xref: /freebsd/sys/netipsec/key.c (revision 00a5db46de56179184c0f000eaacad695e2b0859)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 #include <sys/vimage.h>
60 
61 #include <net/if.h>
62 #include <net/route.h>
63 #include <net/raw_cb.h>
64 
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #include <netinet/in_var.h>
69 
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #include <netinet6/in6_var.h>
73 #include <netinet6/ip6_var.h>
74 #endif /* INET6 */
75 
76 #ifdef INET
77 #include <netinet/in_pcb.h>
78 #include <netinet/vinet.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #include <netinet6/vinet6.h>
83 #endif /* INET6 */
84 
85 #include <net/pfkeyv2.h>
86 #include <netipsec/keydb.h>
87 #include <netipsec/key.h>
88 #include <netipsec/keysock.h>
89 #include <netipsec/key_debug.h>
90 
91 #include <netipsec/ipsec.h>
92 #ifdef INET6
93 #include <netipsec/ipsec6.h>
94 #endif
95 
96 #include <netipsec/xform.h>
97 
98 #include <machine/stdarg.h>
99 
100 /* randomness */
101 #include <sys/random.h>
102 #include <sys/vimage.h>
103 
104 #define FULLMASK	0xff
105 #define	_BITS(bytes)	((bytes) << 3)
106 
107 /*
108  * Note on SA reference counting:
109  * - SAs that are not in DEAD state will have (total external reference + 1)
110  *   following value in reference count field.  they cannot be freed and are
111  *   referenced from SA header.
112  * - SAs that are in DEAD state will have (total external reference)
113  *   in reference count field.  they are ready to be freed.  reference from
114  *   SA header will be removed in key_delsav(), when the reference count
115  *   field hits 0 (= no external reference other than from SA header.
116  */
117 
118 #ifdef VIMAGE_GLOBALS
119 u_int32_t key_debug_level;
120 static u_int key_spi_trycnt;
121 static u_int32_t key_spi_minval;
122 static u_int32_t key_spi_maxval;
123 static u_int32_t policy_id;
124 static u_int key_int_random;
125 static u_int key_larval_lifetime;
126 static int key_blockacq_count;
127 static int key_blockacq_lifetime;
128 static int key_preferred_oldsa;
129 
130 static u_int32_t acq_seq;
131 
132 static int ipsec_esp_keymin;
133 static int ipsec_esp_auth;
134 static int ipsec_ah_keymin;
135 
136 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX];	/* SPD */
137 static LIST_HEAD(_sahtree, secashead) sahtree;			/* SAD */
138 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
139 static LIST_HEAD(_acqtree, secacq) acqtree;		/* acquiring list */
140 static LIST_HEAD(_spacqtree, secspacq) spacqtree;	/* SP acquiring list */
141 #endif /* VIMAGE_GLOBALS */
142 
143 static struct mtx sptree_lock;
144 #define	SPTREE_LOCK_INIT() \
145 	mtx_init(&sptree_lock, "sptree", \
146 		"fast ipsec security policy database", MTX_DEF)
147 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
148 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
149 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
150 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
151 
152 static struct mtx sahtree_lock;
153 #define	SAHTREE_LOCK_INIT() \
154 	mtx_init(&sahtree_lock, "sahtree", \
155 		"fast ipsec security association database", MTX_DEF)
156 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
157 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
158 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
159 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
160 
161 							/* registed list */
162 static struct mtx regtree_lock;
163 #define	REGTREE_LOCK_INIT() \
164 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
165 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
166 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
167 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
168 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
169 
170 static struct mtx acq_lock;
171 #define	ACQ_LOCK_INIT() \
172 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
173 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
174 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
175 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
176 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
177 
178 static struct mtx spacq_lock;
179 #define	SPACQ_LOCK_INIT() \
180 	mtx_init(&spacq_lock, "spacqtree", \
181 		"fast ipsec security policy acquire list", MTX_DEF)
182 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
183 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
184 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
185 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
186 
187 /* search order for SAs */
188 static const u_int saorder_state_valid_prefer_old[] = {
189 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
190 };
191 static const u_int saorder_state_valid_prefer_new[] = {
192 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
193 };
194 static const u_int saorder_state_alive[] = {
195 	/* except DEAD */
196 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
197 };
198 static const u_int saorder_state_any[] = {
199 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
200 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
201 };
202 
203 static const int minsize[] = {
204 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
205 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
206 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
207 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
208 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
209 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
210 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
211 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
212 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
213 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
214 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
215 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
216 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
217 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
218 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
219 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
220 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
221 	0,				/* SADB_X_EXT_KMPRIVATE */
222 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
223 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
224 };
225 static const int maxsize[] = {
226 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
227 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
228 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
229 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
230 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
231 	0,				/* SADB_EXT_ADDRESS_SRC */
232 	0,				/* SADB_EXT_ADDRESS_DST */
233 	0,				/* SADB_EXT_ADDRESS_PROXY */
234 	0,				/* SADB_EXT_KEY_AUTH */
235 	0,				/* SADB_EXT_KEY_ENCRYPT */
236 	0,				/* SADB_EXT_IDENTITY_SRC */
237 	0,				/* SADB_EXT_IDENTITY_DST */
238 	0,				/* SADB_EXT_SENSITIVITY */
239 	0,				/* SADB_EXT_PROPOSAL */
240 	0,				/* SADB_EXT_SUPPORTED_AUTH */
241 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
242 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
243 	0,				/* SADB_X_EXT_KMPRIVATE */
244 	0,				/* SADB_X_EXT_POLICY */
245 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
246 };
247 
248 #ifdef SYSCTL_DECL
249 SYSCTL_DECL(_net_key);
250 #endif
251 
252 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_DEBUG_LEVEL,	debug,
253 	CTLFLAG_RW, key_debug_level,	0,	"");
254 
255 /* max count of trial for the decision of spi value */
256 SYSCTL_V_INT(V_NET, vnet_ipsec,_net_key, KEYCTL_SPI_TRY, spi_trycnt,
257 	CTLFLAG_RW, key_spi_trycnt,	0,	"");
258 
259 /* minimum spi value to allocate automatically. */
260 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MIN_VALUE,
261 	spi_minval,	CTLFLAG_RW, key_spi_minval,	0,	"");
262 
263 /* maximun spi value to allocate automatically. */
264 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_SPI_MAX_VALUE,
265 	spi_maxval,	CTLFLAG_RW, key_spi_maxval,	0,	"");
266 
267 /* interval to initialize randseed */
268 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_RANDOM_INT,
269 	int_random,	CTLFLAG_RW, key_int_random,	0,	"");
270 
271 /* lifetime for larval SA */
272 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_LARVAL_LIFETIME,
273 	larval_lifetime, CTLFLAG_RW, key_larval_lifetime,	0,	"");
274 
275 /* counter for blocking to send SADB_ACQUIRE to IKEd */
276 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_COUNT,
277 	blockacq_count,	CTLFLAG_RW, key_blockacq_count,	0,	"");
278 
279 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
280 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_BLOCKACQ_LIFETIME,
281 	blockacq_lifetime, CTLFLAG_RW, key_blockacq_lifetime,	0, "");
282 
283 /* ESP auth */
284 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_AUTH,	esp_auth,
285 	CTLFLAG_RW, ipsec_esp_auth,	0,	"");
286 
287 /* minimum ESP key length */
288 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_ESP_KEYMIN,
289 	esp_keymin, CTLFLAG_RW, ipsec_esp_keymin,	0,	"");
290 
291 /* minimum AH key length */
292 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
293 	CTLFLAG_RW, ipsec_ah_keymin,	0,	"");
294 
295 /* perfered old SA rather than new SA */
296 SYSCTL_V_INT(V_NET, vnet_ipsec, _net_key, KEYCTL_PREFERED_OLDSA,
297 	preferred_oldsa, CTLFLAG_RW, key_preferred_oldsa,	0,	"");
298 
299 #define __LIST_CHAINED(elm) \
300 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
301 #define LIST_INSERT_TAIL(head, elm, type, field) \
302 do {\
303 	struct type *curelm = LIST_FIRST(head); \
304 	if (curelm == NULL) {\
305 		LIST_INSERT_HEAD(head, elm, field); \
306 	} else { \
307 		while (LIST_NEXT(curelm, field)) \
308 			curelm = LIST_NEXT(curelm, field);\
309 		LIST_INSERT_AFTER(curelm, elm, field);\
310 	}\
311 } while (0)
312 
313 #define KEY_CHKSASTATE(head, sav, name) \
314 do { \
315 	if ((head) != (sav)) {						\
316 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
317 			(name), (head), (sav)));			\
318 		continue;						\
319 	}								\
320 } while (0)
321 
322 #define KEY_CHKSPDIR(head, sp, name) \
323 do { \
324 	if ((head) != (sp)) {						\
325 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
326 			"anyway continue.\n",				\
327 			(name), (head), (sp)));				\
328 	}								\
329 } while (0)
330 
331 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
332 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
333 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
334 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
335 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
336 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
337 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
338 
339 /*
340  * set parameters into secpolicyindex buffer.
341  * Must allocate secpolicyindex buffer passed to this function.
342  */
343 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
344 do { \
345 	bzero((idx), sizeof(struct secpolicyindex));                         \
346 	(idx)->dir = (_dir);                                                 \
347 	(idx)->prefs = (ps);                                                 \
348 	(idx)->prefd = (pd);                                                 \
349 	(idx)->ul_proto = (ulp);                                             \
350 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
351 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
352 } while (0)
353 
354 /*
355  * set parameters into secasindex buffer.
356  * Must allocate secasindex buffer before calling this function.
357  */
358 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
359 do { \
360 	bzero((idx), sizeof(struct secasindex));                             \
361 	(idx)->proto = (p);                                                  \
362 	(idx)->mode = (m);                                                   \
363 	(idx)->reqid = (r);                                                  \
364 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
365 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
366 } while (0)
367 
368 /* key statistics */
369 struct _keystat {
370 	u_long getspi_count; /* the avarage of count to try to get new SPI */
371 } keystat;
372 
373 struct sadb_msghdr {
374 	struct sadb_msg *msg;
375 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
376 	int extoff[SADB_EXT_MAX + 1];
377 	int extlen[SADB_EXT_MAX + 1];
378 };
379 
380 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
381 static void key_freesp_so __P((struct secpolicy **));
382 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
383 static void key_delsp __P((struct secpolicy *));
384 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
385 static void _key_delsp(struct secpolicy *sp);
386 static struct secpolicy *key_getspbyid __P((u_int32_t));
387 static u_int32_t key_newreqid __P((void));
388 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
389 	const struct sadb_msghdr *, int, int, ...));
390 static int key_spdadd __P((struct socket *, struct mbuf *,
391 	const struct sadb_msghdr *));
392 static u_int32_t key_getnewspid __P((void));
393 static int key_spddelete __P((struct socket *, struct mbuf *,
394 	const struct sadb_msghdr *));
395 static int key_spddelete2 __P((struct socket *, struct mbuf *,
396 	const struct sadb_msghdr *));
397 static int key_spdget __P((struct socket *, struct mbuf *,
398 	const struct sadb_msghdr *));
399 static int key_spdflush __P((struct socket *, struct mbuf *,
400 	const struct sadb_msghdr *));
401 static int key_spddump __P((struct socket *, struct mbuf *,
402 	const struct sadb_msghdr *));
403 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
404 	u_int8_t, u_int32_t, u_int32_t));
405 static u_int key_getspreqmsglen __P((struct secpolicy *));
406 static int key_spdexpire __P((struct secpolicy *));
407 static struct secashead *key_newsah __P((struct secasindex *));
408 static void key_delsah __P((struct secashead *));
409 static struct secasvar *key_newsav __P((struct mbuf *,
410 	const struct sadb_msghdr *, struct secashead *, int *,
411 	const char*, int));
412 #define	KEY_NEWSAV(m, sadb, sah, e)				\
413 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
414 static void key_delsav __P((struct secasvar *));
415 static struct secashead *key_getsah __P((struct secasindex *));
416 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
417 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
418 static int key_setsaval __P((struct secasvar *, struct mbuf *,
419 	const struct sadb_msghdr *));
420 static int key_mature __P((struct secasvar *));
421 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
422 	u_int8_t, u_int32_t, u_int32_t));
423 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
424 	u_int32_t, pid_t, u_int16_t));
425 static struct mbuf *key_setsadbsa __P((struct secasvar *));
426 static struct mbuf *key_setsadbaddr __P((u_int16_t,
427 	const struct sockaddr *, u_int8_t, u_int16_t));
428 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
429 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
430 	u_int32_t));
431 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
432 				     struct malloc_type *);
433 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
434 					    struct malloc_type *type);
435 #ifdef INET6
436 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
437 #endif
438 
439 /* flags for key_cmpsaidx() */
440 #define CMP_HEAD	1	/* protocol, addresses. */
441 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
442 #define CMP_REQID	3	/* additionally HEAD, reaid. */
443 #define CMP_EXACTLY	4	/* all elements. */
444 static int key_cmpsaidx
445 	__P((const struct secasindex *, const struct secasindex *, int));
446 
447 static int key_cmpspidx_exactly
448 	__P((struct secpolicyindex *, struct secpolicyindex *));
449 static int key_cmpspidx_withmask
450 	__P((struct secpolicyindex *, struct secpolicyindex *));
451 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
452 static int key_bbcmp __P((const void *, const void *, u_int));
453 static u_int16_t key_satype2proto __P((u_int8_t));
454 static u_int8_t key_proto2satype __P((u_int16_t));
455 
456 static int key_getspi __P((struct socket *, struct mbuf *,
457 	const struct sadb_msghdr *));
458 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
459 					struct secasindex *));
460 static int key_update __P((struct socket *, struct mbuf *,
461 	const struct sadb_msghdr *));
462 #ifdef IPSEC_DOSEQCHECK
463 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
464 #endif
465 static int key_add __P((struct socket *, struct mbuf *,
466 	const struct sadb_msghdr *));
467 static int key_setident __P((struct secashead *, struct mbuf *,
468 	const struct sadb_msghdr *));
469 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
470 	const struct sadb_msghdr *));
471 static int key_delete __P((struct socket *, struct mbuf *,
472 	const struct sadb_msghdr *));
473 static int key_get __P((struct socket *, struct mbuf *,
474 	const struct sadb_msghdr *));
475 
476 static void key_getcomb_setlifetime __P((struct sadb_comb *));
477 static struct mbuf *key_getcomb_esp __P((void));
478 static struct mbuf *key_getcomb_ah __P((void));
479 static struct mbuf *key_getcomb_ipcomp __P((void));
480 static struct mbuf *key_getprop __P((const struct secasindex *));
481 
482 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
483 static struct secacq *key_newacq __P((const struct secasindex *));
484 static struct secacq *key_getacq __P((const struct secasindex *));
485 static struct secacq *key_getacqbyseq __P((u_int32_t));
486 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
487 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
488 static int key_acquire2 __P((struct socket *, struct mbuf *,
489 	const struct sadb_msghdr *));
490 static int key_register __P((struct socket *, struct mbuf *,
491 	const struct sadb_msghdr *));
492 static int key_expire __P((struct secasvar *));
493 static int key_flush __P((struct socket *, struct mbuf *,
494 	const struct sadb_msghdr *));
495 static int key_dump __P((struct socket *, struct mbuf *,
496 	const struct sadb_msghdr *));
497 static int key_promisc __P((struct socket *, struct mbuf *,
498 	const struct sadb_msghdr *));
499 static int key_senderror __P((struct socket *, struct mbuf *, int));
500 static int key_validate_ext __P((const struct sadb_ext *, int));
501 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
502 static struct mbuf *key_setlifetime(struct seclifetime *src,
503 				     u_int16_t exttype);
504 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
505 
506 #if 0
507 static const char *key_getfqdn __P((void));
508 static const char *key_getuserfqdn __P((void));
509 #endif
510 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
511 static struct mbuf *key_alloc_mbuf __P((int));
512 
513 static __inline void
514 sa_initref(struct secasvar *sav)
515 {
516 
517 	refcount_init(&sav->refcnt, 1);
518 }
519 static __inline void
520 sa_addref(struct secasvar *sav)
521 {
522 
523 	refcount_acquire(&sav->refcnt);
524 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
525 }
526 static __inline int
527 sa_delref(struct secasvar *sav)
528 {
529 
530 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
531 	return (refcount_release(&sav->refcnt));
532 }
533 
534 #define	SP_ADDREF(p) do {						\
535 	(p)->refcnt++;							\
536 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
537 } while (0)
538 #define	SP_DELREF(p) do {						\
539 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
540 	(p)->refcnt--;							\
541 } while (0)
542 
543 
544 /*
545  * Update the refcnt while holding the SPTREE lock.
546  */
547 void
548 key_addref(struct secpolicy *sp)
549 {
550 	SPTREE_LOCK();
551 	SP_ADDREF(sp);
552 	SPTREE_UNLOCK();
553 }
554 
555 /*
556  * Return 0 when there are known to be no SP's for the specified
557  * direction.  Otherwise return 1.  This is used by IPsec code
558  * to optimize performance.
559  */
560 int
561 key_havesp(u_int dir)
562 {
563 	INIT_VNET_IPSEC(curvnet);
564 
565 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
566 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
567 }
568 
569 /* %%% IPsec policy management */
570 /*
571  * allocating a SP for OUTBOUND or INBOUND packet.
572  * Must call key_freesp() later.
573  * OUT:	NULL:	not found
574  *	others:	found and return the pointer.
575  */
576 struct secpolicy *
577 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
578 {
579 	INIT_VNET_IPSEC(curvnet);
580 	struct secpolicy *sp;
581 
582 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
583 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
584 		("invalid direction %u", dir));
585 
586 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
587 		printf("DP %s from %s:%u\n", __func__, where, tag));
588 
589 	/* get a SP entry */
590 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
591 		printf("*** objects\n");
592 		kdebug_secpolicyindex(spidx));
593 
594 	SPTREE_LOCK();
595 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
596 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
597 			printf("*** in SPD\n");
598 			kdebug_secpolicyindex(&sp->spidx));
599 
600 		if (sp->state == IPSEC_SPSTATE_DEAD)
601 			continue;
602 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
603 			goto found;
604 	}
605 	sp = NULL;
606 found:
607 	if (sp) {
608 		/* sanity check */
609 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
610 
611 		/* found a SPD entry */
612 		sp->lastused = time_second;
613 		SP_ADDREF(sp);
614 	}
615 	SPTREE_UNLOCK();
616 
617 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
618 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
619 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
620 	return sp;
621 }
622 
623 /*
624  * allocating a SP for OUTBOUND or INBOUND packet.
625  * Must call key_freesp() later.
626  * OUT:	NULL:	not found
627  *	others:	found and return the pointer.
628  */
629 struct secpolicy *
630 key_allocsp2(u_int32_t spi,
631 	     union sockaddr_union *dst,
632 	     u_int8_t proto,
633 	     u_int dir,
634 	     const char* where, int tag)
635 {
636 	INIT_VNET_IPSEC(curvnet);
637 	struct secpolicy *sp;
638 
639 	IPSEC_ASSERT(dst != NULL, ("null dst"));
640 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
641 		("invalid direction %u", dir));
642 
643 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
644 		printf("DP %s from %s:%u\n", __func__, where, tag));
645 
646 	/* get a SP entry */
647 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
648 		printf("*** objects\n");
649 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
650 		kdebug_sockaddr(&dst->sa));
651 
652 	SPTREE_LOCK();
653 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
654 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
655 			printf("*** in SPD\n");
656 			kdebug_secpolicyindex(&sp->spidx));
657 
658 		if (sp->state == IPSEC_SPSTATE_DEAD)
659 			continue;
660 		/* compare simple values, then dst address */
661 		if (sp->spidx.ul_proto != proto)
662 			continue;
663 		/* NB: spi's must exist and match */
664 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
665 			continue;
666 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
667 			goto found;
668 	}
669 	sp = NULL;
670 found:
671 	if (sp) {
672 		/* sanity check */
673 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
674 
675 		/* found a SPD entry */
676 		sp->lastused = time_second;
677 		SP_ADDREF(sp);
678 	}
679 	SPTREE_UNLOCK();
680 
681 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
682 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
683 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
684 	return sp;
685 }
686 
687 #if 0
688 /*
689  * return a policy that matches this particular inbound packet.
690  * XXX slow
691  */
692 struct secpolicy *
693 key_gettunnel(const struct sockaddr *osrc,
694 	      const struct sockaddr *odst,
695 	      const struct sockaddr *isrc,
696 	      const struct sockaddr *idst,
697 	      const char* where, int tag)
698 {
699 	INIT_VNET_IPSEC(curvnet);
700 	struct secpolicy *sp;
701 	const int dir = IPSEC_DIR_INBOUND;
702 	struct ipsecrequest *r1, *r2, *p;
703 	struct secpolicyindex spidx;
704 
705 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
706 		printf("DP %s from %s:%u\n", __func__, where, tag));
707 
708 	if (isrc->sa_family != idst->sa_family) {
709 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
710 			__func__, isrc->sa_family, idst->sa_family));
711 		sp = NULL;
712 		goto done;
713 	}
714 
715 	SPTREE_LOCK();
716 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
717 		if (sp->state == IPSEC_SPSTATE_DEAD)
718 			continue;
719 
720 		r1 = r2 = NULL;
721 		for (p = sp->req; p; p = p->next) {
722 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
723 				continue;
724 
725 			r1 = r2;
726 			r2 = p;
727 
728 			if (!r1) {
729 				/* here we look at address matches only */
730 				spidx = sp->spidx;
731 				if (isrc->sa_len > sizeof(spidx.src) ||
732 				    idst->sa_len > sizeof(spidx.dst))
733 					continue;
734 				bcopy(isrc, &spidx.src, isrc->sa_len);
735 				bcopy(idst, &spidx.dst, idst->sa_len);
736 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
737 					continue;
738 			} else {
739 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
740 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
741 					continue;
742 			}
743 
744 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
745 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
746 				continue;
747 
748 			goto found;
749 		}
750 	}
751 	sp = NULL;
752 found:
753 	if (sp) {
754 		sp->lastused = time_second;
755 		SP_ADDREF(sp);
756 	}
757 	SPTREE_UNLOCK();
758 done:
759 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
760 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
761 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
762 	return sp;
763 }
764 #endif
765 
766 /*
767  * allocating an SA entry for an *OUTBOUND* packet.
768  * checking each request entries in SP, and acquire an SA if need.
769  * OUT:	0: there are valid requests.
770  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
771  */
772 int
773 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
774 {
775 	INIT_VNET_IPSEC(curvnet);
776 	u_int level;
777 	int error;
778 
779 	IPSEC_ASSERT(isr != NULL, ("null isr"));
780 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
781 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
782 		saidx->mode == IPSEC_MODE_TUNNEL,
783 		("unexpected policy %u", saidx->mode));
784 
785 	/*
786 	 * XXX guard against protocol callbacks from the crypto
787 	 * thread as they reference ipsecrequest.sav which we
788 	 * temporarily null out below.  Need to rethink how we
789 	 * handle bundled SA's in the callback thread.
790 	 */
791 	IPSECREQUEST_LOCK_ASSERT(isr);
792 
793 	/* get current level */
794 	level = ipsec_get_reqlevel(isr);
795 #if 0
796 	/*
797 	 * We do allocate new SA only if the state of SA in the holder is
798 	 * SADB_SASTATE_DEAD.  The SA for outbound must be the oldest.
799 	 */
800 	if (isr->sav != NULL) {
801 		if (isr->sav->sah == NULL)
802 			panic("%s: sah is null.\n", __func__);
803 		if (isr->sav == (struct secasvar *)LIST_FIRST(
804 			    &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) {
805 			KEY_FREESAV(&isr->sav);
806 			isr->sav = NULL;
807 		}
808 	}
809 #else
810 	/*
811 	 * we free any SA stashed in the IPsec request because a different
812 	 * SA may be involved each time this request is checked, either
813 	 * because new SAs are being configured, or this request is
814 	 * associated with an unconnected datagram socket, or this request
815 	 * is associated with a system default policy.
816 	 *
817 	 * The operation may have negative impact to performance.  We may
818 	 * want to check cached SA carefully, rather than picking new SA
819 	 * every time.
820 	 */
821 	if (isr->sav != NULL) {
822 		KEY_FREESAV(&isr->sav);
823 		isr->sav = NULL;
824 	}
825 #endif
826 
827 	/*
828 	 * new SA allocation if no SA found.
829 	 * key_allocsa_policy should allocate the oldest SA available.
830 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
831 	 */
832 	if (isr->sav == NULL)
833 		isr->sav = key_allocsa_policy(saidx);
834 
835 	/* When there is SA. */
836 	if (isr->sav != NULL) {
837 		if (isr->sav->state != SADB_SASTATE_MATURE &&
838 		    isr->sav->state != SADB_SASTATE_DYING)
839 			return EINVAL;
840 		return 0;
841 	}
842 
843 	/* there is no SA */
844 	error = key_acquire(saidx, isr->sp);
845 	if (error != 0) {
846 		/* XXX What should I do ? */
847 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
848 			__func__, error));
849 		return error;
850 	}
851 
852 	if (level != IPSEC_LEVEL_REQUIRE) {
853 		/* XXX sigh, the interface to this routine is botched */
854 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
855 		return 0;
856 	} else {
857 		return ENOENT;
858 	}
859 }
860 
861 /*
862  * allocating a SA for policy entry from SAD.
863  * NOTE: searching SAD of aliving state.
864  * OUT:	NULL:	not found.
865  *	others:	found and return the pointer.
866  */
867 static struct secasvar *
868 key_allocsa_policy(const struct secasindex *saidx)
869 {
870 #define	N(a)	_ARRAYLEN(a)
871 	INIT_VNET_IPSEC(curvnet);
872 	struct secashead *sah;
873 	struct secasvar *sav;
874 	u_int stateidx, arraysize;
875 	const u_int *state_valid;
876 
877 	SAHTREE_LOCK();
878 	LIST_FOREACH(sah, &V_sahtree, chain) {
879 		if (sah->state == SADB_SASTATE_DEAD)
880 			continue;
881 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
882 			if (V_key_preferred_oldsa) {
883 				state_valid = saorder_state_valid_prefer_old;
884 				arraysize = N(saorder_state_valid_prefer_old);
885 			} else {
886 				state_valid = saorder_state_valid_prefer_new;
887 				arraysize = N(saorder_state_valid_prefer_new);
888 			}
889 			SAHTREE_UNLOCK();
890 			goto found;
891 		}
892 	}
893 	SAHTREE_UNLOCK();
894 
895 	return NULL;
896 
897     found:
898 	/* search valid state */
899 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
900 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
901 		if (sav != NULL)
902 			return sav;
903 	}
904 
905 	return NULL;
906 #undef N
907 }
908 
909 /*
910  * searching SAD with direction, protocol, mode and state.
911  * called by key_allocsa_policy().
912  * OUT:
913  *	NULL	: not found
914  *	others	: found, pointer to a SA.
