1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/rmlock.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/sysctl.h> 55 #include <sys/errno.h> 56 #include <sys/proc.h> 57 #include <sys/queue.h> 58 #include <sys/refcount.h> 59 #include <sys/syslog.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 static struct rmlock sptree_lock; 147 #define V_sptree VNET(sptree) 148 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 149 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 150 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 151 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 152 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 153 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 154 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 155 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 156 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 157 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 158 159 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 160 #define V_sahtree VNET(sahtree) 161 static struct mtx sahtree_lock; 162 #define SAHTREE_LOCK_INIT() \ 163 mtx_init(&sahtree_lock, "sahtree", \ 164 "fast ipsec security association database", MTX_DEF) 165 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 166 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 167 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 168 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 169 170 /* registed list */ 171 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 172 #define V_regtree VNET(regtree) 173 static struct mtx regtree_lock; 174 #define REGTREE_LOCK_INIT() \ 175 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 176 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 177 #define REGTREE_LOCK() mtx_lock(®tree_lock) 178 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 179 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 180 181 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 182 #define V_acqtree VNET(acqtree) 183 static struct mtx acq_lock; 184 #define ACQ_LOCK_INIT() \ 185 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 186 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 187 #define ACQ_LOCK() mtx_lock(&acq_lock) 188 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 189 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 190 191 /* SP acquiring list */ 192 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 193 #define V_spacqtree VNET(spacqtree) 194 static struct mtx spacq_lock; 195 #define SPACQ_LOCK_INIT() \ 196 mtx_init(&spacq_lock, "spacqtree", \ 197 "fast ipsec security policy acquire list", MTX_DEF) 198 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 199 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 200 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 201 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 202 203 /* search order for SAs */ 204 static const u_int saorder_state_valid_prefer_old[] = { 205 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 206 }; 207 static const u_int saorder_state_valid_prefer_new[] = { 208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 209 }; 210 static const u_int saorder_state_alive[] = { 211 /* except DEAD */ 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 213 }; 214 static const u_int saorder_state_any[] = { 215 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 216 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 217 }; 218 219 static const int minsize[] = { 220 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 221 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 222 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 223 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 224 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 225 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 226 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 227 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 228 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 229 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 230 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 231 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 232 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 233 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 234 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 235 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 236 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 237 0, /* SADB_X_EXT_KMPRIVATE */ 238 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 239 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 240 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 241 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 242 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 243 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 244 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 245 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 246 }; 247 static const int maxsize[] = { 248 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 249 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 250 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 251 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 252 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 253 0, /* SADB_EXT_ADDRESS_SRC */ 254 0, /* SADB_EXT_ADDRESS_DST */ 255 0, /* SADB_EXT_ADDRESS_PROXY */ 256 0, /* SADB_EXT_KEY_AUTH */ 257 0, /* SADB_EXT_KEY_ENCRYPT */ 258 0, /* SADB_EXT_IDENTITY_SRC */ 259 0, /* SADB_EXT_IDENTITY_DST */ 260 0, /* SADB_EXT_SENSITIVITY */ 261 0, /* SADB_EXT_PROPOSAL */ 262 0, /* SADB_EXT_SUPPORTED_AUTH */ 263 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 264 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 265 0, /* SADB_X_EXT_KMPRIVATE */ 266 0, /* SADB_X_EXT_POLICY */ 267 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 268 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 269 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 270 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 271 0, /* SADB_X_EXT_NAT_T_OAI */ 272 0, /* SADB_X_EXT_NAT_T_OAR */ 273 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 274 }; 275 276 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 277 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 278 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 279 280 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 281 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 282 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 283 284 #ifdef SYSCTL_DECL 285 SYSCTL_DECL(_net_key); 286 #endif 287 288 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 289 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 290 291 /* max count of trial for the decision of spi value */ 292 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 294 295 /* minimum spi value to allocate automatically. */ 296 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 297 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 298 299 /* maximun spi value to allocate automatically. */ 300 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 301 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 302 303 /* interval to initialize randseed */ 304 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 305 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 306 307 /* lifetime for larval SA */ 308 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 309 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 310 311 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 312 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 313 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 314 315 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 316 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 317 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 318 319 /* ESP auth */ 320 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 321 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 322 323 /* minimum ESP key length */ 324 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 325 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 326 327 /* minimum AH key length */ 328 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 329 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 330 331 /* perfered old SA rather than new SA */ 332 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 333 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 334 335 #define __LIST_CHAINED(elm) \ 336 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 337 #define LIST_INSERT_TAIL(head, elm, type, field) \ 338 do {\ 339 struct type *curelm = LIST_FIRST(head); \ 340 if (curelm == NULL) {\ 341 LIST_INSERT_HEAD(head, elm, field); \ 342 } else { \ 343 while (LIST_NEXT(curelm, field)) \ 344 curelm = LIST_NEXT(curelm, field);\ 345 LIST_INSERT_AFTER(curelm, elm, field);\ 346 }\ 347 } while (0) 348 349 #define KEY_CHKSASTATE(head, sav, name) \ 350 do { \ 351 if ((head) != (sav)) { \ 352 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 353 (name), (head), (sav))); \ 354 continue; \ 355 } \ 356 } while (0) 357 358 #define KEY_CHKSPDIR(head, sp, name) \ 359 do { \ 360 if ((head) != (sp)) { \ 361 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 362 "anyway continue.\n", \ 363 (name), (head), (sp))); \ 364 } \ 365 } while (0) 366 367 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 368 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 369 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 370 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 371 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 372 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 373 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 374 375 /* 376 * set parameters into secpolicyindex buffer. 377 * Must allocate secpolicyindex buffer passed to this function. 378 */ 379 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 380 do { \ 381 bzero((idx), sizeof(struct secpolicyindex)); \ 382 (idx)->dir = (_dir); \ 383 (idx)->prefs = (ps); \ 384 (idx)->prefd = (pd); \ 385 (idx)->ul_proto = (ulp); \ 386 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 387 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 388 } while (0) 389 390 /* 391 * set parameters into secasindex buffer. 392 * Must allocate secasindex buffer before calling this function. 393 */ 394 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 395 do { \ 396 bzero((idx), sizeof(struct secasindex)); \ 397 (idx)->proto = (p); \ 398 (idx)->mode = (m); \ 399 (idx)->reqid = (r); \ 400 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 401 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 402 } while (0) 403 404 /* key statistics */ 405 struct _keystat { 406 u_long getspi_count; /* the avarage of count to try to get new SPI */ 407 } keystat; 408 409 struct sadb_msghdr { 410 struct sadb_msg *msg; 411 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 412 int extoff[SADB_EXT_MAX + 1]; 413 int extlen[SADB_EXT_MAX + 1]; 414 }; 415 416 #ifndef IPSEC_DEBUG2 417 static struct callout key_timer; 418 #endif 419 420 static struct secasvar *key_allocsa_policy(const struct secasindex *); 421 static void key_freesp_so(struct secpolicy **); 422 static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); 423 static void key_unlink(struct secpolicy *); 424 static struct secpolicy *key_getsp(struct secpolicyindex *); 425 static struct secpolicy *key_getspbyid(u_int32_t); 426 static u_int32_t key_newreqid(void); 427 static struct mbuf *key_gather_mbuf(struct mbuf *, 428 const struct sadb_msghdr *, int, int, ...); 429 static int key_spdadd(struct socket *, struct mbuf *, 430 const struct sadb_msghdr *); 431 static u_int32_t key_getnewspid(void); 432 static int key_spddelete(struct socket *, struct mbuf *, 433 const struct sadb_msghdr *); 434 static int key_spddelete2(struct socket *, struct mbuf *, 435 const struct sadb_msghdr *); 436 static int key_spdget(struct socket *, struct mbuf *, 437 const struct sadb_msghdr *); 438 static int key_spdflush(struct socket *, struct mbuf *, 439 const struct sadb_msghdr *); 440 static int key_spddump(struct socket *, struct mbuf *, 441 const struct sadb_msghdr *); 442 static struct mbuf *key_setdumpsp(struct secpolicy *, 443 u_int8_t, u_int32_t, u_int32_t); 444 static u_int key_getspreqmsglen(struct secpolicy *); 445 static int key_spdexpire(struct secpolicy *); 446 static struct secashead *key_newsah(struct secasindex *); 447 static void key_delsah(struct secashead *); 448 static struct secasvar *key_newsav(struct mbuf *, 449 const struct sadb_msghdr *, struct secashead *, int *, 450 const char*, int); 451 #define KEY_NEWSAV(m, sadb, sah, e) \ 452 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 453 static void key_delsav(struct secasvar *); 454 static struct secashead *key_getsah(struct secasindex *); 455 static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); 456 static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); 457 static int key_setsaval(struct secasvar *, struct mbuf *, 458 const struct sadb_msghdr *); 459 static int key_mature(struct secasvar *); 460 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 461 u_int8_t, u_int32_t, u_int32_t); 462 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 463 u_int32_t, pid_t, u_int16_t); 464 static struct mbuf *key_setsadbsa(struct secasvar *); 465 static struct mbuf *key_setsadbaddr(u_int16_t, 466 const struct sockaddr *, u_int8_t, u_int16_t); 467 #ifdef IPSEC_NAT_T 468 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 469 static struct mbuf *key_setsadbxtype(u_int16_t); 470 #endif 471 static void key_porttosaddr(struct sockaddr *, u_int16_t); 472 #define KEY_PORTTOSADDR(saddr, port) \ 473 key_porttosaddr((struct sockaddr *)(saddr), (port)) 474 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 475 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 476 u_int32_t); 477 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 478 struct malloc_type *); 479 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 480 struct malloc_type *type); 481 #ifdef INET6 482 static int key_ismyaddr6(struct sockaddr_in6 *); 483 #endif 484 485 /* flags for key_cmpsaidx() */ 486 #define CMP_HEAD 1 /* protocol, addresses. */ 487 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 488 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 489 #define CMP_EXACTLY 4 /* all elements. */ 490 static int key_cmpsaidx(const struct secasindex *, 491 const struct secasindex *, int); 492 static int key_cmpspidx_exactly(struct secpolicyindex *, 493 struct secpolicyindex *); 494 static int key_cmpspidx_withmask(struct secpolicyindex *, 495 struct secpolicyindex *); 496 static int key_sockaddrcmp(const struct sockaddr *, 497 const struct sockaddr *, int); 498 static int key_bbcmp(const void *, const void *, u_int); 499 static u_int16_t key_satype2proto(u_int8_t); 500 static u_int8_t key_proto2satype(u_int16_t); 501 502 static int key_getspi(struct socket *, struct mbuf *, 503 const struct sadb_msghdr *); 504 static u_int32_t key_do_getnewspi(struct sadb_spirange *, 505 struct secasindex *); 506 static int key_update(struct socket *, struct mbuf *, 507 const struct sadb_msghdr *); 508 #ifdef IPSEC_DOSEQCHECK 509 static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); 510 #endif 511 static int key_add(struct socket *, struct mbuf *, 512 const struct sadb_msghdr *); 513 static int key_setident(struct secashead *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 516 const struct sadb_msghdr *); 517 static int key_delete(struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_delete_all(struct socket *, struct mbuf *, 520 const struct sadb_msghdr *, u_int16_t); 521 static int key_get(struct socket *, struct mbuf *, 522 const struct sadb_msghdr *); 523 524 static void key_getcomb_setlifetime(struct sadb_comb *); 525 static struct mbuf *key_getcomb_esp(void); 526 static struct mbuf *key_getcomb_ah(void); 527 static struct mbuf *key_getcomb_ipcomp(void); 528 static struct mbuf *key_getprop(const struct secasindex *); 529 530 static int key_acquire(const struct secasindex *, struct secpolicy *); 531 static struct secacq *key_newacq(const struct secasindex *); 532 static struct secacq *key_getacq(const struct secasindex *); 533 static struct secacq *key_getacqbyseq(u_int32_t); 534 static struct secspacq *key_newspacq(struct secpolicyindex *); 535 static struct secspacq *key_getspacq(struct secpolicyindex *); 536 static int key_acquire2(struct socket *, struct mbuf *, 537 const struct sadb_msghdr *); 538 static int key_register(struct socket *, struct mbuf *, 539 const struct sadb_msghdr *); 540 static int key_expire(struct secasvar *); 541 static int key_flush(struct socket *, struct mbuf *, 542 const struct sadb_msghdr *); 543 static int key_dump(struct socket *, struct mbuf *, 544 const struct sadb_msghdr *); 545 static int key_promisc(struct socket *, struct mbuf *, 546 const struct sadb_msghdr *); 547 static int key_senderror(struct socket *, struct mbuf *, int); 548 static int key_validate_ext(const struct sadb_ext *, int); 549 static int key_align(struct mbuf *, struct sadb_msghdr *); 550 static struct mbuf *key_setlifetime(struct seclifetime *src, 551 u_int16_t exttype); 552 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 553 554 #if 0 555 static const char *key_getfqdn(void); 556 static const char *key_getuserfqdn(void); 557 #endif 558 static void key_sa_chgstate(struct secasvar *, u_int8_t); 559 560 static __inline void 561 sa_initref(struct secasvar *sav) 562 { 563 564 refcount_init(&sav->refcnt, 1); 565 } 566 static __inline void 567 sa_addref(struct secasvar *sav) 568 { 569 570 refcount_acquire(&sav->refcnt); 571 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 572 } 573 static __inline int 574 sa_delref(struct secasvar *sav) 575 { 576 577 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 578 return (refcount_release(&sav->refcnt)); 579 } 580 581 #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) 582 #define SP_DELREF(p) refcount_release(&(p)->refcnt) 583 584 /* 585 * Update the refcnt while holding the SPTREE lock. 586 */ 587 void 588 key_addref(struct secpolicy *sp) 589 { 590 591 SP_ADDREF(sp); 592 } 593 594 /* 595 * Return 0 when there are known to be no SP's for the specified 596 * direction. Otherwise return 1. This is used by IPsec code 597 * to optimize performance. 598 */ 599 int 600 key_havesp(u_int dir) 601 { 602 603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 604 TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); 605 } 606 607 /* %%% IPsec policy management */ 608 /* 609 * allocating a SP for OUTBOUND or INBOUND packet. 610 * Must call key_freesp() later. 611 * OUT: NULL: not found 612 * others: found and return the pointer. 613 */ 614 struct secpolicy * 615 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, 616 int tag) 617 { 618 SPTREE_RLOCK_TRACKER; 619 struct secpolicy *sp; 620 621 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 622 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 623 ("invalid direction %u", dir)); 624 625 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 626 printf("DP %s from %s:%u\n", __func__, where, tag)); 627 628 /* get a SP entry */ 629 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 630 printf("*** objects\n"); 631 kdebug_secpolicyindex(spidx)); 632 633 SPTREE_RLOCK(); 634 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 635 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 636 printf("*** in SPD\n"); 637 kdebug_secpolicyindex(&sp->spidx)); 638 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 639 goto found; 640 } 641 sp = NULL; 642 found: 643 if (sp) { 644 /* sanity check */ 645 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 646 647 /* found a SPD entry */ 648 sp->lastused = time_second; 649 SP_ADDREF(sp); 650 } 651 SPTREE_RUNLOCK(); 652 653 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 654 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 655 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 656 return sp; 657 } 658 659 /* 660 * allocating a SP for OUTBOUND or INBOUND packet. 661 * Must call key_freesp() later. 662 * OUT: NULL: not found 663 * others: found and return the pointer. 664 */ 665 struct secpolicy * 666 key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, 667 u_int dir, const char* where, int tag) 668 { 669 SPTREE_RLOCK_TRACKER; 670 struct secpolicy *sp; 671 672 IPSEC_ASSERT(dst != NULL, ("null dst")); 673 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 674 ("invalid direction %u", dir)); 675 676 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 677 printf("DP %s from %s:%u\n", __func__, where, tag)); 678 679 /* get a SP entry */ 680 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 681 printf("*** objects\n"); 682 printf("spi %u proto %u dir %u\n", spi, proto, dir); 683 kdebug_sockaddr(&dst->sa)); 684 685 SPTREE_RLOCK(); 686 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** in SPD\n"); 689 kdebug_secpolicyindex(&sp->spidx)); 690 /* compare simple values, then dst address */ 691 if (sp->spidx.ul_proto != proto) 692 continue; 693 /* NB: spi's must exist and match */ 694 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 695 continue; 696 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 697 goto found; 698 } 699 sp = NULL; 700 found: 701 if (sp) { 702 /* sanity check */ 703 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 704 705 /* found a SPD entry */ 706 sp->lastused = time_second; 707 SP_ADDREF(sp); 708 } 709 SPTREE_RUNLOCK(); 710 711 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 712 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 713 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 714 return sp; 715 } 716 717 #if 0 718 /* 719 * return a policy that matches this particular inbound packet. 720 * XXX slow 721 */ 722 struct secpolicy * 723 key_gettunnel(const struct sockaddr *osrc, 724 const struct sockaddr *odst, 725 const struct sockaddr *isrc, 726 const struct sockaddr *idst, 727 const char* where, int tag) 728 { 729 struct secpolicy *sp; 730 const int dir = IPSEC_DIR_INBOUND; 731 struct ipsecrequest *r1, *r2, *p; 732 struct secpolicyindex spidx; 733 734 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 735 printf("DP %s from %s:%u\n", __func__, where, tag)); 736 737 if (isrc->sa_family != idst->sa_family) { 738 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 739 __func__, isrc->sa_family, idst->sa_family)); 740 sp = NULL; 741 goto done; 742 } 743 744 SPTREE_LOCK(); 745 LIST_FOREACH(sp, &V_sptree[dir], chain) { 746 if (sp->state == IPSEC_SPSTATE_DEAD) 747 continue; 748 749 r1 = r2 = NULL; 750 for (p = sp->req; p; p = p->next) { 751 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 752 continue; 753 754 r1 = r2; 755 r2 = p; 756 757 if (!r1) { 758 /* here we look at address matches only */ 759 spidx = sp->spidx; 760 if (isrc->sa_len > sizeof(spidx.src) || 761 idst->sa_len > sizeof(spidx.dst)) 762 continue; 763 bcopy(isrc, &spidx.src, isrc->sa_len); 764 bcopy(idst, &spidx.dst, idst->sa_len); 765 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 766 continue; 767 } else { 768 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 769 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 770 continue; 771 } 772 773 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 774 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 775 continue; 776 777 goto found; 778 } 779 } 780 sp = NULL; 781 found: 782 if (sp) { 783 sp->lastused = time_second; 784 SP_ADDREF(sp); 785 } 786 SPTREE_UNLOCK(); 787 done: 788 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 789 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 790 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 791 return sp; 792 } 793 #endif 794 795 /* 796 * allocating an SA entry for an *OUTBOUND* packet. 797 * checking each request entries in SP, and acquire an SA if need. 798 * OUT: 0: there are valid requests. 799 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 800 */ 801 int 802 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 803 { 804 u_int level; 805 int error; 806 struct secasvar *sav; 807 808 IPSEC_ASSERT(isr != NULL, ("null isr")); 809 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 810 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 811 saidx->mode == IPSEC_MODE_TUNNEL, 812 ("unexpected policy %u", saidx->mode)); 813 814 /* 815 * XXX guard against protocol callbacks from the crypto 816 * thread as they reference ipsecrequest.sav which we 817 * temporarily null out below. Need to rethink how we 818 * handle bundled SA's in the callback thread. 819 */ 820 IPSECREQUEST_LOCK_ASSERT(isr); 821 822 /* get current level */ 823 level = ipsec_get_reqlevel(isr); 824 825 /* 826 * We check new SA in the IPsec request because a different 827 * SA may be involved each time this request is checked, either 828 * because new SAs are being configured, or this request is 829 * associated with an unconnected datagram socket, or this request 830 * is associated with a system default policy. 831 * 832 * key_allocsa_policy should allocate the oldest SA available. 833 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 834 */ 835 sav = key_allocsa_policy(saidx); 836 if (sav != isr->sav) { 837 /* SA need to be updated. */ 838 if (!IPSECREQUEST_UPGRADE(isr)) { 839 /* Kick everyone off. */ 840 IPSECREQUEST_UNLOCK(isr); 841 IPSECREQUEST_WLOCK(isr); 842 } 843 if (isr->sav != NULL) 844 KEY_FREESAV(&isr->sav); 845 isr->sav = sav; 846 IPSECREQUEST_DOWNGRADE(isr); 847 } else if (sav != NULL) 848 KEY_FREESAV(&sav); 849 850 /* When there is SA. */ 851 if (isr->sav != NULL) { 852 if (isr->sav->state != SADB_SASTATE_MATURE && 853 isr->sav->state != SADB_SASTATE_DYING) 854 return EINVAL; 855 return 0; 856 } 857 858 /* there is no SA */ 859 error = key_acquire(saidx, isr->sp); 860 if (error != 0) { 861 /* XXX What should I do ? */ 862 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 863 __func__, error)); 864 return error; 865 } 866 867 if (level != IPSEC_LEVEL_REQUIRE) { 868 /* XXX sigh, the interface to this routine is botched */ 869 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 870 return 0; 871 } else { 872 return ENOENT; 873 } 874 } 875 876 /* 877 * allocating a SA for policy entry from SAD. 878 * NOTE: searching SAD of aliving state. 879 * OUT: NULL: not found. 880 * others: found and return the pointer. 881 */ 882 static struct secasvar * 883 key_allocsa_policy(const struct secasindex *saidx) 884 { 885 #define N(a) _ARRAYLEN(a) 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, arraysize; 889 const u_int *state_valid; 890 891 state_valid = NULL; /* silence gcc */ 892 arraysize = 0; /* silence gcc */ 893 894 SAHTREE_LOCK(); 895 LIST_FOREACH(sah, &V_sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 899 if (V_key_preferred_oldsa) { 900 state_valid = saorder_state_valid_prefer_old; 901 arraysize = N(saorder_state_valid_prefer_old); 902 } else { 903 state_valid = saorder_state_valid_prefer_new; 904 arraysize = N(saorder_state_valid_prefer_new); 905 } 906 break; 907 } 908 } 909 SAHTREE_UNLOCK(); 910 if (sah == NULL) 911 return NULL; 912 913 /* search valid state */ 914 for (stateidx = 0; stateidx < arraysize; stateidx++) { 915 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 916 if (sav != NULL) 917 return sav; 918 } 919 920 return NULL; 921 #undef N 922 } 923 924 /* 925 * searching SAD with direction, protocol, mode and state. 