1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_kdtrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/callout.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/time.h> 47 #include <sys/kernel.h> 48 #include <sys/protosw.h> 49 #include <sys/errno.h> 50 #include <sys/syslog.h> 51 #include <sys/lock.h> 52 #include <sys/rwlock.h> 53 #include <sys/queue.h> 54 #include <sys/sdt.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 /* timer values */ 90 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 91 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 92 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 93 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 94 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 95 * local traffic */ 96 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 97 * collection timer */ 98 99 /* preventing too many loops in ND option parsing */ 100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 101 102 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 103 * layer hints */ 104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 105 * ND entries */ 106 #define V_nd6_maxndopt VNET(nd6_maxndopt) 107 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 108 109 #ifdef ND6_DEBUG 110 VNET_DEFINE(int, nd6_debug) = 1; 111 #else 112 VNET_DEFINE(int, nd6_debug) = 0; 113 #endif 114 115 /* for debugging? */ 116 #if 0 117 static int nd6_inuse, nd6_allocated; 118 #endif 119 120 VNET_DEFINE(struct nd_drhead, nd_defrouter); 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 124 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 125 126 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 127 128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 129 struct ifnet *); 130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 131 static void nd6_slowtimo(void *); 132 static int regen_tmpaddr(struct in6_ifaddr *); 133 static struct llentry *nd6_free(struct llentry *, int); 134 static void nd6_llinfo_timer(void *); 135 static void clear_llinfo_pqueue(struct llentry *); 136 137 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 138 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 139 140 VNET_DEFINE(struct callout, nd6_timer_ch); 141 142 void 143 nd6_init(void) 144 { 145 146 LIST_INIT(&V_nd_prefix); 147 148 /* initialization of the default router list */ 149 TAILQ_INIT(&V_nd_defrouter); 150 151 /* start timer */ 152 callout_init(&V_nd6_slowtimo_ch, 0); 153 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 154 nd6_slowtimo, curvnet); 155 } 156 157 #ifdef VIMAGE 158 void 159 nd6_destroy() 160 { 161 162 callout_drain(&V_nd6_slowtimo_ch); 163 callout_drain(&V_nd6_timer_ch); 164 } 165 #endif 166 167 struct nd_ifinfo * 168 nd6_ifattach(struct ifnet *ifp) 169 { 170 struct nd_ifinfo *nd; 171 172 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 173 nd->initialized = 1; 174 175 nd->chlim = IPV6_DEFHLIM; 176 nd->basereachable = REACHABLE_TIME; 177 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 178 nd->retrans = RETRANS_TIMER; 179 180 nd->flags = ND6_IFF_PERFORMNUD; 181 182 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 183 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 184 * default regardless of the V_ip6_auto_linklocal configuration to 185 * give a reasonable default behavior. 186 */ 187 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 188 (ifp->if_flags & IFF_LOOPBACK)) 189 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 190 /* 191 * A loopback interface does not need to accept RTADV. 192 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 193 * default regardless of the V_ip6_accept_rtadv configuration to 194 * prevent the interface from accepting RA messages arrived 195 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 196 */ 197 if (V_ip6_accept_rtadv && 198 !(ifp->if_flags & IFF_LOOPBACK) && 199 (ifp->if_type != IFT_BRIDGE)) 200 nd->flags |= ND6_IFF_ACCEPT_RTADV; 201 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 202 nd->flags |= ND6_IFF_NO_RADR; 203 204 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 205 nd6_setmtu0(ifp, nd); 206 207 return nd; 208 } 209 210 void 211 nd6_ifdetach(struct nd_ifinfo *nd) 212 { 213 214 free(nd, M_IP6NDP); 215 } 216 217 /* 218 * Reset ND level link MTU. This function is called when the physical MTU 219 * changes, which means we might have to adjust the ND level MTU. 220 */ 221 void 222 nd6_setmtu(struct ifnet *ifp) 223 { 224 225 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 226 } 227 228 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 229 void 230 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 231 { 232 u_int32_t omaxmtu; 233 234 omaxmtu = ndi->maxmtu; 235 236 switch (ifp->if_type) { 237 case IFT_ARCNET: 238 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 239 break; 240 case IFT_FDDI: 241 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 242 break; 243 case IFT_ISO88025: 244 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 245 break; 246 default: 247 ndi->maxmtu = ifp->if_mtu; 248 break; 249 } 250 251 /* 252 * Decreasing the interface MTU under IPV6 minimum MTU may cause 253 * undesirable situation. We thus notify the operator of the change 254 * explicitly. The check for omaxmtu is necessary to restrict the 255 * log to the case of changing the MTU, not initializing it. 256 */ 257 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 258 log(LOG_NOTICE, "nd6_setmtu0: " 259 "new link MTU on %s (%lu) is too small for IPv6\n", 260 if_name(ifp), (unsigned long)ndi->maxmtu); 261 } 262 263 if (ndi->maxmtu > V_in6_maxmtu) 264 in6_setmaxmtu(); /* check all interfaces just in case */ 265 266 } 267 268 void 269 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 270 { 271 272 bzero(ndopts, sizeof(*ndopts)); 273 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 274 ndopts->nd_opts_last 275 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 276 277 if (icmp6len == 0) { 278 ndopts->nd_opts_done = 1; 279 ndopts->nd_opts_search = NULL; 280 } 281 } 282 283 /* 284 * Take one ND option. 285 */ 286 struct nd_opt_hdr * 287 nd6_option(union nd_opts *ndopts) 288 { 289 struct nd_opt_hdr *nd_opt; 290 int olen; 291 292 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 293 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 294 __func__)); 295 if (ndopts->nd_opts_search == NULL) 296 return NULL; 297 if (ndopts->nd_opts_done) 298 return NULL; 299 300 nd_opt = ndopts->nd_opts_search; 301 302 /* make sure nd_opt_len is inside the buffer */ 303 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 304 bzero(ndopts, sizeof(*ndopts)); 305 return NULL; 306 } 307 308 olen = nd_opt->nd_opt_len << 3; 309 if (olen == 0) { 310 /* 311 * Message validation requires that all included 312 * options have a length that is greater than zero. 313 */ 314 bzero(ndopts, sizeof(*ndopts)); 315 return NULL; 316 } 317 318 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 319 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 320 /* option overruns the end of buffer, invalid */ 321 bzero(ndopts, sizeof(*ndopts)); 322 return NULL; 323 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 324 /* reached the end of options chain */ 325 ndopts->nd_opts_done = 1; 326 ndopts->nd_opts_search = NULL; 327 } 328 return nd_opt; 329 } 330 331 /* 332 * Parse multiple ND options. 