915  */
916 static struct secasvar *
917 key_do_allocsa_policy(struct secashead *sah, u_int state)
918 {
919 	INIT_VNET_IPSEC(curvnet);
920 	struct secasvar *sav, *nextsav, *candidate, *d;
921 
922 	/* initilize */
923 	candidate = NULL;
924 
925 	SAHTREE_LOCK();
926 	for (sav = LIST_FIRST(&sah->savtree[state]);
927 	     sav != NULL;
928 	     sav = nextsav) {
929 
930 		nextsav = LIST_NEXT(sav, chain);
931 
932 		/* sanity check */
933 		KEY_CHKSASTATE(sav->state, state, __func__);
934 
935 		/* initialize */
936 		if (candidate == NULL) {
937 			candidate = sav;
938 			continue;
939 		}
940 
941 		/* Which SA is the better ? */
942 
943 		IPSEC_ASSERT(candidate->lft_c != NULL,
944 			("null candidate lifetime"));
945 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
946 
947 		/* What the best method is to compare ? */
948 		if (V_key_preferred_oldsa) {
949 			if (candidate->lft_c->addtime >
950 					sav->lft_c->addtime) {
951 				candidate = sav;
952 			}
953 			continue;
954 			/*NOTREACHED*/
955 		}
956 
957 		/* preferred new sa rather than old sa */
958 		if (candidate->lft_c->addtime <
959 				sav->lft_c->addtime) {
960 			d = candidate;
961 			candidate = sav;
962 		} else
963 			d = sav;
964 
965 		/*
966 		 * prepared to delete the SA when there is more
967 		 * suitable candidate and the lifetime of the SA is not
968 		 * permanent.
969 		 */
970 		if (d->lft_h->addtime != 0) {
971 			struct mbuf *m, *result;
972 			u_int8_t satype;
973 
974 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
975 
976 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
977 
978 			satype = key_proto2satype(d->sah->saidx.proto);
979 			if (satype == 0)
980 				goto msgfail;
981 
982 			m = key_setsadbmsg(SADB_DELETE, 0,
983 			    satype, 0, 0, d->refcnt - 1);
984 			if (!m)
985 				goto msgfail;
986 			result = m;
987 
988 			/* set sadb_address for saidx's. */
989 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
990 				&d->sah->saidx.src.sa,
991 				d->sah->saidx.src.sa.sa_len << 3,
992 				IPSEC_ULPROTO_ANY);
993 			if (!m)
994 				goto msgfail;
995 			m_cat(result, m);
996 
997 			/* set sadb_address for saidx's. */
998 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
999 				&d->sah->saidx.dst.sa,
1000 				d->sah->saidx.dst.sa.sa_len << 3,
1001 				IPSEC_ULPROTO_ANY);
1002 			if (!m)
1003 				goto msgfail;
1004 			m_cat(result, m);
1005 
1006 			/* create SA extension */
1007 			m = key_setsadbsa(d);
1008 			if (!m)
1009 				goto msgfail;
1010 			m_cat(result, m);
1011 
1012 			if (result->m_len < sizeof(struct sadb_msg)) {
1013 				result = m_pullup(result,
1014 						sizeof(struct sadb_msg));
1015 				if (result == NULL)
1016 					goto msgfail;
1017 			}
1018 
1019 			result->m_pkthdr.len = 0;
1020 			for (m = result; m; m = m->m_next)
1021 				result->m_pkthdr.len += m->m_len;
1022 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1023 				PFKEY_UNIT64(result->m_pkthdr.len);
1024 
1025 			if (key_sendup_mbuf(NULL, result,
1026 					KEY_SENDUP_REGISTERED))
1027 				goto msgfail;
1028 		 msgfail:
1029 			KEY_FREESAV(&d);
1030 		}
1031 	}
1032 	if (candidate) {
1033 		sa_addref(candidate);
1034 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1035 			printf("DP %s cause refcnt++:%d SA:%p\n",
1036 				__func__, candidate->refcnt, candidate));
1037 	}
1038 	SAHTREE_UNLOCK();
1039 
1040 	return candidate;
1041 }
1042 
1043 /*
1044  * allocating a usable SA entry for a *INBOUND* packet.
1045  * Must call key_freesav() later.
1046  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1047  *	NULL:		not found, or error occured.
1048  *
1049  * In the comparison, no source address is used--for RFC2401 conformance.
1050  * To quote, from section 4.1:
1051  *	A security association is uniquely identified by a triple consisting
1052  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1053  *	security protocol (AH or ESP) identifier.
1054  * Note that, however, we do need to keep source address in IPsec SA.
1055  * IKE specification and PF_KEY specification do assume that we
1056  * keep source address in IPsec SA.  We see a tricky situation here.
1057  */
1058 struct secasvar *
1059 key_allocsa(
1060 	union sockaddr_union *dst,
1061 	u_int proto,
1062 	u_int32_t spi,
1063 	const char* where, int tag)
1064 {
1065 	INIT_VNET_IPSEC(curvnet);
1066 	struct secashead *sah;
1067 	struct secasvar *sav;
1068 	u_int stateidx, arraysize, state;
1069 	const u_int *saorder_state_valid;
1070 
1071 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1072 
1073 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1074 		printf("DP %s from %s:%u\n", __func__, where, tag));
1075 
1076 	/*
1077 	 * searching SAD.
1078 	 * XXX: to be checked internal IP header somewhere.  Also when
1079 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1080 	 * encrypted so we can't check internal IP header.
1081 	 */
1082 	SAHTREE_LOCK();
1083 	if (V_key_preferred_oldsa) {
1084 		saorder_state_valid = saorder_state_valid_prefer_old;
1085 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1086 	} else {
1087 		saorder_state_valid = saorder_state_valid_prefer_new;
1088 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1089 	}
1090 	LIST_FOREACH(sah, &V_sahtree, chain) {
1091 		/* search valid state */
1092 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1093 			state = saorder_state_valid[stateidx];
1094 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1095 				/* sanity check */
1096 				KEY_CHKSASTATE(sav->state, state, __func__);
1097 				/* do not return entries w/ unusable state */
1098 				if (sav->state != SADB_SASTATE_MATURE &&
1099 				    sav->state != SADB_SASTATE_DYING)
1100 					continue;
1101 				if (proto != sav->sah->saidx.proto)
1102 					continue;
1103 				if (spi != sav->spi)
1104 					continue;
1105 #if 0	/* don't check src */
1106 				/* check src address */
1107 				if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0)
1108 					continue;
1109 #endif
1110 				/* check dst address */
1111 				if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0)
1112 					continue;
1113 				sa_addref(sav);
1114 				goto done;
1115 			}
1116 		}
1117 	}
1118 	sav = NULL;
1119 done:
1120 	SAHTREE_UNLOCK();
1121 
1122 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1123 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1124 			sav, sav ? sav->refcnt : 0));
1125 	return sav;
1126 }
1127 
1128 /*
1129  * Must be called after calling key_allocsp().
1130  * For both the packet without socket and key_freeso().
1131  */
1132 void
1133 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1134 {
1135 	INIT_VNET_IPSEC(curvnet);
1136 	struct secpolicy *sp = *spp;
1137 
1138 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1139 
1140 	SPTREE_LOCK();
1141 	SP_DELREF(sp);
1142 
1143 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1144 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1145 			__func__, sp, sp->id, where, tag, sp->refcnt));
1146 
1147 	if (sp->refcnt == 0) {
1148 		*spp = NULL;
1149 		key_delsp(sp);
1150 	}
1151 	SPTREE_UNLOCK();
1152 }
1153 
1154 /*
1155  * Must be called after calling key_allocsp().
1156  * For the packet with socket.
1157  */
1158 void
1159 key_freeso(struct socket *so)
1160 {
1161 	INIT_VNET_IPSEC(curvnet);
1162 	IPSEC_ASSERT(so != NULL, ("null so"));
1163 
1164 	switch (so->so_proto->pr_domain->dom_family) {
1165 #if defined(INET) || defined(INET6)
1166 #ifdef INET
1167 	case PF_INET:
1168 #endif
1169 #ifdef INET6
1170 	case PF_INET6:
1171 #endif
1172 	    {
1173 		struct inpcb *pcb = sotoinpcb(so);
1174 
1175 		/* Does it have a PCB ? */
1176 		if (pcb == NULL)
1177 			return;
1178 		key_freesp_so(&pcb->inp_sp->sp_in);
1179 		key_freesp_so(&pcb->inp_sp->sp_out);
1180 	    }
1181 		break;
1182 #endif /* INET || INET6 */
1183 	default:
1184 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1185 		    __func__, so->so_proto->pr_domain->dom_family));
1186 		return;
1187 	}
1188 }
1189 
1190 static void
1191 key_freesp_so(struct secpolicy **sp)
1192 {
1193 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1194 
1195 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1196 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1197 		return;
1198 
1199 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1200 		("invalid policy %u", (*sp)->policy));
1201 	KEY_FREESP(sp);
1202 }
1203 
1204 /*
1205  * Must be called after calling key_allocsa().
1206  * This function is called by key_freesp() to free some SA allocated
1207  * for a policy.
1208  */
1209 void
1210 key_freesav(struct secasvar **psav, const char* where, int tag)
1211 {
1212 	INIT_VNET_IPSEC(curvnet);
1213 	struct secasvar *sav = *psav;
1214 
1215 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1216 
1217 	if (sa_delref(sav)) {
1218 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1219 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1220 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1221 		*psav = NULL;
1222 		key_delsav(sav);
1223 	} else {
1224 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1225 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1226 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1227 	}
1228 }
1229 
1230 /* %%% SPD management */
1231 /*
1232  * free security policy entry.
1233  */
1234 static void
1235 key_delsp(struct secpolicy *sp)
1236 {
1237 	struct ipsecrequest *isr, *nextisr;
1238 
1239 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1240 	SPTREE_LOCK_ASSERT();
1241 
1242 	sp->state = IPSEC_SPSTATE_DEAD;
1243 
1244 	IPSEC_ASSERT(sp->refcnt == 0,
1245 		("SP with references deleted (refcnt %u)", sp->refcnt));
1246 
1247 	/* remove from SP index */
1248 	if (__LIST_CHAINED(sp))
1249 		LIST_REMOVE(sp, chain);
1250 
1251 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1252 		if (isr->sav != NULL) {
1253 			KEY_FREESAV(&isr->sav);
1254 			isr->sav = NULL;
1255 		}
1256 
1257 		nextisr = isr->next;
1258 		ipsec_delisr(isr);
1259 	}
1260 	_key_delsp(sp);
1261 }
1262 
1263 /*
1264  * search SPD
1265  * OUT:	NULL	: not found
1266  *	others	: found, pointer to a SP.
1267  */
1268 static struct secpolicy *
1269 key_getsp(struct secpolicyindex *spidx)
1270 {
1271 	INIT_VNET_IPSEC(curvnet);
1272 	struct secpolicy *sp;
1273 
1274 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1275 
1276 	SPTREE_LOCK();
1277 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1278 		if (sp->state == IPSEC_SPSTATE_DEAD)
1279 			continue;
1280 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1281 			SP_ADDREF(sp);
1282 			break;
1283 		}
1284 	}
1285 	SPTREE_UNLOCK();
1286 
1287 	return sp;
1288 }
1289 
1290 /*
1291  * get SP by index.
1292  * OUT:	NULL	: not found
1293  *	others	: found, pointer to a SP.
1294  */
1295 static struct secpolicy *
1296 key_getspbyid(u_int32_t id)
1297 {
1298 	INIT_VNET_IPSEC(curvnet);
1299 	struct secpolicy *sp;
1300 
1301 	SPTREE_LOCK();
1302 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1303 		if (sp->state == IPSEC_SPSTATE_DEAD)
1304 			continue;
1305 		if (sp->id == id) {
1306 			SP_ADDREF(sp);
1307 			goto done;
1308 		}
1309 	}
1310 
1311 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1312 		if (sp->state == IPSEC_SPSTATE_DEAD)
1313 			continue;
1314 		if (sp->id == id) {
1315 			SP_ADDREF(sp);
1316 			goto done;
1317 		}
1318 	}
1319 done:
1320 	SPTREE_UNLOCK();
1321 
1322 	return sp;
1323 }
1324 
1325 struct secpolicy *
1326 key_newsp(const char* where, int tag)
1327 {
1328 	INIT_VNET_IPSEC(curvnet);
1329 	struct secpolicy *newsp = NULL;
1330 
1331 	newsp = (struct secpolicy *)
1332 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1333 	if (newsp) {
1334 		SECPOLICY_LOCK_INIT(newsp);
1335 		newsp->refcnt = 1;
1336 		newsp->req = NULL;
1337 	}
1338 
1339 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1340 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1341 			where, tag, newsp));
1342 	return newsp;
1343 }
1344 
1345 static void
1346 _key_delsp(struct secpolicy *sp)
1347 {
1348 	SECPOLICY_LOCK_DESTROY(sp);
1349 	free(sp, M_IPSEC_SP);
1350 }
1351 
1352 /*
1353  * create secpolicy structure from sadb_x_policy structure.
1354  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1355  * so must be set properly later.
1356  */
1357 struct secpolicy *
1358 key_msg2sp(xpl0, len, error)
1359 	struct sadb_x_policy *xpl0;
1360 	size_t len;
1361 	int *error;
1362 {
1363 	INIT_VNET_IPSEC(curvnet);
1364 	struct secpolicy *newsp;
1365 
1366 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1367 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1368 
1369 	if (len != PFKEY_EXTLEN(xpl0)) {
1370 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1371 		*error = EINVAL;
1372 		return NULL;
1373 	}
1374 
1375 	if ((newsp = KEY_NEWSP()) == NULL) {
1376 		*error = ENOBUFS;
1377 		return NULL;
1378 	}
1379 
1380 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1381 	newsp->policy = xpl0->sadb_x_policy_type;
1382 
1383 	/* check policy */
1384 	switch (xpl0->sadb_x_policy_type) {
1385 	case IPSEC_POLICY_DISCARD:
1386 	case IPSEC_POLICY_NONE:
1387 	case IPSEC_POLICY_ENTRUST:
1388 	case IPSEC_POLICY_BYPASS:
1389 		newsp->req = NULL;
1390 		break;
1391 
1392 	case IPSEC_POLICY_IPSEC:
1393 	    {
1394 		int tlen;
1395 		struct sadb_x_ipsecrequest *xisr;
1396 		struct ipsecrequest **p_isr = &newsp->req;
1397 
1398 		/* validity check */
1399 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1400 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1401 				__func__));
1402 			KEY_FREESP(&newsp);
1403 			*error = EINVAL;
1404 			return NULL;
1405 		}
1406 
1407 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1408 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1409 
1410 		while (tlen > 0) {
1411 			/* length check */
1412 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1413 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1414 					"length.\n", __func__));
1415 				KEY_FREESP(&newsp);
1416 				*error = EINVAL;
1417 				return NULL;
1418 			}
1419 
1420 			/* allocate request buffer */
1421 			/* NB: data structure is zero'd */
1422 			*p_isr = ipsec_newisr();
1423 			if ((*p_isr) == NULL) {
1424 				ipseclog((LOG_DEBUG,
1425 				    "%s: No more memory.\n", __func__));
1426 				KEY_FREESP(&newsp);
1427 				*error = ENOBUFS;
1428 				return NULL;
1429 			}
1430 
1431 			/* set values */
1432 			switch (xisr->sadb_x_ipsecrequest_proto) {
1433 			case IPPROTO_ESP:
1434 			case IPPROTO_AH:
1435 			case IPPROTO_IPCOMP:
1436 				break;
1437 			default:
1438 				ipseclog((LOG_DEBUG,
1439 				    "%s: invalid proto type=%u\n", __func__,
1440 				    xisr->sadb_x_ipsecrequest_proto));
1441 				KEY_FREESP(&newsp);
1442 				*error = EPROTONOSUPPORT;
1443 				return NULL;
1444 			}
1445 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1446 
1447 			switch (xisr->sadb_x_ipsecrequest_mode) {
1448 			case IPSEC_MODE_TRANSPORT:
1449 			case IPSEC_MODE_TUNNEL:
1450 				break;
1451 			case IPSEC_MODE_ANY:
1452 			default:
1453 				ipseclog((LOG_DEBUG,
1454 				    "%s: invalid mode=%u\n", __func__,
1455 				    xisr->sadb_x_ipsecrequest_mode));
1456 				KEY_FREESP(&newsp);
1457 				*error = EINVAL;
1458 				return NULL;
1459 			}
1460 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1461 
1462 			switch (xisr->sadb_x_ipsecrequest_level) {
1463 			case IPSEC_LEVEL_DEFAULT:
1464 			case IPSEC_LEVEL_USE:
1465 			case IPSEC_LEVEL_REQUIRE:
1466 				break;
1467 			case IPSEC_LEVEL_UNIQUE:
1468 				/* validity check */
1469 				/*
1470 				 * If range violation of reqid, kernel will
1471 				 * update it, don't refuse it.
1472 				 */
1473 				if (xisr->sadb_x_ipsecrequest_reqid
1474 						> IPSEC_MANUAL_REQID_MAX) {
1475 					ipseclog((LOG_DEBUG,
1476 					    "%s: reqid=%d range "
1477 					    "violation, updated by kernel.\n",
1478 					    __func__,
1479 					    xisr->sadb_x_ipsecrequest_reqid));
1480 					xisr->sadb_x_ipsecrequest_reqid = 0;
1481 				}
1482 
1483 				/* allocate new reqid id if reqid is zero. */
1484 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1485 					u_int32_t reqid;
1486 					if ((reqid = key_newreqid()) == 0) {
1487 						KEY_FREESP(&newsp);
1488 						*error = ENOBUFS;
1489 						return NULL;
1490 					}
1491 					(*p_isr)->saidx.reqid = reqid;
1492 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1493 				} else {
1494 				/* set it for manual keying. */
1495 					(*p_isr)->saidx.reqid =
1496 						xisr->sadb_x_ipsecrequest_reqid;
1497 				}
1498 				break;
1499 
1500 			default:
1501 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1502 					__func__,
1503 					xisr->sadb_x_ipsecrequest_level));
1504 				KEY_FREESP(&newsp);
1505 				*error = EINVAL;
1506 				return NULL;
1507 			}
1508 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1509 
1510 			/* set IP addresses if there */
1511 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1512 				struct sockaddr *paddr;
1513 
1514 				paddr = (struct sockaddr *)(xisr + 1);
1515 
1516 				/* validity check */
1517 				if (paddr->sa_len
1518 				    > sizeof((*p_isr)->saidx.src)) {
1519 					ipseclog((LOG_DEBUG, "%s: invalid "
1520 						"request address length.\n",
1521 						__func__));
1522 					KEY_FREESP(&newsp);
1523 					*error = EINVAL;
1524 					return NULL;
1525 				}
1526 				bcopy(paddr, &(*p_isr)->saidx.src,
1527 					paddr->sa_len);
1528 
1529 				paddr = (struct sockaddr *)((caddr_t)paddr
1530 							+ paddr->sa_len);
1531 
1532 				/* validity check */
1533 				if (paddr->sa_len
1534 				    > sizeof((*p_isr)->saidx.dst)) {
1535 					ipseclog((LOG_DEBUG, "%s: invalid "
1536 						"request address length.\n",
1537 						__func__));
1538 					KEY_FREESP(&newsp);
1539 					*error = EINVAL;
1540 					return NULL;
1541 				}
1542 				bcopy(paddr, &(*p_isr)->saidx.dst,
1543 					paddr->sa_len);
1544 			}
1545 
1546 			(*p_isr)->sp = newsp;
1547 
1548 			/* initialization for the next. */
1549 			p_isr = &(*p_isr)->next;
1550 			tlen -= xisr->sadb_x_ipsecrequest_len;
1551 
1552 			/* validity check */
1553 			if (tlen < 0) {
1554 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1555 					__func__));
1556 				KEY_FREESP(&newsp);
1557 				*error = EINVAL;
1558 				return NULL;
1559 			}
1560 
1561 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1562 			                 + xisr->sadb_x_ipsecrequest_len);
1563 		}
1564 	    }
1565 		break;
1566 	default:
1567 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1568 		KEY_FREESP(&newsp);
1569 		*error = EINVAL;
1570 		return NULL;
1571 	}
1572 
1573 	*error = 0;
1574 	return newsp;
1575 }
1576 
1577 static u_int32_t
1578 key_newreqid()
1579 {
1580 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1581 
1582 	auto_reqid = (auto_reqid == ~0
1583 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1584 
1585 	/* XXX should be unique check */
1586 
1587 	return auto_reqid;
1588 }
1589 
1590 /*
1591  * copy secpolicy struct to sadb_x_policy structure indicated.
1592  */
1593 struct mbuf *
1594 key_sp2msg(sp)
1595 	struct secpolicy *sp;
1596 {
1597 	struct sadb_x_policy *xpl;
1598 	int tlen;
1599 	caddr_t p;
1600 	struct mbuf *m;
1601 
1602 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1603 
1604 	tlen = key_getspreqmsglen(sp);
1605 
1606 	m = key_alloc_mbuf(tlen);
1607 	if (!m || m->m_next) {	/*XXX*/
1608 		if (m)
1609 			m_freem(m);
1610 		return NULL;
1611 	}
1612 
1613 	m->m_len = tlen;
1614 	m->m_next = NULL;
1615 	xpl = mtod(m, struct sadb_x_policy *);
1616 	bzero(xpl, tlen);
1617 
1618 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1619 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1620 	xpl->sadb_x_policy_type = sp->policy;
1621 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1622 	xpl->sadb_x_policy_id = sp->id;
1623 	p = (caddr_t)xpl + sizeof(*xpl);
1624 
1625 	/* if is the policy for ipsec ? */
1626 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1627 		struct sadb_x_ipsecrequest *xisr;
1628 		struct ipsecrequest *isr;
1629 
1630 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1631 
1632 			xisr = (struct sadb_x_ipsecrequest *)p;
1633 
1634 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1635 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1636 			xisr->sadb_x_ipsecrequest_level = isr->level;
1637 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1638 
1639 			p += sizeof(*xisr);
1640 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1641 			p += isr->saidx.src.sa.sa_len;
1642 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1643 			p += isr->saidx.src.sa.sa_len;
1644 
1645 			xisr->sadb_x_ipsecrequest_len =
1646 				PFKEY_ALIGN8(sizeof(*xisr)
1647 					+ isr->saidx.src.sa.sa_len
1648 					+ isr->saidx.dst.sa.sa_len);
1649 		}
1650 	}
1651 
1652 	return m;
1653 }
1654 
1655 /* m will not be freed nor modified */
1656 static struct mbuf *
1657 #ifdef __STDC__
1658 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1659 	int ndeep, int nitem, ...)
1660 #else
1661 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1662 	struct mbuf *m;
1663 	const struct sadb_msghdr *mhp;
1664 	int ndeep;
1665 	int nitem;
1666 	va_dcl
1667 #endif
1668 {
1669 	va_list ap;
1670 	int idx;
1671 	int i;
1672 	struct mbuf *result = NULL, *n;
1673 	int len;
1674 
1675 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1676 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1677 
1678 	va_start(ap, nitem);
1679 	for (i = 0; i < nitem; i++) {
1680 		idx = va_arg(ap, int);
1681 		if (idx < 0 || idx > SADB_EXT_MAX)
1682 			goto fail;
1683 		/* don't attempt to pull empty extension */
1684 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1685 			continue;
1686 		if (idx != SADB_EXT_RESERVED  &&
1687 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1688 			continue;
1689 
1690 		if (idx == SADB_EXT_RESERVED) {
1691 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1692 
1693 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1694 
1695 			MGETHDR(n, M_DONTWAIT, MT_DATA);
1696 			if (!n)
1697 				goto fail;
1698 			n->m_len = len;
1699 			n->m_next = NULL;
1700 			m_copydata(m, 0, sizeof(struct sadb_msg),
1701 			    mtod(n, caddr_t));
1702 		} else if (i < ndeep) {
1703 			len = mhp->extlen[idx];
1704 			n = key_alloc_mbuf(len);
1705 			if (!n || n->m_next) {	/*XXX*/
1706 				if (n)
1707 					m_freem(n);
1708 				goto fail;
1709 			}
1710 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1711 			    mtod(n, caddr_t));
1712 		} else {
1713 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1714 			    M_DONTWAIT);
1715 		}
1716 		if (n == NULL)
1717 			goto fail;
1718 
1719 		if (result)
1720 			m_cat(result, n);
1721 		else
1722 			result = n;
1723 	}
1724 	va_end(ap);
1725 
1726 	if ((result->m_flags & M_PKTHDR) != 0) {
1727 		result->m_pkthdr.len = 0;
1728 		for (n = result; n; n = n->m_next)
1729 			result->m_pkthdr.len += n->m_len;
1730 	}
1731 
1732 	return result;
1733 
1734 fail:
1735 	m_freem(result);
1736 	return NULL;
1737 }
1738 
1739 /*
1740  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1741  * add an entry to SP database, when received
1742  *   <base, address(SD), (lifetime(H),) policy>
1743  * from the user(?).
1744  * Adding to SP database,
1745  * and send
1746  *   <base, address(SD), (lifetime(H),) policy>
1747  * to the socket which was send.
1748  *
1749  * SPDADD set a unique policy entry.
1750  * SPDSETIDX like SPDADD without a part of policy requests.
1751  * SPDUPDATE replace a unique policy entry.
1752  *
1753  * m will always be freed.
1754  */
1755 static int
1756 key_spdadd(so, m, mhp)
1757 	struct socket *so;
1758 	struct mbuf *m;
1759 	const struct sadb_msghdr *mhp;
1760 {
1761 	INIT_VNET_IPSEC(curvnet);
1762 	struct sadb_address *src0, *dst0;
1763 	struct sadb_x_policy *xpl0, *xpl;
1764 	struct sadb_lifetime *lft = NULL;
1765 	struct secpolicyindex spidx;
1766 	struct secpolicy *newsp;
1767 	int error;
1768 
1769 	IPSEC_ASSERT(so != NULL, ("null socket"));
1770 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1771 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1772 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1773 
1774 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1775 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1776 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1777 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1778 		return key_senderror(so, m, EINVAL);
1779 	}
1780 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1781 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1782 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1783 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1784 			__func__));
1785 		return key_senderror(so, m, EINVAL);
1786 	}
1787 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1788 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1789 			< sizeof(struct sadb_lifetime)) {
1790 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1791 				__func__));
1792 			return key_senderror(so, m, EINVAL);
1793 		}
1794 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1795 	}
1796 
1797 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1798 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1799 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1800 
1801 	/* make secindex */
1802 	/* XXX boundary check against sa_len */
1803 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1804 	                src0 + 1,
1805 	                dst0 + 1,
1806 	                src0->sadb_address_prefixlen,
1807 	                dst0->sadb_address_prefixlen,
1808 	                src0->sadb_address_proto,
1809 	                &spidx);
1810 
1811 	/* checking the direciton. */
1812 	switch (xpl0->sadb_x_policy_dir) {
1813 	case IPSEC_DIR_INBOUND:
1814 	case IPSEC_DIR_OUTBOUND:
1815 		break;
1816 	default:
1817 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1818 		mhp->msg->sadb_msg_errno = EINVAL;
1819 		return 0;
1820 	}
1821 
1822 	/* check policy */
1823 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1824 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1825 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1826 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1827 		return key_senderror(so, m, EINVAL);
1828 	}
1829 
1830 	/* policy requests are mandatory when action is ipsec. */
1831         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1832 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1833 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1834 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1835 			__func__));
1836 		return key_senderror(so, m, EINVAL);
1837 	}
1838 
1839 	/*
1840 	 * checking there is SP already or not.
