1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/route.h> 62 #include <net/raw_cb.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #include <netinet/in_var.h> 69 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #if defined(INET) || defined(INET6) 77 #include <netinet/in_pcb.h> 78 #endif 79 #ifdef INET6 80 #include <netinet6/in6_pcb.h> 81 #endif /* INET6 */ 82 83 #include <net/pfkeyv2.h> 84 #include <netipsec/keydb.h> 85 #include <netipsec/key.h> 86 #include <netipsec/keysock.h> 87 #include <netipsec/key_debug.h> 88 89 #include <netipsec/ipsec.h> 90 #ifdef INET6 91 #include <netipsec/ipsec6.h> 92 #endif 93 94 #include <netipsec/xform.h> 95 96 #include <machine/stdarg.h> 97 98 /* randomness */ 99 #include <sys/random.h> 100 101 #define FULLMASK 0xff 102 #define _BITS(bytes) ((bytes) << 3) 103 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 117 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 118 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 static VNET_DEFINE(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 static VNET_DEFINE(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 static VNET_DEFINE(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 /* SPD */ 144 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 145 #define V_sptree VNET(sptree) 146 static struct mtx sptree_lock; 147 #define SPTREE_LOCK_INIT() \ 148 mtx_init(&sptree_lock, "sptree", \ 149 "fast ipsec security policy database", MTX_DEF) 150 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 151 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 152 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 153 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 154 155 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 156 #define V_sahtree VNET(sahtree) 157 static struct mtx sahtree_lock; 158 #define SAHTREE_LOCK_INIT() \ 159 mtx_init(&sahtree_lock, "sahtree", \ 160 "fast ipsec security association database", MTX_DEF) 161 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 162 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 163 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 164 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 165 166 /* registed list */ 167 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 168 #define V_regtree VNET(regtree) 169 static struct mtx regtree_lock; 170 #define REGTREE_LOCK_INIT() \ 171 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 172 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 173 #define REGTREE_LOCK() mtx_lock(®tree_lock) 174 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 175 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 176 177 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 178 #define V_acqtree VNET(acqtree) 179 static struct mtx acq_lock; 180 #define ACQ_LOCK_INIT() \ 181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 182 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 183 #define ACQ_LOCK() mtx_lock(&acq_lock) 184 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 185 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 186 187 /* SP acquiring list */ 188 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 189 #define V_spacqtree VNET(spacqtree) 190 static struct mtx spacq_lock; 191 #define SPACQ_LOCK_INIT() \ 192 mtx_init(&spacq_lock, "spacqtree", \ 193 "fast ipsec security policy acquire list", MTX_DEF) 194 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 195 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 196 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 197 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 198 199 /* search order for SAs */ 200 static const u_int saorder_state_valid_prefer_old[] = { 201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 202 }; 203 static const u_int saorder_state_valid_prefer_new[] = { 204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 205 }; 206 static const u_int saorder_state_alive[] = { 207 /* except DEAD */ 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 209 }; 210 static const u_int saorder_state_any[] = { 211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 213 }; 214 215 static const int minsize[] = { 216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 217 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 233 0, /* SADB_X_EXT_KMPRIVATE */ 234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 242 }; 243 static const int maxsize[] = { 244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 245 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 249 0, /* SADB_EXT_ADDRESS_SRC */ 250 0, /* SADB_EXT_ADDRESS_DST */ 251 0, /* SADB_EXT_ADDRESS_PROXY */ 252 0, /* SADB_EXT_KEY_AUTH */ 253 0, /* SADB_EXT_KEY_ENCRYPT */ 254 0, /* SADB_EXT_IDENTITY_SRC */ 255 0, /* SADB_EXT_IDENTITY_DST */ 256 0, /* SADB_EXT_SENSITIVITY */ 257 0, /* SADB_EXT_PROPOSAL */ 258 0, /* SADB_EXT_SUPPORTED_AUTH */ 259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 261 0, /* SADB_X_EXT_KMPRIVATE */ 262 0, /* SADB_X_EXT_POLICY */ 263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 267 0, /* SADB_X_EXT_NAT_T_OAI */ 268 0, /* SADB_X_EXT_NAT_T_OAR */ 269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 270 }; 271 272 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 273 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 274 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 275 276 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 277 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 278 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 279 280 #ifdef SYSCTL_DECL 281 SYSCTL_DECL(_net_key); 282 #endif 283 284 SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 286 287 /* max count of trial for the decision of spi value */ 288 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 290 291 /* minimum spi value to allocate automatically. */ 292 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE, 293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 294 295 /* maximun spi value to allocate automatically. */ 296 SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE, 297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 298 299 /* interval to initialize randseed */ 300 SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT, 301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 302 303 /* lifetime for larval SA */ 304 SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME, 305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 306 307 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 308 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, 309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 310 311 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, 313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 314 315 /* ESP auth */ 316 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 318 319 /* minimum ESP key length */ 320 SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN, 321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 322 323 /* minimum AH key length */ 324 SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 326 327 /* perfered old SA rather than new SA */ 328 SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA, 329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 330 331 #define __LIST_CHAINED(elm) \ 332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 333 #define LIST_INSERT_TAIL(head, elm, type, field) \ 334 do {\ 335 struct type *curelm = LIST_FIRST(head); \ 336 if (curelm == NULL) {\ 337 LIST_INSERT_HEAD(head, elm, field); \ 338 } else { \ 339 while (LIST_NEXT(curelm, field)) \ 340 curelm = LIST_NEXT(curelm, field);\ 341 LIST_INSERT_AFTER(curelm, elm, field);\ 342 }\ 343 } while (0) 344 345 #define KEY_CHKSASTATE(head, sav, name) \ 346 do { \ 347 if ((head) != (sav)) { \ 348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 349 (name), (head), (sav))); \ 350 continue; \ 351 } \ 352 } while (0) 353 354 #define KEY_CHKSPDIR(head, sp, name) \ 355 do { \ 356 if ((head) != (sp)) { \ 357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 358 "anyway continue.\n", \ 359 (name), (head), (sp))); \ 360 } \ 361 } while (0) 362 363 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 364 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 365 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 366 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 367 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 368 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 369 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 370 371 /* 372 * set parameters into secpolicyindex buffer. 373 * Must allocate secpolicyindex buffer passed to this function. 374 */ 375 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 376 do { \ 377 bzero((idx), sizeof(struct secpolicyindex)); \ 378 (idx)->dir = (_dir); \ 379 (idx)->prefs = (ps); \ 380 (idx)->prefd = (pd); \ 381 (idx)->ul_proto = (ulp); \ 382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 384 } while (0) 385 386 /* 387 * set parameters into secasindex buffer. 388 * Must allocate secasindex buffer before calling this function. 389 */ 390 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 391 do { \ 392 bzero((idx), sizeof(struct secasindex)); \ 393 (idx)->proto = (p); \ 394 (idx)->mode = (m); \ 395 (idx)->reqid = (r); \ 396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 398 } while (0) 399 400 /* key statistics */ 401 struct _keystat { 402 u_long getspi_count; /* the avarage of count to try to get new SPI */ 403 } keystat; 404 405 struct sadb_msghdr { 406 struct sadb_msg *msg; 407 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 408 int extoff[SADB_EXT_MAX + 1]; 409 int extlen[SADB_EXT_MAX + 1]; 410 }; 411 412 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 413 static void key_freesp_so __P((struct secpolicy **)); 414 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 415 static void key_delsp __P((struct secpolicy *)); 416 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 417 static void _key_delsp(struct secpolicy *sp); 418 static struct secpolicy *key_getspbyid __P((u_int32_t)); 419 static u_int32_t key_newreqid __P((void)); 420 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 421 const struct sadb_msghdr *, int, int, ...)); 422 static int key_spdadd __P((struct socket *, struct mbuf *, 423 const struct sadb_msghdr *)); 424 static u_int32_t key_getnewspid __P((void)); 425 static int key_spddelete __P((struct socket *, struct mbuf *, 426 const struct sadb_msghdr *)); 427 static int key_spddelete2 __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static int key_spdget __P((struct socket *, struct mbuf *, 430 const struct sadb_msghdr *)); 431 static int key_spdflush __P((struct socket *, struct mbuf *, 432 const struct sadb_msghdr *)); 433 static int key_spddump __P((struct socket *, struct mbuf *, 434 const struct sadb_msghdr *)); 435 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 436 u_int8_t, u_int32_t, u_int32_t)); 437 static u_int key_getspreqmsglen __P((struct secpolicy *)); 438 static int key_spdexpire __P((struct secpolicy *)); 439 static struct secashead *key_newsah __P((struct secasindex *)); 440 static void key_delsah __P((struct secashead *)); 441 static struct secasvar *key_newsav __P((struct mbuf *, 442 const struct sadb_msghdr *, struct secashead *, int *, 443 const char*, int)); 444 #define KEY_NEWSAV(m, sadb, sah, e) \ 445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 446 static void key_delsav __P((struct secasvar *)); 447 static struct secashead *key_getsah __P((struct secasindex *)); 448 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 449 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 450 static int key_setsaval __P((struct secasvar *, struct mbuf *, 451 const struct sadb_msghdr *)); 452 static int key_mature __P((struct secasvar *)); 453 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 454 u_int8_t, u_int32_t, u_int32_t)); 455 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 456 u_int32_t, pid_t, u_int16_t)); 457 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 458 static struct mbuf *key_setsadbaddr __P((u_int16_t, 459 const struct sockaddr *, u_int8_t, u_int16_t)); 460 #ifdef IPSEC_NAT_T 461 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 462 static struct mbuf *key_setsadbxtype(u_int16_t); 463 #endif 464 static void key_porttosaddr(struct sockaddr *, u_int16_t); 465 #define KEY_PORTTOSADDR(saddr, port) \ 466 key_porttosaddr((struct sockaddr *)(saddr), (port)) 467 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 468 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 469 u_int32_t)); 470 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 471 struct malloc_type *); 472 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 473 struct malloc_type *type); 474 #ifdef INET6 475 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 476 #endif 477 478 /* flags for key_cmpsaidx() */ 479 #define CMP_HEAD 1 /* protocol, addresses. */ 480 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 481 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 482 #define CMP_EXACTLY 4 /* all elements. */ 483 static int key_cmpsaidx 484 __P((const struct secasindex *, const struct secasindex *, int)); 485 486 static int key_cmpspidx_exactly 487 __P((struct secpolicyindex *, struct secpolicyindex *)); 488 static int key_cmpspidx_withmask 489 __P((struct secpolicyindex *, struct secpolicyindex *)); 490 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 491 static int key_bbcmp __P((const void *, const void *, u_int)); 492 static u_int16_t key_satype2proto __P((u_int8_t)); 493 static u_int8_t key_proto2satype __P((u_int16_t)); 494 495 static int key_getspi __P((struct socket *, struct mbuf *, 496 const struct sadb_msghdr *)); 497 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 498 struct secasindex *)); 499 static int key_update __P((struct socket *, struct mbuf *, 500 const struct sadb_msghdr *)); 501 #ifdef IPSEC_DOSEQCHECK 502 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 503 #endif 504 static int key_add __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 static int key_setident __P((struct secashead *, struct mbuf *, 507 const struct sadb_msghdr *)); 508 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 509 const struct sadb_msghdr *)); 510 static int key_delete __P((struct socket *, struct mbuf *, 511 const struct sadb_msghdr *)); 512 static int key_get __P((struct socket *, struct mbuf *, 513 const struct sadb_msghdr *)); 514 515 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 516 static struct mbuf *key_getcomb_esp __P((void)); 517 static struct mbuf *key_getcomb_ah __P((void)); 518 static struct mbuf *key_getcomb_ipcomp __P((void)); 519 static struct mbuf *key_getprop __P((const struct secasindex *)); 520 521 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 522 static struct secacq *key_newacq __P((const struct secasindex *)); 523 static struct secacq *key_getacq __P((const struct secasindex *)); 524 static struct secacq *key_getacqbyseq __P((u_int32_t)); 525 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 526 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 527 static int key_acquire2 __P((struct socket *, struct mbuf *, 528 const struct sadb_msghdr *)); 529 static int key_register __P((struct socket *, struct mbuf *, 530 const struct sadb_msghdr *)); 531 static int key_expire __P((struct secasvar *)); 532 static int key_flush __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_dump __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_promisc __P((struct socket *, struct mbuf *, 537 const struct sadb_msghdr *)); 538 static int key_senderror __P((struct socket *, struct mbuf *, int)); 539 static int key_validate_ext __P((const struct sadb_ext *, int)); 540 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 541 static struct mbuf *key_setlifetime(struct seclifetime *src, 542 u_int16_t exttype); 543 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 544 545 #if 0 546 static const char *key_getfqdn __P((void)); 547 static const char *key_getuserfqdn __P((void)); 548 #endif 549 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 550 551 static __inline void 552 sa_initref(struct secasvar *sav) 553 { 554 555 refcount_init(&sav->refcnt, 1); 556 } 557 static __inline void 558 sa_addref(struct secasvar *sav) 559 { 560 561 refcount_acquire(&sav->refcnt); 562 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 563 } 564 static __inline int 565 sa_delref(struct secasvar *sav) 566 { 567 568 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 569 return (refcount_release(&sav->refcnt)); 570 } 571 572 #define SP_ADDREF(p) do { \ 573 (p)->refcnt++; \ 574 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 575 } while (0) 576 #define SP_DELREF(p) do { \ 577 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 578 (p)->refcnt--; \ 579 } while (0) 580 581 582 /* 583 * Update the refcnt while holding the SPTREE lock. 584 */ 585 void 586 key_addref(struct secpolicy *sp) 587 { 588 SPTREE_LOCK(); 589 SP_ADDREF(sp); 590 SPTREE_UNLOCK(); 591 } 592 593 /* 594 * Return 0 when there are known to be no SP's for the specified 595 * direction. Otherwise return 1. This is used by IPsec code 596 * to optimize performance. 597 */ 598 int 599 key_havesp(u_int dir) 600 { 601 602 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 603 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 604 } 605 606 /* %%% IPsec policy management */ 607 /* 608 * allocating a SP for OUTBOUND or INBOUND packet. 609 * Must call key_freesp() later. 610 * OUT: NULL: not found 611 * others: found and return the pointer. 612 */ 613 struct secpolicy * 614 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 615 { 616 struct secpolicy *sp; 617 618 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 619 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 620 ("invalid direction %u", dir)); 621 622 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 623 printf("DP %s from %s:%u\n", __func__, where, tag)); 624 625 /* get a SP entry */ 626 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 627 printf("*** objects\n"); 628 kdebug_secpolicyindex(spidx)); 629 630 SPTREE_LOCK(); 631 LIST_FOREACH(sp, &V_sptree[dir], chain) { 632 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 633 printf("*** in SPD\n"); 634 kdebug_secpolicyindex(&sp->spidx)); 635 636 if (sp->state == IPSEC_SPSTATE_DEAD) 637 continue; 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_UNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, 667 union sockaddr_union *dst, 668 u_int8_t proto, 669 u_int dir, 670 const char* where, int tag) 671 { 672 struct secpolicy *sp; 673 674 IPSEC_ASSERT(dst != NULL, ("null dst")); 675 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 676 ("invalid direction %u", dir)); 677 678 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 679 printf("DP %s from %s:%u\n", __func__, where, tag)); 680 681 /* get a SP entry */ 682 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 683 printf("*** objects\n"); 684 printf("spi %u proto %u dir %u\n", spi, proto, dir); 685 kdebug_sockaddr(&dst->sa)); 686 687 SPTREE_LOCK(); 688 LIST_FOREACH(sp, &V_sptree[dir], chain) { 689 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 690 printf("*** in SPD\n"); 691 kdebug_secpolicyindex(&sp->spidx)); 692 693 if (sp->state == IPSEC_SPSTATE_DEAD) 694 continue; 695 /* compare simple values, then dst address */ 696 if (sp->spidx.ul_proto != proto) 697 continue; 698 /* NB: spi's must exist and match */ 699 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 700 continue; 701 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 702 goto found; 703 } 704 sp = NULL; 705 found: 706 if (sp) { 707 /* sanity check */ 708 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 709 710 /* found a SPD entry */ 711 sp->lastused = time_second; 712 SP_ADDREF(sp); 713 } 714 SPTREE_UNLOCK(); 715 716 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 717 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 718 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 719 return sp; 720 } 721 722 #if 0 723 /* 724 * return a policy that matches this particular inbound packet. 725 * XXX slow 726 */ 727 struct secpolicy * 728 key_gettunnel(const struct sockaddr *osrc, 729 const struct sockaddr *odst, 730 const struct sockaddr *isrc, 731 const struct sockaddr *idst, 732 const char* where, int tag) 733 { 734 struct secpolicy *sp; 735 const int dir = IPSEC_DIR_INBOUND; 736 struct ipsecrequest *r1, *r2, *p; 737 struct secpolicyindex spidx; 738 739 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 740 printf("DP %s from %s:%u\n", __func__, where, tag)); 741 742 if (isrc->sa_family != idst->sa_family) { 743 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 744 __func__, isrc->sa_family, idst->sa_family)); 745 sp = NULL; 746 goto done; 747 } 748 749 SPTREE_LOCK(); 750 LIST_FOREACH(sp, &V_sptree[dir], chain) { 751 if (sp->state == IPSEC_SPSTATE_DEAD) 752 continue; 753 754 r1 = r2 = NULL; 755 for (p = sp->req; p; p = p->next) { 756 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 757 continue; 758 759 r1 = r2; 760 r2 = p; 761 762 if (!r1) { 763 /* here we look at address matches only */ 764 spidx = sp->spidx; 765 if (isrc->sa_len > sizeof(spidx.src) || 766 idst->sa_len > sizeof(spidx.dst)) 767 continue; 768 bcopy(isrc, &spidx.src, isrc->sa_len); 769 bcopy(idst, &spidx.dst, idst->sa_len); 770 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 771 continue; 772 } else { 773 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 774 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 775 continue; 776 } 777 778 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 779 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 780 continue; 781 782 goto found; 783 } 784 } 785 sp = NULL; 786 found: 787 if (sp) { 788 sp->lastused = time_second; 789 SP_ADDREF(sp); 790 } 791 SPTREE_UNLOCK(); 792 done: 793 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 794 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 795 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 796 return sp; 797 } 798 #endif 799 800 /* 801 * allocating an SA entry for an *OUTBOUND* packet. 802 * checking each request entries in SP, and acquire an SA if need. 803 * OUT: 0: there are valid requests. 804 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 805 */ 806 int 807 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 808 { 809 u_int level; 810 int error; 811 struct secasvar *sav; 812 813 IPSEC_ASSERT(isr != NULL, ("null isr")); 814 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 815 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 816 saidx->mode == IPSEC_MODE_TUNNEL, 817 ("unexpected policy %u", saidx->mode)); 818 819 /* 820 * XXX guard against protocol callbacks from the crypto 821 * thread as they reference ipsecrequest.sav which we 822 * temporarily null out below. Need to rethink how we 823 * handle bundled SA's in the callback thread. 824 */ 825 IPSECREQUEST_LOCK_ASSERT(isr); 826 827 /* get current level */ 828 level = ipsec_get_reqlevel(isr); 829 830 /* 831 * We check new SA in the IPsec request because a different 832 * SA may be involved each time this request is checked, either 833 * because new SAs are being configured, or this request is 834 * associated with an unconnected datagram socket, or this request 835 * is associated with a system default policy. 836 * 837 * key_allocsa_policy should allocate the oldest SA available. 838 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 839 */ 840 sav = key_allocsa_policy(saidx); 841 if (sav != isr->sav) { 842 /* SA need to be updated. */ 843 if (!IPSECREQUEST_UPGRADE(isr)) { 844 /* Kick everyone off. */ 845 IPSECREQUEST_UNLOCK(isr); 846 IPSECREQUEST_WLOCK(isr); 847 } 848 if (isr->sav != NULL) 849 KEY_FREESAV(&isr->sav); 850 isr->sav = sav; 851 IPSECREQUEST_DOWNGRADE(isr); 852 } else if (sav != NULL) 853 KEY_FREESAV(&sav); 854 855 /* When there is SA. */ 856 if (isr->sav != NULL) { 857 if (isr->sav->state != SADB_SASTATE_MATURE && 858 isr->sav->state != SADB_SASTATE_DYING) 859 return EINVAL; 860 return 0; 861 } 862 863 /* there is no SA */ 864 error = key_acquire(saidx, isr->sp); 865 if (error != 0) { 866 /* XXX What should I do ? */ 867 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 868 __func__, error)); 869 return error; 870 } 871 872 if (level != IPSEC_LEVEL_REQUIRE) { 873 /* XXX sigh, the interface to this routine is botched */ 874 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 875 return 0; 876 } else { 877 return ENOENT; 878 } 879 } 880 881 /* 882 * allocating a SA for policy entry from SAD. 883 * NOTE: searching SAD of aliving state. 884 * OUT: NULL: not found. 885 * others: found and return the pointer. 886 */ 887 static struct secasvar * 888 key_allocsa_policy(const struct secasindex *saidx) 889 { 890 #define N(a) _ARRAYLEN(a) 891 struct secashead *sah; 892 struct secasvar *sav; 893 u_int stateidx, arraysize; 894 const u_int *state_valid; 895 896 state_valid = NULL; /* silence gcc */ 897 arraysize = 0; /* silence gcc */ 898 899 SAHTREE_LOCK(); 900 LIST_FOREACH(sah, &V_sahtree, chain) { 901 if (sah->state == SADB_SASTATE_DEAD) 902 continue; 903 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 904 if (V_key_preferred_oldsa) { 905 state_valid = saorder_state_valid_prefer_old; 906 arraysize = N(saorder_state_valid_prefer_old); 907 } else { 908 state_valid = saorder_state_valid_prefer_new; 909 arraysize = N(saorder_state_valid_prefer_new); 910 } 911 break; 912 } 913 } 914 SAHTREE_UNLOCK(); 915 if (sah == NULL) 916 return NULL; 917 918 /* search valid state */ 919 for (stateidx = 0; stateidx < arraysize; stateidx++) { 920 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 921 if (sav != NULL) 922 return sav; 923 } 924 925 return NULL; 926 #undef N 927 } 928 929 /* 930 * searching SAD with direction, protocol, mode and state. 931 * called by key_allocsa_policy(). 932 * OUT: 933 * NULL : not found 934 * others : found, pointer to a SA. 935 */ 936 static struct secasvar * 937 key_do_allocsa_policy(struct secashead *sah, u_int state) 938 { 939 struct secasvar *sav, *nextsav, *candidate, *d; 940 941 /* initilize */ 942 candidate = NULL; 943 944 SAHTREE_LOCK(); 945 for (sav = LIST_FIRST(&sah->savtree[state]); 946 sav != NULL; 947 sav = nextsav) { 948 949 nextsav = LIST_NEXT(sav, chain); 950 951 /* sanity check */ 952 KEY_CHKSASTATE(sav->state, state, __func__); 953 954 /* initialize */ 955 if (candidate == NULL) { 956 candidate = sav; 957 continue; 958 } 959 960 /* Which SA is the better ? */ 961 962 IPSEC_ASSERT(candidate->lft_c != NULL, 963 ("null candidate lifetime")); 964 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 965 966 /* What the best method is to compare ? */ 967 if (V_key_preferred_oldsa) { 968 if (candidate->lft_c->addtime > 969 sav->lft_c->addtime) { 970 candidate = sav; 971 } 972 continue; 973 /*NOTREACHED*/ 974 } 975 976 /* preferred new sa rather than old sa */ 977 if (candidate->lft_c->addtime < 978 sav->lft_c->addtime) { 979 d = candidate; 980 candidate = sav; 981 } else 982 d = sav; 983 984 /* 985 * prepared to delete the SA when there is more 986 * suitable candidate and the lifetime of the SA is not 987 * permanent. 