m_freem(m);
7376 			return ENOBUFS;
7377 		}
7378 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7379 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7380 		n->m_next = NULL;
7381 		m_freem(m);
7382 		m = n;
7383 	}
7384 
7385 	/* align the mbuf chain so that extensions are in contiguous region. */
7386 	error = key_align(m, &mh);
7387 	if (error)
7388 		return error;
7389 
7390 	msg = mh.msg;
7391 
7392 	/* check SA type */
7393 	switch (msg->sadb_msg_satype) {
7394 	case SADB_SATYPE_UNSPEC:
7395 		switch (msg->sadb_msg_type) {
7396 		case SADB_GETSPI:
7397 		case SADB_UPDATE:
7398 		case SADB_ADD:
7399 		case SADB_DELETE:
7400 		case SADB_GET:
7401 		case SADB_ACQUIRE:
7402 		case SADB_EXPIRE:
7403 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7404 			    "when msg type=%u.\n", __func__,
7405 			    msg->sadb_msg_type));
7406 			V_pfkeystat.out_invsatype++;
7407 			error = EINVAL;
7408 			goto senderror;
7409 		}
7410 		break;
7411 	case SADB_SATYPE_AH:
7412 	case SADB_SATYPE_ESP:
7413 	case SADB_X_SATYPE_IPCOMP:
7414 	case SADB_X_SATYPE_TCPSIGNATURE:
7415 		switch (msg->sadb_msg_type) {
7416 		case SADB_X_SPDADD:
7417 		case SADB_X_SPDDELETE:
7418 		case SADB_X_SPDGET:
7419 		case SADB_X_SPDDUMP:
7420 		case SADB_X_SPDFLUSH:
7421 		case SADB_X_SPDSETIDX:
7422 		case SADB_X_SPDUPDATE:
7423 		case SADB_X_SPDDELETE2:
7424 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7425 				__func__, msg->sadb_msg_type));
7426 			V_pfkeystat.out_invsatype++;
7427 			error = EINVAL;
7428 			goto senderror;
7429 		}
7430 		break;
7431 	case SADB_SATYPE_RSVP:
7432 	case SADB_SATYPE_OSPFV2:
7433 	case SADB_SATYPE_RIPV2:
7434 	case SADB_SATYPE_MIP:
7435 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7436 			__func__, msg->sadb_msg_satype));
7437 		V_pfkeystat.out_invsatype++;
7438 		error = EOPNOTSUPP;
7439 		goto senderror;
7440 	case 1:	/* XXX: What does it do? */
7441 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7442 			break;
7443 		/*FALLTHROUGH*/
7444 	default:
7445 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7446 			__func__, msg->sadb_msg_satype));
7447 		V_pfkeystat.out_invsatype++;
7448 		error = EINVAL;
7449 		goto senderror;
7450 	}
7451 
7452 	/* check field of upper layer protocol and address family */
7453 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7454 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7455 		struct sadb_address *src0, *dst0;
7456 		u_int plen;
7457 
7458 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7459 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7460 
7461 		/* check upper layer protocol */
7462 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7463 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7464 				"mismatched.\n", __func__));
7465 			V_pfkeystat.out_invaddr++;
7466 			error = EINVAL;
7467 			goto senderror;
7468 		}
7469 
7470 		/* check family */
7471 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7472 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7473 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7474 				__func__));
7475 			V_pfkeystat.out_invaddr++;
7476 			error = EINVAL;
7477 			goto senderror;
7478 		}
7479 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7480 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7481 			ipseclog((LOG_DEBUG, "%s: address struct size "
7482 				"mismatched.\n", __func__));
7483 			V_pfkeystat.out_invaddr++;
7484 			error = EINVAL;
7485 			goto senderror;
7486 		}
7487 
7488 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7489 		case AF_INET:
7490 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7491 			    sizeof(struct sockaddr_in)) {
7492 				V_pfkeystat.out_invaddr++;
7493 				error = EINVAL;
7494 				goto senderror;
7495 			}
7496 			break;
7497 		case AF_INET6:
7498 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7499 			    sizeof(struct sockaddr_in6)) {
7500 				V_pfkeystat.out_invaddr++;
7501 				error = EINVAL;
7502 				goto senderror;
7503 			}
7504 			break;
7505 		default:
7506 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7507 				__func__));
7508 			V_pfkeystat.out_invaddr++;
7509 			error = EAFNOSUPPORT;
7510 			goto senderror;
7511 		}
7512 
7513 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7514 		case AF_INET:
7515 			plen = sizeof(struct in_addr) << 3;
7516 			break;
7517 		case AF_INET6:
7518 			plen = sizeof(struct in6_addr) << 3;
7519 			break;
7520 		default:
7521 			plen = 0;	/*fool gcc*/
7522 			break;
7523 		}
7524 
7525 		/* check max prefix length */
7526 		if (src0->sadb_address_prefixlen > plen ||
7527 		    dst0->sadb_address_prefixlen > plen) {
7528 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7529 				__func__));
7530 			V_pfkeystat.out_invaddr++;
7531 			error = EINVAL;
7532 			goto senderror;
7533 		}
7534 
7535 		/*
7536 		 * prefixlen == 0 is valid because there can be a case when
7537 		 * all addresses are matched.