926 * called by key_allocsa_policy(). 927 * OUT: 928 * NULL : not found 929 * others : found, pointer to a SA. 930 */ 931 static struct secasvar * 932 key_do_allocsa_policy(struct secashead *sah, u_int state) 933 { 934 struct secasvar *sav, *nextsav, *candidate, *d; 935 936 /* initilize */ 937 candidate = NULL; 938 939 SAHTREE_LOCK(); 940 for (sav = LIST_FIRST(&sah->savtree[state]); 941 sav != NULL; 942 sav = nextsav) { 943 944 nextsav = LIST_NEXT(sav, chain); 945 946 /* sanity check */ 947 KEY_CHKSASTATE(sav->state, state, __func__); 948 949 /* initialize */ 950 if (candidate == NULL) { 951 candidate = sav; 952 continue; 953 } 954 955 /* Which SA is the better ? */ 956 957 IPSEC_ASSERT(candidate->lft_c != NULL, 958 ("null candidate lifetime")); 959 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 960 961 /* What the best method is to compare ? */ 962 if (V_key_preferred_oldsa) { 963 if (candidate->lft_c->addtime > 964 sav->lft_c->addtime) { 965 candidate = sav; 966 } 967 continue; 968 /*NOTREACHED*/ 969 } 970 971 /* preferred new sa rather than old sa */ 972 if (candidate->lft_c->addtime < 973 sav->lft_c->addtime) { 974 d = candidate; 975 candidate = sav; 976 } else 977 d = sav; 978 979 /* 980 * prepared to delete the SA when there is more 981 * suitable candidate and the lifetime of the SA is not 982 * permanent. 983 */ 984 if (d->lft_h->addtime != 0) { 985 struct mbuf *m, *result; 986 u_int8_t satype; 987 988 key_sa_chgstate(d, SADB_SASTATE_DEAD); 989 990 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 991 992 satype = key_proto2satype(d->sah->saidx.proto); 993 if (satype == 0) 994 goto msgfail; 995 996 m = key_setsadbmsg(SADB_DELETE, 0, 997 satype, 0, 0, d->refcnt - 1); 998 if (!m) 999 goto msgfail; 1000 result = m; 1001 1002 /* set sadb_address for saidx's. */ 1003 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1004 &d->sah->saidx.src.sa, 1005 d->sah->saidx.src.sa.sa_len << 3, 1006 IPSEC_ULPROTO_ANY); 1007 if (!m) 1008 goto msgfail; 1009 m_cat(result, m); 1010 1011 /* set sadb_address for saidx's. */ 1012 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1013 &d->sah->saidx.dst.sa, 1014 d->sah->saidx.dst.sa.sa_len << 3, 1015 IPSEC_ULPROTO_ANY); 1016 if (!m) 1017 goto msgfail; 1018 m_cat(result, m); 1019 1020 /* create SA extension */ 1021 m = key_setsadbsa(d); 1022 if (!m) 1023 goto msgfail; 1024 m_cat(result, m); 1025 1026 if (result->m_len < sizeof(struct sadb_msg)) { 1027 result = m_pullup(result, 1028 sizeof(struct sadb_msg)); 1029 if (result == NULL) 1030 goto msgfail; 1031 } 1032 1033 result->m_pkthdr.len = 0; 1034 for (m = result; m; m = m->m_next) 1035 result->m_pkthdr.len += m->m_len; 1036 mtod(result, struct sadb_msg *)->sadb_msg_len = 1037 PFKEY_UNIT64(result->m_pkthdr.len); 1038 1039 if (key_sendup_mbuf(NULL, result, 1040 KEY_SENDUP_REGISTERED)) 1041 goto msgfail; 1042 msgfail: 1043 KEY_FREESAV(&d); 1044 } 1045 } 1046 if (candidate) { 1047 sa_addref(candidate); 1048 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1049 printf("DP %s cause refcnt++:%d SA:%p\n", 1050 __func__, candidate->refcnt, candidate)); 1051 } 1052 SAHTREE_UNLOCK(); 1053 1054 return candidate; 1055 } 1056 1057 /* 1058 * allocating a usable SA entry for a *INBOUND* packet. 1059 * Must call key_freesav() later. 1060 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1061 * NULL: not found, or error occured. 1062 * 1063 * In the comparison, no source address is used--for RFC2401 conformance. 1064 * To quote, from section 4.1: 1065 * A security association is uniquely identified by a triple consisting 1066 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1067 * security protocol (AH or ESP) identifier. 1068 * Note that, however, we do need to keep source address in IPsec SA. 1069 * IKE specification and PF_KEY specification do assume that we 1070 * keep source address in IPsec SA. We see a tricky situation here. 1071 */ 1072 struct secasvar * 1073 key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, 1074 const char* where, int tag) 1075 { 1076 struct secashead *sah; 1077 struct secasvar *sav; 1078 u_int stateidx, arraysize, state; 1079 const u_int *saorder_state_valid; 1080 #ifdef IPSEC_NAT_T 1081 int natt_chkport; 1082 #endif 1083 1084 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1085 1086 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1087 printf("DP %s from %s:%u\n", __func__, where, tag)); 1088 1089 #ifdef IPSEC_NAT_T 1090 natt_chkport = (dst->sa.sa_family == AF_INET && 1091 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1092 dst->sin.sin_port != 0); 1093 #endif 1094 1095 /* 1096 * searching SAD. 1097 * XXX: to be checked internal IP header somewhere. Also when 1098 * IPsec tunnel packet is received. But ESP tunnel mode is 1099 * encrypted so we can't check internal IP header. 1100 */ 1101 SAHTREE_LOCK(); 1102 if (V_key_preferred_oldsa) { 1103 saorder_state_valid = saorder_state_valid_prefer_old; 1104 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1105 } else { 1106 saorder_state_valid = saorder_state_valid_prefer_new; 1107 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1108 } 1109 LIST_FOREACH(sah, &V_sahtree, chain) { 1110 int checkport; 1111 1112 /* search valid state */ 1113 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1114 state = saorder_state_valid[stateidx]; 1115 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1116 /* sanity check */ 1117 KEY_CHKSASTATE(sav->state, state, __func__); 1118 /* do not return entries w/ unusable state */ 1119 if (sav->state != SADB_SASTATE_MATURE && 1120 sav->state != SADB_SASTATE_DYING) 1121 continue; 1122 if (proto != sav->sah->saidx.proto) 1123 continue; 1124 if (spi != sav->spi) 1125 continue; 1126 checkport = 0; 1127 #ifdef IPSEC_NAT_T 1128 /* 1129 * Really only check ports when this is a NAT-T 1130 * SA. Otherwise other lookups providing ports 1131 * might suffer. 1132 */ 1133 if (sav->natt_type && natt_chkport) 1134 checkport = 1; 1135 #endif 1136 #if 0 /* don't check src */ 1137 /* check src address */ 1138 if (key_sockaddrcmp(&src->sa, 1139 &sav->sah->saidx.src.sa, checkport) != 0) 1140 continue; 1141 #endif 1142 /* check dst address */ 1143 if (key_sockaddrcmp(&dst->sa, 1144 &sav->sah->saidx.dst.sa, checkport) != 0) 1145 continue; 1146 sa_addref(sav); 1147 goto done; 1148 } 1149 } 1150 } 1151 sav = NULL; 1152 done: 1153 SAHTREE_UNLOCK(); 1154 1155 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1156 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1157 sav, sav ? sav->refcnt : 0)); 1158 return sav; 1159 } 1160 1161 /* 1162 * Must be called after calling key_allocsp(). 1163 * For both the packet without socket and key_freeso(). 1164 */ 1165 void 1166 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1167 { 1168 struct ipsecrequest *isr, *nextisr; 1169 struct secpolicy *sp = *spp; 1170 1171 IPSEC_ASSERT(sp != NULL, ("null sp")); 1172 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1173 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1174 __func__, sp, sp->id, where, tag, sp->refcnt)); 1175 1176 if (SP_DELREF(sp) == 0) 1177 return; 1178 *spp = NULL; 1179 for (isr = sp->req; isr != NULL; isr = nextisr) { 1180 if (isr->sav != NULL) { 1181 KEY_FREESAV(&isr->sav); 1182 isr->sav = NULL; 1183 } 1184 nextisr = isr->next; 1185 ipsec_delisr(isr); 1186 } 1187 free(sp, M_IPSEC_SP); 1188 } 1189 1190 static void 1191 key_unlink(struct secpolicy *sp) 1192 { 1193 1194 IPSEC_ASSERT(sp != NULL, ("null sp")); 1195 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1196 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1197 ("invalid direction %u", sp->spidx.dir)); 1198 SPTREE_UNLOCK_ASSERT(); 1199 1200 SPTREE_WLOCK(); 1201 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1202 SPTREE_WUNLOCK(); 1203 } 1204 1205 /* 1206 * Must be called after calling key_allocsp(). 1207 * For the packet with socket. 1208 */ 1209 void 1210 key_freeso(struct socket *so) 1211 { 1212 IPSEC_ASSERT(so != NULL, ("null so")); 1213 1214 switch (so->so_proto->pr_domain->dom_family) { 1215 #if defined(INET) || defined(INET6) 1216 #ifdef INET 1217 case PF_INET: 1218 #endif 1219 #ifdef INET6 1220 case PF_INET6: 1221 #endif 1222 { 1223 struct inpcb *pcb = sotoinpcb(so); 1224 1225 /* Does it have a PCB ? */ 1226 if (pcb == NULL) 1227 return; 1228 key_freesp_so(&pcb->inp_sp->sp_in); 1229 key_freesp_so(&pcb->inp_sp->sp_out); 1230 } 1231 break; 1232 #endif /* INET || INET6 */ 1233 default: 1234 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1235 __func__, so->so_proto->pr_domain->dom_family)); 1236 return; 1237 } 1238 } 1239 1240 static void 1241 key_freesp_so(struct secpolicy **sp) 1242 { 1243 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1244 1245 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1246 (*sp)->policy == IPSEC_POLICY_BYPASS) 1247 return; 1248 1249 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1250 ("invalid policy %u", (*sp)->policy)); 1251 KEY_FREESP(sp); 1252 } 1253 1254 void 1255 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1256 { 1257 1258 IPSEC_ASSERT(sav != NULL, ("null sav")); 1259 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1260 1261 sa_addref(sav); 1262 } 1263 1264 /* 1265 * Must be called after calling key_allocsa(). 1266 * This function is called by key_freesp() to free some SA allocated 1267 * for a policy. 1268 */ 1269 void 1270 key_freesav(struct secasvar **psav, const char* where, int tag) 1271 { 1272 struct secasvar *sav = *psav; 1273 1274 IPSEC_ASSERT(sav != NULL, ("null sav")); 1275 1276 if (sa_delref(sav)) { 1277 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1278 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1279 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1280 *psav = NULL; 1281 key_delsav(sav); 1282 } else { 1283 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1284 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1285 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1286 } 1287 } 1288 1289 /* %%% SPD management */ 1290 /* 1291 * search SPD 1292 * OUT: NULL : not found 1293 * others : found, pointer to a SP. 1294 */ 1295 static struct secpolicy * 1296 key_getsp(struct secpolicyindex *spidx) 1297 { 1298 SPTREE_RLOCK_TRACKER; 1299 struct secpolicy *sp; 1300 1301 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1302 1303 SPTREE_RLOCK(); 1304 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1305 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1306 SP_ADDREF(sp); 1307 break; 1308 } 1309 } 1310 SPTREE_RUNLOCK(); 1311 1312 return sp; 1313 } 1314 1315 /* 1316 * get SP by index. 1317 * OUT: NULL : not found 1318 * others : found, pointer to a SP. 1319 */ 1320 static struct secpolicy * 1321 key_getspbyid(u_int32_t id) 1322 { 1323 SPTREE_RLOCK_TRACKER; 1324 struct secpolicy *sp; 1325 1326 SPTREE_RLOCK(); 1327 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1328 if (sp->id == id) { 1329 SP_ADDREF(sp); 1330 goto done; 1331 } 1332 } 1333 1334 TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1335 if (sp->id == id) { 1336 SP_ADDREF(sp); 1337 goto done; 1338 } 1339 } 1340 done: 1341 SPTREE_RUNLOCK(); 1342 1343 return sp; 1344 } 1345 1346 struct secpolicy * 1347 key_newsp(const char* where, int tag) 1348 { 1349 struct secpolicy *newsp = NULL; 1350 1351 newsp = (struct secpolicy *) 1352 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1353 if (newsp) 1354 refcount_init(&newsp->refcnt, 1); 1355 1356 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1357 printf("DP %s from %s:%u return SP:%p\n", __func__, 1358 where, tag, newsp)); 1359 return newsp; 1360 } 1361 1362 /* 1363 * create secpolicy structure from sadb_x_policy structure. 1364 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1365 * so must be set properly later. 1366 */ 1367 struct secpolicy * 1368 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1369 { 1370 struct secpolicy *newsp; 1371 1372 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1373 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1374 1375 if (len != PFKEY_EXTLEN(xpl0)) { 1376 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1377 *error = EINVAL; 1378 return NULL; 1379 } 1380 1381 if ((newsp = KEY_NEWSP()) == NULL) { 1382 *error = ENOBUFS; 1383 return NULL; 1384 } 1385 1386 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1387 newsp->policy = xpl0->sadb_x_policy_type; 1388 1389 /* check policy */ 1390 switch (xpl0->sadb_x_policy_type) { 1391 case IPSEC_POLICY_DISCARD: 1392 case IPSEC_POLICY_NONE: 1393 case IPSEC_POLICY_ENTRUST: 1394 case IPSEC_POLICY_BYPASS: 1395 newsp->req = NULL; 1396 break; 1397 1398 case IPSEC_POLICY_IPSEC: 1399 { 1400 int tlen; 1401 struct sadb_x_ipsecrequest *xisr; 1402 struct ipsecrequest **p_isr = &newsp->req; 1403 1404 /* validity check */ 1405 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1406 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1407 __func__)); 1408 KEY_FREESP(&newsp); 1409 *error = EINVAL; 1410 return NULL; 1411 } 1412 1413 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1414 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1415 1416 while (tlen > 0) { 1417 /* length check */ 1418 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1419 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1420 "length.\n", __func__)); 1421 KEY_FREESP(&newsp); 1422 *error = EINVAL; 1423 return NULL; 1424 } 1425 1426 /* allocate request buffer */ 1427 /* NB: data structure is zero'd */ 1428 *p_isr = ipsec_newisr(); 1429 if ((*p_isr) == NULL) { 1430 ipseclog((LOG_DEBUG, 1431 "%s: No more memory.\n", __func__)); 1432 KEY_FREESP(&newsp); 1433 *error = ENOBUFS; 1434 return NULL; 1435 } 1436 1437 /* set values */ 1438 switch (xisr->sadb_x_ipsecrequest_proto) { 1439 case IPPROTO_ESP: 1440 case IPPROTO_AH: 1441 case IPPROTO_IPCOMP: 1442 break; 1443 default: 1444 ipseclog((LOG_DEBUG, 1445 "%s: invalid proto type=%u\n", __func__, 1446 xisr->sadb_x_ipsecrequest_proto)); 1447 KEY_FREESP(&newsp); 1448 *error = EPROTONOSUPPORT; 1449 return NULL; 1450 } 1451 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1452 1453 switch (xisr->sadb_x_ipsecrequest_mode) { 1454 case IPSEC_MODE_TRANSPORT: 1455 case IPSEC_MODE_TUNNEL: 1456 break; 1457 case IPSEC_MODE_ANY: 1458 default: 1459 ipseclog((LOG_DEBUG, 1460 "%s: invalid mode=%u\n", __func__, 1461 xisr->sadb_x_ipsecrequest_mode)); 1462 KEY_FREESP(&newsp); 1463 *error = EINVAL; 1464 return NULL; 1465 } 1466 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1467 1468 switch (xisr->sadb_x_ipsecrequest_level) { 1469 case IPSEC_LEVEL_DEFAULT: 1470 case IPSEC_LEVEL_USE: 1471 case IPSEC_LEVEL_REQUIRE: 1472 break; 1473 case IPSEC_LEVEL_UNIQUE: 1474 /* validity check */ 1475 /* 1476 * If range violation of reqid, kernel will 1477 * update it, don't refuse it. 1478 */ 1479 if (xisr->sadb_x_ipsecrequest_reqid 1480 > IPSEC_MANUAL_REQID_MAX) { 1481 ipseclog((LOG_DEBUG, 1482 "%s: reqid=%d range " 1483 "violation, updated by kernel.\n", 1484 __func__, 1485 xisr->sadb_x_ipsecrequest_reqid)); 1486 xisr->sadb_x_ipsecrequest_reqid = 0; 1487 } 1488 1489 /* allocate new reqid id if reqid is zero. */ 1490 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1491 u_int32_t reqid; 1492 if ((reqid = key_newreqid()) == 0) { 1493 KEY_FREESP(&newsp); 1494 *error = ENOBUFS; 1495 return NULL; 1496 } 1497 (*p_isr)->saidx.reqid = reqid; 1498 xisr->sadb_x_ipsecrequest_reqid = reqid; 1499 } else { 1500 /* set it for manual keying. */ 1501 (*p_isr)->saidx.reqid = 1502 xisr->sadb_x_ipsecrequest_reqid; 1503 } 1504 break; 1505 1506 default: 1507 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1508 __func__, 1509 xisr->sadb_x_ipsecrequest_level)); 1510 KEY_FREESP(&newsp); 1511 *error = EINVAL; 1512 return NULL; 1513 } 1514 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1515 1516 /* set IP addresses if there */ 1517 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1518 struct sockaddr *paddr; 1519 1520 paddr = (struct sockaddr *)(xisr + 1); 1521 1522 /* validity check */ 1523 if (paddr->sa_len 1524 > sizeof((*p_isr)->saidx.src)) { 1525 ipseclog((LOG_DEBUG, "%s: invalid " 1526 "request address length.\n", 1527 __func__)); 1528 KEY_FREESP(&newsp); 1529 *error = EINVAL; 1530 return NULL; 1531 } 1532 bcopy(paddr, &(*p_isr)->saidx.src, 1533 paddr->sa_len); 1534 1535 paddr = (struct sockaddr *)((caddr_t)paddr 1536 + paddr->sa_len); 1537 1538 /* validity check */ 1539 if (paddr->sa_len 1540 > sizeof((*p_isr)->saidx.dst)) { 1541 ipseclog((LOG_DEBUG, "%s: invalid " 1542 "request address length.\n", 1543 __func__)); 1544 KEY_FREESP(&newsp); 1545 *error = EINVAL; 1546 return NULL; 1547 } 1548 bcopy(paddr, &(*p_isr)->saidx.dst, 1549 paddr->sa_len); 1550 } 1551 1552 (*p_isr)->sp = newsp; 1553 1554 /* initialization for the next. */ 1555 p_isr = &(*p_isr)->next; 1556 tlen -= xisr->sadb_x_ipsecrequest_len; 1557 1558 /* validity check */ 1559 if (tlen < 0) { 1560 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1561 __func__)); 1562 KEY_FREESP(&newsp); 1563 *error = EINVAL; 1564 return NULL; 1565 } 1566 1567 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1568 + xisr->sadb_x_ipsecrequest_len); 1569 } 1570 } 1571 break; 1572 default: 1573 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1574 KEY_FREESP(&newsp); 1575 *error = EINVAL; 1576 return NULL; 1577 } 1578 1579 *error = 0; 1580 return newsp; 1581 } 1582 1583 static u_int32_t 1584 key_newreqid() 1585 { 1586 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1587 1588 auto_reqid = (auto_reqid == ~0 1589 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1590 1591 /* XXX should be unique check */ 1592 1593 return auto_reqid; 1594 } 1595 1596 /* 1597 * copy secpolicy struct to sadb_x_policy structure indicated. 1598 */ 1599 struct mbuf * 1600 key_sp2msg(struct secpolicy *sp) 1601 { 1602 struct sadb_x_policy *xpl; 1603 int tlen; 1604 caddr_t p; 1605 struct mbuf *m; 1606 1607 IPSEC_ASSERT(sp != NULL, ("null policy")); 1608 1609 tlen = key_getspreqmsglen(sp); 1610 1611 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1612 if (m == NULL) 1613 return (NULL); 1614 m_align(m, tlen); 1615 m->m_len = tlen; 1616 xpl = mtod(m, struct sadb_x_policy *); 1617 bzero(xpl, tlen); 1618 1619 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1620 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1621 xpl->sadb_x_policy_type = sp->policy; 1622 xpl->sadb_x_policy_dir = sp->spidx.dir; 1623 xpl->sadb_x_policy_id = sp->id; 1624 p = (caddr_t)xpl + sizeof(*xpl); 1625 1626 /* if is the policy for ipsec ? */ 1627 if (sp->policy == IPSEC_POLICY_IPSEC) { 1628 struct sadb_x_ipsecrequest *xisr; 1629 struct ipsecrequest *isr; 1630 1631 for (isr = sp->req; isr != NULL; isr = isr->next) { 1632 1633 xisr = (struct sadb_x_ipsecrequest *)p; 1634 1635 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1636 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1637 xisr->sadb_x_ipsecrequest_level = isr->level; 1638 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1639 1640 p += sizeof(*xisr); 1641 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1642 p += isr->saidx.src.sa.sa_len; 1643 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1644 p += isr->saidx.src.sa.sa_len; 1645 1646 xisr->sadb_x_ipsecrequest_len = 1647 PFKEY_ALIGN8(sizeof(*xisr) 1648 + isr->saidx.src.sa.sa_len 1649 + isr->saidx.dst.sa.sa_len); 1650 } 1651 } 1652 1653 return m; 1654 } 1655 1656 /* m will not be freed nor modified */ 1657 static struct mbuf * 1658 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1659 int ndeep, int nitem, ...) 1660 { 1661 va_list ap; 1662 int idx; 1663 int i; 1664 struct mbuf *result = NULL, *n; 1665 int len; 1666 1667 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1668 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1669 1670 va_start(ap, nitem); 1671 for (i = 0; i < nitem; i++) { 1672 idx = va_arg(ap, int); 1673 if (idx < 0 || idx > SADB_EXT_MAX) 1674 goto fail; 1675 /* don't attempt to pull empty extension */ 1676 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1677 continue; 1678 if (idx != SADB_EXT_RESERVED && 1679 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1680 continue; 1681 1682 if (idx == SADB_EXT_RESERVED) { 1683 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1684 1685 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1686 1687 MGETHDR(n, M_NOWAIT, MT_DATA); 1688 if (!n) 1689 goto fail; 1690 n->m_len = len; 1691 n->m_next = NULL; 1692 m_copydata(m, 0, sizeof(struct sadb_msg), 1693 mtod(n, caddr_t)); 1694 } else if (i < ndeep) { 1695 len = mhp->extlen[idx]; 1696 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1697 if (n == NULL) 1698 goto fail; 1699 m_align(n, len); 1700 n->m_len = len; 1701 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1702 mtod(n, caddr_t)); 1703 } else { 1704 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1705 M_NOWAIT); 1706 } 1707 if (n == NULL) 1708 goto fail; 1709 1710 if (result) 1711 m_cat(result, n); 1712 else 1713 result = n; 1714 } 1715 va_end(ap); 1716 1717 if ((result->m_flags & M_PKTHDR) != 0) { 1718 result->m_pkthdr.len = 0; 1719 for (n = result; n; n = n->m_next) 1720 result->m_pkthdr.len += n->m_len; 1721 } 1722 1723 return result; 1724 1725 fail: 1726 m_freem(result); 1727 va_end(ap); 1728 return NULL; 1729 } 1730 1731 /* 1732 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1733 * add an entry to SP database, when received 1734 * <base, address(SD), (lifetime(H),) policy> 1735 * from the user(?). 1736 * Adding to SP database, 1737 * and send 1738 * <base, address(SD), (lifetime(H),) policy> 1739 * to the socket which was send. 1740 * 1741 * SPDADD set a unique policy entry. 1742 * SPDSETIDX like SPDADD without a part of policy requests. 1743 * SPDUPDATE replace a unique policy entry. 1744 * 1745 * m will always be freed. 1746 */ 1747 static int 1748 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1749 { 1750 struct sadb_address *src0, *dst0; 1751 struct sadb_x_policy *xpl0, *xpl; 1752 struct sadb_lifetime *lft = NULL; 1753 struct secpolicyindex spidx; 1754 struct secpolicy *newsp; 1755 int error; 1756 1757 IPSEC_ASSERT(so != NULL, ("null socket")); 1758 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1759 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1760 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1761 1762 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1763 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1764 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1765 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1766 return key_senderror(so, m, EINVAL); 1767 } 1768 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1769 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1770 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1771 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1772 __func__)); 1773 return key_senderror(so, m, EINVAL); 1774 } 1775 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1776 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1777 < sizeof(struct sadb_lifetime)) { 1778 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1779 __func__)); 1780 return key_senderror(so, m, EINVAL); 1781 } 1782 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1783 } 1784 1785 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1786 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1787 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1788 1789 /* 1790 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1791 * we are processing traffic endpoints. 1792 */ 1793 1794 /* make secindex */ 1795 /* XXX boundary check against sa_len */ 1796 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1797 src0 + 1, 1798 dst0 + 1, 1799 src0->sadb_address_prefixlen, 1800 dst0->sadb_address_prefixlen, 1801 src0->sadb_address_proto, 1802 &spidx); 1803 1804 /* checking the direciton. */ 1805 switch (xpl0->sadb_x_policy_dir) { 1806 case IPSEC_DIR_INBOUND: 1807 case IPSEC_DIR_OUTBOUND: 1808 break; 1809 default: 1810 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1811 mhp->msg->sadb_msg_errno = EINVAL; 1812 return 0; 1813 } 1814 1815 /* check policy */ 1816 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1817 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1818 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1819 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1820 return key_senderror(so, m, EINVAL); 1821 } 1822 1823 /* policy requests are mandatory when action is ipsec. */ 1824 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1825 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1826 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1827 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1828 __func__)); 1829 return key_senderror(so, m, EINVAL); 1830 } 1831 1832 /* 1833 * checking there is SP already or not. 1834 * SPDUPDATE doesn't depend on whether there is a SP or not. 1835 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1836 * then error. 1837 */ 1838 newsp = key_getsp(&spidx); 1839 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1840 if (newsp) { 1841 key_unlink(newsp); 1842 KEY_FREESP(&newsp); 1843 } 1844 } else { 1845 if (newsp != NULL) { 1846 KEY_FREESP(&newsp); 1847 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1848 __func__)); 1849 return key_senderror(so, m, EEXIST); 1850 } 1851 } 1852 1853 /* XXX: there is race between key_getsp and key_msg2sp. */ 1854 1855 /* allocation new SP entry */ 1856 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1857 return key_senderror(so, m, error); 1858 } 1859 1860 if ((newsp->id = key_getnewspid()) == 0) { 1861 KEY_FREESP(&newsp); 1862 return key_senderror(so, m, ENOBUFS); 1863 } 1864 1865 /* XXX boundary check against sa_len */ 1866 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1867 src0 + 1, 1868 dst0 + 1, 1869 src0->sadb_address_prefixlen, 1870 dst0->sadb_address_prefixlen, 1871 src0->sadb_address_proto, 1872 &newsp->spidx); 1873 1874 /* sanity check on addr pair */ 1875 if (((struct sockaddr *)(src0 + 1))->sa_family != 1876 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1877 KEY_FREESP(&newsp); 1878 return key_senderror(so, m, EINVAL); 1879 } 1880 if (((struct sockaddr *)(src0 + 1))->sa_len != 1881 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1882 KEY_FREESP(&newsp); 1883 return key_senderror(so, m, EINVAL); 1884 } 1885 #if 1 1886 if (newsp->req && newsp->req->saidx.src.sa.sa_family && 1887 newsp->req->saidx.dst.sa.sa_family) { 1888 if (newsp->req->saidx.src.sa.sa_family != 1889 newsp->req->saidx.dst.sa.sa_family) { 1890 KEY_FREESP(&newsp); 1891 return key_senderror(so, m, EINVAL); 1892 } 1893 } 1894 #endif 1895 1896 newsp->created = time_second; 1897 newsp->lastused = newsp->created; 1898 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1899 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1900 1901 SPTREE_WLOCK(); 1902 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1903 SPTREE_WUNLOCK(); 1904 1905 /* delete the entry in spacqtree */ 1906 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1907 struct secspacq *spacq = key_getspacq(&spidx); 1908 if (spacq != NULL) { 1909 /* reset counter in order to deletion by timehandler. */ 1910 spacq->created = time_second; 1911 spacq->count = 0; 1912 SPACQ_UNLOCK(); 1913 } 1914 } 1915 1916 { 1917 struct mbuf *n, *mpolicy; 1918 struct sadb_msg *newmsg; 1919 int off; 1920 1921 /* 1922 * Note: do not send SADB_X_EXT_NAT_T_* here: 1923 * we are sending traffic endpoints. 