1841 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1842 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1843 	 * then error.
1844 	 */
1845 	newsp = key_getsp(&spidx);
1846 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1847 		if (newsp) {
1848 			newsp->state = IPSEC_SPSTATE_DEAD;
1849 			KEY_FREESP(&newsp);
1850 		}
1851 	} else {
1852 		if (newsp != NULL) {
1853 			KEY_FREESP(&newsp);
1854 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1855 				__func__));
1856 			return key_senderror(so, m, EEXIST);
1857 		}
1858 	}
1859 
1860 	/* allocation new SP entry */
1861 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1862 		return key_senderror(so, m, error);
1863 	}
1864 
1865 	if ((newsp->id = key_getnewspid()) == 0) {
1866 		_key_delsp(newsp);
1867 		return key_senderror(so, m, ENOBUFS);
1868 	}
1869 
1870 	/* XXX boundary check against sa_len */
1871 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1872 	                src0 + 1,
1873 	                dst0 + 1,
1874 	                src0->sadb_address_prefixlen,
1875 	                dst0->sadb_address_prefixlen,
1876 	                src0->sadb_address_proto,
1877 	                &newsp->spidx);
1878 
1879 	/* sanity check on addr pair */
1880 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1881 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1882 		_key_delsp(newsp);
1883 		return key_senderror(so, m, EINVAL);
1884 	}
1885 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1886 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1887 		_key_delsp(newsp);
1888 		return key_senderror(so, m, EINVAL);
1889 	}
1890 #if 1
1891 	if (newsp->req && newsp->req->saidx.src.sa.sa_family) {
1892 		struct sockaddr *sa;
1893 		sa = (struct sockaddr *)(src0 + 1);
1894 		if (sa->sa_family != newsp->req->saidx.src.sa.sa_family) {
1895 			_key_delsp(newsp);
1896 			return key_senderror(so, m, EINVAL);
1897 		}
1898 	}
1899 	if (newsp->req && newsp->req->saidx.dst.sa.sa_family) {
1900 		struct sockaddr *sa;
1901 		sa = (struct sockaddr *)(dst0 + 1);
1902 		if (sa->sa_family != newsp->req->saidx.dst.sa.sa_family) {
1903 			_key_delsp(newsp);
1904 			return key_senderror(so, m, EINVAL);
1905 		}
1906 	}
1907 #endif
1908 
1909 	newsp->created = time_second;
1910 	newsp->lastused = newsp->created;
1911 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1912 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1913 
1914 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1915 	newsp->state = IPSEC_SPSTATE_ALIVE;
1916 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1917 
1918 	/* delete the entry in spacqtree */
1919 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1920 		struct secspacq *spacq = key_getspacq(&spidx);
1921 		if (spacq != NULL) {
1922 			/* reset counter in order to deletion by timehandler. */
1923 			spacq->created = time_second;
1924 			spacq->count = 0;
1925 			SPACQ_UNLOCK();
1926 		}
1927     	}
1928 
1929     {
1930 	struct mbuf *n, *mpolicy;
1931 	struct sadb_msg *newmsg;
1932 	int off;
1933 
1934 	/* create new sadb_msg to reply. */
1935 	if (lft) {
1936 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1937 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1938 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1939 	} else {
1940 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1941 		    SADB_X_EXT_POLICY,
1942 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1943 	}
1944 	if (!n)
1945 		return key_senderror(so, m, ENOBUFS);
1946 
1947 	if (n->m_len < sizeof(*newmsg)) {
1948 		n = m_pullup(n, sizeof(*newmsg));
1949 		if (!n)
1950 			return key_senderror(so, m, ENOBUFS);
1951 	}
1952 	newmsg = mtod(n, struct sadb_msg *);
1953 	newmsg->sadb_msg_errno = 0;
1954 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1955 
1956 	off = 0;
1957 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1958 	    sizeof(*xpl), &off);
1959 	if (mpolicy == NULL) {
1960 		/* n is already freed */
1961 		return key_senderror(so, m, ENOBUFS);
1962 	}
1963 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1964 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1965 		m_freem(n);
1966 		return key_senderror(so, m, EINVAL);
1967 	}
1968 	xpl->sadb_x_policy_id = newsp->id;
1969 
1970 	m_freem(m);
1971 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
1972     }
1973 }
1974 
1975 /*
1976  * get new policy id.
1977  * OUT:
1978  *	0:	failure.
1979  *	others: success.
1980  */
1981 static u_int32_t
1982 key_getnewspid()
1983 {
1984 	INIT_VNET_IPSEC(curvnet);
1985 	u_int32_t newid = 0;
1986 	int count = V_key_spi_trycnt;	/* XXX */
1987 	struct secpolicy *sp;
1988 
1989 	/* when requesting to allocate spi ranged */
1990 	while (count--) {
1991 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
1992 
1993 		if ((sp = key_getspbyid(newid)) == NULL)
1994 			break;
1995 
1996 		KEY_FREESP(&sp);
1997 	}
1998 
1999 	if (count == 0 || newid == 0) {
2000 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2001 			__func__));
2002 		return 0;
2003 	}
2004 
2005 	return newid;
2006 }
2007 
2008 /*
2009  * SADB_SPDDELETE processing
2010  * receive
2011  *   <base, address(SD), policy(*)>
2012  * from the user(?), and set SADB_SASTATE_DEAD,
2013  * and send,
2014  *   <base, address(SD), policy(*)>
2015  * to the ikmpd.
2016  * policy(*) including direction of policy.
2017  *
2018  * m will always be freed.
2019  */
2020 static int
2021 key_spddelete(so, m, mhp)
2022 	struct socket *so;
2023 	struct mbuf *m;
2024 	const struct sadb_msghdr *mhp;
2025 {
2026 	INIT_VNET_IPSEC(curvnet);
2027 	struct sadb_address *src0, *dst0;
2028 	struct sadb_x_policy *xpl0;
2029 	struct secpolicyindex spidx;
2030 	struct secpolicy *sp;
2031 
2032 	IPSEC_ASSERT(so != NULL, ("null so"));
2033 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2034 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2035 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2036 
2037 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2038 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2039 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2040 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2041 			__func__));
2042 		return key_senderror(so, m, EINVAL);
2043 	}
2044 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2045 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2046 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2047 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2048 			__func__));
2049 		return key_senderror(so, m, EINVAL);
2050 	}
2051 
2052 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2053 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2054 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2055 
2056 	/* make secindex */
2057 	/* XXX boundary check against sa_len */
2058 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2059 	                src0 + 1,
2060 	                dst0 + 1,
2061 	                src0->sadb_address_prefixlen,
2062 	                dst0->sadb_address_prefixlen,
2063 	                src0->sadb_address_proto,
2064 	                &spidx);
2065 
2066 	/* checking the direciton. */
2067 	switch (xpl0->sadb_x_policy_dir) {
2068 	case IPSEC_DIR_INBOUND:
2069 	case IPSEC_DIR_OUTBOUND:
2070 		break;
2071 	default:
2072 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2073 		return key_senderror(so, m, EINVAL);
2074 	}
2075 
2076 	/* Is there SP in SPD ? */
2077 	if ((sp = key_getsp(&spidx)) == NULL) {
2078 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2079 		return key_senderror(so, m, EINVAL);
2080 	}
2081 
2082 	/* save policy id to buffer to be returned. */
2083 	xpl0->sadb_x_policy_id = sp->id;
2084 
2085 	sp->state = IPSEC_SPSTATE_DEAD;
2086 	KEY_FREESP(&sp);
2087 
2088     {
2089 	struct mbuf *n;
2090 	struct sadb_msg *newmsg;
2091 
2092 	/* create new sadb_msg to reply. */
2093 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2094 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2095 	if (!n)
2096 		return key_senderror(so, m, ENOBUFS);
2097 
2098 	newmsg = mtod(n, struct sadb_msg *);
2099 	newmsg->sadb_msg_errno = 0;
2100 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2101 
2102 	m_freem(m);
2103 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2104     }
2105 }
2106 
2107 /*
2108  * SADB_SPDDELETE2 processing
2109  * receive
2110  *   <base, policy(*)>
2111  * from the user(?), and set SADB_SASTATE_DEAD,
2112  * and send,
2113  *   <base, policy(*)>
2114  * to the ikmpd.
2115  * policy(*) including direction of policy.
2116  *
2117  * m will always be freed.
2118  */
2119 static int
2120 key_spddelete2(so, m, mhp)
2121 	struct socket *so;
2122 	struct mbuf *m;
2123 	const struct sadb_msghdr *mhp;
2124 {
2125 	INIT_VNET_IPSEC(curvnet);
2126 	u_int32_t id;
2127 	struct secpolicy *sp;
2128 
2129 	IPSEC_ASSERT(so != NULL, ("null socket"));
2130 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2131 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2132 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2133 
2134 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2135 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2136 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2137 		return key_senderror(so, m, EINVAL);
2138 	}
2139 
2140 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2141 
2142 	/* Is there SP in SPD ? */
2143 	if ((sp = key_getspbyid(id)) == NULL) {
2144 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2145 		return key_senderror(so, m, EINVAL);
2146 	}
2147 
2148 	sp->state = IPSEC_SPSTATE_DEAD;
2149 	KEY_FREESP(&sp);
2150 
2151     {
2152 	struct mbuf *n, *nn;
2153 	struct sadb_msg *newmsg;
2154 	int off, len;
2155 
2156 	/* create new sadb_msg to reply. */
2157 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2158 
2159 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2160 	if (n && len > MHLEN) {
2161 		MCLGET(n, M_DONTWAIT);
2162 		if ((n->m_flags & M_EXT) == 0) {
2163 			m_freem(n);
2164 			n = NULL;
2165 		}
2166 	}
2167 	if (!n)
2168 		return key_senderror(so, m, ENOBUFS);
2169 
2170 	n->m_len = len;
2171 	n->m_next = NULL;
2172 	off = 0;
2173 
2174 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2175 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2176 
2177 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2178 		off, len));
2179 
2180 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2181 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2182 	if (!n->m_next) {
2183 		m_freem(n);
2184 		return key_senderror(so, m, ENOBUFS);
2185 	}
2186 
2187 	n->m_pkthdr.len = 0;
2188 	for (nn = n; nn; nn = nn->m_next)
2189 		n->m_pkthdr.len += nn->m_len;
2190 
2191 	newmsg = mtod(n, struct sadb_msg *);
2192 	newmsg->sadb_msg_errno = 0;
2193 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2194 
2195 	m_freem(m);
2196 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2197     }
2198 }
2199 
2200 /*
2201  * SADB_X_GET processing
2202  * receive
2203  *   <base, policy(*)>
2204  * from the user(?),
2205  * and send,
2206  *   <base, address(SD), policy>
2207  * to the ikmpd.
2208  * policy(*) including direction of policy.
2209  *
2210  * m will always be freed.
2211  */
2212 static int
2213 key_spdget(so, m, mhp)
2214 	struct socket *so;
2215 	struct mbuf *m;
2216 	const struct sadb_msghdr *mhp;
2217 {
2218 	INIT_VNET_IPSEC(curvnet);
2219 	u_int32_t id;
2220 	struct secpolicy *sp;
2221 	struct mbuf *n;
2222 
2223 	IPSEC_ASSERT(so != NULL, ("null socket"));
2224 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2225 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2226 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2227 
2228 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2229 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2230 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2231 			__func__));
2232 		return key_senderror(so, m, EINVAL);
2233 	}
2234 
2235 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2236 
2237 	/* Is there SP in SPD ? */
2238 	if ((sp = key_getspbyid(id)) == NULL) {
2239 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2240 		return key_senderror(so, m, ENOENT);
2241 	}
2242 
2243 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2244 	if (n != NULL) {
2245 		m_freem(m);
2246 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2247 	} else
2248 		return key_senderror(so, m, ENOBUFS);
2249 }
2250 
2251 /*
2252  * SADB_X_SPDACQUIRE processing.
2253  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2254  * send
2255  *   <base, policy(*)>
2256  * to KMD, and expect to receive
2257  *   <base> with SADB_X_SPDACQUIRE if error occured,
2258  * or
2259  *   <base, policy>
2260  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2261  * policy(*) is without policy requests.
2262  *
2263  *    0     : succeed
2264  *    others: error number
2265  */
2266 int
2267 key_spdacquire(sp)
2268 	struct secpolicy *sp;
2269 {
2270 	INIT_VNET_IPSEC(curvnet);
2271 	struct mbuf *result = NULL, *m;
2272 	struct secspacq *newspacq;
2273 
2274 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2275 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2276 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2277 		("policy not IPSEC %u", sp->policy));
2278 
2279 	/* Get an entry to check whether sent message or not. */
2280 	newspacq = key_getspacq(&sp->spidx);
2281 	if (newspacq != NULL) {
2282 		if (V_key_blockacq_count < newspacq->count) {
2283 			/* reset counter and do send message. */
2284 			newspacq->count = 0;
2285 		} else {
2286 			/* increment counter and do nothing. */
2287 			newspacq->count++;
2288 			return 0;
2289 		}
2290 		SPACQ_UNLOCK();
2291 	} else {
2292 		/* make new entry for blocking to send SADB_ACQUIRE. */
2293 		newspacq = key_newspacq(&sp->spidx);
2294 		if (newspacq == NULL)
2295 			return ENOBUFS;
2296 	}
2297 
2298 	/* create new sadb_msg to reply. */
2299 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2300 	if (!m)
2301 		return ENOBUFS;
2302 
2303 	result = m;
2304 
2305 	result->m_pkthdr.len = 0;
2306 	for (m = result; m; m = m->m_next)
2307 		result->m_pkthdr.len += m->m_len;
2308 
2309 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2310 	    PFKEY_UNIT64(result->m_pkthdr.len);
2311 
2312 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2313 }
2314 
2315 /*
2316  * SADB_SPDFLUSH processing
2317  * receive
2318  *   <base>
2319  * from the user, and free all entries in secpctree.
2320  * and send,
2321  *   <base>
2322  * to the user.
2323  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2324  *
2325  * m will always be freed.
2326  */
2327 static int
2328 key_spdflush(so, m, mhp)
2329 	struct socket *so;
2330 	struct mbuf *m;
2331 	const struct sadb_msghdr *mhp;
2332 {
2333 	INIT_VNET_IPSEC(curvnet);
2334 	struct sadb_msg *newmsg;
2335 	struct secpolicy *sp;
2336 	u_int dir;
2337 
2338 	IPSEC_ASSERT(so != NULL, ("null socket"));
2339 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2340 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2341 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2342 
2343 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2344 		return key_senderror(so, m, EINVAL);
2345 
2346 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2347 		SPTREE_LOCK();
2348 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2349 			sp->state = IPSEC_SPSTATE_DEAD;
2350 		SPTREE_UNLOCK();
2351 	}
2352 
2353 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2354 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2355 		return key_senderror(so, m, ENOBUFS);
2356 	}
2357 
2358 	if (m->m_next)
2359 		m_freem(m->m_next);
2360 	m->m_next = NULL;
2361 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2362 	newmsg = mtod(m, struct sadb_msg *);
2363 	newmsg->sadb_msg_errno = 0;
2364 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2365 
2366 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2367 }
2368 
2369 /*
2370  * SADB_SPDDUMP processing
2371  * receive
2372  *   <base>
2373  * from the user, and dump all SP leaves
2374  * and send,
2375  *   <base> .....
2376  * to the ikmpd.
2377  *
2378  * m will always be freed.
2379  */
2380 static int
2381 key_spddump(so, m, mhp)
2382 	struct socket *so;
2383 	struct mbuf *m;
2384 	const struct sadb_msghdr *mhp;
2385 {
2386 	INIT_VNET_IPSEC(curvnet);
2387 	struct secpolicy *sp;
2388 	int cnt;
2389 	u_int dir;
2390 	struct mbuf *n;
2391 
2392 	IPSEC_ASSERT(so != NULL, ("null socket"));
2393 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2394 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2395 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2396 
2397 	/* search SPD entry and get buffer size. */
2398 	cnt = 0;
2399 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2400 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2401 			cnt++;
2402 		}
2403 	}
2404 
2405 	if (cnt == 0)
2406 		return key_senderror(so, m, ENOENT);
2407 
2408 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2409 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2410 			--cnt;
2411 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2412 			    mhp->msg->sadb_msg_pid);
2413 
2414 			if (n)
2415 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2416 		}
2417 	}
2418 
2419 	m_freem(m);
2420 	return 0;
2421 }
2422 
2423 static struct mbuf *
2424 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2425 {
2426 	struct mbuf *result = NULL, *m;
2427 	struct seclifetime lt;
2428 
2429 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2430 	if (!m)
2431 		goto fail;
2432 	result = m;
2433 
2434 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2435 	    &sp->spidx.src.sa, sp->spidx.prefs,
2436 	    sp->spidx.ul_proto);
2437 	if (!m)
2438 		goto fail;
2439 	m_cat(result, m);
2440 
2441 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2442 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2443 	    sp->spidx.ul_proto);
2444 	if (!m)
2445 		goto fail;
2446 	m_cat(result, m);
2447 
2448 	m = key_sp2msg(sp);
2449 	if (!m)
2450 		goto fail;
2451 	m_cat(result, m);
2452 
2453 	if(sp->lifetime){
2454 		lt.addtime=sp->created;
2455 		lt.usetime= sp->lastused;
2456 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2457 		if (!m)
2458 			goto fail;
2459 		m_cat(result, m);
2460 
2461 		lt.addtime=sp->lifetime;
2462 		lt.usetime= sp->validtime;
2463 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2464 		if (!m)
2465 			goto fail;
2466 		m_cat(result, m);
2467 	}
2468 
2469 	if ((result->m_flags & M_PKTHDR) == 0)
2470 		goto fail;
2471 
2472 	if (result->m_len < sizeof(struct sadb_msg)) {
2473 		result = m_pullup(result, sizeof(struct sadb_msg));
2474 		if (result == NULL)
2475 			goto fail;
2476 	}
2477 
2478 	result->m_pkthdr.len = 0;
2479 	for (m = result; m; m = m->m_next)
2480 		result->m_pkthdr.len += m->m_len;
2481 
2482 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2483 	    PFKEY_UNIT64(result->m_pkthdr.len);
2484 
2485 	return result;
2486 
2487 fail:
2488 	m_freem(result);
2489 	return NULL;
2490 }
2491 
2492 /*
2493  * get PFKEY message length for security policy and request.
2494  */
2495 static u_int
2496 key_getspreqmsglen(sp)
2497 	struct secpolicy *sp;
2498 {
2499 	u_int tlen;
2500 
2501 	tlen = sizeof(struct sadb_x_policy);
2502 
2503 	/* if is the policy for ipsec ? */
2504 	if (sp->policy != IPSEC_POLICY_IPSEC)
2505 		return tlen;
2506 
2507 	/* get length of ipsec requests */
2508     {
2509 	struct ipsecrequest *isr;
2510 	int len;
2511 
2512 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2513 		len = sizeof(struct sadb_x_ipsecrequest)
2514 			+ isr->saidx.src.sa.sa_len
2515 			+ isr->saidx.dst.sa.sa_len;
2516 
2517 		tlen += PFKEY_ALIGN8(len);
2518 	}
2519     }
2520 
2521 	return tlen;
2522 }
2523 
2524 /*
2525  * SADB_SPDEXPIRE processing
2526  * send
2527  *   <base, address(SD), lifetime(CH), policy>
2528  * to KMD by PF_KEY.
2529  *
2530  * OUT:	0	: succeed
2531  *	others	: error number
2532  */
2533 static int
2534 key_spdexpire(sp)
2535 	struct secpolicy *sp;
2536 {
2537 	struct mbuf *result = NULL, *m;
2538 	int len;
2539 	int error = -1;
2540 	struct sadb_lifetime *lt;
2541 
2542 	/* XXX: Why do we lock ? */
2543 
2544 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2545 
2546 	/* set msg header */
2547 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2548 	if (!m) {
2549 		error = ENOBUFS;
2550 		goto fail;
2551 	}
2552 	result = m;
2553 
2554 	/* create lifetime extension (current and hard) */
2555 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2556 	m = key_alloc_mbuf(len);
2557 	if (!m || m->m_next) {	/*XXX*/
2558 		if (m)
2559 			m_freem(m);
2560 		error = ENOBUFS;
2561 		goto fail;
2562 	}
2563 	bzero(mtod(m, caddr_t), len);
2564 	lt = mtod(m, struct sadb_lifetime *);
2565 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2566 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2567 	lt->sadb_lifetime_allocations = 0;
2568 	lt->sadb_lifetime_bytes = 0;
2569 	lt->sadb_lifetime_addtime = sp->created;
2570 	lt->sadb_lifetime_usetime = sp->lastused;
2571 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2572 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2573 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2574 	lt->sadb_lifetime_allocations = 0;
2575 	lt->sadb_lifetime_bytes = 0;
2576 	lt->sadb_lifetime_addtime = sp->lifetime;
2577 	lt->sadb_lifetime_usetime = sp->validtime;
2578 	m_cat(result, m);
2579 
2580 	/* set sadb_address for source */
2581 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2582 	    &sp->spidx.src.sa,
2583 	    sp->spidx.prefs, sp->spidx.ul_proto);
2584 	if (!m) {
2585 		error = ENOBUFS;
2586 		goto fail;
2587 	}
2588 	m_cat(result, m);
2589 
2590 	/* set sadb_address for destination */
2591 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2592 	    &sp->spidx.dst.sa,
2593 	    sp->spidx.prefd, sp->spidx.ul_proto);
2594 	if (!m) {
2595 		error = ENOBUFS;
2596 		goto fail;
2597 	}
2598 	m_cat(result, m);
2599 
2600 	/* set secpolicy */
2601 	m = key_sp2msg(sp);
2602 	if (!m) {
2603 		error = ENOBUFS;
2604 		goto fail;
2605 	}
2606 	m_cat(result, m);
2607 
2608 	if ((result->m_flags & M_PKTHDR) == 0) {
2609 		error = EINVAL;
2610 		goto fail;
2611 	}
2612 
2613 	if (result->m_len < sizeof(struct sadb_msg)) {
2614 		result = m_pullup(result, sizeof(struct sadb_msg));
2615 		if (result == NULL) {
2616 			error = ENOBUFS;
2617 			goto fail;
2618 		}
2619 	}
2620 
2621 	result->m_pkthdr.len = 0;
2622 	for (m = result; m; m = m->m_next)
2623 		result->m_pkthdr.len += m->m_len;
2624 
2625 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2626 	    PFKEY_UNIT64(result->m_pkthdr.len);
2627 
2628 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2629 
2630  fail:
2631 	if (result)
2632 		m_freem(result);
2633 	return error;
2634 }
2635 
2636 /* %%% SAD management */
2637 /*
2638  * allocating a memory for new SA head, and copy from the values of mhp.
2639  * OUT:	NULL	: failure due to the lack of memory.
2640  *	others	: pointer to new SA head.
2641  */
2642 static struct secashead *
2643 key_newsah(saidx)
2644 	struct secasindex *saidx;
2645 {
2646 	INIT_VNET_IPSEC(curvnet);
2647 	struct secashead *newsah;
2648 
2649 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2650 
2651 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2652 	if (newsah != NULL) {
2653 		int i;
2654 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2655 			LIST_INIT(&newsah->savtree[i]);
2656 		newsah->saidx = *saidx;
2657 
2658 		/* add to saidxtree */
2659 		newsah->state = SADB_SASTATE_MATURE;
2660 
2661 		SAHTREE_LOCK();
2662 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2663 		SAHTREE_UNLOCK();
2664 	}
2665 	return(newsah);
2666 }
2667 
2668 /*
2669  * delete SA index and all SA registerd.
2670  */
2671 static void
2672 key_delsah(sah)
2673 	struct secashead *sah;
2674 {
2675 	INIT_VNET_IPSEC(curvnet);
2676 	struct secasvar *sav, *nextsav;
2677 	u_int stateidx;
2678 	int zombie = 0;
2679 
2680 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2681 	SAHTREE_LOCK_ASSERT();
2682 
2683 	/* searching all SA registerd in the secindex. */
2684 	for (stateidx = 0;
2685 	     stateidx < _ARRAYLEN(saorder_state_any);
2686 	     stateidx++) {
2687 		u_int state = saorder_state_any[stateidx];
2688 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2689 			if (sav->refcnt == 0) {
2690 				/* sanity check */
2691 				KEY_CHKSASTATE(state, sav->state, __func__);
2692 				/*
2693 				 * do NOT call KEY_FREESAV here:
2694 				 * it will only delete the sav if refcnt == 1,
2695 				 * where we already know that refcnt == 0
2696 				 */
2697 				key_delsav(sav);
2698 			} else {
2699 				/* give up to delete this sa */
2700 				zombie++;
2701 			}
2702 		}
2703 	}
2704 	if (!zombie) {		/* delete only if there are savs */
2705 		/* remove from tree of SA index */
2706 		if (__LIST_CHAINED(sah))
2707 			LIST_REMOVE(sah, chain);
2708 		if (sah->sa_route.ro_rt) {
2709 			RTFREE(sah->sa_route.ro_rt);
2710 			sah->sa_route.ro_rt = (struct rtentry *)NULL;
2711 		}
2712 		free(sah, M_IPSEC_SAH);
2713 	}
2714 }
2715 
2716 /*
2717  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2718  * and copy the values of mhp into new buffer.
2719  * When SAD message type is GETSPI:
2720  *	to set sequence number from acq_seq++,
2721  *	to set zero to SPI.
2722  *	not to call key_setsava().
2723  * OUT:	NULL	: fail
2724  *	others	: pointer to new secasvar.
2725  *
2726  * does not modify mbuf.  does not free mbuf on error.
2727  */
2728 static struct secasvar *
2729 key_newsav(m, mhp, sah, errp, where, tag)
2730 	struct mbuf *m;
2731 	const struct sadb_msghdr *mhp;
2732 	struct secashead *sah;
2733 	int *errp;
2734 	const char* where;
2735 	int tag;
2736 {
2737 	INIT_VNET_IPSEC(curvnet);
2738 	struct secasvar *newsav;
2739 	const struct sadb_sa *xsa;
2740 
2741 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2742 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2743 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2744 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2745 
2746 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2747 	if (newsav == NULL) {
2748 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2749 		*errp = ENOBUFS;
2750 		goto done;
2751 	}
2752 
2753 	switch (mhp->msg->sadb_msg_type) {
2754 	case SADB_GETSPI:
2755 		newsav->spi = 0;
2756 
2757 #ifdef IPSEC_DOSEQCHECK
2758 		/* sync sequence number */
2759 		if (mhp->msg->sadb_msg_seq == 0)
2760 			newsav->seq =
2761 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2762 		else
2763 #endif
2764 			newsav->seq = mhp->msg->sadb_msg_seq;
2765 		break;
2766 
2767 	case SADB_ADD:
2768 		/* sanity check */
2769 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2770 			free(newsav, M_IPSEC_SA);
2771 			newsav = NULL;
2772 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2773 				__func__));
2774 			*errp = EINVAL;
2775 			goto done;
2776 		}
2777 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2778 		newsav->spi = xsa->sadb_sa_spi;
2779 		newsav->seq = mhp->msg->sadb_msg_seq;
2780 		break;
2781 	default:
2782 		free(newsav, M_IPSEC_SA);
2783 		newsav = NULL;
2784 		*errp = EINVAL;
2785 		goto done;
2786 	}
2787 
2788 
2789 	/* copy sav values */
2790 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2791 		*errp = key_setsaval(newsav, m, mhp);
2792 		if (*errp) {
2793 			free(newsav, M_IPSEC_SA);
2794 			newsav = NULL;
2795 			goto done;
2796 		}
2797 	}
2798 
2799 	SECASVAR_LOCK_INIT(newsav);
2800 
2801 	/* reset created */
2802 	newsav->created = time_second;
2803 	newsav->pid = mhp->msg->sadb_msg_pid;
2804 
2805 	/* add to satree */
2806 	newsav->sah = sah;
2807 	sa_initref(newsav);
2808 	newsav->state = SADB_SASTATE_LARVAL;
2809 
2810 	/* XXX locking??? */
2811 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2812 			secasvar, chain);
2813 done:
2814 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2815 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2816 			where, tag, newsav));
2817 
2818 	return newsav;
2819 }
2820 
2821 /*
2822  * free() SA variable entry.