7538 		 */
7539 	}
7540 
7541 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7542 	    key_typesw[msg->sadb_msg_type] == NULL) {
7543 		V_pfkeystat.out_invmsgtype++;
7544 		error = EINVAL;
7545 		goto senderror;
7546 	}
7547 
7548 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7549 
7550 senderror:
7551 	msg->sadb_msg_errno = error;
7552 	return key_sendup_mbuf(so, m, target);
7553 }
7554 
7555 static int
7556 key_senderror(so, m, code)
7557 	struct socket *so;
7558 	struct mbuf *m;
7559 	int code;
7560 {
7561 	struct sadb_msg *msg;
7562 
7563 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7564 		("mbuf too small, len %u", m->m_len));
7565 
7566 	msg = mtod(m, struct sadb_msg *);
7567 	msg->sadb_msg_errno = code;
7568 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7569 }
7570 
7571 /*
7572  * set the pointer to each header into message buffer.
7573  * m will be freed on error.
7574  * XXX larger-than-MCLBYTES extension?
7575  */
7576 static int
7577 key_align(m, mhp)
7578 	struct mbuf *m;
7579 	struct sadb_msghdr *mhp;
7580 {
7581 	struct mbuf *n;
7582 	struct sadb_ext *ext;
7583 	size_t off, end;
7584 	int extlen;
7585 	int toff;
7586 
7587 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7588 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7589 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7590 		("mbuf too small, len %u", m->m_len));
7591 
7592 	/* initialize */
7593 	bzero(mhp, sizeof(*mhp));
7594 
7595 	mhp->msg = mtod(m, struct sadb_msg *);
7596 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7597 
7598 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7599 	extlen = end;	/*just in case extlen is not updated*/
7600 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7601 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7602 		if (!n) {
7603 			/* m is already freed */
7604 			return ENOBUFS;
7605 		}
7606 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7607 
7608 		/* set pointer */
7609 		switch (ext->sadb_ext_type) {
7610 		case SADB_EXT_SA:
7611 		case SADB_EXT_ADDRESS_SRC:
7612 		case SADB_EXT_ADDRESS_DST:
7613 		case SADB_EXT_ADDRESS_PROXY:
7614 		case SADB_EXT_LIFETIME_CURRENT:
7615 		case SADB_EXT_LIFETIME_HARD:
7616 		case SADB_EXT_LIFETIME_SOFT:
7617 		case SADB_EXT_KEY_AUTH:
7618 		case SADB_EXT_KEY_ENCRYPT:
7619 		case SADB_EXT_IDENTITY_SRC:
7620 		case SADB_EXT_IDENTITY_DST:
7621 		case SADB_EXT_SENSITIVITY:
7622 		case SADB_EXT_PROPOSAL:
7623 		case SADB_EXT_SUPPORTED_AUTH:
7624 		case SADB_EXT_SUPPORTED_ENCRYPT:
7625 		case SADB_EXT_SPIRANGE:
7626 		case SADB_X_EXT_POLICY:
7627 		case SADB_X_EXT_SA2:
7628 #ifdef IPSEC_NAT_T
7629 		case SADB_X_EXT_NAT_T_TYPE:
7630 		case SADB_X_EXT_NAT_T_SPORT:
7631 		case SADB_X_EXT_NAT_T_DPORT:
7632 		case SADB_X_EXT_NAT_T_OAI:
7633 		case SADB_X_EXT_NAT_T_OAR:
7634 		case SADB_X_EXT_NAT_T_FRAG:
7635 #endif
7636 			/* duplicate check */
7637 			/*
7638 			 * XXX Are there duplication payloads of either
7639 			 * KEY_AUTH or KEY_ENCRYPT ?