333 * This function is much easier to use, for ND routines that do not need 334 * multiple options of the same type. 335 */ 336 int 337 nd6_options(union nd_opts *ndopts) 338 { 339 struct nd_opt_hdr *nd_opt; 340 int i = 0; 341 342 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 343 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 344 __func__)); 345 if (ndopts->nd_opts_search == NULL) 346 return 0; 347 348 while (1) { 349 nd_opt = nd6_option(ndopts); 350 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 351 /* 352 * Message validation requires that all included 353 * options have a length that is greater than zero. 354 */ 355 ICMP6STAT_INC(icp6s_nd_badopt); 356 bzero(ndopts, sizeof(*ndopts)); 357 return -1; 358 } 359 360 if (nd_opt == NULL) 361 goto skip1; 362 363 switch (nd_opt->nd_opt_type) { 364 case ND_OPT_SOURCE_LINKADDR: 365 case ND_OPT_TARGET_LINKADDR: 366 case ND_OPT_MTU: 367 case ND_OPT_REDIRECTED_HEADER: 368 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 369 nd6log((LOG_INFO, 370 "duplicated ND6 option found (type=%d)\n", 371 nd_opt->nd_opt_type)); 372 /* XXX bark? */ 373 } else { 374 ndopts->nd_opt_array[nd_opt->nd_opt_type] 375 = nd_opt; 376 } 377 break; 378 case ND_OPT_PREFIX_INFORMATION: 379 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 380 ndopts->nd_opt_array[nd_opt->nd_opt_type] 381 = nd_opt; 382 } 383 ndopts->nd_opts_pi_end = 384 (struct nd_opt_prefix_info *)nd_opt; 385 break; 386 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 387 case ND_OPT_RDNSS: /* RFC 6106 */ 388 case ND_OPT_DNSSL: /* RFC 6106 */ 389 /* 390 * Silently ignore options we know and do not care about 391 * in the kernel. 392 */ 393 break; 394 default: 395 /* 396 * Unknown options must be silently ignored, 397 * to accomodate future extension to the protocol. 398 */ 399 nd6log((LOG_DEBUG, 400 "nd6_options: unsupported option %d - " 401 "option ignored\n", nd_opt->nd_opt_type)); 402 } 403 404 skip1: 405 i++; 406 if (i > V_nd6_maxndopt) { 407 ICMP6STAT_INC(icp6s_nd_toomanyopt); 408 nd6log((LOG_INFO, "too many loop in nd opt\n")); 409 break; 410 } 411 412 if (ndopts->nd_opts_done) 413 break; 414 } 415 416 return 0; 417 } 418 419 /* 420 * ND6 timer routine to handle ND6 entries 421 */ 422 void 423 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 424 { 425 int canceled; 426 427 LLE_WLOCK_ASSERT(ln); 428 429 if (tick < 0) { 430 ln->la_expire = 0; 431 ln->ln_ntick = 0; 432 canceled = callout_stop(&ln->ln_timer_ch); 433 } else { 434 ln->la_expire = time_uptime + tick / hz; 435 LLE_ADDREF(ln); 436 if (tick > INT_MAX) { 437 ln->ln_ntick = tick - INT_MAX; 438 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 439 nd6_llinfo_timer, ln); 440 } else { 441 ln->ln_ntick = 0; 442 canceled = callout_reset(&ln->ln_timer_ch, tick, 443 nd6_llinfo_timer, ln); 444 } 445 } 446 if (canceled) 447 LLE_REMREF(ln); 448 } 449 450 void 451 nd6_llinfo_settimer(struct llentry *ln, long tick) 452 { 453 454 LLE_WLOCK(ln); 455 nd6_llinfo_settimer_locked(ln, tick); 456 LLE_WUNLOCK(ln); 457 } 458 459 static void 460 nd6_llinfo_timer(void *arg) 461 { 462 struct llentry *ln; 463 struct in6_addr *dst; 464 struct ifnet *ifp; 465 struct nd_ifinfo *ndi = NULL; 466 467 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 468 ln = (struct llentry *)arg; 469 LLE_WLOCK_ASSERT(ln); 470 ifp = ln->lle_tbl->llt_ifp; 471 472 CURVNET_SET(ifp->if_vnet); 473 474 if (ln->ln_ntick > 0) { 475 if (ln->ln_ntick > INT_MAX) { 476 ln->ln_ntick -= INT_MAX; 477 nd6_llinfo_settimer_locked(ln, INT_MAX); 478 } else { 479 ln->ln_ntick = 0; 480 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 481 } 482 goto done; 483 } 484 485 ndi = ND_IFINFO(ifp); 486 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 487 if (ln->la_flags & LLE_STATIC) { 488 goto done; 489 } 490 491 if (ln->la_flags & LLE_DELETED) { 492 (void)nd6_free(ln, 0); 493 ln = NULL; 494 goto done; 495 } 496 497 switch (ln->ln_state) { 498 case ND6_LLINFO_INCOMPLETE: 499 if (ln->la_asked < V_nd6_mmaxtries) { 500 ln->la_asked++; 501 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 502 LLE_WUNLOCK(ln); 503 nd6_ns_output(ifp, NULL, dst, ln, 0); 504 LLE_WLOCK(ln); 505 } else { 506 struct mbuf *m = ln->la_hold; 507 if (m) { 508 struct mbuf *m0; 509 510 /* 511 * assuming every packet in la_hold has the 512 * same IP header. Send error after unlock. 513 */ 514 m0 = m->m_nextpkt; 515 m->m_nextpkt = NULL; 516 ln->la_hold = m0; 517 clear_llinfo_pqueue(ln); 518 } 519 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 520 (void)nd6_free(ln, 0); 521 ln = NULL; 522 if (m != NULL) 523 icmp6_error2(m, ICMP6_DST_UNREACH, 524 ICMP6_DST_UNREACH_ADDR, 0, ifp); 525 } 526 break; 527 case ND6_LLINFO_REACHABLE: 528 if (!ND6_LLINFO_PERMANENT(ln)) { 529 ln->ln_state = ND6_LLINFO_STALE; 530 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 531 } 532 break; 533 534 case ND6_LLINFO_STALE: 535 /* Garbage Collection(RFC 2461 5.3) */ 536 if (!ND6_LLINFO_PERMANENT(ln)) { 537 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 538 (void)nd6_free(ln, 1); 539 ln = NULL; 540 } 541 break; 542 543 case ND6_LLINFO_DELAY: 544 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 545 /* We need NUD */ 546 ln->la_asked = 1; 547 ln->ln_state = ND6_LLINFO_PROBE; 548 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 549 LLE_WUNLOCK(ln); 550 nd6_ns_output(ifp, dst, dst, ln, 0); 551 LLE_WLOCK(ln); 552 } else { 553 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 554 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 555 } 556 break; 557 case ND6_LLINFO_PROBE: 558 if (ln->la_asked < V_nd6_umaxtries) { 559 ln->la_asked++; 560 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 561 LLE_WUNLOCK(ln); 562 nd6_ns_output(ifp, dst, dst, ln, 0); 563 LLE_WLOCK(ln); 564 } else { 565 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 566 (void)nd6_free(ln, 0); 567 ln = NULL; 568 } 569 break; 570 default: 571 panic("%s: paths in a dark night can be confusing: %d", 572 __func__, ln->ln_state); 573 } 574 done: 575 if (ln != NULL) 576 LLE_FREE_LOCKED(ln); 577 CURVNET_RESTORE(); 578 } 579 580 581 /* 582 * ND6 timer routine to expire default route list and prefix list 583 */ 584 void 585 nd6_timer(void *arg) 586 { 587 CURVNET_SET((struct vnet *) arg); 588 struct nd_defrouter *dr, *ndr; 589 struct nd_prefix *pr, *npr; 590 struct in6_ifaddr *ia6, *nia6; 591 592 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 593 nd6_timer, curvnet); 594 595 /* expire default router list */ 596 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 597 if (dr->expire && dr->expire < time_uptime) 598 defrtrlist_del(dr); 599 } 600 601 /* 602 * expire interface addresses. 603 * in the past the loop was inside prefix expiry processing. 604 * However, from a stricter speci-confrmance standpoint, we should 605 * rather separate address lifetimes and prefix lifetimes. 606 * 607 * XXXRW: in6_ifaddrhead locking. 608 */ 609 addrloop: 610 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 611 /* check address lifetime */ 612 if (IFA6_IS_INVALID(ia6)) { 613 int regen = 0; 614 615 /* 616 * If the expiring address is temporary, try 617 * regenerating a new one. This would be useful when 618 * we suspended a laptop PC, then turned it on after a 619 * period that could invalidate all temporary 620 * addresses. Although we may have to restart the 621 * loop (see below), it must be after purging the 622 * address. Otherwise, we'd see an infinite loop of 623 * regeneration. 624 */ 625 if (V_ip6_use_tempaddr && 626 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 627 if (regen_tmpaddr(ia6) == 0) 628 regen = 1; 629 } 630 631 in6_purgeaddr(&ia6->ia_ifa); 632 633 if (regen) 634 goto addrloop; /* XXX: see below */ 635 } else if (IFA6_IS_DEPRECATED(ia6)) { 636 int oldflags = ia6->ia6_flags; 637 638 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 639 640 /* 641 * If a temporary address has just become deprecated, 642 * regenerate a new one if possible. 643 */ 644 if (V_ip6_use_tempaddr && 645 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 646 (oldflags & IN6_IFF_DEPRECATED) == 0) { 647 648 if (regen_tmpaddr(ia6) == 0) { 649 /* 650 * A new temporary address is 651 * generated. 652 * XXX: this means the address chain 653 * has changed while we are still in 654 * the loop. Although the change 655 * would not cause disaster (because 656 * it's not a deletion, but an 657 * addition,) we'd rather restart the 658 * loop just for safety. Or does this 659 * significantly reduce performance?? 