988 */ 989 if (d->lft_h->addtime != 0) { 990 struct mbuf *m, *result; 991 u_int8_t satype; 992 993 key_sa_chgstate(d, SADB_SASTATE_DEAD); 994 995 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 996 997 satype = key_proto2satype(d->sah->saidx.proto); 998 if (satype == 0) 999 goto msgfail; 1000 1001 m = key_setsadbmsg(SADB_DELETE, 0, 1002 satype, 0, 0, d->refcnt - 1); 1003 if (!m) 1004 goto msgfail; 1005 result = m; 1006 1007 /* set sadb_address for saidx's. */ 1008 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1009 &d->sah->saidx.src.sa, 1010 d->sah->saidx.src.sa.sa_len << 3, 1011 IPSEC_ULPROTO_ANY); 1012 if (!m) 1013 goto msgfail; 1014 m_cat(result, m); 1015 1016 /* set sadb_address for saidx's. */ 1017 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1018 &d->sah->saidx.dst.sa, 1019 d->sah->saidx.dst.sa.sa_len << 3, 1020 IPSEC_ULPROTO_ANY); 1021 if (!m) 1022 goto msgfail; 1023 m_cat(result, m); 1024 1025 /* create SA extension */ 1026 m = key_setsadbsa(d); 1027 if (!m) 1028 goto msgfail; 1029 m_cat(result, m); 1030 1031 if (result->m_len < sizeof(struct sadb_msg)) { 1032 result = m_pullup(result, 1033 sizeof(struct sadb_msg)); 1034 if (result == NULL) 1035 goto msgfail; 1036 } 1037 1038 result->m_pkthdr.len = 0; 1039 for (m = result; m; m = m->m_next) 1040 result->m_pkthdr.len += m->m_len; 1041 mtod(result, struct sadb_msg *)->sadb_msg_len = 1042 PFKEY_UNIT64(result->m_pkthdr.len); 1043 1044 if (key_sendup_mbuf(NULL, result, 1045 KEY_SENDUP_REGISTERED)) 1046 goto msgfail; 1047 msgfail: 1048 KEY_FREESAV(&d); 1049 } 1050 } 1051 if (candidate) { 1052 sa_addref(candidate); 1053 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1054 printf("DP %s cause refcnt++:%d SA:%p\n", 1055 __func__, candidate->refcnt, candidate)); 1056 } 1057 SAHTREE_UNLOCK(); 1058 1059 return candidate; 1060 } 1061 1062 /* 1063 * allocating a usable SA entry for a *INBOUND* packet. 1064 * Must call key_freesav() later. 1065 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1066 * NULL: not found, or error occured. 1067 * 1068 * In the comparison, no source address is used--for RFC2401 conformance. 1069 * To quote, from section 4.1: 1070 * A security association is uniquely identified by a triple consisting 1071 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1072 * security protocol (AH or ESP) identifier. 1073 * Note that, however, we do need to keep source address in IPsec SA. 1074 * IKE specification and PF_KEY specification do assume that we 1075 * keep source address in IPsec SA. We see a tricky situation here. 1076 */ 1077 struct secasvar * 1078 key_allocsa( 1079 union sockaddr_union *dst, 1080 u_int proto, 1081 u_int32_t spi, 1082 const char* where, int tag) 1083 { 1084 struct secashead *sah; 1085 struct secasvar *sav; 1086 u_int stateidx, arraysize, state; 1087 const u_int *saorder_state_valid; 1088 int chkport; 1089 1090 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1091 1092 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1093 printf("DP %s from %s:%u\n", __func__, where, tag)); 1094 1095 #ifdef IPSEC_NAT_T 1096 chkport = (dst->sa.sa_family == AF_INET && 1097 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1098 dst->sin.sin_port != 0); 1099 #else 1100 chkport = 0; 1101 #endif 1102 1103 /* 1104 * searching SAD. 1105 * XXX: to be checked internal IP header somewhere. Also when 1106 * IPsec tunnel packet is received. But ESP tunnel mode is 1107 * encrypted so we can't check internal IP header. 1108 */ 1109 SAHTREE_LOCK(); 1110 if (V_key_preferred_oldsa) { 1111 saorder_state_valid = saorder_state_valid_prefer_old; 1112 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1113 } else { 1114 saorder_state_valid = saorder_state_valid_prefer_new; 1115 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1116 } 1117 LIST_FOREACH(sah, &V_sahtree, chain) { 1118 /* search valid state */ 1119 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1120 state = saorder_state_valid[stateidx]; 1121 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1122 /* sanity check */ 1123 KEY_CHKSASTATE(sav->state, state, __func__); 1124 /* do not return entries w/ unusable state */ 1125 if (sav->state != SADB_SASTATE_MATURE && 1126 sav->state != SADB_SASTATE_DYING) 1127 continue; 1128 if (proto != sav->sah->saidx.proto) 1129 continue; 1130 if (spi != sav->spi) 1131 continue; 1132 #if 0 /* don't check src */ 1133 /* check src address */ 1134 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0) 1135 continue; 1136 #endif 1137 /* check dst address */ 1138 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1139 continue; 1140 sa_addref(sav); 1141 goto done; 1142 } 1143 } 1144 } 1145 sav = NULL; 1146 done: 1147 SAHTREE_UNLOCK(); 1148 1149 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1150 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1151 sav, sav ? sav->refcnt : 0)); 1152 return sav; 1153 } 1154 1155 /* 1156 * Must be called after calling key_allocsp(). 1157 * For both the packet without socket and key_freeso(). 1158 */ 1159 void 1160 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1161 { 1162 struct secpolicy *sp = *spp; 1163 1164 IPSEC_ASSERT(sp != NULL, ("null sp")); 1165 1166 SPTREE_LOCK(); 1167 SP_DELREF(sp); 1168 1169 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1170 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1171 __func__, sp, sp->id, where, tag, sp->refcnt)); 1172 1173 if (sp->refcnt == 0) { 1174 *spp = NULL; 1175 key_delsp(sp); 1176 } 1177 SPTREE_UNLOCK(); 1178 } 1179 1180 /* 1181 * Must be called after calling key_allocsp(). 1182 * For the packet with socket. 1183 */ 1184 void 1185 key_freeso(struct socket *so) 1186 { 1187 IPSEC_ASSERT(so != NULL, ("null so")); 1188 1189 switch (so->so_proto->pr_domain->dom_family) { 1190 #if defined(INET) || defined(INET6) 1191 #ifdef INET 1192 case PF_INET: 1193 #endif 1194 #ifdef INET6 1195 case PF_INET6: 1196 #endif 1197 { 1198 struct inpcb *pcb = sotoinpcb(so); 1199 1200 /* Does it have a PCB ? */ 1201 if (pcb == NULL) 1202 return; 1203 key_freesp_so(&pcb->inp_sp->sp_in); 1204 key_freesp_so(&pcb->inp_sp->sp_out); 1205 } 1206 break; 1207 #endif /* INET || INET6 */ 1208 default: 1209 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1210 __func__, so->so_proto->pr_domain->dom_family)); 1211 return; 1212 } 1213 } 1214 1215 static void 1216 key_freesp_so(struct secpolicy **sp) 1217 { 1218 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1219 1220 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1221 (*sp)->policy == IPSEC_POLICY_BYPASS) 1222 return; 1223 1224 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1225 ("invalid policy %u", (*sp)->policy)); 1226 KEY_FREESP(sp); 1227 } 1228 1229 void 1230 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1231 { 1232 1233 IPSEC_ASSERT(sav != NULL, ("null sav")); 1234 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1235 1236 sa_addref(sav); 1237 } 1238 1239 /* 1240 * Must be called after calling key_allocsa(). 1241 * This function is called by key_freesp() to free some SA allocated 1242 * for a policy. 1243 */ 1244 void 1245 key_freesav(struct secasvar **psav, const char* where, int tag) 1246 { 1247 struct secasvar *sav = *psav; 1248 1249 IPSEC_ASSERT(sav != NULL, ("null sav")); 1250 1251 if (sa_delref(sav)) { 1252 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1253 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1254 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1255 *psav = NULL; 1256 key_delsav(sav); 1257 } else { 1258 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1259 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1260 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1261 } 1262 } 1263 1264 /* %%% SPD management */ 1265 /* 1266 * free security policy entry. 1267 */ 1268 static void 1269 key_delsp(struct secpolicy *sp) 1270 { 1271 struct ipsecrequest *isr, *nextisr; 1272 1273 IPSEC_ASSERT(sp != NULL, ("null sp")); 1274 SPTREE_LOCK_ASSERT(); 1275 1276 sp->state = IPSEC_SPSTATE_DEAD; 1277 1278 IPSEC_ASSERT(sp->refcnt == 0, 1279 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1280 1281 /* remove from SP index */ 1282 if (__LIST_CHAINED(sp)) 1283 LIST_REMOVE(sp, chain); 1284 1285 for (isr = sp->req; isr != NULL; isr = nextisr) { 1286 if (isr->sav != NULL) { 1287 KEY_FREESAV(&isr->sav); 1288 isr->sav = NULL; 1289 } 1290 1291 nextisr = isr->next; 1292 ipsec_delisr(isr); 1293 } 1294 _key_delsp(sp); 1295 } 1296 1297 /* 1298 * search SPD 1299 * OUT: NULL : not found 1300 * others : found, pointer to a SP. 1301 */ 1302 static struct secpolicy * 1303 key_getsp(struct secpolicyindex *spidx) 1304 { 1305 struct secpolicy *sp; 1306 1307 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1308 1309 SPTREE_LOCK(); 1310 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1311 if (sp->state == IPSEC_SPSTATE_DEAD) 1312 continue; 1313 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1314 SP_ADDREF(sp); 1315 break; 1316 } 1317 } 1318 SPTREE_UNLOCK(); 1319 1320 return sp; 1321 } 1322 1323 /* 1324 * get SP by index. 1325 * OUT: NULL : not found 1326 * others : found, pointer to a SP. 1327 */ 1328 static struct secpolicy * 1329 key_getspbyid(u_int32_t id) 1330 { 1331 struct secpolicy *sp; 1332 1333 SPTREE_LOCK(); 1334 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1335 if (sp->state == IPSEC_SPSTATE_DEAD) 1336 continue; 1337 if (sp->id == id) { 1338 SP_ADDREF(sp); 1339 goto done; 1340 } 1341 } 1342 1343 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1344 if (sp->state == IPSEC_SPSTATE_DEAD) 1345 continue; 1346 if (sp->id == id) { 1347 SP_ADDREF(sp); 1348 goto done; 1349 } 1350 } 1351 done: 1352 SPTREE_UNLOCK(); 1353 1354 return sp; 1355 } 1356 1357 struct secpolicy * 1358 key_newsp(const char* where, int tag) 1359 { 1360 struct secpolicy *newsp = NULL; 1361 1362 newsp = (struct secpolicy *) 1363 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1364 if (newsp) { 1365 SECPOLICY_LOCK_INIT(newsp); 1366 newsp->refcnt = 1; 1367 newsp->req = NULL; 1368 } 1369 1370 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1371 printf("DP %s from %s:%u return SP:%p\n", __func__, 1372 where, tag, newsp)); 1373 return newsp; 1374 } 1375 1376 static void 1377 _key_delsp(struct secpolicy *sp) 1378 { 1379 SECPOLICY_LOCK_DESTROY(sp); 1380 free(sp, M_IPSEC_SP); 1381 } 1382 1383 /* 1384 * create secpolicy structure from sadb_x_policy structure. 1385 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1386 * so must be set properly later. 1387 */ 1388 struct secpolicy * 1389 key_msg2sp(xpl0, len, error) 1390 struct sadb_x_policy *xpl0; 1391 size_t len; 1392 int *error; 1393 { 1394 struct secpolicy *newsp; 1395 1396 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1397 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1398 1399 if (len != PFKEY_EXTLEN(xpl0)) { 1400 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1401 *error = EINVAL; 1402 return NULL; 1403 } 1404 1405 if ((newsp = KEY_NEWSP()) == NULL) { 1406 *error = ENOBUFS; 1407 return NULL; 1408 } 1409 1410 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1411 newsp->policy = xpl0->sadb_x_policy_type; 1412 1413 /* check policy */ 1414 switch (xpl0->sadb_x_policy_type) { 1415 case IPSEC_POLICY_DISCARD: 1416 case IPSEC_POLICY_NONE: 1417 case IPSEC_POLICY_ENTRUST: 1418 case IPSEC_POLICY_BYPASS: 1419 newsp->req = NULL; 1420 break; 1421 1422 case IPSEC_POLICY_IPSEC: 1423 { 1424 int tlen; 1425 struct sadb_x_ipsecrequest *xisr; 1426 struct ipsecrequest **p_isr = &newsp->req; 1427 1428 /* validity check */ 1429 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1430 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1431 __func__)); 1432 KEY_FREESP(&newsp); 1433 *error = EINVAL; 1434 return NULL; 1435 } 1436 1437 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1438 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1439 1440 while (tlen > 0) { 1441 /* length check */ 1442 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1443 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1444 "length.\n", __func__)); 1445 KEY_FREESP(&newsp); 1446 *error = EINVAL; 1447 return NULL; 1448 } 1449 1450 /* allocate request buffer */ 1451 /* NB: data structure is zero'd */ 1452 *p_isr = ipsec_newisr(); 1453 if ((*p_isr) == NULL) { 1454 ipseclog((LOG_DEBUG, 1455 "%s: No more memory.\n", __func__)); 1456 KEY_FREESP(&newsp); 1457 *error = ENOBUFS; 1458 return NULL; 1459 } 1460 1461 /* set values */ 1462 switch (xisr->sadb_x_ipsecrequest_proto) { 1463 case IPPROTO_ESP: 1464 case IPPROTO_AH: 1465 case IPPROTO_IPCOMP: 1466 break; 1467 default: 1468 ipseclog((LOG_DEBUG, 1469 "%s: invalid proto type=%u\n", __func__, 1470 xisr->sadb_x_ipsecrequest_proto)); 1471 KEY_FREESP(&newsp); 1472 *error = EPROTONOSUPPORT; 1473 return NULL; 1474 } 1475 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1476 1477 switch (xisr->sadb_x_ipsecrequest_mode) { 1478 case IPSEC_MODE_TRANSPORT: 1479 case IPSEC_MODE_TUNNEL: 1480 break; 1481 case IPSEC_MODE_ANY: 1482 default: 1483 ipseclog((LOG_DEBUG, 1484 "%s: invalid mode=%u\n", __func__, 1485 xisr->sadb_x_ipsecrequest_mode)); 1486 KEY_FREESP(&newsp); 1487 *error = EINVAL; 1488 return NULL; 1489 } 1490 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1491 1492 switch (xisr->sadb_x_ipsecrequest_level) { 1493 case IPSEC_LEVEL_DEFAULT: 1494 case IPSEC_LEVEL_USE: 1495 case IPSEC_LEVEL_REQUIRE: 1496 break; 1497 case IPSEC_LEVEL_UNIQUE: 1498 /* validity check */ 1499 /* 1500 * If range violation of reqid, kernel will 1501 * update it, don't refuse it. 1502 */ 1503 if (xisr->sadb_x_ipsecrequest_reqid 1504 > IPSEC_MANUAL_REQID_MAX) { 1505 ipseclog((LOG_DEBUG, 1506 "%s: reqid=%d range " 1507 "violation, updated by kernel.\n", 1508 __func__, 1509 xisr->sadb_x_ipsecrequest_reqid)); 1510 xisr->sadb_x_ipsecrequest_reqid = 0; 1511 } 1512 1513 /* allocate new reqid id if reqid is zero. */ 1514 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1515 u_int32_t reqid; 1516 if ((reqid = key_newreqid()) == 0) { 1517 KEY_FREESP(&newsp); 1518 *error = ENOBUFS; 1519 return NULL; 1520 } 1521 (*p_isr)->saidx.reqid = reqid; 1522 xisr->sadb_x_ipsecrequest_reqid = reqid; 1523 } else { 1524 /* set it for manual keying. */ 1525 (*p_isr)->saidx.reqid = 1526 xisr->sadb_x_ipsecrequest_reqid; 1527 } 1528 break; 1529 1530 default: 1531 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1532 __func__, 1533 xisr->sadb_x_ipsecrequest_level)); 1534 KEY_FREESP(&newsp); 1535 *error = EINVAL; 1536 return NULL; 1537 } 1538 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1539 1540 /* set IP addresses if there */ 1541 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1542 struct sockaddr *paddr; 1543 1544 paddr = (struct sockaddr *)(xisr + 1); 1545 1546 /* validity check */ 1547 if (paddr->sa_len 1548 > sizeof((*p_isr)->saidx.src)) { 1549 ipseclog((LOG_DEBUG, "%s: invalid " 1550 "request address length.\n", 1551 __func__)); 1552 KEY_FREESP(&newsp); 1553 *error = EINVAL; 1554 return NULL; 1555 } 1556 bcopy(paddr, &(*p_isr)->saidx.src, 1557 paddr->sa_len); 1558 1559 paddr = (struct sockaddr *)((caddr_t)paddr 1560 + paddr->sa_len); 1561 1562 /* validity check */ 1563 if (paddr->sa_len 1564 > sizeof((*p_isr)->saidx.dst)) { 1565 ipseclog((LOG_DEBUG, "%s: invalid " 1566 "request address length.\n", 1567 __func__)); 1568 KEY_FREESP(&newsp); 1569 *error = EINVAL; 1570 return NULL; 1571 } 1572 bcopy(paddr, &(*p_isr)->saidx.dst, 1573 paddr->sa_len); 1574 } 1575 1576 (*p_isr)->sp = newsp; 1577 1578 /* initialization for the next. */ 1579 p_isr = &(*p_isr)->next; 1580 tlen -= xisr->sadb_x_ipsecrequest_len; 1581 1582 /* validity check */ 1583 if (tlen < 0) { 1584 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1585 __func__)); 1586 KEY_FREESP(&newsp); 1587 *error = EINVAL; 1588 return NULL; 1589 } 1590 1591 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1592 + xisr->sadb_x_ipsecrequest_len); 1593 } 1594 } 1595 break; 1596 default: 1597 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1598 KEY_FREESP(&newsp); 1599 *error = EINVAL; 1600 return NULL; 1601 } 1602 1603 *error = 0; 1604 return newsp; 1605 } 1606 1607 static u_int32_t 1608 key_newreqid() 1609 { 1610 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1611 1612 auto_reqid = (auto_reqid == ~0 1613 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1614 1615 /* XXX should be unique check */ 1616 1617 return auto_reqid; 1618 } 1619 1620 /* 1621 * copy secpolicy struct to sadb_x_policy structure indicated. 1622 */ 1623 struct mbuf * 1624 key_sp2msg(sp) 1625 struct secpolicy *sp; 1626 { 1627 struct sadb_x_policy *xpl; 1628 int tlen; 1629 caddr_t p; 1630 struct mbuf *m; 1631 1632 IPSEC_ASSERT(sp != NULL, ("null policy")); 1633 1634 tlen = key_getspreqmsglen(sp); 1635 1636 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1637 if (m == NULL) 1638 return (NULL); 1639 m_align(m, tlen); 1640 m->m_len = tlen; 1641 xpl = mtod(m, struct sadb_x_policy *); 1642 bzero(xpl, tlen); 1643 1644 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1645 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1646 xpl->sadb_x_policy_type = sp->policy; 1647 xpl->sadb_x_policy_dir = sp->spidx.dir; 1648 xpl->sadb_x_policy_id = sp->id; 1649 p = (caddr_t)xpl + sizeof(*xpl); 1650 1651 /* if is the policy for ipsec ? */ 1652 if (sp->policy == IPSEC_POLICY_IPSEC) { 1653 struct sadb_x_ipsecrequest *xisr; 1654 struct ipsecrequest *isr; 1655 1656 for (isr = sp->req; isr != NULL; isr = isr->next) { 1657 1658 xisr = (struct sadb_x_ipsecrequest *)p; 1659 1660 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1661 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1662 xisr->sadb_x_ipsecrequest_level = isr->level; 1663 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1664 1665 p += sizeof(*xisr); 1666 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1667 p += isr->saidx.src.sa.sa_len; 1668 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1669 p += isr->saidx.src.sa.sa_len; 1670 1671 xisr->sadb_x_ipsecrequest_len = 1672 PFKEY_ALIGN8(sizeof(*xisr) 1673 + isr->saidx.src.sa.sa_len 1674 + isr->saidx.dst.sa.sa_len); 1675 } 1676 } 1677 1678 return m; 1679 } 1680 1681 /* m will not be freed nor modified */ 1682 static struct mbuf * 1683 #ifdef __STDC__ 1684 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1685 int ndeep, int nitem, ...) 1686 #else 1687 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1688 struct mbuf *m; 1689 const struct sadb_msghdr *mhp; 1690 int ndeep; 1691 int nitem; 1692 va_dcl 1693 #endif 1694 { 1695 va_list ap; 1696 int idx; 1697 int i; 1698 struct mbuf *result = NULL, *n; 1699 int len; 1700 1701 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1702 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1703 1704 va_start(ap, nitem); 1705 for (i = 0; i < nitem; i++) { 1706 idx = va_arg(ap, int); 1707 if (idx < 0 || idx > SADB_EXT_MAX) 1708 goto fail; 1709 /* don't attempt to pull empty extension */ 1710 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1711 continue; 1712 if (idx != SADB_EXT_RESERVED && 1713 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1714 continue; 1715 1716 if (idx == SADB_EXT_RESERVED) { 1717 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1718 1719 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1720 1721 MGETHDR(n, M_NOWAIT, MT_DATA); 1722 if (!n) 1723 goto fail; 1724 n->m_len = len; 1725 n->m_next = NULL; 1726 m_copydata(m, 0, sizeof(struct sadb_msg), 1727 mtod(n, caddr_t)); 1728 } else if (i < ndeep) { 1729 len = mhp->extlen[idx]; 1730 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1731 if (n == NULL) 1732 goto fail; 1733 m_align(n, len); 1734 n->m_len = len; 1735 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1736 mtod(n, caddr_t)); 1737 } else { 1738 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1739 M_NOWAIT); 1740 } 1741 if (n == NULL) 1742 goto fail; 1743 1744 if (result) 1745 m_cat(result, n); 1746 else 1747 result = n; 1748 } 1749 va_end(ap); 1750 1751 if ((result->m_flags & M_PKTHDR) != 0) { 1752 result->m_pkthdr.len = 0; 1753 for (n = result; n; n = n->m_next) 1754 result->m_pkthdr.len += n->m_len; 1755 } 1756 1757 return result; 1758 1759 fail: 1760 m_freem(result); 1761 va_end(ap); 1762 return NULL; 1763 } 1764 1765 /* 1766 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1767 * add an entry to SP database, when received 1768 * <base, address(SD), (lifetime(H),) policy> 1769 * from the user(?). 1770 * Adding to SP database, 1771 * and send 1772 * <base, address(SD), (lifetime(H),) policy> 1773 * to the socket which was send. 1774 * 1775 * SPDADD set a unique policy entry. 1776 * SPDSETIDX like SPDADD without a part of policy requests. 1777 * SPDUPDATE replace a unique policy entry. 1778 * 1779 * m will always be freed. 1780 */ 1781 static int 1782 key_spdadd(so, m, mhp) 1783 struct socket *so; 1784 struct mbuf *m; 1785 const struct sadb_msghdr *mhp; 1786 { 1787 struct sadb_address *src0, *dst0; 1788 struct sadb_x_policy *xpl0, *xpl; 1789 struct sadb_lifetime *lft = NULL; 1790 struct secpolicyindex spidx; 1791 struct secpolicy *newsp; 1792 int error; 1793 1794 IPSEC_ASSERT(so != NULL, ("null socket")); 1795 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1796 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1797 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1798 1799 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1800 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1801 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1802 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1803 return key_senderror(so, m, EINVAL); 1804 } 1805 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1806 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1807 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1808 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1809 __func__)); 1810 return key_senderror(so, m, EINVAL); 1811 } 1812 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1813 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1814 < sizeof(struct sadb_lifetime)) { 1815 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1816 __func__)); 1817 return key_senderror(so, m, EINVAL); 1818 } 1819 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1820 } 1821 1822 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1823 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1824 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1825 1826 /* 1827 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1828 * we are processing traffic endpoints. 1829 */ 1830 1831 /* make secindex */ 1832 /* XXX boundary check against sa_len */ 1833 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1834 src0 + 1, 1835 dst0 + 1, 1836 src0->sadb_address_prefixlen, 1837 dst0->sadb_address_prefixlen, 1838 src0->sadb_address_proto, 1839 &spidx); 1840 1841 /* checking the direciton. */ 1842 switch (xpl0->sadb_x_policy_dir) { 1843 case IPSEC_DIR_INBOUND: 1844 case IPSEC_DIR_OUTBOUND: 1845 break; 1846 default: 1847 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1848 mhp->msg->sadb_msg_errno = EINVAL; 1849 return 0; 1850 } 1851 1852 /* check policy */ 1853 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1854 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1855 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1856 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1857 return key_senderror(so, m, EINVAL); 1858 } 1859 1860 /* policy requests are mandatory when action is ipsec. */ 1861 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1862 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1863 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1864 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1865 __func__)); 1866 return key_senderror(so, m, EINVAL); 1867 } 1868 1869 /* 1870 * checking there is SP already or not. 1871 * SPDUPDATE doesn't depend on whether there is a SP or not. 1872 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1873 * then error. 1874 */ 1875 newsp = key_getsp(&spidx); 1876 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1877 if (newsp) { 1878 SPTREE_LOCK(); 1879 newsp->state = IPSEC_SPSTATE_DEAD; 1880 SPTREE_UNLOCK(); 1881 KEY_FREESP(&newsp); 1882 } 1883 } else { 1884 if (newsp != NULL) { 1885 KEY_FREESP(&newsp); 1886 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1887 __func__)); 1888 return key_senderror(so, m, EEXIST); 1889 } 1890 } 1891 1892 /* allocation new SP entry */ 1893 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1894 return key_senderror(so, m, error); 1895 } 1896 1897 if ((newsp->id = key_getnewspid()) == 0) { 1898 _key_delsp(newsp); 1899 return key_senderror(so, m, ENOBUFS); 1900 } 1901 1902 /* XXX boundary check against sa_len */ 1903 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1904 src0 + 1, 1905 dst0 + 1, 1906 src0->sadb_address_prefixlen, 1907 dst0->sadb_address_prefixlen, 1908 src0->sadb_address_proto, 1909 &newsp->spidx); 1910 1911 /* sanity check on addr pair */ 1912 if (((struct sockaddr *)(src0 + 1))->sa_family != 1913 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1914 _key_delsp(newsp); 1915 return key_senderror(so, m, EINVAL); 1916 } 1917 if (((struct sockaddr *)(src0 + 1))->sa_len != 1918 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1919 _key_delsp(newsp); 1920 return key_senderror(so, m, EINVAL); 1921 } 1922 #if 1 1923 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1924 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1925 _key_delsp(newsp); 1926 return key_senderror(so, m, EINVAL); 1927 } 1928 } 1929 #endif 1930 1931 newsp->created = time_second; 1932 newsp->lastused = newsp->created; 1933 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1934 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1935 1936 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1937 newsp->state = IPSEC_SPSTATE_ALIVE; 1938 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1939 1940 /* delete the entry in spacqtree */ 1941 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1942 struct secspacq *spacq = key_getspacq(&spidx); 1943 if (spacq != NULL) { 1944 /* reset counter in order to deletion by timehandler. */ 1945 spacq->created = time_second; 1946 spacq->count = 0; 1947 SPACQ_UNLOCK(); 1948 } 1949 } 1950 1951 { 1952 struct mbuf *n, *mpolicy; 1953 struct sadb_msg *newmsg; 1954 int off; 1955 1956 /* 1957 * Note: do not send SADB_X_EXT_NAT_T_* here: 1958 * we are sending traffic endpoints. 1959 */ 1960 1961 /* create new sadb_msg to reply. */ 1962 if (lft) { 1963 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1964 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1965 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1966 } else { 1967 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1968 SADB_X_EXT_POLICY, 1969 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1970 } 1971 if (!n) 1972 return key_senderror(so, m, ENOBUFS); 1973 1974 if (n->m_len < sizeof(*newmsg)) { 1975 n = m_pullup(n, sizeof(*newmsg)); 1976 if (!n) 1977 return key_senderror(so, m, ENOBUFS); 1978 } 1979 newmsg = mtod(n, struct sadb_msg *); 1980 newmsg->sadb_msg_errno = 0; 1981 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1982 1983 off = 0; 1984 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1985 sizeof(*xpl), &off); 1986 if (mpolicy == NULL) { 1987 /* n is already freed */ 1988 return key_senderror(so, m, ENOBUFS); 1989 } 1990 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1991 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1992 m_freem(n); 1993 return key_senderror(so, m, EINVAL); 1994 } 1995 xpl->sadb_x_policy_id = newsp->id; 1996 1997 m_freem(m); 1998 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1999 } 2000 } 2001 2002 /* 2003 * get new policy id. 2004 * OUT: 2005 * 0: failure. 