7640 			 */
7641 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7642 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7643 					"%u\n", __func__, ext->sadb_ext_type));
7644 				m_freem(m);
7645 				V_pfkeystat.out_dupext++;
7646 				return EINVAL;
7647 			}
7648 			break;
7649 		default:
7650 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7651 				__func__, ext->sadb_ext_type));
7652 			m_freem(m);
7653 			V_pfkeystat.out_invexttype++;
7654 			return EINVAL;
7655 		}
7656 
7657 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7658 
7659 		if (key_validate_ext(ext, extlen)) {
7660 			m_freem(m);
7661 			V_pfkeystat.out_invlen++;
7662 			return EINVAL;
7663 		}
7664 
7665 		n = m_pulldown(m, off, extlen, &toff);
7666 		if (!n) {
7667 			/* m is already freed */
7668 			return ENOBUFS;
7669 		}
7670 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7671 
7672 		mhp->ext[ext->sadb_ext_type] = ext;
7673 		mhp->extoff[ext->sadb_ext_type] = off;
7674 		mhp->extlen[ext->sadb_ext_type] = extlen;
7675 	}
7676 
7677 	if (off != end) {
7678 		m_freem(m);
7679 		V_pfkeystat.out_invlen++;
7680 		return EINVAL;
7681 	}
7682 
7683 	return 0;
7684 }
7685 
7686 static int
7687 key_validate_ext(ext, len)
7688 	const struct sadb_ext *ext;
7689 	int len;
7690 {
7691 	const struct sockaddr *sa;
7692 	enum { NONE, ADDR } checktype = NONE;
7693 	int baselen = 0;
7694 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7695 
7696 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7697 		return EINVAL;
7698 
7699 	/* if it does not match minimum/maximum length, bail */
7700 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7701 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7702 		return EINVAL;
7703 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7704 		return EINVAL;
7705 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7706 		return EINVAL;
7707 
7708 	/* more checks based on sadb_ext_type XXX need more */
7709 	switch (ext->sadb_ext_type) {
7710 	case SADB_EXT_ADDRESS_SRC:
7711 	case SADB_EXT_ADDRESS_DST:
7712 	case SADB_EXT_ADDRESS_PROXY:
7713 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7714 		checktype = ADDR;
7715 		break;
7716 	case SADB_EXT_IDENTITY_SRC:
7717 	case SADB_EXT_IDENTITY_DST:
7718 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7719 		    SADB_X_IDENTTYPE_ADDR) {
7720 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7721 			checktype = ADDR;
7722 		} else
7723 			checktype = NONE;
7724 		break;
7725 	default:
7726 		checktype = NONE;
7727 		break;
7728 	}
7729 
7730 	switch (checktype) {
7731 	case NONE:
7732 		break;
7733 	case ADDR:
7734 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7735 		if (len < baselen + sal)
7736 			return EINVAL;
7737 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7738 			return EINVAL;
7739 		break;
7740 	}
7741 
7742 	return 0;
7743 }
7744 
7745 void
7746 key_init(void)
7747 {
7748 	int i;
7749 
7750 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7751 		LIST_INIT(&V_sptree[i]);
7752 
7753 	LIST_INIT(&V_sahtree);
7754 
7755 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7756 		LIST_INIT(&V_regtree[i]);
7757 
7758 	LIST_INIT(&V_acqtree);
7759 	LIST_INIT(&V_spacqtree);
7760 
7761 	/* system default */
7762 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7763 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7764 
7765 	if (!IS_DEFAULT_VNET(curvnet))
7766 		return;
7767 
7768 	SPTREE_LOCK_INIT();
7769 	REGTREE_LOCK_INIT();
7770 	SAHTREE_LOCK_INIT();
7771 	ACQ_LOCK_INIT();
7772 	SPACQ_LOCK_INIT();
7773 