1924 */ 1925 1926 /* create new sadb_msg to reply. */ 1927 if (lft) { 1928 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1929 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1930 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1931 } else { 1932 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1933 SADB_X_EXT_POLICY, 1934 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1935 } 1936 if (!n) 1937 return key_senderror(so, m, ENOBUFS); 1938 1939 if (n->m_len < sizeof(*newmsg)) { 1940 n = m_pullup(n, sizeof(*newmsg)); 1941 if (!n) 1942 return key_senderror(so, m, ENOBUFS); 1943 } 1944 newmsg = mtod(n, struct sadb_msg *); 1945 newmsg->sadb_msg_errno = 0; 1946 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 1947 1948 off = 0; 1949 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 1950 sizeof(*xpl), &off); 1951 if (mpolicy == NULL) { 1952 /* n is already freed */ 1953 return key_senderror(so, m, ENOBUFS); 1954 } 1955 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 1956 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 1957 m_freem(n); 1958 return key_senderror(so, m, EINVAL); 1959 } 1960 xpl->sadb_x_policy_id = newsp->id; 1961 1962 m_freem(m); 1963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 1964 } 1965 } 1966 1967 /* 1968 * get new policy id. 1969 * OUT: 1970 * 0: failure. 1971 * others: success. 1972 */ 1973 static u_int32_t 1974 key_getnewspid() 1975 { 1976 u_int32_t newid = 0; 1977 int count = V_key_spi_trycnt; /* XXX */ 1978 struct secpolicy *sp; 1979 1980 /* when requesting to allocate spi ranged */ 1981 while (count--) { 1982 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 1983 1984 if ((sp = key_getspbyid(newid)) == NULL) 1985 break; 1986 1987 KEY_FREESP(&sp); 1988 } 1989 1990 if (count == 0 || newid == 0) { 1991 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 1992 __func__)); 1993 return 0; 1994 } 1995 1996 return newid; 1997 } 1998 1999 /* 2000 * SADB_SPDDELETE processing 2001 * receive 2002 * <base, address(SD), policy(*)> 2003 * from the user(?), and set SADB_SASTATE_DEAD, 2004 * and send, 2005 * <base, address(SD), policy(*)> 2006 * to the ikmpd. 2007 * policy(*) including direction of policy. 2008 * 2009 * m will always be freed. 2010 */ 2011 static int 2012 key_spddelete(struct socket *so, struct mbuf *m, 2013 const struct sadb_msghdr *mhp) 2014 { 2015 struct sadb_address *src0, *dst0; 2016 struct sadb_x_policy *xpl0; 2017 struct secpolicyindex spidx; 2018 struct secpolicy *sp; 2019 2020 IPSEC_ASSERT(so != NULL, ("null so")); 2021 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2022 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2023 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2024 2025 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2026 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2027 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2028 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2029 __func__)); 2030 return key_senderror(so, m, EINVAL); 2031 } 2032 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2033 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2034 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2035 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2036 __func__)); 2037 return key_senderror(so, m, EINVAL); 2038 } 2039 2040 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2041 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2042 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2043 2044 /* 2045 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2046 * we are processing traffic endpoints. 2047 */ 2048 2049 /* make secindex */ 2050 /* XXX boundary check against sa_len */ 2051 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2052 src0 + 1, 2053 dst0 + 1, 2054 src0->sadb_address_prefixlen, 2055 dst0->sadb_address_prefixlen, 2056 src0->sadb_address_proto, 2057 &spidx); 2058 2059 /* checking the direciton. */ 2060 switch (xpl0->sadb_x_policy_dir) { 2061 case IPSEC_DIR_INBOUND: 2062 case IPSEC_DIR_OUTBOUND: 2063 break; 2064 default: 2065 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2066 return key_senderror(so, m, EINVAL); 2067 } 2068 2069 /* Is there SP in SPD ? */ 2070 if ((sp = key_getsp(&spidx)) == NULL) { 2071 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2072 return key_senderror(so, m, EINVAL); 2073 } 2074 2075 /* save policy id to buffer to be returned. */ 2076 xpl0->sadb_x_policy_id = sp->id; 2077 2078 key_unlink(sp); 2079 KEY_FREESP(&sp); 2080 2081 { 2082 struct mbuf *n; 2083 struct sadb_msg *newmsg; 2084 2085 /* 2086 * Note: do not send SADB_X_EXT_NAT_T_* here: 2087 * we are sending traffic endpoints. 2088 */ 2089 2090 /* create new sadb_msg to reply. */ 2091 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2092 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2093 if (!n) 2094 return key_senderror(so, m, ENOBUFS); 2095 2096 newmsg = mtod(n, struct sadb_msg *); 2097 newmsg->sadb_msg_errno = 0; 2098 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2099 2100 m_freem(m); 2101 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2102 } 2103 } 2104 2105 /* 2106 * SADB_SPDDELETE2 processing 2107 * receive 2108 * <base, policy(*)> 2109 * from the user(?), and set SADB_SASTATE_DEAD, 2110 * and send, 2111 * <base, policy(*)> 2112 * to the ikmpd. 2113 * policy(*) including direction of policy. 2114 * 2115 * m will always be freed. 2116 */ 2117 static int 2118 key_spddelete2(struct socket *so, struct mbuf *m, 2119 const struct sadb_msghdr *mhp) 2120 { 2121 u_int32_t id; 2122 struct secpolicy *sp; 2123 2124 IPSEC_ASSERT(so != NULL, ("null socket")); 2125 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2126 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2127 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2128 2129 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2130 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2131 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2132 return key_senderror(so, m, EINVAL); 2133 } 2134 2135 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2136 2137 /* Is there SP in SPD ? */ 2138 if ((sp = key_getspbyid(id)) == NULL) { 2139 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2140 return key_senderror(so, m, EINVAL); 2141 } 2142 2143 key_unlink(sp); 2144 KEY_FREESP(&sp); 2145 2146 { 2147 struct mbuf *n, *nn; 2148 struct sadb_msg *newmsg; 2149 int off, len; 2150 2151 /* create new sadb_msg to reply. */ 2152 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2153 2154 MGETHDR(n, M_NOWAIT, MT_DATA); 2155 if (n && len > MHLEN) { 2156 MCLGET(n, M_NOWAIT); 2157 if ((n->m_flags & M_EXT) == 0) { 2158 m_freem(n); 2159 n = NULL; 2160 } 2161 } 2162 if (!n) 2163 return key_senderror(so, m, ENOBUFS); 2164 2165 n->m_len = len; 2166 n->m_next = NULL; 2167 off = 0; 2168 2169 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2170 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2171 2172 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2173 off, len)); 2174 2175 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2176 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2177 if (!n->m_next) { 2178 m_freem(n); 2179 return key_senderror(so, m, ENOBUFS); 2180 } 2181 2182 n->m_pkthdr.len = 0; 2183 for (nn = n; nn; nn = nn->m_next) 2184 n->m_pkthdr.len += nn->m_len; 2185 2186 newmsg = mtod(n, struct sadb_msg *); 2187 newmsg->sadb_msg_errno = 0; 2188 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2189 2190 m_freem(m); 2191 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2192 } 2193 } 2194 2195 /* 2196 * SADB_X_GET processing 2197 * receive 2198 * <base, policy(*)> 2199 * from the user(?), 2200 * and send, 2201 * <base, address(SD), policy> 2202 * to the ikmpd. 2203 * policy(*) including direction of policy. 2204 * 2205 * m will always be freed. 2206 */ 2207 static int 2208 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2209 { 2210 u_int32_t id; 2211 struct secpolicy *sp; 2212 struct mbuf *n; 2213 2214 IPSEC_ASSERT(so != NULL, ("null socket")); 2215 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2216 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2217 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2218 2219 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2220 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2221 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2222 __func__)); 2223 return key_senderror(so, m, EINVAL); 2224 } 2225 2226 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2227 2228 /* Is there SP in SPD ? */ 2229 if ((sp = key_getspbyid(id)) == NULL) { 2230 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2231 return key_senderror(so, m, ENOENT); 2232 } 2233 2234 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2235 KEY_FREESP(&sp); 2236 if (n != NULL) { 2237 m_freem(m); 2238 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2239 } else 2240 return key_senderror(so, m, ENOBUFS); 2241 } 2242 2243 /* 2244 * SADB_X_SPDACQUIRE processing. 2245 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2246 * send 2247 * <base, policy(*)> 2248 * to KMD, and expect to receive 2249 * <base> with SADB_X_SPDACQUIRE if error occured, 2250 * or 2251 * <base, policy> 2252 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2253 * policy(*) is without policy requests. 2254 * 2255 * 0 : succeed 2256 * others: error number 2257 */ 2258 int 2259 key_spdacquire(struct secpolicy *sp) 2260 { 2261 struct mbuf *result = NULL, *m; 2262 struct secspacq *newspacq; 2263 2264 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2265 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2266 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2267 ("policy not IPSEC %u", sp->policy)); 2268 2269 /* Get an entry to check whether sent message or not. */ 2270 newspacq = key_getspacq(&sp->spidx); 2271 if (newspacq != NULL) { 2272 if (V_key_blockacq_count < newspacq->count) { 2273 /* reset counter and do send message. */ 2274 newspacq->count = 0; 2275 } else { 2276 /* increment counter and do nothing. */ 2277 newspacq->count++; 2278 SPACQ_UNLOCK(); 2279 return (0); 2280 } 2281 SPACQ_UNLOCK(); 2282 } else { 2283 /* make new entry for blocking to send SADB_ACQUIRE. */ 2284 newspacq = key_newspacq(&sp->spidx); 2285 if (newspacq == NULL) 2286 return ENOBUFS; 2287 } 2288 2289 /* create new sadb_msg to reply. */ 2290 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2291 if (!m) 2292 return ENOBUFS; 2293 2294 result = m; 2295 2296 result->m_pkthdr.len = 0; 2297 for (m = result; m; m = m->m_next) 2298 result->m_pkthdr.len += m->m_len; 2299 2300 mtod(result, struct sadb_msg *)->sadb_msg_len = 2301 PFKEY_UNIT64(result->m_pkthdr.len); 2302 2303 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2304 } 2305 2306 /* 2307 * SADB_SPDFLUSH processing 2308 * receive 2309 * <base> 2310 * from the user, and free all entries in secpctree. 2311 * and send, 2312 * <base> 2313 * to the user. 2314 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2315 * 2316 * m will always be freed. 2317 */ 2318 static int 2319 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2320 { 2321 TAILQ_HEAD(, secpolicy) drainq; 2322 struct sadb_msg *newmsg; 2323 struct secpolicy *sp, *nextsp; 2324 u_int dir; 2325 2326 IPSEC_ASSERT(so != NULL, ("null socket")); 2327 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2328 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2329 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2330 2331 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2332 return key_senderror(so, m, EINVAL); 2333 2334 TAILQ_INIT(&drainq); 2335 SPTREE_WLOCK(); 2336 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2337 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2338 } 2339 SPTREE_WUNLOCK(); 2340 sp = TAILQ_FIRST(&drainq); 2341 while (sp != NULL) { 2342 nextsp = TAILQ_NEXT(sp, chain); 2343 KEY_FREESP(&sp); 2344 sp = nextsp; 2345 } 2346 2347 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2348 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2349 return key_senderror(so, m, ENOBUFS); 2350 } 2351 2352 if (m->m_next) 2353 m_freem(m->m_next); 2354 m->m_next = NULL; 2355 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2356 newmsg = mtod(m, struct sadb_msg *); 2357 newmsg->sadb_msg_errno = 0; 2358 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2359 2360 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2361 } 2362 2363 /* 2364 * SADB_SPDDUMP processing 2365 * receive 2366 * <base> 2367 * from the user, and dump all SP leaves 2368 * and send, 2369 * <base> ..... 2370 * to the ikmpd. 2371 * 2372 * m will always be freed. 2373 */ 2374 static int 2375 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2376 { 2377 SPTREE_RLOCK_TRACKER; 2378 struct secpolicy *sp; 2379 int cnt; 2380 u_int dir; 2381 struct mbuf *n; 2382 2383 IPSEC_ASSERT(so != NULL, ("null socket")); 2384 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2385 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2386 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2387 2388 /* search SPD entry and get buffer size. */ 2389 cnt = 0; 2390 SPTREE_RLOCK(); 2391 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2392 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2393 cnt++; 2394 } 2395 } 2396 2397 if (cnt == 0) { 2398 SPTREE_RUNLOCK(); 2399 return key_senderror(so, m, ENOENT); 2400 } 2401 2402 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2403 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2404 --cnt; 2405 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2406 mhp->msg->sadb_msg_pid); 2407 2408 if (n) 2409 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2410 } 2411 } 2412 2413 SPTREE_RUNLOCK(); 2414 m_freem(m); 2415 return 0; 2416 } 2417 2418 static struct mbuf * 2419 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2420 u_int32_t pid) 2421 { 2422 struct mbuf *result = NULL, *m; 2423 struct seclifetime lt; 2424 2425 SPTREE_RLOCK_ASSERT(); 2426 2427 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2428 if (!m) 2429 goto fail; 2430 result = m; 2431 2432 /* 2433 * Note: do not send SADB_X_EXT_NAT_T_* here: 2434 * we are sending traffic endpoints. 2435 */ 2436 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2437 &sp->spidx.src.sa, sp->spidx.prefs, 2438 sp->spidx.ul_proto); 2439 if (!m) 2440 goto fail; 2441 m_cat(result, m); 2442 2443 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2444 &sp->spidx.dst.sa, sp->spidx.prefd, 2445 sp->spidx.ul_proto); 2446 if (!m) 2447 goto fail; 2448 m_cat(result, m); 2449 2450 m = key_sp2msg(sp); 2451 if (!m) 2452 goto fail; 2453 m_cat(result, m); 2454 2455 if(sp->lifetime){ 2456 lt.addtime=sp->created; 2457 lt.usetime= sp->lastused; 2458 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2459 if (!m) 2460 goto fail; 2461 m_cat(result, m); 2462 2463 lt.addtime=sp->lifetime; 2464 lt.usetime= sp->validtime; 2465 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2466 if (!m) 2467 goto fail; 2468 m_cat(result, m); 2469 } 2470 2471 if ((result->m_flags & M_PKTHDR) == 0) 2472 goto fail; 2473 2474 if (result->m_len < sizeof(struct sadb_msg)) { 2475 result = m_pullup(result, sizeof(struct sadb_msg)); 2476 if (result == NULL) 2477 goto fail; 2478 } 2479 2480 result->m_pkthdr.len = 0; 2481 for (m = result; m; m = m->m_next) 2482 result->m_pkthdr.len += m->m_len; 2483 2484 mtod(result, struct sadb_msg *)->sadb_msg_len = 2485 PFKEY_UNIT64(result->m_pkthdr.len); 2486 2487 return result; 2488 2489 fail: 2490 m_freem(result); 2491 return NULL; 2492 } 2493 2494 /* 2495 * get PFKEY message length for security policy and request. 2496 */ 2497 static u_int 2498 key_getspreqmsglen(struct secpolicy *sp) 2499 { 2500 u_int tlen; 2501 2502 tlen = sizeof(struct sadb_x_policy); 2503 2504 /* if is the policy for ipsec ? */ 2505 if (sp->policy != IPSEC_POLICY_IPSEC) 2506 return tlen; 2507 2508 /* get length of ipsec requests */ 2509 { 2510 struct ipsecrequest *isr; 2511 int len; 2512 2513 for (isr = sp->req; isr != NULL; isr = isr->next) { 2514 len = sizeof(struct sadb_x_ipsecrequest) 2515 + isr->saidx.src.sa.sa_len 2516 + isr->saidx.dst.sa.sa_len; 2517 2518 tlen += PFKEY_ALIGN8(len); 2519 } 2520 } 2521 2522 return tlen; 2523 } 2524 2525 /* 2526 * SADB_SPDEXPIRE processing 2527 * send 2528 * <base, address(SD), lifetime(CH), policy> 2529 * to KMD by PF_KEY. 2530 * 2531 * OUT: 0 : succeed 2532 * others : error number 2533 */ 2534 static int 2535 key_spdexpire(struct secpolicy *sp) 2536 { 2537 struct mbuf *result = NULL, *m; 2538 int len; 2539 int error = -1; 2540 struct sadb_lifetime *lt; 2541 2542 /* XXX: Why do we lock ? */ 2543 2544 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2545 2546 /* set msg header */ 2547 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2548 if (!m) { 2549 error = ENOBUFS; 2550 goto fail; 2551 } 2552 result = m; 2553 2554 /* create lifetime extension (current and hard) */ 2555 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2556 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2557 if (m == NULL) { 2558 error = ENOBUFS; 2559 goto fail; 2560 } 2561 m_align(m, len); 2562 m->m_len = len; 2563 bzero(mtod(m, caddr_t), len); 2564 lt = mtod(m, struct sadb_lifetime *); 2565 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2566 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2567 lt->sadb_lifetime_allocations = 0; 2568 lt->sadb_lifetime_bytes = 0; 2569 lt->sadb_lifetime_addtime = sp->created; 2570 lt->sadb_lifetime_usetime = sp->lastused; 2571 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2572 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2573 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2574 lt->sadb_lifetime_allocations = 0; 2575 lt->sadb_lifetime_bytes = 0; 2576 lt->sadb_lifetime_addtime = sp->lifetime; 2577 lt->sadb_lifetime_usetime = sp->validtime; 2578 m_cat(result, m); 2579 2580 /* 2581 * Note: do not send SADB_X_EXT_NAT_T_* here: 2582 * we are sending traffic endpoints. 2583 */ 2584 2585 /* set sadb_address for source */ 2586 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2587 &sp->spidx.src.sa, 2588 sp->spidx.prefs, sp->spidx.ul_proto); 2589 if (!m) { 2590 error = ENOBUFS; 2591 goto fail; 2592 } 2593 m_cat(result, m); 2594 2595 /* set sadb_address for destination */ 2596 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2597 &sp->spidx.dst.sa, 2598 sp->spidx.prefd, sp->spidx.ul_proto); 2599 if (!m) { 2600 error = ENOBUFS; 2601 goto fail; 2602 } 2603 m_cat(result, m); 2604 2605 /* set secpolicy */ 2606 m = key_sp2msg(sp); 2607 if (!m) { 2608 error = ENOBUFS; 2609 goto fail; 2610 } 2611 m_cat(result, m); 2612 2613 if ((result->m_flags & M_PKTHDR) == 0) { 2614 error = EINVAL; 2615 goto fail; 2616 } 2617 2618 if (result->m_len < sizeof(struct sadb_msg)) { 2619 result = m_pullup(result, sizeof(struct sadb_msg)); 2620 if (result == NULL) { 2621 error = ENOBUFS; 2622 goto fail; 2623 } 2624 } 2625 2626 result->m_pkthdr.len = 0; 2627 for (m = result; m; m = m->m_next) 2628 result->m_pkthdr.len += m->m_len; 2629 2630 mtod(result, struct sadb_msg *)->sadb_msg_len = 2631 PFKEY_UNIT64(result->m_pkthdr.len); 2632 2633 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2634 2635 fail: 2636 if (result) 2637 m_freem(result); 2638 return error; 2639 } 2640 2641 /* %%% SAD management */ 2642 /* 2643 * allocating a memory for new SA head, and copy from the values of mhp. 2644 * OUT: NULL : failure due to the lack of memory. 2645 * others : pointer to new SA head. 2646 */ 2647 static struct secashead * 2648 key_newsah(struct secasindex *saidx) 2649 { 2650 struct secashead *newsah; 2651 2652 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2653 2654 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2655 if (newsah != NULL) { 2656 int i; 2657 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2658 LIST_INIT(&newsah->savtree[i]); 2659 newsah->saidx = *saidx; 2660 2661 /* add to saidxtree */ 2662 newsah->state = SADB_SASTATE_MATURE; 2663 2664 SAHTREE_LOCK(); 2665 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2666 SAHTREE_UNLOCK(); 2667 } 2668 return(newsah); 2669 } 2670 2671 /* 2672 * delete SA index and all SA registerd. 2673 */ 2674 static void 2675 key_delsah(struct secashead *sah) 2676 { 2677 struct secasvar *sav, *nextsav; 2678 u_int stateidx; 2679 int zombie = 0; 2680 2681 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2682 SAHTREE_LOCK_ASSERT(); 2683 2684 /* searching all SA registerd in the secindex. */ 2685 for (stateidx = 0; 2686 stateidx < _ARRAYLEN(saorder_state_any); 2687 stateidx++) { 2688 u_int state = saorder_state_any[stateidx]; 2689 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2690 if (sav->refcnt == 0) { 2691 /* sanity check */ 2692 KEY_CHKSASTATE(state, sav->state, __func__); 2693 /* 2694 * do NOT call KEY_FREESAV here: 2695 * it will only delete the sav if refcnt == 1, 2696 * where we already know that refcnt == 0 2697 */ 2698 key_delsav(sav); 2699 } else { 2700 /* give up to delete this sa */ 2701 zombie++; 2702 } 2703 } 2704 } 2705 if (!zombie) { /* delete only if there are savs */ 2706 /* remove from tree of SA index */ 2707 if (__LIST_CHAINED(sah)) 2708 LIST_REMOVE(sah, chain); 2709 free(sah, M_IPSEC_SAH); 2710 } 2711 } 2712 2713 /* 2714 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2715 * and copy the values of mhp into new buffer. 2716 * When SAD message type is GETSPI: 2717 * to set sequence number from acq_seq++, 2718 * to set zero to SPI. 2719 * not to call key_setsava(). 2720 * OUT: NULL : fail 2721 * others : pointer to new secasvar. 2722 * 2723 * does not modify mbuf. does not free mbuf on error. 2724 */ 2725 static struct secasvar * 2726 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2727 struct secashead *sah, int *errp, const char *where, int tag) 2728 { 2729 struct secasvar *newsav; 2730 const struct sadb_sa *xsa; 2731 2732 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2733 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2734 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2735 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2736 2737 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2738 if (newsav == NULL) { 2739 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2740 *errp = ENOBUFS; 2741 goto done; 2742 } 2743 2744 switch (mhp->msg->sadb_msg_type) { 2745 case SADB_GETSPI: 2746 newsav->spi = 0; 2747 2748 #ifdef IPSEC_DOSEQCHECK 2749 /* sync sequence number */ 2750 if (mhp->msg->sadb_msg_seq == 0) 2751 newsav->seq = 2752 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2753 else 2754 #endif 2755 newsav->seq = mhp->msg->sadb_msg_seq; 2756 break; 2757 2758 case SADB_ADD: 2759 /* sanity check */ 2760 if (mhp->ext[SADB_EXT_SA] == NULL) { 2761 free(newsav, M_IPSEC_SA); 2762 newsav = NULL; 2763 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2764 __func__)); 2765 *errp = EINVAL; 2766 goto done; 2767 } 2768 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2769 newsav->spi = xsa->sadb_sa_spi; 2770 newsav->seq = mhp->msg->sadb_msg_seq; 2771 break; 2772 default: 2773 free(newsav, M_IPSEC_SA); 2774 newsav = NULL; 2775 *errp = EINVAL; 2776 goto done; 2777 } 2778 2779 2780 /* copy sav values */ 2781 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2782 *errp = key_setsaval(newsav, m, mhp); 2783 if (*errp) { 2784 free(newsav, M_IPSEC_SA); 2785 newsav = NULL; 2786 goto done; 2787 } 2788 } 2789 2790 SECASVAR_LOCK_INIT(newsav); 2791 2792 /* reset created */ 2793 newsav->created = time_second; 2794 newsav->pid = mhp->msg->sadb_msg_pid; 2795 2796 /* add to satree */ 2797 newsav->sah = sah; 2798 sa_initref(newsav); 2799 newsav->state = SADB_SASTATE_LARVAL; 2800 2801 SAHTREE_LOCK(); 2802 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2803 secasvar, chain); 2804 SAHTREE_UNLOCK(); 2805 done: 2806 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2807 printf("DP %s from %s:%u return SP:%p\n", __func__, 2808 where, tag, newsav)); 2809 2810 return newsav; 2811 } 2812 2813 /* 2814 * free() SA variable entry. 2815 */ 2816 static void 2817 key_cleansav(struct secasvar *sav) 2818 { 2819 /* 2820 * Cleanup xform state. Note that zeroize'ing causes the 2821 * keys to be cleared; otherwise we must do it ourself. 2822 */ 2823 if (sav->tdb_xform != NULL) { 2824 sav->tdb_xform->xf_zeroize(sav); 2825 sav->tdb_xform = NULL; 2826 } else { 2827 KASSERT(sav->iv == NULL, ("iv but no xform")); 2828 if (sav->key_auth != NULL) 2829 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2830 if (sav->key_enc != NULL) 2831 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2832 } 2833 if (sav->key_auth != NULL) { 2834 if (sav->key_auth->key_data != NULL) 2835 free(sav->key_auth->key_data, M_IPSEC_MISC); 2836 free(sav->key_auth, M_IPSEC_MISC); 2837 sav->key_auth = NULL; 2838 } 2839 if (sav->key_enc != NULL) { 2840 if (sav->key_enc->key_data != NULL) 2841 free(sav->key_enc->key_data, M_IPSEC_MISC); 2842 free(sav->key_enc, M_IPSEC_MISC); 2843 sav->key_enc = NULL; 2844 } 2845 if (sav->sched) { 2846 bzero(sav->sched, sav->schedlen); 2847 free(sav->sched, M_IPSEC_MISC); 2848 sav->sched = NULL; 2849 } 2850 if (sav->replay != NULL) { 2851 free(sav->replay, M_IPSEC_MISC); 2852 sav->replay = NULL; 2853 } 2854 if (sav->lft_c != NULL) { 2855 free(sav->lft_c, M_IPSEC_MISC); 2856 sav->lft_c = NULL; 2857 } 2858 if (sav->lft_h != NULL) { 2859 free(sav->lft_h, M_IPSEC_MISC); 2860 sav->lft_h = NULL; 2861 } 2862 if (sav->lft_s != NULL) { 2863 free(sav->lft_s, M_IPSEC_MISC); 2864 sav->lft_s = NULL; 2865 } 2866 } 2867 2868 /* 2869 * free() SA variable entry. 