1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 /* timer values */ 90 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 91 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 92 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 93 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 94 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 95 * local traffic */ 96 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 97 * collection timer */ 98 99 /* preventing too many loops in ND option parsing */ 100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 101 102 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 103 * layer hints */ 104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 105 * ND entries */ 106 #define V_nd6_maxndopt VNET(nd6_maxndopt) 107 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 108 109 #ifdef ND6_DEBUG 110 VNET_DEFINE(int, nd6_debug) = 1; 111 #else 112 VNET_DEFINE(int, nd6_debug) = 0; 113 #endif 114 115 static eventhandler_tag lle_event_eh; 116 117 /* for debugging? */ 118 #if 0 119 static int nd6_inuse, nd6_allocated; 120 #endif 121 122 VNET_DEFINE(struct nd_drhead, nd_defrouter); 123 VNET_DEFINE(struct nd_prhead, nd_prefix); 124 125 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 126 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 127 128 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 129 130 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 131 struct ifnet *); 132 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 133 static void nd6_slowtimo(void *); 134 static int regen_tmpaddr(struct in6_ifaddr *); 135 static struct llentry *nd6_free(struct llentry *, int); 136 static void nd6_llinfo_timer(void *); 137 static void clear_llinfo_pqueue(struct llentry *); 138 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 139 static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *, 140 struct sockaddr_in6 *); 141 static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, 142 struct sockaddr_in6 *); 143 144 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 145 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 146 147 VNET_DEFINE(struct callout, nd6_timer_ch); 148 149 static void 150 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 151 { 152 struct rt_addrinfo rtinfo; 153 struct sockaddr_in6 dst, *sa6; 154 struct sockaddr_dl gw; 155 struct ifnet *ifp; 156 int type; 157 158 LLE_WLOCK_ASSERT(lle); 159 160 switch (evt) { 161 case LLENTRY_RESOLVED: 162 type = RTM_ADD; 163 KASSERT(lle->la_flags & LLE_VALID, 164 ("%s: %p resolved but not valid?", __func__, lle)); 165 break; 166 case LLENTRY_EXPIRED: 167 type = RTM_DELETE; 168 break; 169 default: 170 return; 171 } 172 173 sa6 = L3_ADDR_SIN6(lle); 174 if (sa6->sin6_family != AF_INET6) 175 return; 176 ifp = lle->lle_tbl->llt_ifp; 177 178 bzero(&dst, sizeof(dst)); 179 bzero(&gw, sizeof(gw)); 180 bzero(&rtinfo, sizeof(rtinfo)); 181 dst.sin6_len = sizeof(struct sockaddr_in6); 182 dst.sin6_family = AF_INET6; 183 dst.sin6_addr = sa6->sin6_addr; 184 dst.sin6_scope_id = in6_getscopezone(ifp, 185 in6_addrscope(&sa6->sin6_addr)); 186 in6_clearscope(&dst.sin6_addr); /* XXX */ 187 gw.sdl_len = sizeof(struct sockaddr_dl); 188 gw.sdl_family = AF_LINK; 189 gw.sdl_alen = ifp->if_addrlen; 190 gw.sdl_index = ifp->if_index; 191 gw.sdl_type = ifp->if_type; 192 if (evt == LLENTRY_RESOLVED) 193 bcopy(&lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 194 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 195 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 196 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 197 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 198 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 199 } 200 201 void 202 nd6_init(void) 203 { 204 205 LIST_INIT(&V_nd_prefix); 206 207 /* initialization of the default router list */ 208 TAILQ_INIT(&V_nd_defrouter); 209 210 /* start timer */ 211 callout_init(&V_nd6_slowtimo_ch, 0); 212 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 213 nd6_slowtimo, curvnet); 214 215 nd6_dad_init(); 216 if (IS_DEFAULT_VNET(curvnet)) 217 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 218 NULL, EVENTHANDLER_PRI_ANY); 219 } 220 221 #ifdef VIMAGE 222 void 223 nd6_destroy() 224 { 225 226 callout_drain(&V_nd6_slowtimo_ch); 227 callout_drain(&V_nd6_timer_ch); 228 if (IS_DEFAULT_VNET(curvnet)) 229 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 230 } 231 #endif 232 233 struct nd_ifinfo * 234 nd6_ifattach(struct ifnet *ifp) 235 { 236 struct nd_ifinfo *nd; 237 238 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 239 nd->initialized = 1; 240 241 nd->chlim = IPV6_DEFHLIM; 242 nd->basereachable = REACHABLE_TIME; 243 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 244 nd->retrans = RETRANS_TIMER; 245 246 nd->flags = ND6_IFF_PERFORMNUD; 247 248 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 249 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 250 * default regardless of the V_ip6_auto_linklocal configuration to 251 * give a reasonable default behavior. 