2823  */
2824 static void
2825 key_cleansav(struct secasvar *sav)
2826 {
2827 	/*
2828 	 * Cleanup xform state.  Note that zeroize'ing causes the
2829 	 * keys to be cleared; otherwise we must do it ourself.
2830 	 */
2831 	if (sav->tdb_xform != NULL) {
2832 		sav->tdb_xform->xf_zeroize(sav);
2833 		sav->tdb_xform = NULL;
2834 	} else {
2835 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2836 		if (sav->key_auth != NULL)
2837 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2838 		if (sav->key_enc != NULL)
2839 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2840 	}
2841 	if (sav->key_auth != NULL) {
2842 		if (sav->key_auth->key_data != NULL)
2843 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2844 		free(sav->key_auth, M_IPSEC_MISC);
2845 		sav->key_auth = NULL;
2846 	}
2847 	if (sav->key_enc != NULL) {
2848 		if (sav->key_enc->key_data != NULL)
2849 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2850 		free(sav->key_enc, M_IPSEC_MISC);
2851 		sav->key_enc = NULL;
2852 	}
2853 	if (sav->sched) {
2854 		bzero(sav->sched, sav->schedlen);
2855 		free(sav->sched, M_IPSEC_MISC);
2856 		sav->sched = NULL;
2857 	}
2858 	if (sav->replay != NULL) {
2859 		free(sav->replay, M_IPSEC_MISC);
2860 		sav->replay = NULL;
2861 	}
2862 	if (sav->lft_c != NULL) {
2863 		free(sav->lft_c, M_IPSEC_MISC);
2864 		sav->lft_c = NULL;
2865 	}
2866 	if (sav->lft_h != NULL) {
2867 		free(sav->lft_h, M_IPSEC_MISC);
2868 		sav->lft_h = NULL;
2869 	}
2870 	if (sav->lft_s != NULL) {
2871 		free(sav->lft_s, M_IPSEC_MISC);
2872 		sav->lft_s = NULL;
2873 	}
2874 }
2875 
2876 /*
2877  * free() SA variable entry.
2878  */
2879 static void
2880 key_delsav(sav)
2881 	struct secasvar *sav;
2882 {
2883 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2884 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2885 
2886 	/* remove from SA header */
2887 	if (__LIST_CHAINED(sav))
2888 		LIST_REMOVE(sav, chain);
2889 	key_cleansav(sav);
2890 	SECASVAR_LOCK_DESTROY(sav);
2891 	free(sav, M_IPSEC_SA);
2892 }
2893 
2894 /*
2895  * search SAD.
2896  * OUT:
2897  *	NULL	: not found
2898  *	others	: found, pointer to a SA.
2899  */
2900 static struct secashead *
2901 key_getsah(saidx)
2902 	struct secasindex *saidx;
2903 {
2904 	INIT_VNET_IPSEC(curvnet);
2905 	struct secashead *sah;
2906 
2907 	SAHTREE_LOCK();
2908 	LIST_FOREACH(sah, &V_sahtree, chain) {
2909 		if (sah->state == SADB_SASTATE_DEAD)
2910 			continue;
2911 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2912 			break;
2913 	}
2914 	SAHTREE_UNLOCK();
2915 
2916 	return sah;
2917 }
2918 
2919 /*
2920  * check not to be duplicated SPI.
2921  * NOTE: this function is too slow due to searching all SAD.
2922  * OUT:
2923  *	NULL	: not found
2924  *	others	: found, pointer to a SA.
2925  */
2926 static struct secasvar *
2927 key_checkspidup(saidx, spi)
2928 	struct secasindex *saidx;
2929 	u_int32_t spi;
2930 {
2931 	INIT_VNET_IPSEC(curvnet);
2932 	struct secashead *sah;
2933 	struct secasvar *sav;
2934 
2935 	/* check address family */
2936 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2937 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2938 			__func__));
2939 		return NULL;
2940 	}
2941 
2942 	sav = NULL;
2943 	/* check all SAD */
2944 	SAHTREE_LOCK();
2945 	LIST_FOREACH(sah, &V_sahtree, chain) {
2946 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2947 			continue;
2948 		sav = key_getsavbyspi(sah, spi);
2949 		if (sav != NULL)
2950 			break;
2951 	}
2952 	SAHTREE_UNLOCK();
2953 
2954 	return sav;
2955 }
2956 
2957 /*
2958  * search SAD litmited alive SA, protocol, SPI.
2959  * OUT:
2960  *	NULL	: not found
2961  *	others	: found, pointer to a SA.
2962  */
2963 static struct secasvar *
2964 key_getsavbyspi(sah, spi)
2965 	struct secashead *sah;
2966 	u_int32_t spi;
2967 {
2968 	INIT_VNET_IPSEC(curvnet);
2969 	struct secasvar *sav;
2970 	u_int stateidx, state;
2971 
2972 	sav = NULL;
2973 	SAHTREE_LOCK_ASSERT();
2974 	/* search all status */
2975 	for (stateidx = 0;
2976 	     stateidx < _ARRAYLEN(saorder_state_alive);
2977 	     stateidx++) {
2978 
2979 		state = saorder_state_alive[stateidx];
2980 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
2981 
2982 			/* sanity check */
2983 			if (sav->state != state) {
2984 				ipseclog((LOG_DEBUG, "%s: "
2985 				    "invalid sav->state (queue: %d SA: %d)\n",
2986 				    __func__, state, sav->state));
2987 				continue;
2988 			}
2989 
2990 			if (sav->spi == spi)
2991 				return sav;
2992 		}
2993 	}
2994 
2995 	return NULL;
2996 }
2997 
2998 /*
2999  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3000  * You must update these if need.
3001  * OUT:	0:	success.
3002  *	!0:	failure.
3003  *
3004  * does not modify mbuf.  does not free mbuf on error.
3005  */
3006 static int
3007 key_setsaval(sav, m, mhp)
3008 	struct secasvar *sav;
3009 	struct mbuf *m;
3010 	const struct sadb_msghdr *mhp;
3011 {
3012 	INIT_VNET_IPSEC(curvnet);
3013 	int error = 0;
3014 
3015 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3016 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3017 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3018 
3019 	/* initialization */
3020 	sav->replay = NULL;
3021 	sav->key_auth = NULL;
3022 	sav->key_enc = NULL;
3023 	sav->sched = NULL;
3024 	sav->schedlen = 0;
3025 	sav->iv = NULL;
3026 	sav->lft_c = NULL;
3027 	sav->lft_h = NULL;
3028 	sav->lft_s = NULL;
3029 	sav->tdb_xform = NULL;		/* transform */
3030 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3031 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3032 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3033 
3034 	/* SA */
3035 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3036 		const struct sadb_sa *sa0;
3037 
3038 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3039 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3040 			error = EINVAL;
3041 			goto fail;
3042 		}
3043 
3044 		sav->alg_auth = sa0->sadb_sa_auth;
3045 		sav->alg_enc = sa0->sadb_sa_encrypt;
3046 		sav->flags = sa0->sadb_sa_flags;
3047 
3048 		/* replay window */
3049 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3050 			sav->replay = (struct secreplay *)
3051 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3052 			if (sav->replay == NULL) {
3053 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3054 					__func__));
3055 				error = ENOBUFS;
3056 				goto fail;
3057 			}
3058 			if (sa0->sadb_sa_replay != 0)
3059 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3060 			sav->replay->wsize = sa0->sadb_sa_replay;
3061 		}
3062 	}
3063 
3064 	/* Authentication keys */
3065 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3066 		const struct sadb_key *key0;
3067 		int len;
3068 
3069 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3070 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3071 
3072 		error = 0;
3073 		if (len < sizeof(*key0)) {
3074 			error = EINVAL;
3075 			goto fail;
3076 		}
3077 		switch (mhp->msg->sadb_msg_satype) {
3078 		case SADB_SATYPE_AH:
3079 		case SADB_SATYPE_ESP:
3080 		case SADB_X_SATYPE_TCPSIGNATURE:
3081 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3082 			    sav->alg_auth != SADB_X_AALG_NULL)
3083 				error = EINVAL;
3084 			break;
3085 		case SADB_X_SATYPE_IPCOMP:
3086 		default:
3087 			error = EINVAL;
3088 			break;
3089 		}
3090 		if (error) {
3091 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3092 				__func__));
3093 			goto fail;
3094 		}
3095 
3096 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3097 								M_IPSEC_MISC);
3098 		if (sav->key_auth == NULL ) {
3099 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3100 				  __func__));
3101 			error = ENOBUFS;
3102 			goto fail;
3103 		}
3104 	}
3105 
3106 	/* Encryption key */
3107 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3108 		const struct sadb_key *key0;
3109 		int len;
3110 
3111 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3112 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3113 
3114 		error = 0;
3115 		if (len < sizeof(*key0)) {
3116 			error = EINVAL;
3117 			goto fail;
3118 		}
3119 		switch (mhp->msg->sadb_msg_satype) {
3120 		case SADB_SATYPE_ESP:
3121 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3122 			    sav->alg_enc != SADB_EALG_NULL) {
3123 				error = EINVAL;
3124 				break;
3125 			}
3126 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3127 								       len,
3128 								       M_IPSEC_MISC);
3129 			if (sav->key_enc == NULL) {
3130 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3131 					__func__));
3132 				error = ENOBUFS;
3133 				goto fail;
3134 			}
3135 			break;
3136 		case SADB_X_SATYPE_IPCOMP:
3137 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3138 				error = EINVAL;
3139 			sav->key_enc = NULL;	/*just in case*/
3140 			break;
3141 		case SADB_SATYPE_AH:
3142 		case SADB_X_SATYPE_TCPSIGNATURE:
3143 		default:
3144 			error = EINVAL;
3145 			break;
3146 		}
3147 		if (error) {
3148 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3149 				__func__));
3150 			goto fail;
3151 		}
3152 	}
3153 
3154 	/* set iv */
3155 	sav->ivlen = 0;
3156 
3157 	switch (mhp->msg->sadb_msg_satype) {
3158 	case SADB_SATYPE_AH:
3159 		error = xform_init(sav, XF_AH);
3160 		break;
3161 	case SADB_SATYPE_ESP:
3162 		error = xform_init(sav, XF_ESP);
3163 		break;
3164 	case SADB_X_SATYPE_IPCOMP:
3165 		error = xform_init(sav, XF_IPCOMP);
3166 		break;
3167 	case SADB_X_SATYPE_TCPSIGNATURE:
3168 		error = xform_init(sav, XF_TCPSIGNATURE);
3169 		break;
3170 	}
3171 	if (error) {
3172 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3173 		        __func__, mhp->msg->sadb_msg_satype));
3174 		goto fail;
3175 	}
3176 
3177 	/* reset created */
3178 	sav->created = time_second;
3179 
3180 	/* make lifetime for CURRENT */
3181 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3182 	if (sav->lft_c == NULL) {
3183 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3184 		error = ENOBUFS;
3185 		goto fail;
3186 	}
3187 
3188 	sav->lft_c->allocations = 0;
3189 	sav->lft_c->bytes = 0;
3190 	sav->lft_c->addtime = time_second;
3191 	sav->lft_c->usetime = 0;
3192 
3193 	/* lifetimes for HARD and SOFT */
3194     {
3195 	const struct sadb_lifetime *lft0;
3196 
3197 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3198 	if (lft0 != NULL) {
3199 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3200 			error = EINVAL;
3201 			goto fail;
3202 		}
3203 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3204 		if (sav->lft_h == NULL) {
3205 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3206 			error = ENOBUFS;
3207 			goto fail;
3208 		}
3209 		/* to be initialize ? */
3210 	}
3211 
3212 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3213 	if (lft0 != NULL) {
3214 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3215 			error = EINVAL;
3216 			goto fail;
3217 		}
3218 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3219 		if (sav->lft_s == NULL) {
3220 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3221 			error = ENOBUFS;
3222 			goto fail;
3223 		}
3224 		/* to be initialize ? */
3225 	}
3226     }
3227 
3228 	return 0;
3229 
3230  fail:
3231 	/* initialization */
3232 	key_cleansav(sav);
3233 
3234 	return error;
3235 }
3236 
3237 /*
3238  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3239  * OUT:	0:	valid
3240  *	other:	errno
3241  */
3242 static int
3243 key_mature(struct secasvar *sav)
3244 {
3245 	INIT_VNET_IPSEC(curvnet);
3246 	int error;
3247 
3248 	/* check SPI value */
3249 	switch (sav->sah->saidx.proto) {
3250 	case IPPROTO_ESP:
3251 	case IPPROTO_AH:
3252 		/*
3253 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3254 		 * 1-255 reserved by IANA for future use,
3255 		 * 0 for implementation specific, local use.
3256 		 */
3257 		if (ntohl(sav->spi) <= 255) {
3258 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3259 			    __func__, (u_int32_t)ntohl(sav->spi)));
3260 			return EINVAL;
3261 		}
3262 		break;
3263 	}
3264 
3265 	/* check satype */
3266 	switch (sav->sah->saidx.proto) {
3267 	case IPPROTO_ESP:
3268 		/* check flags */
3269 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3270 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3271 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3272 				"given to old-esp.\n", __func__));
3273 			return EINVAL;
3274 		}
3275 		error = xform_init(sav, XF_ESP);
3276 		break;
3277 	case IPPROTO_AH:
3278 		/* check flags */
3279 		if (sav->flags & SADB_X_EXT_DERIV) {
3280 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3281 				"given to AH SA.\n", __func__));
3282 			return EINVAL;
3283 		}
3284 		if (sav->alg_enc != SADB_EALG_NONE) {
3285 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3286 				"mismated.\n", __func__));
3287 			return(EINVAL);
3288 		}
3289 		error = xform_init(sav, XF_AH);
3290 		break;
3291 	case IPPROTO_IPCOMP:
3292 		if (sav->alg_auth != SADB_AALG_NONE) {
3293 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3294 				"mismated.\n", __func__));
3295 			return(EINVAL);
3296 		}
3297 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3298 		 && ntohl(sav->spi) >= 0x10000) {
3299 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3300 				__func__));
3301 			return(EINVAL);
3302 		}
3303 		error = xform_init(sav, XF_IPCOMP);
3304 		break;
3305 	case IPPROTO_TCP:
3306 		if (sav->alg_enc != SADB_EALG_NONE) {
3307 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3308 				"mismated.\n", __func__));
3309 			return(EINVAL);
3310 		}
3311 		error = xform_init(sav, XF_TCPSIGNATURE);
3312 		break;
3313 	default:
3314 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3315 		error = EPROTONOSUPPORT;
3316 		break;
3317 	}
3318 	if (error == 0) {
3319 		SAHTREE_LOCK();
3320 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3321 		SAHTREE_UNLOCK();
3322 	}
3323 	return (error);
3324 }
3325 
3326 /*
3327  * subroutine for SADB_GET and SADB_DUMP.
3328  */
3329 static struct mbuf *
3330 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3331     u_int32_t seq, u_int32_t pid)
3332 {
3333 	struct mbuf *result = NULL, *tres = NULL, *m;
3334 	int i;
3335 	int dumporder[] = {
3336 		SADB_EXT_SA, SADB_X_EXT_SA2,
3337 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3338 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3339 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3340 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3341 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3342 	};
3343 
3344 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3345 	if (m == NULL)
3346 		goto fail;
3347 	result = m;
3348 
3349 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3350 		m = NULL;
3351 		switch (dumporder[i]) {
3352 		case SADB_EXT_SA:
3353 			m = key_setsadbsa(sav);
3354 			if (!m)
3355 				goto fail;
3356 			break;
3357 
3358 		case SADB_X_EXT_SA2:
3359 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3360 					sav->replay ? sav->replay->count : 0,
3361 					sav->sah->saidx.reqid);
3362 			if (!m)
3363 				goto fail;
3364 			break;
3365 
3366 		case SADB_EXT_ADDRESS_SRC:
3367 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3368 			    &sav->sah->saidx.src.sa,
3369 			    FULLMASK, IPSEC_ULPROTO_ANY);
3370 			if (!m)
3371 				goto fail;
3372 			break;
3373 
3374 		case SADB_EXT_ADDRESS_DST:
3375 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3376 			    &sav->sah->saidx.dst.sa,
3377 			    FULLMASK, IPSEC_ULPROTO_ANY);
3378 			if (!m)
3379 				goto fail;
3380 			break;
3381 
3382 		case SADB_EXT_KEY_AUTH:
3383 			if (!sav->key_auth)
3384 				continue;
3385 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3386 			if (!m)
3387 				goto fail;
3388 			break;
3389 
3390 		case SADB_EXT_KEY_ENCRYPT:
3391 			if (!sav->key_enc)
3392 				continue;
3393 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3394 			if (!m)
3395 				goto fail;
3396 			break;
3397 
3398 		case SADB_EXT_LIFETIME_CURRENT:
3399 			if (!sav->lft_c)
3400 				continue;
3401 			m = key_setlifetime(sav->lft_c,
3402 					    SADB_EXT_LIFETIME_CURRENT);
3403 			if (!m)
3404 				goto fail;
3405 			break;
3406 
3407 		case SADB_EXT_LIFETIME_HARD:
3408 			if (!sav->lft_h)
3409 				continue;
3410 			m = key_setlifetime(sav->lft_h,
3411 					    SADB_EXT_LIFETIME_HARD);
3412 			if (!m)
3413 				goto fail;
3414 			break;
3415 
3416 		case SADB_EXT_LIFETIME_SOFT:
3417 			if (!sav->lft_s)
3418 				continue;
3419 			m = key_setlifetime(sav->lft_s,
3420 					    SADB_EXT_LIFETIME_SOFT);
3421 
3422 			if (!m)
3423 				goto fail;
3424 			break;
3425 
3426 		case SADB_EXT_ADDRESS_PROXY:
3427 		case SADB_EXT_IDENTITY_SRC:
3428 		case SADB_EXT_IDENTITY_DST:
3429 			/* XXX: should we brought from SPD ? */
3430 		case SADB_EXT_SENSITIVITY:
3431 		default:
3432 			continue;
3433 		}
3434 
3435 		if (!m)
3436 			goto fail;
3437 		if (tres)
3438 			m_cat(m, tres);
3439 		tres = m;
3440 
3441 	}
3442 
3443 	m_cat(result, tres);
3444 	if (result->m_len < sizeof(struct sadb_msg)) {
3445 		result = m_pullup(result, sizeof(struct sadb_msg));
3446 		if (result == NULL)
3447 			goto fail;
3448 	}
3449 
3450 	result->m_pkthdr.len = 0;
3451 	for (m = result; m; m = m->m_next)
3452 		result->m_pkthdr.len += m->m_len;
3453 
3454 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3455 	    PFKEY_UNIT64(result->m_pkthdr.len);
3456 
3457 	return result;
3458 
3459 fail:
3460 	m_freem(result);
3461 	m_freem(tres);
3462 	return NULL;
3463 }
3464 
3465 /*
3466  * set data into sadb_msg.
3467  */
3468 static struct mbuf *
3469 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3470     pid_t pid, u_int16_t reserved)
3471 {
3472 	struct mbuf *m;
3473 	struct sadb_msg *p;
3474 	int len;
3475 
3476 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3477 	if (len > MCLBYTES)
3478 		return NULL;
3479 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3480 	if (m && len > MHLEN) {
3481 		MCLGET(m, M_DONTWAIT);
3482 		if ((m->m_flags & M_EXT) == 0) {
3483 			m_freem(m);
3484 			m = NULL;
3485 		}
3486 	}
3487 	if (!m)
3488 		return NULL;
3489 	m->m_pkthdr.len = m->m_len = len;
3490 	m->m_next = NULL;
3491 
3492 	p = mtod(m, struct sadb_msg *);
3493 
3494 	bzero(p, len);
3495 	p->sadb_msg_version = PF_KEY_V2;
3496 	p->sadb_msg_type = type;
3497 	p->sadb_msg_errno = 0;
3498 	p->sadb_msg_satype = satype;
3499 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3500 	p->sadb_msg_reserved = reserved;
3501 	p->sadb_msg_seq = seq;
3502 	p->sadb_msg_pid = (u_int32_t)pid;
3503 
3504 	return m;
3505 }
3506 
3507 /*
3508  * copy secasvar data into sadb_address.
3509  */
3510 static struct mbuf *
3511 key_setsadbsa(sav)
3512 	struct secasvar *sav;
3513 {
3514 	struct mbuf *m;
3515 	struct sadb_sa *p;
3516 	int len;
3517 
3518 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3519 	m = key_alloc_mbuf(len);
3520 	if (!m || m->m_next) {	/*XXX*/
3521 		if (m)
3522 			m_freem(m);
3523 		return NULL;
3524 	}
3525 
3526 	p = mtod(m, struct sadb_sa *);
3527 
3528 	bzero(p, len);
3529 	p->sadb_sa_len = PFKEY_UNIT64(len);
3530 	p->sadb_sa_exttype = SADB_EXT_SA;
3531 	p->sadb_sa_spi = sav->spi;
3532 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3533 	p->sadb_sa_state = sav->state;
3534 	p->sadb_sa_auth = sav->alg_auth;
3535 	p->sadb_sa_encrypt = sav->alg_enc;
3536 	p->sadb_sa_flags = sav->flags;
3537 
3538 	return m;
3539 }
3540 
3541 /*
3542  * set data into sadb_address.
3543  */
3544 static struct mbuf *
3545 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3546 {
3547 	struct mbuf *m;
3548 	struct sadb_address *p;
3549 	size_t len;
3550 
3551 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3552 	    PFKEY_ALIGN8(saddr->sa_len);
3553 	m = key_alloc_mbuf(len);
3554 	if (!m || m->m_next) {	/*XXX*/
3555 		if (m)
3556 			m_freem(m);
3557 		return NULL;
3558 	}
3559 
3560 	p = mtod(m, struct sadb_address *);
3561 
3562 	bzero(p, len);
3563 	p->sadb_address_len = PFKEY_UNIT64(len);
3564 	p->sadb_address_exttype = exttype;
3565 	p->sadb_address_proto = ul_proto;
3566 	if (prefixlen == FULLMASK) {
3567 		switch (saddr->sa_family) {
3568 		case AF_INET:
3569 			prefixlen = sizeof(struct in_addr) << 3;
3570 			break;
3571 		case AF_INET6:
3572 			prefixlen = sizeof(struct in6_addr) << 3;
3573 			break;
3574 		default:
3575 			; /*XXX*/
3576 		}
3577 	}
3578 	p->sadb_address_prefixlen = prefixlen;
3579 	p->sadb_address_reserved = 0;
3580 
3581 	bcopy(saddr,
3582 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3583 	    saddr->sa_len);
3584 
3585 	return m;
3586 }
3587 
3588 /*
3589  * set data into sadb_x_sa2.
3590  */
3591 static struct mbuf *
3592 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3593 {
3594 	struct mbuf *m;
3595 	struct sadb_x_sa2 *p;
3596 	size_t len;
3597 
3598 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3599 	m = key_alloc_mbuf(len);
3600 	if (!m || m->m_next) {	/*XXX*/
3601 		if (m)
3602 			m_freem(m);
3603 		return NULL;
3604 	}
3605 
3606 	p = mtod(m, struct sadb_x_sa2 *);
3607 
3608 	bzero(p, len);
3609 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3610 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3611 	p->sadb_x_sa2_mode = mode;
3612 	p->sadb_x_sa2_reserved1 = 0;
3613 	p->sadb_x_sa2_reserved2 = 0;
3614 	p->sadb_x_sa2_sequence = seq;
3615 	p->sadb_x_sa2_reqid = reqid;
3616 
3617 	return m;
3618 }
3619 
3620 /*
3621  * set data into sadb_x_policy
3622  */
3623 static struct mbuf *
3624 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3625 {
3626 	struct mbuf *m;
3627 	struct sadb_x_policy *p;
3628 	size_t len;
3629 
3630 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3631 	m = key_alloc_mbuf(len);
3632 	if (!m || m->m_next) {	/*XXX*/
3633 		if (m)
3634 			m_freem(m);
3635 		return NULL;
3636 	}
3637 
3638 	p = mtod(m, struct sadb_x_policy *);
3639 
3640 	bzero(p, len);
3641 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3642 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3643 	p->sadb_x_policy_type = type;
3644 	p->sadb_x_policy_dir = dir;
3645 	p->sadb_x_policy_id = id;
3646 
3647 	return m;
3648 }
3649 
3650 /* %%% utilities */
3651 /* Take a key message (sadb_key) from the socket and turn it into one
3652  * of the kernel's key structures (seckey).
3653  *
3654  * IN: pointer to the src
3655  * OUT: NULL no more memory
3656  */
3657 struct seckey *
3658 key_dup_keymsg(const struct sadb_key *src, u_int len,
3659 	       struct malloc_type *type)
3660 {
3661 	INIT_VNET_IPSEC(curvnet);
3662 	struct seckey *dst;
3663 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3664 	if (dst != NULL) {
3665 		dst->bits = src->sadb_key_bits;
3666 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3667 		if (dst->key_data != NULL) {
3668 			bcopy((const char *)src + sizeof(struct sadb_key),
3669 			      dst->key_data, len);
3670 		} else {
3671 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3672 				  __func__));
3673 			free(dst, type);
3674 			dst = NULL;
3675 		}
3676 	} else {
3677 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3678 			  __func__));
3679 
3680 	}
3681 	return dst;
3682 }
3683 
3684 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3685  * turn it into one of the kernel's lifetime structures (seclifetime).
3686  *
3687  * IN: pointer to the destination, source and malloc type
3688  * OUT: NULL, no more memory
3689  */
3690 
3691 static struct seclifetime *
3692 key_dup_lifemsg(const struct sadb_lifetime *src,
3693 		 struct malloc_type *type)
3694 {
3695 	INIT_VNET_IPSEC(curvnet);
3696 	struct seclifetime *dst = NULL;
3697 
3698 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3699 					   type, M_NOWAIT);
3700 	if (dst == NULL) {
3701 		/* XXX counter */
3702 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3703 	} else {
3704 		dst->allocations = src->sadb_lifetime_allocations;
3705 		dst->bytes = src->sadb_lifetime_bytes;
3706 		dst->addtime = src->sadb_lifetime_addtime;
3707 		dst->usetime = src->sadb_lifetime_usetime;
3708 	}
3709 	return dst;
3710 }
3711 
3712 /* compare my own address
3713  * OUT:	1: true, i.e. my address.