2006 * others: success. 2007 */ 2008 static u_int32_t 2009 key_getnewspid() 2010 { 2011 u_int32_t newid = 0; 2012 int count = V_key_spi_trycnt; /* XXX */ 2013 struct secpolicy *sp; 2014 2015 /* when requesting to allocate spi ranged */ 2016 while (count--) { 2017 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2018 2019 if ((sp = key_getspbyid(newid)) == NULL) 2020 break; 2021 2022 KEY_FREESP(&sp); 2023 } 2024 2025 if (count == 0 || newid == 0) { 2026 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2027 __func__)); 2028 return 0; 2029 } 2030 2031 return newid; 2032 } 2033 2034 /* 2035 * SADB_SPDDELETE processing 2036 * receive 2037 * <base, address(SD), policy(*)> 2038 * from the user(?), and set SADB_SASTATE_DEAD, 2039 * and send, 2040 * <base, address(SD), policy(*)> 2041 * to the ikmpd. 2042 * policy(*) including direction of policy. 2043 * 2044 * m will always be freed. 2045 */ 2046 static int 2047 key_spddelete(so, m, mhp) 2048 struct socket *so; 2049 struct mbuf *m; 2050 const struct sadb_msghdr *mhp; 2051 { 2052 struct sadb_address *src0, *dst0; 2053 struct sadb_x_policy *xpl0; 2054 struct secpolicyindex spidx; 2055 struct secpolicy *sp; 2056 2057 IPSEC_ASSERT(so != NULL, ("null so")); 2058 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2059 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2060 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2061 2062 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2063 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2064 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2065 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2066 __func__)); 2067 return key_senderror(so, m, EINVAL); 2068 } 2069 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2070 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2071 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2072 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2073 __func__)); 2074 return key_senderror(so, m, EINVAL); 2075 } 2076 2077 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2078 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2079 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2080 2081 /* 2082 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2083 * we are processing traffic endpoints. 2084 */ 2085 2086 /* make secindex */ 2087 /* XXX boundary check against sa_len */ 2088 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2089 src0 + 1, 2090 dst0 + 1, 2091 src0->sadb_address_prefixlen, 2092 dst0->sadb_address_prefixlen, 2093 src0->sadb_address_proto, 2094 &spidx); 2095 2096 /* checking the direciton. */ 2097 switch (xpl0->sadb_x_policy_dir) { 2098 case IPSEC_DIR_INBOUND: 2099 case IPSEC_DIR_OUTBOUND: 2100 break; 2101 default: 2102 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2103 return key_senderror(so, m, EINVAL); 2104 } 2105 2106 /* Is there SP in SPD ? */ 2107 if ((sp = key_getsp(&spidx)) == NULL) { 2108 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2109 return key_senderror(so, m, EINVAL); 2110 } 2111 2112 /* save policy id to buffer to be returned. */ 2113 xpl0->sadb_x_policy_id = sp->id; 2114 2115 SPTREE_LOCK(); 2116 sp->state = IPSEC_SPSTATE_DEAD; 2117 SPTREE_UNLOCK(); 2118 KEY_FREESP(&sp); 2119 2120 { 2121 struct mbuf *n; 2122 struct sadb_msg *newmsg; 2123 2124 /* 2125 * Note: do not send SADB_X_EXT_NAT_T_* here: 2126 * we are sending traffic endpoints. 2127 */ 2128 2129 /* create new sadb_msg to reply. */ 2130 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2131 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2132 if (!n) 2133 return key_senderror(so, m, ENOBUFS); 2134 2135 newmsg = mtod(n, struct sadb_msg *); 2136 newmsg->sadb_msg_errno = 0; 2137 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2138 2139 m_freem(m); 2140 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2141 } 2142 } 2143 2144 /* 2145 * SADB_SPDDELETE2 processing 2146 * receive 2147 * <base, policy(*)> 2148 * from the user(?), and set SADB_SASTATE_DEAD, 2149 * and send, 2150 * <base, policy(*)> 2151 * to the ikmpd. 2152 * policy(*) including direction of policy. 2153 * 2154 * m will always be freed. 2155 */ 2156 static int 2157 key_spddelete2(so, m, mhp) 2158 struct socket *so; 2159 struct mbuf *m; 2160 const struct sadb_msghdr *mhp; 2161 { 2162 u_int32_t id; 2163 struct secpolicy *sp; 2164 2165 IPSEC_ASSERT(so != NULL, ("null socket")); 2166 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2167 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2168 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2169 2170 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2171 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2172 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2173 return key_senderror(so, m, EINVAL); 2174 } 2175 2176 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2177 2178 /* Is there SP in SPD ? */ 2179 if ((sp = key_getspbyid(id)) == NULL) { 2180 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2181 return key_senderror(so, m, EINVAL); 2182 } 2183 2184 SPTREE_LOCK(); 2185 sp->state = IPSEC_SPSTATE_DEAD; 2186 SPTREE_UNLOCK(); 2187 KEY_FREESP(&sp); 2188 2189 { 2190 struct mbuf *n, *nn; 2191 struct sadb_msg *newmsg; 2192 int off, len; 2193 2194 /* create new sadb_msg to reply. */ 2195 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2196 2197 MGETHDR(n, M_NOWAIT, MT_DATA); 2198 if (n && len > MHLEN) { 2199 MCLGET(n, M_NOWAIT); 2200 if ((n->m_flags & M_EXT) == 0) { 2201 m_freem(n); 2202 n = NULL; 2203 } 2204 } 2205 if (!n) 2206 return key_senderror(so, m, ENOBUFS); 2207 2208 n->m_len = len; 2209 n->m_next = NULL; 2210 off = 0; 2211 2212 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2213 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2214 2215 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2216 off, len)); 2217 2218 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2219 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2220 if (!n->m_next) { 2221 m_freem(n); 2222 return key_senderror(so, m, ENOBUFS); 2223 } 2224 2225 n->m_pkthdr.len = 0; 2226 for (nn = n; nn; nn = nn->m_next) 2227 n->m_pkthdr.len += nn->m_len; 2228 2229 newmsg = mtod(n, struct sadb_msg *); 2230 newmsg->sadb_msg_errno = 0; 2231 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2232 2233 m_freem(m); 2234 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2235 } 2236 } 2237 2238 /* 2239 * SADB_X_GET processing 2240 * receive 2241 * <base, policy(*)> 2242 * from the user(?), 2243 * and send, 2244 * <base, address(SD), policy> 2245 * to the ikmpd. 2246 * policy(*) including direction of policy. 2247 * 2248 * m will always be freed. 2249 */ 2250 static int 2251 key_spdget(so, m, mhp) 2252 struct socket *so; 2253 struct mbuf *m; 2254 const struct sadb_msghdr *mhp; 2255 { 2256 u_int32_t id; 2257 struct secpolicy *sp; 2258 struct mbuf *n; 2259 2260 IPSEC_ASSERT(so != NULL, ("null socket")); 2261 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2262 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2263 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2264 2265 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2266 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2267 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2268 __func__)); 2269 return key_senderror(so, m, EINVAL); 2270 } 2271 2272 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2273 2274 /* Is there SP in SPD ? */ 2275 if ((sp = key_getspbyid(id)) == NULL) { 2276 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2277 return key_senderror(so, m, ENOENT); 2278 } 2279 2280 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2281 KEY_FREESP(&sp); 2282 if (n != NULL) { 2283 m_freem(m); 2284 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2285 } else 2286 return key_senderror(so, m, ENOBUFS); 2287 } 2288 2289 /* 2290 * SADB_X_SPDACQUIRE processing. 2291 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2292 * send 2293 * <base, policy(*)> 2294 * to KMD, and expect to receive 2295 * <base> with SADB_X_SPDACQUIRE if error occured, 2296 * or 2297 * <base, policy> 2298 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2299 * policy(*) is without policy requests. 2300 * 2301 * 0 : succeed 2302 * others: error number 2303 */ 2304 int 2305 key_spdacquire(sp) 2306 struct secpolicy *sp; 2307 { 2308 struct mbuf *result = NULL, *m; 2309 struct secspacq *newspacq; 2310 2311 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2312 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2313 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2314 ("policy not IPSEC %u", sp->policy)); 2315 2316 /* Get an entry to check whether sent message or not. */ 2317 newspacq = key_getspacq(&sp->spidx); 2318 if (newspacq != NULL) { 2319 if (V_key_blockacq_count < newspacq->count) { 2320 /* reset counter and do send message. */ 2321 newspacq->count = 0; 2322 } else { 2323 /* increment counter and do nothing. */ 2324 newspacq->count++; 2325 return 0; 2326 } 2327 SPACQ_UNLOCK(); 2328 } else { 2329 /* make new entry for blocking to send SADB_ACQUIRE. */ 2330 newspacq = key_newspacq(&sp->spidx); 2331 if (newspacq == NULL) 2332 return ENOBUFS; 2333 } 2334 2335 /* create new sadb_msg to reply. */ 2336 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2337 if (!m) 2338 return ENOBUFS; 2339 2340 result = m; 2341 2342 result->m_pkthdr.len = 0; 2343 for (m = result; m; m = m->m_next) 2344 result->m_pkthdr.len += m->m_len; 2345 2346 mtod(result, struct sadb_msg *)->sadb_msg_len = 2347 PFKEY_UNIT64(result->m_pkthdr.len); 2348 2349 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2350 } 2351 2352 /* 2353 * SADB_SPDFLUSH processing 2354 * receive 2355 * <base> 2356 * from the user, and free all entries in secpctree. 2357 * and send, 2358 * <base> 2359 * to the user. 2360 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2361 * 2362 * m will always be freed. 2363 */ 2364 static int 2365 key_spdflush(so, m, mhp) 2366 struct socket *so; 2367 struct mbuf *m; 2368 const struct sadb_msghdr *mhp; 2369 { 2370 struct sadb_msg *newmsg; 2371 struct secpolicy *sp; 2372 u_int dir; 2373 2374 IPSEC_ASSERT(so != NULL, ("null socket")); 2375 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2376 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2377 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2378 2379 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2380 return key_senderror(so, m, EINVAL); 2381 2382 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2383 SPTREE_LOCK(); 2384 LIST_FOREACH(sp, &V_sptree[dir], chain) 2385 sp->state = IPSEC_SPSTATE_DEAD; 2386 SPTREE_UNLOCK(); 2387 } 2388 2389 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2390 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2391 return key_senderror(so, m, ENOBUFS); 2392 } 2393 2394 if (m->m_next) 2395 m_freem(m->m_next); 2396 m->m_next = NULL; 2397 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2398 newmsg = mtod(m, struct sadb_msg *); 2399 newmsg->sadb_msg_errno = 0; 2400 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2401 2402 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2403 } 2404 2405 /* 2406 * SADB_SPDDUMP processing 2407 * receive 2408 * <base> 2409 * from the user, and dump all SP leaves 2410 * and send, 2411 * <base> ..... 2412 * to the ikmpd. 2413 * 2414 * m will always be freed. 2415 */ 2416 static int 2417 key_spddump(so, m, mhp) 2418 struct socket *so; 2419 struct mbuf *m; 2420 const struct sadb_msghdr *mhp; 2421 { 2422 struct secpolicy *sp; 2423 int cnt; 2424 u_int dir; 2425 struct mbuf *n; 2426 2427 IPSEC_ASSERT(so != NULL, ("null socket")); 2428 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2429 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2430 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2431 2432 /* search SPD entry and get buffer size. */ 2433 cnt = 0; 2434 SPTREE_LOCK(); 2435 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2436 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2437 cnt++; 2438 } 2439 } 2440 2441 if (cnt == 0) { 2442 SPTREE_UNLOCK(); 2443 return key_senderror(so, m, ENOENT); 2444 } 2445 2446 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2447 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2448 --cnt; 2449 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2450 mhp->msg->sadb_msg_pid); 2451 2452 if (n) 2453 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2454 } 2455 } 2456 2457 SPTREE_UNLOCK(); 2458 m_freem(m); 2459 return 0; 2460 } 2461 2462 static struct mbuf * 2463 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2464 { 2465 struct mbuf *result = NULL, *m; 2466 struct seclifetime lt; 2467 2468 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2469 if (!m) 2470 goto fail; 2471 result = m; 2472 2473 /* 2474 * Note: do not send SADB_X_EXT_NAT_T_* here: 2475 * we are sending traffic endpoints. 2476 */ 2477 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2478 &sp->spidx.src.sa, sp->spidx.prefs, 2479 sp->spidx.ul_proto); 2480 if (!m) 2481 goto fail; 2482 m_cat(result, m); 2483 2484 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2485 &sp->spidx.dst.sa, sp->spidx.prefd, 2486 sp->spidx.ul_proto); 2487 if (!m) 2488 goto fail; 2489 m_cat(result, m); 2490 2491 m = key_sp2msg(sp); 2492 if (!m) 2493 goto fail; 2494 m_cat(result, m); 2495 2496 if(sp->lifetime){ 2497 lt.addtime=sp->created; 2498 lt.usetime= sp->lastused; 2499 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2500 if (!m) 2501 goto fail; 2502 m_cat(result, m); 2503 2504 lt.addtime=sp->lifetime; 2505 lt.usetime= sp->validtime; 2506 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2507 if (!m) 2508 goto fail; 2509 m_cat(result, m); 2510 } 2511 2512 if ((result->m_flags & M_PKTHDR) == 0) 2513 goto fail; 2514 2515 if (result->m_len < sizeof(struct sadb_msg)) { 2516 result = m_pullup(result, sizeof(struct sadb_msg)); 2517 if (result == NULL) 2518 goto fail; 2519 } 2520 2521 result->m_pkthdr.len = 0; 2522 for (m = result; m; m = m->m_next) 2523 result->m_pkthdr.len += m->m_len; 2524 2525 mtod(result, struct sadb_msg *)->sadb_msg_len = 2526 PFKEY_UNIT64(result->m_pkthdr.len); 2527 2528 return result; 2529 2530 fail: 2531 m_freem(result); 2532 return NULL; 2533 } 2534 2535 /* 2536 * get PFKEY message length for security policy and request. 2537 */ 2538 static u_int 2539 key_getspreqmsglen(sp) 2540 struct secpolicy *sp; 2541 { 2542 u_int tlen; 2543 2544 tlen = sizeof(struct sadb_x_policy); 2545 2546 /* if is the policy for ipsec ? */ 2547 if (sp->policy != IPSEC_POLICY_IPSEC) 2548 return tlen; 2549 2550 /* get length of ipsec requests */ 2551 { 2552 struct ipsecrequest *isr; 2553 int len; 2554 2555 for (isr = sp->req; isr != NULL; isr = isr->next) { 2556 len = sizeof(struct sadb_x_ipsecrequest) 2557 + isr->saidx.src.sa.sa_len 2558 + isr->saidx.dst.sa.sa_len; 2559 2560 tlen += PFKEY_ALIGN8(len); 2561 } 2562 } 2563 2564 return tlen; 2565 } 2566 2567 /* 2568 * SADB_SPDEXPIRE processing 2569 * send 2570 * <base, address(SD), lifetime(CH), policy> 2571 * to KMD by PF_KEY. 2572 * 2573 * OUT: 0 : succeed 2574 * others : error number 2575 */ 2576 static int 2577 key_spdexpire(sp) 2578 struct secpolicy *sp; 2579 { 2580 struct mbuf *result = NULL, *m; 2581 int len; 2582 int error = -1; 2583 struct sadb_lifetime *lt; 2584 2585 /* XXX: Why do we lock ? */ 2586 2587 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2588 2589 /* set msg header */ 2590 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2591 if (!m) { 2592 error = ENOBUFS; 2593 goto fail; 2594 } 2595 result = m; 2596 2597 /* create lifetime extension (current and hard) */ 2598 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2599 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2600 if (m == NULL) { 2601 error = ENOBUFS; 2602 goto fail; 2603 } 2604 m_align(m, len); 2605 m->m_len = len; 2606 bzero(mtod(m, caddr_t), len); 2607 lt = mtod(m, struct sadb_lifetime *); 2608 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2609 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2610 lt->sadb_lifetime_allocations = 0; 2611 lt->sadb_lifetime_bytes = 0; 2612 lt->sadb_lifetime_addtime = sp->created; 2613 lt->sadb_lifetime_usetime = sp->lastused; 2614 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2615 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2616 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2617 lt->sadb_lifetime_allocations = 0; 2618 lt->sadb_lifetime_bytes = 0; 2619 lt->sadb_lifetime_addtime = sp->lifetime; 2620 lt->sadb_lifetime_usetime = sp->validtime; 2621 m_cat(result, m); 2622 2623 /* 2624 * Note: do not send SADB_X_EXT_NAT_T_* here: 2625 * we are sending traffic endpoints. 2626 */ 2627 2628 /* set sadb_address for source */ 2629 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2630 &sp->spidx.src.sa, 2631 sp->spidx.prefs, sp->spidx.ul_proto); 2632 if (!m) { 2633 error = ENOBUFS; 2634 goto fail; 2635 } 2636 m_cat(result, m); 2637 2638 /* set sadb_address for destination */ 2639 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2640 &sp->spidx.dst.sa, 2641 sp->spidx.prefd, sp->spidx.ul_proto); 2642 if (!m) { 2643 error = ENOBUFS; 2644 goto fail; 2645 } 2646 m_cat(result, m); 2647 2648 /* set secpolicy */ 2649 m = key_sp2msg(sp); 2650 if (!m) { 2651 error = ENOBUFS; 2652 goto fail; 2653 } 2654 m_cat(result, m); 2655 2656 if ((result->m_flags & M_PKTHDR) == 0) { 2657 error = EINVAL; 2658 goto fail; 2659 } 2660 2661 if (result->m_len < sizeof(struct sadb_msg)) { 2662 result = m_pullup(result, sizeof(struct sadb_msg)); 2663 if (result == NULL) { 2664 error = ENOBUFS; 2665 goto fail; 2666 } 2667 } 2668 2669 result->m_pkthdr.len = 0; 2670 for (m = result; m; m = m->m_next) 2671 result->m_pkthdr.len += m->m_len; 2672 2673 mtod(result, struct sadb_msg *)->sadb_msg_len = 2674 PFKEY_UNIT64(result->m_pkthdr.len); 2675 2676 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2677 2678 fail: 2679 if (result) 2680 m_freem(result); 2681 return error; 2682 } 2683 2684 /* %%% SAD management */ 2685 /* 2686 * allocating a memory for new SA head, and copy from the values of mhp. 2687 * OUT: NULL : failure due to the lack of memory. 2688 * others : pointer to new SA head. 2689 */ 2690 static struct secashead * 2691 key_newsah(saidx) 2692 struct secasindex *saidx; 2693 { 2694 struct secashead *newsah; 2695 2696 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2697 2698 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2699 if (newsah != NULL) { 2700 int i; 2701 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2702 LIST_INIT(&newsah->savtree[i]); 2703 newsah->saidx = *saidx; 2704 2705 /* add to saidxtree */ 2706 newsah->state = SADB_SASTATE_MATURE; 2707 2708 SAHTREE_LOCK(); 2709 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2710 SAHTREE_UNLOCK(); 2711 } 2712 return(newsah); 2713 } 2714 2715 /* 2716 * delete SA index and all SA registerd. 2717 */ 2718 static void 2719 key_delsah(sah) 2720 struct secashead *sah; 2721 { 2722 struct secasvar *sav, *nextsav; 2723 u_int stateidx; 2724 int zombie = 0; 2725 2726 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2727 SAHTREE_LOCK_ASSERT(); 2728 2729 /* searching all SA registerd in the secindex. */ 2730 for (stateidx = 0; 2731 stateidx < _ARRAYLEN(saorder_state_any); 2732 stateidx++) { 2733 u_int state = saorder_state_any[stateidx]; 2734 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2735 if (sav->refcnt == 0) { 2736 /* sanity check */ 2737 KEY_CHKSASTATE(state, sav->state, __func__); 2738 /* 2739 * do NOT call KEY_FREESAV here: 2740 * it will only delete the sav if refcnt == 1, 2741 * where we already know that refcnt == 0 2742 */ 2743 key_delsav(sav); 2744 } else { 2745 /* give up to delete this sa */ 2746 zombie++; 2747 } 2748 } 2749 } 2750 if (!zombie) { /* delete only if there are savs */ 2751 /* remove from tree of SA index */ 2752 if (__LIST_CHAINED(sah)) 2753 LIST_REMOVE(sah, chain); 2754 if (sah->route_cache.sa_route.ro_rt) { 2755 RTFREE(sah->route_cache.sa_route.ro_rt); 2756 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2757 } 2758 free(sah, M_IPSEC_SAH); 2759 } 2760 } 2761 2762 /* 2763 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2764 * and copy the values of mhp into new buffer. 2765 * When SAD message type is GETSPI: 2766 * to set sequence number from acq_seq++, 2767 * to set zero to SPI. 2768 * not to call key_setsava(). 2769 * OUT: NULL : fail 2770 * others : pointer to new secasvar. 2771 * 2772 * does not modify mbuf. does not free mbuf on error. 2773 */ 2774 static struct secasvar * 2775 key_newsav(m, mhp, sah, errp, where, tag) 2776 struct mbuf *m; 2777 const struct sadb_msghdr *mhp; 2778 struct secashead *sah; 2779 int *errp; 2780 const char* where; 2781 int tag; 2782 { 2783 struct secasvar *newsav; 2784 const struct sadb_sa *xsa; 2785 2786 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2787 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2788 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2789 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2790 2791 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2792 if (newsav == NULL) { 2793 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2794 *errp = ENOBUFS; 2795 goto done; 2796 } 2797 2798 switch (mhp->msg->sadb_msg_type) { 2799 case SADB_GETSPI: 2800 newsav->spi = 0; 2801 2802 #ifdef IPSEC_DOSEQCHECK 2803 /* sync sequence number */ 2804 if (mhp->msg->sadb_msg_seq == 0) 2805 newsav->seq = 2806 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2807 else 2808 #endif 2809 newsav->seq = mhp->msg->sadb_msg_seq; 2810 break; 2811 2812 case SADB_ADD: 2813 /* sanity check */ 2814 if (mhp->ext[SADB_EXT_SA] == NULL) { 2815 free(newsav, M_IPSEC_SA); 2816 newsav = NULL; 2817 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2818 __func__)); 2819 *errp = EINVAL; 2820 goto done; 2821 } 2822 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2823 newsav->spi = xsa->sadb_sa_spi; 2824 newsav->seq = mhp->msg->sadb_msg_seq; 2825 break; 2826 default: 2827 free(newsav, M_IPSEC_SA); 2828 newsav = NULL; 2829 *errp = EINVAL; 2830 goto done; 2831 } 2832 2833 2834 /* copy sav values */ 2835 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2836 *errp = key_setsaval(newsav, m, mhp); 2837 if (*errp) { 2838 free(newsav, M_IPSEC_SA); 2839 newsav = NULL; 2840 goto done; 2841 } 2842 } 2843 2844 SECASVAR_LOCK_INIT(newsav); 2845 2846 /* reset created */ 2847 newsav->created = time_second; 2848 newsav->pid = mhp->msg->sadb_msg_pid; 2849 2850 /* add to satree */ 2851 newsav->sah = sah; 2852 sa_initref(newsav); 2853 newsav->state = SADB_SASTATE_LARVAL; 2854 2855 SAHTREE_LOCK(); 2856 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2857 secasvar, chain); 2858 SAHTREE_UNLOCK(); 2859 done: 2860 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2861 printf("DP %s from %s:%u return SP:%p\n", __func__, 2862 where, tag, newsav)); 2863 2864 return newsav; 2865 } 2866 2867 /* 2868 * free() SA variable entry. 2869 */ 2870 static void 2871 key_cleansav(struct secasvar *sav) 2872 { 2873 /* 2874 * Cleanup xform state. Note that zeroize'ing causes the 2875 * keys to be cleared; otherwise we must do it ourself. 2876 */ 2877 if (sav->tdb_xform != NULL) { 2878 sav->tdb_xform->xf_zeroize(sav); 2879 sav->tdb_xform = NULL; 2880 } else { 2881 KASSERT(sav->iv == NULL, ("iv but no xform")); 2882 if (sav->key_auth != NULL) 2883 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2884 if (sav->key_enc != NULL) 2885 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2886 } 2887 if (sav->key_auth != NULL) { 2888 if (sav->key_auth->key_data != NULL) 2889 free(sav->key_auth->key_data, M_IPSEC_MISC); 2890 free(sav->key_auth, M_IPSEC_MISC); 2891 sav->key_auth = NULL; 2892 } 2893 if (sav->key_enc != NULL) { 2894 if (sav->key_enc->key_data != NULL) 2895 free(sav->key_enc->key_data, M_IPSEC_MISC); 2896 free(sav->key_enc, M_IPSEC_MISC); 2897 sav->key_enc = NULL; 2898 } 2899 if (sav->sched) { 2900 bzero(sav->sched, sav->schedlen); 2901 free(sav->sched, M_IPSEC_MISC); 2902 sav->sched = NULL; 2903 } 2904 if (sav->replay != NULL) { 2905 free(sav->replay, M_IPSEC_MISC); 2906 sav->replay = NULL; 2907 } 2908 if (sav->lft_c != NULL) { 2909 free(sav->lft_c, M_IPSEC_MISC); 2910 sav->lft_c = NULL; 2911 } 2912 if (sav->lft_h != NULL) { 2913 free(sav->lft_h, M_IPSEC_MISC); 2914 sav->lft_h = NULL; 2915 } 2916 if (sav->lft_s != NULL) { 2917 free(sav->lft_s, M_IPSEC_MISC); 2918 sav->lft_s = NULL; 2919 } 2920 } 2921 2922 /* 2923 * free() SA variable entry. 2924 */ 2925 static void 2926 key_delsav(sav) 2927 struct secasvar *sav; 2928 { 2929 IPSEC_ASSERT(sav != NULL, ("null sav")); 2930 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2931 2932 /* remove from SA header */ 2933 if (__LIST_CHAINED(sav)) 2934 LIST_REMOVE(sav, chain); 2935 key_cleansav(sav); 2936 SECASVAR_LOCK_DESTROY(sav); 2937 free(sav, M_IPSEC_SA); 2938 } 2939 2940 /* 2941 * search SAD. 2942 * OUT: 2943 * NULL : not found 2944 * others : found, pointer to a SA. 2945 */ 2946 static struct secashead * 2947 key_getsah(saidx) 2948 struct secasindex *saidx; 2949 { 2950 struct secashead *sah; 2951 2952 SAHTREE_LOCK(); 2953 LIST_FOREACH(sah, &V_sahtree, chain) { 2954 if (sah->state == SADB_SASTATE_DEAD) 2955 continue; 2956 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2957 break; 2958 } 2959 SAHTREE_UNLOCK(); 2960 2961 return sah; 2962 } 2963 2964 /* 2965 * check not to be duplicated SPI. 2966 * NOTE: this function is too slow due to searching all SAD. 2967 * OUT: 2968 * NULL : not found 2969 * others : found, pointer to a SA. 2970 */ 2971 static struct secasvar * 2972 key_checkspidup(saidx, spi) 2973 struct secasindex *saidx; 2974 u_int32_t spi; 2975 { 2976 struct secashead *sah; 2977 struct secasvar *sav; 2978 2979 /* check address family */ 2980 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2981 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2982 __func__)); 2983 return NULL; 2984 } 2985 2986 sav = NULL; 2987 /* check all SAD */ 2988 SAHTREE_LOCK(); 2989 LIST_FOREACH(sah, &V_sahtree, chain) { 2990 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2991 continue; 2992 sav = key_getsavbyspi(sah, spi); 2993 if (sav != NULL) 2994 break; 2995 } 2996 SAHTREE_UNLOCK(); 2997 2998 return sav; 2999 } 3000 3001 /* 3002 * search SAD litmited alive SA, protocol, SPI. 3003 * OUT: 3004 * NULL : not found 3005 * others : found, pointer to a SA. 3006 */ 3007 static struct secasvar * 3008 key_getsavbyspi(sah, spi) 3009 struct secashead *sah; 3010 u_int32_t spi; 3011 { 3012 struct secasvar *sav; 3013 u_int stateidx, state; 3014 3015 sav = NULL; 3016 SAHTREE_LOCK_ASSERT(); 3017 /* search all status */ 3018 for (stateidx = 0; 3019 stateidx < _ARRAYLEN(saorder_state_alive); 3020 stateidx++) { 3021 3022 state = saorder_state_alive[stateidx]; 3023 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3024 3025 /* sanity check */ 3026 if (sav->state != state) { 3027 ipseclog((LOG_DEBUG, "%s: " 3028 "invalid sav->state (queue: %d SA: %d)\n", 3029 __func__, state, sav->state)); 3030 continue; 3031 } 3032 3033 if (sav->spi == spi) 3034 return sav; 3035 } 3036 } 3037 3038 return NULL; 3039 } 3040 3041 /* 3042 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3043 * You must update these if need. 3044 * OUT: 0: success. 3045 * !0: failure. 3046 * 3047 * does not modify mbuf. does not free mbuf on error. 