252 */ 253 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 254 (ifp->if_flags & IFF_LOOPBACK)) 255 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 256 /* 257 * A loopback interface does not need to accept RTADV. 258 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 259 * default regardless of the V_ip6_accept_rtadv configuration to 260 * prevent the interface from accepting RA messages arrived 261 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 262 */ 263 if (V_ip6_accept_rtadv && 264 !(ifp->if_flags & IFF_LOOPBACK) && 265 (ifp->if_type != IFT_BRIDGE)) 266 nd->flags |= ND6_IFF_ACCEPT_RTADV; 267 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 268 nd->flags |= ND6_IFF_NO_RADR; 269 270 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 271 nd6_setmtu0(ifp, nd); 272 273 return nd; 274 } 275 276 void 277 nd6_ifdetach(struct nd_ifinfo *nd) 278 { 279 280 free(nd, M_IP6NDP); 281 } 282 283 /* 284 * Reset ND level link MTU. This function is called when the physical MTU 285 * changes, which means we might have to adjust the ND level MTU. 286 */ 287 void 288 nd6_setmtu(struct ifnet *ifp) 289 { 290 291 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 292 } 293 294 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 295 void 296 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 297 { 298 u_int32_t omaxmtu; 299 300 omaxmtu = ndi->maxmtu; 301 302 switch (ifp->if_type) { 303 case IFT_ARCNET: 304 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 305 break; 306 case IFT_FDDI: 307 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 308 break; 309 case IFT_ISO88025: 310 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 311 break; 312 default: 313 ndi->maxmtu = ifp->if_mtu; 314 break; 315 } 316 317 /* 318 * Decreasing the interface MTU under IPV6 minimum MTU may cause 319 * undesirable situation. We thus notify the operator of the change 320 * explicitly. The check for omaxmtu is necessary to restrict the 321 * log to the case of changing the MTU, not initializing it. 322 */ 323 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 324 log(LOG_NOTICE, "nd6_setmtu0: " 325 "new link MTU on %s (%lu) is too small for IPv6\n", 326 if_name(ifp), (unsigned long)ndi->maxmtu); 327 } 328 329 if (ndi->maxmtu > V_in6_maxmtu) 330 in6_setmaxmtu(); /* check all interfaces just in case */ 331 332 } 333 334 void 335 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 336 { 337 338 bzero(ndopts, sizeof(*ndopts)); 339 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 340 ndopts->nd_opts_last 341 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 342 343 if (icmp6len == 0) { 344 ndopts->nd_opts_done = 1; 345 ndopts->nd_opts_search = NULL; 346 } 347 } 348 349 /* 350 * Take one ND option. 351 */ 352 struct nd_opt_hdr * 353 nd6_option(union nd_opts *ndopts) 354 { 355 struct nd_opt_hdr *nd_opt; 356 int olen; 357 358 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 359 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 360 __func__)); 361 if (ndopts->nd_opts_search == NULL) 362 return NULL; 363 if (ndopts->nd_opts_done) 364 return NULL; 365 366 nd_opt = ndopts->nd_opts_search; 367 368 /* make sure nd_opt_len is inside the buffer */ 369 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 370 bzero(ndopts, sizeof(*ndopts)); 371 return NULL; 372 } 373 374 olen = nd_opt->nd_opt_len << 3; 375 if (olen == 0) { 376 /* 377 * Message validation requires that all included 378 * options have a length that is greater than zero. 379 */ 380 bzero(ndopts, sizeof(*ndopts)); 381 return NULL; 382 } 383 384 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 385 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 386 /* option overruns the end of buffer, invalid */ 387 bzero(ndopts, sizeof(*ndopts)); 388 return NULL; 389 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 390 /* reached the end of options chain */ 391 ndopts->nd_opts_done = 1; 392 ndopts->nd_opts_search = NULL; 393 } 394 return nd_opt; 395 } 396 397 /* 398 * Parse multiple ND options. 