3714  *	0: false
3715  */
3716 int
3717 key_ismyaddr(sa)
3718 	struct sockaddr *sa;
3719 {
3720 #ifdef INET
3721 	INIT_VNET_INET(curvnet);
3722 	struct sockaddr_in *sin;
3723 	struct in_ifaddr *ia;
3724 #endif
3725 
3726 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3727 
3728 	switch (sa->sa_family) {
3729 #ifdef INET
3730 	case AF_INET:
3731 		sin = (struct sockaddr_in *)sa;
3732 		for (ia = V_in_ifaddrhead.tqh_first; ia;
3733 		     ia = ia->ia_link.tqe_next)
3734 		{
3735 			if (sin->sin_family == ia->ia_addr.sin_family &&
3736 			    sin->sin_len == ia->ia_addr.sin_len &&
3737 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3738 			{
3739 				return 1;
3740 			}
3741 		}
3742 		break;
3743 #endif
3744 #ifdef INET6
3745 	case AF_INET6:
3746 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3747 #endif
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 #ifdef INET6
3754 /*
3755  * compare my own address for IPv6.
3756  * 1: ours
3757  * 0: other
3758  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3759  */
3760 #include <netinet6/in6_var.h>
3761 
3762 static int
3763 key_ismyaddr6(sin6)
3764 	struct sockaddr_in6 *sin6;
3765 {
3766 	INIT_VNET_INET6(curvnet);
3767 	struct in6_ifaddr *ia;
3768 #if 0
3769 	struct in6_multi *in6m;
3770 #endif
3771 
3772 	for (ia = V_in6_ifaddr; ia; ia = ia->ia_next) {
3773 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3774 		    (struct sockaddr *)&ia->ia_addr, 0) == 0)
3775 			return 1;
3776 
3777 #if 0
3778 		/*
3779 		 * XXX Multicast
3780 		 * XXX why do we care about multlicast here while we don't care
3781 		 * about IPv4 multicast??
3782 		 * XXX scope
3783 		 */
3784 		in6m = NULL;
3785 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3786 		if (in6m)
3787 			return 1;
3788 #endif
3789 	}
3790 
3791 	/* loopback, just for safety */
3792 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3793 		return 1;
3794 
3795 	return 0;
3796 }
3797 #endif /*INET6*/
3798 
3799 /*
3800  * compare two secasindex structure.
3801  * flag can specify to compare 2 saidxes.
3802  * compare two secasindex structure without both mode and reqid.
3803  * don't compare port.
3804  * IN:
3805  *      saidx0: source, it can be in SAD.
3806  *      saidx1: object.
3807  * OUT:
3808  *      1 : equal
3809  *      0 : not equal
3810  */
3811 static int
3812 key_cmpsaidx(
3813 	const struct secasindex *saidx0,
3814 	const struct secasindex *saidx1,
3815 	int flag)
3816 {
3817 	/* sanity */
3818 	if (saidx0 == NULL && saidx1 == NULL)
3819 		return 1;
3820 
3821 	if (saidx0 == NULL || saidx1 == NULL)
3822 		return 0;
3823 
3824 	if (saidx0->proto != saidx1->proto)
3825 		return 0;
3826 
3827 	if (flag == CMP_EXACTLY) {
3828 		if (saidx0->mode != saidx1->mode)
3829 			return 0;
3830 		if (saidx0->reqid != saidx1->reqid)
3831 			return 0;
3832 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
3833 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
3834 			return 0;
3835 	} else {
3836 
3837 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
3838 		if (flag == CMP_MODE_REQID
3839 		  ||flag == CMP_REQID) {
3840 			/*
3841 			 * If reqid of SPD is non-zero, unique SA is required.
3842 			 * The result must be of same reqid in this case.
3843 			 */
3844 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
3845 				return 0;
3846 		}
3847 
3848 		if (flag == CMP_MODE_REQID) {
3849 			if (saidx0->mode != IPSEC_MODE_ANY
3850 			 && saidx0->mode != saidx1->mode)
3851 				return 0;
3852 		}
3853 
3854 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) {
3855 			return 0;
3856 		}
3857 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) {
3858 			return 0;
3859 		}
3860 	}
3861 
3862 	return 1;
3863 }
3864 
3865 /*
3866  * compare two secindex structure exactly.
3867  * IN:
3868  *	spidx0: source, it is often in SPD.
3869  *	spidx1: object, it is often from PFKEY message.
3870  * OUT:
3871  *	1 : equal
3872  *	0 : not equal
3873  */
3874 static int
3875 key_cmpspidx_exactly(
3876 	struct secpolicyindex *spidx0,
3877 	struct secpolicyindex *spidx1)
3878 {
3879 	/* sanity */
3880 	if (spidx0 == NULL && spidx1 == NULL)
3881 		return 1;
3882 
3883 	if (spidx0 == NULL || spidx1 == NULL)
3884 		return 0;
3885 
3886 	if (spidx0->prefs != spidx1->prefs
3887 	 || spidx0->prefd != spidx1->prefd
3888 	 || spidx0->ul_proto != spidx1->ul_proto)
3889 		return 0;
3890 
3891 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
3892 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
3893 }
3894 
3895 /*
3896  * compare two secindex structure with mask.
3897  * IN:
3898  *	spidx0: source, it is often in SPD.
3899  *	spidx1: object, it is often from IP header.
3900  * OUT:
3901  *	1 : equal
3902  *	0 : not equal
3903  */
3904 static int
3905 key_cmpspidx_withmask(
3906 	struct secpolicyindex *spidx0,
3907 	struct secpolicyindex *spidx1)
3908 {
3909 	/* sanity */
3910 	if (spidx0 == NULL && spidx1 == NULL)
3911 		return 1;
3912 
3913 	if (spidx0 == NULL || spidx1 == NULL)
3914 		return 0;
3915 
3916 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
3917 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
3918 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
3919 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
3920 		return 0;
3921 
3922 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
3923 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
3924 	 && spidx0->ul_proto != spidx1->ul_proto)
3925 		return 0;
3926 
3927 	switch (spidx0->src.sa.sa_family) {
3928 	case AF_INET:
3929 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
3930 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
3931 			return 0;
3932 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
3933 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
3934 			return 0;
3935 		break;
3936 	case AF_INET6:
3937 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
3938 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
3939 			return 0;
3940 		/*
3941 		 * scope_id check. if sin6_scope_id is 0, we regard it
3942 		 * as a wildcard scope, which matches any scope zone ID.
3943 		 */
3944 		if (spidx0->src.sin6.sin6_scope_id &&
3945 		    spidx1->src.sin6.sin6_scope_id &&
3946 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
3947 			return 0;
3948 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
3949 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
3950 			return 0;
3951 		break;
3952 	default:
3953 		/* XXX */
3954 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
3955 			return 0;
3956 		break;
3957 	}
3958 
3959 	switch (spidx0->dst.sa.sa_family) {
3960 	case AF_INET:
3961 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
3962 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
3963 			return 0;
3964 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
3965 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
3966 			return 0;
3967 		break;
3968 	case AF_INET6:
3969 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
3970 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
3971 			return 0;
3972 		/*
3973 		 * scope_id check. if sin6_scope_id is 0, we regard it
3974 		 * as a wildcard scope, which matches any scope zone ID.
3975 		 */
3976 		if (spidx0->dst.sin6.sin6_scope_id &&
3977 		    spidx1->dst.sin6.sin6_scope_id &&
3978 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
3979 			return 0;
3980 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
3981 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
3982 			return 0;
3983 		break;
3984 	default:
3985 		/* XXX */
3986 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
3987 			return 0;
3988 		break;
3989 	}
3990 
3991 	/* XXX Do we check other field ?  e.g. flowinfo */
3992 
3993 	return 1;
3994 }
3995 
3996 /* returns 0 on match */
3997 static int
3998 key_sockaddrcmp(
3999 	const struct sockaddr *sa1,
4000 	const struct sockaddr *sa2,
4001 	int port)
4002 {
4003 #ifdef satosin
4004 #undef satosin
4005 #endif
4006 #define satosin(s) ((const struct sockaddr_in *)s)
4007 #ifdef satosin6
4008 #undef satosin6
4009 #endif
4010 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4011 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4012 		return 1;
4013 
4014 	switch (sa1->sa_family) {
4015 	case AF_INET:
4016 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4017 			return 1;
4018 		if (satosin(sa1)->sin_addr.s_addr !=
4019 		    satosin(sa2)->sin_addr.s_addr) {
4020 			return 1;
4021 		}
4022 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4023 			return 1;
4024 		break;
4025 	case AF_INET6:
4026 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4027 			return 1;	/*EINVAL*/
4028 		if (satosin6(sa1)->sin6_scope_id !=
4029 		    satosin6(sa2)->sin6_scope_id) {
4030 			return 1;
4031 		}
4032 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4033 		    &satosin6(sa2)->sin6_addr)) {
4034 			return 1;
4035 		}
4036 		if (port &&
4037 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4038 			return 1;
4039 		}
4040 		break;
4041 	default:
4042 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4043 			return 1;
4044 		break;
4045 	}
4046 
4047 	return 0;
4048 #undef satosin
4049 #undef satosin6
4050 }
4051 
4052 /*
4053  * compare two buffers with mask.
4054  * IN:
4055  *	addr1: source
4056  *	addr2: object
4057  *	bits:  Number of bits to compare
4058  * OUT:
4059  *	1 : equal
4060  *	0 : not equal
4061  */
4062 static int
4063 key_bbcmp(const void *a1, const void *a2, u_int bits)
4064 {
4065 	const unsigned char *p1 = a1;
4066 	const unsigned char *p2 = a2;
4067 
4068 	/* XXX: This could be considerably faster if we compare a word
4069 	 * at a time, but it is complicated on LSB Endian machines */
4070 
4071 	/* Handle null pointers */
4072 	if (p1 == NULL || p2 == NULL)
4073 		return (p1 == p2);
4074 
4075 	while (bits >= 8) {
4076 		if (*p1++ != *p2++)
4077 			return 0;
4078 		bits -= 8;
4079 	}
4080 
4081 	if (bits > 0) {
4082 		u_int8_t mask = ~((1<<(8-bits))-1);
4083 		if ((*p1 & mask) != (*p2 & mask))
4084 			return 0;
4085 	}
4086 	return 1;	/* Match! */
4087 }
4088 
4089 static void
4090 key_flush_spd(time_t now)
4091 {
4092 	INIT_VNET_IPSEC(curvnet);
4093 	static u_int16_t sptree_scangen = 0;
4094 	u_int16_t gen = sptree_scangen++;
4095 	struct secpolicy *sp;
4096 	u_int dir;
4097 
4098 	/* SPD */
4099 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4100 restart:
4101 		SPTREE_LOCK();
4102 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4103 			if (sp->scangen == gen)		/* previously handled */
4104 				continue;
4105 			sp->scangen = gen;
4106 			if (sp->state == IPSEC_SPSTATE_DEAD) {
4107 				/* NB: clean entries created by key_spdflush */
4108 				SPTREE_UNLOCK();
4109 				KEY_FREESP(&sp);
4110 				goto restart;
4111 			}
4112 			if (sp->lifetime == 0 && sp->validtime == 0)
4113 				continue;
4114 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4115 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4116 				sp->state = IPSEC_SPSTATE_DEAD;
4117 				SPTREE_UNLOCK();
4118 				key_spdexpire(sp);
4119 				KEY_FREESP(&sp);
4120 				goto restart;
4121 			}
4122 		}
4123 		SPTREE_UNLOCK();
4124 	}
4125 }
4126 
4127 static void
4128 key_flush_sad(time_t now)
4129 {
4130 	INIT_VNET_IPSEC(curvnet);
4131 	struct secashead *sah, *nextsah;
4132 	struct secasvar *sav, *nextsav;
4133 
4134 	/* SAD */
4135 	SAHTREE_LOCK();
4136 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4137 		/* if sah has been dead, then delete it and process next sah. */
4138 		if (sah->state == SADB_SASTATE_DEAD) {
4139 			key_delsah(sah);
4140 			continue;
4141 		}
4142 
4143 		/* if LARVAL entry doesn't become MATURE, delete it. */
4144 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4145 			/* Need to also check refcnt for a larval SA ??? */
4146 			if (now - sav->created > V_key_larval_lifetime)
4147 				KEY_FREESAV(&sav);
4148 		}
4149 
4150 		/*
4151 		 * check MATURE entry to start to send expire message
4152 		 * whether or not.
4153 		 */
4154 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4155 			/* we don't need to check. */
4156 			if (sav->lft_s == NULL)
4157 				continue;
4158 
4159 			/* sanity check */
4160 			if (sav->lft_c == NULL) {
4161 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4162 					"time, why?\n", __func__));
4163 				continue;
4164 			}
4165 
4166 			/* check SOFT lifetime */
4167 			if (sav->lft_s->addtime != 0 &&
4168 			    now - sav->created > sav->lft_s->addtime) {
4169 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4170 				/*
4171 				 * Actually, only send expire message if
4172 				 * SA has been used, as it was done before,
4173 				 * but should we always send such message,
4174 				 * and let IKE daemon decide if it should be
4175 				 * renegotiated or not ?
4176 				 * XXX expire message will actually NOT be
4177 				 * sent if SA is only used after soft
4178 				 * lifetime has been reached, see below
4179 				 * (DYING state)
4180 				 */
4181 				if (sav->lft_c->usetime != 0)
4182 					key_expire(sav);
4183 			}
4184 			/* check SOFT lifetime by bytes */
4185 			/*
4186 			 * XXX I don't know the way to delete this SA
4187 			 * when new SA is installed.  Caution when it's
4188 			 * installed too big lifetime by time.
4189 			 */
4190 			else if (sav->lft_s->bytes != 0 &&
4191 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4192 
4193 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4194 				/*
4195 				 * XXX If we keep to send expire
4196 				 * message in the status of
4197 				 * DYING. Do remove below code.
4198 				 */
4199 				key_expire(sav);
4200 			}
4201 		}
4202 
4203 		/* check DYING entry to change status to DEAD. */
4204 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4205 			/* we don't need to check. */
4206 			if (sav->lft_h == NULL)
4207 				continue;
4208 
4209 			/* sanity check */
4210 			if (sav->lft_c == NULL) {
4211 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4212 					"time, why?\n", __func__));
4213 				continue;
4214 			}
4215 
4216 			if (sav->lft_h->addtime != 0 &&
4217 			    now - sav->created > sav->lft_h->addtime) {
4218 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4219 				KEY_FREESAV(&sav);
4220 			}
4221 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4222 			else if (sav->lft_s != NULL
4223 			      && sav->lft_s->addtime != 0
4224 			      && now - sav->created > sav->lft_s->addtime) {
4225 				/*
4226 				 * XXX: should be checked to be
4227 				 * installed the valid SA.
4228 				 */
4229 
4230 				/*
4231 				 * If there is no SA then sending
4232 				 * expire message.
4233 				 */
4234 				key_expire(sav);
4235 			}
4236 #endif
4237 			/* check HARD lifetime by bytes */
4238 			else if (sav->lft_h->bytes != 0 &&
4239 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4240 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4241 				KEY_FREESAV(&sav);
4242 			}
4243 		}
4244 
4245 		/* delete entry in DEAD */
4246 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4247 			/* sanity check */
4248 			if (sav->state != SADB_SASTATE_DEAD) {
4249 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4250 					"(queue: %d SA: %d): kill it anyway\n",
4251 					__func__,
4252 					SADB_SASTATE_DEAD, sav->state));
4253 			}
4254 			/*
4255 			 * do not call key_freesav() here.
4256 			 * sav should already be freed, and sav->refcnt
4257 			 * shows other references to sav
4258 			 * (such as from SPD).
4259 			 */
4260 		}
4261 	}
4262 	SAHTREE_UNLOCK();
4263 }
4264 
4265 static void
4266 key_flush_acq(time_t now)
4267 {
4268 	INIT_VNET_IPSEC(curvnet);
4269 	struct secacq *acq, *nextacq;
4270 
4271 	/* ACQ tree */
4272 	ACQ_LOCK();
4273 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4274 		nextacq = LIST_NEXT(acq, chain);
4275 		if (now - acq->created > V_key_blockacq_lifetime
4276 		 && __LIST_CHAINED(acq)) {
4277 			LIST_REMOVE(acq, chain);
4278 			free(acq, M_IPSEC_SAQ);
4279 		}
4280 	}
4281 	ACQ_UNLOCK();
4282 }
4283 
4284 static void
4285 key_flush_spacq(time_t now)
4286 {
4287 	INIT_VNET_IPSEC(curvnet);
4288 	struct secspacq *acq, *nextacq;
4289 
4290 	/* SP ACQ tree */
4291 	SPACQ_LOCK();
4292 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4293 		nextacq = LIST_NEXT(acq, chain);
4294 		if (now - acq->created > V_key_blockacq_lifetime
4295 		 && __LIST_CHAINED(acq)) {
4296 			LIST_REMOVE(acq, chain);
4297 			free(acq, M_IPSEC_SAQ);
4298 		}
4299 	}
4300 	SPACQ_UNLOCK();
4301 }
4302 
4303 /*
4304  * time handler.
4305  * scanning SPD and SAD to check status for each entries,
4306  * and do to remove or to expire.
4307  * XXX: year 2038 problem may remain.
4308  */
4309 void
4310 key_timehandler(void)
4311 {
4312 	VNET_ITERATOR_DECL(vnet_iter);
4313 	time_t now = time_second;
4314 
4315 	VNET_LIST_RLOCK();
4316 	VNET_FOREACH(vnet_iter) {
4317 		CURVNET_SET(vnet_iter);
4318 		key_flush_spd(now);
4319 		key_flush_sad(now);
4320 		key_flush_acq(now);
4321 		key_flush_spacq(now);
4322 		CURVNET_RESTORE();
4323 	}
4324 	VNET_LIST_RUNLOCK();
4325 
4326 #ifndef IPSEC_DEBUG2
4327 	/* do exchange to tick time !! */
4328 	(void)timeout((void *)key_timehandler, (void *)0, hz);
4329 #endif /* IPSEC_DEBUG2 */
4330 }
4331 
4332 u_long
4333 key_random()
4334 {
4335 	u_long value;
4336 
4337 	key_randomfill(&value, sizeof(value));
4338 	return value;
4339 }
4340 
4341 void
4342 key_randomfill(p, l)
4343 	void *p;
4344 	size_t l;
4345 {
4346 	size_t n;
4347 	u_long v;
4348 	static int warn = 1;
4349 
4350 	n = 0;
4351 	n = (size_t)read_random(p, (u_int)l);
4352 	/* last resort */
4353 	while (n < l) {
4354 		v = random();
4355 		bcopy(&v, (u_int8_t *)p + n,
4356 		    l - n < sizeof(v) ? l - n : sizeof(v));
4357 		n += sizeof(v);
4358 
4359 		if (warn) {
4360 			printf("WARNING: pseudo-random number generator "
4361 			    "used for IPsec processing\n");
4362 			warn = 0;
4363 		}
4364 	}
4365 }
4366 
4367 /*
4368  * map SADB_SATYPE_* to IPPROTO_*.
4369  * if satype == SADB_SATYPE then satype is mapped to ~0.
4370  * OUT:
4371  *	0: invalid satype.
4372  */
4373 static u_int16_t
4374 key_satype2proto(u_int8_t satype)
4375 {
4376 	switch (satype) {
4377 	case SADB_SATYPE_UNSPEC:
4378 		return IPSEC_PROTO_ANY;
4379 	case SADB_SATYPE_AH:
4380 		return IPPROTO_AH;
4381 	case SADB_SATYPE_ESP:
4382 		return IPPROTO_ESP;
4383 	case SADB_X_SATYPE_IPCOMP:
4384 		return IPPROTO_IPCOMP;
4385 	case SADB_X_SATYPE_TCPSIGNATURE:
4386 		return IPPROTO_TCP;
4387 	default:
4388 		return 0;
4389 	}
4390 	/* NOTREACHED */
4391 }
4392 
4393 /*
4394  * map IPPROTO_* to SADB_SATYPE_*
4395  * OUT:
4396  *	0: invalid protocol type.
4397  */
4398 static u_int8_t
4399 key_proto2satype(u_int16_t proto)
4400 {
4401 	switch (proto) {
4402 	case IPPROTO_AH:
4403 		return SADB_SATYPE_AH;
4404 	case IPPROTO_ESP:
4405 		return SADB_SATYPE_ESP;
4406 	case IPPROTO_IPCOMP:
4407 		return SADB_X_SATYPE_IPCOMP;
4408 	case IPPROTO_TCP:
4409 		return SADB_X_SATYPE_TCPSIGNATURE;
4410 	default:
4411 		return 0;
4412 	}
4413 	/* NOTREACHED */
4414 }
4415 
4416 /* %%% PF_KEY */
4417 /*
4418  * SADB_GETSPI processing is to receive
4419  *	<base, (SA2), src address, dst address, (SPI range)>
4420  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4421  * tree with the status of LARVAL, and send
4422  *	<base, SA(*), address(SD)>
4423  * to the IKMPd.
4424  *
4425  * IN:	mhp: pointer to the pointer to each header.
4426  * OUT:	NULL if fail.
4427  *	other if success, return pointer to the message to send.
4428  */
4429 static int
4430 key_getspi(so, m, mhp)
4431 	struct socket *so;
4432 	struct mbuf *m;
4433 	const struct sadb_msghdr *mhp;
4434 {
4435 	INIT_VNET_IPSEC(curvnet);
4436 	struct sadb_address *src0, *dst0;
4437 	struct secasindex saidx;
4438 	struct secashead *newsah;
4439 	struct secasvar *newsav;
4440 	u_int8_t proto;
4441 	u_int32_t spi;
4442 	u_int8_t mode;
4443 	u_int32_t reqid;
4444 	int error;
4445 
4446 	IPSEC_ASSERT(so != NULL, ("null socket"));
4447 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4448 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4449 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4450 
4451 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4452 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4453 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4454 			__func__));
4455 		return key_senderror(so, m, EINVAL);
4456 	}
4457 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4458 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4459 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4460 			__func__));
4461 		return key_senderror(so, m, EINVAL);
4462 	}
4463 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4464 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4465 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4466 	} else {
4467 		mode = IPSEC_MODE_ANY;
4468 		reqid = 0;
4469 	}
4470 
4471 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4472 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4473 
4474 	/* map satype to proto */
4475 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4476 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4477 			__func__));
4478 		return key_senderror(so, m, EINVAL);
4479 	}
4480 
4481 	/* make sure if port number is zero. */
4482 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4483 	case AF_INET:
4484 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4485 		    sizeof(struct sockaddr_in))
4486 			return key_senderror(so, m, EINVAL);
4487 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4488 		break;
4489 	case AF_INET6:
4490 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4491 		    sizeof(struct sockaddr_in6))
4492 			return key_senderror(so, m, EINVAL);
4493 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4494 		break;
4495 	default:
4496 		; /*???*/
4497 	}
4498 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4499 	case AF_INET:
4500 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4501 		    sizeof(struct sockaddr_in))
4502 			return key_senderror(so, m, EINVAL);
4503 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4504 		break;
4505 	case AF_INET6:
4506 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4507 		    sizeof(struct sockaddr_in6))
4508 			return key_senderror(so, m, EINVAL);
4509 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4510 		break;
4511 	default:
4512 		; /*???*/
4513 	}
4514 
4515 	/* XXX boundary check against sa_len */
4516 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4517 
4518 	/* SPI allocation */
4519 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4520 	                       &saidx);
4521 	if (spi == 0)
4522 		return key_senderror(so, m, EINVAL);
4523 
4524 	/* get a SA index */
4525 	if ((newsah = key_getsah(&saidx)) == NULL) {
4526 		/* create a new SA index */
4527 		if ((newsah = key_newsah(&saidx)) == NULL) {
4528 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4529 			return key_senderror(so, m, ENOBUFS);
4530 		}
4531 	}
4532 
4533 	/* get a new SA */
4534 	/* XXX rewrite */
4535 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4536 	if (newsav == NULL) {
4537 		/* XXX don't free new SA index allocated in above. */
4538 		return key_senderror(so, m, error);
4539 	}
4540 
4541 	/* set spi */
4542 	newsav->spi = htonl(spi);
4543 
4544 	/* delete the entry in acqtree */
4545 	if (mhp->msg->sadb_msg_seq != 0) {
4546 		struct secacq *acq;
4547 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4548 			/* reset counter in order to deletion by timehandler. */
4549 			acq->created = time_second;
4550 			acq->count = 0;
4551 		}
4552     	}
4553 
4554     {
4555 	struct mbuf *n, *nn;
4556 	struct sadb_sa *m_sa;
4557 	struct sadb_msg *newmsg;
4558 	int off, len;
4559 
4560 	/* create new sadb_msg to reply. */
4561 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4562 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4563 
4564 	MGETHDR(n, M_DONTWAIT, MT_DATA);
4565 	if (len > MHLEN) {
4566 		MCLGET(n, M_DONTWAIT);
4567 		if ((n->m_flags & M_EXT) == 0) {
4568 			m_freem(n);
4569 			n = NULL;
4570 		}
4571 	}
4572 	if (!n)
4573 		return key_senderror(so, m, ENOBUFS);
4574 
4575 	n->m_len = len;
4576 	n->m_next = NULL;
4577 	off = 0;
4578 
4579 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4580 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4581 
4582 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4583 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4584 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4585 	m_sa->sadb_sa_spi = htonl(spi);
4586 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4587 
4588 	IPSEC_ASSERT(off == len,
4589 		("length inconsistency (off %u len %u)", off, len));
4590 
4591 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4592 	    SADB_EXT_ADDRESS_DST);
4593 	if (!n->m_next) {
4594 		m_freem(n);
4595 		return key_senderror(so, m, ENOBUFS);
4596 	}
4597 
4598 	if (n->m_len < sizeof(struct sadb_msg)) {
4599 		n = m_pullup(n, sizeof(struct sadb_msg));
4600 		if (n == NULL)
4601 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4602 	}
4603 
4604 	n->m_pkthdr.len = 0;
4605 	for (nn = n; nn; nn = nn->m_next)
4606 		n->m_pkthdr.len += nn->m_len;
4607 
4608 	newmsg = mtod(n, struct sadb_msg *);
4609 	newmsg->sadb_msg_seq = newsav->seq;
4610 	newmsg->sadb_msg_errno = 0;
4611 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4612 
4613 	m_freem(m);
4614 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4615     }
4616 }
4617 
4618 /*
4619  * allocating new SPI
4620  * called by key_getspi().
4621  * OUT:
4622  *	0:	failure.
4623  *	others: success.