3048 */ 3049 static int 3050 key_setsaval(sav, m, mhp) 3051 struct secasvar *sav; 3052 struct mbuf *m; 3053 const struct sadb_msghdr *mhp; 3054 { 3055 int error = 0; 3056 3057 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3058 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3059 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3060 3061 /* initialization */ 3062 sav->replay = NULL; 3063 sav->key_auth = NULL; 3064 sav->key_enc = NULL; 3065 sav->sched = NULL; 3066 sav->schedlen = 0; 3067 sav->iv = NULL; 3068 sav->lft_c = NULL; 3069 sav->lft_h = NULL; 3070 sav->lft_s = NULL; 3071 sav->tdb_xform = NULL; /* transform */ 3072 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3073 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3074 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3075 /* Initialize even if NAT-T not compiled in: */ 3076 sav->natt_type = 0; 3077 sav->natt_esp_frag_len = 0; 3078 3079 /* SA */ 3080 if (mhp->ext[SADB_EXT_SA] != NULL) { 3081 const struct sadb_sa *sa0; 3082 3083 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3084 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3085 error = EINVAL; 3086 goto fail; 3087 } 3088 3089 sav->alg_auth = sa0->sadb_sa_auth; 3090 sav->alg_enc = sa0->sadb_sa_encrypt; 3091 sav->flags = sa0->sadb_sa_flags; 3092 3093 /* replay window */ 3094 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3095 sav->replay = (struct secreplay *) 3096 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3097 if (sav->replay == NULL) { 3098 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3099 __func__)); 3100 error = ENOBUFS; 3101 goto fail; 3102 } 3103 if (sa0->sadb_sa_replay != 0) 3104 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3105 sav->replay->wsize = sa0->sadb_sa_replay; 3106 } 3107 } 3108 3109 /* Authentication keys */ 3110 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3111 const struct sadb_key *key0; 3112 int len; 3113 3114 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3115 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3116 3117 error = 0; 3118 if (len < sizeof(*key0)) { 3119 error = EINVAL; 3120 goto fail; 3121 } 3122 switch (mhp->msg->sadb_msg_satype) { 3123 case SADB_SATYPE_AH: 3124 case SADB_SATYPE_ESP: 3125 case SADB_X_SATYPE_TCPSIGNATURE: 3126 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3127 sav->alg_auth != SADB_X_AALG_NULL) 3128 error = EINVAL; 3129 break; 3130 case SADB_X_SATYPE_IPCOMP: 3131 default: 3132 error = EINVAL; 3133 break; 3134 } 3135 if (error) { 3136 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3137 __func__)); 3138 goto fail; 3139 } 3140 3141 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3142 M_IPSEC_MISC); 3143 if (sav->key_auth == NULL ) { 3144 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3145 __func__)); 3146 error = ENOBUFS; 3147 goto fail; 3148 } 3149 } 3150 3151 /* Encryption key */ 3152 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3153 const struct sadb_key *key0; 3154 int len; 3155 3156 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3157 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3158 3159 error = 0; 3160 if (len < sizeof(*key0)) { 3161 error = EINVAL; 3162 goto fail; 3163 } 3164 switch (mhp->msg->sadb_msg_satype) { 3165 case SADB_SATYPE_ESP: 3166 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3167 sav->alg_enc != SADB_EALG_NULL) { 3168 error = EINVAL; 3169 break; 3170 } 3171 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3172 len, 3173 M_IPSEC_MISC); 3174 if (sav->key_enc == NULL) { 3175 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3176 __func__)); 3177 error = ENOBUFS; 3178 goto fail; 3179 } 3180 break; 3181 case SADB_X_SATYPE_IPCOMP: 3182 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3183 error = EINVAL; 3184 sav->key_enc = NULL; /*just in case*/ 3185 break; 3186 case SADB_SATYPE_AH: 3187 case SADB_X_SATYPE_TCPSIGNATURE: 3188 default: 3189 error = EINVAL; 3190 break; 3191 } 3192 if (error) { 3193 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3194 __func__)); 3195 goto fail; 3196 } 3197 } 3198 3199 /* set iv */ 3200 sav->ivlen = 0; 3201 3202 switch (mhp->msg->sadb_msg_satype) { 3203 case SADB_SATYPE_AH: 3204 error = xform_init(sav, XF_AH); 3205 break; 3206 case SADB_SATYPE_ESP: 3207 error = xform_init(sav, XF_ESP); 3208 break; 3209 case SADB_X_SATYPE_IPCOMP: 3210 error = xform_init(sav, XF_IPCOMP); 3211 break; 3212 case SADB_X_SATYPE_TCPSIGNATURE: 3213 error = xform_init(sav, XF_TCPSIGNATURE); 3214 break; 3215 } 3216 if (error) { 3217 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3218 __func__, mhp->msg->sadb_msg_satype)); 3219 goto fail; 3220 } 3221 3222 /* reset created */ 3223 sav->created = time_second; 3224 3225 /* make lifetime for CURRENT */ 3226 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3227 if (sav->lft_c == NULL) { 3228 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3229 error = ENOBUFS; 3230 goto fail; 3231 } 3232 3233 sav->lft_c->allocations = 0; 3234 sav->lft_c->bytes = 0; 3235 sav->lft_c->addtime = time_second; 3236 sav->lft_c->usetime = 0; 3237 3238 /* lifetimes for HARD and SOFT */ 3239 { 3240 const struct sadb_lifetime *lft0; 3241 3242 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3243 if (lft0 != NULL) { 3244 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3245 error = EINVAL; 3246 goto fail; 3247 } 3248 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3249 if (sav->lft_h == NULL) { 3250 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3251 error = ENOBUFS; 3252 goto fail; 3253 } 3254 /* to be initialize ? */ 3255 } 3256 3257 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3258 if (lft0 != NULL) { 3259 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3260 error = EINVAL; 3261 goto fail; 3262 } 3263 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3264 if (sav->lft_s == NULL) { 3265 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3266 error = ENOBUFS; 3267 goto fail; 3268 } 3269 /* to be initialize ? */ 3270 } 3271 } 3272 3273 return 0; 3274 3275 fail: 3276 /* initialization */ 3277 key_cleansav(sav); 3278 3279 return error; 3280 } 3281 3282 /* 3283 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3284 * OUT: 0: valid 3285 * other: errno 3286 */ 3287 static int 3288 key_mature(struct secasvar *sav) 3289 { 3290 int error; 3291 3292 /* check SPI value */ 3293 switch (sav->sah->saidx.proto) { 3294 case IPPROTO_ESP: 3295 case IPPROTO_AH: 3296 /* 3297 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3298 * 1-255 reserved by IANA for future use, 3299 * 0 for implementation specific, local use. 3300 */ 3301 if (ntohl(sav->spi) <= 255) { 3302 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3303 __func__, (u_int32_t)ntohl(sav->spi))); 3304 return EINVAL; 3305 } 3306 break; 3307 } 3308 3309 /* check satype */ 3310 switch (sav->sah->saidx.proto) { 3311 case IPPROTO_ESP: 3312 /* check flags */ 3313 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3314 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3315 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3316 "given to old-esp.\n", __func__)); 3317 return EINVAL; 3318 } 3319 error = xform_init(sav, XF_ESP); 3320 break; 3321 case IPPROTO_AH: 3322 /* check flags */ 3323 if (sav->flags & SADB_X_EXT_DERIV) { 3324 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3325 "given to AH SA.\n", __func__)); 3326 return EINVAL; 3327 } 3328 if (sav->alg_enc != SADB_EALG_NONE) { 3329 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3330 "mismated.\n", __func__)); 3331 return(EINVAL); 3332 } 3333 error = xform_init(sav, XF_AH); 3334 break; 3335 case IPPROTO_IPCOMP: 3336 if (sav->alg_auth != SADB_AALG_NONE) { 3337 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3338 "mismated.\n", __func__)); 3339 return(EINVAL); 3340 } 3341 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3342 && ntohl(sav->spi) >= 0x10000) { 3343 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3344 __func__)); 3345 return(EINVAL); 3346 } 3347 error = xform_init(sav, XF_IPCOMP); 3348 break; 3349 case IPPROTO_TCP: 3350 if (sav->alg_enc != SADB_EALG_NONE) { 3351 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3352 "mismated.\n", __func__)); 3353 return(EINVAL); 3354 } 3355 error = xform_init(sav, XF_TCPSIGNATURE); 3356 break; 3357 default: 3358 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3359 error = EPROTONOSUPPORT; 3360 break; 3361 } 3362 if (error == 0) { 3363 SAHTREE_LOCK(); 3364 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3365 SAHTREE_UNLOCK(); 3366 } 3367 return (error); 3368 } 3369 3370 /* 3371 * subroutine for SADB_GET and SADB_DUMP. 3372 */ 3373 static struct mbuf * 3374 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3375 u_int32_t seq, u_int32_t pid) 3376 { 3377 struct mbuf *result = NULL, *tres = NULL, *m; 3378 int i; 3379 int dumporder[] = { 3380 SADB_EXT_SA, SADB_X_EXT_SA2, 3381 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3382 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3383 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3384 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3385 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3386 #ifdef IPSEC_NAT_T 3387 SADB_X_EXT_NAT_T_TYPE, 3388 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3389 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3390 SADB_X_EXT_NAT_T_FRAG, 3391 #endif 3392 }; 3393 3394 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3395 if (m == NULL) 3396 goto fail; 3397 result = m; 3398 3399 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3400 m = NULL; 3401 switch (dumporder[i]) { 3402 case SADB_EXT_SA: 3403 m = key_setsadbsa(sav); 3404 if (!m) 3405 goto fail; 3406 break; 3407 3408 case SADB_X_EXT_SA2: 3409 m = key_setsadbxsa2(sav->sah->saidx.mode, 3410 sav->replay ? sav->replay->count : 0, 3411 sav->sah->saidx.reqid); 3412 if (!m) 3413 goto fail; 3414 break; 3415 3416 case SADB_EXT_ADDRESS_SRC: 3417 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3418 &sav->sah->saidx.src.sa, 3419 FULLMASK, IPSEC_ULPROTO_ANY); 3420 if (!m) 3421 goto fail; 3422 break; 3423 3424 case SADB_EXT_ADDRESS_DST: 3425 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3426 &sav->sah->saidx.dst.sa, 3427 FULLMASK, IPSEC_ULPROTO_ANY); 3428 if (!m) 3429 goto fail; 3430 break; 3431 3432 case SADB_EXT_KEY_AUTH: 3433 if (!sav->key_auth) 3434 continue; 3435 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3436 if (!m) 3437 goto fail; 3438 break; 3439 3440 case SADB_EXT_KEY_ENCRYPT: 3441 if (!sav->key_enc) 3442 continue; 3443 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3444 if (!m) 3445 goto fail; 3446 break; 3447 3448 case SADB_EXT_LIFETIME_CURRENT: 3449 if (!sav->lft_c) 3450 continue; 3451 m = key_setlifetime(sav->lft_c, 3452 SADB_EXT_LIFETIME_CURRENT); 3453 if (!m) 3454 goto fail; 3455 break; 3456 3457 case SADB_EXT_LIFETIME_HARD: 3458 if (!sav->lft_h) 3459 continue; 3460 m = key_setlifetime(sav->lft_h, 3461 SADB_EXT_LIFETIME_HARD); 3462 if (!m) 3463 goto fail; 3464 break; 3465 3466 case SADB_EXT_LIFETIME_SOFT: 3467 if (!sav->lft_s) 3468 continue; 3469 m = key_setlifetime(sav->lft_s, 3470 SADB_EXT_LIFETIME_SOFT); 3471 3472 if (!m) 3473 goto fail; 3474 break; 3475 3476 #ifdef IPSEC_NAT_T 3477 case SADB_X_EXT_NAT_T_TYPE: 3478 m = key_setsadbxtype(sav->natt_type); 3479 if (!m) 3480 goto fail; 3481 break; 3482 3483 case SADB_X_EXT_NAT_T_DPORT: 3484 m = key_setsadbxport( 3485 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3486 SADB_X_EXT_NAT_T_DPORT); 3487 if (!m) 3488 goto fail; 3489 break; 3490 3491 case SADB_X_EXT_NAT_T_SPORT: 3492 m = key_setsadbxport( 3493 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3494 SADB_X_EXT_NAT_T_SPORT); 3495 if (!m) 3496 goto fail; 3497 break; 3498 3499 case SADB_X_EXT_NAT_T_OAI: 3500 case SADB_X_EXT_NAT_T_OAR: 3501 case SADB_X_EXT_NAT_T_FRAG: 3502 /* We do not (yet) support those. */ 3503 continue; 3504 #endif 3505 3506 case SADB_EXT_ADDRESS_PROXY: 3507 case SADB_EXT_IDENTITY_SRC: 3508 case SADB_EXT_IDENTITY_DST: 3509 /* XXX: should we brought from SPD ? */ 3510 case SADB_EXT_SENSITIVITY: 3511 default: 3512 continue; 3513 } 3514 3515 if (!m) 3516 goto fail; 3517 if (tres) 3518 m_cat(m, tres); 3519 tres = m; 3520 3521 } 3522 3523 m_cat(result, tres); 3524 if (result->m_len < sizeof(struct sadb_msg)) { 3525 result = m_pullup(result, sizeof(struct sadb_msg)); 3526 if (result == NULL) 3527 goto fail; 3528 } 3529 3530 result->m_pkthdr.len = 0; 3531 for (m = result; m; m = m->m_next) 3532 result->m_pkthdr.len += m->m_len; 3533 3534 mtod(result, struct sadb_msg *)->sadb_msg_len = 3535 PFKEY_UNIT64(result->m_pkthdr.len); 3536 3537 return result; 3538 3539 fail: 3540 m_freem(result); 3541 m_freem(tres); 3542 return NULL; 3543 } 3544 3545 /* 3546 * set data into sadb_msg. 3547 */ 3548 static struct mbuf * 3549 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3550 pid_t pid, u_int16_t reserved) 3551 { 3552 struct mbuf *m; 3553 struct sadb_msg *p; 3554 int len; 3555 3556 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3557 if (len > MCLBYTES) 3558 return NULL; 3559 MGETHDR(m, M_NOWAIT, MT_DATA); 3560 if (m && len > MHLEN) { 3561 MCLGET(m, M_NOWAIT); 3562 if ((m->m_flags & M_EXT) == 0) { 3563 m_freem(m); 3564 m = NULL; 3565 } 3566 } 3567 if (!m) 3568 return NULL; 3569 m->m_pkthdr.len = m->m_len = len; 3570 m->m_next = NULL; 3571 3572 p = mtod(m, struct sadb_msg *); 3573 3574 bzero(p, len); 3575 p->sadb_msg_version = PF_KEY_V2; 3576 p->sadb_msg_type = type; 3577 p->sadb_msg_errno = 0; 3578 p->sadb_msg_satype = satype; 3579 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3580 p->sadb_msg_reserved = reserved; 3581 p->sadb_msg_seq = seq; 3582 p->sadb_msg_pid = (u_int32_t)pid; 3583 3584 return m; 3585 } 3586 3587 /* 3588 * copy secasvar data into sadb_address. 3589 */ 3590 static struct mbuf * 3591 key_setsadbsa(sav) 3592 struct secasvar *sav; 3593 { 3594 struct mbuf *m; 3595 struct sadb_sa *p; 3596 int len; 3597 3598 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3599 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3600 if (m == NULL) 3601 return (NULL); 3602 m_align(m, len); 3603 m->m_len = len; 3604 p = mtod(m, struct sadb_sa *); 3605 bzero(p, len); 3606 p->sadb_sa_len = PFKEY_UNIT64(len); 3607 p->sadb_sa_exttype = SADB_EXT_SA; 3608 p->sadb_sa_spi = sav->spi; 3609 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3610 p->sadb_sa_state = sav->state; 3611 p->sadb_sa_auth = sav->alg_auth; 3612 p->sadb_sa_encrypt = sav->alg_enc; 3613 p->sadb_sa_flags = sav->flags; 3614 3615 return m; 3616 } 3617 3618 /* 3619 * set data into sadb_address. 3620 */ 3621 static struct mbuf * 3622 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3623 { 3624 struct mbuf *m; 3625 struct sadb_address *p; 3626 size_t len; 3627 3628 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3629 PFKEY_ALIGN8(saddr->sa_len); 3630 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3631 if (m == NULL) 3632 return (NULL); 3633 m_align(m, len); 3634 m->m_len = len; 3635 p = mtod(m, struct sadb_address *); 3636 3637 bzero(p, len); 3638 p->sadb_address_len = PFKEY_UNIT64(len); 3639 p->sadb_address_exttype = exttype; 3640 p->sadb_address_proto = ul_proto; 3641 if (prefixlen == FULLMASK) { 3642 switch (saddr->sa_family) { 3643 case AF_INET: 3644 prefixlen = sizeof(struct in_addr) << 3; 3645 break; 3646 case AF_INET6: 3647 prefixlen = sizeof(struct in6_addr) << 3; 3648 break; 3649 default: 3650 ; /*XXX*/ 3651 } 3652 } 3653 p->sadb_address_prefixlen = prefixlen; 3654 p->sadb_address_reserved = 0; 3655 3656 bcopy(saddr, 3657 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3658 saddr->sa_len); 3659 3660 return m; 3661 } 3662 3663 /* 3664 * set data into sadb_x_sa2. 3665 */ 3666 static struct mbuf * 3667 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3668 { 3669 struct mbuf *m; 3670 struct sadb_x_sa2 *p; 3671 size_t len; 3672 3673 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3674 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3675 if (m == NULL) 3676 return (NULL); 3677 m_align(m, len); 3678 m->m_len = len; 3679 p = mtod(m, struct sadb_x_sa2 *); 3680 3681 bzero(p, len); 3682 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3683 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3684 p->sadb_x_sa2_mode = mode; 3685 p->sadb_x_sa2_reserved1 = 0; 3686 p->sadb_x_sa2_reserved2 = 0; 3687 p->sadb_x_sa2_sequence = seq; 3688 p->sadb_x_sa2_reqid = reqid; 3689 3690 return m; 3691 } 3692 3693 #ifdef IPSEC_NAT_T 3694 /* 3695 * Set a type in sadb_x_nat_t_type. 3696 */ 3697 static struct mbuf * 3698 key_setsadbxtype(u_int16_t type) 3699 { 3700 struct mbuf *m; 3701 size_t len; 3702 struct sadb_x_nat_t_type *p; 3703 3704 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3705 3706 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3707 if (m == NULL) 3708 return (NULL); 3709 m_align(m, len); 3710 m->m_len = len; 3711 p = mtod(m, struct sadb_x_nat_t_type *); 3712 3713 bzero(p, len); 3714 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3715 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3716 p->sadb_x_nat_t_type_type = type; 3717 3718 return (m); 3719 } 3720 /* 3721 * Set a port in sadb_x_nat_t_port. 3722 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3723 */ 3724 static struct mbuf * 3725 key_setsadbxport(u_int16_t port, u_int16_t type) 3726 { 3727 struct mbuf *m; 3728 size_t len; 3729 struct sadb_x_nat_t_port *p; 3730 3731 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3732 3733 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3734 if (m == NULL) 3735 return (NULL); 3736 m_align(m, len); 3737 m->m_len = len; 3738 p = mtod(m, struct sadb_x_nat_t_port *); 3739 3740 bzero(p, len); 3741 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3742 p->sadb_x_nat_t_port_exttype = type; 3743 p->sadb_x_nat_t_port_port = port; 3744 3745 return (m); 3746 } 3747 3748 /* 3749 * Get port from sockaddr. Port is in network byte order. 3750 */ 3751 u_int16_t 3752 key_portfromsaddr(struct sockaddr *sa) 3753 { 3754 3755 switch (sa->sa_family) { 3756 #ifdef INET 3757 case AF_INET: 3758 return ((struct sockaddr_in *)sa)->sin_port; 3759 #endif 3760 #ifdef INET6 3761 case AF_INET6: 3762 return ((struct sockaddr_in6 *)sa)->sin6_port; 3763 #endif 3764 } 3765 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3766 printf("DP %s unexpected address family %d\n", 3767 __func__, sa->sa_family)); 3768 return (0); 3769 } 3770 #endif /* IPSEC_NAT_T */ 3771 3772 /* 3773 * Set port in struct sockaddr. Port is in network byte order. 3774 */ 3775 static void 3776 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3777 { 3778 3779 switch (sa->sa_family) { 3780 #ifdef INET 3781 case AF_INET: 3782 ((struct sockaddr_in *)sa)->sin_port = port; 3783 break; 3784 #endif 3785 #ifdef INET6 3786 case AF_INET6: 3787 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3788 break; 3789 #endif 3790 default: 3791 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3792 __func__, sa->sa_family)); 3793 break; 3794 } 3795 } 3796 3797 /* 3798 * set data into sadb_x_policy 3799 */ 3800 static struct mbuf * 3801 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3802 { 3803 struct mbuf *m; 3804 struct sadb_x_policy *p; 3805 size_t len; 3806 3807 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3808 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3809 if (m == NULL) 3810 return (NULL); 3811 m_align(m, len); 3812 m->m_len = len; 3813 p = mtod(m, struct sadb_x_policy *); 3814 3815 bzero(p, len); 3816 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3817 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3818 p->sadb_x_policy_type = type; 3819 p->sadb_x_policy_dir = dir; 3820 p->sadb_x_policy_id = id; 3821 3822 return m; 3823 } 3824 3825 /* %%% utilities */ 3826 /* Take a key message (sadb_key) from the socket and turn it into one 3827 * of the kernel's key structures (seckey). 3828 * 3829 * IN: pointer to the src 3830 * OUT: NULL no more memory 3831 */ 3832 struct seckey * 3833 key_dup_keymsg(const struct sadb_key *src, u_int len, 3834 struct malloc_type *type) 3835 { 3836 struct seckey *dst; 3837 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3838 if (dst != NULL) { 3839 dst->bits = src->sadb_key_bits; 3840 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3841 if (dst->key_data != NULL) { 3842 bcopy((const char *)src + sizeof(struct sadb_key), 3843 dst->key_data, len); 3844 } else { 3845 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3846 __func__)); 3847 free(dst, type); 3848 dst = NULL; 3849 } 3850 } else { 3851 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3852 __func__)); 3853 3854 } 3855 return dst; 3856 } 3857 3858 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3859 * turn it into one of the kernel's lifetime structures (seclifetime). 3860 * 3861 * IN: pointer to the destination, source and malloc type 3862 * OUT: NULL, no more memory 3863 */ 3864 3865 static struct seclifetime * 3866 key_dup_lifemsg(const struct sadb_lifetime *src, 3867 struct malloc_type *type) 3868 { 3869 struct seclifetime *dst = NULL; 3870 3871 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3872 type, M_NOWAIT); 3873 if (dst == NULL) { 3874 /* XXX counter */ 3875 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3876 } else { 3877 dst->allocations = src->sadb_lifetime_allocations; 3878 dst->bytes = src->sadb_lifetime_bytes; 3879 dst->addtime = src->sadb_lifetime_addtime; 3880 dst->usetime = src->sadb_lifetime_usetime; 3881 } 3882 return dst; 3883 } 3884 3885 /* compare my own address 3886 * OUT: 1: true, i.e. my address. 3887 * 0: false 3888 */ 3889 int 3890 key_ismyaddr(sa) 3891 struct sockaddr *sa; 3892 { 3893 #ifdef INET 3894 struct sockaddr_in *sin; 3895 struct in_ifaddr *ia; 3896 #endif 3897 3898 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3899 3900 switch (sa->sa_family) { 3901 #ifdef INET 3902 case AF_INET: 3903 sin = (struct sockaddr_in *)sa; 3904 IN_IFADDR_RLOCK(); 3905 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 3906 { 3907 if (sin->sin_family == ia->ia_addr.sin_family && 3908 sin->sin_len == ia->ia_addr.sin_len && 3909 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 3910 { 3911 IN_IFADDR_RUNLOCK(); 3912 return 1; 3913 } 3914 } 3915 IN_IFADDR_RUNLOCK(); 3916 break; 3917 #endif 3918 #ifdef INET6 3919 case AF_INET6: 3920 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3921 #endif 3922 } 3923 3924 return 0; 3925 } 3926 3927 #ifdef INET6 3928 /* 3929 * compare my own address for IPv6. 3930 * 1: ours 3931 * 0: other 3932 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3933 */ 3934 #include <netinet6/in6_var.h> 3935 3936 static int 3937 key_ismyaddr6(sin6) 3938 struct sockaddr_in6 *sin6; 3939 { 3940 struct in6_ifaddr *ia; 3941 #if 0 3942 struct in6_multi *in6m; 3943 #endif 3944 3945 IN6_IFADDR_RLOCK(); 3946 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3947 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3948 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3949 IN6_IFADDR_RUNLOCK(); 3950 return 1; 3951 } 3952 3953 #if 0 3954 /* 3955 * XXX Multicast 3956 * XXX why do we care about multlicast here while we don't care 3957 * about IPv4 multicast?? 3958 * XXX scope 3959 */ 3960 in6m = NULL; 3961 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3962 if (in6m) { 3963 IN6_IFADDR_RUNLOCK(); 3964 return 1; 3965 } 3966 #endif 3967 } 3968 IN6_IFADDR_RUNLOCK(); 3969 3970 /* loopback, just for safety */ 3971 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3972 return 1; 3973 3974 return 0; 3975 } 3976 #endif /*INET6*/ 3977 3978 /* 3979 * compare two secasindex structure. 3980 * flag can specify to compare 2 saidxes. 3981 * compare two secasindex structure without both mode and reqid. 3982 * don't compare port. 3983 * IN: 3984 * saidx0: source, it can be in SAD. 3985 * saidx1: object. 3986 * OUT: 3987 * 1 : equal 3988 * 0 : not equal 3989 */ 3990 static int 3991 key_cmpsaidx( 3992 const struct secasindex *saidx0, 3993 const struct secasindex *saidx1, 3994 int flag) 3995 { 3996 int chkport = 0; 3997 3998 /* sanity */ 3999 if (saidx0 == NULL && saidx1 == NULL) 4000 return 1; 4001 4002 if (saidx0 == NULL || saidx1 == NULL) 4003 return 0; 4004 4005 if (saidx0->proto != saidx1->proto) 4006 return 0; 4007 4008 if (flag == CMP_EXACTLY) { 4009 if (saidx0->mode != saidx1->mode) 4010 return 0; 4011 if (saidx0->reqid != saidx1->reqid) 4012 return 0; 4013 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4014 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4015 return 0; 4016 } else { 4017 4018 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4019 if (flag == CMP_MODE_REQID 4020 ||flag == CMP_REQID) { 4021 /* 4022 * If reqid of SPD is non-zero, unique SA is required. 4023 * The result must be of same reqid in this case. 4024 */ 4025 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4026 return 0; 4027 } 4028 4029 if (flag == CMP_MODE_REQID) { 4030 if (saidx0->mode != IPSEC_MODE_ANY 4031 && saidx0->mode != saidx1->mode) 4032 return 0; 4033 } 4034 4035 #ifdef IPSEC_NAT_T 4036 /* 4037 * If NAT-T is enabled, check ports for tunnel mode. 4038 * Do not check ports if they are set to zero in the SPD. 4039 * Also do not do it for native transport mode, as there 4040 * is no port information available in the SP. 4041 */ 4042 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 4043 (saidx1->mode == IPSEC_MODE_TRANSPORT && 4044 saidx1->proto == IPPROTO_ESP)) && 4045 saidx1->src.sa.sa_family == AF_INET && 4046 saidx1->dst.sa.sa_family == AF_INET && 4047 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4048 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4049 chkport = 1; 4050 #endif /* IPSEC_NAT_T */ 4051 4052 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4053 return 0; 4054 } 4055 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4056 return 0; 4057 } 4058 } 4059 4060 return 1; 4061 } 4062 4063 /* 4064 * compare two secindex structure exactly. 4065 * IN: 4066 * spidx0: source, it is often in SPD. 4067 * spidx1: object, it is often from PFKEY message. 4068 * OUT: 4069 * 1 : equal 4070 * 0 : not equal 4071 */ 4072 static int 4073 key_cmpspidx_exactly( 4074 struct secpolicyindex *spidx0, 4075 struct secpolicyindex *spidx1) 4076 { 4077 /* sanity */ 4078 if (spidx0 == NULL && spidx1 == NULL) 4079 return 1; 4080 4081 if (spidx0 == NULL || spidx1 == NULL) 4082 return 0; 4083 4084 if (spidx0->prefs != spidx1->prefs 4085 || spidx0->prefd != spidx1->prefd 4086 || spidx0->ul_proto != spidx1->ul_proto) 4087 return 0; 4088 4089 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4090 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4091 } 4092 4093 /* 4094 * compare two secindex structure with mask. 4095 * IN: 4096 * spidx0: source, it is often in SPD. 4097 * spidx1: object, it is often from IP header. 