399 * This function is much easier to use, for ND routines that do not need 400 * multiple options of the same type. 401 */ 402 int 403 nd6_options(union nd_opts *ndopts) 404 { 405 struct nd_opt_hdr *nd_opt; 406 int i = 0; 407 408 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 409 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 410 __func__)); 411 if (ndopts->nd_opts_search == NULL) 412 return 0; 413 414 while (1) { 415 nd_opt = nd6_option(ndopts); 416 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 417 /* 418 * Message validation requires that all included 419 * options have a length that is greater than zero. 420 */ 421 ICMP6STAT_INC(icp6s_nd_badopt); 422 bzero(ndopts, sizeof(*ndopts)); 423 return -1; 424 } 425 426 if (nd_opt == NULL) 427 goto skip1; 428 429 switch (nd_opt->nd_opt_type) { 430 case ND_OPT_SOURCE_LINKADDR: 431 case ND_OPT_TARGET_LINKADDR: 432 case ND_OPT_MTU: 433 case ND_OPT_REDIRECTED_HEADER: 434 case ND_OPT_NONCE: 435 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 436 nd6log((LOG_INFO, 437 "duplicated ND6 option found (type=%d)\n", 438 nd_opt->nd_opt_type)); 439 /* XXX bark? */ 440 } else { 441 ndopts->nd_opt_array[nd_opt->nd_opt_type] 442 = nd_opt; 443 } 444 break; 445 case ND_OPT_PREFIX_INFORMATION: 446 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 447 ndopts->nd_opt_array[nd_opt->nd_opt_type] 448 = nd_opt; 449 } 450 ndopts->nd_opts_pi_end = 451 (struct nd_opt_prefix_info *)nd_opt; 452 break; 453 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 454 case ND_OPT_RDNSS: /* RFC 6106 */ 455 case ND_OPT_DNSSL: /* RFC 6106 */ 456 /* 457 * Silently ignore options we know and do not care about 458 * in the kernel. 459 */ 460 break; 461 default: 462 /* 463 * Unknown options must be silently ignored, 464 * to accomodate future extension to the protocol. 465 */ 466 nd6log((LOG_DEBUG, 467 "nd6_options: unsupported option %d - " 468 "option ignored\n", nd_opt->nd_opt_type)); 469 } 470 471 skip1: 472 i++; 473 if (i > V_nd6_maxndopt) { 474 ICMP6STAT_INC(icp6s_nd_toomanyopt); 475 nd6log((LOG_INFO, "too many loop in nd opt\n")); 476 break; 477 } 478 479 if (ndopts->nd_opts_done) 480 break; 481 } 482 483 return 0; 484 } 485 486 /* 487 * ND6 timer routine to handle ND6 entries 488 */ 489 void 490 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 491 { 492 int canceled; 493 494 LLE_WLOCK_ASSERT(ln); 495 496 if (tick < 0) { 497 ln->la_expire = 0; 498 ln->ln_ntick = 0; 499 canceled = callout_stop(&ln->ln_timer_ch); 500 } else { 501 ln->la_expire = time_uptime + tick / hz; 502 LLE_ADDREF(ln); 503 if (tick > INT_MAX) { 504 ln->ln_ntick = tick - INT_MAX; 505 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 506 nd6_llinfo_timer, ln); 507 } else { 508 ln->ln_ntick = 0; 509 canceled = callout_reset(&ln->ln_timer_ch, tick, 510 nd6_llinfo_timer, ln); 511 } 512 } 513 if (canceled) 514 LLE_REMREF(ln); 515 } 516 517 void 518 nd6_llinfo_settimer(struct llentry *ln, long tick) 519 { 520 521 LLE_WLOCK(ln); 522 nd6_llinfo_settimer_locked(ln, tick); 523 LLE_WUNLOCK(ln); 524 } 525 526 static void 527 nd6_llinfo_timer(void *arg) 528 { 529 struct llentry *ln; 530 struct in6_addr *dst; 531 struct ifnet *ifp; 532 struct nd_ifinfo *ndi = NULL; 533 534 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 535 ln = (struct llentry *)arg; 536 LLE_WLOCK(ln); 537 if (callout_pending(&ln->la_timer)) { 538 /* 539 * Here we are a bit odd here in the treatment of 540 * active/pending. If the pending bit is set, it got 541 * rescheduled before I ran. The active 542 * bit we ignore, since if it was stopped 543 * in ll_tablefree() and was currently running 544 * it would have return 0 so the code would 545 * not have deleted it since the callout could 546 * not be stopped so we want to go through 547 * with the delete here now. If the callout 548 * was restarted, the pending bit will be back on and 549 * we just want to bail since the callout_reset would 550 * return 1 and our reference would have been removed 551 * by nd6_llinfo_settimer_locked above since canceled 552 * would have been 1. 