7774 #ifndef IPSEC_DEBUG2
7775 	timeout((void *)key_timehandler, (void *)0, hz);
7776 #endif /*IPSEC_DEBUG2*/
7777 
7778 	/* initialize key statistics */
7779 	keystat.getspi_count = 1;
7780 
7781 	printf("IPsec: Initialized Security Association Processing.\n");
7782 }
7783 
7784 #ifdef VIMAGE
7785 void
7786 key_destroy(void)
7787 {
7788 	struct secpolicy *sp, *nextsp;
7789 	struct secacq *acq, *nextacq;
7790 	struct secspacq *spacq, *nextspacq;
7791 	struct secashead *sah, *nextsah;
7792 	struct secreg *reg;
7793 	int i;
7794 
7795 	SPTREE_LOCK();
7796 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7797 		for (sp = LIST_FIRST(&V_sptree[i]);
7798 		    sp != NULL; sp = nextsp) {
7799 			nextsp = LIST_NEXT(sp, chain);
7800 			if (__LIST_CHAINED(sp)) {
7801 				LIST_REMOVE(sp, chain);
7802 				free(sp, M_IPSEC_SP);
7803 			}
7804 		}
7805 	}
7806 	SPTREE_UNLOCK();
7807 
7808 	SAHTREE_LOCK();
7809 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7810 		nextsah = LIST_NEXT(sah, chain);
7811 		if (__LIST_CHAINED(sah)) {
7812 			LIST_REMOVE(sah, chain);
7813 			free(sah, M_IPSEC_SAH);
7814 		}
7815 	}
7816 	SAHTREE_UNLOCK();
7817 
7818 	REGTREE_LOCK();
7819 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7820 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7821 			if (__LIST_CHAINED(reg)) {
7822 				LIST_REMOVE(reg, chain);
7823 				free(reg, M_IPSEC_SAR);
7824 				break;
7825 			}
7826 		}
7827 	}
7828 	REGTREE_UNLOCK();
7829 
7830 	ACQ_LOCK();
7831 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7832 		nextacq = LIST_NEXT(acq, chain);
7833 		if (__LIST_CHAINED(acq)) {
7834 			LIST_REMOVE(acq, chain);
7835 			free(acq, M_IPSEC_SAQ);
7836 		}
7837 	}
7838 	ACQ_UNLOCK();
7839 
7840 	SPACQ_LOCK();
7841 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7842 	    spacq = nextspacq) {
7843 		nextspacq = LIST_NEXT(spacq, chain);
7844 		if (__LIST_CHAINED(spacq)) {
7845 			LIST_REMOVE(spacq, chain);
7846 			free(spacq, M_IPSEC_SAQ);
7847 		}
7848 	}
7849 	SPACQ_UNLOCK();
7850 }
7851 #endif
7852 
7853 /*
7854  * XXX: maybe This function is called after INBOUND IPsec processing.
7855  *
7856  * Special check for tunnel-mode packets.
7857  * We must make some checks for consistency between inner and outer IP header.
7858  *
7859  * xxx more checks to be provided
7860  */
7861 int
7862 key_checktunnelsanity(sav, family, src, dst)
7863 	struct secasvar *sav;
7864 	u_int family;
7865 	caddr_t src;
7866 	caddr_t dst;
7867 {
7868 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7869 
7870 	/* XXX: check inner IP header */
7871 
7872 	return 1;
7873 }
7874 
7875 /* record data transfer on SA, and update timestamps */
7876 void
7877 key_sa_recordxfer(sav, m)
7878 	struct secasvar *sav;
7879 	struct mbuf *m;
7880 {
7881 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7882 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7883 	if (!sav->lft_c)
7884 		return;
7885 
7886 	/*
7887 	 * XXX Currently, there is a difference of bytes size
7888 	 * between inbound and outbound processing.
7889 	 */
7890 	sav->lft_c->bytes += m->m_pkthdr.len;
7891 	/* to check bytes lifetime is done in key_timehandler(). */
7892 
7893 	/*
7894 	 * We use the number of packets as the unit of
7895 	 * allocations.  We increment the variable
7896 	 * whenever {esp,ah}_{in,out}put is called.
7897 	 */
7898 	sav->lft_c->allocations++;
7899 	/* XXX check for expires? */
7900 
7901 	/*
7902 	 * NOTE: We record CURRENT usetime by using wall clock,
7903 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7904 	 * difference (again in seconds) from usetime.