4098 * OUT: 4099 * 1 : equal 4100 * 0 : not equal 4101 */ 4102 static int 4103 key_cmpspidx_withmask( 4104 struct secpolicyindex *spidx0, 4105 struct secpolicyindex *spidx1) 4106 { 4107 /* sanity */ 4108 if (spidx0 == NULL && spidx1 == NULL) 4109 return 1; 4110 4111 if (spidx0 == NULL || spidx1 == NULL) 4112 return 0; 4113 4114 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4115 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4116 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4117 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4118 return 0; 4119 4120 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4121 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4122 && spidx0->ul_proto != spidx1->ul_proto) 4123 return 0; 4124 4125 switch (spidx0->src.sa.sa_family) { 4126 case AF_INET: 4127 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4128 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4129 return 0; 4130 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4131 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4132 return 0; 4133 break; 4134 case AF_INET6: 4135 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4136 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4137 return 0; 4138 /* 4139 * scope_id check. if sin6_scope_id is 0, we regard it 4140 * as a wildcard scope, which matches any scope zone ID. 4141 */ 4142 if (spidx0->src.sin6.sin6_scope_id && 4143 spidx1->src.sin6.sin6_scope_id && 4144 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4145 return 0; 4146 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4147 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4148 return 0; 4149 break; 4150 default: 4151 /* XXX */ 4152 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4153 return 0; 4154 break; 4155 } 4156 4157 switch (spidx0->dst.sa.sa_family) { 4158 case AF_INET: 4159 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4160 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4161 return 0; 4162 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4163 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4164 return 0; 4165 break; 4166 case AF_INET6: 4167 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4168 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4169 return 0; 4170 /* 4171 * scope_id check. if sin6_scope_id is 0, we regard it 4172 * as a wildcard scope, which matches any scope zone ID. 4173 */ 4174 if (spidx0->dst.sin6.sin6_scope_id && 4175 spidx1->dst.sin6.sin6_scope_id && 4176 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4177 return 0; 4178 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4179 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4180 return 0; 4181 break; 4182 default: 4183 /* XXX */ 4184 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4185 return 0; 4186 break; 4187 } 4188 4189 /* XXX Do we check other field ? e.g. flowinfo */ 4190 4191 return 1; 4192 } 4193 4194 /* returns 0 on match */ 4195 static int 4196 key_sockaddrcmp( 4197 const struct sockaddr *sa1, 4198 const struct sockaddr *sa2, 4199 int port) 4200 { 4201 #ifdef satosin 4202 #undef satosin 4203 #endif 4204 #define satosin(s) ((const struct sockaddr_in *)s) 4205 #ifdef satosin6 4206 #undef satosin6 4207 #endif 4208 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4209 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4210 return 1; 4211 4212 switch (sa1->sa_family) { 4213 case AF_INET: 4214 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4215 return 1; 4216 if (satosin(sa1)->sin_addr.s_addr != 4217 satosin(sa2)->sin_addr.s_addr) { 4218 return 1; 4219 } 4220 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4221 return 1; 4222 break; 4223 case AF_INET6: 4224 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4225 return 1; /*EINVAL*/ 4226 if (satosin6(sa1)->sin6_scope_id != 4227 satosin6(sa2)->sin6_scope_id) { 4228 return 1; 4229 } 4230 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4231 &satosin6(sa2)->sin6_addr)) { 4232 return 1; 4233 } 4234 if (port && 4235 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4236 return 1; 4237 } 4238 break; 4239 default: 4240 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4241 return 1; 4242 break; 4243 } 4244 4245 return 0; 4246 #undef satosin 4247 #undef satosin6 4248 } 4249 4250 /* 4251 * compare two buffers with mask. 4252 * IN: 4253 * addr1: source 4254 * addr2: object 4255 * bits: Number of bits to compare 4256 * OUT: 4257 * 1 : equal 4258 * 0 : not equal 4259 */ 4260 static int 4261 key_bbcmp(const void *a1, const void *a2, u_int bits) 4262 { 4263 const unsigned char *p1 = a1; 4264 const unsigned char *p2 = a2; 4265 4266 /* XXX: This could be considerably faster if we compare a word 4267 * at a time, but it is complicated on LSB Endian machines */ 4268 4269 /* Handle null pointers */ 4270 if (p1 == NULL || p2 == NULL) 4271 return (p1 == p2); 4272 4273 while (bits >= 8) { 4274 if (*p1++ != *p2++) 4275 return 0; 4276 bits -= 8; 4277 } 4278 4279 if (bits > 0) { 4280 u_int8_t mask = ~((1<<(8-bits))-1); 4281 if ((*p1 & mask) != (*p2 & mask)) 4282 return 0; 4283 } 4284 return 1; /* Match! */ 4285 } 4286 4287 static void 4288 key_flush_spd(time_t now) 4289 { 4290 static u_int16_t sptree_scangen = 0; 4291 u_int16_t gen = sptree_scangen++; 4292 struct secpolicy *sp; 4293 u_int dir; 4294 4295 /* SPD */ 4296 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4297 restart: 4298 SPTREE_LOCK(); 4299 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4300 if (sp->scangen == gen) /* previously handled */ 4301 continue; 4302 sp->scangen = gen; 4303 if (sp->state == IPSEC_SPSTATE_DEAD && 4304 sp->refcnt == 1) { 4305 /* 4306 * Ensure that we only decrease refcnt once, 4307 * when we're the last consumer. 4308 * Directly call SP_DELREF/key_delsp instead 4309 * of KEY_FREESP to avoid unlocking/relocking 4310 * SPTREE_LOCK before key_delsp: may refcnt 4311 * be increased again during that time ? 4312 * NB: also clean entries created by 4313 * key_spdflush 4314 */ 4315 SP_DELREF(sp); 4316 key_delsp(sp); 4317 SPTREE_UNLOCK(); 4318 goto restart; 4319 } 4320 if (sp->lifetime == 0 && sp->validtime == 0) 4321 continue; 4322 if ((sp->lifetime && now - sp->created > sp->lifetime) 4323 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4324 sp->state = IPSEC_SPSTATE_DEAD; 4325 SPTREE_UNLOCK(); 4326 key_spdexpire(sp); 4327 goto restart; 4328 } 4329 } 4330 SPTREE_UNLOCK(); 4331 } 4332 } 4333 4334 static void 4335 key_flush_sad(time_t now) 4336 { 4337 struct secashead *sah, *nextsah; 4338 struct secasvar *sav, *nextsav; 4339 4340 /* SAD */ 4341 SAHTREE_LOCK(); 4342 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4343 /* if sah has been dead, then delete it and process next sah. */ 4344 if (sah->state == SADB_SASTATE_DEAD) { 4345 key_delsah(sah); 4346 continue; 4347 } 4348 4349 /* if LARVAL entry doesn't become MATURE, delete it. */ 4350 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4351 /* Need to also check refcnt for a larval SA ??? */ 4352 if (now - sav->created > V_key_larval_lifetime) 4353 KEY_FREESAV(&sav); 4354 } 4355 4356 /* 4357 * check MATURE entry to start to send expire message 4358 * whether or not. 4359 */ 4360 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4361 /* we don't need to check. */ 4362 if (sav->lft_s == NULL) 4363 continue; 4364 4365 /* sanity check */ 4366 if (sav->lft_c == NULL) { 4367 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4368 "time, why?\n", __func__)); 4369 continue; 4370 } 4371 4372 /* check SOFT lifetime */ 4373 if (sav->lft_s->addtime != 0 && 4374 now - sav->created > sav->lft_s->addtime) { 4375 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4376 /* 4377 * Actually, only send expire message if 4378 * SA has been used, as it was done before, 4379 * but should we always send such message, 4380 * and let IKE daemon decide if it should be 4381 * renegotiated or not ? 4382 * XXX expire message will actually NOT be 4383 * sent if SA is only used after soft 4384 * lifetime has been reached, see below 4385 * (DYING state) 4386 */ 4387 if (sav->lft_c->usetime != 0) 4388 key_expire(sav); 4389 } 4390 /* check SOFT lifetime by bytes */ 4391 /* 4392 * XXX I don't know the way to delete this SA 4393 * when new SA is installed. Caution when it's 4394 * installed too big lifetime by time. 4395 */ 4396 else if (sav->lft_s->bytes != 0 && 4397 sav->lft_s->bytes < sav->lft_c->bytes) { 4398 4399 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4400 /* 4401 * XXX If we keep to send expire 4402 * message in the status of 4403 * DYING. Do remove below code. 4404 */ 4405 key_expire(sav); 4406 } 4407 } 4408 4409 /* check DYING entry to change status to DEAD. */ 4410 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4411 /* we don't need to check. */ 4412 if (sav->lft_h == NULL) 4413 continue; 4414 4415 /* sanity check */ 4416 if (sav->lft_c == NULL) { 4417 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4418 "time, why?\n", __func__)); 4419 continue; 4420 } 4421 4422 if (sav->lft_h->addtime != 0 && 4423 now - sav->created > sav->lft_h->addtime) { 4424 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4425 KEY_FREESAV(&sav); 4426 } 4427 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4428 else if (sav->lft_s != NULL 4429 && sav->lft_s->addtime != 0 4430 && now - sav->created > sav->lft_s->addtime) { 4431 /* 4432 * XXX: should be checked to be 4433 * installed the valid SA. 4434 */ 4435 4436 /* 4437 * If there is no SA then sending 4438 * expire message. 4439 */ 4440 key_expire(sav); 4441 } 4442 #endif 4443 /* check HARD lifetime by bytes */ 4444 else if (sav->lft_h->bytes != 0 && 4445 sav->lft_h->bytes < sav->lft_c->bytes) { 4446 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4447 KEY_FREESAV(&sav); 4448 } 4449 } 4450 4451 /* delete entry in DEAD */ 4452 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4453 /* sanity check */ 4454 if (sav->state != SADB_SASTATE_DEAD) { 4455 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4456 "(queue: %d SA: %d): kill it anyway\n", 4457 __func__, 4458 SADB_SASTATE_DEAD, sav->state)); 4459 } 4460 /* 4461 * do not call key_freesav() here. 4462 * sav should already be freed, and sav->refcnt 4463 * shows other references to sav 4464 * (such as from SPD). 4465 */ 4466 } 4467 } 4468 SAHTREE_UNLOCK(); 4469 } 4470 4471 static void 4472 key_flush_acq(time_t now) 4473 { 4474 struct secacq *acq, *nextacq; 4475 4476 /* ACQ tree */ 4477 ACQ_LOCK(); 4478 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4479 nextacq = LIST_NEXT(acq, chain); 4480 if (now - acq->created > V_key_blockacq_lifetime 4481 && __LIST_CHAINED(acq)) { 4482 LIST_REMOVE(acq, chain); 4483 free(acq, M_IPSEC_SAQ); 4484 } 4485 } 4486 ACQ_UNLOCK(); 4487 } 4488 4489 static void 4490 key_flush_spacq(time_t now) 4491 { 4492 struct secspacq *acq, *nextacq; 4493 4494 /* SP ACQ tree */ 4495 SPACQ_LOCK(); 4496 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4497 nextacq = LIST_NEXT(acq, chain); 4498 if (now - acq->created > V_key_blockacq_lifetime 4499 && __LIST_CHAINED(acq)) { 4500 LIST_REMOVE(acq, chain); 4501 free(acq, M_IPSEC_SAQ); 4502 } 4503 } 4504 SPACQ_UNLOCK(); 4505 } 4506 4507 /* 4508 * time handler. 4509 * scanning SPD and SAD to check status for each entries, 4510 * and do to remove or to expire. 4511 * XXX: year 2038 problem may remain. 4512 */ 4513 void 4514 key_timehandler(void) 4515 { 4516 VNET_ITERATOR_DECL(vnet_iter); 4517 time_t now = time_second; 4518 4519 VNET_LIST_RLOCK_NOSLEEP(); 4520 VNET_FOREACH(vnet_iter) { 4521 CURVNET_SET(vnet_iter); 4522 key_flush_spd(now); 4523 key_flush_sad(now); 4524 key_flush_acq(now); 4525 key_flush_spacq(now); 4526 CURVNET_RESTORE(); 4527 } 4528 VNET_LIST_RUNLOCK_NOSLEEP(); 4529 4530 #ifndef IPSEC_DEBUG2 4531 /* do exchange to tick time !! */ 4532 (void)timeout((void *)key_timehandler, (void *)0, hz); 4533 #endif /* IPSEC_DEBUG2 */ 4534 } 4535 4536 u_long 4537 key_random() 4538 { 4539 u_long value; 4540 4541 key_randomfill(&value, sizeof(value)); 4542 return value; 4543 } 4544 4545 void 4546 key_randomfill(p, l) 4547 void *p; 4548 size_t l; 4549 { 4550 size_t n; 4551 u_long v; 4552 static int warn = 1; 4553 4554 n = 0; 4555 n = (size_t)read_random(p, (u_int)l); 4556 /* last resort */ 4557 while (n < l) { 4558 v = random(); 4559 bcopy(&v, (u_int8_t *)p + n, 4560 l - n < sizeof(v) ? l - n : sizeof(v)); 4561 n += sizeof(v); 4562 4563 if (warn) { 4564 printf("WARNING: pseudo-random number generator " 4565 "used for IPsec processing\n"); 4566 warn = 0; 4567 } 4568 } 4569 } 4570 4571 /* 4572 * map SADB_SATYPE_* to IPPROTO_*. 4573 * if satype == SADB_SATYPE then satype is mapped to ~0. 4574 * OUT: 4575 * 0: invalid satype. 4576 */ 4577 static u_int16_t 4578 key_satype2proto(u_int8_t satype) 4579 { 4580 switch (satype) { 4581 case SADB_SATYPE_UNSPEC: 4582 return IPSEC_PROTO_ANY; 4583 case SADB_SATYPE_AH: 4584 return IPPROTO_AH; 4585 case SADB_SATYPE_ESP: 4586 return IPPROTO_ESP; 4587 case SADB_X_SATYPE_IPCOMP: 4588 return IPPROTO_IPCOMP; 4589 case SADB_X_SATYPE_TCPSIGNATURE: 4590 return IPPROTO_TCP; 4591 default: 4592 return 0; 4593 } 4594 /* NOTREACHED */ 4595 } 4596 4597 /* 4598 * map IPPROTO_* to SADB_SATYPE_* 4599 * OUT: 4600 * 0: invalid protocol type. 4601 */ 4602 static u_int8_t 4603 key_proto2satype(u_int16_t proto) 4604 { 4605 switch (proto) { 4606 case IPPROTO_AH: 4607 return SADB_SATYPE_AH; 4608 case IPPROTO_ESP: 4609 return SADB_SATYPE_ESP; 4610 case IPPROTO_IPCOMP: 4611 return SADB_X_SATYPE_IPCOMP; 4612 case IPPROTO_TCP: 4613 return SADB_X_SATYPE_TCPSIGNATURE; 4614 default: 4615 return 0; 4616 } 4617 /* NOTREACHED */ 4618 } 4619 4620 /* %%% PF_KEY */ 4621 /* 4622 * SADB_GETSPI processing is to receive 4623 * <base, (SA2), src address, dst address, (SPI range)> 4624 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4625 * tree with the status of LARVAL, and send 4626 * <base, SA(*), address(SD)> 4627 * to the IKMPd. 4628 * 4629 * IN: mhp: pointer to the pointer to each header. 4630 * OUT: NULL if fail. 4631 * other if success, return pointer to the message to send. 4632 */ 4633 static int 4634 key_getspi(so, m, mhp) 4635 struct socket *so; 4636 struct mbuf *m; 4637 const struct sadb_msghdr *mhp; 4638 { 4639 struct sadb_address *src0, *dst0; 4640 struct secasindex saidx; 4641 struct secashead *newsah; 4642 struct secasvar *newsav; 4643 u_int8_t proto; 4644 u_int32_t spi; 4645 u_int8_t mode; 4646 u_int32_t reqid; 4647 int error; 4648 4649 IPSEC_ASSERT(so != NULL, ("null socket")); 4650 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4651 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4652 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4653 4654 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4655 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4656 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4657 __func__)); 4658 return key_senderror(so, m, EINVAL); 4659 } 4660 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4661 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4662 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4663 __func__)); 4664 return key_senderror(so, m, EINVAL); 4665 } 4666 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4667 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4668 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4669 } else { 4670 mode = IPSEC_MODE_ANY; 4671 reqid = 0; 4672 } 4673 4674 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4675 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4676 4677 /* map satype to proto */ 4678 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4679 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4680 __func__)); 4681 return key_senderror(so, m, EINVAL); 4682 } 4683 4684 /* 4685 * Make sure the port numbers are zero. 4686 * In case of NAT-T we will update them later if needed. 4687 */ 4688 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4689 case AF_INET: 4690 if (((struct sockaddr *)(src0 + 1))->sa_len != 4691 sizeof(struct sockaddr_in)) 4692 return key_senderror(so, m, EINVAL); 4693 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4694 break; 4695 case AF_INET6: 4696 if (((struct sockaddr *)(src0 + 1))->sa_len != 4697 sizeof(struct sockaddr_in6)) 4698 return key_senderror(so, m, EINVAL); 4699 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4700 break; 4701 default: 4702 ; /*???*/ 4703 } 4704 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4705 case AF_INET: 4706 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4707 sizeof(struct sockaddr_in)) 4708 return key_senderror(so, m, EINVAL); 4709 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4710 break; 4711 case AF_INET6: 4712 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4713 sizeof(struct sockaddr_in6)) 4714 return key_senderror(so, m, EINVAL); 4715 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4716 break; 4717 default: 4718 ; /*???*/ 4719 } 4720 4721 /* XXX boundary check against sa_len */ 4722 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4723 4724 #ifdef IPSEC_NAT_T 4725 /* 4726 * Handle NAT-T info if present. 4727 * We made sure the port numbers are zero above, so we do 4728 * not have to worry in case we do not update them. 4729 */ 4730 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4731 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4732 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4733 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4734 4735 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4736 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4737 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4738 struct sadb_x_nat_t_type *type; 4739 struct sadb_x_nat_t_port *sport, *dport; 4740 4741 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4742 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4743 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4744 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4745 "passed.\n", __func__)); 4746 return key_senderror(so, m, EINVAL); 4747 } 4748 4749 sport = (struct sadb_x_nat_t_port *) 4750 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4751 dport = (struct sadb_x_nat_t_port *) 4752 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4753 4754 if (sport) 4755 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4756 if (dport) 4757 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4758 } 4759 #endif 4760 4761 /* SPI allocation */ 4762 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4763 &saidx); 4764 if (spi == 0) 4765 return key_senderror(so, m, EINVAL); 4766 4767 /* get a SA index */ 4768 if ((newsah = key_getsah(&saidx)) == NULL) { 4769 /* create a new SA index */ 4770 if ((newsah = key_newsah(&saidx)) == NULL) { 4771 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4772 return key_senderror(so, m, ENOBUFS); 4773 } 4774 } 4775 4776 /* get a new SA */ 4777 /* XXX rewrite */ 4778 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4779 if (newsav == NULL) { 4780 /* XXX don't free new SA index allocated in above. */ 4781 return key_senderror(so, m, error); 4782 } 4783 4784 /* set spi */ 4785 newsav->spi = htonl(spi); 4786 4787 /* delete the entry in acqtree */ 4788 if (mhp->msg->sadb_msg_seq != 0) { 4789 struct secacq *acq; 4790 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4791 /* reset counter in order to deletion by timehandler. */ 4792 acq->created = time_second; 4793 acq->count = 0; 4794 } 4795 } 4796 4797 { 4798 struct mbuf *n, *nn; 4799 struct sadb_sa *m_sa; 4800 struct sadb_msg *newmsg; 4801 int off, len; 4802 4803 /* create new sadb_msg to reply. */ 4804 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4805 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4806 4807 MGETHDR(n, M_NOWAIT, MT_DATA); 4808 if (len > MHLEN) { 4809 MCLGET(n, M_NOWAIT); 4810 if ((n->m_flags & M_EXT) == 0) { 4811 m_freem(n); 4812 n = NULL; 4813 } 4814 } 4815 if (!n) 4816 return key_senderror(so, m, ENOBUFS); 4817 4818 n->m_len = len; 4819 n->m_next = NULL; 4820 off = 0; 4821 4822 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4823 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4824 4825 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4826 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4827 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4828 m_sa->sadb_sa_spi = htonl(spi); 4829 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4830 4831 IPSEC_ASSERT(off == len, 4832 ("length inconsistency (off %u len %u)", off, len)); 4833 4834 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4835 SADB_EXT_ADDRESS_DST); 4836 if (!n->m_next) { 4837 m_freem(n); 4838 return key_senderror(so, m, ENOBUFS); 4839 } 4840 4841 if (n->m_len < sizeof(struct sadb_msg)) { 4842 n = m_pullup(n, sizeof(struct sadb_msg)); 4843 if (n == NULL) 4844 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4845 } 4846 4847 n->m_pkthdr.len = 0; 4848 for (nn = n; nn; nn = nn->m_next) 4849 n->m_pkthdr.len += nn->m_len; 4850 4851 newmsg = mtod(n, struct sadb_msg *); 4852 newmsg->sadb_msg_seq = newsav->seq; 4853 newmsg->sadb_msg_errno = 0; 4854 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4855 4856 m_freem(m); 4857 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4858 } 4859 } 4860 4861 /* 4862 * allocating new SPI 4863 * called by key_getspi(). 4864 * OUT: 4865 * 0: failure. 4866 * others: success. 4867 */ 4868 static u_int32_t 4869 key_do_getnewspi(spirange, saidx) 4870 struct sadb_spirange *spirange; 4871 struct secasindex *saidx; 4872 { 4873 u_int32_t newspi; 4874 u_int32_t min, max; 4875 int count = V_key_spi_trycnt; 4876 4877 /* set spi range to allocate */ 4878 if (spirange != NULL) { 4879 min = spirange->sadb_spirange_min; 4880 max = spirange->sadb_spirange_max; 4881 } else { 4882 min = V_key_spi_minval; 4883 max = V_key_spi_maxval; 4884 } 4885 /* IPCOMP needs 2-byte SPI */ 4886 if (saidx->proto == IPPROTO_IPCOMP) { 4887 u_int32_t t; 4888 if (min >= 0x10000) 4889 min = 0xffff; 4890 if (max >= 0x10000) 4891 max = 0xffff; 4892 if (min > max) { 4893 t = min; min = max; max = t; 4894 } 4895 } 4896 4897 if (min == max) { 4898 if (key_checkspidup(saidx, min) != NULL) { 4899 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4900 __func__, min)); 4901 return 0; 4902 } 4903 4904 count--; /* taking one cost. */ 4905 newspi = min; 4906 4907 } else { 4908 4909 /* init SPI */ 4910 newspi = 0; 4911 4912 /* when requesting to allocate spi ranged */ 4913 while (count--) { 4914 /* generate pseudo-random SPI value ranged. */ 4915 newspi = min + (key_random() % (max - min + 1)); 4916 4917 if (key_checkspidup(saidx, newspi) == NULL) 4918 break; 4919 } 4920 4921 if (count == 0 || newspi == 0) { 4922 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4923 __func__)); 4924 return 0; 4925 } 4926 } 4927 4928 /* statistics */ 4929 keystat.getspi_count = 4930 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4931 4932 return newspi; 4933 } 4934 4935 /* 4936 * SADB_UPDATE processing 4937 * receive 4938 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4939 * key(AE), (identity(SD),) (sensitivity)> 4940 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4941 * and send 4942 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4943 * (identity(SD),) (sensitivity)> 4944 * to the ikmpd. 4945 * 4946 * m will always be freed. 4947 */ 4948 static int 4949 key_update(so, m, mhp) 4950 struct socket *so; 4951 struct mbuf *m; 4952 const struct sadb_msghdr *mhp; 4953 { 4954 struct sadb_sa *sa0; 4955 struct sadb_address *src0, *dst0; 4956 #ifdef IPSEC_NAT_T 4957 struct sadb_x_nat_t_type *type; 4958 struct sadb_x_nat_t_port *sport, *dport; 4959 struct sadb_address *iaddr, *raddr; 4960 struct sadb_x_nat_t_frag *frag; 4961 #endif 4962 struct secasindex saidx; 4963 struct secashead *sah; 4964 struct secasvar *sav; 4965 u_int16_t proto; 4966 u_int8_t mode; 4967 u_int32_t reqid; 4968 int error; 4969 4970 IPSEC_ASSERT(so != NULL, ("null socket")); 4971 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4972 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4973 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4974 4975 /* map satype to proto */ 4976 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4977 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4978 __func__)); 4979 return key_senderror(so, m, EINVAL); 4980 } 4981 4982 if (mhp->ext[SADB_EXT_SA] == NULL || 4983 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4984 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4985 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4986 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4987 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4988 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4989 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4990 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4991 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4992 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4993 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4994 __func__)); 4995 return key_senderror(so, m, EINVAL); 4996 } 4997 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4998 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4999 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5000 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5001 __func__)); 5002 return key_senderror(so, m, EINVAL); 5003 } 5004 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5005 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5006 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5007 } else { 5008 mode = IPSEC_MODE_ANY; 5009 reqid = 0; 5010 } 5011 /* XXX boundary checking for other extensions */ 5012 5013 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5014 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5015 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5016 5017 /* XXX boundary check against sa_len */ 5018 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5019 5020 /* 5021 * Make sure the port numbers are zero. 5022 * In case of NAT-T we will update them later if needed. 5023 */ 5024 KEY_PORTTOSADDR(&saidx.src, 0); 5025 KEY_PORTTOSADDR(&saidx.dst, 0); 5026 5027 #ifdef IPSEC_NAT_T 5028 /* 5029 * Handle NAT-T info if present. 