660 */ 661 goto addrloop; 662 } 663 } 664 } else { 665 /* 666 * A new RA might have made a deprecated address 667 * preferred. 668 */ 669 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 670 } 671 } 672 673 /* expire prefix list */ 674 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 675 /* 676 * check prefix lifetime. 677 * since pltime is just for autoconf, pltime processing for 678 * prefix is not necessary. 679 */ 680 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 681 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 682 683 /* 684 * address expiration and prefix expiration are 685 * separate. NEVER perform in6_purgeaddr here. 686 */ 687 prelist_remove(pr); 688 } 689 } 690 CURVNET_RESTORE(); 691 } 692 693 /* 694 * ia6 - deprecated/invalidated temporary address 695 */ 696 static int 697 regen_tmpaddr(struct in6_ifaddr *ia6) 698 { 699 struct ifaddr *ifa; 700 struct ifnet *ifp; 701 struct in6_ifaddr *public_ifa6 = NULL; 702 703 ifp = ia6->ia_ifa.ifa_ifp; 704 IF_ADDR_RLOCK(ifp); 705 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 706 struct in6_ifaddr *it6; 707 708 if (ifa->ifa_addr->sa_family != AF_INET6) 709 continue; 710 711 it6 = (struct in6_ifaddr *)ifa; 712 713 /* ignore no autoconf addresses. */ 714 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 715 continue; 716 717 /* ignore autoconf addresses with different prefixes. */ 718 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 719 continue; 720 721 /* 722 * Now we are looking at an autoconf address with the same 723 * prefix as ours. If the address is temporary and is still 724 * preferred, do not create another one. It would be rare, but 725 * could happen, for example, when we resume a laptop PC after 726 * a long period. 727 */ 728 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 729 !IFA6_IS_DEPRECATED(it6)) { 730 public_ifa6 = NULL; 731 break; 732 } 733 734 /* 735 * This is a public autoconf address that has the same prefix 736 * as ours. If it is preferred, keep it. We can't break the 737 * loop here, because there may be a still-preferred temporary 738 * address with the prefix. 739 */ 740 if (!IFA6_IS_DEPRECATED(it6)) 741 public_ifa6 = it6; 742 743 if (public_ifa6 != NULL) 744 ifa_ref(&public_ifa6->ia_ifa); 745 } 746 IF_ADDR_RUNLOCK(ifp); 747 748 if (public_ifa6 != NULL) { 749 int e; 750 751 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 752 ifa_free(&public_ifa6->ia_ifa); 753 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 754 " tmp addr,errno=%d\n", e); 755 return (-1); 756 } 757 ifa_free(&public_ifa6->ia_ifa); 758 return (0); 759 } 760 761 return (-1); 762 } 763 764 /* 765 * Nuke neighbor cache/prefix/default router management table, right before 766 * ifp goes away. 767 */ 768 void 769 nd6_purge(struct ifnet *ifp) 770 { 771 struct nd_defrouter *dr, *ndr; 772 struct nd_prefix *pr, *npr; 773 774 /* 775 * Nuke default router list entries toward ifp. 776 * We defer removal of default router list entries that is installed 777 * in the routing table, in order to keep additional side effects as 778 * small as possible. 779 */ 780 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 781 if (dr->installed) 782 continue; 783 784 if (dr->ifp == ifp) 785 defrtrlist_del(dr); 786 } 787 788 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 789 if (!dr->installed) 790 continue; 791 792 if (dr->ifp == ifp) 793 defrtrlist_del(dr); 794 } 795 796 /* Nuke prefix list entries toward ifp */ 797 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 798 if (pr->ndpr_ifp == ifp) { 799 /* 800 * Because if_detach() does *not* release prefixes 801 * while purging addresses the reference count will 802 * still be above zero. We therefore reset it to 803 * make sure that the prefix really gets purged. 804 */ 805 pr->ndpr_refcnt = 0; 806 807 /* 808 * Previously, pr->ndpr_addr is removed as well, 809 * but I strongly believe we don't have to do it. 810 * nd6_purge() is only called from in6_ifdetach(), 811 * which removes all the associated interface addresses 812 * by itself. 813 * (jinmei@kame.net 20010129) 814 */ 815 prelist_remove(pr); 816 } 817 } 818 819 /* cancel default outgoing interface setting */ 820 if (V_nd6_defifindex == ifp->if_index) 821 nd6_setdefaultiface(0); 822 823 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 824 /* Refresh default router list. */ 825 defrouter_select(); 826 } 827 828 /* XXXXX 829 * We do not nuke the neighbor cache entries here any more 830 * because the neighbor cache is kept in if_afdata[AF_INET6]. 831 * nd6_purge() is invoked by in6_ifdetach() which is called 832 * from if_detach() where everything gets purged. So let 833 * in6_domifdetach() do the actual L2 table purging work. 834 */ 835 } 836 837 /* 838 * the caller acquires and releases the lock on the lltbls 839 * Returns the llentry locked 840 */ 841 struct llentry * 842 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 843 { 844 struct sockaddr_in6 sin6; 845 struct llentry *ln; 846 int llflags; 847 848 bzero(&sin6, sizeof(sin6)); 849 sin6.sin6_len = sizeof(struct sockaddr_in6); 850 sin6.sin6_family = AF_INET6; 851 sin6.sin6_addr = *addr6; 852 853 IF_AFDATA_LOCK_ASSERT(ifp); 854 855 llflags = 0; 856 if (flags & ND6_CREATE) 857 llflags |= LLE_CREATE; 858 if (flags & ND6_EXCLUSIVE) 859 llflags |= LLE_EXCLUSIVE; 860 861 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 862 if ((ln != NULL) && (llflags & LLE_CREATE)) 863 ln->ln_state = ND6_LLINFO_NOSTATE; 864 865 return (ln); 866 } 867 868 /* 869 * Test whether a given IPv6 address is a neighbor or not, ignoring 870 * the actual neighbor cache. The neighbor cache is ignored in order 871 * to not reenter the routing code from within itself. 872 */ 873 static int 874 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 875 { 876 struct nd_prefix *pr; 877 struct ifaddr *dstaddr; 878 879 /* 880 * A link-local address is always a neighbor. 881 * XXX: a link does not necessarily specify a single interface. 882 */ 883 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 884 struct sockaddr_in6 sin6_copy; 885 u_int32_t zone; 886 887 /* 888 * We need sin6_copy since sa6_recoverscope() may modify the 889 * content (XXX). 890 */ 891 sin6_copy = *addr; 892 if (sa6_recoverscope(&sin6_copy)) 893 return (0); /* XXX: should be impossible */ 894 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 895 return (0); 896 if (sin6_copy.sin6_scope_id == zone) 897 return (1); 898 else 899 return (0); 900 } 901 902 /* 903 * If the address matches one of our addresses, 904 * it should be a neighbor. 905 * If the address matches one of our on-link prefixes, it should be a 906 * neighbor. 907 */ 908 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 909 if (pr->ndpr_ifp != ifp) 910 continue; 911 912 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 913 struct rtentry *rt; 914 915 /* Always use the default FIB here. */ 916 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 917 0, 0, RT_DEFAULT_FIB); 918 if (rt == NULL) 919 continue; 920 /* 921 * This is the case where multiple interfaces 922 * have the same prefix, but only one is installed 923 * into the routing table and that prefix entry 924 * is not the one being examined here. In the case 925 * where RADIX_MPATH is enabled, multiple route 926 * entries (of the same rt_key value) will be 927 * installed because the interface addresses all 928 * differ. 929 */ 930 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 931 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 932 RTFREE_LOCKED(rt); 933 continue; 934 } 935 RTFREE_LOCKED(rt); 936 } 937 938 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 939 &addr->sin6_addr, &pr->ndpr_mask)) 940 return (1); 941 } 942 943 /* 944 * If the address is assigned on the node of the other side of 945 * a p2p interface, the address should be a neighbor. 