4624  */
4625 static u_int32_t
4626 key_do_getnewspi(spirange, saidx)
4627 	struct sadb_spirange *spirange;
4628 	struct secasindex *saidx;
4629 {
4630 	INIT_VNET_IPSEC(curvnet);
4631 	u_int32_t newspi;
4632 	u_int32_t min, max;
4633 	int count = V_key_spi_trycnt;
4634 
4635 	/* set spi range to allocate */
4636 	if (spirange != NULL) {
4637 		min = spirange->sadb_spirange_min;
4638 		max = spirange->sadb_spirange_max;
4639 	} else {
4640 		min = V_key_spi_minval;
4641 		max = V_key_spi_maxval;
4642 	}
4643 	/* IPCOMP needs 2-byte SPI */
4644 	if (saidx->proto == IPPROTO_IPCOMP) {
4645 		u_int32_t t;
4646 		if (min >= 0x10000)
4647 			min = 0xffff;
4648 		if (max >= 0x10000)
4649 			max = 0xffff;
4650 		if (min > max) {
4651 			t = min; min = max; max = t;
4652 		}
4653 	}
4654 
4655 	if (min == max) {
4656 		if (key_checkspidup(saidx, min) != NULL) {
4657 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4658 				__func__, min));
4659 			return 0;
4660 		}
4661 
4662 		count--; /* taking one cost. */
4663 		newspi = min;
4664 
4665 	} else {
4666 
4667 		/* init SPI */
4668 		newspi = 0;
4669 
4670 		/* when requesting to allocate spi ranged */
4671 		while (count--) {
4672 			/* generate pseudo-random SPI value ranged. */
4673 			newspi = min + (key_random() % (max - min + 1));
4674 
4675 			if (key_checkspidup(saidx, newspi) == NULL)
4676 				break;
4677 		}
4678 
4679 		if (count == 0 || newspi == 0) {
4680 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4681 				__func__));
4682 			return 0;
4683 		}
4684 	}
4685 
4686 	/* statistics */
4687 	keystat.getspi_count =
4688 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4689 
4690 	return newspi;
4691 }
4692 
4693 /*
4694  * SADB_UPDATE processing
4695  * receive
4696  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4697  *       key(AE), (identity(SD),) (sensitivity)>
4698  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4699  * and send
4700  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4701  *       (identity(SD),) (sensitivity)>
4702  * to the ikmpd.
4703  *
4704  * m will always be freed.
4705  */
4706 static int
4707 key_update(so, m, mhp)
4708 	struct socket *so;
4709 	struct mbuf *m;
4710 	const struct sadb_msghdr *mhp;
4711 {
4712 	INIT_VNET_IPSEC(curvnet);
4713 	struct sadb_sa *sa0;
4714 	struct sadb_address *src0, *dst0;
4715 	struct secasindex saidx;
4716 	struct secashead *sah;
4717 	struct secasvar *sav;
4718 	u_int16_t proto;
4719 	u_int8_t mode;
4720 	u_int32_t reqid;
4721 	int error;
4722 
4723 	IPSEC_ASSERT(so != NULL, ("null socket"));
4724 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4725 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4726 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4727 
4728 	/* map satype to proto */
4729 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4730 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4731 			__func__));
4732 		return key_senderror(so, m, EINVAL);
4733 	}
4734 
4735 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4736 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4737 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4738 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4739 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4740 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4741 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4742 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4743 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4744 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4745 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4746 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4747 			__func__));
4748 		return key_senderror(so, m, EINVAL);
4749 	}
4750 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4751 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4752 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4753 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4754 			__func__));
4755 		return key_senderror(so, m, EINVAL);
4756 	}
4757 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4758 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4759 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4760 	} else {
4761 		mode = IPSEC_MODE_ANY;
4762 		reqid = 0;
4763 	}
4764 	/* XXX boundary checking for other extensions */
4765 
4766 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4767 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4768 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4769 
4770 	/* XXX boundary check against sa_len */
4771 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4772 
4773 	/* get a SA header */
4774 	if ((sah = key_getsah(&saidx)) == NULL) {
4775 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
4776 		return key_senderror(so, m, ENOENT);
4777 	}
4778 
4779 	/* set spidx if there */
4780 	/* XXX rewrite */
4781 	error = key_setident(sah, m, mhp);
4782 	if (error)
4783 		return key_senderror(so, m, error);
4784 
4785 	/* find a SA with sequence number. */
4786 #ifdef IPSEC_DOSEQCHECK
4787 	if (mhp->msg->sadb_msg_seq != 0
4788 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
4789 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
4790 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
4791 		return key_senderror(so, m, ENOENT);
4792 	}
4793 #else
4794 	SAHTREE_LOCK();
4795 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
4796 	SAHTREE_UNLOCK();
4797 	if (sav == NULL) {
4798 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
4799 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4800 		return key_senderror(so, m, EINVAL);
4801 	}
4802 #endif
4803 
4804 	/* validity check */
4805 	if (sav->sah->saidx.proto != proto) {
4806 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
4807 			"(DB=%u param=%u)\n", __func__,
4808 			sav->sah->saidx.proto, proto));
4809 		return key_senderror(so, m, EINVAL);
4810 	}
4811 #ifdef IPSEC_DOSEQCHECK
4812 	if (sav->spi != sa0->sadb_sa_spi) {
4813 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
4814 		    __func__,
4815 		    (u_int32_t)ntohl(sav->spi),
4816 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
4817 		return key_senderror(so, m, EINVAL);
4818 	}
4819 #endif
4820 	if (sav->pid != mhp->msg->sadb_msg_pid) {
4821 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
4822 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
4823 		return key_senderror(so, m, EINVAL);
4824 	}
4825 
4826 	/* copy sav values */
4827 	error = key_setsaval(sav, m, mhp);
4828 	if (error) {
4829 		KEY_FREESAV(&sav);
4830 		return key_senderror(so, m, error);
4831 	}
4832 
4833 	/* check SA values to be mature. */
4834 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
4835 		KEY_FREESAV(&sav);
4836 		return key_senderror(so, m, 0);
4837 	}
4838 
4839     {
4840 	struct mbuf *n;
4841 
4842 	/* set msg buf from mhp */
4843 	n = key_getmsgbuf_x1(m, mhp);
4844 	if (n == NULL) {
4845 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
4846 		return key_senderror(so, m, ENOBUFS);
4847 	}
4848 
4849 	m_freem(m);
4850 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
4851     }
4852 }
4853 
4854 /*
4855  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
4856  * only called by key_update().
4857  * OUT:
4858  *	NULL	: not found
4859  *	others	: found, pointer to a SA.
4860  */
4861 #ifdef IPSEC_DOSEQCHECK
4862 static struct secasvar *
4863 key_getsavbyseq(sah, seq)
4864 	struct secashead *sah;
4865 	u_int32_t seq;
4866 {
4867 	struct secasvar *sav;
4868 	u_int state;
4869 
4870 	state = SADB_SASTATE_LARVAL;
4871 
4872 	/* search SAD with sequence number ? */
4873 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
4874 
4875 		KEY_CHKSASTATE(state, sav->state, __func__);
4876 
4877 		if (sav->seq == seq) {
4878 			sa_addref(sav);
4879 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
4880 				printf("DP %s cause refcnt++:%d SA:%p\n",
4881 					__func__, sav->refcnt, sav));
4882 			return sav;
4883 		}
4884 	}
4885 
4886 	return NULL;
4887 }
4888 #endif
4889 
4890 /*
4891  * SADB_ADD processing
4892  * add an entry to SA database, when received
4893  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4894  *       key(AE), (identity(SD),) (sensitivity)>
4895  * from the ikmpd,
4896  * and send
4897  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4898  *       (identity(SD),) (sensitivity)>
4899  * to the ikmpd.
4900  *
4901  * IGNORE identity and sensitivity messages.
4902  *
4903  * m will always be freed.
4904  */
4905 static int
4906 key_add(so, m, mhp)
4907 	struct socket *so;
4908 	struct mbuf *m;
4909 	const struct sadb_msghdr *mhp;
4910 {
4911 	INIT_VNET_IPSEC(curvnet);
4912 	struct sadb_sa *sa0;
4913 	struct sadb_address *src0, *dst0;
4914 	struct secasindex saidx;
4915 	struct secashead *newsah;
4916 	struct secasvar *newsav;
4917 	u_int16_t proto;
4918 	u_int8_t mode;
4919 	u_int32_t reqid;
4920 	int error;
4921 
4922 	IPSEC_ASSERT(so != NULL, ("null socket"));
4923 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4924 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4925 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4926 
4927 	/* map satype to proto */
4928 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4929 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4930 			__func__));
4931 		return key_senderror(so, m, EINVAL);
4932 	}
4933 
4934 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4935 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4936 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4937 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4938 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4939 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4940 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4941 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4942 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4943 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4944 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4945 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4946 			__func__));
4947 		return key_senderror(so, m, EINVAL);
4948 	}
4949 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4950 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4951 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4952 		/* XXX need more */
4953 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4954 			__func__));
4955 		return key_senderror(so, m, EINVAL);
4956 	}
4957 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4958 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4959 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4960 	} else {
4961 		mode = IPSEC_MODE_ANY;
4962 		reqid = 0;
4963 	}
4964 
4965 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
4966 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
4967 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
4968 
4969 	/* XXX boundary check against sa_len */
4970 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4971 
4972 	/* get a SA header */
4973 	if ((newsah = key_getsah(&saidx)) == NULL) {
4974 		/* create a new SA header */
4975 		if ((newsah = key_newsah(&saidx)) == NULL) {
4976 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4977 			return key_senderror(so, m, ENOBUFS);
4978 		}
4979 	}
4980 
4981 	/* set spidx if there */
4982 	/* XXX rewrite */
4983 	error = key_setident(newsah, m, mhp);
4984 	if (error) {
4985 		return key_senderror(so, m, error);
4986 	}
4987 
4988 	/* create new SA entry. */
4989 	/* We can create new SA only if SPI is differenct. */
4990 	SAHTREE_LOCK();
4991 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
4992 	SAHTREE_UNLOCK();
4993 	if (newsav != NULL) {
4994 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
4995 		return key_senderror(so, m, EEXIST);
4996 	}
4997 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4998 	if (newsav == NULL) {
4999 		return key_senderror(so, m, error);
5000 	}
5001 
5002 	/* check SA values to be mature. */
5003 	if ((error = key_mature(newsav)) != 0) {
5004 		KEY_FREESAV(&newsav);
5005 		return key_senderror(so, m, error);
5006 	}
5007 
5008 	/*
5009 	 * don't call key_freesav() here, as we would like to keep the SA
5010 	 * in the database on success.
5011 	 */
5012 
5013     {
5014 	struct mbuf *n;
5015 
5016 	/* set msg buf from mhp */
5017 	n = key_getmsgbuf_x1(m, mhp);
5018 	if (n == NULL) {
5019 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5020 		return key_senderror(so, m, ENOBUFS);
5021 	}
5022 
5023 	m_freem(m);
5024 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5025     }
5026 }
5027 
5028 /* m is retained */
5029 static int
5030 key_setident(sah, m, mhp)
5031 	struct secashead *sah;
5032 	struct mbuf *m;
5033 	const struct sadb_msghdr *mhp;
5034 {
5035 	INIT_VNET_IPSEC(curvnet);
5036 	const struct sadb_ident *idsrc, *iddst;
5037 	int idsrclen, iddstlen;
5038 
5039 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5040 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5041 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5042 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5043 
5044 	/* don't make buffer if not there */
5045 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5046 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5047 		sah->idents = NULL;
5048 		sah->identd = NULL;
5049 		return 0;
5050 	}
5051 
5052 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5053 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5054 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5055 		return EINVAL;
5056 	}
5057 
5058 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5059 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5060 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5061 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5062 
5063 	/* validity check */
5064 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5065 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5066 		return EINVAL;
5067 	}
5068 
5069 	switch (idsrc->sadb_ident_type) {
5070 	case SADB_IDENTTYPE_PREFIX:
5071 	case SADB_IDENTTYPE_FQDN:
5072 	case SADB_IDENTTYPE_USERFQDN:
5073 	default:
5074 		/* XXX do nothing */
5075 		sah->idents = NULL;
5076 		sah->identd = NULL;
5077 	 	return 0;
5078 	}
5079 
5080 	/* make structure */
5081 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5082 	if (sah->idents == NULL) {
5083 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5084 		return ENOBUFS;
5085 	}
5086 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5087 	if (sah->identd == NULL) {
5088 		free(sah->idents, M_IPSEC_MISC);
5089 		sah->idents = NULL;
5090 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5091 		return ENOBUFS;
5092 	}
5093 	sah->idents->type = idsrc->sadb_ident_type;
5094 	sah->idents->id = idsrc->sadb_ident_id;
5095 
5096 	sah->identd->type = iddst->sadb_ident_type;
5097 	sah->identd->id = iddst->sadb_ident_id;
5098 
5099 	return 0;
5100 }
5101 
5102 /*
5103  * m will not be freed on return.
5104  * it is caller's responsibility to free the result.
5105  */
5106 static struct mbuf *
5107 key_getmsgbuf_x1(m, mhp)
5108 	struct mbuf *m;
5109 	const struct sadb_msghdr *mhp;
5110 {
5111 	struct mbuf *n;
5112 
5113 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5114 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5115 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5116 
5117 	/* create new sadb_msg to reply. */
5118 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5119 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5120 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5121 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5122 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5123 	if (!n)
5124 		return NULL;
5125 
5126 	if (n->m_len < sizeof(struct sadb_msg)) {
5127 		n = m_pullup(n, sizeof(struct sadb_msg));
5128 		if (n == NULL)
5129 			return NULL;
5130 	}
5131 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5132 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5133 	    PFKEY_UNIT64(n->m_pkthdr.len);
5134 
5135 	return n;
5136 }
5137 
5138 static int key_delete_all __P((struct socket *, struct mbuf *,
5139 	const struct sadb_msghdr *, u_int16_t));
5140 
5141 /*
5142  * SADB_DELETE processing
5143  * receive
5144  *   <base, SA(*), address(SD)>
5145  * from the ikmpd, and set SADB_SASTATE_DEAD,
5146  * and send,
5147  *   <base, SA(*), address(SD)>
5148  * to the ikmpd.
5149  *
5150  * m will always be freed.
5151  */
5152 static int
5153 key_delete(so, m, mhp)
5154 	struct socket *so;
5155 	struct mbuf *m;
5156 	const struct sadb_msghdr *mhp;
5157 {
5158 	INIT_VNET_IPSEC(curvnet);
5159 	struct sadb_sa *sa0;
5160 	struct sadb_address *src0, *dst0;
5161 	struct secasindex saidx;
5162 	struct secashead *sah;
5163 	struct secasvar *sav = NULL;
5164 	u_int16_t proto;
5165 
5166 	IPSEC_ASSERT(so != NULL, ("null socket"));
5167 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5168 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5169 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5170 
5171 	/* map satype to proto */
5172 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5173 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5174 			__func__));
5175 		return key_senderror(so, m, EINVAL);
5176 	}
5177 
5178 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5179 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5180 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5181 			__func__));
5182 		return key_senderror(so, m, EINVAL);
5183 	}
5184 
5185 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5186 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5187 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5188 			__func__));
5189 		return key_senderror(so, m, EINVAL);
5190 	}
5191 
5192 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5193 		/*
5194 		 * Caller wants us to delete all non-LARVAL SAs
5195 		 * that match the src/dst.  This is used during
5196 		 * IKE INITIAL-CONTACT.
5197 		 */
5198 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5199 		return key_delete_all(so, m, mhp, proto);
5200 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5201 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5202 			__func__));
5203 		return key_senderror(so, m, EINVAL);
5204 	}
5205 
5206 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5207 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5208 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5209 
5210 	/* XXX boundary check against sa_len */
5211 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5212 
5213 	/* get a SA header */
5214 	SAHTREE_LOCK();
5215 	LIST_FOREACH(sah, &V_sahtree, chain) {
5216 		if (sah->state == SADB_SASTATE_DEAD)
5217 			continue;
5218 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5219 			continue;
5220 
5221 		/* get a SA with SPI. */
5222 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5223 		if (sav)
5224 			break;
5225 	}
5226 	if (sah == NULL) {
5227 		SAHTREE_UNLOCK();
5228 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5229 		return key_senderror(so, m, ENOENT);
5230 	}
5231 
5232 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5233 	SAHTREE_UNLOCK();
5234 	KEY_FREESAV(&sav);
5235 
5236     {
5237 	struct mbuf *n;
5238 	struct sadb_msg *newmsg;
5239 
5240 	/* create new sadb_msg to reply. */
5241 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5242 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5243 	if (!n)
5244 		return key_senderror(so, m, ENOBUFS);
5245 
5246 	if (n->m_len < sizeof(struct sadb_msg)) {
5247 		n = m_pullup(n, sizeof(struct sadb_msg));
5248 		if (n == NULL)
5249 			return key_senderror(so, m, ENOBUFS);
5250 	}
5251 	newmsg = mtod(n, struct sadb_msg *);
5252 	newmsg->sadb_msg_errno = 0;
5253 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5254 
5255 	m_freem(m);
5256 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5257     }
5258 }
5259 
5260 /*
5261  * delete all SAs for src/dst.  Called from key_delete().
5262  */
5263 static int
5264 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5265     u_int16_t proto)
5266 {
5267 	INIT_VNET_IPSEC(curvnet);
5268 	struct sadb_address *src0, *dst0;
5269 	struct secasindex saidx;
5270 	struct secashead *sah;
5271 	struct secasvar *sav, *nextsav;
5272 	u_int stateidx, state;
5273 
5274 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5275 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5276 
5277 	/* XXX boundary check against sa_len */
5278 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5279 
5280 	SAHTREE_LOCK();
5281 	LIST_FOREACH(sah, &V_sahtree, chain) {
5282 		if (sah->state == SADB_SASTATE_DEAD)
5283 			continue;
5284 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5285 			continue;
5286 
5287 		/* Delete all non-LARVAL SAs. */
5288 		for (stateidx = 0;
5289 		     stateidx < _ARRAYLEN(saorder_state_alive);
5290 		     stateidx++) {
5291 			state = saorder_state_alive[stateidx];
5292 			if (state == SADB_SASTATE_LARVAL)
5293 				continue;
5294 			for (sav = LIST_FIRST(&sah->savtree[state]);
5295 			     sav != NULL; sav = nextsav) {
5296 				nextsav = LIST_NEXT(sav, chain);
5297 				/* sanity check */
5298 				if (sav->state != state) {
5299 					ipseclog((LOG_DEBUG, "%s: invalid "
5300 						"sav->state (queue %d SA %d)\n",
5301 						__func__, state, sav->state));
5302 					continue;
5303 				}
5304 
5305 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5306 				KEY_FREESAV(&sav);
5307 			}
5308 		}
5309 	}
5310 	SAHTREE_UNLOCK();
5311     {
5312 	struct mbuf *n;
5313 	struct sadb_msg *newmsg;
5314 
5315 	/* create new sadb_msg to reply. */
5316 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5317 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5318 	if (!n)
5319 		return key_senderror(so, m, ENOBUFS);
5320 
5321 	if (n->m_len < sizeof(struct sadb_msg)) {
5322 		n = m_pullup(n, sizeof(struct sadb_msg));
5323 		if (n == NULL)
5324 			return key_senderror(so, m, ENOBUFS);
5325 	}
5326 	newmsg = mtod(n, struct sadb_msg *);
5327 	newmsg->sadb_msg_errno = 0;
5328 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5329 
5330 	m_freem(m);
5331 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5332     }
5333 }
5334 
5335 /*
5336  * SADB_GET processing
5337  * receive
5338  *   <base, SA(*), address(SD)>
5339  * from the ikmpd, and get a SP and a SA to respond,
5340  * and send,
5341  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5342  *       (identity(SD),) (sensitivity)>
5343  * to the ikmpd.
5344  *
5345  * m will always be freed.
5346  */
5347 static int
5348 key_get(so, m, mhp)
5349 	struct socket *so;
5350 	struct mbuf *m;
5351 	const struct sadb_msghdr *mhp;
5352 {
5353 	INIT_VNET_IPSEC(curvnet);
5354 	struct sadb_sa *sa0;
5355 	struct sadb_address *src0, *dst0;
5356 	struct secasindex saidx;
5357 	struct secashead *sah;
5358 	struct secasvar *sav = NULL;
5359 	u_int16_t proto;
5360 
5361 	IPSEC_ASSERT(so != NULL, ("null socket"));
5362 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5363 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5364 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5365 
5366 	/* map satype to proto */
5367 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5368 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5369 			__func__));
5370 		return key_senderror(so, m, EINVAL);
5371 	}
5372 
5373 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5374 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5375 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5376 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5377 			__func__));
5378 		return key_senderror(so, m, EINVAL);
5379 	}
5380 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5381 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5382 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5383 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5384 			__func__));
5385 		return key_senderror(so, m, EINVAL);
5386 	}
5387 
5388 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5389 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5390 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5391 
5392 	/* XXX boundary check against sa_len */
5393 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5394 
5395 	/* get a SA header */
5396 	SAHTREE_LOCK();
5397 	LIST_FOREACH(sah, &V_sahtree, chain) {
5398 		if (sah->state == SADB_SASTATE_DEAD)
5399 			continue;
5400 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5401 			continue;
5402 
5403 		/* get a SA with SPI. */
5404 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5405 		if (sav)
5406 			break;
5407 	}
5408 	SAHTREE_UNLOCK();
5409 	if (sah == NULL) {
5410 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5411 		return key_senderror(so, m, ENOENT);
5412 	}
5413 
5414     {
5415 	struct mbuf *n;
5416 	u_int8_t satype;
5417 
5418 	/* map proto to satype */
5419 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5420 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5421 			__func__));
5422 		return key_senderror(so, m, EINVAL);
5423 	}
5424 
5425 	/* create new sadb_msg to reply. */
5426 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5427 	    mhp->msg->sadb_msg_pid);
5428 	if (!n)
5429 		return key_senderror(so, m, ENOBUFS);
5430 
5431 	m_freem(m);
5432 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5433     }
5434 }
5435 
5436 /* XXX make it sysctl-configurable? */
5437 static void
5438 key_getcomb_setlifetime(comb)
5439 	struct sadb_comb *comb;
5440 {
5441 
5442 	comb->sadb_comb_soft_allocations = 1;
5443 	comb->sadb_comb_hard_allocations = 1;
5444 	comb->sadb_comb_soft_bytes = 0;
5445 	comb->sadb_comb_hard_bytes = 0;
5446 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5447 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5448 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5449 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5450 }
5451 
5452 /*
5453  * XXX reorder combinations by preference
5454  * XXX no idea if the user wants ESP authentication or not
5455  */
5456 static struct mbuf *
5457 key_getcomb_esp()
5458 {
5459 	INIT_VNET_IPSEC(curvnet);
5460 	struct sadb_comb *comb;
5461 	struct enc_xform *algo;
5462 	struct mbuf *result = NULL, *m, *n;
5463 	int encmin;
5464 	int i, off, o;
5465 	int totlen;
5466 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5467 
5468 	m = NULL;
5469 	for (i = 1; i <= SADB_EALG_MAX; i++) {
5470 		algo = esp_algorithm_lookup(i);
5471 		if (algo == NULL)
5472 			continue;
5473 
5474 		/* discard algorithms with key size smaller than system min */
5475 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
5476 			continue;
5477 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
5478 			encmin = V_ipsec_esp_keymin;
5479 		else
5480 			encmin = _BITS(algo->minkey);
5481 
5482 		if (V_ipsec_esp_auth)
5483 			m = key_getcomb_ah();
5484 		else {
5485 			IPSEC_ASSERT(l <= MLEN,
5486 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5487 			MGET(m, M_DONTWAIT, MT_DATA);
5488 			if (m) {
5489 				M_ALIGN(m, l);
5490 				m->m_len = l;
5491 				m->m_next = NULL;
5492 				bzero(mtod(m, caddr_t), m->m_len);
5493 			}
5494 		}
5495 		if (!m)
5496 			goto fail;
5497 
5498 		totlen = 0;
5499 		for (n = m; n; n = n->m_next)
5500 			totlen += n->m_len;
5501 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
5502 
5503 		for (off = 0; off < totlen; off += l) {
5504 			n = m_pulldown(m, off, l, &o);
5505 			if (!n) {
5506 				/* m is already freed */
5507 				goto fail;
5508 			}
5509 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
5510 			bzero(comb, sizeof(*comb));
5511 			key_getcomb_setlifetime(comb);
5512 			comb->sadb_comb_encrypt = i;
5513 			comb->sadb_comb_encrypt_minbits = encmin;
5514 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
5515 		}
5516 
5517 		if (!result)
5518 			result = m;
5519 		else
5520 			m_cat(result, m);
5521 	}
5522 
5523 	return result;
5524 
5525  fail:
5526 	if (result)
5527 		m_freem(result);
5528 	return NULL;
5529 }
5530 
5531 static void
5532 key_getsizes_ah(
5533 	const struct auth_hash *ah,
5534 	int alg,
5535 	u_int16_t* min,
5536 	u_int16_t* max)
5537 {
5538 	INIT_VNET_IPSEC(curvnet);
5539 
5540 	*min = *max = ah->keysize;
5541 	if (ah->keysize == 0) {
5542 		/*
5543 		 * Transform takes arbitrary key size but algorithm
5544 		 * key size is restricted.  Enforce this here.
5545 		 */
5546 		switch (alg) {
5547 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
5548 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
5549 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
5550 		default:
5551 			DPRINTF(("%s: unknown AH algorithm %u\n",
5552 				__func__, alg));
5553 			break;
5554 		}
5555 	}
5556 }
5557 
5558 /*
5559  * XXX reorder combinations by preference
5560  */
5561 static struct mbuf *
5562 key_getcomb_ah()
5563 {
5564 	INIT_VNET_IPSEC(curvnet);
5565 	struct sadb_comb *comb;
5566 	struct auth_hash *algo;
5567 	struct mbuf *m;
5568 	u_int16_t minkeysize, maxkeysize;
5569 	int i;
5570 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5571 
5572 	m = NULL;
5573 	for (i = 1; i <= SADB_AALG_MAX; i++) {
5574 #if 1
5575 		/* we prefer HMAC algorithms, not old algorithms */
5576 		if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC)
5577 			continue;
5578 #endif
5579 		algo = ah_algorithm_lookup(i);
5580 		if (!algo)
5581 			continue;
5582 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
5583 		/* discard algorithms with key size smaller than system min */
5584 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
5585 			continue;
5586 
5587 		if (!m) {
5588 			IPSEC_ASSERT(l <= MLEN,
5589 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5590 			MGET(m, M_DONTWAIT, MT_DATA);
5591 			if (m) {
5592 				M_ALIGN(m, l);
5593 				m->m_len = l;
5594 				m->m_next = NULL;
5595 			}
5596 		} else
5597 			M_PREPEND(m, l, M_DONTWAIT);
5598 		if (!m)
5599 			return NULL;
5600 
5601 		comb = mtod(m, struct sadb_comb *);
5602 		bzero(comb, sizeof(*comb));
5603 		key_getcomb_setlifetime(comb);
5604 		comb->sadb_comb_auth = i;
5605 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
5606 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
5607 	}
5608 
5609 	return m;
5610 }
5611 
5612 /*
5613  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
5614  * XXX reorder combinations by preference
5615  */
5616 static struct mbuf *
5617 key_getcomb_ipcomp()
5618 {
5619 	struct sadb_comb *comb;
5620 	struct comp_algo *algo;
5621 	struct mbuf *m;
5622 	int i;
5623 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5624 
5625 	m = NULL;
5626 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
5627 		algo = ipcomp_algorithm_lookup(i);
5628 		if (!algo)
5629 			continue;
5630 
5631 		if (!m) {
5632 			IPSEC_ASSERT(l <= MLEN,
5633 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
5634 			MGET(m, M_DONTWAIT, MT_DATA);
5635 			if (m) {
5636 				M_ALIGN(m, l);
5637 				m->m_len = l;
5638 				m->m_next = NULL;
5639 			}
5640 		} else
5641 			M_PREPEND(m, l, M_DONTWAIT);
5642 		if (!m)
5643 			return NULL;
5644 
5645 		comb = mtod(m, struct sadb_comb *);
5646 		bzero(comb, sizeof(*comb));
5647 		key_getcomb_setlifetime(comb);
5648 		comb->sadb_comb_encrypt = i;
5649 		/* what should we set into sadb_comb_*_{min,max}bits? */
5650 	}
5651 
5652 	return m;
5653 }
5654 
5655 /*
5656  * XXX no way to pass mode (transport/tunnel) to userland
5657  * XXX replay checking?