553 */ 554 LLE_WUNLOCK(ln); 555 return; 556 } 557 ifp = ln->lle_tbl->llt_ifp; 558 CURVNET_SET(ifp->if_vnet); 559 560 if (ln->ln_ntick > 0) { 561 if (ln->ln_ntick > INT_MAX) { 562 ln->ln_ntick -= INT_MAX; 563 nd6_llinfo_settimer_locked(ln, INT_MAX); 564 } else { 565 ln->ln_ntick = 0; 566 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 567 } 568 goto done; 569 } 570 571 ndi = ND_IFINFO(ifp); 572 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 573 if (ln->la_flags & LLE_STATIC) { 574 goto done; 575 } 576 577 if (ln->la_flags & LLE_DELETED) { 578 (void)nd6_free(ln, 0); 579 ln = NULL; 580 goto done; 581 } 582 583 switch (ln->ln_state) { 584 case ND6_LLINFO_INCOMPLETE: 585 if (ln->la_asked < V_nd6_mmaxtries) { 586 ln->la_asked++; 587 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 588 LLE_WUNLOCK(ln); 589 nd6_ns_output(ifp, NULL, dst, ln, NULL); 590 LLE_WLOCK(ln); 591 } else { 592 struct mbuf *m = ln->la_hold; 593 if (m) { 594 struct mbuf *m0; 595 596 /* 597 * assuming every packet in la_hold has the 598 * same IP header. Send error after unlock. 599 */ 600 m0 = m->m_nextpkt; 601 m->m_nextpkt = NULL; 602 ln->la_hold = m0; 603 clear_llinfo_pqueue(ln); 604 } 605 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 606 (void)nd6_free(ln, 0); 607 ln = NULL; 608 if (m != NULL) 609 icmp6_error2(m, ICMP6_DST_UNREACH, 610 ICMP6_DST_UNREACH_ADDR, 0, ifp); 611 } 612 break; 613 case ND6_LLINFO_REACHABLE: 614 if (!ND6_LLINFO_PERMANENT(ln)) { 615 ln->ln_state = ND6_LLINFO_STALE; 616 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 617 } 618 break; 619 620 case ND6_LLINFO_STALE: 621 /* Garbage Collection(RFC 2461 5.3) */ 622 if (!ND6_LLINFO_PERMANENT(ln)) { 623 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 624 (void)nd6_free(ln, 1); 625 ln = NULL; 626 } 627 break; 628 629 case ND6_LLINFO_DELAY: 630 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 631 /* We need NUD */ 632 ln->la_asked = 1; 633 ln->ln_state = ND6_LLINFO_PROBE; 634 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 635 LLE_WUNLOCK(ln); 636 nd6_ns_output(ifp, dst, dst, ln, NULL); 637 LLE_WLOCK(ln); 638 } else { 639 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 640 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 641 } 642 break; 643 case ND6_LLINFO_PROBE: 644 if (ln->la_asked < V_nd6_umaxtries) { 645 ln->la_asked++; 646 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 647 LLE_WUNLOCK(ln); 648 nd6_ns_output(ifp, dst, dst, ln, NULL); 649 LLE_WLOCK(ln); 650 } else { 651 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 652 (void)nd6_free(ln, 0); 653 ln = NULL; 654 } 655 break; 656 default: 657 panic("%s: paths in a dark night can be confusing: %d", 658 __func__, ln->ln_state); 659 } 660 done: 661 if (ln != NULL) 662 LLE_FREE_LOCKED(ln); 663 CURVNET_RESTORE(); 664 } 665 666 667 /* 668 * ND6 timer routine to expire default route list and prefix list 669 */ 670 void 671 nd6_timer(void *arg) 672 { 673 CURVNET_SET((struct vnet *) arg); 674 struct nd_defrouter *dr, *ndr; 675 struct nd_prefix *pr, *npr; 676 struct in6_ifaddr *ia6, *nia6; 677 678 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 679 nd6_timer, curvnet); 680 681 /* expire default router list */ 682 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 683 if (dr->expire && dr->expire < time_uptime) 684 defrtrlist_del(dr); 685 } 686 687 /* 688 * expire interface addresses. 689 * in the past the loop was inside prefix expiry processing. 690 * However, from a stricter speci-confrmance standpoint, we should 691 * rather separate address lifetimes and prefix lifetimes. 692 * 693 * XXXRW: in6_ifaddrhead locking. 694 */ 695 addrloop: 696 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 697 /* check address lifetime */ 698 if (IFA6_IS_INVALID(ia6)) { 699 int regen = 0; 700 701 /* 702 * If the expiring address is temporary, try 703 * regenerating a new one. This would be useful when 704 * we suspended a laptop PC, then turned it on after a 705 * period that could invalidate all temporary 706 * addresses. Although we may have to restart the 707 * loop (see below), it must be after purging the 708 * address. Otherwise, we'd see an infinite loop of 709 * regeneration. 710 */ 711 if (V_ip6_use_tempaddr && 712 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 713 if (regen_tmpaddr(ia6) == 0) 714 regen = 1; 715 } 716 717 in6_purgeaddr(&ia6->ia_ifa); 718 719 if (regen) 720 goto addrloop; /* XXX: see below */ 721 } else if (IFA6_IS_DEPRECATED(ia6)) { 722 int oldflags = ia6->ia6_flags; 723 724 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 725 726 /* 727 * If a temporary address has just become deprecated, 728 * regenerate a new one if possible. 