946 */ 947 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 948 if (dstaddr != NULL) { 949 if (dstaddr->ifa_ifp == ifp) { 950 ifa_free(dstaddr); 951 return (1); 952 } 953 ifa_free(dstaddr); 954 } 955 956 /* 957 * If the default router list is empty, all addresses are regarded 958 * as on-link, and thus, as a neighbor. 959 */ 960 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 961 TAILQ_EMPTY(&V_nd_defrouter) && 962 V_nd6_defifindex == ifp->if_index) { 963 return (1); 964 } 965 966 return (0); 967 } 968 969 970 /* 971 * Detect if a given IPv6 address identifies a neighbor on a given link. 972 * XXX: should take care of the destination of a p2p link? 973 */ 974 int 975 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 976 { 977 struct llentry *lle; 978 int rc = 0; 979 980 IF_AFDATA_UNLOCK_ASSERT(ifp); 981 if (nd6_is_new_addr_neighbor(addr, ifp)) 982 return (1); 983 984 /* 985 * Even if the address matches none of our addresses, it might be 986 * in the neighbor cache. 987 */ 988 IF_AFDATA_RLOCK(ifp); 989 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 990 LLE_RUNLOCK(lle); 991 rc = 1; 992 } 993 IF_AFDATA_RUNLOCK(ifp); 994 return (rc); 995 } 996 997 /* 998 * Free an nd6 llinfo entry. 999 * Since the function would cause significant changes in the kernel, DO NOT 1000 * make it global, unless you have a strong reason for the change, and are sure 1001 * that the change is safe. 1002 */ 1003 static struct llentry * 1004 nd6_free(struct llentry *ln, int gc) 1005 { 1006 struct llentry *next; 1007 struct nd_defrouter *dr; 1008 struct ifnet *ifp; 1009 1010 LLE_WLOCK_ASSERT(ln); 1011 1012 /* 1013 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1014 * even though it is not harmful, it was not really necessary. 1015 */ 1016 1017 /* cancel timer */ 1018 nd6_llinfo_settimer_locked(ln, -1); 1019 1020 ifp = ln->lle_tbl->llt_ifp; 1021 1022 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1023 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1024 1025 if (dr != NULL && dr->expire && 1026 ln->ln_state == ND6_LLINFO_STALE && gc) { 1027 /* 1028 * If the reason for the deletion is just garbage 1029 * collection, and the neighbor is an active default 1030 * router, do not delete it. Instead, reset the GC 1031 * timer using the router's lifetime. 1032 * Simply deleting the entry would affect default 1033 * router selection, which is not necessarily a good 1034 * thing, especially when we're using router preference 1035 * values. 1036 * XXX: the check for ln_state would be redundant, 1037 * but we intentionally keep it just in case. 1038 */ 1039 if (dr->expire > time_uptime) 1040 nd6_llinfo_settimer_locked(ln, 1041 (dr->expire - time_uptime) * hz); 1042 else 1043 nd6_llinfo_settimer_locked(ln, 1044 (long)V_nd6_gctimer * hz); 1045 1046 next = LIST_NEXT(ln, lle_next); 1047 LLE_REMREF(ln); 1048 LLE_WUNLOCK(ln); 1049 return (next); 1050 } 1051 1052 if (dr) { 1053 /* 1054 * Unreachablity of a router might affect the default 1055 * router selection and on-link detection of advertised 1056 * prefixes. 1057 */ 1058 1059 /* 1060 * Temporarily fake the state to choose a new default 1061 * router and to perform on-link determination of 1062 * prefixes correctly. 1063 * Below the state will be set correctly, 1064 * or the entry itself will be deleted. 1065 */ 1066 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1067 } 1068 1069 if (ln->ln_router || dr) { 1070 1071 /* 1072 * We need to unlock to avoid a LOR with rt6_flush() with the 1073 * rnh and for the calls to pfxlist_onlink_check() and 1074 * defrouter_select() in the block further down for calls 1075 * into nd6_lookup(). We still hold a ref. 1076 */ 1077 LLE_WUNLOCK(ln); 1078 1079 /* 1080 * rt6_flush must be called whether or not the neighbor 1081 * is in the Default Router List. 1082 * See a corresponding comment in nd6_na_input(). 1083 */ 1084 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1085 } 1086 1087 if (dr) { 1088 /* 1089 * Since defrouter_select() does not affect the 1090 * on-link determination and MIP6 needs the check 1091 * before the default router selection, we perform 1092 * the check now. 1093 */ 1094 pfxlist_onlink_check(); 1095 1096 /* 1097 * Refresh default router list. 1098 */ 1099 defrouter_select(); 1100 } 1101 1102 if (ln->ln_router || dr) 1103 LLE_WLOCK(ln); 1104 } 1105 1106 /* 1107 * Before deleting the entry, remember the next entry as the 1108 * return value. We need this because pfxlist_onlink_check() above 1109 * might have freed other entries (particularly the old next entry) as 1110 * a side effect (XXX). 1111 */ 1112 next = LIST_NEXT(ln, lle_next); 1113 1114 /* 1115 * Save to unlock. We still hold an extra reference and will not 1116 * free(9) in llentry_free() if someone else holds one as well. 1117 */ 1118 LLE_WUNLOCK(ln); 1119 IF_AFDATA_LOCK(ifp); 1120 LLE_WLOCK(ln); 1121 1122 /* Guard against race with other llentry_free(). */ 1123 if (ln->la_flags & LLE_LINKED) { 1124 LLE_REMREF(ln); 1125 llentry_free(ln); 1126 } else 1127 LLE_FREE_LOCKED(ln); 1128 1129 IF_AFDATA_UNLOCK(ifp); 1130 1131 return (next); 1132 } 1133 1134 /* 1135 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1136 * 1137 * XXX cost-effective methods? 1138 */ 1139 void 1140 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1141 { 1142 struct llentry *ln; 1143 struct ifnet *ifp; 1144 1145 if ((dst6 == NULL) || (rt == NULL)) 1146 return; 1147 1148 ifp = rt->rt_ifp; 1149 IF_AFDATA_LOCK(ifp); 1150 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1151 IF_AFDATA_UNLOCK(ifp); 1152 if (ln == NULL) 1153 return; 1154 1155 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1156 goto done; 1157 1158 /* 1159 * if we get upper-layer reachability confirmation many times, 1160 * it is possible we have false information. 1161 */ 1162 if (!force) { 1163 ln->ln_byhint++; 1164 if (ln->ln_byhint > V_nd6_maxnudhint) { 1165 goto done; 1166 } 1167 } 1168 1169 ln->ln_state = ND6_LLINFO_REACHABLE; 1170 if (!ND6_LLINFO_PERMANENT(ln)) { 1171 nd6_llinfo_settimer_locked(ln, 1172 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1173 } 1174 done: 1175 LLE_WUNLOCK(ln); 1176 } 1177 1178 1179 /* 1180 * Rejuvenate this function for routing operations related 1181 * processing. 1182 */ 1183 void 1184 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1185 { 1186 struct sockaddr_in6 *gateway; 1187 struct nd_defrouter *dr; 1188 struct ifnet *ifp; 1189 1190 RT_LOCK_ASSERT(rt); 1191 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1192 ifp = rt->rt_ifp; 1193 1194 switch (req) { 1195 case RTM_ADD: 1196 break; 1197 1198 case RTM_DELETE: 1199 if (!ifp) 1200 return; 1201 /* 1202 * Only indirect routes are interesting. 1203 */ 1204 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1205 return; 1206 /* 1207 * check for default route 1208 */ 1209 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1210 &SIN6(rt_key(rt))->sin6_addr)) { 1211 1212 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1213 if (dr != NULL) 1214 dr->installed = 0; 1215 } 1216 break; 1217 } 1218 } 1219 1220 1221 int 1222 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1223 { 1224 struct in6_drlist *drl = (struct in6_drlist *)data; 1225 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1226 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1227 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1228 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1229 struct nd_defrouter *dr; 1230 struct nd_prefix *pr; 1231 int i = 0, error = 0; 1232 1233 if (ifp->if_afdata[AF_INET6] == NULL) 1234 return (EPFNOSUPPORT); 1235 switch (cmd) { 1236 case SIOCGDRLST_IN6: 1237 /* 1238 * obsolete API, use sysctl under net.inet6.icmp6 1239 */ 1240 bzero(drl, sizeof(*drl)); 1241 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1242 if (i >= DRLSTSIZ) 1243 break; 1244 drl->defrouter[i].rtaddr = dr->rtaddr; 1245 in6_clearscope(&drl->defrouter[i].rtaddr); 1246 1247 drl->defrouter[i].flags = dr->flags; 1248 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1249 drl->defrouter[i].expire = dr->expire + 1250 (time_second - time_uptime); 1251 drl->defrouter[i].if_index = dr->ifp->if_index; 1252 i++; 1253 } 1254 break; 1255 case SIOCGPRLST_IN6: 1256 /* 1257 * obsolete API, use sysctl under net.inet6.icmp6 1258 * 1259 * XXX the structure in6_prlist was changed in backward- 1260 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1261 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1262 */ 1263 /* 1264 * XXX meaning of fields, especialy "raflags", is very 1265 * differnet between RA prefix list and RR/static prefix list. 1266 * how about separating ioctls into two? 1267 */ 1268 bzero(oprl, sizeof(*oprl)); 1269 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1270 struct nd_pfxrouter *pfr; 1271 int j; 1272 1273 if (i >= PRLSTSIZ) 1274 break; 1275 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1276 oprl->prefix[i].raflags = pr->ndpr_raf; 1277 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1278 oprl->prefix[i].vltime = pr->ndpr_vltime; 1279 oprl->prefix[i].pltime = pr->ndpr_pltime; 1280 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1281 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1282 oprl->prefix[i].expire = 0; 1283 else { 1284 time_t maxexpire; 1285 1286 /* XXX: we assume time_t is signed. */ 1287 maxexpire = (-1) & 1288 ~((time_t)1 << 1289 ((sizeof(maxexpire) * 8) - 1)); 1290 if (pr->ndpr_vltime < 1291 maxexpire - pr->ndpr_lastupdate) { 1292 oprl->prefix[i].expire = 1293 pr->ndpr_lastupdate + 1294 pr->ndpr_vltime + 1295 (time_second - time_uptime); 1296 } else 1297 oprl->prefix[i].expire = maxexpire; 1298 } 1299 1300 j = 0; 1301 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1302 if (j < DRLSTSIZ) { 1303 #define RTRADDR oprl->prefix[i].advrtr[j] 1304 RTRADDR = pfr->router->rtaddr; 1305 in6_clearscope(&RTRADDR); 1306 #undef RTRADDR 1307 } 1308 j++; 1309 } 1310 oprl->prefix[i].advrtrs = j; 1311 oprl->prefix[i].origin = PR_ORIG_RA; 1312 1313 i++; 1314 } 1315 1316 break; 1317 case OSIOCGIFINFO_IN6: 1318 #define ND ndi->ndi 1319 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1320 bzero(&ND, sizeof(ND)); 1321 ND.linkmtu = IN6_LINKMTU(ifp); 1322 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1323 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1324 ND.reachable = ND_IFINFO(ifp)->reachable; 1325 ND.retrans = ND_IFINFO(ifp)->retrans; 1326 ND.flags = ND_IFINFO(ifp)->flags; 1327 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1328 ND.chlim = ND_IFINFO(ifp)->chlim; 1329 break; 1330 case SIOCGIFINFO_IN6: 1331 ND = *ND_IFINFO(ifp); 1332 break; 1333 case SIOCSIFINFO_IN6: 1334 /* 1335 * used to change host variables from userland. 1336 * intented for a use on router to reflect RA configurations. 1337 */ 1338 /* 0 means 'unspecified' */ 1339 if (ND.linkmtu != 0) { 1340 if (ND.linkmtu < IPV6_MMTU || 1341 ND.linkmtu > IN6_LINKMTU(ifp)) { 1342 error = EINVAL; 1343 break; 1344 } 1345 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1346 } 1347 1348 if (ND.basereachable != 0) { 1349 int obasereachable = ND_IFINFO(ifp)->basereachable; 1350 1351 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1352 if (ND.basereachable != obasereachable) 1353 ND_IFINFO(ifp)->reachable = 1354 ND_COMPUTE_RTIME(ND.basereachable); 1355 } 1356 if (ND.retrans != 0) 1357 ND_IFINFO(ifp)->retrans = ND.retrans; 1358 if (ND.chlim != 0) 1359 ND_IFINFO(ifp)->chlim = ND.chlim; 1360 /* FALLTHROUGH */ 1361 case SIOCSIFINFO_FLAGS: 1362 { 1363 struct ifaddr *ifa; 1364 struct in6_ifaddr *ia; 1365 1366 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1367 !(ND.flags & ND6_IFF_IFDISABLED)) { 1368 /* ifdisabled 1->0 transision */ 1369 1370 /* 1371 * If the interface is marked as ND6_IFF_IFDISABLED and 1372 * has an link-local address with IN6_IFF_DUPLICATED, 1373 * do not clear ND6_IFF_IFDISABLED. 1374 * See RFC 4862, Section 5.4.5. 1375 */ 1376 int duplicated_linklocal = 0; 1377 1378 IF_ADDR_RLOCK(ifp); 1379 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1380 if (ifa->ifa_addr->sa_family != AF_INET6) 1381 continue; 1382 ia = (struct in6_ifaddr *)ifa; 1383 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1384 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1385 duplicated_linklocal = 1; 1386 break; 1387 } 1388 } 1389 IF_ADDR_RUNLOCK(ifp); 1390 1391 if (duplicated_linklocal) { 1392 ND.flags |= ND6_IFF_IFDISABLED; 1393 log(LOG_ERR, "Cannot enable an interface" 1394 " with a link-local address marked" 1395 " duplicate.\n"); 1396 } else { 1397 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1398 if (ifp->if_flags & IFF_UP) 1399 in6_if_up(ifp); 1400 } 1401 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1402 (ND.flags & ND6_IFF_IFDISABLED)) { 1403 /* ifdisabled 0->1 transision */ 1404 /* Mark all IPv6 address as tentative. */ 1405 1406 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1407 IF_ADDR_RLOCK(ifp); 1408 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1409 if (ifa->ifa_addr->sa_family != AF_INET6) 1410 continue; 1411 ia = (struct in6_ifaddr *)ifa; 1412 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1413 } 1414 IF_ADDR_RUNLOCK(ifp); 1415 } 1416 1417 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1418 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1419 /* auto_linklocal 0->1 transision */ 1420 1421 /* If no link-local address on ifp, configure */ 1422 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1423 in6_ifattach(ifp, NULL); 1424 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1425 ifp->if_flags & IFF_UP) { 1426 /* 1427 * When the IF already has 1428 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1429 * address is assigned, and IFF_UP, try to 1430 * assign one. 1431 */ 1432 int haslinklocal = 0; 1433 1434 IF_ADDR_RLOCK(ifp); 1435 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1436 if (ifa->ifa_addr->sa_family != AF_INET6) 1437 continue; 1438 ia = (struct in6_ifaddr *)ifa; 1439 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1440 haslinklocal = 1; 1441 break; 1442 } 1443 } 1444 IF_ADDR_RUNLOCK(ifp); 1445 if (!haslinklocal) 1446 in6_ifattach(ifp, NULL); 1447 } 1448 } 1449 } 1450 ND_IFINFO(ifp)->flags = ND.flags; 1451 break; 1452 #undef ND 1453 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1454 /* sync kernel routing table with the default router list */ 1455 defrouter_reset(); 1456 defrouter_select(); 1457 break; 1458 case SIOCSPFXFLUSH_IN6: 1459 { 1460 /* flush all the prefix advertised by routers */ 1461 struct nd_prefix *pr, *next; 1462 1463 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1464 struct in6_ifaddr *ia, *ia_next; 1465 1466 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1467 continue; /* XXX */ 1468 1469 /* do we really have to remove addresses as well? */ 1470 /* XXXRW: in6_ifaddrhead locking. */ 1471 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1472 ia_next) { 1473 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1474 continue; 1475 1476 if (ia->ia6_ndpr == pr) 1477 in6_purgeaddr(&ia->ia_ifa); 1478 } 1479 prelist_remove(pr); 1480 } 1481 break; 1482 } 1483 case SIOCSRTRFLUSH_IN6: 1484 { 1485 /* flush all the default routers */ 1486 struct nd_defrouter *dr, *next; 1487 1488 defrouter_reset(); 1489 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1490 defrtrlist_del(dr); 1491 } 1492 defrouter_select(); 1493 break; 1494 } 1495 case SIOCGNBRINFO_IN6: 1496 { 1497 struct llentry *ln; 1498 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1499 1500 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1501 return (error); 1502 1503 IF_AFDATA_RLOCK(ifp); 1504 ln = nd6_lookup(&nb_addr, 0, ifp); 1505 IF_AFDATA_RUNLOCK(ifp); 1506 1507 if (ln == NULL) { 1508 error = EINVAL; 1509 break; 1510 } 1511 nbi->state = ln->ln_state; 1512 nbi->asked = ln->la_asked; 1513 nbi->isrouter = ln->ln_router; 1514 if (ln->la_expire == 0) 1515 nbi->expire = 0; 1516 else 1517 nbi->expire = ln->la_expire + 1518 (time_second - time_uptime); 1519 LLE_RUNLOCK(ln); 1520 break; 1521 } 1522 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1523 ndif->ifindex = V_nd6_defifindex; 1524 break; 1525 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1526 return (nd6_setdefaultiface(ndif->ifindex)); 1527 } 1528 return (error); 1529 } 1530 1531 /* 1532 * Create neighbor cache entry and cache link-layer address, 1533 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1534 * 1535 * type - ICMP6 type 1536 * code - type dependent information 1537 * 1538 * XXXXX 1539 * The caller of this function already acquired the ndp 1540 * cache table lock because the cache entry is returned. 