5658  * XXX sysctl interface to ipsec_{ah,esp}_keymin
5659  */
5660 static struct mbuf *
5661 key_getprop(saidx)
5662 	const struct secasindex *saidx;
5663 {
5664 	struct sadb_prop *prop;
5665 	struct mbuf *m, *n;
5666 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
5667 	int totlen;
5668 
5669 	switch (saidx->proto)  {
5670 	case IPPROTO_ESP:
5671 		m = key_getcomb_esp();
5672 		break;
5673 	case IPPROTO_AH:
5674 		m = key_getcomb_ah();
5675 		break;
5676 	case IPPROTO_IPCOMP:
5677 		m = key_getcomb_ipcomp();
5678 		break;
5679 	default:
5680 		return NULL;
5681 	}
5682 
5683 	if (!m)
5684 		return NULL;
5685 	M_PREPEND(m, l, M_DONTWAIT);
5686 	if (!m)
5687 		return NULL;
5688 
5689 	totlen = 0;
5690 	for (n = m; n; n = n->m_next)
5691 		totlen += n->m_len;
5692 
5693 	prop = mtod(m, struct sadb_prop *);
5694 	bzero(prop, sizeof(*prop));
5695 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
5696 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
5697 	prop->sadb_prop_replay = 32;	/* XXX */
5698 
5699 	return m;
5700 }
5701 
5702 /*
5703  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
5704  * send
5705  *   <base, SA, address(SD), (address(P)), x_policy,
5706  *       (identity(SD),) (sensitivity,) proposal>
5707  * to KMD, and expect to receive
5708  *   <base> with SADB_ACQUIRE if error occured,
5709  * or
5710  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
5711  * from KMD by PF_KEY.
5712  *
5713  * XXX x_policy is outside of RFC2367 (KAME extension).
5714  * XXX sensitivity is not supported.
5715  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
5716  * see comment for key_getcomb_ipcomp().
5717  *
5718  * OUT:
5719  *    0     : succeed
5720  *    others: error number
5721  */
5722 static int
5723 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
5724 {
5725 	INIT_VNET_IPSEC(curvnet);
5726 	struct mbuf *result = NULL, *m;
5727 	struct secacq *newacq;
5728 	u_int8_t satype;
5729 	int error = -1;
5730 	u_int32_t seq;
5731 
5732 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
5733 	satype = key_proto2satype(saidx->proto);
5734 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
5735 
5736 	/*
5737 	 * We never do anything about acquirng SA.  There is anather
5738 	 * solution that kernel blocks to send SADB_ACQUIRE message until
5739 	 * getting something message from IKEd.  In later case, to be
5740 	 * managed with ACQUIRING list.
5741 	 */
5742 	/* Get an entry to check whether sending message or not. */
5743 	if ((newacq = key_getacq(saidx)) != NULL) {
5744 		if (V_key_blockacq_count < newacq->count) {
5745 			/* reset counter and do send message. */
5746 			newacq->count = 0;
5747 		} else {
5748 			/* increment counter and do nothing. */
5749 			newacq->count++;
5750 			return 0;
5751 		}
5752 	} else {
5753 		/* make new entry for blocking to send SADB_ACQUIRE. */
5754 		if ((newacq = key_newacq(saidx)) == NULL)
5755 			return ENOBUFS;
5756 	}
5757 
5758 
5759 	seq = newacq->seq;
5760 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
5761 	if (!m) {
5762 		error = ENOBUFS;
5763 		goto fail;
5764 	}
5765 	result = m;
5766 
5767 	/* set sadb_address for saidx's. */
5768 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
5769 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5770 	if (!m) {
5771 		error = ENOBUFS;
5772 		goto fail;
5773 	}
5774 	m_cat(result, m);
5775 
5776 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
5777 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
5778 	if (!m) {
5779 		error = ENOBUFS;
5780 		goto fail;
5781 	}
5782 	m_cat(result, m);
5783 
5784 	/* XXX proxy address (optional) */
5785 
5786 	/* set sadb_x_policy */
5787 	if (sp) {
5788 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
5789 		if (!m) {
5790 			error = ENOBUFS;
5791 			goto fail;
5792 		}
5793 		m_cat(result, m);
5794 	}
5795 
5796 	/* XXX identity (optional) */
5797 #if 0
5798 	if (idexttype && fqdn) {
5799 		/* create identity extension (FQDN) */
5800 		struct sadb_ident *id;
5801 		int fqdnlen;
5802 
5803 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
5804 		id = (struct sadb_ident *)p;
5805 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5806 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
5807 		id->sadb_ident_exttype = idexttype;
5808 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
5809 		bcopy(fqdn, id + 1, fqdnlen);
5810 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
5811 	}
5812 
5813 	if (idexttype) {
5814 		/* create identity extension (USERFQDN) */
5815 		struct sadb_ident *id;
5816 		int userfqdnlen;
5817 
5818 		if (userfqdn) {
5819 			/* +1 for terminating-NUL */
5820 			userfqdnlen = strlen(userfqdn) + 1;
5821 		} else
5822 			userfqdnlen = 0;
5823 		id = (struct sadb_ident *)p;
5824 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5825 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
5826 		id->sadb_ident_exttype = idexttype;
5827 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
5828 		/* XXX is it correct? */
5829 		if (curproc && curproc->p_cred)
5830 			id->sadb_ident_id = curproc->p_cred->p_ruid;
5831 		if (userfqdn && userfqdnlen)
5832 			bcopy(userfqdn, id + 1, userfqdnlen);
5833 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
5834 	}
5835 #endif
5836 
5837 	/* XXX sensitivity (optional) */
5838 
5839 	/* create proposal/combination extension */
5840 	m = key_getprop(saidx);
5841 #if 0
5842 	/*
5843 	 * spec conformant: always attach proposal/combination extension,
5844 	 * the problem is that we have no way to attach it for ipcomp,
5845 	 * due to the way sadb_comb is declared in RFC2367.
5846 	 */
5847 	if (!m) {
5848 		error = ENOBUFS;
5849 		goto fail;
5850 	}
5851 	m_cat(result, m);
5852 #else
5853 	/*
5854 	 * outside of spec; make proposal/combination extension optional.
5855 	 */
5856 	if (m)
5857 		m_cat(result, m);
5858 #endif
5859 
5860 	if ((result->m_flags & M_PKTHDR) == 0) {
5861 		error = EINVAL;
5862 		goto fail;
5863 	}
5864 
5865 	if (result->m_len < sizeof(struct sadb_msg)) {
5866 		result = m_pullup(result, sizeof(struct sadb_msg));
5867 		if (result == NULL) {
5868 			error = ENOBUFS;
5869 			goto fail;
5870 		}
5871 	}
5872 
5873 	result->m_pkthdr.len = 0;
5874 	for (m = result; m; m = m->m_next)
5875 		result->m_pkthdr.len += m->m_len;
5876 
5877 	mtod(result, struct sadb_msg *)->sadb_msg_len =
5878 	    PFKEY_UNIT64(result->m_pkthdr.len);
5879 
5880 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
5881 
5882  fail:
5883 	if (result)
5884 		m_freem(result);
5885 	return error;
5886 }
5887 
5888 static struct secacq *
5889 key_newacq(const struct secasindex *saidx)
5890 {
5891 	INIT_VNET_IPSEC(curvnet);
5892 	struct secacq *newacq;
5893 
5894 	/* get new entry */
5895 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5896 	if (newacq == NULL) {
5897 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5898 		return NULL;
5899 	}
5900 
5901 	/* copy secindex */
5902 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
5903 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
5904 	newacq->created = time_second;
5905 	newacq->count = 0;
5906 
5907 	/* add to acqtree */
5908 	ACQ_LOCK();
5909 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
5910 	ACQ_UNLOCK();
5911 
5912 	return newacq;
5913 }
5914 
5915 static struct secacq *
5916 key_getacq(const struct secasindex *saidx)
5917 {
5918 	INIT_VNET_IPSEC(curvnet);
5919 	struct secacq *acq;
5920 
5921 	ACQ_LOCK();
5922 	LIST_FOREACH(acq, &V_acqtree, chain) {
5923 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
5924 			break;
5925 	}
5926 	ACQ_UNLOCK();
5927 
5928 	return acq;
5929 }
5930 
5931 static struct secacq *
5932 key_getacqbyseq(seq)
5933 	u_int32_t seq;
5934 {
5935 	INIT_VNET_IPSEC(curvnet);
5936 	struct secacq *acq;
5937 
5938 	ACQ_LOCK();
5939 	LIST_FOREACH(acq, &V_acqtree, chain) {
5940 		if (acq->seq == seq)
5941 			break;
5942 	}
5943 	ACQ_UNLOCK();
5944 
5945 	return acq;
5946 }
5947 
5948 static struct secspacq *
5949 key_newspacq(spidx)
5950 	struct secpolicyindex *spidx;
5951 {
5952 	INIT_VNET_IPSEC(curvnet);
5953 	struct secspacq *acq;
5954 
5955 	/* get new entry */
5956 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
5957 	if (acq == NULL) {
5958 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5959 		return NULL;
5960 	}
5961 
5962 	/* copy secindex */
5963 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
5964 	acq->created = time_second;
5965 	acq->count = 0;
5966 
5967 	/* add to spacqtree */
5968 	SPACQ_LOCK();
5969 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
5970 	SPACQ_UNLOCK();
5971 
5972 	return acq;
5973 }
5974 
5975 static struct secspacq *
5976 key_getspacq(spidx)
5977 	struct secpolicyindex *spidx;
5978 {
5979 	INIT_VNET_IPSEC(curvnet);
5980 	struct secspacq *acq;
5981 
5982 	SPACQ_LOCK();
5983 	LIST_FOREACH(acq, &V_spacqtree, chain) {
5984 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
5985 			/* NB: return holding spacq_lock */
5986 			return acq;
5987 		}
5988 	}
5989 	SPACQ_UNLOCK();
5990 
5991 	return NULL;
5992 }
5993 
5994 /*
5995  * SADB_ACQUIRE processing,
5996  * in first situation, is receiving
5997  *   <base>
5998  * from the ikmpd, and clear sequence of its secasvar entry.
5999  *
6000  * In second situation, is receiving
6001  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6002  * from a user land process, and return
6003  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6004  * to the socket.
6005  *
6006  * m will always be freed.
6007  */
6008 static int
6009 key_acquire2(so, m, mhp)
6010 	struct socket *so;
6011 	struct mbuf *m;
6012 	const struct sadb_msghdr *mhp;
6013 {
6014 	INIT_VNET_IPSEC(curvnet);
6015 	const struct sadb_address *src0, *dst0;
6016 	struct secasindex saidx;
6017 	struct secashead *sah;
6018 	u_int16_t proto;
6019 	int error;
6020 
6021 	IPSEC_ASSERT(so != NULL, ("null socket"));
6022 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6023 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6024 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6025 
6026 	/*
6027 	 * Error message from KMd.
6028 	 * We assume that if error was occured in IKEd, the length of PFKEY
6029 	 * message is equal to the size of sadb_msg structure.
6030 	 * We do not raise error even if error occured in this function.
6031 	 */
6032 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6033 		struct secacq *acq;
6034 
6035 		/* check sequence number */
6036 		if (mhp->msg->sadb_msg_seq == 0) {
6037 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6038 				"number.\n", __func__));
6039 			m_freem(m);
6040 			return 0;
6041 		}
6042 
6043 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6044 			/*
6045 			 * the specified larval SA is already gone, or we got
6046 			 * a bogus sequence number.  we can silently ignore it.
6047 			 */
6048 			m_freem(m);
6049 			return 0;
6050 		}
6051 
6052 		/* reset acq counter in order to deletion by timehander. */
6053 		acq->created = time_second;
6054 		acq->count = 0;
6055 		m_freem(m);
6056 		return 0;
6057 	}
6058 
6059 	/*
6060 	 * This message is from user land.
6061 	 */
6062 
6063 	/* map satype to proto */
6064 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6065 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6066 			__func__));
6067 		return key_senderror(so, m, EINVAL);
6068 	}
6069 
6070 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6071 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6072 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6073 		/* error */
6074 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6075 			__func__));
6076 		return key_senderror(so, m, EINVAL);
6077 	}
6078 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6079 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6080 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6081 		/* error */
6082 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6083 			__func__));
6084 		return key_senderror(so, m, EINVAL);
6085 	}
6086 
6087 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6088 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6089 
6090 	/* XXX boundary check against sa_len */
6091 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6092 
6093 	/* get a SA index */
6094 	SAHTREE_LOCK();
6095 	LIST_FOREACH(sah, &V_sahtree, chain) {
6096 		if (sah->state == SADB_SASTATE_DEAD)
6097 			continue;
6098 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6099 			break;
6100 	}
6101 	SAHTREE_UNLOCK();
6102 	if (sah != NULL) {
6103 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6104 		return key_senderror(so, m, EEXIST);
6105 	}
6106 
6107 	error = key_acquire(&saidx, NULL);
6108 	if (error != 0) {
6109 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6110 			__func__, mhp->msg->sadb_msg_errno));
6111 		return key_senderror(so, m, error);
6112 	}
6113 
6114 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6115 }
6116 
6117 /*
6118  * SADB_REGISTER processing.
6119  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6120  * receive
6121  *   <base>
6122  * from the ikmpd, and register a socket to send PF_KEY messages,
6123  * and send
6124  *   <base, supported>
6125  * to KMD by PF_KEY.
6126  * If socket is detached, must free from regnode.
6127  *
6128  * m will always be freed.
6129  */
6130 static int
6131 key_register(so, m, mhp)
6132 	struct socket *so;
6133 	struct mbuf *m;
6134 	const struct sadb_msghdr *mhp;
6135 {
6136 	INIT_VNET_IPSEC(curvnet);
6137 	struct secreg *reg, *newreg = 0;
6138 
6139 	IPSEC_ASSERT(so != NULL, ("null socket"));
6140 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6141 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6142 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6143 
6144 	/* check for invalid register message */
6145 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6146 		return key_senderror(so, m, EINVAL);
6147 
6148 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6149 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6150 		goto setmsg;
6151 
6152 	/* check whether existing or not */
6153 	REGTREE_LOCK();
6154 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6155 		if (reg->so == so) {
6156 			REGTREE_UNLOCK();
6157 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6158 				__func__));
6159 			return key_senderror(so, m, EEXIST);
6160 		}
6161 	}
6162 
6163 	/* create regnode */
6164 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6165 	if (newreg == NULL) {
6166 		REGTREE_UNLOCK();
6167 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6168 		return key_senderror(so, m, ENOBUFS);
6169 	}
6170 
6171 	newreg->so = so;
6172 	((struct keycb *)sotorawcb(so))->kp_registered++;
6173 
6174 	/* add regnode to regtree. */
6175 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6176 	REGTREE_UNLOCK();
6177 
6178   setmsg:
6179     {
6180 	struct mbuf *n;
6181 	struct sadb_msg *newmsg;
6182 	struct sadb_supported *sup;
6183 	u_int len, alen, elen;
6184 	int off;
6185 	int i;
6186 	struct sadb_alg *alg;
6187 
6188 	/* create new sadb_msg to reply. */
6189 	alen = 0;
6190 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6191 		if (ah_algorithm_lookup(i))
6192 			alen += sizeof(struct sadb_alg);
6193 	}
6194 	if (alen)
6195 		alen += sizeof(struct sadb_supported);
6196 	elen = 0;
6197 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6198 		if (esp_algorithm_lookup(i))
6199 			elen += sizeof(struct sadb_alg);
6200 	}
6201 	if (elen)
6202 		elen += sizeof(struct sadb_supported);
6203 
6204 	len = sizeof(struct sadb_msg) + alen + elen;
6205 
6206 	if (len > MCLBYTES)
6207 		return key_senderror(so, m, ENOBUFS);
6208 
6209 	MGETHDR(n, M_DONTWAIT, MT_DATA);
6210 	if (len > MHLEN) {
6211 		MCLGET(n, M_DONTWAIT);
6212 		if ((n->m_flags & M_EXT) == 0) {
6213 			m_freem(n);
6214 			n = NULL;
6215 		}
6216 	}
6217 	if (!n)
6218 		return key_senderror(so, m, ENOBUFS);
6219 
6220 	n->m_pkthdr.len = n->m_len = len;
6221 	n->m_next = NULL;
6222 	off = 0;
6223 
6224 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6225 	newmsg = mtod(n, struct sadb_msg *);
6226 	newmsg->sadb_msg_errno = 0;
6227 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6228 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6229 
6230 	/* for authentication algorithm */
6231 	if (alen) {
6232 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6233 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6234 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6235 		off += PFKEY_ALIGN8(sizeof(*sup));
6236 
6237 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6238 			struct auth_hash *aalgo;
6239 			u_int16_t minkeysize, maxkeysize;
6240 
6241 			aalgo = ah_algorithm_lookup(i);
6242 			if (!aalgo)
6243 				continue;
6244 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6245 			alg->sadb_alg_id = i;
6246 			alg->sadb_alg_ivlen = 0;
6247 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6248 			alg->sadb_alg_minbits = _BITS(minkeysize);
6249 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6250 			off += PFKEY_ALIGN8(sizeof(*alg));
6251 		}
6252 	}
6253 
6254 	/* for encryption algorithm */
6255 	if (elen) {
6256 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6257 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6258 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6259 		off += PFKEY_ALIGN8(sizeof(*sup));
6260 
6261 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6262 			struct enc_xform *ealgo;
6263 
6264 			ealgo = esp_algorithm_lookup(i);
6265 			if (!ealgo)
6266 				continue;
6267 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6268 			alg->sadb_alg_id = i;
6269 			alg->sadb_alg_ivlen = ealgo->blocksize;
6270 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6271 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6272 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6273 		}
6274 	}
6275 
6276 	IPSEC_ASSERT(off == len,
6277 		("length assumption failed (off %u len %u)", off, len));
6278 
6279 	m_freem(m);
6280 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6281     }
6282 }
6283 
6284 /*
6285  * free secreg entry registered.
6286  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6287  */
6288 void
6289 key_freereg(struct socket *so)
6290 {
6291 	INIT_VNET_IPSEC(curvnet);
6292 	struct secreg *reg;
6293 	int i;
6294 
6295 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6296 
6297 	/*
6298 	 * check whether existing or not.
6299 	 * check all type of SA, because there is a potential that
6300 	 * one socket is registered to multiple type of SA.
6301 	 */
6302 	REGTREE_LOCK();
6303 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6304 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6305 			if (reg->so == so && __LIST_CHAINED(reg)) {
6306 				LIST_REMOVE(reg, chain);
6307 				free(reg, M_IPSEC_SAR);
6308 				break;
6309 			}
6310 		}
6311 	}
6312 	REGTREE_UNLOCK();
6313 }
6314 
6315 /*
6316  * SADB_EXPIRE processing
6317  * send
6318  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6319  * to KMD by PF_KEY.
6320  * NOTE: We send only soft lifetime extension.
6321  *
6322  * OUT:	0	: succeed
6323  *	others	: error number
6324  */
6325 static int
6326 key_expire(struct secasvar *sav)
6327 {
6328 	int s;
6329 	int satype;
6330 	struct mbuf *result = NULL, *m;
6331 	int len;
6332 	int error = -1;
6333 	struct sadb_lifetime *lt;
6334 
6335 	/* XXX: Why do we lock ? */
6336 	s = splnet();	/*called from softclock()*/
6337 
6338 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6339 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6340 
6341 	/* set msg header */
6342 	satype = key_proto2satype(sav->sah->saidx.proto);
6343 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6344 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6345 	if (!m) {
6346 		error = ENOBUFS;
6347 		goto fail;
6348 	}
6349 	result = m;
6350 
6351 	/* create SA extension */
6352 	m = key_setsadbsa(sav);
6353 	if (!m) {
6354 		error = ENOBUFS;
6355 		goto fail;
6356 	}
6357 	m_cat(result, m);
6358 
6359 	/* create SA extension */
6360 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6361 			sav->replay ? sav->replay->count : 0,
6362 			sav->sah->saidx.reqid);
6363 	if (!m) {
6364 		error = ENOBUFS;
6365 		goto fail;
6366 	}
6367 	m_cat(result, m);
6368 
6369 	/* create lifetime extension (current and soft) */
6370 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6371 	m = key_alloc_mbuf(len);
6372 	if (!m || m->m_next) {	/*XXX*/
6373 		if (m)
6374 			m_freem(m);
6375 		error = ENOBUFS;
6376 		goto fail;
6377 	}
6378 	bzero(mtod(m, caddr_t), len);
6379 	lt = mtod(m, struct sadb_lifetime *);
6380 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6381 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6382 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6383 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6384 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6385 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6386 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6387 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6388 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6389 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6390 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6391 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6392 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6393 	m_cat(result, m);
6394 
6395 	/* set sadb_address for source */
6396 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6397 	    &sav->sah->saidx.src.sa,
6398 	    FULLMASK, IPSEC_ULPROTO_ANY);
6399 	if (!m) {
6400 		error = ENOBUFS;
6401 		goto fail;
6402 	}
6403 	m_cat(result, m);
6404 
6405 	/* set sadb_address for destination */
6406 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6407 	    &sav->sah->saidx.dst.sa,
6408 	    FULLMASK, IPSEC_ULPROTO_ANY);
6409 	if (!m) {
6410 		error = ENOBUFS;
6411 		goto fail;
6412 	}
6413 	m_cat(result, m);
6414 
6415 	if ((result->m_flags & M_PKTHDR) == 0) {
6416 		error = EINVAL;
6417 		goto fail;
6418 	}
6419 
6420 	if (result->m_len < sizeof(struct sadb_msg)) {
6421 		result = m_pullup(result, sizeof(struct sadb_msg));
6422 		if (result == NULL) {
6423 			error = ENOBUFS;
6424 			goto fail;
6425 		}
6426 	}
6427 
6428 	result->m_pkthdr.len = 0;
6429 	for (m = result; m; m = m->m_next)
6430 		result->m_pkthdr.len += m->m_len;
6431 
6432 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6433 	    PFKEY_UNIT64(result->m_pkthdr.len);
6434 
6435 	splx(s);
6436 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6437 
6438  fail:
6439 	if (result)
6440 		m_freem(result);
6441 	splx(s);
6442 	return error;
6443 }
6444 
6445 /*
6446  * SADB_FLUSH processing
6447  * receive
6448  *   <base>
6449  * from the ikmpd, and free all entries in secastree.
6450  * and send,
6451  *   <base>
6452  * to the ikmpd.
6453  * NOTE: to do is only marking SADB_SASTATE_DEAD.
6454  *
6455  * m will always be freed.
6456  */
6457 static int
6458 key_flush(so, m, mhp)
6459 	struct socket *so;
6460 	struct mbuf *m;
6461 	const struct sadb_msghdr *mhp;
6462 {
6463 	INIT_VNET_IPSEC(curvnet);
6464 	struct sadb_msg *newmsg;
6465 	struct secashead *sah, *nextsah;
6466 	struct secasvar *sav, *nextsav;
6467 	u_int16_t proto;
6468 	u_int8_t state;
6469 	u_int stateidx;
6470 
6471 	IPSEC_ASSERT(so != NULL, ("null socket"));
6472 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6473 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6474 
6475 	/* map satype to proto */
6476 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6477 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6478 			__func__));
6479 		return key_senderror(so, m, EINVAL);
6480 	}
6481 
6482 	/* no SATYPE specified, i.e. flushing all SA. */
6483 	SAHTREE_LOCK();
6484 	for (sah = LIST_FIRST(&V_sahtree);
6485 	     sah != NULL;
6486 	     sah = nextsah) {
6487 		nextsah = LIST_NEXT(sah, chain);
6488 
6489 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6490 		 && proto != sah->saidx.proto)
6491 			continue;
6492 
6493 		for (stateidx = 0;
6494 		     stateidx < _ARRAYLEN(saorder_state_alive);
6495 		     stateidx++) {
6496 			state = saorder_state_any[stateidx];
6497 			for (sav = LIST_FIRST(&sah->savtree[state]);
6498 			     sav != NULL;
6499 			     sav = nextsav) {
6500 
6501 				nextsav = LIST_NEXT(sav, chain);
6502 
6503 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
6504 				KEY_FREESAV(&sav);
6505 			}
6506 		}
6507 
6508 		sah->state = SADB_SASTATE_DEAD;
6509 	}
6510 	SAHTREE_UNLOCK();
6511 
6512 	if (m->m_len < sizeof(struct sadb_msg) ||
6513 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
6514 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6515 		return key_senderror(so, m, ENOBUFS);
6516 	}
6517 
6518 	if (m->m_next)
6519 		m_freem(m->m_next);
6520 	m->m_next = NULL;
6521 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
6522 	newmsg = mtod(m, struct sadb_msg *);
6523 	newmsg->sadb_msg_errno = 0;
6524 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
6525 
6526 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6527 }
6528 
6529 /*
6530  * SADB_DUMP processing
6531  * dump all entries including status of DEAD in SAD.
6532  * receive
6533  *   <base>
6534  * from the ikmpd, and dump all secasvar leaves
6535  * and send,
6536  *   <base> .....
6537  * to the ikmpd.
6538  *
6539  * m will always be freed.