729 */ 730 if (V_ip6_use_tempaddr && 731 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 732 (oldflags & IN6_IFF_DEPRECATED) == 0) { 733 734 if (regen_tmpaddr(ia6) == 0) { 735 /* 736 * A new temporary address is 737 * generated. 738 * XXX: this means the address chain 739 * has changed while we are still in 740 * the loop. Although the change 741 * would not cause disaster (because 742 * it's not a deletion, but an 743 * addition,) we'd rather restart the 744 * loop just for safety. Or does this 745 * significantly reduce performance?? 746 */ 747 goto addrloop; 748 } 749 } 750 } else { 751 /* 752 * A new RA might have made a deprecated address 753 * preferred. 754 */ 755 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 756 } 757 } 758 759 /* expire prefix list */ 760 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 761 /* 762 * check prefix lifetime. 763 * since pltime is just for autoconf, pltime processing for 764 * prefix is not necessary. 765 */ 766 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 767 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 768 769 /* 770 * address expiration and prefix expiration are 771 * separate. NEVER perform in6_purgeaddr here. 772 */ 773 prelist_remove(pr); 774 } 775 } 776 CURVNET_RESTORE(); 777 } 778 779 /* 780 * ia6 - deprecated/invalidated temporary address 781 */ 782 static int 783 regen_tmpaddr(struct in6_ifaddr *ia6) 784 { 785 struct ifaddr *ifa; 786 struct ifnet *ifp; 787 struct in6_ifaddr *public_ifa6 = NULL; 788 789 ifp = ia6->ia_ifa.ifa_ifp; 790 IF_ADDR_RLOCK(ifp); 791 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 792 struct in6_ifaddr *it6; 793 794 if (ifa->ifa_addr->sa_family != AF_INET6) 795 continue; 796 797 it6 = (struct in6_ifaddr *)ifa; 798 799 /* ignore no autoconf addresses. */ 800 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 801 continue; 802 803 /* ignore autoconf addresses with different prefixes. */ 804 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 805 continue; 806 807 /* 808 * Now we are looking at an autoconf address with the same 809 * prefix as ours. If the address is temporary and is still 810 * preferred, do not create another one. It would be rare, but 811 * could happen, for example, when we resume a laptop PC after 812 * a long period. 813 */ 814 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 815 !IFA6_IS_DEPRECATED(it6)) { 816 public_ifa6 = NULL; 817 break; 818 } 819 820 /* 821 * This is a public autoconf address that has the same prefix 822 * as ours. If it is preferred, keep it. We can't break the 823 * loop here, because there may be a still-preferred temporary 824 * address with the prefix. 825 */ 826 if (!IFA6_IS_DEPRECATED(it6)) 827 public_ifa6 = it6; 828 } 829 if (public_ifa6 != NULL) 830 ifa_ref(&public_ifa6->ia_ifa); 831 IF_ADDR_RUNLOCK(ifp); 832 833 if (public_ifa6 != NULL) { 834 int e; 835 836 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 837 ifa_free(&public_ifa6->ia_ifa); 838 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 839 " tmp addr,errno=%d\n", e); 840 return (-1); 841 } 842 ifa_free(&public_ifa6->ia_ifa); 843 return (0); 844 } 845 846 return (-1); 847 } 848 849 /* 850 * Nuke neighbor cache/prefix/default router management table, right before 851 * ifp goes away. 852 */ 853 void 854 nd6_purge(struct ifnet *ifp) 855 { 856 struct nd_defrouter *dr, *ndr; 857 struct nd_prefix *pr, *npr; 858 859 /* 860 * Nuke default router list entries toward ifp. 861 * We defer removal of default router list entries that is installed 862 * in the routing table, in order to keep additional side effects as 863 * small as possible. 864 */ 865 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 866 if (dr->installed) 867 continue; 868 869 if (dr->ifp == ifp) 870 defrtrlist_del(dr); 871 } 872 873 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 874 if (!dr->installed) 875 continue; 876 877 if (dr->ifp == ifp) 878 defrtrlist_del(dr); 879 } 880 881 /* Nuke prefix list entries toward ifp */ 882 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 883 if (pr->ndpr_ifp == ifp) { 884 /* 885 * Because if_detach() does *not* release prefixes 886 * while purging addresses the reference count will 887 * still be above zero. We therefore reset it to 888 * make sure that the prefix really gets purged. 