1541 */ 1542 struct llentry * 1543 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1544 int lladdrlen, int type, int code) 1545 { 1546 struct llentry *ln = NULL; 1547 int is_newentry; 1548 int do_update; 1549 int olladdr; 1550 int llchange; 1551 int flags; 1552 int newstate = 0; 1553 uint16_t router = 0; 1554 struct sockaddr_in6 sin6; 1555 struct mbuf *chain = NULL; 1556 int static_route = 0; 1557 1558 IF_AFDATA_UNLOCK_ASSERT(ifp); 1559 1560 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1561 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1562 1563 /* nothing must be updated for unspecified address */ 1564 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1565 return NULL; 1566 1567 /* 1568 * Validation about ifp->if_addrlen and lladdrlen must be done in 1569 * the caller. 1570 * 1571 * XXX If the link does not have link-layer adderss, what should 1572 * we do? (ifp->if_addrlen == 0) 1573 * Spec says nothing in sections for RA, RS and NA. There's small 1574 * description on it in NS section (RFC 2461 7.2.3). 1575 */ 1576 flags = lladdr ? ND6_EXCLUSIVE : 0; 1577 IF_AFDATA_LOCK(ifp); 1578 ln = nd6_lookup(from, flags, ifp); 1579 1580 if (ln == NULL) { 1581 flags |= ND6_EXCLUSIVE; 1582 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1583 IF_AFDATA_UNLOCK(ifp); 1584 is_newentry = 1; 1585 } else { 1586 IF_AFDATA_UNLOCK(ifp); 1587 /* do nothing if static ndp is set */ 1588 if (ln->la_flags & LLE_STATIC) { 1589 static_route = 1; 1590 goto done; 1591 } 1592 is_newentry = 0; 1593 } 1594 if (ln == NULL) 1595 return (NULL); 1596 1597 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1598 if (olladdr && lladdr) { 1599 llchange = bcmp(lladdr, &ln->ll_addr, 1600 ifp->if_addrlen); 1601 } else 1602 llchange = 0; 1603 1604 /* 1605 * newentry olladdr lladdr llchange (*=record) 1606 * 0 n n -- (1) 1607 * 0 y n -- (2) 1608 * 0 n y -- (3) * STALE 1609 * 0 y y n (4) * 1610 * 0 y y y (5) * STALE 1611 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1612 * 1 -- y -- (7) * STALE 1613 */ 1614 1615 if (lladdr) { /* (3-5) and (7) */ 1616 /* 1617 * Record source link-layer address 1618 * XXX is it dependent to ifp->if_type? 1619 */ 1620 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1621 ln->la_flags |= LLE_VALID; 1622 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1623 } 1624 1625 if (!is_newentry) { 1626 if ((!olladdr && lladdr != NULL) || /* (3) */ 1627 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1628 do_update = 1; 1629 newstate = ND6_LLINFO_STALE; 1630 } else /* (1-2,4) */ 1631 do_update = 0; 1632 } else { 1633 do_update = 1; 1634 if (lladdr == NULL) /* (6) */ 1635 newstate = ND6_LLINFO_NOSTATE; 1636 else /* (7) */ 1637 newstate = ND6_LLINFO_STALE; 1638 } 1639 1640 if (do_update) { 1641 /* 1642 * Update the state of the neighbor cache. 1643 */ 1644 ln->ln_state = newstate; 1645 1646 if (ln->ln_state == ND6_LLINFO_STALE) { 1647 /* 1648 * XXX: since nd6_output() below will cause 1649 * state tansition to DELAY and reset the timer, 1650 * we must set the timer now, although it is actually 1651 * meaningless. 1652 */ 1653 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1654 1655 if (ln->la_hold) { 1656 struct mbuf *m_hold, *m_hold_next; 1657 1658 /* 1659 * reset the la_hold in advance, to explicitly 1660 * prevent a la_hold lookup in nd6_output() 1661 * (wouldn't happen, though...) 1662 */ 1663 for (m_hold = ln->la_hold, ln->la_hold = NULL; 1664 m_hold; m_hold = m_hold_next) { 1665 m_hold_next = m_hold->m_nextpkt; 1666 m_hold->m_nextpkt = NULL; 1667 1668 /* 1669 * we assume ifp is not a p2p here, so 1670 * just set the 2nd argument as the 1671 * 1st one. 1672 */ 1673 nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain); 1674 } 1675 /* 1676 * If we have mbufs in the chain we need to do 1677 * deferred transmit. Copy the address from the 1678 * llentry before dropping the lock down below. 1679 */ 1680 if (chain != NULL) 1681 memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6)); 1682 } 1683 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1684 /* probe right away */ 1685 nd6_llinfo_settimer_locked((void *)ln, 0); 1686 } 1687 } 1688 1689 /* 1690 * ICMP6 type dependent behavior. 1691 * 1692 * NS: clear IsRouter if new entry 1693 * RS: clear IsRouter 1694 * RA: set IsRouter if there's lladdr 1695 * redir: clear IsRouter if new entry 1696 * 1697 * RA case, (1): 1698 * The spec says that we must set IsRouter in the following cases: 1699 * - If lladdr exist, set IsRouter. This means (1-5). 1700 * - If it is old entry (!newentry), set IsRouter. This means (7). 1701 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1702 * A quetion arises for (1) case. (1) case has no lladdr in the 1703 * neighbor cache, this is similar to (6). 1704 * This case is rare but we figured that we MUST NOT set IsRouter. 1705 * 1706 * newentry olladdr lladdr llchange NS RS RA redir 1707 * D R 1708 * 0 n n -- (1) c ? s 1709 * 0 y n -- (2) c s s 1710 * 0 n y -- (3) c s s 1711 * 0 y y n (4) c s s 1712 * 0 y y y (5) c s s 1713 * 1 -- n -- (6) c c c s 1714 * 1 -- y -- (7) c c s c s 1715 * 1716 * (c=clear s=set) 1717 */ 1718 switch (type & 0xff) { 1719 case ND_NEIGHBOR_SOLICIT: 1720 /* 1721 * New entry must have is_router flag cleared. 1722 */ 1723 if (is_newentry) /* (6-7) */ 1724 ln->ln_router = 0; 1725 break; 1726 case ND_REDIRECT: 1727 /* 1728 * If the icmp is a redirect to a better router, always set the 1729 * is_router flag. Otherwise, if the entry is newly created, 1730 * clear the flag. [RFC 2461, sec 8.3] 1731 */ 1732 if (code == ND_REDIRECT_ROUTER) 1733 ln->ln_router = 1; 1734 else if (is_newentry) /* (6-7) */ 1735 ln->ln_router = 0; 1736 break; 1737 case ND_ROUTER_SOLICIT: 1738 /* 1739 * is_router flag must always be cleared. 1740 */ 1741 ln->ln_router = 0; 1742 break; 1743 case ND_ROUTER_ADVERT: 1744 /* 1745 * Mark an entry with lladdr as a router. 1746 */ 1747 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1748 (is_newentry && lladdr)) { /* (7) */ 1749 ln->ln_router = 1; 1750 } 1751 break; 1752 } 1753 1754 if (ln != NULL) { 1755 static_route = (ln->la_flags & LLE_STATIC); 1756 router = ln->ln_router; 1757 1758 if (flags & ND6_EXCLUSIVE) 1759 LLE_WUNLOCK(ln); 1760 else 1761 LLE_RUNLOCK(ln); 1762 if (static_route) 1763 ln = NULL; 1764 } 1765 if (chain) 1766 nd6_output_flush(ifp, ifp, chain, &sin6, NULL); 1767 1768 /* 1769 * When the link-layer address of a router changes, select the 1770 * best router again. In particular, when the neighbor entry is newly 1771 * created, it might affect the selection policy. 1772 * Question: can we restrict the first condition to the "is_newentry" 1773 * case? 1774 * XXX: when we hear an RA from a new router with the link-layer 1775 * address option, defrouter_select() is called twice, since 1776 * defrtrlist_update called the function as well. However, I believe 1777 * we can compromise the overhead, since it only happens the first 1778 * time. 1779 * XXX: although defrouter_select() should not have a bad effect 1780 * for those are not autoconfigured hosts, we explicitly avoid such 1781 * cases for safety. 