5030 */ 5031 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5032 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5033 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5034 5035 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5036 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5037 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5038 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5039 __func__)); 5040 return key_senderror(so, m, EINVAL); 5041 } 5042 5043 type = (struct sadb_x_nat_t_type *) 5044 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5045 sport = (struct sadb_x_nat_t_port *) 5046 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5047 dport = (struct sadb_x_nat_t_port *) 5048 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5049 } else { 5050 type = 0; 5051 sport = dport = 0; 5052 } 5053 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5054 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5055 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5056 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5057 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5058 __func__)); 5059 return key_senderror(so, m, EINVAL); 5060 } 5061 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5062 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5063 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5064 } else { 5065 iaddr = raddr = NULL; 5066 } 5067 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5068 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5069 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5070 __func__)); 5071 return key_senderror(so, m, EINVAL); 5072 } 5073 frag = (struct sadb_x_nat_t_frag *) 5074 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5075 } else { 5076 frag = 0; 5077 } 5078 #endif 5079 5080 /* get a SA header */ 5081 if ((sah = key_getsah(&saidx)) == NULL) { 5082 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5083 return key_senderror(so, m, ENOENT); 5084 } 5085 5086 /* set spidx if there */ 5087 /* XXX rewrite */ 5088 error = key_setident(sah, m, mhp); 5089 if (error) 5090 return key_senderror(so, m, error); 5091 5092 /* find a SA with sequence number. */ 5093 #ifdef IPSEC_DOSEQCHECK 5094 if (mhp->msg->sadb_msg_seq != 0 5095 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5096 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5097 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5098 return key_senderror(so, m, ENOENT); 5099 } 5100 #else 5101 SAHTREE_LOCK(); 5102 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5103 SAHTREE_UNLOCK(); 5104 if (sav == NULL) { 5105 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5106 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5107 return key_senderror(so, m, EINVAL); 5108 } 5109 #endif 5110 5111 /* validity check */ 5112 if (sav->sah->saidx.proto != proto) { 5113 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5114 "(DB=%u param=%u)\n", __func__, 5115 sav->sah->saidx.proto, proto)); 5116 return key_senderror(so, m, EINVAL); 5117 } 5118 #ifdef IPSEC_DOSEQCHECK 5119 if (sav->spi != sa0->sadb_sa_spi) { 5120 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5121 __func__, 5122 (u_int32_t)ntohl(sav->spi), 5123 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5124 return key_senderror(so, m, EINVAL); 5125 } 5126 #endif 5127 if (sav->pid != mhp->msg->sadb_msg_pid) { 5128 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5129 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5130 return key_senderror(so, m, EINVAL); 5131 } 5132 5133 /* copy sav values */ 5134 error = key_setsaval(sav, m, mhp); 5135 if (error) { 5136 KEY_FREESAV(&sav); 5137 return key_senderror(so, m, error); 5138 } 5139 5140 #ifdef IPSEC_NAT_T 5141 /* 5142 * Handle more NAT-T info if present, 5143 * now that we have a sav to fill. 5144 */ 5145 if (type) 5146 sav->natt_type = type->sadb_x_nat_t_type_type; 5147 5148 if (sport) 5149 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5150 sport->sadb_x_nat_t_port_port); 5151 if (dport) 5152 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5153 dport->sadb_x_nat_t_port_port); 5154 5155 #if 0 5156 /* 5157 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5158 * We should actually check for a minimum MTU here, if we 5159 * want to support it in ip_output. 5160 */ 5161 if (frag) 5162 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5163 #endif 5164 #endif 5165 5166 /* check SA values to be mature. */ 5167 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5168 KEY_FREESAV(&sav); 5169 return key_senderror(so, m, 0); 5170 } 5171 5172 { 5173 struct mbuf *n; 5174 5175 /* set msg buf from mhp */ 5176 n = key_getmsgbuf_x1(m, mhp); 5177 if (n == NULL) { 5178 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5179 return key_senderror(so, m, ENOBUFS); 5180 } 5181 5182 m_freem(m); 5183 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5184 } 5185 } 5186 5187 /* 5188 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5189 * only called by key_update(). 5190 * OUT: 5191 * NULL : not found 5192 * others : found, pointer to a SA. 5193 */ 5194 #ifdef IPSEC_DOSEQCHECK 5195 static struct secasvar * 5196 key_getsavbyseq(sah, seq) 5197 struct secashead *sah; 5198 u_int32_t seq; 5199 { 5200 struct secasvar *sav; 5201 u_int state; 5202 5203 state = SADB_SASTATE_LARVAL; 5204 5205 /* search SAD with sequence number ? */ 5206 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5207 5208 KEY_CHKSASTATE(state, sav->state, __func__); 5209 5210 if (sav->seq == seq) { 5211 sa_addref(sav); 5212 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5213 printf("DP %s cause refcnt++:%d SA:%p\n", 5214 __func__, sav->refcnt, sav)); 5215 return sav; 5216 } 5217 } 5218 5219 return NULL; 5220 } 5221 #endif 5222 5223 /* 5224 * SADB_ADD processing 5225 * add an entry to SA database, when received 5226 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5227 * key(AE), (identity(SD),) (sensitivity)> 5228 * from the ikmpd, 5229 * and send 5230 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5231 * (identity(SD),) (sensitivity)> 5232 * to the ikmpd. 5233 * 5234 * IGNORE identity and sensitivity messages. 5235 * 5236 * m will always be freed. 5237 */ 5238 static int 5239 key_add(so, m, mhp) 5240 struct socket *so; 5241 struct mbuf *m; 5242 const struct sadb_msghdr *mhp; 5243 { 5244 struct sadb_sa *sa0; 5245 struct sadb_address *src0, *dst0; 5246 #ifdef IPSEC_NAT_T 5247 struct sadb_x_nat_t_type *type; 5248 struct sadb_address *iaddr, *raddr; 5249 struct sadb_x_nat_t_frag *frag; 5250 #endif 5251 struct secasindex saidx; 5252 struct secashead *newsah; 5253 struct secasvar *newsav; 5254 u_int16_t proto; 5255 u_int8_t mode; 5256 u_int32_t reqid; 5257 int error; 5258 5259 IPSEC_ASSERT(so != NULL, ("null socket")); 5260 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5261 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5262 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5263 5264 /* map satype to proto */ 5265 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5266 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5267 __func__)); 5268 return key_senderror(so, m, EINVAL); 5269 } 5270 5271 if (mhp->ext[SADB_EXT_SA] == NULL || 5272 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5273 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5274 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5275 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5276 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5277 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5278 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5279 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5280 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5281 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5282 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5283 __func__)); 5284 return key_senderror(so, m, EINVAL); 5285 } 5286 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5287 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5288 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5289 /* XXX need more */ 5290 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5291 __func__)); 5292 return key_senderror(so, m, EINVAL); 5293 } 5294 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5295 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5296 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5297 } else { 5298 mode = IPSEC_MODE_ANY; 5299 reqid = 0; 5300 } 5301 5302 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5303 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5304 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5305 5306 /* XXX boundary check against sa_len */ 5307 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5308 5309 /* 5310 * Make sure the port numbers are zero. 5311 * In case of NAT-T we will update them later if needed. 5312 */ 5313 KEY_PORTTOSADDR(&saidx.src, 0); 5314 KEY_PORTTOSADDR(&saidx.dst, 0); 5315 5316 #ifdef IPSEC_NAT_T 5317 /* 5318 * Handle NAT-T info if present. 5319 */ 5320 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5321 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5322 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5323 struct sadb_x_nat_t_port *sport, *dport; 5324 5325 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5326 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5327 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5328 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5329 __func__)); 5330 return key_senderror(so, m, EINVAL); 5331 } 5332 5333 type = (struct sadb_x_nat_t_type *) 5334 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5335 sport = (struct sadb_x_nat_t_port *) 5336 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5337 dport = (struct sadb_x_nat_t_port *) 5338 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5339 5340 if (sport) 5341 KEY_PORTTOSADDR(&saidx.src, 5342 sport->sadb_x_nat_t_port_port); 5343 if (dport) 5344 KEY_PORTTOSADDR(&saidx.dst, 5345 dport->sadb_x_nat_t_port_port); 5346 } else { 5347 type = 0; 5348 } 5349 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5350 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5351 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5352 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5353 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5354 __func__)); 5355 return key_senderror(so, m, EINVAL); 5356 } 5357 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5358 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5359 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5360 } else { 5361 iaddr = raddr = NULL; 5362 } 5363 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5364 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5365 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5366 __func__)); 5367 return key_senderror(so, m, EINVAL); 5368 } 5369 frag = (struct sadb_x_nat_t_frag *) 5370 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5371 } else { 5372 frag = 0; 5373 } 5374 #endif 5375 5376 /* get a SA header */ 5377 if ((newsah = key_getsah(&saidx)) == NULL) { 5378 /* create a new SA header */ 5379 if ((newsah = key_newsah(&saidx)) == NULL) { 5380 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5381 return key_senderror(so, m, ENOBUFS); 5382 } 5383 } 5384 5385 /* set spidx if there */ 5386 /* XXX rewrite */ 5387 error = key_setident(newsah, m, mhp); 5388 if (error) { 5389 return key_senderror(so, m, error); 5390 } 5391 5392 /* create new SA entry. */ 5393 /* We can create new SA only if SPI is differenct. */ 5394 SAHTREE_LOCK(); 5395 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5396 SAHTREE_UNLOCK(); 5397 if (newsav != NULL) { 5398 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5399 return key_senderror(so, m, EEXIST); 5400 } 5401 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5402 if (newsav == NULL) { 5403 return key_senderror(so, m, error); 5404 } 5405 5406 #ifdef IPSEC_NAT_T 5407 /* 5408 * Handle more NAT-T info if present, 5409 * now that we have a sav to fill. 5410 */ 5411 if (type) 5412 newsav->natt_type = type->sadb_x_nat_t_type_type; 5413 5414 #if 0 5415 /* 5416 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5417 * We should actually check for a minimum MTU here, if we 5418 * want to support it in ip_output. 5419 */ 5420 if (frag) 5421 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5422 #endif 5423 #endif 5424 5425 /* check SA values to be mature. */ 5426 if ((error = key_mature(newsav)) != 0) { 5427 KEY_FREESAV(&newsav); 5428 return key_senderror(so, m, error); 5429 } 5430 5431 /* 5432 * don't call key_freesav() here, as we would like to keep the SA 5433 * in the database on success. 5434 */ 5435 5436 { 5437 struct mbuf *n; 5438 5439 /* set msg buf from mhp */ 5440 n = key_getmsgbuf_x1(m, mhp); 5441 if (n == NULL) { 5442 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5443 return key_senderror(so, m, ENOBUFS); 5444 } 5445 5446 m_freem(m); 5447 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5448 } 5449 } 5450 5451 /* m is retained */ 5452 static int 5453 key_setident(sah, m, mhp) 5454 struct secashead *sah; 5455 struct mbuf *m; 5456 const struct sadb_msghdr *mhp; 5457 { 5458 const struct sadb_ident *idsrc, *iddst; 5459 int idsrclen, iddstlen; 5460 5461 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5462 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5463 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5464 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5465 5466 /* don't make buffer if not there */ 5467 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5468 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5469 sah->idents = NULL; 5470 sah->identd = NULL; 5471 return 0; 5472 } 5473 5474 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5475 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5476 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5477 return EINVAL; 5478 } 5479 5480 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5481 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5482 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5483 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5484 5485 /* validity check */ 5486 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5487 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5488 return EINVAL; 5489 } 5490 5491 switch (idsrc->sadb_ident_type) { 5492 case SADB_IDENTTYPE_PREFIX: 5493 case SADB_IDENTTYPE_FQDN: 5494 case SADB_IDENTTYPE_USERFQDN: 5495 default: 5496 /* XXX do nothing */ 5497 sah->idents = NULL; 5498 sah->identd = NULL; 5499 return 0; 5500 } 5501 5502 /* make structure */ 5503 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5504 if (sah->idents == NULL) { 5505 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5506 return ENOBUFS; 5507 } 5508 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5509 if (sah->identd == NULL) { 5510 free(sah->idents, M_IPSEC_MISC); 5511 sah->idents = NULL; 5512 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5513 return ENOBUFS; 5514 } 5515 sah->idents->type = idsrc->sadb_ident_type; 5516 sah->idents->id = idsrc->sadb_ident_id; 5517 5518 sah->identd->type = iddst->sadb_ident_type; 5519 sah->identd->id = iddst->sadb_ident_id; 5520 5521 return 0; 5522 } 5523 5524 /* 5525 * m will not be freed on return. 5526 * it is caller's responsibility to free the result. 5527 */ 5528 static struct mbuf * 5529 key_getmsgbuf_x1(m, mhp) 5530 struct mbuf *m; 5531 const struct sadb_msghdr *mhp; 5532 { 5533 struct mbuf *n; 5534 5535 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5536 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5537 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5538 5539 /* create new sadb_msg to reply. */ 5540 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5541 SADB_EXT_SA, SADB_X_EXT_SA2, 5542 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5543 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5544 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5545 if (!n) 5546 return NULL; 5547 5548 if (n->m_len < sizeof(struct sadb_msg)) { 5549 n = m_pullup(n, sizeof(struct sadb_msg)); 5550 if (n == NULL) 5551 return NULL; 5552 } 5553 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5554 mtod(n, struct sadb_msg *)->sadb_msg_len = 5555 PFKEY_UNIT64(n->m_pkthdr.len); 5556 5557 return n; 5558 } 5559 5560 static int key_delete_all __P((struct socket *, struct mbuf *, 5561 const struct sadb_msghdr *, u_int16_t)); 5562 5563 /* 5564 * SADB_DELETE processing 5565 * receive 5566 * <base, SA(*), address(SD)> 5567 * from the ikmpd, and set SADB_SASTATE_DEAD, 5568 * and send, 5569 * <base, SA(*), address(SD)> 5570 * to the ikmpd. 5571 * 5572 * m will always be freed. 5573 */ 5574 static int 5575 key_delete(so, m, mhp) 5576 struct socket *so; 5577 struct mbuf *m; 5578 const struct sadb_msghdr *mhp; 5579 { 5580 struct sadb_sa *sa0; 5581 struct sadb_address *src0, *dst0; 5582 struct secasindex saidx; 5583 struct secashead *sah; 5584 struct secasvar *sav = NULL; 5585 u_int16_t proto; 5586 5587 IPSEC_ASSERT(so != NULL, ("null socket")); 5588 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5589 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5590 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5591 5592 /* map satype to proto */ 5593 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5594 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5595 __func__)); 5596 return key_senderror(so, m, EINVAL); 5597 } 5598 5599 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5600 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5601 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5602 __func__)); 5603 return key_senderror(so, m, EINVAL); 5604 } 5605 5606 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5607 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5608 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5609 __func__)); 5610 return key_senderror(so, m, EINVAL); 5611 } 5612 5613 if (mhp->ext[SADB_EXT_SA] == NULL) { 5614 /* 5615 * Caller wants us to delete all non-LARVAL SAs 5616 * that match the src/dst. This is used during 5617 * IKE INITIAL-CONTACT. 5618 */ 5619 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5620 return key_delete_all(so, m, mhp, proto); 5621 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5622 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5623 __func__)); 5624 return key_senderror(so, m, EINVAL); 5625 } 5626 5627 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5628 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5629 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5630 5631 /* XXX boundary check against sa_len */ 5632 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5633 5634 /* 5635 * Make sure the port numbers are zero. 5636 * In case of NAT-T we will update them later if needed. 5637 */ 5638 KEY_PORTTOSADDR(&saidx.src, 0); 5639 KEY_PORTTOSADDR(&saidx.dst, 0); 5640 5641 #ifdef IPSEC_NAT_T 5642 /* 5643 * Handle NAT-T info if present. 5644 */ 5645 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5646 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5647 struct sadb_x_nat_t_port *sport, *dport; 5648 5649 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5650 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5651 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5652 __func__)); 5653 return key_senderror(so, m, EINVAL); 5654 } 5655 5656 sport = (struct sadb_x_nat_t_port *) 5657 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5658 dport = (struct sadb_x_nat_t_port *) 5659 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5660 5661 if (sport) 5662 KEY_PORTTOSADDR(&saidx.src, 5663 sport->sadb_x_nat_t_port_port); 5664 if (dport) 5665 KEY_PORTTOSADDR(&saidx.dst, 5666 dport->sadb_x_nat_t_port_port); 5667 } 5668 #endif 5669 5670 /* get a SA header */ 5671 SAHTREE_LOCK(); 5672 LIST_FOREACH(sah, &V_sahtree, chain) { 5673 if (sah->state == SADB_SASTATE_DEAD) 5674 continue; 5675 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5676 continue; 5677 5678 /* get a SA with SPI. */ 5679 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5680 if (sav) 5681 break; 5682 } 5683 if (sah == NULL) { 5684 SAHTREE_UNLOCK(); 5685 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5686 return key_senderror(so, m, ENOENT); 5687 } 5688 5689 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5690 KEY_FREESAV(&sav); 5691 SAHTREE_UNLOCK(); 5692 5693 { 5694 struct mbuf *n; 5695 struct sadb_msg *newmsg; 5696 5697 /* create new sadb_msg to reply. */ 5698 /* XXX-BZ NAT-T extensions? */ 5699 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5700 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5701 if (!n) 5702 return key_senderror(so, m, ENOBUFS); 5703 5704 if (n->m_len < sizeof(struct sadb_msg)) { 5705 n = m_pullup(n, sizeof(struct sadb_msg)); 5706 if (n == NULL) 5707 return key_senderror(so, m, ENOBUFS); 5708 } 5709 newmsg = mtod(n, struct sadb_msg *); 5710 newmsg->sadb_msg_errno = 0; 5711 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5712 5713 m_freem(m); 5714 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5715 } 5716 } 5717 5718 /* 5719 * delete all SAs for src/dst. Called from key_delete(). 5720 */ 5721 static int 5722 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5723 u_int16_t proto) 5724 { 5725 struct sadb_address *src0, *dst0; 5726 struct secasindex saidx; 5727 struct secashead *sah; 5728 struct secasvar *sav, *nextsav; 5729 u_int stateidx, state; 5730 5731 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5732 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5733 5734 /* XXX boundary check against sa_len */ 5735 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5736 5737 /* 5738 * Make sure the port numbers are zero. 5739 * In case of NAT-T we will update them later if needed. 5740 */ 5741 KEY_PORTTOSADDR(&saidx.src, 0); 5742 KEY_PORTTOSADDR(&saidx.dst, 0); 5743 5744 #ifdef IPSEC_NAT_T 5745 /* 5746 * Handle NAT-T info if present. 5747 */ 5748 5749 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5750 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5751 struct sadb_x_nat_t_port *sport, *dport; 5752 5753 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5754 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5755 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5756 __func__)); 5757 return key_senderror(so, m, EINVAL); 5758 } 5759 5760 sport = (struct sadb_x_nat_t_port *) 5761 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5762 dport = (struct sadb_x_nat_t_port *) 5763 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5764 5765 if (sport) 5766 KEY_PORTTOSADDR(&saidx.src, 5767 sport->sadb_x_nat_t_port_port); 5768 if (dport) 5769 KEY_PORTTOSADDR(&saidx.dst, 5770 dport->sadb_x_nat_t_port_port); 5771 } 5772 #endif 5773 5774 SAHTREE_LOCK(); 5775 LIST_FOREACH(sah, &V_sahtree, chain) { 5776 if (sah->state == SADB_SASTATE_DEAD) 5777 continue; 5778 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5779 continue; 5780 5781 /* Delete all non-LARVAL SAs. */ 5782 for (stateidx = 0; 5783 stateidx < _ARRAYLEN(saorder_state_alive); 5784 stateidx++) { 5785 state = saorder_state_alive[stateidx]; 5786 if (state == SADB_SASTATE_LARVAL) 5787 continue; 5788 for (sav = LIST_FIRST(&sah->savtree[state]); 5789 sav != NULL; sav = nextsav) { 5790 nextsav = LIST_NEXT(sav, chain); 5791 /* sanity check */ 5792 if (sav->state != state) { 5793 ipseclog((LOG_DEBUG, "%s: invalid " 5794 "sav->state (queue %d SA %d)\n", 5795 __func__, state, sav->state)); 5796 continue; 5797 } 5798 5799 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5800 KEY_FREESAV(&sav); 5801 } 5802 } 5803 } 5804 SAHTREE_UNLOCK(); 5805 { 5806 struct mbuf *n; 5807 struct sadb_msg *newmsg; 5808 5809 /* create new sadb_msg to reply. */ 5810 /* XXX-BZ NAT-T extensions? */ 5811 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5812 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5813 if (!n) 5814 return key_senderror(so, m, ENOBUFS); 5815 5816 if (n->m_len < sizeof(struct sadb_msg)) { 5817 n = m_pullup(n, sizeof(struct sadb_msg)); 5818 if (n == NULL) 5819 return key_senderror(so, m, ENOBUFS); 5820 } 5821 newmsg = mtod(n, struct sadb_msg *); 5822 newmsg->sadb_msg_errno = 0; 5823 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5824 5825 m_freem(m); 5826 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5827 } 5828 } 5829 5830 /* 5831 * SADB_GET processing 5832 * receive 5833 * <base, SA(*), address(SD)> 5834 * from the ikmpd, and get a SP and a SA to respond, 5835 * and send, 5836 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5837 * (identity(SD),) (sensitivity)> 5838 * to the ikmpd. 5839 * 5840 * m will always be freed. 5841 */ 5842 static int 5843 key_get(so, m, mhp) 5844 struct socket *so; 5845 struct mbuf *m; 5846 const struct sadb_msghdr *mhp; 5847 { 5848 struct sadb_sa *sa0; 5849 struct sadb_address *src0, *dst0; 5850 struct secasindex saidx; 5851 struct secashead *sah; 5852 struct secasvar *sav = NULL; 5853 u_int16_t proto; 5854 5855 IPSEC_ASSERT(so != NULL, ("null socket")); 5856 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5857 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5858 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5859 5860 /* map satype to proto */ 5861 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5862 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5863 __func__)); 5864 return key_senderror(so, m, EINVAL); 5865 } 5866 5867 if (mhp->ext[SADB_EXT_SA] == NULL || 5868 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5869 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5870 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5871 __func__)); 5872 return key_senderror(so, m, EINVAL); 5873 } 5874 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5875 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5876 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5877 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5878 __func__)); 5879 return key_senderror(so, m, EINVAL); 5880 } 5881 5882 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5883 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5884 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5885 5886 /* XXX boundary check against sa_len */ 5887 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5888 5889 /* 5890 * Make sure the port numbers are zero. 5891 * In case of NAT-T we will update them later if needed. 5892 */ 5893 KEY_PORTTOSADDR(&saidx.src, 0); 5894 KEY_PORTTOSADDR(&saidx.dst, 0); 5895 5896 #ifdef IPSEC_NAT_T 5897 /* 5898 * Handle NAT-T info if present. 