2870 */ 2871 static void 2872 key_delsav(struct secasvar *sav) 2873 { 2874 IPSEC_ASSERT(sav != NULL, ("null sav")); 2875 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2876 2877 /* remove from SA header */ 2878 if (__LIST_CHAINED(sav)) 2879 LIST_REMOVE(sav, chain); 2880 key_cleansav(sav); 2881 SECASVAR_LOCK_DESTROY(sav); 2882 free(sav, M_IPSEC_SA); 2883 } 2884 2885 /* 2886 * search SAD. 2887 * OUT: 2888 * NULL : not found 2889 * others : found, pointer to a SA. 2890 */ 2891 static struct secashead * 2892 key_getsah(struct secasindex *saidx) 2893 { 2894 struct secashead *sah; 2895 2896 SAHTREE_LOCK(); 2897 LIST_FOREACH(sah, &V_sahtree, chain) { 2898 if (sah->state == SADB_SASTATE_DEAD) 2899 continue; 2900 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2901 break; 2902 } 2903 SAHTREE_UNLOCK(); 2904 2905 return sah; 2906 } 2907 2908 /* 2909 * check not to be duplicated SPI. 2910 * NOTE: this function is too slow due to searching all SAD. 2911 * OUT: 2912 * NULL : not found 2913 * others : found, pointer to a SA. 2914 */ 2915 static struct secasvar * 2916 key_checkspidup(struct secasindex *saidx, u_int32_t spi) 2917 { 2918 struct secashead *sah; 2919 struct secasvar *sav; 2920 2921 /* check address family */ 2922 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 2923 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 2924 __func__)); 2925 return NULL; 2926 } 2927 2928 sav = NULL; 2929 /* check all SAD */ 2930 SAHTREE_LOCK(); 2931 LIST_FOREACH(sah, &V_sahtree, chain) { 2932 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 2933 continue; 2934 sav = key_getsavbyspi(sah, spi); 2935 if (sav != NULL) 2936 break; 2937 } 2938 SAHTREE_UNLOCK(); 2939 2940 return sav; 2941 } 2942 2943 /* 2944 * search SAD litmited alive SA, protocol, SPI. 2945 * OUT: 2946 * NULL : not found 2947 * others : found, pointer to a SA. 2948 */ 2949 static struct secasvar * 2950 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 2951 { 2952 struct secasvar *sav; 2953 u_int stateidx, state; 2954 2955 sav = NULL; 2956 SAHTREE_LOCK_ASSERT(); 2957 /* search all status */ 2958 for (stateidx = 0; 2959 stateidx < _ARRAYLEN(saorder_state_alive); 2960 stateidx++) { 2961 2962 state = saorder_state_alive[stateidx]; 2963 LIST_FOREACH(sav, &sah->savtree[state], chain) { 2964 2965 /* sanity check */ 2966 if (sav->state != state) { 2967 ipseclog((LOG_DEBUG, "%s: " 2968 "invalid sav->state (queue: %d SA: %d)\n", 2969 __func__, state, sav->state)); 2970 continue; 2971 } 2972 2973 if (sav->spi == spi) 2974 return sav; 2975 } 2976 } 2977 2978 return NULL; 2979 } 2980 2981 /* 2982 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 2983 * You must update these if need. 2984 * OUT: 0: success. 2985 * !0: failure. 2986 * 2987 * does not modify mbuf. does not free mbuf on error. 2988 */ 2989 static int 2990 key_setsaval(struct secasvar *sav, struct mbuf *m, 2991 const struct sadb_msghdr *mhp) 2992 { 2993 int error = 0; 2994 2995 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2996 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2997 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2998 2999 /* initialization */ 3000 sav->replay = NULL; 3001 sav->key_auth = NULL; 3002 sav->key_enc = NULL; 3003 sav->sched = NULL; 3004 sav->schedlen = 0; 3005 sav->iv = NULL; 3006 sav->lft_c = NULL; 3007 sav->lft_h = NULL; 3008 sav->lft_s = NULL; 3009 sav->tdb_xform = NULL; /* transform */ 3010 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3011 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3012 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3013 /* Initialize even if NAT-T not compiled in: */ 3014 sav->natt_type = 0; 3015 sav->natt_esp_frag_len = 0; 3016 3017 /* SA */ 3018 if (mhp->ext[SADB_EXT_SA] != NULL) { 3019 const struct sadb_sa *sa0; 3020 3021 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3022 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3023 error = EINVAL; 3024 goto fail; 3025 } 3026 3027 sav->alg_auth = sa0->sadb_sa_auth; 3028 sav->alg_enc = sa0->sadb_sa_encrypt; 3029 sav->flags = sa0->sadb_sa_flags; 3030 3031 /* replay window */ 3032 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3033 sav->replay = (struct secreplay *) 3034 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3035 if (sav->replay == NULL) { 3036 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3037 __func__)); 3038 error = ENOBUFS; 3039 goto fail; 3040 } 3041 if (sa0->sadb_sa_replay != 0) 3042 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3043 sav->replay->wsize = sa0->sadb_sa_replay; 3044 } 3045 } 3046 3047 /* Authentication keys */ 3048 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3049 const struct sadb_key *key0; 3050 int len; 3051 3052 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3053 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3054 3055 error = 0; 3056 if (len < sizeof(*key0)) { 3057 error = EINVAL; 3058 goto fail; 3059 } 3060 switch (mhp->msg->sadb_msg_satype) { 3061 case SADB_SATYPE_AH: 3062 case SADB_SATYPE_ESP: 3063 case SADB_X_SATYPE_TCPSIGNATURE: 3064 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3065 sav->alg_auth != SADB_X_AALG_NULL) 3066 error = EINVAL; 3067 break; 3068 case SADB_X_SATYPE_IPCOMP: 3069 default: 3070 error = EINVAL; 3071 break; 3072 } 3073 if (error) { 3074 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3075 __func__)); 3076 goto fail; 3077 } 3078 3079 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3080 M_IPSEC_MISC); 3081 if (sav->key_auth == NULL ) { 3082 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3083 __func__)); 3084 error = ENOBUFS; 3085 goto fail; 3086 } 3087 } 3088 3089 /* Encryption key */ 3090 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3091 const struct sadb_key *key0; 3092 int len; 3093 3094 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3095 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3096 3097 error = 0; 3098 if (len < sizeof(*key0)) { 3099 error = EINVAL; 3100 goto fail; 3101 } 3102 switch (mhp->msg->sadb_msg_satype) { 3103 case SADB_SATYPE_ESP: 3104 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3105 sav->alg_enc != SADB_EALG_NULL) { 3106 error = EINVAL; 3107 break; 3108 } 3109 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3110 len, 3111 M_IPSEC_MISC); 3112 if (sav->key_enc == NULL) { 3113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3114 __func__)); 3115 error = ENOBUFS; 3116 goto fail; 3117 } 3118 break; 3119 case SADB_X_SATYPE_IPCOMP: 3120 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3121 error = EINVAL; 3122 sav->key_enc = NULL; /*just in case*/ 3123 break; 3124 case SADB_SATYPE_AH: 3125 case SADB_X_SATYPE_TCPSIGNATURE: 3126 default: 3127 error = EINVAL; 3128 break; 3129 } 3130 if (error) { 3131 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3132 __func__)); 3133 goto fail; 3134 } 3135 } 3136 3137 /* set iv */ 3138 sav->ivlen = 0; 3139 3140 switch (mhp->msg->sadb_msg_satype) { 3141 case SADB_SATYPE_AH: 3142 error = xform_init(sav, XF_AH); 3143 break; 3144 case SADB_SATYPE_ESP: 3145 error = xform_init(sav, XF_ESP); 3146 break; 3147 case SADB_X_SATYPE_IPCOMP: 3148 error = xform_init(sav, XF_IPCOMP); 3149 break; 3150 case SADB_X_SATYPE_TCPSIGNATURE: 3151 error = xform_init(sav, XF_TCPSIGNATURE); 3152 break; 3153 } 3154 if (error) { 3155 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3156 __func__, mhp->msg->sadb_msg_satype)); 3157 goto fail; 3158 } 3159 3160 /* reset created */ 3161 sav->created = time_second; 3162 3163 /* make lifetime for CURRENT */ 3164 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3165 if (sav->lft_c == NULL) { 3166 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3167 error = ENOBUFS; 3168 goto fail; 3169 } 3170 3171 sav->lft_c->allocations = 0; 3172 sav->lft_c->bytes = 0; 3173 sav->lft_c->addtime = time_second; 3174 sav->lft_c->usetime = 0; 3175 3176 /* lifetimes for HARD and SOFT */ 3177 { 3178 const struct sadb_lifetime *lft0; 3179 3180 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3181 if (lft0 != NULL) { 3182 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3183 error = EINVAL; 3184 goto fail; 3185 } 3186 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3187 if (sav->lft_h == NULL) { 3188 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3189 error = ENOBUFS; 3190 goto fail; 3191 } 3192 /* to be initialize ? */ 3193 } 3194 3195 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3196 if (lft0 != NULL) { 3197 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3198 error = EINVAL; 3199 goto fail; 3200 } 3201 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3202 if (sav->lft_s == NULL) { 3203 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3204 error = ENOBUFS; 3205 goto fail; 3206 } 3207 /* to be initialize ? */ 3208 } 3209 } 3210 3211 return 0; 3212 3213 fail: 3214 /* initialization */ 3215 key_cleansav(sav); 3216 3217 return error; 3218 } 3219 3220 /* 3221 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3222 * OUT: 0: valid 3223 * other: errno 3224 */ 3225 static int 3226 key_mature(struct secasvar *sav) 3227 { 3228 int error; 3229 3230 /* check SPI value */ 3231 switch (sav->sah->saidx.proto) { 3232 case IPPROTO_ESP: 3233 case IPPROTO_AH: 3234 /* 3235 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3236 * 1-255 reserved by IANA for future use, 3237 * 0 for implementation specific, local use. 3238 */ 3239 if (ntohl(sav->spi) <= 255) { 3240 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3241 __func__, (u_int32_t)ntohl(sav->spi))); 3242 return EINVAL; 3243 } 3244 break; 3245 } 3246 3247 /* check satype */ 3248 switch (sav->sah->saidx.proto) { 3249 case IPPROTO_ESP: 3250 /* check flags */ 3251 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3252 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3253 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3254 "given to old-esp.\n", __func__)); 3255 return EINVAL; 3256 } 3257 error = xform_init(sav, XF_ESP); 3258 break; 3259 case IPPROTO_AH: 3260 /* check flags */ 3261 if (sav->flags & SADB_X_EXT_DERIV) { 3262 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3263 "given to AH SA.\n", __func__)); 3264 return EINVAL; 3265 } 3266 if (sav->alg_enc != SADB_EALG_NONE) { 3267 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3268 "mismated.\n", __func__)); 3269 return(EINVAL); 3270 } 3271 error = xform_init(sav, XF_AH); 3272 break; 3273 case IPPROTO_IPCOMP: 3274 if (sav->alg_auth != SADB_AALG_NONE) { 3275 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3276 "mismated.\n", __func__)); 3277 return(EINVAL); 3278 } 3279 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3280 && ntohl(sav->spi) >= 0x10000) { 3281 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3282 __func__)); 3283 return(EINVAL); 3284 } 3285 error = xform_init(sav, XF_IPCOMP); 3286 break; 3287 case IPPROTO_TCP: 3288 if (sav->alg_enc != SADB_EALG_NONE) { 3289 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3290 "mismated.\n", __func__)); 3291 return(EINVAL); 3292 } 3293 error = xform_init(sav, XF_TCPSIGNATURE); 3294 break; 3295 default: 3296 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3297 error = EPROTONOSUPPORT; 3298 break; 3299 } 3300 if (error == 0) { 3301 SAHTREE_LOCK(); 3302 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3303 SAHTREE_UNLOCK(); 3304 } 3305 return (error); 3306 } 3307 3308 /* 3309 * subroutine for SADB_GET and SADB_DUMP. 3310 */ 3311 static struct mbuf * 3312 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3313 u_int32_t seq, u_int32_t pid) 3314 { 3315 struct mbuf *result = NULL, *tres = NULL, *m; 3316 int i; 3317 int dumporder[] = { 3318 SADB_EXT_SA, SADB_X_EXT_SA2, 3319 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3320 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3321 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3322 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3323 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3324 #ifdef IPSEC_NAT_T 3325 SADB_X_EXT_NAT_T_TYPE, 3326 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3327 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3328 SADB_X_EXT_NAT_T_FRAG, 3329 #endif 3330 }; 3331 3332 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3333 if (m == NULL) 3334 goto fail; 3335 result = m; 3336 3337 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3338 m = NULL; 3339 switch (dumporder[i]) { 3340 case SADB_EXT_SA: 3341 m = key_setsadbsa(sav); 3342 if (!m) 3343 goto fail; 3344 break; 3345 3346 case SADB_X_EXT_SA2: 3347 m = key_setsadbxsa2(sav->sah->saidx.mode, 3348 sav->replay ? sav->replay->count : 0, 3349 sav->sah->saidx.reqid); 3350 if (!m) 3351 goto fail; 3352 break; 3353 3354 case SADB_EXT_ADDRESS_SRC: 3355 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3356 &sav->sah->saidx.src.sa, 3357 FULLMASK, IPSEC_ULPROTO_ANY); 3358 if (!m) 3359 goto fail; 3360 break; 3361 3362 case SADB_EXT_ADDRESS_DST: 3363 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3364 &sav->sah->saidx.dst.sa, 3365 FULLMASK, IPSEC_ULPROTO_ANY); 3366 if (!m) 3367 goto fail; 3368 break; 3369 3370 case SADB_EXT_KEY_AUTH: 3371 if (!sav->key_auth) 3372 continue; 3373 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3374 if (!m) 3375 goto fail; 3376 break; 3377 3378 case SADB_EXT_KEY_ENCRYPT: 3379 if (!sav->key_enc) 3380 continue; 3381 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3382 if (!m) 3383 goto fail; 3384 break; 3385 3386 case SADB_EXT_LIFETIME_CURRENT: 3387 if (!sav->lft_c) 3388 continue; 3389 m = key_setlifetime(sav->lft_c, 3390 SADB_EXT_LIFETIME_CURRENT); 3391 if (!m) 3392 goto fail; 3393 break; 3394 3395 case SADB_EXT_LIFETIME_HARD: 3396 if (!sav->lft_h) 3397 continue; 3398 m = key_setlifetime(sav->lft_h, 3399 SADB_EXT_LIFETIME_HARD); 3400 if (!m) 3401 goto fail; 3402 break; 3403 3404 case SADB_EXT_LIFETIME_SOFT: 3405 if (!sav->lft_s) 3406 continue; 3407 m = key_setlifetime(sav->lft_s, 3408 SADB_EXT_LIFETIME_SOFT); 3409 3410 if (!m) 3411 goto fail; 3412 break; 3413 3414 #ifdef IPSEC_NAT_T 3415 case SADB_X_EXT_NAT_T_TYPE: 3416 m = key_setsadbxtype(sav->natt_type); 3417 if (!m) 3418 goto fail; 3419 break; 3420 3421 case SADB_X_EXT_NAT_T_DPORT: 3422 m = key_setsadbxport( 3423 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3424 SADB_X_EXT_NAT_T_DPORT); 3425 if (!m) 3426 goto fail; 3427 break; 3428 3429 case SADB_X_EXT_NAT_T_SPORT: 3430 m = key_setsadbxport( 3431 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3432 SADB_X_EXT_NAT_T_SPORT); 3433 if (!m) 3434 goto fail; 3435 break; 3436 3437 case SADB_X_EXT_NAT_T_OAI: 3438 case SADB_X_EXT_NAT_T_OAR: 3439 case SADB_X_EXT_NAT_T_FRAG: 3440 /* We do not (yet) support those. */ 3441 continue; 3442 #endif 3443 3444 case SADB_EXT_ADDRESS_PROXY: 3445 case SADB_EXT_IDENTITY_SRC: 3446 case SADB_EXT_IDENTITY_DST: 3447 /* XXX: should we brought from SPD ? */ 3448 case SADB_EXT_SENSITIVITY: 3449 default: 3450 continue; 3451 } 3452 3453 if (!m) 3454 goto fail; 3455 if (tres) 3456 m_cat(m, tres); 3457 tres = m; 3458 3459 } 3460 3461 m_cat(result, tres); 3462 if (result->m_len < sizeof(struct sadb_msg)) { 3463 result = m_pullup(result, sizeof(struct sadb_msg)); 3464 if (result == NULL) 3465 goto fail; 3466 } 3467 3468 result->m_pkthdr.len = 0; 3469 for (m = result; m; m = m->m_next) 3470 result->m_pkthdr.len += m->m_len; 3471 3472 mtod(result, struct sadb_msg *)->sadb_msg_len = 3473 PFKEY_UNIT64(result->m_pkthdr.len); 3474 3475 return result; 3476 3477 fail: 3478 m_freem(result); 3479 m_freem(tres); 3480 return NULL; 3481 } 3482 3483 /* 3484 * set data into sadb_msg. 3485 */ 3486 static struct mbuf * 3487 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3488 pid_t pid, u_int16_t reserved) 3489 { 3490 struct mbuf *m; 3491 struct sadb_msg *p; 3492 int len; 3493 3494 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3495 if (len > MCLBYTES) 3496 return NULL; 3497 MGETHDR(m, M_NOWAIT, MT_DATA); 3498 if (m && len > MHLEN) { 3499 MCLGET(m, M_NOWAIT); 3500 if ((m->m_flags & M_EXT) == 0) { 3501 m_freem(m); 3502 m = NULL; 3503 } 3504 } 3505 if (!m) 3506 return NULL; 3507 m->m_pkthdr.len = m->m_len = len; 3508 m->m_next = NULL; 3509 3510 p = mtod(m, struct sadb_msg *); 3511 3512 bzero(p, len); 3513 p->sadb_msg_version = PF_KEY_V2; 3514 p->sadb_msg_type = type; 3515 p->sadb_msg_errno = 0; 3516 p->sadb_msg_satype = satype; 3517 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3518 p->sadb_msg_reserved = reserved; 3519 p->sadb_msg_seq = seq; 3520 p->sadb_msg_pid = (u_int32_t)pid; 3521 3522 return m; 3523 } 3524 3525 /* 3526 * copy secasvar data into sadb_address. 3527 */ 3528 static struct mbuf * 3529 key_setsadbsa(struct secasvar *sav) 3530 { 3531 struct mbuf *m; 3532 struct sadb_sa *p; 3533 int len; 3534 3535 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3536 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3537 if (m == NULL) 3538 return (NULL); 3539 m_align(m, len); 3540 m->m_len = len; 3541 p = mtod(m, struct sadb_sa *); 3542 bzero(p, len); 3543 p->sadb_sa_len = PFKEY_UNIT64(len); 3544 p->sadb_sa_exttype = SADB_EXT_SA; 3545 p->sadb_sa_spi = sav->spi; 3546 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3547 p->sadb_sa_state = sav->state; 3548 p->sadb_sa_auth = sav->alg_auth; 3549 p->sadb_sa_encrypt = sav->alg_enc; 3550 p->sadb_sa_flags = sav->flags; 3551 3552 return m; 3553 } 3554 3555 /* 3556 * set data into sadb_address. 3557 */ 3558 static struct mbuf * 3559 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3560 u_int8_t prefixlen, u_int16_t ul_proto) 3561 { 3562 struct mbuf *m; 3563 struct sadb_address *p; 3564 size_t len; 3565 3566 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3567 PFKEY_ALIGN8(saddr->sa_len); 3568 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3569 if (m == NULL) 3570 return (NULL); 3571 m_align(m, len); 3572 m->m_len = len; 3573 p = mtod(m, struct sadb_address *); 3574 3575 bzero(p, len); 3576 p->sadb_address_len = PFKEY_UNIT64(len); 3577 p->sadb_address_exttype = exttype; 3578 p->sadb_address_proto = ul_proto; 3579 if (prefixlen == FULLMASK) { 3580 switch (saddr->sa_family) { 3581 case AF_INET: 3582 prefixlen = sizeof(struct in_addr) << 3; 3583 break; 3584 case AF_INET6: 3585 prefixlen = sizeof(struct in6_addr) << 3; 3586 break; 3587 default: 3588 ; /*XXX*/ 3589 } 3590 } 3591 p->sadb_address_prefixlen = prefixlen; 3592 p->sadb_address_reserved = 0; 3593 3594 bcopy(saddr, 3595 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3596 saddr->sa_len); 3597 3598 return m; 3599 } 3600 3601 /* 3602 * set data into sadb_x_sa2. 3603 */ 3604 static struct mbuf * 3605 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3606 { 3607 struct mbuf *m; 3608 struct sadb_x_sa2 *p; 3609 size_t len; 3610 3611 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3612 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3613 if (m == NULL) 3614 return (NULL); 3615 m_align(m, len); 3616 m->m_len = len; 3617 p = mtod(m, struct sadb_x_sa2 *); 3618 3619 bzero(p, len); 3620 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3621 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3622 p->sadb_x_sa2_mode = mode; 3623 p->sadb_x_sa2_reserved1 = 0; 3624 p->sadb_x_sa2_reserved2 = 0; 3625 p->sadb_x_sa2_sequence = seq; 3626 p->sadb_x_sa2_reqid = reqid; 3627 3628 return m; 3629 } 3630 3631 #ifdef IPSEC_NAT_T 3632 /* 3633 * Set a type in sadb_x_nat_t_type. 3634 */ 3635 static struct mbuf * 3636 key_setsadbxtype(u_int16_t type) 3637 { 3638 struct mbuf *m; 3639 size_t len; 3640 struct sadb_x_nat_t_type *p; 3641 3642 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3643 3644 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3645 if (m == NULL) 3646 return (NULL); 3647 m_align(m, len); 3648 m->m_len = len; 3649 p = mtod(m, struct sadb_x_nat_t_type *); 3650 3651 bzero(p, len); 3652 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3653 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3654 p->sadb_x_nat_t_type_type = type; 3655 3656 return (m); 3657 } 3658 /* 3659 * Set a port in sadb_x_nat_t_port. 3660 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3661 */ 3662 static struct mbuf * 3663 key_setsadbxport(u_int16_t port, u_int16_t type) 3664 { 3665 struct mbuf *m; 3666 size_t len; 3667 struct sadb_x_nat_t_port *p; 3668 3669 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3670 3671 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3672 if (m == NULL) 3673 return (NULL); 3674 m_align(m, len); 3675 m->m_len = len; 3676 p = mtod(m, struct sadb_x_nat_t_port *); 3677 3678 bzero(p, len); 3679 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3680 p->sadb_x_nat_t_port_exttype = type; 3681 p->sadb_x_nat_t_port_port = port; 3682 3683 return (m); 3684 } 3685 3686 /* 3687 * Get port from sockaddr. Port is in network byte order. 3688 */ 3689 u_int16_t 3690 key_portfromsaddr(struct sockaddr *sa) 3691 { 3692 3693 switch (sa->sa_family) { 3694 #ifdef INET 3695 case AF_INET: 3696 return ((struct sockaddr_in *)sa)->sin_port; 3697 #endif 3698 #ifdef INET6 3699 case AF_INET6: 3700 return ((struct sockaddr_in6 *)sa)->sin6_port; 3701 #endif 3702 } 3703 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3704 printf("DP %s unexpected address family %d\n", 3705 __func__, sa->sa_family)); 3706 return (0); 3707 } 3708 #endif /* IPSEC_NAT_T */ 3709 3710 /* 3711 * Set port in struct sockaddr. Port is in network byte order. 3712 */ 3713 static void 3714 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3715 { 3716 3717 switch (sa->sa_family) { 3718 #ifdef INET 3719 case AF_INET: 3720 ((struct sockaddr_in *)sa)->sin_port = port; 3721 break; 3722 #endif 3723 #ifdef INET6 3724 case AF_INET6: 3725 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3726 break; 3727 #endif 3728 default: 3729 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3730 __func__, sa->sa_family)); 3731 break; 3732 } 3733 } 3734 3735 /* 3736 * set data into sadb_x_policy 3737 */ 3738 static struct mbuf * 3739 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3740 { 3741 struct mbuf *m; 3742 struct sadb_x_policy *p; 3743 size_t len; 3744 3745 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3746 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3747 if (m == NULL) 3748 return (NULL); 3749 m_align(m, len); 3750 m->m_len = len; 3751 p = mtod(m, struct sadb_x_policy *); 3752 3753 bzero(p, len); 3754 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3755 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3756 p->sadb_x_policy_type = type; 3757 p->sadb_x_policy_dir = dir; 3758 p->sadb_x_policy_id = id; 3759 3760 return m; 3761 } 3762 3763 /* %%% utilities */ 3764 /* Take a key message (sadb_key) from the socket and turn it into one 3765 * of the kernel's key structures (seckey). 3766 * 3767 * IN: pointer to the src 3768 * OUT: NULL no more memory 3769 */ 3770 struct seckey * 3771 key_dup_keymsg(const struct sadb_key *src, u_int len, 3772 struct malloc_type *type) 3773 { 3774 struct seckey *dst; 3775 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3776 if (dst != NULL) { 3777 dst->bits = src->sadb_key_bits; 3778 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3779 if (dst->key_data != NULL) { 3780 bcopy((const char *)src + sizeof(struct sadb_key), 3781 dst->key_data, len); 3782 } else { 3783 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3784 __func__)); 3785 free(dst, type); 3786 dst = NULL; 3787 } 3788 } else { 3789 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3790 __func__)); 3791 3792 } 3793 return dst; 3794 } 3795 3796 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3797 * turn it into one of the kernel's lifetime structures (seclifetime). 3798 * 3799 * IN: pointer to the destination, source and malloc type 3800 * OUT: NULL, no more memory 3801 */ 3802 3803 static struct seclifetime * 3804 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 3805 { 3806 struct seclifetime *dst = NULL; 3807 3808 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3809 type, M_NOWAIT); 3810 if (dst == NULL) { 3811 /* XXX counter */ 3812 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3813 } else { 3814 dst->allocations = src->sadb_lifetime_allocations; 3815 dst->bytes = src->sadb_lifetime_bytes; 3816 dst->addtime = src->sadb_lifetime_addtime; 3817 dst->usetime = src->sadb_lifetime_usetime; 3818 } 3819 return dst; 3820 } 3821 3822 /* compare my own address 3823 * OUT: 1: true, i.e. my address. 3824 * 0: false 3825 */ 3826 int 3827 key_ismyaddr(struct sockaddr *sa) 3828 { 3829 3830 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3831 switch (sa->sa_family) { 3832 #ifdef INET 3833 case AF_INET: 3834 return (in_localip(satosin(sa)->sin_addr)); 3835 #endif 3836 #ifdef INET6 3837 case AF_INET6: 3838 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3839 #endif 3840 } 3841 3842 return 0; 3843 } 3844 3845 #ifdef INET6 3846 /* 3847 * compare my own address for IPv6. 3848 * 1: ours 3849 * 0: other 3850 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3851 */ 3852 #include <netinet6/in6_var.h> 3853 3854 static int 3855 key_ismyaddr6(struct sockaddr_in6 *sin6) 3856 { 3857 struct in6_ifaddr *ia; 3858 #if 0 3859 struct in6_multi *in6m; 3860 #endif 3861 3862 IN6_IFADDR_RLOCK(); 3863 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3864 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3865 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3866 IN6_IFADDR_RUNLOCK(); 3867 return 1; 3868 } 3869 3870 #if 0 3871 /* 3872 * XXX Multicast 3873 * XXX why do we care about multlicast here while we don't care 3874 * about IPv4 multicast?? 3875 * XXX scope 3876 */ 3877 in6m = NULL; 3878 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3879 if (in6m) { 3880 IN6_IFADDR_RUNLOCK(); 3881 return 1; 3882 } 3883 #endif 3884 } 3885 IN6_IFADDR_RUNLOCK(); 3886 3887 /* loopback, just for safety */ 3888 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3889 return 1; 3890 3891 return 0; 3892 } 3893 #endif /*INET6*/ 3894 3895 /* 3896 * compare two secasindex structure. 3897 * flag can specify to compare 2 saidxes. 3898 * compare two secasindex structure without both mode and reqid. 3899 * don't compare port. 3900 * IN: 3901 * saidx0: source, it can be in SAD. 3902 * saidx1: object. 3903 * OUT: 3904 * 1 : equal 3905 * 0 : not equal 3906 */ 3907 static int 3908 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 3909 int flag) 3910 { 3911 int chkport = 0; 3912 3913 /* sanity */ 3914 if (saidx0 == NULL && saidx1 == NULL) 3915 return 1; 3916 3917 if (saidx0 == NULL || saidx1 == NULL) 3918 return 0; 3919 3920 if (saidx0->proto != saidx1->proto) 3921 return 0; 3922 3923 if (flag == CMP_EXACTLY) { 3924 if (saidx0->mode != saidx1->mode) 3925 return 0; 3926 if (saidx0->reqid != saidx1->reqid) 3927 return 0; 3928 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 3929 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 3930 return 0; 3931 } else { 3932 3933 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 3934 if (flag == CMP_MODE_REQID 3935 ||flag == CMP_REQID) { 3936 /* 3937 * If reqid of SPD is non-zero, unique SA is required. 3938 * The result must be of same reqid in this case. 3939 */ 3940 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 3941 return 0; 3942 } 3943 3944 if (flag == CMP_MODE_REQID) { 3945 if (saidx0->mode != IPSEC_MODE_ANY 3946 && saidx0->mode != saidx1->mode) 3947 return 0; 3948 } 3949 3950 #ifdef IPSEC_NAT_T 3951 /* 3952 * If NAT-T is enabled, check ports for tunnel mode. 3953 * Do not check ports if they are set to zero in the SPD. 3954 * Also do not do it for native transport mode, as there 3955 * is no port information available in the SP. 3956 */ 3957 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 3958 (saidx1->mode == IPSEC_MODE_TRANSPORT && 3959 saidx1->proto == IPPROTO_ESP)) && 3960 saidx1->src.sa.sa_family == AF_INET && 3961 saidx1->dst.sa.sa_family == AF_INET && 3962 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 3963 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 3964 chkport = 1; 3965 #endif /* IPSEC_NAT_T */ 3966 3967 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 3968 return 0; 3969 } 3970 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 3971 return 0; 3972 } 3973 } 3974 3975 return 1; 3976 } 3977 3978 /* 3979 * compare two secindex structure exactly. 3980 * IN: 3981 * spidx0: source, it is often in SPD. 3982 * spidx1: object, it is often from PFKEY message. 