1782 */ 1783 if (do_update && router && 1784 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1785 /* 1786 * guaranteed recursion 1787 */ 1788 defrouter_select(); 1789 } 1790 1791 return (ln); 1792 done: 1793 if (ln != NULL) { 1794 if (flags & ND6_EXCLUSIVE) 1795 LLE_WUNLOCK(ln); 1796 else 1797 LLE_RUNLOCK(ln); 1798 if (static_route) 1799 ln = NULL; 1800 } 1801 return (ln); 1802 } 1803 1804 static void 1805 nd6_slowtimo(void *arg) 1806 { 1807 CURVNET_SET((struct vnet *) arg); 1808 struct nd_ifinfo *nd6if; 1809 struct ifnet *ifp; 1810 1811 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1812 nd6_slowtimo, curvnet); 1813 IFNET_RLOCK_NOSLEEP(); 1814 TAILQ_FOREACH(ifp, &V_ifnet, if_list) { 1815 if (ifp->if_afdata[AF_INET6] == NULL) 1816 continue; 1817 nd6if = ND_IFINFO(ifp); 1818 if (nd6if->basereachable && /* already initialized */ 1819 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1820 /* 1821 * Since reachable time rarely changes by router 1822 * advertisements, we SHOULD insure that a new random 1823 * value gets recomputed at least once every few hours. 1824 * (RFC 2461, 6.3.4) 1825 */ 1826 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1827 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1828 } 1829 } 1830 IFNET_RUNLOCK_NOSLEEP(); 1831 CURVNET_RESTORE(); 1832 } 1833 1834 int 1835 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1836 struct sockaddr_in6 *dst, struct rtentry *rt0) 1837 { 1838 1839 return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL)); 1840 } 1841 1842 1843 /* 1844 * Note that I'm not enforcing any global serialization 1845 * lle state or asked changes here as the logic is too 1846 * complicated to avoid having to always acquire an exclusive 1847 * lock 1848 * KMM 1849 * 1850 */ 1851 #define senderr(e) { error = (e); goto bad;} 1852 1853 int 1854 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1855 struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle, 1856 struct mbuf **chain) 1857 { 1858 struct mbuf *m = m0; 1859 struct m_tag *mtag; 1860 struct llentry *ln = lle; 1861 struct ip6_hdr *ip6; 1862 int error = 0; 1863 int flags = 0; 1864 int ip6len; 1865 1866 #ifdef INVARIANTS 1867 if (lle != NULL) { 1868 1869 LLE_WLOCK_ASSERT(lle); 1870 1871 KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed")); 1872 } 1873 #endif 1874 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1875 goto sendpkt; 1876 1877 if (nd6_need_cache(ifp) == 0) 1878 goto sendpkt; 1879 1880 /* 1881 * next hop determination. This routine is derived from ether_output. 1882 */ 1883 1884 /* 1885 * Address resolution or Neighbor Unreachability Detection 1886 * for the next hop. 1887 * At this point, the destination of the packet must be a unicast 1888 * or an anycast address(i.e. not a multicast). 1889 */ 1890 1891 flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0; 1892 if (ln == NULL) { 1893 retry: 1894 IF_AFDATA_LOCK(ifp); 1895 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst); 1896 IF_AFDATA_UNLOCK(ifp); 1897 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1898 /* 1899 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1900 * the condition below is not very efficient. But we believe 1901 * it is tolerable, because this should be a rare case. 1902 */ 1903 flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0); 1904 IF_AFDATA_LOCK(ifp); 1905 ln = nd6_lookup(&dst->sin6_addr, flags, ifp); 1906 IF_AFDATA_UNLOCK(ifp); 1907 } 1908 } 1909 if (ln == NULL) { 1910 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1911 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1912 char ip6buf[INET6_ADDRSTRLEN]; 1913 log(LOG_DEBUG, 1914 "nd6_output: can't allocate llinfo for %s " 1915 "(ln=%p)\n", 1916 ip6_sprintf(ip6buf, &dst->sin6_addr), ln); 1917 senderr(EIO); /* XXX: good error? */ 1918 } 1919 goto sendpkt; /* send anyway */ 1920 } 1921 1922 /* We don't have to do link-layer address resolution on a p2p link. */ 1923 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1924 ln->ln_state < ND6_LLINFO_REACHABLE) { 1925 if ((flags & LLE_EXCLUSIVE) == 0) { 1926 flags |= LLE_EXCLUSIVE; 1927 goto retry; 1928 } 1929 ln->ln_state = ND6_LLINFO_STALE; 1930 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1931 } 1932 1933 /* 1934 * The first time we send a packet to a neighbor whose entry is 1935 * STALE, we have to change the state to DELAY and a sets a timer to 1936 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1937 * neighbor unreachability detection on expiration. 1938 * (RFC 2461 7.3.3) 1939 */ 1940 if (ln->ln_state == ND6_LLINFO_STALE) { 1941 if ((flags & LLE_EXCLUSIVE) == 0) { 1942 flags |= LLE_EXCLUSIVE; 1943 LLE_RUNLOCK(ln); 1944 goto retry; 1945 } 1946 ln->la_asked = 0; 1947 ln->ln_state = ND6_LLINFO_DELAY; 1948 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1949 } 1950 1951 /* 1952 * If the neighbor cache entry has a state other than INCOMPLETE 1953 * (i.e. its link-layer address is already resolved), just 1954 * send the packet. 1955 */ 1956 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1957 goto sendpkt; 1958 1959 /* 1960 * There is a neighbor cache entry, but no ethernet address 1961 * response yet. Append this latest packet to the end of the 1962 * packet queue in the mbuf, unless the number of the packet 1963 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 1964 * the oldest packet in the queue will be removed. 1965 */ 1966 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1967 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1968 1969 if ((flags & LLE_EXCLUSIVE) == 0) { 1970 flags |= LLE_EXCLUSIVE; 1971 LLE_RUNLOCK(ln); 1972 goto retry; 1973 } 1974 1975 LLE_WLOCK_ASSERT(ln); 1976 1977 if (ln->la_hold) { 1978 struct mbuf *m_hold; 1979 int i; 1980 1981 i = 0; 1982 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) { 1983 i++; 1984 if (m_hold->m_nextpkt == NULL) { 1985 m_hold->m_nextpkt = m; 1986 break; 1987 } 1988 } 1989 while (i >= V_nd6_maxqueuelen) { 1990 m_hold = ln->la_hold; 1991 ln->la_hold = ln->la_hold->m_nextpkt; 1992 m_freem(m_hold); 1993 i--; 1994 } 1995 } else { 1996 ln->la_hold = m; 1997 } 1998 1999 /* 2000 * If there has been no NS for the neighbor after entering the 2001 * INCOMPLETE state, send the first solicitation. 2002 */ 2003 if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) { 2004 ln->la_asked++; 2005 2006 nd6_llinfo_settimer_locked(ln, 2007 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2008 LLE_WUNLOCK(ln); 2009 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2010 if (lle != NULL && ln == lle) 2011 LLE_WLOCK(lle); 2012 2013 } else if (lle == NULL || ln != lle) { 2014 /* 2015 * We did the lookup (no lle arg) so we 2016 * need to do the unlock here. 2017 */ 2018 LLE_WUNLOCK(ln); 2019 } 2020 2021 return (0); 2022 2023 sendpkt: 2024 /* discard the packet if IPv6 operation is disabled on the interface */ 2025 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2026 error = ENETDOWN; /* better error? */ 2027 goto bad; 2028 } 2029 /* 2030 * ln is valid and the caller did not pass in 2031 * an llentry 2032 */ 2033 if ((ln != NULL) && (lle == NULL)) { 2034 if (flags & LLE_EXCLUSIVE) 2035 LLE_WUNLOCK(ln); 2036 else 2037 LLE_RUNLOCK(ln); 2038 } 2039 2040 #ifdef MAC 2041 mac_netinet6_nd6_send(ifp, m); 2042 #endif 2043 2044 /* 2045 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2046 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2047 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2048 * to be diverted to user space. When re-injected into the kernel, 2049 * send_output() will directly dispatch them to the outgoing interface. 