889 */ 890 pr->ndpr_refcnt = 0; 891 892 /* 893 * Previously, pr->ndpr_addr is removed as well, 894 * but I strongly believe we don't have to do it. 895 * nd6_purge() is only called from in6_ifdetach(), 896 * which removes all the associated interface addresses 897 * by itself. 898 * (jinmei@kame.net 20010129) 899 */ 900 prelist_remove(pr); 901 } 902 } 903 904 /* cancel default outgoing interface setting */ 905 if (V_nd6_defifindex == ifp->if_index) 906 nd6_setdefaultiface(0); 907 908 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 909 /* Refresh default router list. */ 910 defrouter_select(); 911 } 912 913 /* XXXXX 914 * We do not nuke the neighbor cache entries here any more 915 * because the neighbor cache is kept in if_afdata[AF_INET6]. 916 * nd6_purge() is invoked by in6_ifdetach() which is called 917 * from if_detach() where everything gets purged. So let 918 * in6_domifdetach() do the actual L2 table purging work. 919 */ 920 } 921 922 /* 923 * the caller acquires and releases the lock on the lltbls 924 * Returns the llentry locked 925 */ 926 struct llentry * 927 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 928 { 929 struct sockaddr_in6 sin6; 930 struct llentry *ln; 931 int llflags; 932 933 bzero(&sin6, sizeof(sin6)); 934 sin6.sin6_len = sizeof(struct sockaddr_in6); 935 sin6.sin6_family = AF_INET6; 936 sin6.sin6_addr = *addr6; 937 938 IF_AFDATA_LOCK_ASSERT(ifp); 939 940 llflags = 0; 941 if (flags & ND6_CREATE) 942 llflags |= LLE_CREATE; 943 if (flags & ND6_EXCLUSIVE) 944 llflags |= LLE_EXCLUSIVE; 945 946 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 947 if ((ln != NULL) && (llflags & LLE_CREATE)) 948 ln->ln_state = ND6_LLINFO_NOSTATE; 949 950 return (ln); 951 } 952 953 /* 954 * Test whether a given IPv6 address is a neighbor or not, ignoring 955 * the actual neighbor cache. The neighbor cache is ignored in order 956 * to not reenter the routing code from within itself. 957 */ 958 static int 959 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 960 { 961 struct nd_prefix *pr; 962 struct ifaddr *dstaddr; 963 964 /* 965 * A link-local address is always a neighbor. 966 * XXX: a link does not necessarily specify a single interface. 967 */ 968 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 969 struct sockaddr_in6 sin6_copy; 970 u_int32_t zone; 971 972 /* 973 * We need sin6_copy since sa6_recoverscope() may modify the 974 * content (XXX). 975 */ 976 sin6_copy = *addr; 977 if (sa6_recoverscope(&sin6_copy)) 978 return (0); /* XXX: should be impossible */ 979 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 980 return (0); 981 if (sin6_copy.sin6_scope_id == zone) 982 return (1); 983 else 984 return (0); 985 } 986 987 /* 988 * If the address matches one of our addresses, 989 * it should be a neighbor. 990 * If the address matches one of our on-link prefixes, it should be a 991 * neighbor. 992 */ 993 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 994 if (pr->ndpr_ifp != ifp) 995 continue; 996 997 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 998 struct rtentry *rt; 999 1000 /* Always use the default FIB here. */ 1001 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 1002 0, 0, RT_DEFAULT_FIB); 1003 if (rt == NULL) 1004 continue; 1005 /* 1006 * This is the case where multiple interfaces 1007 * have the same prefix, but only one is installed 1008 * into the routing table and that prefix entry 1009 * is not the one being examined here. In the case 1010 * where RADIX_MPATH is enabled, multiple route 1011 * entries (of the same rt_key value) will be 1012 * installed because the interface addresses all 1013 * differ. 1014 */ 1015 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1016 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 1017 RTFREE_LOCKED(rt); 1018 continue; 1019 } 1020 RTFREE_LOCKED(rt); 1021 } 1022 1023 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1024 &addr->sin6_addr, &pr->ndpr_mask)) 1025 return (1); 1026 } 1027 1028 /* 1029 * If the address is assigned on the node of the other side of 1030 * a p2p interface, the address should be a neighbor. 1031 */ 1032 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS); 1033 if (dstaddr != NULL) { 1034 if (dstaddr->ifa_ifp == ifp) { 1035 ifa_free(dstaddr); 1036 return (1); 1037 } 1038 ifa_free(dstaddr); 1039 } 1040 1041 /* 1042 * If the default router list is empty, all addresses are regarded 1043 * as on-link, and thus, as a neighbor. 