3983 * OUT: 3984 * 1 : equal 3985 * 0 : not equal 3986 */ 3987 static int 3988 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 3989 struct secpolicyindex *spidx1) 3990 { 3991 /* sanity */ 3992 if (spidx0 == NULL && spidx1 == NULL) 3993 return 1; 3994 3995 if (spidx0 == NULL || spidx1 == NULL) 3996 return 0; 3997 3998 if (spidx0->prefs != spidx1->prefs 3999 || spidx0->prefd != spidx1->prefd 4000 || spidx0->ul_proto != spidx1->ul_proto) 4001 return 0; 4002 4003 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4004 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4005 } 4006 4007 /* 4008 * compare two secindex structure with mask. 4009 * IN: 4010 * spidx0: source, it is often in SPD. 4011 * spidx1: object, it is often from IP header. 4012 * OUT: 4013 * 1 : equal 4014 * 0 : not equal 4015 */ 4016 static int 4017 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4018 struct secpolicyindex *spidx1) 4019 { 4020 /* sanity */ 4021 if (spidx0 == NULL && spidx1 == NULL) 4022 return 1; 4023 4024 if (spidx0 == NULL || spidx1 == NULL) 4025 return 0; 4026 4027 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4028 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4029 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4030 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4031 return 0; 4032 4033 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4034 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4035 && spidx0->ul_proto != spidx1->ul_proto) 4036 return 0; 4037 4038 switch (spidx0->src.sa.sa_family) { 4039 case AF_INET: 4040 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4041 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4042 return 0; 4043 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4044 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4045 return 0; 4046 break; 4047 case AF_INET6: 4048 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4049 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4050 return 0; 4051 /* 4052 * scope_id check. if sin6_scope_id is 0, we regard it 4053 * as a wildcard scope, which matches any scope zone ID. 4054 */ 4055 if (spidx0->src.sin6.sin6_scope_id && 4056 spidx1->src.sin6.sin6_scope_id && 4057 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4058 return 0; 4059 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4060 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4061 return 0; 4062 break; 4063 default: 4064 /* XXX */ 4065 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4066 return 0; 4067 break; 4068 } 4069 4070 switch (spidx0->dst.sa.sa_family) { 4071 case AF_INET: 4072 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4073 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4074 return 0; 4075 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4076 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4077 return 0; 4078 break; 4079 case AF_INET6: 4080 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4081 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4082 return 0; 4083 /* 4084 * scope_id check. if sin6_scope_id is 0, we regard it 4085 * as a wildcard scope, which matches any scope zone ID. 4086 */ 4087 if (spidx0->dst.sin6.sin6_scope_id && 4088 spidx1->dst.sin6.sin6_scope_id && 4089 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4090 return 0; 4091 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4092 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4093 return 0; 4094 break; 4095 default: 4096 /* XXX */ 4097 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4098 return 0; 4099 break; 4100 } 4101 4102 /* XXX Do we check other field ? e.g. flowinfo */ 4103 4104 return 1; 4105 } 4106 4107 /* returns 0 on match */ 4108 static int 4109 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4110 int port) 4111 { 4112 #ifdef satosin 4113 #undef satosin 4114 #endif 4115 #define satosin(s) ((const struct sockaddr_in *)s) 4116 #ifdef satosin6 4117 #undef satosin6 4118 #endif 4119 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4120 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4121 return 1; 4122 4123 switch (sa1->sa_family) { 4124 case AF_INET: 4125 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4126 return 1; 4127 if (satosin(sa1)->sin_addr.s_addr != 4128 satosin(sa2)->sin_addr.s_addr) { 4129 return 1; 4130 } 4131 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4132 return 1; 4133 break; 4134 case AF_INET6: 4135 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4136 return 1; /*EINVAL*/ 4137 if (satosin6(sa1)->sin6_scope_id != 4138 satosin6(sa2)->sin6_scope_id) { 4139 return 1; 4140 } 4141 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4142 &satosin6(sa2)->sin6_addr)) { 4143 return 1; 4144 } 4145 if (port && 4146 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4147 return 1; 4148 } 4149 break; 4150 default: 4151 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4152 return 1; 4153 break; 4154 } 4155 4156 return 0; 4157 #undef satosin 4158 #undef satosin6 4159 } 4160 4161 /* 4162 * compare two buffers with mask. 4163 * IN: 4164 * addr1: source 4165 * addr2: object 4166 * bits: Number of bits to compare 4167 * OUT: 4168 * 1 : equal 4169 * 0 : not equal 4170 */ 4171 static int 4172 key_bbcmp(const void *a1, const void *a2, u_int bits) 4173 { 4174 const unsigned char *p1 = a1; 4175 const unsigned char *p2 = a2; 4176 4177 /* XXX: This could be considerably faster if we compare a word 4178 * at a time, but it is complicated on LSB Endian machines */ 4179 4180 /* Handle null pointers */ 4181 if (p1 == NULL || p2 == NULL) 4182 return (p1 == p2); 4183 4184 while (bits >= 8) { 4185 if (*p1++ != *p2++) 4186 return 0; 4187 bits -= 8; 4188 } 4189 4190 if (bits > 0) { 4191 u_int8_t mask = ~((1<<(8-bits))-1); 4192 if ((*p1 & mask) != (*p2 & mask)) 4193 return 0; 4194 } 4195 return 1; /* Match! */ 4196 } 4197 4198 static void 4199 key_flush_spd(time_t now) 4200 { 4201 SPTREE_RLOCK_TRACKER; 4202 struct secpolicy *sp; 4203 u_int dir; 4204 4205 /* SPD */ 4206 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4207 restart: 4208 SPTREE_RLOCK(); 4209 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4210 if (sp->lifetime == 0 && sp->validtime == 0) 4211 continue; 4212 if ((sp->lifetime && 4213 now - sp->created > sp->lifetime) || 4214 (sp->validtime && 4215 now - sp->lastused > sp->validtime)) { 4216 SPTREE_RUNLOCK(); 4217 key_unlink(sp); 4218 key_spdexpire(sp); 4219 KEY_FREESP(&sp); 4220 goto restart; 4221 } 4222 } 4223 SPTREE_RUNLOCK(); 4224 } 4225 } 4226 4227 static void 4228 key_flush_sad(time_t now) 4229 { 4230 struct secashead *sah, *nextsah; 4231 struct secasvar *sav, *nextsav; 4232 4233 /* SAD */ 4234 SAHTREE_LOCK(); 4235 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4236 /* if sah has been dead, then delete it and process next sah. */ 4237 if (sah->state == SADB_SASTATE_DEAD) { 4238 key_delsah(sah); 4239 continue; 4240 } 4241 4242 /* if LARVAL entry doesn't become MATURE, delete it. */ 4243 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4244 /* Need to also check refcnt for a larval SA ??? */ 4245 if (now - sav->created > V_key_larval_lifetime) 4246 KEY_FREESAV(&sav); 4247 } 4248 4249 /* 4250 * check MATURE entry to start to send expire message 4251 * whether or not. 4252 */ 4253 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4254 /* we don't need to check. */ 4255 if (sav->lft_s == NULL) 4256 continue; 4257 4258 /* sanity check */ 4259 if (sav->lft_c == NULL) { 4260 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4261 "time, why?\n", __func__)); 4262 continue; 4263 } 4264 4265 /* check SOFT lifetime */ 4266 if (sav->lft_s->addtime != 0 && 4267 now - sav->created > sav->lft_s->addtime) { 4268 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4269 /* 4270 * Actually, only send expire message if 4271 * SA has been used, as it was done before, 4272 * but should we always send such message, 4273 * and let IKE daemon decide if it should be 4274 * renegotiated or not ? 4275 * XXX expire message will actually NOT be 4276 * sent if SA is only used after soft 4277 * lifetime has been reached, see below 4278 * (DYING state) 4279 */ 4280 if (sav->lft_c->usetime != 0) 4281 key_expire(sav); 4282 } 4283 /* check SOFT lifetime by bytes */ 4284 /* 4285 * XXX I don't know the way to delete this SA 4286 * when new SA is installed. Caution when it's 4287 * installed too big lifetime by time. 4288 */ 4289 else if (sav->lft_s->bytes != 0 && 4290 sav->lft_s->bytes < sav->lft_c->bytes) { 4291 4292 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4293 /* 4294 * XXX If we keep to send expire 4295 * message in the status of 4296 * DYING. Do remove below code. 4297 */ 4298 key_expire(sav); 4299 } 4300 } 4301 4302 /* check DYING entry to change status to DEAD. */ 4303 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4304 /* we don't need to check. */ 4305 if (sav->lft_h == NULL) 4306 continue; 4307 4308 /* sanity check */ 4309 if (sav->lft_c == NULL) { 4310 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4311 "time, why?\n", __func__)); 4312 continue; 4313 } 4314 4315 if (sav->lft_h->addtime != 0 && 4316 now - sav->created > sav->lft_h->addtime) { 4317 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4318 KEY_FREESAV(&sav); 4319 } 4320 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4321 else if (sav->lft_s != NULL 4322 && sav->lft_s->addtime != 0 4323 && now - sav->created > sav->lft_s->addtime) { 4324 /* 4325 * XXX: should be checked to be 4326 * installed the valid SA. 4327 */ 4328 4329 /* 4330 * If there is no SA then sending 4331 * expire message. 4332 */ 4333 key_expire(sav); 4334 } 4335 #endif 4336 /* check HARD lifetime by bytes */ 4337 else if (sav->lft_h->bytes != 0 && 4338 sav->lft_h->bytes < sav->lft_c->bytes) { 4339 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4340 KEY_FREESAV(&sav); 4341 } 4342 } 4343 4344 /* delete entry in DEAD */ 4345 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4346 /* sanity check */ 4347 if (sav->state != SADB_SASTATE_DEAD) { 4348 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4349 "(queue: %d SA: %d): kill it anyway\n", 4350 __func__, 4351 SADB_SASTATE_DEAD, sav->state)); 4352 } 4353 /* 4354 * do not call key_freesav() here. 4355 * sav should already be freed, and sav->refcnt 4356 * shows other references to sav 4357 * (such as from SPD). 4358 */ 4359 } 4360 } 4361 SAHTREE_UNLOCK(); 4362 } 4363 4364 static void 4365 key_flush_acq(time_t now) 4366 { 4367 struct secacq *acq, *nextacq; 4368 4369 /* ACQ tree */ 4370 ACQ_LOCK(); 4371 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4372 nextacq = LIST_NEXT(acq, chain); 4373 if (now - acq->created > V_key_blockacq_lifetime 4374 && __LIST_CHAINED(acq)) { 4375 LIST_REMOVE(acq, chain); 4376 free(acq, M_IPSEC_SAQ); 4377 } 4378 } 4379 ACQ_UNLOCK(); 4380 } 4381 4382 static void 4383 key_flush_spacq(time_t now) 4384 { 4385 struct secspacq *acq, *nextacq; 4386 4387 /* SP ACQ tree */ 4388 SPACQ_LOCK(); 4389 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4390 nextacq = LIST_NEXT(acq, chain); 4391 if (now - acq->created > V_key_blockacq_lifetime 4392 && __LIST_CHAINED(acq)) { 4393 LIST_REMOVE(acq, chain); 4394 free(acq, M_IPSEC_SAQ); 4395 } 4396 } 4397 SPACQ_UNLOCK(); 4398 } 4399 4400 /* 4401 * time handler. 4402 * scanning SPD and SAD to check status for each entries, 4403 * and do to remove or to expire. 4404 * XXX: year 2038 problem may remain. 4405 */ 4406 static void 4407 key_timehandler(void *arg) 4408 { 4409 VNET_ITERATOR_DECL(vnet_iter); 4410 time_t now = time_second; 4411 4412 VNET_LIST_RLOCK_NOSLEEP(); 4413 VNET_FOREACH(vnet_iter) { 4414 CURVNET_SET(vnet_iter); 4415 key_flush_spd(now); 4416 key_flush_sad(now); 4417 key_flush_acq(now); 4418 key_flush_spacq(now); 4419 CURVNET_RESTORE(); 4420 } 4421 VNET_LIST_RUNLOCK_NOSLEEP(); 4422 4423 #ifndef IPSEC_DEBUG2 4424 /* do exchange to tick time !! */ 4425 callout_schedule(&key_timer, hz); 4426 #endif /* IPSEC_DEBUG2 */ 4427 } 4428 4429 u_long 4430 key_random() 4431 { 4432 u_long value; 4433 4434 key_randomfill(&value, sizeof(value)); 4435 return value; 4436 } 4437 4438 void 4439 key_randomfill(void *p, size_t l) 4440 { 4441 size_t n; 4442 u_long v; 4443 static int warn = 1; 4444 4445 n = 0; 4446 n = (size_t)read_random(p, (u_int)l); 4447 /* last resort */ 4448 while (n < l) { 4449 v = random(); 4450 bcopy(&v, (u_int8_t *)p + n, 4451 l - n < sizeof(v) ? l - n : sizeof(v)); 4452 n += sizeof(v); 4453 4454 if (warn) { 4455 printf("WARNING: pseudo-random number generator " 4456 "used for IPsec processing\n"); 4457 warn = 0; 4458 } 4459 } 4460 } 4461 4462 /* 4463 * map SADB_SATYPE_* to IPPROTO_*. 4464 * if satype == SADB_SATYPE then satype is mapped to ~0. 4465 * OUT: 4466 * 0: invalid satype. 4467 */ 4468 static u_int16_t 4469 key_satype2proto(u_int8_t satype) 4470 { 4471 switch (satype) { 4472 case SADB_SATYPE_UNSPEC: 4473 return IPSEC_PROTO_ANY; 4474 case SADB_SATYPE_AH: 4475 return IPPROTO_AH; 4476 case SADB_SATYPE_ESP: 4477 return IPPROTO_ESP; 4478 case SADB_X_SATYPE_IPCOMP: 4479 return IPPROTO_IPCOMP; 4480 case SADB_X_SATYPE_TCPSIGNATURE: 4481 return IPPROTO_TCP; 4482 default: 4483 return 0; 4484 } 4485 /* NOTREACHED */ 4486 } 4487 4488 /* 4489 * map IPPROTO_* to SADB_SATYPE_* 4490 * OUT: 4491 * 0: invalid protocol type. 4492 */ 4493 static u_int8_t 4494 key_proto2satype(u_int16_t proto) 4495 { 4496 switch (proto) { 4497 case IPPROTO_AH: 4498 return SADB_SATYPE_AH; 4499 case IPPROTO_ESP: 4500 return SADB_SATYPE_ESP; 4501 case IPPROTO_IPCOMP: 4502 return SADB_X_SATYPE_IPCOMP; 4503 case IPPROTO_TCP: 4504 return SADB_X_SATYPE_TCPSIGNATURE; 4505 default: 4506 return 0; 4507 } 4508 /* NOTREACHED */ 4509 } 4510 4511 /* %%% PF_KEY */ 4512 /* 4513 * SADB_GETSPI processing is to receive 4514 * <base, (SA2), src address, dst address, (SPI range)> 4515 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4516 * tree with the status of LARVAL, and send 4517 * <base, SA(*), address(SD)> 4518 * to the IKMPd. 4519 * 4520 * IN: mhp: pointer to the pointer to each header. 4521 * OUT: NULL if fail. 4522 * other if success, return pointer to the message to send. 4523 */ 4524 static int 4525 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4526 { 4527 struct sadb_address *src0, *dst0; 4528 struct secasindex saidx; 4529 struct secashead *newsah; 4530 struct secasvar *newsav; 4531 u_int8_t proto; 4532 u_int32_t spi; 4533 u_int8_t mode; 4534 u_int32_t reqid; 4535 int error; 4536 4537 IPSEC_ASSERT(so != NULL, ("null socket")); 4538 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4539 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4540 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4541 4542 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4543 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4544 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4545 __func__)); 4546 return key_senderror(so, m, EINVAL); 4547 } 4548 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4549 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4550 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4551 __func__)); 4552 return key_senderror(so, m, EINVAL); 4553 } 4554 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4555 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4556 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4557 } else { 4558 mode = IPSEC_MODE_ANY; 4559 reqid = 0; 4560 } 4561 4562 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4563 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4564 4565 /* map satype to proto */ 4566 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4567 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4568 __func__)); 4569 return key_senderror(so, m, EINVAL); 4570 } 4571 4572 /* 4573 * Make sure the port numbers are zero. 4574 * In case of NAT-T we will update them later if needed. 4575 */ 4576 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4577 case AF_INET: 4578 if (((struct sockaddr *)(src0 + 1))->sa_len != 4579 sizeof(struct sockaddr_in)) 4580 return key_senderror(so, m, EINVAL); 4581 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4582 break; 4583 case AF_INET6: 4584 if (((struct sockaddr *)(src0 + 1))->sa_len != 4585 sizeof(struct sockaddr_in6)) 4586 return key_senderror(so, m, EINVAL); 4587 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4588 break; 4589 default: 4590 ; /*???*/ 4591 } 4592 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4593 case AF_INET: 4594 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4595 sizeof(struct sockaddr_in)) 4596 return key_senderror(so, m, EINVAL); 4597 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4598 break; 4599 case AF_INET6: 4600 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4601 sizeof(struct sockaddr_in6)) 4602 return key_senderror(so, m, EINVAL); 4603 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4604 break; 4605 default: 4606 ; /*???*/ 4607 } 4608 4609 /* XXX boundary check against sa_len */ 4610 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4611 4612 #ifdef IPSEC_NAT_T 4613 /* 4614 * Handle NAT-T info if present. 4615 * We made sure the port numbers are zero above, so we do 4616 * not have to worry in case we do not update them. 4617 */ 4618 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4619 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4620 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4621 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4622 4623 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4624 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4625 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4626 struct sadb_x_nat_t_type *type; 4627 struct sadb_x_nat_t_port *sport, *dport; 4628 4629 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4630 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4631 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4632 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4633 "passed.\n", __func__)); 4634 return key_senderror(so, m, EINVAL); 4635 } 4636 4637 sport = (struct sadb_x_nat_t_port *) 4638 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4639 dport = (struct sadb_x_nat_t_port *) 4640 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4641 4642 if (sport) 4643 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4644 if (dport) 4645 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4646 } 4647 #endif 4648 4649 /* SPI allocation */ 4650 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4651 &saidx); 4652 if (spi == 0) 4653 return key_senderror(so, m, EINVAL); 4654 4655 /* get a SA index */ 4656 if ((newsah = key_getsah(&saidx)) == NULL) { 4657 /* create a new SA index */ 4658 if ((newsah = key_newsah(&saidx)) == NULL) { 4659 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4660 return key_senderror(so, m, ENOBUFS); 4661 } 4662 } 4663 4664 /* get a new SA */ 4665 /* XXX rewrite */ 4666 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4667 if (newsav == NULL) { 4668 /* XXX don't free new SA index allocated in above. */ 4669 return key_senderror(so, m, error); 4670 } 4671 4672 /* set spi */ 4673 newsav->spi = htonl(spi); 4674 4675 /* delete the entry in acqtree */ 4676 if (mhp->msg->sadb_msg_seq != 0) { 4677 struct secacq *acq; 4678 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4679 /* reset counter in order to deletion by timehandler. */ 4680 acq->created = time_second; 4681 acq->count = 0; 4682 } 4683 } 4684 4685 { 4686 struct mbuf *n, *nn; 4687 struct sadb_sa *m_sa; 4688 struct sadb_msg *newmsg; 4689 int off, len; 4690 4691 /* create new sadb_msg to reply. */ 4692 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4693 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4694 4695 MGETHDR(n, M_NOWAIT, MT_DATA); 4696 if (len > MHLEN) { 4697 MCLGET(n, M_NOWAIT); 4698 if ((n->m_flags & M_EXT) == 0) { 4699 m_freem(n); 4700 n = NULL; 4701 } 4702 } 4703 if (!n) 4704 return key_senderror(so, m, ENOBUFS); 4705 4706 n->m_len = len; 4707 n->m_next = NULL; 4708 off = 0; 4709 4710 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4711 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4712 4713 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4714 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4715 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4716 m_sa->sadb_sa_spi = htonl(spi); 4717 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4718 4719 IPSEC_ASSERT(off == len, 4720 ("length inconsistency (off %u len %u)", off, len)); 4721 4722 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4723 SADB_EXT_ADDRESS_DST); 4724 if (!n->m_next) { 4725 m_freem(n); 4726 return key_senderror(so, m, ENOBUFS); 4727 } 4728 4729 if (n->m_len < sizeof(struct sadb_msg)) { 4730 n = m_pullup(n, sizeof(struct sadb_msg)); 4731 if (n == NULL) 4732 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4733 } 4734 4735 n->m_pkthdr.len = 0; 4736 for (nn = n; nn; nn = nn->m_next) 4737 n->m_pkthdr.len += nn->m_len; 4738 4739 newmsg = mtod(n, struct sadb_msg *); 4740 newmsg->sadb_msg_seq = newsav->seq; 4741 newmsg->sadb_msg_errno = 0; 4742 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4743 4744 m_freem(m); 4745 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4746 } 4747 } 4748 4749 /* 4750 * allocating new SPI 4751 * called by key_getspi(). 4752 * OUT: 4753 * 0: failure. 4754 * others: success. 4755 */ 4756 static u_int32_t 4757 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 4758 { 4759 u_int32_t newspi; 4760 u_int32_t min, max; 4761 int count = V_key_spi_trycnt; 4762 4763 /* set spi range to allocate */ 4764 if (spirange != NULL) { 4765 min = spirange->sadb_spirange_min; 4766 max = spirange->sadb_spirange_max; 4767 } else { 4768 min = V_key_spi_minval; 4769 max = V_key_spi_maxval; 4770 } 4771 /* IPCOMP needs 2-byte SPI */ 4772 if (saidx->proto == IPPROTO_IPCOMP) { 4773 u_int32_t t; 4774 if (min >= 0x10000) 4775 min = 0xffff; 4776 if (max >= 0x10000) 4777 max = 0xffff; 4778 if (min > max) { 4779 t = min; min = max; max = t; 4780 } 4781 } 4782 4783 if (min == max) { 4784 if (key_checkspidup(saidx, min) != NULL) { 4785 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4786 __func__, min)); 4787 return 0; 4788 } 4789 4790 count--; /* taking one cost. */ 4791 newspi = min; 4792 4793 } else { 4794 4795 /* init SPI */ 4796 newspi = 0; 4797 4798 /* when requesting to allocate spi ranged */ 4799 while (count--) { 4800 /* generate pseudo-random SPI value ranged. */ 4801 newspi = min + (key_random() % (max - min + 1)); 4802 4803 if (key_checkspidup(saidx, newspi) == NULL) 4804 break; 4805 } 4806 4807 if (count == 0 || newspi == 0) { 4808 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4809 __func__)); 4810 return 0; 4811 } 4812 } 4813 4814 /* statistics */ 4815 keystat.getspi_count = 4816 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4817 4818 return newspi; 4819 } 4820 4821 /* 4822 * SADB_UPDATE processing 4823 * receive 4824 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4825 * key(AE), (identity(SD),) (sensitivity)> 4826 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4827 * and send 4828 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4829 * (identity(SD),) (sensitivity)> 4830 * to the ikmpd. 4831 * 4832 * m will always be freed. 4833 */ 4834 static int 4835 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4836 { 4837 struct sadb_sa *sa0; 4838 struct sadb_address *src0, *dst0; 4839 #ifdef IPSEC_NAT_T 4840 struct sadb_x_nat_t_type *type; 4841 struct sadb_x_nat_t_port *sport, *dport; 4842 struct sadb_address *iaddr, *raddr; 4843 struct sadb_x_nat_t_frag *frag; 4844 #endif 4845 struct secasindex saidx; 4846 struct secashead *sah; 4847 struct secasvar *sav; 4848 u_int16_t proto; 4849 u_int8_t mode; 4850 u_int32_t reqid; 4851 int error; 4852 4853 IPSEC_ASSERT(so != NULL, ("null socket")); 4854 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4855 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4856 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4857 4858 /* map satype to proto */ 4859 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4860 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4861 __func__)); 4862 return key_senderror(so, m, EINVAL); 4863 } 4864 4865 if (mhp->ext[SADB_EXT_SA] == NULL || 4866 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4867 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4868 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4869 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4870 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4871 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4872 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4873 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4874 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4875 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4876 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4877 __func__)); 4878 return key_senderror(so, m, EINVAL); 4879 } 4880 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4881 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4882 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4883 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4884 __func__)); 4885 return key_senderror(so, m, EINVAL); 4886 } 4887 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4888 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4889 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4890 } else { 4891 mode = IPSEC_MODE_ANY; 4892 reqid = 0; 4893 } 4894 /* XXX boundary checking for other extensions */ 4895 4896 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 4897 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4898 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4899 4900 /* XXX boundary check against sa_len */ 4901 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4902 4903 /* 4904 * Make sure the port numbers are zero. 4905 * In case of NAT-T we will update them later if needed. 4906 */ 4907 KEY_PORTTOSADDR(&saidx.src, 0); 4908 KEY_PORTTOSADDR(&saidx.dst, 0); 4909 4910 #ifdef IPSEC_NAT_T 4911 /* 4912 * Handle NAT-T info if present. 