2050 */ 2051 if (send_sendso_input_hook != NULL) { 2052 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2053 if (mtag != NULL) { 2054 ip6 = mtod(m, struct ip6_hdr *); 2055 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2056 /* Use the SEND socket */ 2057 error = send_sendso_input_hook(m, ifp, SND_OUT, 2058 ip6len); 2059 /* -1 == no app on SEND socket */ 2060 if (error == 0 || error != -1) 2061 return (error); 2062 } 2063 } 2064 2065 /* 2066 * We were passed in a pointer to an lle with the lock held 2067 * this means that we can't call if_output as we will 2068 * recurse on the lle lock - so what we do is we create 2069 * a list of mbufs to send and transmit them in the caller 2070 * after the lock is dropped 2071 */ 2072 if (lle != NULL) { 2073 if (*chain == NULL) 2074 *chain = m; 2075 else { 2076 struct mbuf *mb; 2077 2078 /* 2079 * append mbuf to end of deferred chain 2080 */ 2081 mb = *chain; 2082 while (mb->m_nextpkt != NULL) 2083 mb = mb->m_nextpkt; 2084 mb->m_nextpkt = m; 2085 } 2086 return (error); 2087 } 2088 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2089 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2090 mtod(m, struct ip6_hdr *)); 2091 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2092 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2093 NULL)); 2094 } 2095 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL); 2096 return (error); 2097 2098 bad: 2099 /* 2100 * ln is valid and the caller did not pass in 2101 * an llentry 2102 */ 2103 if ((ln != NULL) && (lle == NULL)) { 2104 if (flags & LLE_EXCLUSIVE) 2105 LLE_WUNLOCK(ln); 2106 else 2107 LLE_RUNLOCK(ln); 2108 } 2109 if (m) 2110 m_freem(m); 2111 return (error); 2112 } 2113 #undef senderr 2114 2115 2116 int 2117 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2118 struct sockaddr_in6 *dst, struct route *ro) 2119 { 2120 struct mbuf *m, *m_head; 2121 struct ifnet *outifp; 2122 int error = 0; 2123 2124 m_head = chain; 2125 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2126 outifp = origifp; 2127 else 2128 outifp = ifp; 2129 2130 while (m_head) { 2131 m = m_head; 2132 m_head = m_head->m_nextpkt; 2133 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro); 2134 } 2135 2136 /* 2137 * XXX 2138 * note that intermediate errors are blindly ignored - but this is 2139 * the same convention as used with nd6_output when called by 2140 * nd6_cache_lladdr 2141 */ 2142 return (error); 2143 } 2144 2145 2146 int 2147 nd6_need_cache(struct ifnet *ifp) 2148 { 2149 /* 2150 * XXX: we currently do not make neighbor cache on any interface 2151 * other than ARCnet, Ethernet, FDDI and GIF. 2152 * 2153 * RFC2893 says: 2154 * - unidirectional tunnels needs no ND 2155 */ 2156 switch (ifp->if_type) { 2157 case IFT_ARCNET: 2158 case IFT_ETHER: 2159 case IFT_FDDI: 2160 case IFT_IEEE1394: 2161 #ifdef IFT_L2VLAN 2162 case IFT_L2VLAN: 2163 #endif 2164 #ifdef IFT_IEEE80211 2165 case IFT_IEEE80211: 2166 #endif 2167 case IFT_INFINIBAND: 2168 case IFT_GIF: /* XXX need more cases? */ 2169 case IFT_PPP: 2170 case IFT_TUNNEL: 2171 case IFT_BRIDGE: 2172 case IFT_PROPVIRTUAL: 2173 return (1); 2174 default: 2175 return (0); 2176 } 2177 } 2178 2179 /* 2180 * the callers of this function need to be re-worked to drop 2181 * the lle lock, drop here for now 2182 */ 2183 int 2184 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2185 const struct sockaddr *dst, u_char *desten, struct llentry **lle) 2186 { 2187 struct llentry *ln; 2188 2189 *lle = NULL; 2190 IF_AFDATA_UNLOCK_ASSERT(ifp); 2191 if (m != NULL && m->m_flags & M_MCAST) { 2192 int i; 2193 2194 switch (ifp->if_type) { 2195 case IFT_ETHER: 2196 case IFT_FDDI: 2197 #ifdef IFT_L2VLAN 2198 case IFT_L2VLAN: 2199 #endif 2200 #ifdef IFT_IEEE80211 2201 case IFT_IEEE80211: 2202 #endif 2203 case IFT_BRIDGE: 2204 case IFT_ISO88025: 2205 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2206 desten); 2207 return (0); 2208 case IFT_IEEE1394: 2209 /* 2210 * netbsd can use if_broadcastaddr, but we don't do so 2211 * to reduce # of ifdef. 2212 */ 2213 for (i = 0; i < ifp->if_addrlen; i++) 2214 desten[i] = ~0; 2215 return (0); 2216 case IFT_ARCNET: 2217 *desten = 0; 2218 return (0); 2219 default: 2220 m_freem(m); 2221 return (EAFNOSUPPORT); 2222 } 2223 } 2224 2225 2226 /* 2227 * the entry should have been created in nd6_store_lladdr 2228 */ 2229 IF_AFDATA_RLOCK(ifp); 2230 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2231 IF_AFDATA_RUNLOCK(ifp); 2232 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2233 if (ln != NULL) 2234 LLE_RUNLOCK(ln); 2235 /* this could happen, if we could not allocate memory */ 2236 m_freem(m); 2237 return (1); 2238 } 2239 2240 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2241 *lle = ln; 2242 LLE_RUNLOCK(ln); 2243 /* 2244 * A *small* use after free race exists here 2245 */ 2246 return (0); 2247 } 2248 2249 static void 2250 clear_llinfo_pqueue(struct llentry *ln) 2251 { 2252 struct mbuf *m_hold, *m_hold_next; 2253 2254 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2255 m_hold_next = m_hold->m_nextpkt; 2256 m_freem(m_hold); 2257 } 2258 2259 ln->la_hold = NULL; 2260 return; 2261 } 2262 2263 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2264 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2265 #ifdef SYSCTL_DECL 2266 SYSCTL_DECL(_net_inet6_icmp6); 2267 #endif 2268 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2269 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2270 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2271 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2272 SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2273 CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2274 2275 static int 2276 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2277 { 2278 struct in6_defrouter d; 2279 struct nd_defrouter *dr; 2280 int error; 2281 2282 if (req->newptr) 2283 return (EPERM); 2284 2285 bzero(&d, sizeof(d)); 2286 d.rtaddr.sin6_family = AF_INET6; 2287 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2288 2289 /* 2290 * XXX locking 2291 */ 2292 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2293 d.rtaddr.sin6_addr = dr->rtaddr; 2294 error = sa6_recoverscope(&d.rtaddr); 2295 if (error != 0) 2296 return (error); 2297 d.flags = dr->flags; 2298 d.rtlifetime = dr->rtlifetime; 2299 d.expire = dr->expire + (time_second - time_uptime); 2300 d.if_index = dr->ifp->if_index; 2301 error = SYSCTL_OUT(req, &d, sizeof(d)); 2302 if (error != 0) 2303 return (error); 2304 } 2305 return (0); 2306 } 2307 2308 static int 2309 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2310 { 2311 struct in6_prefix p; 2312 struct sockaddr_in6 s6; 2313 struct nd_prefix *pr; 2314 struct nd_pfxrouter *pfr; 2315 time_t maxexpire; 2316 int error; 2317 char ip6buf[INET6_ADDRSTRLEN]; 2318 2319 if (req->newptr) 2320 return (EPERM); 2321 2322 bzero(&p, sizeof(p)); 2323 p.origin = PR_ORIG_RA; 2324 bzero(&s6, sizeof(s6)); 2325 s6.sin6_family = AF_INET6; 2326 s6.sin6_len = sizeof(s6); 2327 2328 /* 2329 * XXX locking 2330 */ 2331 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2332 p.prefix = pr->ndpr_prefix; 2333 if (sa6_recoverscope(&p.prefix)) { 2334 log(LOG_ERR, "scope error in prefix list (%s)\n", 2335 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2336 /* XXX: press on... */ 2337 } 2338 p.raflags = pr->ndpr_raf; 2339 p.prefixlen = pr->ndpr_plen; 2340 p.vltime = pr->ndpr_vltime; 2341 p.pltime = pr->ndpr_pltime; 2342 p.if_index = pr->ndpr_ifp->if_index; 2343 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2344 p.expire = 0; 2345 else { 2346 /* XXX: we assume time_t is signed. */ 2347 maxexpire = (-1) & 2348 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2349 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2350 p.expire = pr->ndpr_lastupdate + 2351 pr->ndpr_vltime + 2352 (time_second - time_uptime); 2353 else 2354 p.expire = maxexpire; 2355 } 2356 p.refcnt = pr->ndpr_refcnt; 2357 p.flags = pr->ndpr_stateflags; 2358 p.advrtrs = 0; 2359 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2360 p.advrtrs++; 2361 error = SYSCTL_OUT(req, &p, sizeof(p)); 2362 if (error != 0) 2363 return (error); 2364 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2365 s6.sin6_addr = pfr->router->rtaddr; 2366 if (sa6_recoverscope(&s6)) 2367 log(LOG_ERR, 2368 "scope error in prefix list (%s)\n", 2369 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2370 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2371 if (error != 0) 2372 return (error); 2373 } 2374 } 2375 return (0); 2376 } 2377