7905 	 *
7906 	 *	usetime
7907 	 *	v     expire   expire
7908 	 * -----+-----+--------+---> t
7909 	 *	<--------------> HARD
7910 	 *	<-----> SOFT
7911 	 */
7912 	sav->lft_c->usetime = time_second;
7913 	/* XXX check for expires? */
7914 
7915 	return;
7916 }
7917 
7918 /* dumb version */
7919 void
7920 key_sa_routechange(dst)
7921 	struct sockaddr *dst;
7922 {
7923 	struct secashead *sah;
7924 	struct route *ro;
7925 
7926 	SAHTREE_LOCK();
7927 	LIST_FOREACH(sah, &V_sahtree, chain) {
7928 		ro = &sah->route_cache.sa_route;
7929 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7930 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7931 			RTFREE(ro->ro_rt);
7932 			ro->ro_rt = (struct rtentry *)NULL;
7933 		}
7934 	}
7935 	SAHTREE_UNLOCK();
7936 }
7937 
7938 static void
7939 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7940 {
7941 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7942 	SAHTREE_LOCK_ASSERT();
7943 
7944 	if (sav->state != state) {
7945 		if (__LIST_CHAINED(sav))
7946 			LIST_REMOVE(sav, chain);
7947 		sav->state = state;
7948 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7949 	}
7950 }
7951 
7952 void
7953 key_sa_stir_iv(sav)
7954 	struct secasvar *sav;
7955 {
7956 
7957 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7958 	key_randomfill(sav->iv, sav->ivlen);
7959 }
7960 
7961 /* XXX too much? */
7962 static struct mbuf *
7963 key_alloc_mbuf(l)
7964 	int l;
7965 {
7966 	struct mbuf *m = NULL, *n;
7967 	int len, t;
7968 
7969 	len = l;
7970 	while (len > 0) {
7971 		MGET(n, M_DONTWAIT, MT_DATA);
7972 		if (n && len > MLEN)
7973 			MCLGET(n, M_DONTWAIT);
7974 		if (!n) {
7975 			m_freem(m);
7976 			return NULL;
7977 		}
7978 
7979 		n->m_next = NULL;
7980 		n->m_len = 0;
7981 		n->m_len = M_TRAILINGSPACE(n);
7982 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7983 		if (n->m_len > len) {
7984 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7985 			n->m_data += t;
7986 			n->m_len = len;
7987 		}
7988 
7989 		len -= n->m_len;
7990 
7991 		if (m)
7992 			m_cat(m, n);
7993 		else
7994 			m = n;
7995 	}
7996 
7997 	return m;
7998 }
7999 
8000 /*
8001  * Take one of the kernel's security keys and convert it into a PF_KEY
8002  * structure within an mbuf, suitable for sending up to a waiting
8003  * application in user land.
8004  *
8005  * IN:
8006  *    src: A pointer to a kernel security key.
8007  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
8008  * OUT:
8009  *    a valid mbuf or NULL indicating an error
8010  *
8011  */
8012 
8013 static struct mbuf *
8014 key_setkey(struct seckey *src, u_int16_t exttype)
8015 {
8016 	struct mbuf *m;
8017 	struct sadb_key *p;
8018 	int len;
8019 
8020 	if (src == NULL)
8021 		return NULL;
8022 
8023 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8024 	m = key_alloc_mbuf(len);
8025 	if (m == NULL)
8026 		return NULL;
8027 	p = mtod(m, struct sadb_key *);
8028 	bzero(p, len);
8029 	p->sadb_key_len = PFKEY_UNIT64(len);
8030 	p->sadb_key_exttype = exttype;
8031 	p->sadb_key_bits = src->bits;
8032 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8033 
8034 	return m;
8035 }
8036 
8037 /*
8038  * Take one of the kernel's lifetime data structures and convert it
8039  * into a PF_KEY structure within an mbuf, suitable for sending up to
8040  * a waiting application in user land.
8041  *
8042  * IN:
8043  *    src: A pointer to a kernel lifetime structure.
8044  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8045  *             data structures for more information.
8046  * OUT:
8047  *    a valid mbuf or NULL indicating an error
8048  *
8049  */
8050 
8051 static struct mbuf *
8052 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8053 {
8054 	struct mbuf *m = NULL;
8055 	struct sadb_lifetime *p;
8056 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8057 
8058 	if (src == NULL)
8059 		return NULL;
8060 
8061 	m = key_alloc_mbuf(len);
8062 	if (m == NULL)
8063 		return m;
8064 	p = mtod(m, struct sadb_lifetime *);
8065 
8066 	bzero(p, len);
8067 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8068 	p->sadb_lifetime_exttype = exttype;
8069 	p->sadb_lifetime_allocations = src->allocations;
8070 	p->sadb_lifetime_bytes = src->bytes;
8071 	p->sadb_lifetime_addtime = src->addtime;
8072 	p->sadb_lifetime_usetime = src->usetime;
8073 
8074 	return m;
8075 
8076 }
8077