4913 */ 4914 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4915 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4916 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4917 4918 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4919 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4920 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4921 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 4922 __func__)); 4923 return key_senderror(so, m, EINVAL); 4924 } 4925 4926 type = (struct sadb_x_nat_t_type *) 4927 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 4928 sport = (struct sadb_x_nat_t_port *) 4929 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4930 dport = (struct sadb_x_nat_t_port *) 4931 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4932 } else { 4933 type = 0; 4934 sport = dport = 0; 4935 } 4936 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 4937 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 4938 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 4939 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 4940 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4941 __func__)); 4942 return key_senderror(so, m, EINVAL); 4943 } 4944 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 4945 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 4946 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 4947 } else { 4948 iaddr = raddr = NULL; 4949 } 4950 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 4951 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 4952 ipseclog((LOG_DEBUG, "%s: invalid message\n", 4953 __func__)); 4954 return key_senderror(so, m, EINVAL); 4955 } 4956 frag = (struct sadb_x_nat_t_frag *) 4957 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 4958 } else { 4959 frag = 0; 4960 } 4961 #endif 4962 4963 /* get a SA header */ 4964 if ((sah = key_getsah(&saidx)) == NULL) { 4965 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 4966 return key_senderror(so, m, ENOENT); 4967 } 4968 4969 /* set spidx if there */ 4970 /* XXX rewrite */ 4971 error = key_setident(sah, m, mhp); 4972 if (error) 4973 return key_senderror(so, m, error); 4974 4975 /* find a SA with sequence number. */ 4976 #ifdef IPSEC_DOSEQCHECK 4977 if (mhp->msg->sadb_msg_seq != 0 4978 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 4979 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 4980 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 4981 return key_senderror(so, m, ENOENT); 4982 } 4983 #else 4984 SAHTREE_LOCK(); 4985 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 4986 SAHTREE_UNLOCK(); 4987 if (sav == NULL) { 4988 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 4989 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 4990 return key_senderror(so, m, EINVAL); 4991 } 4992 #endif 4993 4994 /* validity check */ 4995 if (sav->sah->saidx.proto != proto) { 4996 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 4997 "(DB=%u param=%u)\n", __func__, 4998 sav->sah->saidx.proto, proto)); 4999 return key_senderror(so, m, EINVAL); 5000 } 5001 #ifdef IPSEC_DOSEQCHECK 5002 if (sav->spi != sa0->sadb_sa_spi) { 5003 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5004 __func__, 5005 (u_int32_t)ntohl(sav->spi), 5006 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5007 return key_senderror(so, m, EINVAL); 5008 } 5009 #endif 5010 if (sav->pid != mhp->msg->sadb_msg_pid) { 5011 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5012 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5013 return key_senderror(so, m, EINVAL); 5014 } 5015 5016 /* copy sav values */ 5017 error = key_setsaval(sav, m, mhp); 5018 if (error) { 5019 KEY_FREESAV(&sav); 5020 return key_senderror(so, m, error); 5021 } 5022 5023 #ifdef IPSEC_NAT_T 5024 /* 5025 * Handle more NAT-T info if present, 5026 * now that we have a sav to fill. 5027 */ 5028 if (type) 5029 sav->natt_type = type->sadb_x_nat_t_type_type; 5030 5031 if (sport) 5032 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5033 sport->sadb_x_nat_t_port_port); 5034 if (dport) 5035 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5036 dport->sadb_x_nat_t_port_port); 5037 5038 #if 0 5039 /* 5040 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5041 * We should actually check for a minimum MTU here, if we 5042 * want to support it in ip_output. 5043 */ 5044 if (frag) 5045 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5046 #endif 5047 #endif 5048 5049 /* check SA values to be mature. */ 5050 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5051 KEY_FREESAV(&sav); 5052 return key_senderror(so, m, 0); 5053 } 5054 5055 { 5056 struct mbuf *n; 5057 5058 /* set msg buf from mhp */ 5059 n = key_getmsgbuf_x1(m, mhp); 5060 if (n == NULL) { 5061 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5062 return key_senderror(so, m, ENOBUFS); 5063 } 5064 5065 m_freem(m); 5066 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5067 } 5068 } 5069 5070 /* 5071 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5072 * only called by key_update(). 5073 * OUT: 5074 * NULL : not found 5075 * others : found, pointer to a SA. 5076 */ 5077 #ifdef IPSEC_DOSEQCHECK 5078 static struct secasvar * 5079 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5080 { 5081 struct secasvar *sav; 5082 u_int state; 5083 5084 state = SADB_SASTATE_LARVAL; 5085 5086 /* search SAD with sequence number ? */ 5087 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5088 5089 KEY_CHKSASTATE(state, sav->state, __func__); 5090 5091 if (sav->seq == seq) { 5092 sa_addref(sav); 5093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5094 printf("DP %s cause refcnt++:%d SA:%p\n", 5095 __func__, sav->refcnt, sav)); 5096 return sav; 5097 } 5098 } 5099 5100 return NULL; 5101 } 5102 #endif 5103 5104 /* 5105 * SADB_ADD processing 5106 * add an entry to SA database, when received 5107 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5108 * key(AE), (identity(SD),) (sensitivity)> 5109 * from the ikmpd, 5110 * and send 5111 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5112 * (identity(SD),) (sensitivity)> 5113 * to the ikmpd. 5114 * 5115 * IGNORE identity and sensitivity messages. 5116 * 5117 * m will always be freed. 5118 */ 5119 static int 5120 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5121 { 5122 struct sadb_sa *sa0; 5123 struct sadb_address *src0, *dst0; 5124 #ifdef IPSEC_NAT_T 5125 struct sadb_x_nat_t_type *type; 5126 struct sadb_address *iaddr, *raddr; 5127 struct sadb_x_nat_t_frag *frag; 5128 #endif 5129 struct secasindex saidx; 5130 struct secashead *newsah; 5131 struct secasvar *newsav; 5132 u_int16_t proto; 5133 u_int8_t mode; 5134 u_int32_t reqid; 5135 int error; 5136 5137 IPSEC_ASSERT(so != NULL, ("null socket")); 5138 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5139 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5140 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5141 5142 /* map satype to proto */ 5143 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5144 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5145 __func__)); 5146 return key_senderror(so, m, EINVAL); 5147 } 5148 5149 if (mhp->ext[SADB_EXT_SA] == NULL || 5150 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5151 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5152 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5153 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5154 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5155 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5156 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5157 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5158 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5159 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5160 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5161 __func__)); 5162 return key_senderror(so, m, EINVAL); 5163 } 5164 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5165 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5166 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5167 /* XXX need more */ 5168 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5169 __func__)); 5170 return key_senderror(so, m, EINVAL); 5171 } 5172 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5173 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5174 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5175 } else { 5176 mode = IPSEC_MODE_ANY; 5177 reqid = 0; 5178 } 5179 5180 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5181 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5182 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5183 5184 /* XXX boundary check against sa_len */ 5185 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5186 5187 /* 5188 * Make sure the port numbers are zero. 5189 * In case of NAT-T we will update them later if needed. 5190 */ 5191 KEY_PORTTOSADDR(&saidx.src, 0); 5192 KEY_PORTTOSADDR(&saidx.dst, 0); 5193 5194 #ifdef IPSEC_NAT_T 5195 /* 5196 * Handle NAT-T info if present. 5197 */ 5198 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5199 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5200 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5201 struct sadb_x_nat_t_port *sport, *dport; 5202 5203 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5204 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5205 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5206 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5207 __func__)); 5208 return key_senderror(so, m, EINVAL); 5209 } 5210 5211 type = (struct sadb_x_nat_t_type *) 5212 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5213 sport = (struct sadb_x_nat_t_port *) 5214 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5215 dport = (struct sadb_x_nat_t_port *) 5216 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5217 5218 if (sport) 5219 KEY_PORTTOSADDR(&saidx.src, 5220 sport->sadb_x_nat_t_port_port); 5221 if (dport) 5222 KEY_PORTTOSADDR(&saidx.dst, 5223 dport->sadb_x_nat_t_port_port); 5224 } else { 5225 type = 0; 5226 } 5227 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5228 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5229 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5230 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5231 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5232 __func__)); 5233 return key_senderror(so, m, EINVAL); 5234 } 5235 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5236 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5237 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5238 } else { 5239 iaddr = raddr = NULL; 5240 } 5241 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5242 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5243 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5244 __func__)); 5245 return key_senderror(so, m, EINVAL); 5246 } 5247 frag = (struct sadb_x_nat_t_frag *) 5248 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5249 } else { 5250 frag = 0; 5251 } 5252 #endif 5253 5254 /* get a SA header */ 5255 if ((newsah = key_getsah(&saidx)) == NULL) { 5256 /* create a new SA header */ 5257 if ((newsah = key_newsah(&saidx)) == NULL) { 5258 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5259 return key_senderror(so, m, ENOBUFS); 5260 } 5261 } 5262 5263 /* set spidx if there */ 5264 /* XXX rewrite */ 5265 error = key_setident(newsah, m, mhp); 5266 if (error) { 5267 return key_senderror(so, m, error); 5268 } 5269 5270 /* create new SA entry. */ 5271 /* We can create new SA only if SPI is differenct. */ 5272 SAHTREE_LOCK(); 5273 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5274 SAHTREE_UNLOCK(); 5275 if (newsav != NULL) { 5276 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5277 return key_senderror(so, m, EEXIST); 5278 } 5279 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5280 if (newsav == NULL) { 5281 return key_senderror(so, m, error); 5282 } 5283 5284 #ifdef IPSEC_NAT_T 5285 /* 5286 * Handle more NAT-T info if present, 5287 * now that we have a sav to fill. 5288 */ 5289 if (type) 5290 newsav->natt_type = type->sadb_x_nat_t_type_type; 5291 5292 #if 0 5293 /* 5294 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5295 * We should actually check for a minimum MTU here, if we 5296 * want to support it in ip_output. 5297 */ 5298 if (frag) 5299 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5300 #endif 5301 #endif 5302 5303 /* check SA values to be mature. */ 5304 if ((error = key_mature(newsav)) != 0) { 5305 KEY_FREESAV(&newsav); 5306 return key_senderror(so, m, error); 5307 } 5308 5309 /* 5310 * don't call key_freesav() here, as we would like to keep the SA 5311 * in the database on success. 5312 */ 5313 5314 { 5315 struct mbuf *n; 5316 5317 /* set msg buf from mhp */ 5318 n = key_getmsgbuf_x1(m, mhp); 5319 if (n == NULL) { 5320 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5321 return key_senderror(so, m, ENOBUFS); 5322 } 5323 5324 m_freem(m); 5325 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5326 } 5327 } 5328 5329 /* m is retained */ 5330 static int 5331 key_setident(struct secashead *sah, struct mbuf *m, 5332 const struct sadb_msghdr *mhp) 5333 { 5334 const struct sadb_ident *idsrc, *iddst; 5335 int idsrclen, iddstlen; 5336 5337 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5338 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5339 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5340 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5341 5342 /* don't make buffer if not there */ 5343 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5344 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5345 sah->idents = NULL; 5346 sah->identd = NULL; 5347 return 0; 5348 } 5349 5350 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5351 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5352 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5353 return EINVAL; 5354 } 5355 5356 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5357 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5358 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5359 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5360 5361 /* validity check */ 5362 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5363 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5364 return EINVAL; 5365 } 5366 5367 switch (idsrc->sadb_ident_type) { 5368 case SADB_IDENTTYPE_PREFIX: 5369 case SADB_IDENTTYPE_FQDN: 5370 case SADB_IDENTTYPE_USERFQDN: 5371 default: 5372 /* XXX do nothing */ 5373 sah->idents = NULL; 5374 sah->identd = NULL; 5375 return 0; 5376 } 5377 5378 /* make structure */ 5379 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5380 if (sah->idents == NULL) { 5381 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5382 return ENOBUFS; 5383 } 5384 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5385 if (sah->identd == NULL) { 5386 free(sah->idents, M_IPSEC_MISC); 5387 sah->idents = NULL; 5388 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5389 return ENOBUFS; 5390 } 5391 sah->idents->type = idsrc->sadb_ident_type; 5392 sah->idents->id = idsrc->sadb_ident_id; 5393 5394 sah->identd->type = iddst->sadb_ident_type; 5395 sah->identd->id = iddst->sadb_ident_id; 5396 5397 return 0; 5398 } 5399 5400 /* 5401 * m will not be freed on return. 5402 * it is caller's responsibility to free the result. 5403 */ 5404 static struct mbuf * 5405 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5406 { 5407 struct mbuf *n; 5408 5409 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5410 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5411 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5412 5413 /* create new sadb_msg to reply. */ 5414 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5415 SADB_EXT_SA, SADB_X_EXT_SA2, 5416 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5417 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5418 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5419 if (!n) 5420 return NULL; 5421 5422 if (n->m_len < sizeof(struct sadb_msg)) { 5423 n = m_pullup(n, sizeof(struct sadb_msg)); 5424 if (n == NULL) 5425 return NULL; 5426 } 5427 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5428 mtod(n, struct sadb_msg *)->sadb_msg_len = 5429 PFKEY_UNIT64(n->m_pkthdr.len); 5430 5431 return n; 5432 } 5433 5434 /* 5435 * SADB_DELETE processing 5436 * receive 5437 * <base, SA(*), address(SD)> 5438 * from the ikmpd, and set SADB_SASTATE_DEAD, 5439 * and send, 5440 * <base, SA(*), address(SD)> 5441 * to the ikmpd. 5442 * 5443 * m will always be freed. 5444 */ 5445 static int 5446 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5447 { 5448 struct sadb_sa *sa0; 5449 struct sadb_address *src0, *dst0; 5450 struct secasindex saidx; 5451 struct secashead *sah; 5452 struct secasvar *sav = NULL; 5453 u_int16_t proto; 5454 5455 IPSEC_ASSERT(so != NULL, ("null socket")); 5456 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5457 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5458 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5459 5460 /* map satype to proto */ 5461 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5462 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5463 __func__)); 5464 return key_senderror(so, m, EINVAL); 5465 } 5466 5467 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5468 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5469 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5470 __func__)); 5471 return key_senderror(so, m, EINVAL); 5472 } 5473 5474 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5475 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5476 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5477 __func__)); 5478 return key_senderror(so, m, EINVAL); 5479 } 5480 5481 if (mhp->ext[SADB_EXT_SA] == NULL) { 5482 /* 5483 * Caller wants us to delete all non-LARVAL SAs 5484 * that match the src/dst. This is used during 5485 * IKE INITIAL-CONTACT. 5486 */ 5487 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5488 return key_delete_all(so, m, mhp, proto); 5489 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5490 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5491 __func__)); 5492 return key_senderror(so, m, EINVAL); 5493 } 5494 5495 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5496 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5497 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5498 5499 /* XXX boundary check against sa_len */ 5500 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5501 5502 /* 5503 * Make sure the port numbers are zero. 5504 * In case of NAT-T we will update them later if needed. 5505 */ 5506 KEY_PORTTOSADDR(&saidx.src, 0); 5507 KEY_PORTTOSADDR(&saidx.dst, 0); 5508 5509 #ifdef IPSEC_NAT_T 5510 /* 5511 * Handle NAT-T info if present. 5512 */ 5513 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5514 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5515 struct sadb_x_nat_t_port *sport, *dport; 5516 5517 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5518 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5519 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5520 __func__)); 5521 return key_senderror(so, m, EINVAL); 5522 } 5523 5524 sport = (struct sadb_x_nat_t_port *) 5525 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5526 dport = (struct sadb_x_nat_t_port *) 5527 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5528 5529 if (sport) 5530 KEY_PORTTOSADDR(&saidx.src, 5531 sport->sadb_x_nat_t_port_port); 5532 if (dport) 5533 KEY_PORTTOSADDR(&saidx.dst, 5534 dport->sadb_x_nat_t_port_port); 5535 } 5536 #endif 5537 5538 /* get a SA header */ 5539 SAHTREE_LOCK(); 5540 LIST_FOREACH(sah, &V_sahtree, chain) { 5541 if (sah->state == SADB_SASTATE_DEAD) 5542 continue; 5543 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5544 continue; 5545 5546 /* get a SA with SPI. */ 5547 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5548 if (sav) 5549 break; 5550 } 5551 if (sah == NULL) { 5552 SAHTREE_UNLOCK(); 5553 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5554 return key_senderror(so, m, ENOENT); 5555 } 5556 5557 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5558 KEY_FREESAV(&sav); 5559 SAHTREE_UNLOCK(); 5560 5561 { 5562 struct mbuf *n; 5563 struct sadb_msg *newmsg; 5564 5565 /* create new sadb_msg to reply. */ 5566 /* XXX-BZ NAT-T extensions? */ 5567 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5568 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5569 if (!n) 5570 return key_senderror(so, m, ENOBUFS); 5571 5572 if (n->m_len < sizeof(struct sadb_msg)) { 5573 n = m_pullup(n, sizeof(struct sadb_msg)); 5574 if (n == NULL) 5575 return key_senderror(so, m, ENOBUFS); 5576 } 5577 newmsg = mtod(n, struct sadb_msg *); 5578 newmsg->sadb_msg_errno = 0; 5579 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5580 5581 m_freem(m); 5582 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5583 } 5584 } 5585 5586 /* 5587 * delete all SAs for src/dst. Called from key_delete(). 5588 */ 5589 static int 5590 key_delete_all(struct socket *so, struct mbuf *m, 5591 const struct sadb_msghdr *mhp, u_int16_t proto) 5592 { 5593 struct sadb_address *src0, *dst0; 5594 struct secasindex saidx; 5595 struct secashead *sah; 5596 struct secasvar *sav, *nextsav; 5597 u_int stateidx, state; 5598 5599 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5600 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5601 5602 /* XXX boundary check against sa_len */ 5603 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5604 5605 /* 5606 * Make sure the port numbers are zero. 5607 * In case of NAT-T we will update them later if needed. 5608 */ 5609 KEY_PORTTOSADDR(&saidx.src, 0); 5610 KEY_PORTTOSADDR(&saidx.dst, 0); 5611 5612 #ifdef IPSEC_NAT_T 5613 /* 5614 * Handle NAT-T info if present. 5615 */ 5616 5617 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5618 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5619 struct sadb_x_nat_t_port *sport, *dport; 5620 5621 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5622 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5623 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5624 __func__)); 5625 return key_senderror(so, m, EINVAL); 5626 } 5627 5628 sport = (struct sadb_x_nat_t_port *) 5629 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5630 dport = (struct sadb_x_nat_t_port *) 5631 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5632 5633 if (sport) 5634 KEY_PORTTOSADDR(&saidx.src, 5635 sport->sadb_x_nat_t_port_port); 5636 if (dport) 5637 KEY_PORTTOSADDR(&saidx.dst, 5638 dport->sadb_x_nat_t_port_port); 5639 } 5640 #endif 5641 5642 SAHTREE_LOCK(); 5643 LIST_FOREACH(sah, &V_sahtree, chain) { 5644 if (sah->state == SADB_SASTATE_DEAD) 5645 continue; 5646 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5647 continue; 5648 5649 /* Delete all non-LARVAL SAs. */ 5650 for (stateidx = 0; 5651 stateidx < _ARRAYLEN(saorder_state_alive); 5652 stateidx++) { 5653 state = saorder_state_alive[stateidx]; 5654 if (state == SADB_SASTATE_LARVAL) 5655 continue; 5656 for (sav = LIST_FIRST(&sah->savtree[state]); 5657 sav != NULL; sav = nextsav) { 5658 nextsav = LIST_NEXT(sav, chain); 5659 /* sanity check */ 5660 if (sav->state != state) { 5661 ipseclog((LOG_DEBUG, "%s: invalid " 5662 "sav->state (queue %d SA %d)\n", 5663 __func__, state, sav->state)); 5664 continue; 5665 } 5666 5667 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5668 KEY_FREESAV(&sav); 5669 } 5670 } 5671 } 5672 SAHTREE_UNLOCK(); 5673 { 5674 struct mbuf *n; 5675 struct sadb_msg *newmsg; 5676 5677 /* create new sadb_msg to reply. */ 5678 /* XXX-BZ NAT-T extensions? */ 5679 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5680 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5681 if (!n) 5682 return key_senderror(so, m, ENOBUFS); 5683 5684 if (n->m_len < sizeof(struct sadb_msg)) { 5685 n = m_pullup(n, sizeof(struct sadb_msg)); 5686 if (n == NULL) 5687 return key_senderror(so, m, ENOBUFS); 5688 } 5689 newmsg = mtod(n, struct sadb_msg *); 5690 newmsg->sadb_msg_errno = 0; 5691 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5692 5693 m_freem(m); 5694 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5695 } 5696 } 5697 5698 /* 5699 * SADB_GET processing 5700 * receive 5701 * <base, SA(*), address(SD)> 5702 * from the ikmpd, and get a SP and a SA to respond, 5703 * and send, 5704 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5705 * (identity(SD),) (sensitivity)> 5706 * to the ikmpd. 5707 * 5708 * m will always be freed. 5709 */ 5710 static int 5711 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5712 { 5713 struct sadb_sa *sa0; 5714 struct sadb_address *src0, *dst0; 5715 struct secasindex saidx; 5716 struct secashead *sah; 5717 struct secasvar *sav = NULL; 5718 u_int16_t proto; 5719 5720 IPSEC_ASSERT(so != NULL, ("null socket")); 5721 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5722 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5723 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5724 5725 /* map satype to proto */ 5726 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5727 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5728 __func__)); 5729 return key_senderror(so, m, EINVAL); 5730 } 5731 5732 if (mhp->ext[SADB_EXT_SA] == NULL || 5733 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5734 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5735 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5736 __func__)); 5737 return key_senderror(so, m, EINVAL); 5738 } 5739 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5740 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5741 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5742 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5743 __func__)); 5744 return key_senderror(so, m, EINVAL); 5745 } 5746 5747 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5748 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5749 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5750 5751 /* XXX boundary check against sa_len */ 5752 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5753 5754 /* 5755 * Make sure the port numbers are zero. 5756 * In case of NAT-T we will update them later if needed. 5757 */ 5758 KEY_PORTTOSADDR(&saidx.src, 0); 5759 KEY_PORTTOSADDR(&saidx.dst, 0); 5760 5761 #ifdef IPSEC_NAT_T 5762 /* 5763 * Handle NAT-T info if present. 