5899 */ 5900 5901 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5902 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5903 struct sadb_x_nat_t_port *sport, *dport; 5904 5905 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5906 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5907 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5908 __func__)); 5909 return key_senderror(so, m, EINVAL); 5910 } 5911 5912 sport = (struct sadb_x_nat_t_port *) 5913 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5914 dport = (struct sadb_x_nat_t_port *) 5915 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5916 5917 if (sport) 5918 KEY_PORTTOSADDR(&saidx.src, 5919 sport->sadb_x_nat_t_port_port); 5920 if (dport) 5921 KEY_PORTTOSADDR(&saidx.dst, 5922 dport->sadb_x_nat_t_port_port); 5923 } 5924 #endif 5925 5926 /* get a SA header */ 5927 SAHTREE_LOCK(); 5928 LIST_FOREACH(sah, &V_sahtree, chain) { 5929 if (sah->state == SADB_SASTATE_DEAD) 5930 continue; 5931 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5932 continue; 5933 5934 /* get a SA with SPI. */ 5935 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5936 if (sav) 5937 break; 5938 } 5939 SAHTREE_UNLOCK(); 5940 if (sah == NULL) { 5941 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5942 return key_senderror(so, m, ENOENT); 5943 } 5944 5945 { 5946 struct mbuf *n; 5947 u_int8_t satype; 5948 5949 /* map proto to satype */ 5950 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5951 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5952 __func__)); 5953 return key_senderror(so, m, EINVAL); 5954 } 5955 5956 /* create new sadb_msg to reply. */ 5957 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5958 mhp->msg->sadb_msg_pid); 5959 if (!n) 5960 return key_senderror(so, m, ENOBUFS); 5961 5962 m_freem(m); 5963 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5964 } 5965 } 5966 5967 /* XXX make it sysctl-configurable? */ 5968 static void 5969 key_getcomb_setlifetime(comb) 5970 struct sadb_comb *comb; 5971 { 5972 5973 comb->sadb_comb_soft_allocations = 1; 5974 comb->sadb_comb_hard_allocations = 1; 5975 comb->sadb_comb_soft_bytes = 0; 5976 comb->sadb_comb_hard_bytes = 0; 5977 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5978 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5979 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5980 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5981 } 5982 5983 /* 5984 * XXX reorder combinations by preference 5985 * XXX no idea if the user wants ESP authentication or not 5986 */ 5987 static struct mbuf * 5988 key_getcomb_esp() 5989 { 5990 struct sadb_comb *comb; 5991 struct enc_xform *algo; 5992 struct mbuf *result = NULL, *m, *n; 5993 int encmin; 5994 int i, off, o; 5995 int totlen; 5996 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5997 5998 m = NULL; 5999 for (i = 1; i <= SADB_EALG_MAX; i++) { 6000 algo = esp_algorithm_lookup(i); 6001 if (algo == NULL) 6002 continue; 6003 6004 /* discard algorithms with key size smaller than system min */ 6005 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6006 continue; 6007 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6008 encmin = V_ipsec_esp_keymin; 6009 else 6010 encmin = _BITS(algo->minkey); 6011 6012 if (V_ipsec_esp_auth) 6013 m = key_getcomb_ah(); 6014 else { 6015 IPSEC_ASSERT(l <= MLEN, 6016 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6017 MGET(m, M_NOWAIT, MT_DATA); 6018 if (m) { 6019 M_ALIGN(m, l); 6020 m->m_len = l; 6021 m->m_next = NULL; 6022 bzero(mtod(m, caddr_t), m->m_len); 6023 } 6024 } 6025 if (!m) 6026 goto fail; 6027 6028 totlen = 0; 6029 for (n = m; n; n = n->m_next) 6030 totlen += n->m_len; 6031 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6032 6033 for (off = 0; off < totlen; off += l) { 6034 n = m_pulldown(m, off, l, &o); 6035 if (!n) { 6036 /* m is already freed */ 6037 goto fail; 6038 } 6039 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6040 bzero(comb, sizeof(*comb)); 6041 key_getcomb_setlifetime(comb); 6042 comb->sadb_comb_encrypt = i; 6043 comb->sadb_comb_encrypt_minbits = encmin; 6044 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6045 } 6046 6047 if (!result) 6048 result = m; 6049 else 6050 m_cat(result, m); 6051 } 6052 6053 return result; 6054 6055 fail: 6056 if (result) 6057 m_freem(result); 6058 return NULL; 6059 } 6060 6061 static void 6062 key_getsizes_ah( 6063 const struct auth_hash *ah, 6064 int alg, 6065 u_int16_t* min, 6066 u_int16_t* max) 6067 { 6068 6069 *min = *max = ah->keysize; 6070 if (ah->keysize == 0) { 6071 /* 6072 * Transform takes arbitrary key size but algorithm 6073 * key size is restricted. Enforce this here. 6074 */ 6075 switch (alg) { 6076 case SADB_X_AALG_MD5: *min = *max = 16; break; 6077 case SADB_X_AALG_SHA: *min = *max = 20; break; 6078 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6079 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6080 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6081 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6082 default: 6083 DPRINTF(("%s: unknown AH algorithm %u\n", 6084 __func__, alg)); 6085 break; 6086 } 6087 } 6088 } 6089 6090 /* 6091 * XXX reorder combinations by preference 6092 */ 6093 static struct mbuf * 6094 key_getcomb_ah() 6095 { 6096 struct sadb_comb *comb; 6097 struct auth_hash *algo; 6098 struct mbuf *m; 6099 u_int16_t minkeysize, maxkeysize; 6100 int i; 6101 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6102 6103 m = NULL; 6104 for (i = 1; i <= SADB_AALG_MAX; i++) { 6105 #if 1 6106 /* we prefer HMAC algorithms, not old algorithms */ 6107 if (i != SADB_AALG_SHA1HMAC && 6108 i != SADB_AALG_MD5HMAC && 6109 i != SADB_X_AALG_SHA2_256 && 6110 i != SADB_X_AALG_SHA2_384 && 6111 i != SADB_X_AALG_SHA2_512) 6112 continue; 6113 #endif 6114 algo = ah_algorithm_lookup(i); 6115 if (!algo) 6116 continue; 6117 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6118 /* discard algorithms with key size smaller than system min */ 6119 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6120 continue; 6121 6122 if (!m) { 6123 IPSEC_ASSERT(l <= MLEN, 6124 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6125 MGET(m, M_NOWAIT, MT_DATA); 6126 if (m) { 6127 M_ALIGN(m, l); 6128 m->m_len = l; 6129 m->m_next = NULL; 6130 } 6131 } else 6132 M_PREPEND(m, l, M_NOWAIT); 6133 if (!m) 6134 return NULL; 6135 6136 comb = mtod(m, struct sadb_comb *); 6137 bzero(comb, sizeof(*comb)); 6138 key_getcomb_setlifetime(comb); 6139 comb->sadb_comb_auth = i; 6140 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6141 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6142 } 6143 6144 return m; 6145 } 6146 6147 /* 6148 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6149 * XXX reorder combinations by preference 6150 */ 6151 static struct mbuf * 6152 key_getcomb_ipcomp() 6153 { 6154 struct sadb_comb *comb; 6155 struct comp_algo *algo; 6156 struct mbuf *m; 6157 int i; 6158 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6159 6160 m = NULL; 6161 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6162 algo = ipcomp_algorithm_lookup(i); 6163 if (!algo) 6164 continue; 6165 6166 if (!m) { 6167 IPSEC_ASSERT(l <= MLEN, 6168 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6169 MGET(m, M_NOWAIT, MT_DATA); 6170 if (m) { 6171 M_ALIGN(m, l); 6172 m->m_len = l; 6173 m->m_next = NULL; 6174 } 6175 } else 6176 M_PREPEND(m, l, M_NOWAIT); 6177 if (!m) 6178 return NULL; 6179 6180 comb = mtod(m, struct sadb_comb *); 6181 bzero(comb, sizeof(*comb)); 6182 key_getcomb_setlifetime(comb); 6183 comb->sadb_comb_encrypt = i; 6184 /* what should we set into sadb_comb_*_{min,max}bits? */ 6185 } 6186 6187 return m; 6188 } 6189 6190 /* 6191 * XXX no way to pass mode (transport/tunnel) to userland 6192 * XXX replay checking? 6193 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6194 */ 6195 static struct mbuf * 6196 key_getprop(saidx) 6197 const struct secasindex *saidx; 6198 { 6199 struct sadb_prop *prop; 6200 struct mbuf *m, *n; 6201 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6202 int totlen; 6203 6204 switch (saidx->proto) { 6205 case IPPROTO_ESP: 6206 m = key_getcomb_esp(); 6207 break; 6208 case IPPROTO_AH: 6209 m = key_getcomb_ah(); 6210 break; 6211 case IPPROTO_IPCOMP: 6212 m = key_getcomb_ipcomp(); 6213 break; 6214 default: 6215 return NULL; 6216 } 6217 6218 if (!m) 6219 return NULL; 6220 M_PREPEND(m, l, M_NOWAIT); 6221 if (!m) 6222 return NULL; 6223 6224 totlen = 0; 6225 for (n = m; n; n = n->m_next) 6226 totlen += n->m_len; 6227 6228 prop = mtod(m, struct sadb_prop *); 6229 bzero(prop, sizeof(*prop)); 6230 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6231 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6232 prop->sadb_prop_replay = 32; /* XXX */ 6233 6234 return m; 6235 } 6236 6237 /* 6238 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6239 * send 6240 * <base, SA, address(SD), (address(P)), x_policy, 6241 * (identity(SD),) (sensitivity,) proposal> 6242 * to KMD, and expect to receive 6243 * <base> with SADB_ACQUIRE if error occured, 6244 * or 6245 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6246 * from KMD by PF_KEY. 6247 * 6248 * XXX x_policy is outside of RFC2367 (KAME extension). 6249 * XXX sensitivity is not supported. 6250 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6251 * see comment for key_getcomb_ipcomp(). 6252 * 6253 * OUT: 6254 * 0 : succeed 6255 * others: error number 6256 */ 6257 static int 6258 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6259 { 6260 struct mbuf *result = NULL, *m; 6261 struct secacq *newacq; 6262 u_int8_t satype; 6263 int error = -1; 6264 u_int32_t seq; 6265 6266 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6267 satype = key_proto2satype(saidx->proto); 6268 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6269 6270 /* 6271 * We never do anything about acquirng SA. There is anather 6272 * solution that kernel blocks to send SADB_ACQUIRE message until 6273 * getting something message from IKEd. In later case, to be 6274 * managed with ACQUIRING list. 6275 */ 6276 /* Get an entry to check whether sending message or not. */ 6277 if ((newacq = key_getacq(saidx)) != NULL) { 6278 if (V_key_blockacq_count < newacq->count) { 6279 /* reset counter and do send message. */ 6280 newacq->count = 0; 6281 } else { 6282 /* increment counter and do nothing. */ 6283 newacq->count++; 6284 return 0; 6285 } 6286 } else { 6287 /* make new entry for blocking to send SADB_ACQUIRE. */ 6288 if ((newacq = key_newacq(saidx)) == NULL) 6289 return ENOBUFS; 6290 } 6291 6292 6293 seq = newacq->seq; 6294 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6295 if (!m) { 6296 error = ENOBUFS; 6297 goto fail; 6298 } 6299 result = m; 6300 6301 /* 6302 * No SADB_X_EXT_NAT_T_* here: we do not know 6303 * anything related to NAT-T at this time. 6304 */ 6305 6306 /* set sadb_address for saidx's. */ 6307 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6308 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6309 if (!m) { 6310 error = ENOBUFS; 6311 goto fail; 6312 } 6313 m_cat(result, m); 6314 6315 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6316 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6317 if (!m) { 6318 error = ENOBUFS; 6319 goto fail; 6320 } 6321 m_cat(result, m); 6322 6323 /* XXX proxy address (optional) */ 6324 6325 /* set sadb_x_policy */ 6326 if (sp) { 6327 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6328 if (!m) { 6329 error = ENOBUFS; 6330 goto fail; 6331 } 6332 m_cat(result, m); 6333 } 6334 6335 /* XXX identity (optional) */ 6336 #if 0 6337 if (idexttype && fqdn) { 6338 /* create identity extension (FQDN) */ 6339 struct sadb_ident *id; 6340 int fqdnlen; 6341 6342 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6343 id = (struct sadb_ident *)p; 6344 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6345 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6346 id->sadb_ident_exttype = idexttype; 6347 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6348 bcopy(fqdn, id + 1, fqdnlen); 6349 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6350 } 6351 6352 if (idexttype) { 6353 /* create identity extension (USERFQDN) */ 6354 struct sadb_ident *id; 6355 int userfqdnlen; 6356 6357 if (userfqdn) { 6358 /* +1 for terminating-NUL */ 6359 userfqdnlen = strlen(userfqdn) + 1; 6360 } else 6361 userfqdnlen = 0; 6362 id = (struct sadb_ident *)p; 6363 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6364 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6365 id->sadb_ident_exttype = idexttype; 6366 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6367 /* XXX is it correct? */ 6368 if (curproc && curproc->p_cred) 6369 id->sadb_ident_id = curproc->p_cred->p_ruid; 6370 if (userfqdn && userfqdnlen) 6371 bcopy(userfqdn, id + 1, userfqdnlen); 6372 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6373 } 6374 #endif 6375 6376 /* XXX sensitivity (optional) */ 6377 6378 /* create proposal/combination extension */ 6379 m = key_getprop(saidx); 6380 #if 0 6381 /* 6382 * spec conformant: always attach proposal/combination extension, 6383 * the problem is that we have no way to attach it for ipcomp, 6384 * due to the way sadb_comb is declared in RFC2367. 6385 */ 6386 if (!m) { 6387 error = ENOBUFS; 6388 goto fail; 6389 } 6390 m_cat(result, m); 6391 #else 6392 /* 6393 * outside of spec; make proposal/combination extension optional. 6394 */ 6395 if (m) 6396 m_cat(result, m); 6397 #endif 6398 6399 if ((result->m_flags & M_PKTHDR) == 0) { 6400 error = EINVAL; 6401 goto fail; 6402 } 6403 6404 if (result->m_len < sizeof(struct sadb_msg)) { 6405 result = m_pullup(result, sizeof(struct sadb_msg)); 6406 if (result == NULL) { 6407 error = ENOBUFS; 6408 goto fail; 6409 } 6410 } 6411 6412 result->m_pkthdr.len = 0; 6413 for (m = result; m; m = m->m_next) 6414 result->m_pkthdr.len += m->m_len; 6415 6416 mtod(result, struct sadb_msg *)->sadb_msg_len = 6417 PFKEY_UNIT64(result->m_pkthdr.len); 6418 6419 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6420 6421 fail: 6422 if (result) 6423 m_freem(result); 6424 return error; 6425 } 6426 6427 static struct secacq * 6428 key_newacq(const struct secasindex *saidx) 6429 { 6430 struct secacq *newacq; 6431 6432 /* get new entry */ 6433 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6434 if (newacq == NULL) { 6435 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6436 return NULL; 6437 } 6438 6439 /* copy secindex */ 6440 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6441 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6442 newacq->created = time_second; 6443 newacq->count = 0; 6444 6445 /* add to acqtree */ 6446 ACQ_LOCK(); 6447 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6448 ACQ_UNLOCK(); 6449 6450 return newacq; 6451 } 6452 6453 static struct secacq * 6454 key_getacq(const struct secasindex *saidx) 6455 { 6456 struct secacq *acq; 6457 6458 ACQ_LOCK(); 6459 LIST_FOREACH(acq, &V_acqtree, chain) { 6460 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6461 break; 6462 } 6463 ACQ_UNLOCK(); 6464 6465 return acq; 6466 } 6467 6468 static struct secacq * 6469 key_getacqbyseq(seq) 6470 u_int32_t seq; 6471 { 6472 struct secacq *acq; 6473 6474 ACQ_LOCK(); 6475 LIST_FOREACH(acq, &V_acqtree, chain) { 6476 if (acq->seq == seq) 6477 break; 6478 } 6479 ACQ_UNLOCK(); 6480 6481 return acq; 6482 } 6483 6484 static struct secspacq * 6485 key_newspacq(spidx) 6486 struct secpolicyindex *spidx; 6487 { 6488 struct secspacq *acq; 6489 6490 /* get new entry */ 6491 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6492 if (acq == NULL) { 6493 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6494 return NULL; 6495 } 6496 6497 /* copy secindex */ 6498 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6499 acq->created = time_second; 6500 acq->count = 0; 6501 6502 /* add to spacqtree */ 6503 SPACQ_LOCK(); 6504 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6505 SPACQ_UNLOCK(); 6506 6507 return acq; 6508 } 6509 6510 static struct secspacq * 6511 key_getspacq(spidx) 6512 struct secpolicyindex *spidx; 6513 { 6514 struct secspacq *acq; 6515 6516 SPACQ_LOCK(); 6517 LIST_FOREACH(acq, &V_spacqtree, chain) { 6518 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6519 /* NB: return holding spacq_lock */ 6520 return acq; 6521 } 6522 } 6523 SPACQ_UNLOCK(); 6524 6525 return NULL; 6526 } 6527 6528 /* 6529 * SADB_ACQUIRE processing, 6530 * in first situation, is receiving 6531 * <base> 6532 * from the ikmpd, and clear sequence of its secasvar entry. 6533 * 6534 * In second situation, is receiving 6535 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6536 * from a user land process, and return 6537 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6538 * to the socket. 6539 * 6540 * m will always be freed. 6541 */ 6542 static int 6543 key_acquire2(so, m, mhp) 6544 struct socket *so; 6545 struct mbuf *m; 6546 const struct sadb_msghdr *mhp; 6547 { 6548 const struct sadb_address *src0, *dst0; 6549 struct secasindex saidx; 6550 struct secashead *sah; 6551 u_int16_t proto; 6552 int error; 6553 6554 IPSEC_ASSERT(so != NULL, ("null socket")); 6555 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6556 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6557 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6558 6559 /* 6560 * Error message from KMd. 6561 * We assume that if error was occured in IKEd, the length of PFKEY 6562 * message is equal to the size of sadb_msg structure. 6563 * We do not raise error even if error occured in this function. 6564 */ 6565 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6566 struct secacq *acq; 6567 6568 /* check sequence number */ 6569 if (mhp->msg->sadb_msg_seq == 0) { 6570 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6571 "number.\n", __func__)); 6572 m_freem(m); 6573 return 0; 6574 } 6575 6576 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6577 /* 6578 * the specified larval SA is already gone, or we got 6579 * a bogus sequence number. we can silently ignore it. 6580 */ 6581 m_freem(m); 6582 return 0; 6583 } 6584 6585 /* reset acq counter in order to deletion by timehander. */ 6586 acq->created = time_second; 6587 acq->count = 0; 6588 m_freem(m); 6589 return 0; 6590 } 6591 6592 /* 6593 * This message is from user land. 6594 */ 6595 6596 /* map satype to proto */ 6597 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6598 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6599 __func__)); 6600 return key_senderror(so, m, EINVAL); 6601 } 6602 6603 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6604 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6605 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6606 /* error */ 6607 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6608 __func__)); 6609 return key_senderror(so, m, EINVAL); 6610 } 6611 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6612 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6613 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6614 /* error */ 6615 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6616 __func__)); 6617 return key_senderror(so, m, EINVAL); 6618 } 6619 6620 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6621 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6622 6623 /* XXX boundary check against sa_len */ 6624 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6625 6626 /* 6627 * Make sure the port numbers are zero. 6628 * In case of NAT-T we will update them later if needed. 6629 */ 6630 KEY_PORTTOSADDR(&saidx.src, 0); 6631 KEY_PORTTOSADDR(&saidx.dst, 0); 6632 6633 #ifndef IPSEC_NAT_T 6634 /* 6635 * Handle NAT-T info if present. 6636 */ 6637 6638 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6639 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6640 struct sadb_x_nat_t_port *sport, *dport; 6641 6642 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6643 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6644 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6645 __func__)); 6646 return key_senderror(so, m, EINVAL); 6647 } 6648 6649 sport = (struct sadb_x_nat_t_port *) 6650 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6651 dport = (struct sadb_x_nat_t_port *) 6652 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6653 6654 if (sport) 6655 KEY_PORTTOSADDR(&saidx.src, 6656 sport->sadb_x_nat_t_port_port); 6657 if (dport) 6658 KEY_PORTTOSADDR(&saidx.dst, 6659 dport->sadb_x_nat_t_port_port); 6660 } 6661 #endif 6662 6663 /* get a SA index */ 6664 SAHTREE_LOCK(); 6665 LIST_FOREACH(sah, &V_sahtree, chain) { 6666 if (sah->state == SADB_SASTATE_DEAD) 6667 continue; 6668 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6669 break; 6670 } 6671 SAHTREE_UNLOCK(); 6672 if (sah != NULL) { 6673 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6674 return key_senderror(so, m, EEXIST); 6675 } 6676 6677 error = key_acquire(&saidx, NULL); 6678 if (error != 0) { 6679 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6680 __func__, mhp->msg->sadb_msg_errno)); 6681 return key_senderror(so, m, error); 6682 } 6683 6684 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6685 } 6686 6687 /* 6688 * SADB_REGISTER processing. 6689 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6690 * receive 6691 * <base> 6692 * from the ikmpd, and register a socket to send PF_KEY messages, 6693 * and send 6694 * <base, supported> 6695 * to KMD by PF_KEY. 6696 * If socket is detached, must free from regnode. 6697 * 6698 * m will always be freed. 6699 */ 6700 static int 6701 key_register(so, m, mhp) 6702 struct socket *so; 6703 struct mbuf *m; 6704 const struct sadb_msghdr *mhp; 6705 { 6706 struct secreg *reg, *newreg = 0; 6707 6708 IPSEC_ASSERT(so != NULL, ("null socket")); 6709 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6710 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6711 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6712 6713 /* check for invalid register message */ 6714 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6715 return key_senderror(so, m, EINVAL); 6716 6717 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6718 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6719 goto setmsg; 6720 6721 /* check whether existing or not */ 6722 REGTREE_LOCK(); 6723 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6724 if (reg->so == so) { 6725 REGTREE_UNLOCK(); 6726 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6727 __func__)); 6728 return key_senderror(so, m, EEXIST); 6729 } 6730 } 6731 6732 /* create regnode */ 6733 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6734 if (newreg == NULL) { 6735 REGTREE_UNLOCK(); 6736 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6737 return key_senderror(so, m, ENOBUFS); 6738 } 6739 6740 newreg->so = so; 6741 ((struct keycb *)sotorawcb(so))->kp_registered++; 6742 6743 /* add regnode to regtree. */ 6744 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6745 REGTREE_UNLOCK(); 6746 6747 setmsg: 6748 { 6749 struct mbuf *n; 6750 struct sadb_msg *newmsg; 6751 struct sadb_supported *sup; 6752 u_int len, alen, elen; 6753 int off; 6754 int i; 6755 struct sadb_alg *alg; 6756 6757 /* create new sadb_msg to reply. */ 6758 alen = 0; 6759 for (i = 1; i <= SADB_AALG_MAX; i++) { 6760 if (ah_algorithm_lookup(i)) 6761 alen += sizeof(struct sadb_alg); 6762 } 6763 if (alen) 6764 alen += sizeof(struct sadb_supported); 6765 elen = 0; 6766 for (i = 1; i <= SADB_EALG_MAX; i++) { 6767 if (esp_algorithm_lookup(i)) 6768 elen += sizeof(struct sadb_alg); 6769 } 6770 if (elen) 6771 elen += sizeof(struct sadb_supported); 6772 6773 len = sizeof(struct sadb_msg) + alen + elen; 6774 6775 if (len > MCLBYTES) 6776 return key_senderror(so, m, ENOBUFS); 6777 6778 MGETHDR(n, M_NOWAIT, MT_DATA); 6779 if (len > MHLEN) { 6780 MCLGET(n, M_NOWAIT); 6781 if ((n->m_flags & M_EXT) == 0) { 6782 m_freem(n); 6783 n = NULL; 6784 } 6785 } 6786 if (!n) 6787 return key_senderror(so, m, ENOBUFS); 6788 6789 n->m_pkthdr.len = n->m_len = len; 6790 n->m_next = NULL; 6791 off = 0; 6792 6793 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6794 newmsg = mtod(n, struct sadb_msg *); 6795 newmsg->sadb_msg_errno = 0; 6796 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6797 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6798 6799 /* for authentication algorithm */ 6800 if (alen) { 6801 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6802 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6803 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6804 off += PFKEY_ALIGN8(sizeof(*sup)); 6805 6806 for (i = 1; i <= SADB_AALG_MAX; i++) { 6807 struct auth_hash *aalgo; 6808 u_int16_t minkeysize, maxkeysize; 6809 6810 aalgo = ah_algorithm_lookup(i); 6811 if (!aalgo) 6812 continue; 6813 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6814 alg->sadb_alg_id = i; 6815 alg->sadb_alg_ivlen = 0; 6816 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6817 alg->sadb_alg_minbits = _BITS(minkeysize); 6818 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6819 off += PFKEY_ALIGN8(sizeof(*alg)); 6820 } 6821 } 6822 6823 /* for encryption algorithm */ 6824 if (elen) { 6825 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6826 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6827 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6828 off += PFKEY_ALIGN8(sizeof(*sup)); 6829 6830 for (i = 1; i <= SADB_EALG_MAX; i++) { 6831 struct enc_xform *ealgo; 6832 6833 ealgo = esp_algorithm_lookup(i); 6834 if (!ealgo) 6835 continue; 6836 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6837 alg->sadb_alg_id = i; 6838 alg->sadb_alg_ivlen = ealgo->blocksize; 6839 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6840 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6841 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6842 } 6843 } 6844 6845 IPSEC_ASSERT(off == len, 6846 ("length assumption failed (off %u len %u)", off, len)); 6847 6848 m_freem(m); 6849 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6850 } 6851 } 6852 6853 /* 6854 * free secreg entry registered. 6855 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6856 */ 6857 void 6858 key_freereg(struct socket *so) 6859 { 6860 struct secreg *reg; 6861 int i; 6862 6863 IPSEC_ASSERT(so != NULL, ("NULL so")); 6864 6865 /* 6866 * check whether existing or not. 6867 * check all type of SA, because there is a potential that 6868 * one socket is registered to multiple type of SA. 6869 */ 6870 REGTREE_LOCK(); 6871 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6872 LIST_FOREACH(reg, &V_regtree[i], chain) { 6873 if (reg->so == so && __LIST_CHAINED(reg)) { 6874 LIST_REMOVE(reg, chain); 6875 free(reg, M_IPSEC_SAR); 6876 break; 6877 } 6878 } 6879 } 6880 REGTREE_UNLOCK(); 6881 } 6882 6883 /* 6884 * SADB_EXPIRE processing 6885 * send 6886 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6887 * to KMD by PF_KEY. 6888 * NOTE: We send only soft lifetime extension. 6889 * 6890 * OUT: 0 : succeed 6891 * others : error number 6892 */ 6893 static int 6894 key_expire(struct secasvar *sav) 6895 { 6896 int satype; 6897 struct mbuf *result = NULL, *m; 6898 int len; 6899 int error = -1; 6900 struct sadb_lifetime *lt; 6901 6902 IPSEC_ASSERT (sav != NULL, ("null sav")); 6903 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6904 6905 /* set msg header */ 6906 satype = key_proto2satype(sav->sah->saidx.proto); 6907 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6908 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6909 if (!m) { 6910 error = ENOBUFS; 6911 goto fail; 6912 } 6913 result = m; 6914 6915 /* create SA extension */ 6916 m = key_setsadbsa(sav); 6917 if (!m) { 6918 error = ENOBUFS; 6919 goto fail; 6920 } 6921 m_cat(result, m); 6922 6923 /* create SA extension */ 6924 m = key_setsadbxsa2(sav->sah->saidx.mode, 6925 sav->replay ? sav->replay->count : 0, 6926 sav->sah->saidx.reqid); 6927 if (!m) { 6928 error = ENOBUFS; 6929 goto fail; 6930 } 6931 m_cat(result, m); 6932 6933 /* create lifetime extension (current and soft) */ 6934 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6935 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6936 if (m == NULL) { 6937 error = ENOBUFS; 6938 goto fail; 6939 } 6940 m_align(m, len); 6941 m->m_len = len; 6942 bzero(mtod(m, caddr_t), len); 6943 lt = mtod(m, struct sadb_lifetime *); 6944 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6945 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6946 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6947 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6948 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6949 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6950 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6951 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6952 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6953 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6954 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6955 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6956 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6957 m_cat(result, m); 6958 6959 /* set sadb_address for source */ 6960 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6961 &sav->sah->saidx.src.sa, 6962 FULLMASK, IPSEC_ULPROTO_ANY); 6963 if (!m) { 6964 error = ENOBUFS; 6965 goto fail; 6966 } 6967 m_cat(result, m); 6968 6969 /* set sadb_address for destination */ 6970 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6971 &sav->sah->saidx.dst.sa, 6972 FULLMASK, IPSEC_ULPROTO_ANY); 6973 if (!m) { 6974 error = ENOBUFS; 6975 goto fail; 6976 } 6977 m_cat(result, m); 6978 6979 /* 6980 * XXX-BZ Handle NAT-T extensions here. 6981 */ 6982 6983 if ((result->m_flags & M_PKTHDR) == 0) { 6984 error = EINVAL; 6985 goto fail; 6986 } 6987 6988 if (result->m_len < sizeof(struct sadb_msg)) { 6989 result = m_pullup(result, sizeof(struct sadb_msg)); 6990 if (result == NULL) { 6991 error = ENOBUFS; 6992 goto fail; 6993 } 6994 } 6995 6996 result->m_pkthdr.len = 0; 6997 for (m = result; m; m = m->m_next) 6998 result->m_pkthdr.len += m->m_len; 6999 7000 mtod(result, struct sadb_msg *)->sadb_msg_len = 7001 PFKEY_UNIT64(result->m_pkthdr.len); 7002 7003 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7004 7005 fail: 7006 if (result) 7007 m_freem(result); 7008 return error; 7009 } 7010 7011 /* 7012 * SADB_FLUSH processing 7013 * receive 7014 * <base> 7015 * from the ikmpd, and free all entries in secastree. 