1044 */ 1045 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1046 TAILQ_EMPTY(&V_nd_defrouter) && 1047 V_nd6_defifindex == ifp->if_index) { 1048 return (1); 1049 } 1050 1051 return (0); 1052 } 1053 1054 1055 /* 1056 * Detect if a given IPv6 address identifies a neighbor on a given link. 1057 * XXX: should take care of the destination of a p2p link? 1058 */ 1059 int 1060 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 1061 { 1062 struct llentry *lle; 1063 int rc = 0; 1064 1065 IF_AFDATA_UNLOCK_ASSERT(ifp); 1066 if (nd6_is_new_addr_neighbor(addr, ifp)) 1067 return (1); 1068 1069 /* 1070 * Even if the address matches none of our addresses, it might be 1071 * in the neighbor cache. 1072 */ 1073 IF_AFDATA_RLOCK(ifp); 1074 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1075 LLE_RUNLOCK(lle); 1076 rc = 1; 1077 } 1078 IF_AFDATA_RUNLOCK(ifp); 1079 return (rc); 1080 } 1081 1082 /* 1083 * Free an nd6 llinfo entry. 1084 * Since the function would cause significant changes in the kernel, DO NOT 1085 * make it global, unless you have a strong reason for the change, and are sure 1086 * that the change is safe. 1087 */ 1088 static struct llentry * 1089 nd6_free(struct llentry *ln, int gc) 1090 { 1091 struct llentry *next; 1092 struct nd_defrouter *dr; 1093 struct ifnet *ifp; 1094 1095 LLE_WLOCK_ASSERT(ln); 1096 1097 /* 1098 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1099 * even though it is not harmful, it was not really necessary. 1100 */ 1101 1102 /* cancel timer */ 1103 nd6_llinfo_settimer_locked(ln, -1); 1104 1105 ifp = ln->lle_tbl->llt_ifp; 1106 1107 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1108 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1109 1110 if (dr != NULL && dr->expire && 1111 ln->ln_state == ND6_LLINFO_STALE && gc) { 1112 /* 1113 * If the reason for the deletion is just garbage 1114 * collection, and the neighbor is an active default 1115 * router, do not delete it. Instead, reset the GC 1116 * timer using the router's lifetime. 1117 * Simply deleting the entry would affect default 1118 * router selection, which is not necessarily a good 1119 * thing, especially when we're using router preference 1120 * values. 1121 * XXX: the check for ln_state would be redundant, 1122 * but we intentionally keep it just in case. 1123 */ 1124 if (dr->expire > time_uptime) 1125 nd6_llinfo_settimer_locked(ln, 1126 (dr->expire - time_uptime) * hz); 1127 else 1128 nd6_llinfo_settimer_locked(ln, 1129 (long)V_nd6_gctimer * hz); 1130 1131 next = LIST_NEXT(ln, lle_next); 1132 LLE_REMREF(ln); 1133 LLE_WUNLOCK(ln); 1134 return (next); 1135 } 1136 1137 if (dr) { 1138 /* 1139 * Unreachablity of a router might affect the default 1140 * router selection and on-link detection of advertised 1141 * prefixes. 1142 */ 1143 1144 /* 1145 * Temporarily fake the state to choose a new default 1146 * router and to perform on-link determination of 1147 * prefixes correctly. 1148 * Below the state will be set correctly, 1149 * or the entry itself will be deleted. 1150 */ 1151 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1152 } 1153 1154 if (ln->ln_router || dr) { 1155 1156 /* 1157 * We need to unlock to avoid a LOR with rt6_flush() with the 1158 * rnh and for the calls to pfxlist_onlink_check() and 1159 * defrouter_select() in the block further down for calls 1160 * into nd6_lookup(). We still hold a ref. 1161 */ 1162 LLE_WUNLOCK(ln); 1163 1164 /* 1165 * rt6_flush must be called whether or not the neighbor 1166 * is in the Default Router List. 1167 * See a corresponding comment in nd6_na_input(). 1168 */ 1169 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1170 } 1171 1172 if (dr) { 1173 /* 1174 * Since defrouter_select() does not affect the 1175 * on-link determination and MIP6 needs the check 1176 * before the default router selection, we perform 1177 * the check now. 1178 */ 1179 pfxlist_onlink_check(); 1180 1181 /* 1182 * Refresh default router list. 1183 */ 1184 defrouter_select(); 1185 } 1186 1187 if (ln->ln_router || dr) 1188 LLE_WLOCK(ln); 1189 } 1190 1191 /* 1192 * Before deleting the entry, remember the next entry as the 1193 * return value. We need this because pfxlist_onlink_check() above 1194 * might have freed other entries (particularly the old next entry) as 1195 * a side effect (XXX). 