5764 */ 5765 5766 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5767 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5768 struct sadb_x_nat_t_port *sport, *dport; 5769 5770 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5771 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5772 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5773 __func__)); 5774 return key_senderror(so, m, EINVAL); 5775 } 5776 5777 sport = (struct sadb_x_nat_t_port *) 5778 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5779 dport = (struct sadb_x_nat_t_port *) 5780 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5781 5782 if (sport) 5783 KEY_PORTTOSADDR(&saidx.src, 5784 sport->sadb_x_nat_t_port_port); 5785 if (dport) 5786 KEY_PORTTOSADDR(&saidx.dst, 5787 dport->sadb_x_nat_t_port_port); 5788 } 5789 #endif 5790 5791 /* get a SA header */ 5792 SAHTREE_LOCK(); 5793 LIST_FOREACH(sah, &V_sahtree, chain) { 5794 if (sah->state == SADB_SASTATE_DEAD) 5795 continue; 5796 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5797 continue; 5798 5799 /* get a SA with SPI. */ 5800 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5801 if (sav) 5802 break; 5803 } 5804 SAHTREE_UNLOCK(); 5805 if (sah == NULL) { 5806 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5807 return key_senderror(so, m, ENOENT); 5808 } 5809 5810 { 5811 struct mbuf *n; 5812 u_int8_t satype; 5813 5814 /* map proto to satype */ 5815 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5816 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5817 __func__)); 5818 return key_senderror(so, m, EINVAL); 5819 } 5820 5821 /* create new sadb_msg to reply. */ 5822 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5823 mhp->msg->sadb_msg_pid); 5824 if (!n) 5825 return key_senderror(so, m, ENOBUFS); 5826 5827 m_freem(m); 5828 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5829 } 5830 } 5831 5832 /* XXX make it sysctl-configurable? */ 5833 static void 5834 key_getcomb_setlifetime(struct sadb_comb *comb) 5835 { 5836 5837 comb->sadb_comb_soft_allocations = 1; 5838 comb->sadb_comb_hard_allocations = 1; 5839 comb->sadb_comb_soft_bytes = 0; 5840 comb->sadb_comb_hard_bytes = 0; 5841 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5842 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5843 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5844 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5845 } 5846 5847 /* 5848 * XXX reorder combinations by preference 5849 * XXX no idea if the user wants ESP authentication or not 5850 */ 5851 static struct mbuf * 5852 key_getcomb_esp() 5853 { 5854 struct sadb_comb *comb; 5855 struct enc_xform *algo; 5856 struct mbuf *result = NULL, *m, *n; 5857 int encmin; 5858 int i, off, o; 5859 int totlen; 5860 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5861 5862 m = NULL; 5863 for (i = 1; i <= SADB_EALG_MAX; i++) { 5864 algo = esp_algorithm_lookup(i); 5865 if (algo == NULL) 5866 continue; 5867 5868 /* discard algorithms with key size smaller than system min */ 5869 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 5870 continue; 5871 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 5872 encmin = V_ipsec_esp_keymin; 5873 else 5874 encmin = _BITS(algo->minkey); 5875 5876 if (V_ipsec_esp_auth) 5877 m = key_getcomb_ah(); 5878 else { 5879 IPSEC_ASSERT(l <= MLEN, 5880 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5881 MGET(m, M_NOWAIT, MT_DATA); 5882 if (m) { 5883 M_ALIGN(m, l); 5884 m->m_len = l; 5885 m->m_next = NULL; 5886 bzero(mtod(m, caddr_t), m->m_len); 5887 } 5888 } 5889 if (!m) 5890 goto fail; 5891 5892 totlen = 0; 5893 for (n = m; n; n = n->m_next) 5894 totlen += n->m_len; 5895 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 5896 5897 for (off = 0; off < totlen; off += l) { 5898 n = m_pulldown(m, off, l, &o); 5899 if (!n) { 5900 /* m is already freed */ 5901 goto fail; 5902 } 5903 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 5904 bzero(comb, sizeof(*comb)); 5905 key_getcomb_setlifetime(comb); 5906 comb->sadb_comb_encrypt = i; 5907 comb->sadb_comb_encrypt_minbits = encmin; 5908 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 5909 } 5910 5911 if (!result) 5912 result = m; 5913 else 5914 m_cat(result, m); 5915 } 5916 5917 return result; 5918 5919 fail: 5920 if (result) 5921 m_freem(result); 5922 return NULL; 5923 } 5924 5925 static void 5926 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 5927 u_int16_t* max) 5928 { 5929 5930 *min = *max = ah->keysize; 5931 if (ah->keysize == 0) { 5932 /* 5933 * Transform takes arbitrary key size but algorithm 5934 * key size is restricted. Enforce this here. 5935 */ 5936 switch (alg) { 5937 case SADB_X_AALG_MD5: *min = *max = 16; break; 5938 case SADB_X_AALG_SHA: *min = *max = 20; break; 5939 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 5940 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 5941 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 5942 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 5943 default: 5944 DPRINTF(("%s: unknown AH algorithm %u\n", 5945 __func__, alg)); 5946 break; 5947 } 5948 } 5949 } 5950 5951 /* 5952 * XXX reorder combinations by preference 5953 */ 5954 static struct mbuf * 5955 key_getcomb_ah() 5956 { 5957 struct sadb_comb *comb; 5958 struct auth_hash *algo; 5959 struct mbuf *m; 5960 u_int16_t minkeysize, maxkeysize; 5961 int i; 5962 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5963 5964 m = NULL; 5965 for (i = 1; i <= SADB_AALG_MAX; i++) { 5966 #if 1 5967 /* we prefer HMAC algorithms, not old algorithms */ 5968 if (i != SADB_AALG_SHA1HMAC && 5969 i != SADB_AALG_MD5HMAC && 5970 i != SADB_X_AALG_SHA2_256 && 5971 i != SADB_X_AALG_SHA2_384 && 5972 i != SADB_X_AALG_SHA2_512) 5973 continue; 5974 #endif 5975 algo = ah_algorithm_lookup(i); 5976 if (!algo) 5977 continue; 5978 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 5979 /* discard algorithms with key size smaller than system min */ 5980 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 5981 continue; 5982 5983 if (!m) { 5984 IPSEC_ASSERT(l <= MLEN, 5985 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 5986 MGET(m, M_NOWAIT, MT_DATA); 5987 if (m) { 5988 M_ALIGN(m, l); 5989 m->m_len = l; 5990 m->m_next = NULL; 5991 } 5992 } else 5993 M_PREPEND(m, l, M_NOWAIT); 5994 if (!m) 5995 return NULL; 5996 5997 comb = mtod(m, struct sadb_comb *); 5998 bzero(comb, sizeof(*comb)); 5999 key_getcomb_setlifetime(comb); 6000 comb->sadb_comb_auth = i; 6001 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6002 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6003 } 6004 6005 return m; 6006 } 6007 6008 /* 6009 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6010 * XXX reorder combinations by preference 6011 */ 6012 static struct mbuf * 6013 key_getcomb_ipcomp() 6014 { 6015 struct sadb_comb *comb; 6016 struct comp_algo *algo; 6017 struct mbuf *m; 6018 int i; 6019 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6020 6021 m = NULL; 6022 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6023 algo = ipcomp_algorithm_lookup(i); 6024 if (!algo) 6025 continue; 6026 6027 if (!m) { 6028 IPSEC_ASSERT(l <= MLEN, 6029 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6030 MGET(m, M_NOWAIT, MT_DATA); 6031 if (m) { 6032 M_ALIGN(m, l); 6033 m->m_len = l; 6034 m->m_next = NULL; 6035 } 6036 } else 6037 M_PREPEND(m, l, M_NOWAIT); 6038 if (!m) 6039 return NULL; 6040 6041 comb = mtod(m, struct sadb_comb *); 6042 bzero(comb, sizeof(*comb)); 6043 key_getcomb_setlifetime(comb); 6044 comb->sadb_comb_encrypt = i; 6045 /* what should we set into sadb_comb_*_{min,max}bits? */ 6046 } 6047 6048 return m; 6049 } 6050 6051 /* 6052 * XXX no way to pass mode (transport/tunnel) to userland 6053 * XXX replay checking? 6054 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6055 */ 6056 static struct mbuf * 6057 key_getprop(const struct secasindex *saidx) 6058 { 6059 struct sadb_prop *prop; 6060 struct mbuf *m, *n; 6061 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6062 int totlen; 6063 6064 switch (saidx->proto) { 6065 case IPPROTO_ESP: 6066 m = key_getcomb_esp(); 6067 break; 6068 case IPPROTO_AH: 6069 m = key_getcomb_ah(); 6070 break; 6071 case IPPROTO_IPCOMP: 6072 m = key_getcomb_ipcomp(); 6073 break; 6074 default: 6075 return NULL; 6076 } 6077 6078 if (!m) 6079 return NULL; 6080 M_PREPEND(m, l, M_NOWAIT); 6081 if (!m) 6082 return NULL; 6083 6084 totlen = 0; 6085 for (n = m; n; n = n->m_next) 6086 totlen += n->m_len; 6087 6088 prop = mtod(m, struct sadb_prop *); 6089 bzero(prop, sizeof(*prop)); 6090 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6091 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6092 prop->sadb_prop_replay = 32; /* XXX */ 6093 6094 return m; 6095 } 6096 6097 /* 6098 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6099 * send 6100 * <base, SA, address(SD), (address(P)), x_policy, 6101 * (identity(SD),) (sensitivity,) proposal> 6102 * to KMD, and expect to receive 6103 * <base> with SADB_ACQUIRE if error occured, 6104 * or 6105 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6106 * from KMD by PF_KEY. 6107 * 6108 * XXX x_policy is outside of RFC2367 (KAME extension). 6109 * XXX sensitivity is not supported. 6110 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6111 * see comment for key_getcomb_ipcomp(). 6112 * 6113 * OUT: 6114 * 0 : succeed 6115 * others: error number 6116 */ 6117 static int 6118 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6119 { 6120 struct mbuf *result = NULL, *m; 6121 struct secacq *newacq; 6122 u_int8_t satype; 6123 int error = -1; 6124 u_int32_t seq; 6125 6126 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6127 satype = key_proto2satype(saidx->proto); 6128 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6129 6130 /* 6131 * We never do anything about acquirng SA. There is anather 6132 * solution that kernel blocks to send SADB_ACQUIRE message until 6133 * getting something message from IKEd. In later case, to be 6134 * managed with ACQUIRING list. 6135 */ 6136 /* Get an entry to check whether sending message or not. */ 6137 if ((newacq = key_getacq(saidx)) != NULL) { 6138 if (V_key_blockacq_count < newacq->count) { 6139 /* reset counter and do send message. */ 6140 newacq->count = 0; 6141 } else { 6142 /* increment counter and do nothing. */ 6143 newacq->count++; 6144 return 0; 6145 } 6146 } else { 6147 /* make new entry for blocking to send SADB_ACQUIRE. */ 6148 if ((newacq = key_newacq(saidx)) == NULL) 6149 return ENOBUFS; 6150 } 6151 6152 6153 seq = newacq->seq; 6154 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6155 if (!m) { 6156 error = ENOBUFS; 6157 goto fail; 6158 } 6159 result = m; 6160 6161 /* 6162 * No SADB_X_EXT_NAT_T_* here: we do not know 6163 * anything related to NAT-T at this time. 6164 */ 6165 6166 /* set sadb_address for saidx's. */ 6167 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6168 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6169 if (!m) { 6170 error = ENOBUFS; 6171 goto fail; 6172 } 6173 m_cat(result, m); 6174 6175 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6176 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6177 if (!m) { 6178 error = ENOBUFS; 6179 goto fail; 6180 } 6181 m_cat(result, m); 6182 6183 /* XXX proxy address (optional) */ 6184 6185 /* set sadb_x_policy */ 6186 if (sp) { 6187 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6188 if (!m) { 6189 error = ENOBUFS; 6190 goto fail; 6191 } 6192 m_cat(result, m); 6193 } 6194 6195 /* XXX identity (optional) */ 6196 #if 0 6197 if (idexttype && fqdn) { 6198 /* create identity extension (FQDN) */ 6199 struct sadb_ident *id; 6200 int fqdnlen; 6201 6202 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6203 id = (struct sadb_ident *)p; 6204 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6205 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6206 id->sadb_ident_exttype = idexttype; 6207 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6208 bcopy(fqdn, id + 1, fqdnlen); 6209 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6210 } 6211 6212 if (idexttype) { 6213 /* create identity extension (USERFQDN) */ 6214 struct sadb_ident *id; 6215 int userfqdnlen; 6216 6217 if (userfqdn) { 6218 /* +1 for terminating-NUL */ 6219 userfqdnlen = strlen(userfqdn) + 1; 6220 } else 6221 userfqdnlen = 0; 6222 id = (struct sadb_ident *)p; 6223 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6224 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6225 id->sadb_ident_exttype = idexttype; 6226 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6227 /* XXX is it correct? */ 6228 if (curproc && curproc->p_cred) 6229 id->sadb_ident_id = curproc->p_cred->p_ruid; 6230 if (userfqdn && userfqdnlen) 6231 bcopy(userfqdn, id + 1, userfqdnlen); 6232 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6233 } 6234 #endif 6235 6236 /* XXX sensitivity (optional) */ 6237 6238 /* create proposal/combination extension */ 6239 m = key_getprop(saidx); 6240 #if 0 6241 /* 6242 * spec conformant: always attach proposal/combination extension, 6243 * the problem is that we have no way to attach it for ipcomp, 6244 * due to the way sadb_comb is declared in RFC2367. 6245 */ 6246 if (!m) { 6247 error = ENOBUFS; 6248 goto fail; 6249 } 6250 m_cat(result, m); 6251 #else 6252 /* 6253 * outside of spec; make proposal/combination extension optional. 6254 */ 6255 if (m) 6256 m_cat(result, m); 6257 #endif 6258 6259 if ((result->m_flags & M_PKTHDR) == 0) { 6260 error = EINVAL; 6261 goto fail; 6262 } 6263 6264 if (result->m_len < sizeof(struct sadb_msg)) { 6265 result = m_pullup(result, sizeof(struct sadb_msg)); 6266 if (result == NULL) { 6267 error = ENOBUFS; 6268 goto fail; 6269 } 6270 } 6271 6272 result->m_pkthdr.len = 0; 6273 for (m = result; m; m = m->m_next) 6274 result->m_pkthdr.len += m->m_len; 6275 6276 mtod(result, struct sadb_msg *)->sadb_msg_len = 6277 PFKEY_UNIT64(result->m_pkthdr.len); 6278 6279 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6280 6281 fail: 6282 if (result) 6283 m_freem(result); 6284 return error; 6285 } 6286 6287 static struct secacq * 6288 key_newacq(const struct secasindex *saidx) 6289 { 6290 struct secacq *newacq; 6291 6292 /* get new entry */ 6293 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6294 if (newacq == NULL) { 6295 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6296 return NULL; 6297 } 6298 6299 /* copy secindex */ 6300 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6301 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6302 newacq->created = time_second; 6303 newacq->count = 0; 6304 6305 /* add to acqtree */ 6306 ACQ_LOCK(); 6307 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6308 ACQ_UNLOCK(); 6309 6310 return newacq; 6311 } 6312 6313 static struct secacq * 6314 key_getacq(const struct secasindex *saidx) 6315 { 6316 struct secacq *acq; 6317 6318 ACQ_LOCK(); 6319 LIST_FOREACH(acq, &V_acqtree, chain) { 6320 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6321 break; 6322 } 6323 ACQ_UNLOCK(); 6324 6325 return acq; 6326 } 6327 6328 static struct secacq * 6329 key_getacqbyseq(u_int32_t seq) 6330 { 6331 struct secacq *acq; 6332 6333 ACQ_LOCK(); 6334 LIST_FOREACH(acq, &V_acqtree, chain) { 6335 if (acq->seq == seq) 6336 break; 6337 } 6338 ACQ_UNLOCK(); 6339 6340 return acq; 6341 } 6342 6343 static struct secspacq * 6344 key_newspacq(struct secpolicyindex *spidx) 6345 { 6346 struct secspacq *acq; 6347 6348 /* get new entry */ 6349 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6350 if (acq == NULL) { 6351 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6352 return NULL; 6353 } 6354 6355 /* copy secindex */ 6356 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6357 acq->created = time_second; 6358 acq->count = 0; 6359 6360 /* add to spacqtree */ 6361 SPACQ_LOCK(); 6362 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6363 SPACQ_UNLOCK(); 6364 6365 return acq; 6366 } 6367 6368 static struct secspacq * 6369 key_getspacq(struct secpolicyindex *spidx) 6370 { 6371 struct secspacq *acq; 6372 6373 SPACQ_LOCK(); 6374 LIST_FOREACH(acq, &V_spacqtree, chain) { 6375 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6376 /* NB: return holding spacq_lock */ 6377 return acq; 6378 } 6379 } 6380 SPACQ_UNLOCK(); 6381 6382 return NULL; 6383 } 6384 6385 /* 6386 * SADB_ACQUIRE processing, 6387 * in first situation, is receiving 6388 * <base> 6389 * from the ikmpd, and clear sequence of its secasvar entry. 6390 * 6391 * In second situation, is receiving 6392 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6393 * from a user land process, and return 6394 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6395 * to the socket. 6396 * 6397 * m will always be freed. 6398 */ 6399 static int 6400 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6401 { 6402 const struct sadb_address *src0, *dst0; 6403 struct secasindex saidx; 6404 struct secashead *sah; 6405 u_int16_t proto; 6406 int error; 6407 6408 IPSEC_ASSERT(so != NULL, ("null socket")); 6409 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6410 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6411 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6412 6413 /* 6414 * Error message from KMd. 6415 * We assume that if error was occured in IKEd, the length of PFKEY 6416 * message is equal to the size of sadb_msg structure. 6417 * We do not raise error even if error occured in this function. 6418 */ 6419 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6420 struct secacq *acq; 6421 6422 /* check sequence number */ 6423 if (mhp->msg->sadb_msg_seq == 0) { 6424 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6425 "number.\n", __func__)); 6426 m_freem(m); 6427 return 0; 6428 } 6429 6430 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6431 /* 6432 * the specified larval SA is already gone, or we got 6433 * a bogus sequence number. we can silently ignore it. 6434 */ 6435 m_freem(m); 6436 return 0; 6437 } 6438 6439 /* reset acq counter in order to deletion by timehander. */ 6440 acq->created = time_second; 6441 acq->count = 0; 6442 m_freem(m); 6443 return 0; 6444 } 6445 6446 /* 6447 * This message is from user land. 6448 */ 6449 6450 /* map satype to proto */ 6451 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6452 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6453 __func__)); 6454 return key_senderror(so, m, EINVAL); 6455 } 6456 6457 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6458 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6459 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6460 /* error */ 6461 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6462 __func__)); 6463 return key_senderror(so, m, EINVAL); 6464 } 6465 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6466 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6467 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6468 /* error */ 6469 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6470 __func__)); 6471 return key_senderror(so, m, EINVAL); 6472 } 6473 6474 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6475 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6476 6477 /* XXX boundary check against sa_len */ 6478 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6479 6480 /* 6481 * Make sure the port numbers are zero. 6482 * In case of NAT-T we will update them later if needed. 6483 */ 6484 KEY_PORTTOSADDR(&saidx.src, 0); 6485 KEY_PORTTOSADDR(&saidx.dst, 0); 6486 6487 #ifndef IPSEC_NAT_T 6488 /* 6489 * Handle NAT-T info if present. 6490 */ 6491 6492 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6493 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6494 struct sadb_x_nat_t_port *sport, *dport; 6495 6496 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6497 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6498 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6499 __func__)); 6500 return key_senderror(so, m, EINVAL); 6501 } 6502 6503 sport = (struct sadb_x_nat_t_port *) 6504 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6505 dport = (struct sadb_x_nat_t_port *) 6506 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6507 6508 if (sport) 6509 KEY_PORTTOSADDR(&saidx.src, 6510 sport->sadb_x_nat_t_port_port); 6511 if (dport) 6512 KEY_PORTTOSADDR(&saidx.dst, 6513 dport->sadb_x_nat_t_port_port); 6514 } 6515 #endif 6516 6517 /* get a SA index */ 6518 SAHTREE_LOCK(); 6519 LIST_FOREACH(sah, &V_sahtree, chain) { 6520 if (sah->state == SADB_SASTATE_DEAD) 6521 continue; 6522 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6523 break; 6524 } 6525 SAHTREE_UNLOCK(); 6526 if (sah != NULL) { 6527 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6528 return key_senderror(so, m, EEXIST); 6529 } 6530 6531 error = key_acquire(&saidx, NULL); 6532 if (error != 0) { 6533 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6534 __func__, mhp->msg->sadb_msg_errno)); 6535 return key_senderror(so, m, error); 6536 } 6537 6538 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6539 } 6540 6541 /* 6542 * SADB_REGISTER processing. 6543 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6544 * receive 6545 * <base> 6546 * from the ikmpd, and register a socket to send PF_KEY messages, 6547 * and send 6548 * <base, supported> 6549 * to KMD by PF_KEY. 6550 * If socket is detached, must free from regnode. 6551 * 6552 * m will always be freed. 6553 */ 6554 static int 6555 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6556 { 6557 struct secreg *reg, *newreg = 0; 6558 6559 IPSEC_ASSERT(so != NULL, ("null socket")); 6560 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6561 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6562 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6563 6564 /* check for invalid register message */ 6565 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6566 return key_senderror(so, m, EINVAL); 6567 6568 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6569 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6570 goto setmsg; 6571 6572 /* check whether existing or not */ 6573 REGTREE_LOCK(); 6574 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6575 if (reg->so == so) { 6576 REGTREE_UNLOCK(); 6577 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6578 __func__)); 6579 return key_senderror(so, m, EEXIST); 6580 } 6581 } 6582 6583 /* create regnode */ 6584 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6585 if (newreg == NULL) { 6586 REGTREE_UNLOCK(); 6587 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6588 return key_senderror(so, m, ENOBUFS); 6589 } 6590 6591 newreg->so = so; 6592 ((struct keycb *)sotorawcb(so))->kp_registered++; 6593 6594 /* add regnode to regtree. */ 6595 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6596 REGTREE_UNLOCK(); 6597 6598 setmsg: 6599 { 6600 struct mbuf *n; 6601 struct sadb_msg *newmsg; 6602 struct sadb_supported *sup; 6603 u_int len, alen, elen; 6604 int off; 6605 int i; 6606 struct sadb_alg *alg; 6607 6608 /* create new sadb_msg to reply. */ 6609 alen = 0; 6610 for (i = 1; i <= SADB_AALG_MAX; i++) { 6611 if (ah_algorithm_lookup(i)) 6612 alen += sizeof(struct sadb_alg); 6613 } 6614 if (alen) 6615 alen += sizeof(struct sadb_supported); 6616 elen = 0; 6617 for (i = 1; i <= SADB_EALG_MAX; i++) { 6618 if (esp_algorithm_lookup(i)) 6619 elen += sizeof(struct sadb_alg); 6620 } 6621 if (elen) 6622 elen += sizeof(struct sadb_supported); 6623 6624 len = sizeof(struct sadb_msg) + alen + elen; 6625 6626 if (len > MCLBYTES) 6627 return key_senderror(so, m, ENOBUFS); 6628 6629 MGETHDR(n, M_NOWAIT, MT_DATA); 6630 if (len > MHLEN) { 6631 MCLGET(n, M_NOWAIT); 6632 if ((n->m_flags & M_EXT) == 0) { 6633 m_freem(n); 6634 n = NULL; 6635 } 6636 } 6637 if (!n) 6638 return key_senderror(so, m, ENOBUFS); 6639 6640 n->m_pkthdr.len = n->m_len = len; 6641 n->m_next = NULL; 6642 off = 0; 6643 6644 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6645 newmsg = mtod(n, struct sadb_msg *); 6646 newmsg->sadb_msg_errno = 0; 6647 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6648 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6649 6650 /* for authentication algorithm */ 6651 if (alen) { 6652 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6653 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6654 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6655 off += PFKEY_ALIGN8(sizeof(*sup)); 6656 6657 for (i = 1; i <= SADB_AALG_MAX; i++) { 6658 struct auth_hash *aalgo; 6659 u_int16_t minkeysize, maxkeysize; 6660 6661 aalgo = ah_algorithm_lookup(i); 6662 if (!aalgo) 6663 continue; 6664 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6665 alg->sadb_alg_id = i; 6666 alg->sadb_alg_ivlen = 0; 6667 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6668 alg->sadb_alg_minbits = _BITS(minkeysize); 6669 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6670 off += PFKEY_ALIGN8(sizeof(*alg)); 6671 } 6672 } 6673 6674 /* for encryption algorithm */ 6675 if (elen) { 6676 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6677 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6678 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6679 off += PFKEY_ALIGN8(sizeof(*sup)); 6680 6681 for (i = 1; i <= SADB_EALG_MAX; i++) { 6682 struct enc_xform *ealgo; 6683 6684 ealgo = esp_algorithm_lookup(i); 6685 if (!ealgo) 6686 continue; 6687 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6688 alg->sadb_alg_id = i; 6689 alg->sadb_alg_ivlen = ealgo->blocksize; 6690 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6691 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6692 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6693 } 6694 } 6695 6696 IPSEC_ASSERT(off == len, 6697 ("length assumption failed (off %u len %u)", off, len)); 6698 6699 m_freem(m); 6700 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6701 } 6702 } 6703 6704 /* 6705 * free secreg entry registered. 6706 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6707 */ 6708 void 6709 key_freereg(struct socket *so) 6710 { 6711 struct secreg *reg; 6712 int i; 6713 6714 IPSEC_ASSERT(so != NULL, ("NULL so")); 6715 6716 /* 6717 * check whether existing or not. 6718 * check all type of SA, because there is a potential that 6719 * one socket is registered to multiple type of SA. 6720 */ 6721 REGTREE_LOCK(); 6722 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6723 LIST_FOREACH(reg, &V_regtree[i], chain) { 6724 if (reg->so == so && __LIST_CHAINED(reg)) { 6725 LIST_REMOVE(reg, chain); 6726 free(reg, M_IPSEC_SAR); 6727 break; 6728 } 6729 } 6730 } 6731 REGTREE_UNLOCK(); 6732 } 6733 6734 /* 6735 * SADB_EXPIRE processing 6736 * send 6737 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6738 * to KMD by PF_KEY. 6739 * NOTE: We send only soft lifetime extension. 6740 * 6741 * OUT: 0 : succeed 6742 * others : error number 6743 */ 6744 static int 6745 key_expire(struct secasvar *sav) 6746 { 6747 int satype; 6748 struct mbuf *result = NULL, *m; 6749 int len; 6750 int error = -1; 6751 struct sadb_lifetime *lt; 6752 6753 IPSEC_ASSERT (sav != NULL, ("null sav")); 6754 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6755 6756 /* set msg header */ 6757 satype = key_proto2satype(sav->sah->saidx.proto); 6758 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6759 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6760 if (!m) { 6761 error = ENOBUFS; 6762 goto fail; 6763 } 6764 result = m; 6765 6766 /* create SA extension */ 6767 m = key_setsadbsa(sav); 6768 if (!m) { 6769 error = ENOBUFS; 6770 goto fail; 6771 } 6772 m_cat(result, m); 6773 6774 /* create SA extension */ 6775 m = key_setsadbxsa2(sav->sah->saidx.mode, 6776 sav->replay ? sav->replay->count : 0, 6777 sav->sah->saidx.reqid); 6778 if (!m) { 6779 error = ENOBUFS; 6780 goto fail; 6781 } 6782 m_cat(result, m); 6783 6784 /* create lifetime extension (current and soft) */ 6785 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6786 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6787 if (m == NULL) { 6788 error = ENOBUFS; 6789 goto fail; 6790 } 6791 m_align(m, len); 6792 m->m_len = len; 6793 bzero(mtod(m, caddr_t), len); 6794 lt = mtod(m, struct sadb_lifetime *); 6795 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6796 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6797 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6798 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6799 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6800 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6801 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6802 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6803 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6804 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6805 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6806 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6807 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6808 m_cat(result, m); 6809 6810 /* set sadb_address for source */ 6811 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6812 &sav->sah->saidx.src.sa, 6813 FULLMASK, IPSEC_ULPROTO_ANY); 6814 if (!m) { 6815 error = ENOBUFS; 6816 goto fail; 6817 } 6818 m_cat(result, m); 6819 6820 /* set sadb_address for destination */ 6821 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6822 &sav->sah->saidx.dst.sa, 6823 FULLMASK, IPSEC_ULPROTO_ANY); 6824 if (!m) { 6825 error = ENOBUFS; 6826 goto fail; 6827 } 6828 m_cat(result, m); 6829 6830 /* 6831 * XXX-BZ Handle NAT-T extensions here. 6832 */ 6833 6834 if ((result->m_flags & M_PKTHDR) == 0) { 6835 error = EINVAL; 6836 goto fail; 6837 } 6838 6839 if (result->m_len < sizeof(struct sadb_msg)) { 6840 result = m_pullup(result, sizeof(struct sadb_msg)); 6841 if (result == NULL) { 6842 error = ENOBUFS; 6843 goto fail; 6844 } 6845 } 6846 6847 result->m_pkthdr.len = 0; 6848 for (m = result; m; m = m->m_next) 6849 result->m_pkthdr.len += m->m_len; 6850 6851 mtod(result, struct sadb_msg *)->sadb_msg_len = 6852 PFKEY_UNIT64(result->m_pkthdr.len); 6853 6854 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6855 6856 fail: 6857 if (result) 6858 m_freem(result); 6859 return error; 6860 } 6861 6862 /* 6863 * SADB_FLUSH processing 6864 * receive 6865 * <base> 6866 * from the ikmpd, and free all entries in secastree. 