7016 * and send, 7017 * <base> 7018 * to the ikmpd. 7019 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7020 * 7021 * m will always be freed. 7022 */ 7023 static int 7024 key_flush(so, m, mhp) 7025 struct socket *so; 7026 struct mbuf *m; 7027 const struct sadb_msghdr *mhp; 7028 { 7029 struct sadb_msg *newmsg; 7030 struct secashead *sah, *nextsah; 7031 struct secasvar *sav, *nextsav; 7032 u_int16_t proto; 7033 u_int8_t state; 7034 u_int stateidx; 7035 7036 IPSEC_ASSERT(so != NULL, ("null socket")); 7037 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7038 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7039 7040 /* map satype to proto */ 7041 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7042 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7043 __func__)); 7044 return key_senderror(so, m, EINVAL); 7045 } 7046 7047 /* no SATYPE specified, i.e. flushing all SA. */ 7048 SAHTREE_LOCK(); 7049 for (sah = LIST_FIRST(&V_sahtree); 7050 sah != NULL; 7051 sah = nextsah) { 7052 nextsah = LIST_NEXT(sah, chain); 7053 7054 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7055 && proto != sah->saidx.proto) 7056 continue; 7057 7058 for (stateidx = 0; 7059 stateidx < _ARRAYLEN(saorder_state_alive); 7060 stateidx++) { 7061 state = saorder_state_any[stateidx]; 7062 for (sav = LIST_FIRST(&sah->savtree[state]); 7063 sav != NULL; 7064 sav = nextsav) { 7065 7066 nextsav = LIST_NEXT(sav, chain); 7067 7068 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7069 KEY_FREESAV(&sav); 7070 } 7071 } 7072 7073 sah->state = SADB_SASTATE_DEAD; 7074 } 7075 SAHTREE_UNLOCK(); 7076 7077 if (m->m_len < sizeof(struct sadb_msg) || 7078 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7079 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7080 return key_senderror(so, m, ENOBUFS); 7081 } 7082 7083 if (m->m_next) 7084 m_freem(m->m_next); 7085 m->m_next = NULL; 7086 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7087 newmsg = mtod(m, struct sadb_msg *); 7088 newmsg->sadb_msg_errno = 0; 7089 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7090 7091 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7092 } 7093 7094 /* 7095 * SADB_DUMP processing 7096 * dump all entries including status of DEAD in SAD. 7097 * receive 7098 * <base> 7099 * from the ikmpd, and dump all secasvar leaves 7100 * and send, 7101 * <base> ..... 7102 * to the ikmpd. 7103 * 7104 * m will always be freed. 7105 */ 7106 static int 7107 key_dump(so, m, mhp) 7108 struct socket *so; 7109 struct mbuf *m; 7110 const struct sadb_msghdr *mhp; 7111 { 7112 struct secashead *sah; 7113 struct secasvar *sav; 7114 u_int16_t proto; 7115 u_int stateidx; 7116 u_int8_t satype; 7117 u_int8_t state; 7118 int cnt; 7119 struct sadb_msg *newmsg; 7120 struct mbuf *n; 7121 7122 IPSEC_ASSERT(so != NULL, ("null socket")); 7123 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7124 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7125 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7126 7127 /* map satype to proto */ 7128 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7129 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7130 __func__)); 7131 return key_senderror(so, m, EINVAL); 7132 } 7133 7134 /* count sav entries to be sent to the userland. */ 7135 cnt = 0; 7136 SAHTREE_LOCK(); 7137 LIST_FOREACH(sah, &V_sahtree, chain) { 7138 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7139 && proto != sah->saidx.proto) 7140 continue; 7141 7142 for (stateidx = 0; 7143 stateidx < _ARRAYLEN(saorder_state_any); 7144 stateidx++) { 7145 state = saorder_state_any[stateidx]; 7146 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7147 cnt++; 7148 } 7149 } 7150 } 7151 7152 if (cnt == 0) { 7153 SAHTREE_UNLOCK(); 7154 return key_senderror(so, m, ENOENT); 7155 } 7156 7157 /* send this to the userland, one at a time. */ 7158 newmsg = NULL; 7159 LIST_FOREACH(sah, &V_sahtree, chain) { 7160 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7161 && proto != sah->saidx.proto) 7162 continue; 7163 7164 /* map proto to satype */ 7165 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7166 SAHTREE_UNLOCK(); 7167 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7168 "SAD.\n", __func__)); 7169 return key_senderror(so, m, EINVAL); 7170 } 7171 7172 for (stateidx = 0; 7173 stateidx < _ARRAYLEN(saorder_state_any); 7174 stateidx++) { 7175 state = saorder_state_any[stateidx]; 7176 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7177 n = key_setdumpsa(sav, SADB_DUMP, satype, 7178 --cnt, mhp->msg->sadb_msg_pid); 7179 if (!n) { 7180 SAHTREE_UNLOCK(); 7181 return key_senderror(so, m, ENOBUFS); 7182 } 7183 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7184 } 7185 } 7186 } 7187 SAHTREE_UNLOCK(); 7188 7189 m_freem(m); 7190 return 0; 7191 } 7192 7193 /* 7194 * SADB_X_PROMISC processing 7195 * 7196 * m will always be freed. 7197 */ 7198 static int 7199 key_promisc(so, m, mhp) 7200 struct socket *so; 7201 struct mbuf *m; 7202 const struct sadb_msghdr *mhp; 7203 { 7204 int olen; 7205 7206 IPSEC_ASSERT(so != NULL, ("null socket")); 7207 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7208 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7209 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7210 7211 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7212 7213 if (olen < sizeof(struct sadb_msg)) { 7214 #if 1 7215 return key_senderror(so, m, EINVAL); 7216 #else 7217 m_freem(m); 7218 return 0; 7219 #endif 7220 } else if (olen == sizeof(struct sadb_msg)) { 7221 /* enable/disable promisc mode */ 7222 struct keycb *kp; 7223 7224 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7225 return key_senderror(so, m, EINVAL); 7226 mhp->msg->sadb_msg_errno = 0; 7227 switch (mhp->msg->sadb_msg_satype) { 7228 case 0: 7229 case 1: 7230 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7231 break; 7232 default: 7233 return key_senderror(so, m, EINVAL); 7234 } 7235 7236 /* send the original message back to everyone */ 7237 mhp->msg->sadb_msg_errno = 0; 7238 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7239 } else { 7240 /* send packet as is */ 7241 7242 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7243 7244 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7245 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7246 } 7247 } 7248 7249 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7250 const struct sadb_msghdr *)) = { 7251 NULL, /* SADB_RESERVED */ 7252 key_getspi, /* SADB_GETSPI */ 7253 key_update, /* SADB_UPDATE */ 7254 key_add, /* SADB_ADD */ 7255 key_delete, /* SADB_DELETE */ 7256 key_get, /* SADB_GET */ 7257 key_acquire2, /* SADB_ACQUIRE */ 7258 key_register, /* SADB_REGISTER */ 7259 NULL, /* SADB_EXPIRE */ 7260 key_flush, /* SADB_FLUSH */ 7261 key_dump, /* SADB_DUMP */ 7262 key_promisc, /* SADB_X_PROMISC */ 7263 NULL, /* SADB_X_PCHANGE */ 7264 key_spdadd, /* SADB_X_SPDUPDATE */ 7265 key_spdadd, /* SADB_X_SPDADD */ 7266 key_spddelete, /* SADB_X_SPDDELETE */ 7267 key_spdget, /* SADB_X_SPDGET */ 7268 NULL, /* SADB_X_SPDACQUIRE */ 7269 key_spddump, /* SADB_X_SPDDUMP */ 7270 key_spdflush, /* SADB_X_SPDFLUSH */ 7271 key_spdadd, /* SADB_X_SPDSETIDX */ 7272 NULL, /* SADB_X_SPDEXPIRE */ 7273 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7274 }; 7275 7276 /* 7277 * parse sadb_msg buffer to process PFKEYv2, 7278 * and create a data to response if needed. 7279 * I think to be dealed with mbuf directly. 7280 * IN: 7281 * msgp : pointer to pointer to a received buffer pulluped. 7282 * This is rewrited to response. 7283 * so : pointer to socket. 7284 * OUT: 7285 * length for buffer to send to user process. 7286 */ 7287 int 7288 key_parse(m, so) 7289 struct mbuf *m; 7290 struct socket *so; 7291 { 7292 struct sadb_msg *msg; 7293 struct sadb_msghdr mh; 7294 u_int orglen; 7295 int error; 7296 int target; 7297 7298 IPSEC_ASSERT(so != NULL, ("null socket")); 7299 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7300 7301 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7302 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7303 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7304 kdebug_sadb(msg)); 7305 #endif 7306 7307 if (m->m_len < sizeof(struct sadb_msg)) { 7308 m = m_pullup(m, sizeof(struct sadb_msg)); 7309 if (!m) 7310 return ENOBUFS; 7311 } 7312 msg = mtod(m, struct sadb_msg *); 7313 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7314 target = KEY_SENDUP_ONE; 7315 7316 if ((m->m_flags & M_PKTHDR) == 0 || 7317 m->m_pkthdr.len != m->m_pkthdr.len) { 7318 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7319 PFKEYSTAT_INC(out_invlen); 7320 error = EINVAL; 7321 goto senderror; 7322 } 7323 7324 if (msg->sadb_msg_version != PF_KEY_V2) { 7325 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7326 __func__, msg->sadb_msg_version)); 7327 PFKEYSTAT_INC(out_invver); 7328 error = EINVAL; 7329 goto senderror; 7330 } 7331 7332 if (msg->sadb_msg_type > SADB_MAX) { 7333 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7334 __func__, msg->sadb_msg_type)); 7335 PFKEYSTAT_INC(out_invmsgtype); 7336 error = EINVAL; 7337 goto senderror; 7338 } 7339 7340 /* for old-fashioned code - should be nuked */ 7341 if (m->m_pkthdr.len > MCLBYTES) { 7342 m_freem(m); 7343 return ENOBUFS; 7344 } 7345 if (m->m_next) { 7346 struct mbuf *n; 7347 7348 MGETHDR(n, M_NOWAIT, MT_DATA); 7349 if (n && m->m_pkthdr.len > MHLEN) { 7350 MCLGET(n, M_NOWAIT); 7351 if ((n->m_flags & M_EXT) == 0) { 7352 m_free(n); 7353 n = NULL; 7354 } 7355 } 7356 if (!n) { 7357 m_freem(m); 7358 return ENOBUFS; 7359 } 7360 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7361 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7362 n->m_next = NULL; 7363 m_freem(m); 7364 m = n; 7365 } 7366 7367 /* align the mbuf chain so that extensions are in contiguous region. */ 7368 error = key_align(m, &mh); 7369 if (error) 7370 return error; 7371 7372 msg = mh.msg; 7373 7374 /* check SA type */ 7375 switch (msg->sadb_msg_satype) { 7376 case SADB_SATYPE_UNSPEC: 7377 switch (msg->sadb_msg_type) { 7378 case SADB_GETSPI: 7379 case SADB_UPDATE: 7380 case SADB_ADD: 7381 case SADB_DELETE: 7382 case SADB_GET: 7383 case SADB_ACQUIRE: 7384 case SADB_EXPIRE: 7385 ipseclog((LOG_DEBUG, "%s: must specify satype " 7386 "when msg type=%u.\n", __func__, 7387 msg->sadb_msg_type)); 7388 PFKEYSTAT_INC(out_invsatype); 7389 error = EINVAL; 7390 goto senderror; 7391 } 7392 break; 7393 case SADB_SATYPE_AH: 7394 case SADB_SATYPE_ESP: 7395 case SADB_X_SATYPE_IPCOMP: 7396 case SADB_X_SATYPE_TCPSIGNATURE: 7397 switch (msg->sadb_msg_type) { 7398 case SADB_X_SPDADD: 7399 case SADB_X_SPDDELETE: 7400 case SADB_X_SPDGET: 7401 case SADB_X_SPDDUMP: 7402 case SADB_X_SPDFLUSH: 7403 case SADB_X_SPDSETIDX: 7404 case SADB_X_SPDUPDATE: 7405 case SADB_X_SPDDELETE2: 7406 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7407 __func__, msg->sadb_msg_type)); 7408 PFKEYSTAT_INC(out_invsatype); 7409 error = EINVAL; 7410 goto senderror; 7411 } 7412 break; 7413 case SADB_SATYPE_RSVP: 7414 case SADB_SATYPE_OSPFV2: 7415 case SADB_SATYPE_RIPV2: 7416 case SADB_SATYPE_MIP: 7417 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7418 __func__, msg->sadb_msg_satype)); 7419 PFKEYSTAT_INC(out_invsatype); 7420 error = EOPNOTSUPP; 7421 goto senderror; 7422 case 1: /* XXX: What does it do? */ 7423 if (msg->sadb_msg_type == SADB_X_PROMISC) 7424 break; 7425 /*FALLTHROUGH*/ 7426 default: 7427 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7428 __func__, msg->sadb_msg_satype)); 7429 PFKEYSTAT_INC(out_invsatype); 7430 error = EINVAL; 7431 goto senderror; 7432 } 7433 7434 /* check field of upper layer protocol and address family */ 7435 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7436 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7437 struct sadb_address *src0, *dst0; 7438 u_int plen; 7439 7440 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7441 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7442 7443 /* check upper layer protocol */ 7444 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7445 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7446 "mismatched.\n", __func__)); 7447 PFKEYSTAT_INC(out_invaddr); 7448 error = EINVAL; 7449 goto senderror; 7450 } 7451 7452 /* check family */ 7453 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7454 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7455 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7456 __func__)); 7457 PFKEYSTAT_INC(out_invaddr); 7458 error = EINVAL; 7459 goto senderror; 7460 } 7461 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7462 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7463 ipseclog((LOG_DEBUG, "%s: address struct size " 7464 "mismatched.\n", __func__)); 7465 PFKEYSTAT_INC(out_invaddr); 7466 error = EINVAL; 7467 goto senderror; 7468 } 7469 7470 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7471 case AF_INET: 7472 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7473 sizeof(struct sockaddr_in)) { 7474 PFKEYSTAT_INC(out_invaddr); 7475 error = EINVAL; 7476 goto senderror; 7477 } 7478 break; 7479 case AF_INET6: 7480 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7481 sizeof(struct sockaddr_in6)) { 7482 PFKEYSTAT_INC(out_invaddr); 7483 error = EINVAL; 7484 goto senderror; 7485 } 7486 break; 7487 default: 7488 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7489 __func__)); 7490 PFKEYSTAT_INC(out_invaddr); 7491 error = EAFNOSUPPORT; 7492 goto senderror; 7493 } 7494 7495 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7496 case AF_INET: 7497 plen = sizeof(struct in_addr) << 3; 7498 break; 7499 case AF_INET6: 7500 plen = sizeof(struct in6_addr) << 3; 7501 break; 7502 default: 7503 plen = 0; /*fool gcc*/ 7504 break; 7505 } 7506 7507 /* check max prefix length */ 7508 if (src0->sadb_address_prefixlen > plen || 7509 dst0->sadb_address_prefixlen > plen) { 7510 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7511 __func__)); 7512 PFKEYSTAT_INC(out_invaddr); 7513 error = EINVAL; 7514 goto senderror; 7515 } 7516 7517 /* 7518 * prefixlen == 0 is valid because there can be a case when 7519 * all addresses are matched. 7520 */ 7521 } 7522 7523 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7524 key_typesw[msg->sadb_msg_type] == NULL) { 7525 PFKEYSTAT_INC(out_invmsgtype); 7526 error = EINVAL; 7527 goto senderror; 7528 } 7529 7530 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7531 7532 senderror: 7533 msg->sadb_msg_errno = error; 7534 return key_sendup_mbuf(so, m, target); 7535 } 7536 7537 static int 7538 key_senderror(so, m, code) 7539 struct socket *so; 7540 struct mbuf *m; 7541 int code; 7542 { 7543 struct sadb_msg *msg; 7544 7545 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7546 ("mbuf too small, len %u", m->m_len)); 7547 7548 msg = mtod(m, struct sadb_msg *); 7549 msg->sadb_msg_errno = code; 7550 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7551 } 7552 7553 /* 7554 * set the pointer to each header into message buffer. 7555 * m will be freed on error. 7556 * XXX larger-than-MCLBYTES extension? 7557 */ 7558 static int 7559 key_align(m, mhp) 7560 struct mbuf *m; 7561 struct sadb_msghdr *mhp; 7562 { 7563 struct mbuf *n; 7564 struct sadb_ext *ext; 7565 size_t off, end; 7566 int extlen; 7567 int toff; 7568 7569 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7570 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7571 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7572 ("mbuf too small, len %u", m->m_len)); 7573 7574 /* initialize */ 7575 bzero(mhp, sizeof(*mhp)); 7576 7577 mhp->msg = mtod(m, struct sadb_msg *); 7578 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7579 7580 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7581 extlen = end; /*just in case extlen is not updated*/ 7582 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7583 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7584 if (!n) { 7585 /* m is already freed */ 7586 return ENOBUFS; 7587 } 7588 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7589 7590 /* set pointer */ 7591 switch (ext->sadb_ext_type) { 7592 case SADB_EXT_SA: 7593 case SADB_EXT_ADDRESS_SRC: 7594 case SADB_EXT_ADDRESS_DST: 7595 case SADB_EXT_ADDRESS_PROXY: 7596 case SADB_EXT_LIFETIME_CURRENT: 7597 case SADB_EXT_LIFETIME_HARD: 7598 case SADB_EXT_LIFETIME_SOFT: 7599 case SADB_EXT_KEY_AUTH: 7600 case SADB_EXT_KEY_ENCRYPT: 7601 case SADB_EXT_IDENTITY_SRC: 7602 case SADB_EXT_IDENTITY_DST: 7603 case SADB_EXT_SENSITIVITY: 7604 case SADB_EXT_PROPOSAL: 7605 case SADB_EXT_SUPPORTED_AUTH: 7606 case SADB_EXT_SUPPORTED_ENCRYPT: 7607 case SADB_EXT_SPIRANGE: 7608 case SADB_X_EXT_POLICY: 7609 case SADB_X_EXT_SA2: 7610 #ifdef IPSEC_NAT_T 7611 case SADB_X_EXT_NAT_T_TYPE: 7612 case SADB_X_EXT_NAT_T_SPORT: 7613 case SADB_X_EXT_NAT_T_DPORT: 7614 case SADB_X_EXT_NAT_T_OAI: 7615 case SADB_X_EXT_NAT_T_OAR: 7616 case SADB_X_EXT_NAT_T_FRAG: 7617 #endif 7618 /* duplicate check */ 7619 /* 7620 * XXX Are there duplication payloads of either 7621 * KEY_AUTH or KEY_ENCRYPT ? 7622 */ 7623 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7624 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7625 "%u\n", __func__, ext->sadb_ext_type)); 7626 m_freem(m); 7627 PFKEYSTAT_INC(out_dupext); 7628 return EINVAL; 7629 } 7630 break; 7631 default: 7632 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7633 __func__, ext->sadb_ext_type)); 7634 m_freem(m); 7635 PFKEYSTAT_INC(out_invexttype); 7636 return EINVAL; 7637 } 7638 7639 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7640 7641 if (key_validate_ext(ext, extlen)) { 7642 m_freem(m); 7643 PFKEYSTAT_INC(out_invlen); 7644 return EINVAL; 7645 } 7646 7647 n = m_pulldown(m, off, extlen, &toff); 7648 if (!n) { 7649 /* m is already freed */ 7650 return ENOBUFS; 7651 } 7652 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7653 7654 mhp->ext[ext->sadb_ext_type] = ext; 7655 mhp->extoff[ext->sadb_ext_type] = off; 7656 mhp->extlen[ext->sadb_ext_type] = extlen; 7657 } 7658 7659 if (off != end) { 7660 m_freem(m); 7661 PFKEYSTAT_INC(out_invlen); 7662 return EINVAL; 7663 } 7664 7665 return 0; 7666 } 7667 7668 static int 7669 key_validate_ext(ext, len) 7670 const struct sadb_ext *ext; 7671 int len; 7672 { 7673 const struct sockaddr *sa; 7674 enum { NONE, ADDR } checktype = NONE; 7675 int baselen = 0; 7676 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7677 7678 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7679 return EINVAL; 7680 7681 /* if it does not match minimum/maximum length, bail */ 7682 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7683 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7684 return EINVAL; 7685 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7686 return EINVAL; 7687 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7688 return EINVAL; 7689 7690 /* more checks based on sadb_ext_type XXX need more */ 7691 switch (ext->sadb_ext_type) { 7692 case SADB_EXT_ADDRESS_SRC: 7693 case SADB_EXT_ADDRESS_DST: 7694 case SADB_EXT_ADDRESS_PROXY: 7695 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7696 checktype = ADDR; 7697 break; 7698 case SADB_EXT_IDENTITY_SRC: 7699 case SADB_EXT_IDENTITY_DST: 7700 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7701 SADB_X_IDENTTYPE_ADDR) { 7702 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7703 checktype = ADDR; 7704 } else 7705 checktype = NONE; 7706 break; 7707 default: 7708 checktype = NONE; 7709 break; 7710 } 7711 7712 switch (checktype) { 7713 case NONE: 7714 break; 7715 case ADDR: 7716 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7717 if (len < baselen + sal) 7718 return EINVAL; 7719 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7720 return EINVAL; 7721 break; 7722 } 7723 7724 return 0; 7725 } 7726 7727 void 7728 key_init(void) 7729 { 7730 int i; 7731 7732 for (i = 0; i < IPSEC_DIR_MAX; i++) 7733 LIST_INIT(&V_sptree[i]); 7734 7735 LIST_INIT(&V_sahtree); 7736 7737 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7738 LIST_INIT(&V_regtree[i]); 7739 7740 LIST_INIT(&V_acqtree); 7741 LIST_INIT(&V_spacqtree); 7742 7743 /* system default */ 7744 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7745 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7746 7747 if (!IS_DEFAULT_VNET(curvnet)) 7748 return; 7749 7750 SPTREE_LOCK_INIT(); 7751 REGTREE_LOCK_INIT(); 7752 SAHTREE_LOCK_INIT(); 7753 ACQ_LOCK_INIT(); 7754 SPACQ_LOCK_INIT(); 7755 7756 #ifndef IPSEC_DEBUG2 7757 timeout((void *)key_timehandler, (void *)0, hz); 7758 #endif /*IPSEC_DEBUG2*/ 7759 7760 /* initialize key statistics */ 7761 keystat.getspi_count = 1; 7762 7763 printf("IPsec: Initialized Security Association Processing.\n"); 7764 } 7765 7766 #ifdef VIMAGE 7767 void 7768 key_destroy(void) 7769 { 7770 struct secpolicy *sp, *nextsp; 7771 struct secacq *acq, *nextacq; 7772 struct secspacq *spacq, *nextspacq; 7773 struct secashead *sah, *nextsah; 7774 struct secreg *reg; 7775 int i; 7776 7777 SPTREE_LOCK(); 7778 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7779 for (sp = LIST_FIRST(&V_sptree[i]); 7780 sp != NULL; sp = nextsp) { 7781 nextsp = LIST_NEXT(sp, chain); 7782 if (__LIST_CHAINED(sp)) { 7783 LIST_REMOVE(sp, chain); 7784 free(sp, M_IPSEC_SP); 7785 } 7786 } 7787 } 7788 SPTREE_UNLOCK(); 7789 7790 SAHTREE_LOCK(); 7791 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7792 nextsah = LIST_NEXT(sah, chain); 7793 if (__LIST_CHAINED(sah)) { 7794 LIST_REMOVE(sah, chain); 7795 free(sah, M_IPSEC_SAH); 7796 } 7797 } 7798 SAHTREE_UNLOCK(); 7799 7800 REGTREE_LOCK(); 7801 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7802 LIST_FOREACH(reg, &V_regtree[i], chain) { 7803 if (__LIST_CHAINED(reg)) { 7804 LIST_REMOVE(reg, chain); 7805 free(reg, M_IPSEC_SAR); 7806 break; 7807 } 7808 } 7809 } 7810 REGTREE_UNLOCK(); 7811 7812 ACQ_LOCK(); 7813 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7814 nextacq = LIST_NEXT(acq, chain); 7815 if (__LIST_CHAINED(acq)) { 7816 LIST_REMOVE(acq, chain); 7817 free(acq, M_IPSEC_SAQ); 7818 } 7819 } 7820 ACQ_UNLOCK(); 7821 7822 SPACQ_LOCK(); 7823 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7824 spacq = nextspacq) { 7825 nextspacq = LIST_NEXT(spacq, chain); 7826 if (__LIST_CHAINED(spacq)) { 7827 LIST_REMOVE(spacq, chain); 7828 free(spacq, M_IPSEC_SAQ); 7829 } 7830 } 7831 SPACQ_UNLOCK(); 7832 } 7833 #endif 7834 7835 /* 7836 * XXX: maybe This function is called after INBOUND IPsec processing. 7837 * 7838 * Special check for tunnel-mode packets. 7839 * We must make some checks for consistency between inner and outer IP header. 7840 * 7841 * xxx more checks to be provided 7842 */ 7843 int 7844 key_checktunnelsanity(sav, family, src, dst) 7845 struct secasvar *sav; 7846 u_int family; 7847 caddr_t src; 7848 caddr_t dst; 7849 { 7850 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7851 7852 /* XXX: check inner IP header */ 7853 7854 return 1; 7855 } 7856 7857 /* record data transfer on SA, and update timestamps */ 7858 void 7859 key_sa_recordxfer(sav, m) 7860 struct secasvar *sav; 7861 struct mbuf *m; 7862 { 7863 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7864 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7865 if (!sav->lft_c) 7866 return; 7867 7868 /* 7869 * XXX Currently, there is a difference of bytes size 7870 * between inbound and outbound processing. 7871 */ 7872 sav->lft_c->bytes += m->m_pkthdr.len; 7873 /* to check bytes lifetime is done in key_timehandler(). */ 7874 7875 /* 7876 * We use the number of packets as the unit of 7877 * allocations. We increment the variable 7878 * whenever {esp,ah}_{in,out}put is called. 7879 */ 7880 sav->lft_c->allocations++; 7881 /* XXX check for expires? */ 7882 7883 /* 7884 * NOTE: We record CURRENT usetime by using wall clock, 7885 * in seconds. HARD and SOFT lifetime are measured by the time 7886 * difference (again in seconds) from usetime. 7887 * 7888 * usetime 7889 * v expire expire 7890 * -----+-----+--------+---> t 7891 * <--------------> HARD 7892 * <-----> SOFT 7893 */ 7894 sav->lft_c->usetime = time_second; 7895 /* XXX check for expires? */ 7896 7897 return; 7898 } 7899 7900 /* dumb version */ 7901 void 7902 key_sa_routechange(dst) 7903 struct sockaddr *dst; 7904 { 7905 struct secashead *sah; 7906 struct route *ro; 7907 7908 SAHTREE_LOCK(); 7909 LIST_FOREACH(sah, &V_sahtree, chain) { 7910 ro = &sah->route_cache.sa_route; 7911 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7912 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7913 RTFREE(ro->ro_rt); 7914 ro->ro_rt = (struct rtentry *)NULL; 7915 } 7916 } 7917 SAHTREE_UNLOCK(); 7918 } 7919 7920 static void 7921 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7922 { 7923 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7924 SAHTREE_LOCK_ASSERT(); 7925 7926 if (sav->state != state) { 7927 if (__LIST_CHAINED(sav)) 7928 LIST_REMOVE(sav, chain); 7929 sav->state = state; 7930 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7931 } 7932 } 7933 7934 void 7935 key_sa_stir_iv(sav) 7936 struct secasvar *sav; 7937 { 7938 7939 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7940 key_randomfill(sav->iv, sav->ivlen); 7941 } 7942 7943 /* 7944 * Take one of the kernel's security keys and convert it into a PF_KEY 7945 * structure within an mbuf, suitable for sending up to a waiting 7946 * application in user land. 7947 * 7948 * IN: 7949 * src: A pointer to a kernel security key. 7950 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7951 * OUT: 7952 * a valid mbuf or NULL indicating an error 7953 * 7954 */ 7955 7956 static struct mbuf * 7957 key_setkey(struct seckey *src, u_int16_t exttype) 7958 { 7959 struct mbuf *m; 7960 struct sadb_key *p; 7961 int len; 7962 7963 if (src == NULL) 7964 return NULL; 7965 7966 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7967 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7968 if (m == NULL) 7969 return NULL; 7970 m_align(m, len); 7971 m->m_len = len; 7972 p = mtod(m, struct sadb_key *); 7973 bzero(p, len); 7974 p->sadb_key_len = PFKEY_UNIT64(len); 7975 p->sadb_key_exttype = exttype; 7976 p->sadb_key_bits = src->bits; 7977 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7978 7979 return m; 7980 } 7981 7982 /* 7983 * Take one of the kernel's lifetime data structures and convert it 7984 * into a PF_KEY structure within an mbuf, suitable for sending up to 7985 * a waiting application in user land. 7986 * 7987 * IN: 7988 * src: A pointer to a kernel lifetime structure. 7989 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7990 * data structures for more information. 7991 * OUT: 7992 * a valid mbuf or NULL indicating an error 7993 * 7994 */ 7995 7996 static struct mbuf * 7997 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7998 { 7999 struct mbuf *m = NULL; 8000 struct sadb_lifetime *p; 8001 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8002 8003 if (src == NULL) 8004 return NULL; 8005 8006 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8007 if (m == NULL) 8008 return m; 8009 m_align(m, len); 8010 m->m_len = len; 8011 p = mtod(m, struct sadb_lifetime *); 8012 8013 bzero(p, len); 8014 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8015 p->sadb_lifetime_exttype = exttype; 8016 p->sadb_lifetime_allocations = src->allocations; 8017 p->sadb_lifetime_bytes = src->bytes; 8018 p->sadb_lifetime_addtime = src->addtime; 8019 p->sadb_lifetime_usetime = src->usetime; 8020 8021 return m; 8022 8023 } 8024