6540  */
6541 static int
6542 key_dump(so, m, mhp)
6543 	struct socket *so;
6544 	struct mbuf *m;
6545 	const struct sadb_msghdr *mhp;
6546 {
6547 	INIT_VNET_IPSEC(curvnet);
6548 	struct secashead *sah;
6549 	struct secasvar *sav;
6550 	u_int16_t proto;
6551 	u_int stateidx;
6552 	u_int8_t satype;
6553 	u_int8_t state;
6554 	int cnt;
6555 	struct sadb_msg *newmsg;
6556 	struct mbuf *n;
6557 
6558 	IPSEC_ASSERT(so != NULL, ("null socket"));
6559 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6560 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6561 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6562 
6563 	/* map satype to proto */
6564 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6565 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6566 			__func__));
6567 		return key_senderror(so, m, EINVAL);
6568 	}
6569 
6570 	/* count sav entries to be sent to the userland. */
6571 	cnt = 0;
6572 	SAHTREE_LOCK();
6573 	LIST_FOREACH(sah, &V_sahtree, chain) {
6574 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6575 		 && proto != sah->saidx.proto)
6576 			continue;
6577 
6578 		for (stateidx = 0;
6579 		     stateidx < _ARRAYLEN(saorder_state_any);
6580 		     stateidx++) {
6581 			state = saorder_state_any[stateidx];
6582 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6583 				cnt++;
6584 			}
6585 		}
6586 	}
6587 
6588 	if (cnt == 0) {
6589 		SAHTREE_UNLOCK();
6590 		return key_senderror(so, m, ENOENT);
6591 	}
6592 
6593 	/* send this to the userland, one at a time. */
6594 	newmsg = NULL;
6595 	LIST_FOREACH(sah, &V_sahtree, chain) {
6596 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
6597 		 && proto != sah->saidx.proto)
6598 			continue;
6599 
6600 		/* map proto to satype */
6601 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
6602 			SAHTREE_UNLOCK();
6603 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
6604 				"SAD.\n", __func__));
6605 			return key_senderror(so, m, EINVAL);
6606 		}
6607 
6608 		for (stateidx = 0;
6609 		     stateidx < _ARRAYLEN(saorder_state_any);
6610 		     stateidx++) {
6611 			state = saorder_state_any[stateidx];
6612 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
6613 				n = key_setdumpsa(sav, SADB_DUMP, satype,
6614 				    --cnt, mhp->msg->sadb_msg_pid);
6615 				if (!n) {
6616 					SAHTREE_UNLOCK();
6617 					return key_senderror(so, m, ENOBUFS);
6618 				}
6619 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6620 			}
6621 		}
6622 	}
6623 	SAHTREE_UNLOCK();
6624 
6625 	m_freem(m);
6626 	return 0;
6627 }
6628 
6629 /*
6630  * SADB_X_PROMISC processing
6631  *
6632  * m will always be freed.
6633  */
6634 static int
6635 key_promisc(so, m, mhp)
6636 	struct socket *so;
6637 	struct mbuf *m;
6638 	const struct sadb_msghdr *mhp;
6639 {
6640 	int olen;
6641 
6642 	IPSEC_ASSERT(so != NULL, ("null socket"));
6643 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6644 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6645 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6646 
6647 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
6648 
6649 	if (olen < sizeof(struct sadb_msg)) {
6650 #if 1
6651 		return key_senderror(so, m, EINVAL);
6652 #else
6653 		m_freem(m);
6654 		return 0;
6655 #endif
6656 	} else if (olen == sizeof(struct sadb_msg)) {
6657 		/* enable/disable promisc mode */
6658 		struct keycb *kp;
6659 
6660 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
6661 			return key_senderror(so, m, EINVAL);
6662 		mhp->msg->sadb_msg_errno = 0;
6663 		switch (mhp->msg->sadb_msg_satype) {
6664 		case 0:
6665 		case 1:
6666 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
6667 			break;
6668 		default:
6669 			return key_senderror(so, m, EINVAL);
6670 		}
6671 
6672 		/* send the original message back to everyone */
6673 		mhp->msg->sadb_msg_errno = 0;
6674 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6675 	} else {
6676 		/* send packet as is */
6677 
6678 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
6679 
6680 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
6681 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
6682 	}
6683 }
6684 
6685 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
6686 		const struct sadb_msghdr *)) = {
6687 	NULL,		/* SADB_RESERVED */
6688 	key_getspi,	/* SADB_GETSPI */
6689 	key_update,	/* SADB_UPDATE */
6690 	key_add,	/* SADB_ADD */
6691 	key_delete,	/* SADB_DELETE */
6692 	key_get,	/* SADB_GET */
6693 	key_acquire2,	/* SADB_ACQUIRE */
6694 	key_register,	/* SADB_REGISTER */
6695 	NULL,		/* SADB_EXPIRE */
6696 	key_flush,	/* SADB_FLUSH */
6697 	key_dump,	/* SADB_DUMP */
6698 	key_promisc,	/* SADB_X_PROMISC */
6699 	NULL,		/* SADB_X_PCHANGE */
6700 	key_spdadd,	/* SADB_X_SPDUPDATE */
6701 	key_spdadd,	/* SADB_X_SPDADD */
6702 	key_spddelete,	/* SADB_X_SPDDELETE */
6703 	key_spdget,	/* SADB_X_SPDGET */
6704 	NULL,		/* SADB_X_SPDACQUIRE */
6705 	key_spddump,	/* SADB_X_SPDDUMP */
6706 	key_spdflush,	/* SADB_X_SPDFLUSH */
6707 	key_spdadd,	/* SADB_X_SPDSETIDX */
6708 	NULL,		/* SADB_X_SPDEXPIRE */
6709 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
6710 };
6711 
6712 /*
6713  * parse sadb_msg buffer to process PFKEYv2,
6714  * and create a data to response if needed.
6715  * I think to be dealed with mbuf directly.
6716  * IN:
6717  *     msgp  : pointer to pointer to a received buffer pulluped.
6718  *             This is rewrited to response.
6719  *     so    : pointer to socket.
6720  * OUT:
6721  *    length for buffer to send to user process.
6722  */
6723 int
6724 key_parse(m, so)
6725 	struct mbuf *m;
6726 	struct socket *so;
6727 {
6728 	INIT_VNET_IPSEC(curvnet);
6729 	struct sadb_msg *msg;
6730 	struct sadb_msghdr mh;
6731 	u_int orglen;
6732 	int error;
6733 	int target;
6734 
6735 	IPSEC_ASSERT(so != NULL, ("null socket"));
6736 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6737 
6738 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
6739 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
6740 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
6741 		kdebug_sadb(msg));
6742 #endif
6743 
6744 	if (m->m_len < sizeof(struct sadb_msg)) {
6745 		m = m_pullup(m, sizeof(struct sadb_msg));
6746 		if (!m)
6747 			return ENOBUFS;
6748 	}
6749 	msg = mtod(m, struct sadb_msg *);
6750 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
6751 	target = KEY_SENDUP_ONE;
6752 
6753 	if ((m->m_flags & M_PKTHDR) == 0 ||
6754 	    m->m_pkthdr.len != m->m_pkthdr.len) {
6755 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
6756 		V_pfkeystat.out_invlen++;
6757 		error = EINVAL;
6758 		goto senderror;
6759 	}
6760 
6761 	if (msg->sadb_msg_version != PF_KEY_V2) {
6762 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
6763 		    __func__, msg->sadb_msg_version));
6764 		V_pfkeystat.out_invver++;
6765 		error = EINVAL;
6766 		goto senderror;
6767 	}
6768 
6769 	if (msg->sadb_msg_type > SADB_MAX) {
6770 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6771 		    __func__, msg->sadb_msg_type));
6772 		V_pfkeystat.out_invmsgtype++;
6773 		error = EINVAL;
6774 		goto senderror;
6775 	}
6776 
6777 	/* for old-fashioned code - should be nuked */
6778 	if (m->m_pkthdr.len > MCLBYTES) {
6779 		m_freem(m);
6780 		return ENOBUFS;
6781 	}
6782 	if (m->m_next) {
6783 		struct mbuf *n;
6784 
6785 		MGETHDR(n, M_DONTWAIT, MT_DATA);
6786 		if (n && m->m_pkthdr.len > MHLEN) {
6787 			MCLGET(n, M_DONTWAIT);
6788 			if ((n->m_flags & M_EXT) == 0) {
6789 				m_free(n);
6790 				n = NULL;
6791 			}
6792 		}
6793 		if (!n) {
6794 			m_freem(m);
6795 			return ENOBUFS;
6796 		}
6797 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
6798 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
6799 		n->m_next = NULL;
6800 		m_freem(m);
6801 		m = n;
6802 	}
6803 
6804 	/* align the mbuf chain so that extensions are in contiguous region. */
6805 	error = key_align(m, &mh);
6806 	if (error)
6807 		return error;
6808 
6809 	msg = mh.msg;
6810 
6811 	/* check SA type */
6812 	switch (msg->sadb_msg_satype) {
6813 	case SADB_SATYPE_UNSPEC:
6814 		switch (msg->sadb_msg_type) {
6815 		case SADB_GETSPI:
6816 		case SADB_UPDATE:
6817 		case SADB_ADD:
6818 		case SADB_DELETE:
6819 		case SADB_GET:
6820 		case SADB_ACQUIRE:
6821 		case SADB_EXPIRE:
6822 			ipseclog((LOG_DEBUG, "%s: must specify satype "
6823 			    "when msg type=%u.\n", __func__,
6824 			    msg->sadb_msg_type));
6825 			V_pfkeystat.out_invsatype++;
6826 			error = EINVAL;
6827 			goto senderror;
6828 		}
6829 		break;
6830 	case SADB_SATYPE_AH:
6831 	case SADB_SATYPE_ESP:
6832 	case SADB_X_SATYPE_IPCOMP:
6833 	case SADB_X_SATYPE_TCPSIGNATURE:
6834 		switch (msg->sadb_msg_type) {
6835 		case SADB_X_SPDADD:
6836 		case SADB_X_SPDDELETE:
6837 		case SADB_X_SPDGET:
6838 		case SADB_X_SPDDUMP:
6839 		case SADB_X_SPDFLUSH:
6840 		case SADB_X_SPDSETIDX:
6841 		case SADB_X_SPDUPDATE:
6842 		case SADB_X_SPDDELETE2:
6843 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
6844 				__func__, msg->sadb_msg_type));
6845 			V_pfkeystat.out_invsatype++;
6846 			error = EINVAL;
6847 			goto senderror;
6848 		}
6849 		break;
6850 	case SADB_SATYPE_RSVP:
6851 	case SADB_SATYPE_OSPFV2:
6852 	case SADB_SATYPE_RIPV2:
6853 	case SADB_SATYPE_MIP:
6854 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
6855 			__func__, msg->sadb_msg_satype));
6856 		V_pfkeystat.out_invsatype++;
6857 		error = EOPNOTSUPP;
6858 		goto senderror;
6859 	case 1:	/* XXX: What does it do? */
6860 		if (msg->sadb_msg_type == SADB_X_PROMISC)
6861 			break;
6862 		/*FALLTHROUGH*/
6863 	default:
6864 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
6865 			__func__, msg->sadb_msg_satype));
6866 		V_pfkeystat.out_invsatype++;
6867 		error = EINVAL;
6868 		goto senderror;
6869 	}
6870 
6871 	/* check field of upper layer protocol and address family */
6872 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
6873 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
6874 		struct sadb_address *src0, *dst0;
6875 		u_int plen;
6876 
6877 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
6878 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
6879 
6880 		/* check upper layer protocol */
6881 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
6882 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
6883 				"mismatched.\n", __func__));
6884 			V_pfkeystat.out_invaddr++;
6885 			error = EINVAL;
6886 			goto senderror;
6887 		}
6888 
6889 		/* check family */
6890 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
6891 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
6892 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
6893 				__func__));
6894 			V_pfkeystat.out_invaddr++;
6895 			error = EINVAL;
6896 			goto senderror;
6897 		}
6898 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6899 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
6900 			ipseclog((LOG_DEBUG, "%s: address struct size "
6901 				"mismatched.\n", __func__));
6902 			V_pfkeystat.out_invaddr++;
6903 			error = EINVAL;
6904 			goto senderror;
6905 		}
6906 
6907 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6908 		case AF_INET:
6909 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6910 			    sizeof(struct sockaddr_in)) {
6911 				V_pfkeystat.out_invaddr++;
6912 				error = EINVAL;
6913 				goto senderror;
6914 			}
6915 			break;
6916 		case AF_INET6:
6917 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
6918 			    sizeof(struct sockaddr_in6)) {
6919 				V_pfkeystat.out_invaddr++;
6920 				error = EINVAL;
6921 				goto senderror;
6922 			}
6923 			break;
6924 		default:
6925 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
6926 				__func__));
6927 			V_pfkeystat.out_invaddr++;
6928 			error = EAFNOSUPPORT;
6929 			goto senderror;
6930 		}
6931 
6932 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
6933 		case AF_INET:
6934 			plen = sizeof(struct in_addr) << 3;
6935 			break;
6936 		case AF_INET6:
6937 			plen = sizeof(struct in6_addr) << 3;
6938 			break;
6939 		default:
6940 			plen = 0;	/*fool gcc*/
6941 			break;
6942 		}
6943 
6944 		/* check max prefix length */
6945 		if (src0->sadb_address_prefixlen > plen ||
6946 		    dst0->sadb_address_prefixlen > plen) {
6947 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
6948 				__func__));
6949 			V_pfkeystat.out_invaddr++;
6950 			error = EINVAL;
6951 			goto senderror;
6952 		}
6953 
6954 		/*
6955 		 * prefixlen == 0 is valid because there can be a case when
6956 		 * all addresses are matched.
6957 		 */
6958 	}
6959 
6960 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
6961 	    key_typesw[msg->sadb_msg_type] == NULL) {
6962 		V_pfkeystat.out_invmsgtype++;
6963 		error = EINVAL;
6964 		goto senderror;
6965 	}
6966 
6967 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
6968 
6969 senderror:
6970 	msg->sadb_msg_errno = error;
6971 	return key_sendup_mbuf(so, m, target);
6972 }
6973 
6974 static int
6975 key_senderror(so, m, code)
6976 	struct socket *so;
6977 	struct mbuf *m;
6978 	int code;
6979 {
6980 	struct sadb_msg *msg;
6981 
6982 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
6983 		("mbuf too small, len %u", m->m_len));
6984 
6985 	msg = mtod(m, struct sadb_msg *);
6986 	msg->sadb_msg_errno = code;
6987 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
6988 }
6989 
6990 /*
6991  * set the pointer to each header into message buffer.
6992  * m will be freed on error.
6993  * XXX larger-than-MCLBYTES extension?
6994  */
6995 static int
6996 key_align(m, mhp)
6997 	struct mbuf *m;
6998 	struct sadb_msghdr *mhp;
6999 {
7000 	INIT_VNET_IPSEC(curvnet);
7001 	struct mbuf *n;
7002 	struct sadb_ext *ext;
7003 	size_t off, end;
7004 	int extlen;
7005 	int toff;
7006 
7007 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7008 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7009 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7010 		("mbuf too small, len %u", m->m_len));
7011 
7012 	/* initialize */
7013 	bzero(mhp, sizeof(*mhp));
7014 
7015 	mhp->msg = mtod(m, struct sadb_msg *);
7016 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7017 
7018 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7019 	extlen = end;	/*just in case extlen is not updated*/
7020 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7021 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7022 		if (!n) {
7023 			/* m is already freed */
7024 			return ENOBUFS;
7025 		}
7026 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7027 
7028 		/* set pointer */
7029 		switch (ext->sadb_ext_type) {
7030 		case SADB_EXT_SA:
7031 		case SADB_EXT_ADDRESS_SRC:
7032 		case SADB_EXT_ADDRESS_DST:
7033 		case SADB_EXT_ADDRESS_PROXY:
7034 		case SADB_EXT_LIFETIME_CURRENT:
7035 		case SADB_EXT_LIFETIME_HARD:
7036 		case SADB_EXT_LIFETIME_SOFT:
7037 		case SADB_EXT_KEY_AUTH:
7038 		case SADB_EXT_KEY_ENCRYPT:
7039 		case SADB_EXT_IDENTITY_SRC:
7040 		case SADB_EXT_IDENTITY_DST:
7041 		case SADB_EXT_SENSITIVITY:
7042 		case SADB_EXT_PROPOSAL:
7043 		case SADB_EXT_SUPPORTED_AUTH:
7044 		case SADB_EXT_SUPPORTED_ENCRYPT:
7045 		case SADB_EXT_SPIRANGE:
7046 		case SADB_X_EXT_POLICY:
7047 		case SADB_X_EXT_SA2:
7048 			/* duplicate check */
7049 			/*
7050 			 * XXX Are there duplication payloads of either
7051 			 * KEY_AUTH or KEY_ENCRYPT ?
7052 			 */
7053 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7054 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7055 					"%u\n", __func__, ext->sadb_ext_type));
7056 				m_freem(m);
7057 				V_pfkeystat.out_dupext++;
7058 				return EINVAL;
7059 			}
7060 			break;
7061 		default:
7062 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7063 				__func__, ext->sadb_ext_type));
7064 			m_freem(m);
7065 			V_pfkeystat.out_invexttype++;
7066 			return EINVAL;
7067 		}
7068 
7069 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7070 
7071 		if (key_validate_ext(ext, extlen)) {
7072 			m_freem(m);
7073 			V_pfkeystat.out_invlen++;
7074 			return EINVAL;
7075 		}
7076 
7077 		n = m_pulldown(m, off, extlen, &toff);
7078 		if (!n) {
7079 			/* m is already freed */
7080 			return ENOBUFS;
7081 		}
7082 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7083 
7084 		mhp->ext[ext->sadb_ext_type] = ext;
7085 		mhp->extoff[ext->sadb_ext_type] = off;
7086 		mhp->extlen[ext->sadb_ext_type] = extlen;
7087 	}
7088 
7089 	if (off != end) {
7090 		m_freem(m);
7091 		V_pfkeystat.out_invlen++;
7092 		return EINVAL;
7093 	}
7094 
7095 	return 0;
7096 }
7097 
7098 static int
7099 key_validate_ext(ext, len)
7100 	const struct sadb_ext *ext;
7101 	int len;
7102 {
7103 	const struct sockaddr *sa;
7104 	enum { NONE, ADDR } checktype = NONE;
7105 	int baselen = 0;
7106 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7107 
7108 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7109 		return EINVAL;
7110 
7111 	/* if it does not match minimum/maximum length, bail */
7112 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7113 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7114 		return EINVAL;
7115 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7116 		return EINVAL;
7117 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7118 		return EINVAL;
7119 
7120 	/* more checks based on sadb_ext_type XXX need more */
7121 	switch (ext->sadb_ext_type) {
7122 	case SADB_EXT_ADDRESS_SRC:
7123 	case SADB_EXT_ADDRESS_DST:
7124 	case SADB_EXT_ADDRESS_PROXY:
7125 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7126 		checktype = ADDR;
7127 		break;
7128 	case SADB_EXT_IDENTITY_SRC:
7129 	case SADB_EXT_IDENTITY_DST:
7130 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7131 		    SADB_X_IDENTTYPE_ADDR) {
7132 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7133 			checktype = ADDR;
7134 		} else
7135 			checktype = NONE;
7136 		break;
7137 	default:
7138 		checktype = NONE;
7139 		break;
7140 	}
7141 
7142 	switch (checktype) {
7143 	case NONE:
7144 		break;
7145 	case ADDR:
7146 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7147 		if (len < baselen + sal)
7148 			return EINVAL;
7149 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7150 			return EINVAL;
7151 		break;
7152 	}
7153 
7154 	return 0;
7155 }
7156 
7157 void
7158 key_init(void)
7159 {
7160 	INIT_VNET_IPSEC(curvnet);
7161 	int i;
7162 
7163 	V_key_debug_level = 0;
7164 	V_key_spi_trycnt = 1000;
7165 	V_key_spi_minval = 0x100;
7166 	V_key_spi_maxval = 0x0fffffff;	/* XXX */
7167 	V_policy_id = 0;
7168 	V_key_int_random = 60;		/*interval to initialize randseed,1(m)*/
7169 	V_key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
7170 	V_key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
7171 	V_key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
7172 	V_key_preferred_oldsa = 1;	/* preferred old sa rather than new sa*/
7173 
7174 	V_acq_seq = 0;
7175 
7176 	V_ipsec_esp_keymin = 256;
7177 	V_ipsec_esp_auth = 0;
7178 	V_ipsec_ah_keymin = 128;
7179 
7180 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7181 		LIST_INIT(&V_sptree[i]);
7182 
7183 	LIST_INIT(&V_sahtree);
7184 
7185 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7186 		LIST_INIT(&V_regtree[i]);
7187 
7188 	LIST_INIT(&V_acqtree);
7189 	LIST_INIT(&V_spacqtree);
7190 
7191 	/* system default */
7192 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7193 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7194 
7195 	if (!IS_DEFAULT_VNET(curvnet))
7196 		return;
7197 
7198 	SPTREE_LOCK_INIT();
7199 	REGTREE_LOCK_INIT();
7200 	SAHTREE_LOCK_INIT();
7201 	ACQ_LOCK_INIT();
7202 	SPACQ_LOCK_INIT();
7203 
7204 #ifndef IPSEC_DEBUG2
7205 	timeout((void *)key_timehandler, (void *)0, hz);
7206 #endif /*IPSEC_DEBUG2*/
7207 
7208 	/* initialize key statistics */
7209 	keystat.getspi_count = 1;
7210 
7211 	printf("IPsec: Initialized Security Association Processing.\n");
7212 
7213 	return;
7214 }
7215 
7216 /*
7217  * XXX: maybe This function is called after INBOUND IPsec processing.
7218  *
7219  * Special check for tunnel-mode packets.
7220  * We must make some checks for consistency between inner and outer IP header.
7221  *
7222  * xxx more checks to be provided
7223  */
7224 int
7225 key_checktunnelsanity(sav, family, src, dst)
7226 	struct secasvar *sav;
7227 	u_int family;
7228 	caddr_t src;
7229 	caddr_t dst;
7230 {
7231 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7232 
7233 	/* XXX: check inner IP header */
7234 
7235 	return 1;
7236 }
7237 
7238 /* record data transfer on SA, and update timestamps */
7239 void
7240 key_sa_recordxfer(sav, m)
7241 	struct secasvar *sav;
7242 	struct mbuf *m;
7243 {
7244 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7245 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7246 	if (!sav->lft_c)
7247 		return;
7248 
7249 	/*
7250 	 * XXX Currently, there is a difference of bytes size
7251 	 * between inbound and outbound processing.
7252 	 */
7253 	sav->lft_c->bytes += m->m_pkthdr.len;
7254 	/* to check bytes lifetime is done in key_timehandler(). */
7255 
7256 	/*
7257 	 * We use the number of packets as the unit of
7258 	 * allocations.  We increment the variable
7259 	 * whenever {esp,ah}_{in,out}put is called.
7260 	 */
7261 	sav->lft_c->allocations++;
7262 	/* XXX check for expires? */
7263 
7264 	/*
7265 	 * NOTE: We record CURRENT usetime by using wall clock,
7266 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7267 	 * difference (again in seconds) from usetime.
7268 	 *
7269 	 *	usetime
7270 	 *	v     expire   expire
7271 	 * -----+-----+--------+---> t
7272 	 *	<--------------> HARD
7273 	 *	<-----> SOFT
7274 	 */
7275 	sav->lft_c->usetime = time_second;
7276 	/* XXX check for expires? */
7277 
7278 	return;
7279 }
7280 
7281 /* dumb version */
7282 void
7283 key_sa_routechange(dst)
7284 	struct sockaddr *dst;
7285 {
7286 	INIT_VNET_IPSEC(curvnet);
7287 	struct secashead *sah;
7288 	struct route *ro;
7289 
7290 	SAHTREE_LOCK();
7291 	LIST_FOREACH(sah, &V_sahtree, chain) {
7292 		ro = &sah->sa_route;
7293 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7294 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7295 			RTFREE(ro->ro_rt);
7296 			ro->ro_rt = (struct rtentry *)NULL;
7297 		}
7298 	}
7299 	SAHTREE_UNLOCK();
7300 }
7301 
7302 static void
7303 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7304 {
7305 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7306 	SAHTREE_LOCK_ASSERT();
7307 
7308 	if (sav->state != state) {
7309 		if (__LIST_CHAINED(sav))
7310 			LIST_REMOVE(sav, chain);
7311 		sav->state = state;
7312 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7313 	}
7314 }
7315 
7316 void
7317 key_sa_stir_iv(sav)
7318 	struct secasvar *sav;
7319 {
7320 
7321 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7322 	key_randomfill(sav->iv, sav->ivlen);
7323 }
7324 
7325 /* XXX too much? */
7326 static struct mbuf *
7327 key_alloc_mbuf(l)
7328 	int l;
7329 {
7330 	struct mbuf *m = NULL, *n;
7331 	int len, t;
7332 
7333 	len = l;
7334 	while (len > 0) {
7335 		MGET(n, M_DONTWAIT, MT_DATA);
7336 		if (n && len > MLEN)
7337 			MCLGET(n, M_DONTWAIT);
7338 		if (!n) {
7339 			m_freem(m);
7340 			return NULL;
7341 		}
7342 
7343 		n->m_next = NULL;
7344 		n->m_len = 0;
7345 		n->m_len = M_TRAILINGSPACE(n);
7346 		/* use the bottom of mbuf, hoping we can prepend afterwards */
7347 		if (n->m_len > len) {
7348 			t = (n->m_len - len) & ~(sizeof(long) - 1);
7349 			n->m_data += t;
7350 			n->m_len = len;
7351 		}
7352 
7353 		len -= n->m_len;
7354 
7355 		if (m)
7356 			m_cat(m, n);
7357 		else
7358 			m = n;
7359 	}
7360 
7361 	return m;
7362 }
7363 
7364 /*
7365  * Take one of the kernel's security keys and convert it into a PF_KEY
7366  * structure within an mbuf, suitable for sending up to a waiting
7367  * application in user land.
7368  *
7369  * IN:
7370  *    src: A pointer to a kernel security key.
7371  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7372  * OUT:
7373  *    a valid mbuf or NULL indicating an error
7374  *
7375  */
7376 
7377 static struct mbuf *
7378 key_setkey(struct seckey *src, u_int16_t exttype)
7379 {
7380 	struct mbuf *m;
7381 	struct sadb_key *p;
7382 	int len;
7383 
7384 	if (src == NULL)
7385 		return NULL;
7386 
7387 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7388 	m = key_alloc_mbuf(len);
7389 	if (m == NULL)
7390 		return NULL;
7391 	p = mtod(m, struct sadb_key *);
7392 	bzero(p, len);
7393 	p->sadb_key_len = PFKEY_UNIT64(len);
7394 	p->sadb_key_exttype = exttype;
7395 	p->sadb_key_bits = src->bits;
7396 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7397 
7398 	return m;
7399 }
7400 
7401 /*
7402  * Take one of the kernel's lifetime data structures and convert it
7403  * into a PF_KEY structure within an mbuf, suitable for sending up to
7404  * a waiting application in user land.
7405  *
7406  * IN:
7407  *    src: A pointer to a kernel lifetime structure.
7408  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7409  *             data structures for more information.
7410  * OUT:
7411  *    a valid mbuf or NULL indicating an error
7412  *
7413  */
7414 
7415 static struct mbuf *
7416 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7417 {
7418 	struct mbuf *m = NULL;
7419 	struct sadb_lifetime *p;
7420 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
7421 
7422 	if (src == NULL)
7423 		return NULL;
7424 
7425 	m = key_alloc_mbuf(len);
7426 	if (m == NULL)
7427 		return m;
7428 	p = mtod(m, struct sadb_lifetime *);
7429 
7430 	bzero(p, len);
7431 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
7432 	p->sadb_lifetime_exttype = exttype;
7433 	p->sadb_lifetime_allocations = src->allocations;
7434 	p->sadb_lifetime_bytes = src->bytes;
7435 	p->sadb_lifetime_addtime = src->addtime;
7436 	p->sadb_lifetime_usetime = src->usetime;
7437 
7438 	return m;
7439 
7440 }
7441