6867 * and send, 6868 * <base> 6869 * to the ikmpd. 6870 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6871 * 6872 * m will always be freed. 6873 */ 6874 static int 6875 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6876 { 6877 struct sadb_msg *newmsg; 6878 struct secashead *sah, *nextsah; 6879 struct secasvar *sav, *nextsav; 6880 u_int16_t proto; 6881 u_int8_t state; 6882 u_int stateidx; 6883 6884 IPSEC_ASSERT(so != NULL, ("null socket")); 6885 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6886 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6887 6888 /* map satype to proto */ 6889 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6890 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6891 __func__)); 6892 return key_senderror(so, m, EINVAL); 6893 } 6894 6895 /* no SATYPE specified, i.e. flushing all SA. */ 6896 SAHTREE_LOCK(); 6897 for (sah = LIST_FIRST(&V_sahtree); 6898 sah != NULL; 6899 sah = nextsah) { 6900 nextsah = LIST_NEXT(sah, chain); 6901 6902 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6903 && proto != sah->saidx.proto) 6904 continue; 6905 6906 for (stateidx = 0; 6907 stateidx < _ARRAYLEN(saorder_state_alive); 6908 stateidx++) { 6909 state = saorder_state_any[stateidx]; 6910 for (sav = LIST_FIRST(&sah->savtree[state]); 6911 sav != NULL; 6912 sav = nextsav) { 6913 6914 nextsav = LIST_NEXT(sav, chain); 6915 6916 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 6917 KEY_FREESAV(&sav); 6918 } 6919 } 6920 6921 sah->state = SADB_SASTATE_DEAD; 6922 } 6923 SAHTREE_UNLOCK(); 6924 6925 if (m->m_len < sizeof(struct sadb_msg) || 6926 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 6927 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6928 return key_senderror(so, m, ENOBUFS); 6929 } 6930 6931 if (m->m_next) 6932 m_freem(m->m_next); 6933 m->m_next = NULL; 6934 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 6935 newmsg = mtod(m, struct sadb_msg *); 6936 newmsg->sadb_msg_errno = 0; 6937 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 6938 6939 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 6940 } 6941 6942 /* 6943 * SADB_DUMP processing 6944 * dump all entries including status of DEAD in SAD. 6945 * receive 6946 * <base> 6947 * from the ikmpd, and dump all secasvar leaves 6948 * and send, 6949 * <base> ..... 6950 * to the ikmpd. 6951 * 6952 * m will always be freed. 6953 */ 6954 static int 6955 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6956 { 6957 struct secashead *sah; 6958 struct secasvar *sav; 6959 u_int16_t proto; 6960 u_int stateidx; 6961 u_int8_t satype; 6962 u_int8_t state; 6963 int cnt; 6964 struct sadb_msg *newmsg; 6965 struct mbuf *n; 6966 6967 IPSEC_ASSERT(so != NULL, ("null socket")); 6968 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6969 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6970 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6971 6972 /* map satype to proto */ 6973 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6974 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6975 __func__)); 6976 return key_senderror(so, m, EINVAL); 6977 } 6978 6979 /* count sav entries to be sent to the userland. */ 6980 cnt = 0; 6981 SAHTREE_LOCK(); 6982 LIST_FOREACH(sah, &V_sahtree, chain) { 6983 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 6984 && proto != sah->saidx.proto) 6985 continue; 6986 6987 for (stateidx = 0; 6988 stateidx < _ARRAYLEN(saorder_state_any); 6989 stateidx++) { 6990 state = saorder_state_any[stateidx]; 6991 LIST_FOREACH(sav, &sah->savtree[state], chain) { 6992 cnt++; 6993 } 6994 } 6995 } 6996 6997 if (cnt == 0) { 6998 SAHTREE_UNLOCK(); 6999 return key_senderror(so, m, ENOENT); 7000 } 7001 7002 /* send this to the userland, one at a time. */ 7003 newmsg = NULL; 7004 LIST_FOREACH(sah, &V_sahtree, chain) { 7005 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7006 && proto != sah->saidx.proto) 7007 continue; 7008 7009 /* map proto to satype */ 7010 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7011 SAHTREE_UNLOCK(); 7012 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7013 "SAD.\n", __func__)); 7014 return key_senderror(so, m, EINVAL); 7015 } 7016 7017 for (stateidx = 0; 7018 stateidx < _ARRAYLEN(saorder_state_any); 7019 stateidx++) { 7020 state = saorder_state_any[stateidx]; 7021 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7022 n = key_setdumpsa(sav, SADB_DUMP, satype, 7023 --cnt, mhp->msg->sadb_msg_pid); 7024 if (!n) { 7025 SAHTREE_UNLOCK(); 7026 return key_senderror(so, m, ENOBUFS); 7027 } 7028 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7029 } 7030 } 7031 } 7032 SAHTREE_UNLOCK(); 7033 7034 m_freem(m); 7035 return 0; 7036 } 7037 7038 /* 7039 * SADB_X_PROMISC processing 7040 * 7041 * m will always be freed. 7042 */ 7043 static int 7044 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7045 { 7046 int olen; 7047 7048 IPSEC_ASSERT(so != NULL, ("null socket")); 7049 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7050 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7051 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7052 7053 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7054 7055 if (olen < sizeof(struct sadb_msg)) { 7056 #if 1 7057 return key_senderror(so, m, EINVAL); 7058 #else 7059 m_freem(m); 7060 return 0; 7061 #endif 7062 } else if (olen == sizeof(struct sadb_msg)) { 7063 /* enable/disable promisc mode */ 7064 struct keycb *kp; 7065 7066 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7067 return key_senderror(so, m, EINVAL); 7068 mhp->msg->sadb_msg_errno = 0; 7069 switch (mhp->msg->sadb_msg_satype) { 7070 case 0: 7071 case 1: 7072 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7073 break; 7074 default: 7075 return key_senderror(so, m, EINVAL); 7076 } 7077 7078 /* send the original message back to everyone */ 7079 mhp->msg->sadb_msg_errno = 0; 7080 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7081 } else { 7082 /* send packet as is */ 7083 7084 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7085 7086 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7087 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7088 } 7089 } 7090 7091 static int (*key_typesw[])(struct socket *, struct mbuf *, 7092 const struct sadb_msghdr *) = { 7093 NULL, /* SADB_RESERVED */ 7094 key_getspi, /* SADB_GETSPI */ 7095 key_update, /* SADB_UPDATE */ 7096 key_add, /* SADB_ADD */ 7097 key_delete, /* SADB_DELETE */ 7098 key_get, /* SADB_GET */ 7099 key_acquire2, /* SADB_ACQUIRE */ 7100 key_register, /* SADB_REGISTER */ 7101 NULL, /* SADB_EXPIRE */ 7102 key_flush, /* SADB_FLUSH */ 7103 key_dump, /* SADB_DUMP */ 7104 key_promisc, /* SADB_X_PROMISC */ 7105 NULL, /* SADB_X_PCHANGE */ 7106 key_spdadd, /* SADB_X_SPDUPDATE */ 7107 key_spdadd, /* SADB_X_SPDADD */ 7108 key_spddelete, /* SADB_X_SPDDELETE */ 7109 key_spdget, /* SADB_X_SPDGET */ 7110 NULL, /* SADB_X_SPDACQUIRE */ 7111 key_spddump, /* SADB_X_SPDDUMP */ 7112 key_spdflush, /* SADB_X_SPDFLUSH */ 7113 key_spdadd, /* SADB_X_SPDSETIDX */ 7114 NULL, /* SADB_X_SPDEXPIRE */ 7115 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7116 }; 7117 7118 /* 7119 * parse sadb_msg buffer to process PFKEYv2, 7120 * and create a data to response if needed. 7121 * I think to be dealed with mbuf directly. 7122 * IN: 7123 * msgp : pointer to pointer to a received buffer pulluped. 7124 * This is rewrited to response. 7125 * so : pointer to socket. 7126 * OUT: 7127 * length for buffer to send to user process. 7128 */ 7129 int 7130 key_parse(struct mbuf *m, struct socket *so) 7131 { 7132 struct sadb_msg *msg; 7133 struct sadb_msghdr mh; 7134 u_int orglen; 7135 int error; 7136 int target; 7137 7138 IPSEC_ASSERT(so != NULL, ("null socket")); 7139 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7140 7141 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7142 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7143 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7144 kdebug_sadb(msg)); 7145 #endif 7146 7147 if (m->m_len < sizeof(struct sadb_msg)) { 7148 m = m_pullup(m, sizeof(struct sadb_msg)); 7149 if (!m) 7150 return ENOBUFS; 7151 } 7152 msg = mtod(m, struct sadb_msg *); 7153 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7154 target = KEY_SENDUP_ONE; 7155 7156 if ((m->m_flags & M_PKTHDR) == 0 || 7157 m->m_pkthdr.len != m->m_pkthdr.len) { 7158 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7159 PFKEYSTAT_INC(out_invlen); 7160 error = EINVAL; 7161 goto senderror; 7162 } 7163 7164 if (msg->sadb_msg_version != PF_KEY_V2) { 7165 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7166 __func__, msg->sadb_msg_version)); 7167 PFKEYSTAT_INC(out_invver); 7168 error = EINVAL; 7169 goto senderror; 7170 } 7171 7172 if (msg->sadb_msg_type > SADB_MAX) { 7173 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7174 __func__, msg->sadb_msg_type)); 7175 PFKEYSTAT_INC(out_invmsgtype); 7176 error = EINVAL; 7177 goto senderror; 7178 } 7179 7180 /* for old-fashioned code - should be nuked */ 7181 if (m->m_pkthdr.len > MCLBYTES) { 7182 m_freem(m); 7183 return ENOBUFS; 7184 } 7185 if (m->m_next) { 7186 struct mbuf *n; 7187 7188 MGETHDR(n, M_NOWAIT, MT_DATA); 7189 if (n && m->m_pkthdr.len > MHLEN) { 7190 MCLGET(n, M_NOWAIT); 7191 if ((n->m_flags & M_EXT) == 0) { 7192 m_free(n); 7193 n = NULL; 7194 } 7195 } 7196 if (!n) { 7197 m_freem(m); 7198 return ENOBUFS; 7199 } 7200 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7201 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7202 n->m_next = NULL; 7203 m_freem(m); 7204 m = n; 7205 } 7206 7207 /* align the mbuf chain so that extensions are in contiguous region. */ 7208 error = key_align(m, &mh); 7209 if (error) 7210 return error; 7211 7212 msg = mh.msg; 7213 7214 /* check SA type */ 7215 switch (msg->sadb_msg_satype) { 7216 case SADB_SATYPE_UNSPEC: 7217 switch (msg->sadb_msg_type) { 7218 case SADB_GETSPI: 7219 case SADB_UPDATE: 7220 case SADB_ADD: 7221 case SADB_DELETE: 7222 case SADB_GET: 7223 case SADB_ACQUIRE: 7224 case SADB_EXPIRE: 7225 ipseclog((LOG_DEBUG, "%s: must specify satype " 7226 "when msg type=%u.\n", __func__, 7227 msg->sadb_msg_type)); 7228 PFKEYSTAT_INC(out_invsatype); 7229 error = EINVAL; 7230 goto senderror; 7231 } 7232 break; 7233 case SADB_SATYPE_AH: 7234 case SADB_SATYPE_ESP: 7235 case SADB_X_SATYPE_IPCOMP: 7236 case SADB_X_SATYPE_TCPSIGNATURE: 7237 switch (msg->sadb_msg_type) { 7238 case SADB_X_SPDADD: 7239 case SADB_X_SPDDELETE: 7240 case SADB_X_SPDGET: 7241 case SADB_X_SPDDUMP: 7242 case SADB_X_SPDFLUSH: 7243 case SADB_X_SPDSETIDX: 7244 case SADB_X_SPDUPDATE: 7245 case SADB_X_SPDDELETE2: 7246 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7247 __func__, msg->sadb_msg_type)); 7248 PFKEYSTAT_INC(out_invsatype); 7249 error = EINVAL; 7250 goto senderror; 7251 } 7252 break; 7253 case SADB_SATYPE_RSVP: 7254 case SADB_SATYPE_OSPFV2: 7255 case SADB_SATYPE_RIPV2: 7256 case SADB_SATYPE_MIP: 7257 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7258 __func__, msg->sadb_msg_satype)); 7259 PFKEYSTAT_INC(out_invsatype); 7260 error = EOPNOTSUPP; 7261 goto senderror; 7262 case 1: /* XXX: What does it do? */ 7263 if (msg->sadb_msg_type == SADB_X_PROMISC) 7264 break; 7265 /*FALLTHROUGH*/ 7266 default: 7267 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7268 __func__, msg->sadb_msg_satype)); 7269 PFKEYSTAT_INC(out_invsatype); 7270 error = EINVAL; 7271 goto senderror; 7272 } 7273 7274 /* check field of upper layer protocol and address family */ 7275 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7276 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7277 struct sadb_address *src0, *dst0; 7278 u_int plen; 7279 7280 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7281 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7282 7283 /* check upper layer protocol */ 7284 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7285 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7286 "mismatched.\n", __func__)); 7287 PFKEYSTAT_INC(out_invaddr); 7288 error = EINVAL; 7289 goto senderror; 7290 } 7291 7292 /* check family */ 7293 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7294 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7295 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7296 __func__)); 7297 PFKEYSTAT_INC(out_invaddr); 7298 error = EINVAL; 7299 goto senderror; 7300 } 7301 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7302 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7303 ipseclog((LOG_DEBUG, "%s: address struct size " 7304 "mismatched.\n", __func__)); 7305 PFKEYSTAT_INC(out_invaddr); 7306 error = EINVAL; 7307 goto senderror; 7308 } 7309 7310 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7311 case AF_INET: 7312 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7313 sizeof(struct sockaddr_in)) { 7314 PFKEYSTAT_INC(out_invaddr); 7315 error = EINVAL; 7316 goto senderror; 7317 } 7318 break; 7319 case AF_INET6: 7320 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7321 sizeof(struct sockaddr_in6)) { 7322 PFKEYSTAT_INC(out_invaddr); 7323 error = EINVAL; 7324 goto senderror; 7325 } 7326 break; 7327 default: 7328 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7329 __func__)); 7330 PFKEYSTAT_INC(out_invaddr); 7331 error = EAFNOSUPPORT; 7332 goto senderror; 7333 } 7334 7335 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7336 case AF_INET: 7337 plen = sizeof(struct in_addr) << 3; 7338 break; 7339 case AF_INET6: 7340 plen = sizeof(struct in6_addr) << 3; 7341 break; 7342 default: 7343 plen = 0; /*fool gcc*/ 7344 break; 7345 } 7346 7347 /* check max prefix length */ 7348 if (src0->sadb_address_prefixlen > plen || 7349 dst0->sadb_address_prefixlen > plen) { 7350 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7351 __func__)); 7352 PFKEYSTAT_INC(out_invaddr); 7353 error = EINVAL; 7354 goto senderror; 7355 } 7356 7357 /* 7358 * prefixlen == 0 is valid because there can be a case when 7359 * all addresses are matched. 7360 */ 7361 } 7362 7363 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7364 key_typesw[msg->sadb_msg_type] == NULL) { 7365 PFKEYSTAT_INC(out_invmsgtype); 7366 error = EINVAL; 7367 goto senderror; 7368 } 7369 7370 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7371 7372 senderror: 7373 msg->sadb_msg_errno = error; 7374 return key_sendup_mbuf(so, m, target); 7375 } 7376 7377 static int 7378 key_senderror(struct socket *so, struct mbuf *m, int code) 7379 { 7380 struct sadb_msg *msg; 7381 7382 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7383 ("mbuf too small, len %u", m->m_len)); 7384 7385 msg = mtod(m, struct sadb_msg *); 7386 msg->sadb_msg_errno = code; 7387 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7388 } 7389 7390 /* 7391 * set the pointer to each header into message buffer. 7392 * m will be freed on error. 7393 * XXX larger-than-MCLBYTES extension? 7394 */ 7395 static int 7396 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7397 { 7398 struct mbuf *n; 7399 struct sadb_ext *ext; 7400 size_t off, end; 7401 int extlen; 7402 int toff; 7403 7404 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7405 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7406 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7407 ("mbuf too small, len %u", m->m_len)); 7408 7409 /* initialize */ 7410 bzero(mhp, sizeof(*mhp)); 7411 7412 mhp->msg = mtod(m, struct sadb_msg *); 7413 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7414 7415 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7416 extlen = end; /*just in case extlen is not updated*/ 7417 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7418 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7419 if (!n) { 7420 /* m is already freed */ 7421 return ENOBUFS; 7422 } 7423 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7424 7425 /* set pointer */ 7426 switch (ext->sadb_ext_type) { 7427 case SADB_EXT_SA: 7428 case SADB_EXT_ADDRESS_SRC: 7429 case SADB_EXT_ADDRESS_DST: 7430 case SADB_EXT_ADDRESS_PROXY: 7431 case SADB_EXT_LIFETIME_CURRENT: 7432 case SADB_EXT_LIFETIME_HARD: 7433 case SADB_EXT_LIFETIME_SOFT: 7434 case SADB_EXT_KEY_AUTH: 7435 case SADB_EXT_KEY_ENCRYPT: 7436 case SADB_EXT_IDENTITY_SRC: 7437 case SADB_EXT_IDENTITY_DST: 7438 case SADB_EXT_SENSITIVITY: 7439 case SADB_EXT_PROPOSAL: 7440 case SADB_EXT_SUPPORTED_AUTH: 7441 case SADB_EXT_SUPPORTED_ENCRYPT: 7442 case SADB_EXT_SPIRANGE: 7443 case SADB_X_EXT_POLICY: 7444 case SADB_X_EXT_SA2: 7445 #ifdef IPSEC_NAT_T 7446 case SADB_X_EXT_NAT_T_TYPE: 7447 case SADB_X_EXT_NAT_T_SPORT: 7448 case SADB_X_EXT_NAT_T_DPORT: 7449 case SADB_X_EXT_NAT_T_OAI: 7450 case SADB_X_EXT_NAT_T_OAR: 7451 case SADB_X_EXT_NAT_T_FRAG: 7452 #endif 7453 /* duplicate check */ 7454 /* 7455 * XXX Are there duplication payloads of either 7456 * KEY_AUTH or KEY_ENCRYPT ? 7457 */ 7458 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7459 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7460 "%u\n", __func__, ext->sadb_ext_type)); 7461 m_freem(m); 7462 PFKEYSTAT_INC(out_dupext); 7463 return EINVAL; 7464 } 7465 break; 7466 default: 7467 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7468 __func__, ext->sadb_ext_type)); 7469 m_freem(m); 7470 PFKEYSTAT_INC(out_invexttype); 7471 return EINVAL; 7472 } 7473 7474 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7475 7476 if (key_validate_ext(ext, extlen)) { 7477 m_freem(m); 7478 PFKEYSTAT_INC(out_invlen); 7479 return EINVAL; 7480 } 7481 7482 n = m_pulldown(m, off, extlen, &toff); 7483 if (!n) { 7484 /* m is already freed */ 7485 return ENOBUFS; 7486 } 7487 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7488 7489 mhp->ext[ext->sadb_ext_type] = ext; 7490 mhp->extoff[ext->sadb_ext_type] = off; 7491 mhp->extlen[ext->sadb_ext_type] = extlen; 7492 } 7493 7494 if (off != end) { 7495 m_freem(m); 7496 PFKEYSTAT_INC(out_invlen); 7497 return EINVAL; 7498 } 7499 7500 return 0; 7501 } 7502 7503 static int 7504 key_validate_ext(const struct sadb_ext *ext, int len) 7505 { 7506 const struct sockaddr *sa; 7507 enum { NONE, ADDR } checktype = NONE; 7508 int baselen = 0; 7509 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7510 7511 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7512 return EINVAL; 7513 7514 /* if it does not match minimum/maximum length, bail */ 7515 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7516 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7517 return EINVAL; 7518 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7519 return EINVAL; 7520 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7521 return EINVAL; 7522 7523 /* more checks based on sadb_ext_type XXX need more */ 7524 switch (ext->sadb_ext_type) { 7525 case SADB_EXT_ADDRESS_SRC: 7526 case SADB_EXT_ADDRESS_DST: 7527 case SADB_EXT_ADDRESS_PROXY: 7528 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7529 checktype = ADDR; 7530 break; 7531 case SADB_EXT_IDENTITY_SRC: 7532 case SADB_EXT_IDENTITY_DST: 7533 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7534 SADB_X_IDENTTYPE_ADDR) { 7535 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7536 checktype = ADDR; 7537 } else 7538 checktype = NONE; 7539 break; 7540 default: 7541 checktype = NONE; 7542 break; 7543 } 7544 7545 switch (checktype) { 7546 case NONE: 7547 break; 7548 case ADDR: 7549 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7550 if (len < baselen + sal) 7551 return EINVAL; 7552 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7553 return EINVAL; 7554 break; 7555 } 7556 7557 return 0; 7558 } 7559 7560 void 7561 key_init(void) 7562 { 7563 int i; 7564 7565 for (i = 0; i < IPSEC_DIR_MAX; i++) 7566 TAILQ_INIT(&V_sptree[i]); 7567 7568 LIST_INIT(&V_sahtree); 7569 7570 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7571 LIST_INIT(&V_regtree[i]); 7572 7573 LIST_INIT(&V_acqtree); 7574 LIST_INIT(&V_spacqtree); 7575 7576 if (!IS_DEFAULT_VNET(curvnet)) 7577 return; 7578 7579 SPTREE_LOCK_INIT(); 7580 REGTREE_LOCK_INIT(); 7581 SAHTREE_LOCK_INIT(); 7582 ACQ_LOCK_INIT(); 7583 SPACQ_LOCK_INIT(); 7584 7585 #ifndef IPSEC_DEBUG2 7586 callout_init(&key_timer, CALLOUT_MPSAFE); 7587 callout_reset(&key_timer, hz, key_timehandler, NULL); 7588 #endif /*IPSEC_DEBUG2*/ 7589 7590 /* initialize key statistics */ 7591 keystat.getspi_count = 1; 7592 7593 printf("IPsec: Initialized Security Association Processing.\n"); 7594 } 7595 7596 #ifdef VIMAGE 7597 void 7598 key_destroy(void) 7599 { 7600 TAILQ_HEAD(, secpolicy) drainq; 7601 struct secpolicy *sp, *nextsp; 7602 struct secacq *acq, *nextacq; 7603 struct secspacq *spacq, *nextspacq; 7604 struct secashead *sah, *nextsah; 7605 struct secreg *reg; 7606 int i; 7607 7608 TAILQ_INIT(&drainq); 7609 SPTREE_WLOCK(); 7610 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7611 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 7612 } 7613 SPTREE_WUNLOCK(); 7614 sp = TAILQ_FIRST(&drainq); 7615 while (sp != NULL) { 7616 nextsp = TAILQ_NEXT(sp, chain); 7617 KEY_FREESP(&sp); 7618 sp = nextsp; 7619 } 7620 7621 SAHTREE_LOCK(); 7622 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7623 nextsah = LIST_NEXT(sah, chain); 7624 if (__LIST_CHAINED(sah)) { 7625 LIST_REMOVE(sah, chain); 7626 free(sah, M_IPSEC_SAH); 7627 } 7628 } 7629 SAHTREE_UNLOCK(); 7630 7631 REGTREE_LOCK(); 7632 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7633 LIST_FOREACH(reg, &V_regtree[i], chain) { 7634 if (__LIST_CHAINED(reg)) { 7635 LIST_REMOVE(reg, chain); 7636 free(reg, M_IPSEC_SAR); 7637 break; 7638 } 7639 } 7640 } 7641 REGTREE_UNLOCK(); 7642 7643 ACQ_LOCK(); 7644 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7645 nextacq = LIST_NEXT(acq, chain); 7646 if (__LIST_CHAINED(acq)) { 7647 LIST_REMOVE(acq, chain); 7648 free(acq, M_IPSEC_SAQ); 7649 } 7650 } 7651 ACQ_UNLOCK(); 7652 7653 SPACQ_LOCK(); 7654 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7655 spacq = nextspacq) { 7656 nextspacq = LIST_NEXT(spacq, chain); 7657 if (__LIST_CHAINED(spacq)) { 7658 LIST_REMOVE(spacq, chain); 7659 free(spacq, M_IPSEC_SAQ); 7660 } 7661 } 7662 SPACQ_UNLOCK(); 7663 } 7664 #endif 7665 7666 /* 7667 * XXX: maybe This function is called after INBOUND IPsec processing. 7668 * 7669 * Special check for tunnel-mode packets. 7670 * We must make some checks for consistency between inner and outer IP header. 7671 * 7672 * xxx more checks to be provided 7673 */ 7674 int 7675 key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, 7676 caddr_t dst) 7677 { 7678 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7679 7680 /* XXX: check inner IP header */ 7681 7682 return 1; 7683 } 7684 7685 /* record data transfer on SA, and update timestamps */ 7686 void 7687 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7688 { 7689 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7690 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7691 if (!sav->lft_c) 7692 return; 7693 7694 /* 7695 * XXX Currently, there is a difference of bytes size 7696 * between inbound and outbound processing. 7697 */ 7698 sav->lft_c->bytes += m->m_pkthdr.len; 7699 /* to check bytes lifetime is done in key_timehandler(). */ 7700 7701 /* 7702 * We use the number of packets as the unit of 7703 * allocations. We increment the variable 7704 * whenever {esp,ah}_{in,out}put is called. 7705 */ 7706 sav->lft_c->allocations++; 7707 /* XXX check for expires? */ 7708 7709 /* 7710 * NOTE: We record CURRENT usetime by using wall clock, 7711 * in seconds. HARD and SOFT lifetime are measured by the time 7712 * difference (again in seconds) from usetime. 7713 * 7714 * usetime 7715 * v expire expire 7716 * -----+-----+--------+---> t 7717 * <--------------> HARD 7718 * <-----> SOFT 7719 */ 7720 sav->lft_c->usetime = time_second; 7721 /* XXX check for expires? */ 7722 7723 return; 7724 } 7725 7726 static void 7727 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7728 { 7729 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7730 SAHTREE_LOCK_ASSERT(); 7731 7732 if (sav->state != state) { 7733 if (__LIST_CHAINED(sav)) 7734 LIST_REMOVE(sav, chain); 7735 sav->state = state; 7736 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7737 } 7738 } 7739 7740 void 7741 key_sa_stir_iv(struct secasvar *sav) 7742 { 7743 7744 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7745 key_randomfill(sav->iv, sav->ivlen); 7746 } 7747 7748 /* 7749 * Take one of the kernel's security keys and convert it into a PF_KEY 7750 * structure within an mbuf, suitable for sending up to a waiting 7751 * application in user land. 7752 * 7753 * IN: 7754 * src: A pointer to a kernel security key. 7755 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7756 * OUT: 7757 * a valid mbuf or NULL indicating an error 7758 * 7759 */ 7760 7761 static struct mbuf * 7762 key_setkey(struct seckey *src, u_int16_t exttype) 7763 { 7764 struct mbuf *m; 7765 struct sadb_key *p; 7766 int len; 7767 7768 if (src == NULL) 7769 return NULL; 7770 7771 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7772 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7773 if (m == NULL) 7774 return NULL; 7775 m_align(m, len); 7776 m->m_len = len; 7777 p = mtod(m, struct sadb_key *); 7778 bzero(p, len); 7779 p->sadb_key_len = PFKEY_UNIT64(len); 7780 p->sadb_key_exttype = exttype; 7781 p->sadb_key_bits = src->bits; 7782 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7783 7784 return m; 7785 } 7786 7787 /* 7788 * Take one of the kernel's lifetime data structures and convert it 7789 * into a PF_KEY structure within an mbuf, suitable for sending up to 7790 * a waiting application in user land. 7791 * 7792 * IN: 7793 * src: A pointer to a kernel lifetime structure. 7794 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7795 * data structures for more information. 7796 * OUT: 7797 * a valid mbuf or NULL indicating an error 7798 * 7799 */ 7800 7801 static struct mbuf * 7802 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7803 { 7804 struct mbuf *m = NULL; 7805 struct sadb_lifetime *p; 7806 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 7807 7808 if (src == NULL) 7809 return NULL; 7810 7811 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7812 if (m == NULL) 7813 return m; 7814 m_align(m, len); 7815 m->m_len = len; 7816 p = mtod(m, struct sadb_lifetime *); 7817 7818 bzero(p, len); 7819 p->sadb_lifetime_len = PFKEY_UNIT64(len); 7820 p->sadb_lifetime_exttype = exttype; 7821 p->sadb_lifetime_allocations = src->allocations; 7822 p->sadb_lifetime_bytes = src->bytes; 7823 p->sadb_lifetime_addtime = src->addtime; 7824 p->sadb_lifetime_usetime = src->usetime; 7825 7826 return m; 7827 7828 } 7829