1196 */ 1197 next = LIST_NEXT(ln, lle_next); 1198 1199 /* 1200 * Save to unlock. We still hold an extra reference and will not 1201 * free(9) in llentry_free() if someone else holds one as well. 1202 */ 1203 LLE_WUNLOCK(ln); 1204 IF_AFDATA_LOCK(ifp); 1205 LLE_WLOCK(ln); 1206 1207 /* Guard against race with other llentry_free(). */ 1208 if (ln->la_flags & LLE_LINKED) { 1209 LLE_REMREF(ln); 1210 llentry_free(ln); 1211 } else 1212 LLE_FREE_LOCKED(ln); 1213 1214 IF_AFDATA_UNLOCK(ifp); 1215 1216 return (next); 1217 } 1218 1219 /* 1220 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1221 * 1222 * XXX cost-effective methods? 1223 */ 1224 void 1225 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1226 { 1227 struct llentry *ln; 1228 struct ifnet *ifp; 1229 1230 if ((dst6 == NULL) || (rt == NULL)) 1231 return; 1232 1233 ifp = rt->rt_ifp; 1234 IF_AFDATA_RLOCK(ifp); 1235 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1236 IF_AFDATA_RUNLOCK(ifp); 1237 if (ln == NULL) 1238 return; 1239 1240 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1241 goto done; 1242 1243 /* 1244 * if we get upper-layer reachability confirmation many times, 1245 * it is possible we have false information. 1246 */ 1247 if (!force) { 1248 ln->ln_byhint++; 1249 if (ln->ln_byhint > V_nd6_maxnudhint) { 1250 goto done; 1251 } 1252 } 1253 1254 ln->ln_state = ND6_LLINFO_REACHABLE; 1255 if (!ND6_LLINFO_PERMANENT(ln)) { 1256 nd6_llinfo_settimer_locked(ln, 1257 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1258 } 1259 done: 1260 LLE_WUNLOCK(ln); 1261 } 1262 1263 1264 /* 1265 * Rejuvenate this function for routing operations related 1266 * processing. 1267 */ 1268 void 1269 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1270 { 1271 struct sockaddr_in6 *gateway; 1272 struct nd_defrouter *dr; 1273 struct ifnet *ifp; 1274 1275 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1276 ifp = rt->rt_ifp; 1277 1278 switch (req) { 1279 case RTM_ADD: 1280 break; 1281 1282 case RTM_DELETE: 1283 if (!ifp) 1284 return; 1285 /* 1286 * Only indirect routes are interesting. 1287 */ 1288 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1289 return; 1290 /* 1291 * check for default route 1292 */ 1293 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1294 &SIN6(rt_key(rt))->sin6_addr)) { 1295 1296 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1297 if (dr != NULL) 1298 dr->installed = 0; 1299 } 1300 break; 1301 } 1302 } 1303 1304 1305 int 1306 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1307 { 1308 struct in6_drlist *drl = (struct in6_drlist *)data; 1309 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1310 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1311 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1312 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1313 struct nd_defrouter *dr; 1314 struct nd_prefix *pr; 1315 int i = 0, error = 0; 1316 1317 if (ifp->if_afdata[AF_INET6] == NULL) 1318 return (EPFNOSUPPORT); 1319 switch (cmd) { 1320 case SIOCGDRLST_IN6: 1321 /* 1322 * obsolete API, use sysctl under net.inet6.icmp6 1323 */ 1324 bzero(drl, sizeof(*drl)); 1325 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1326 if (i >= DRLSTSIZ) 1327 break; 1328 drl->defrouter[i].rtaddr = dr->rtaddr; 1329 in6_clearscope(&drl->defrouter[i].rtaddr); 1330 1331 drl->defrouter[i].flags = dr->flags; 1332 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1333 drl->defrouter[i].expire = dr->expire + 1334 (time_second - time_uptime); 1335 drl->defrouter[i].if_index = dr->ifp->if_index; 1336 i++; 1337 } 1338 break; 1339 case SIOCGPRLST_IN6: 1340 /* 1341 * obsolete API, use sysctl under net.inet6.icmp6 1342 * 1343 * XXX the structure in6_prlist was changed in backward- 1344 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1345 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1346 */ 1347 /* 1348 * XXX meaning of fields, especialy "raflags", is very 1349 * differnet between RA prefix list and RR/static prefix list. 1350 * how about separating ioctls into two? 1351 */ 1352 bzero(oprl, sizeof(*oprl)); 1353 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1354 struct nd_pfxrouter *pfr; 1355 int j; 1356 1357 if (i >= PRLSTSIZ) 1358 break; 1359 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1360 oprl->prefix[i].raflags = pr->ndpr_raf; 1361 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1362 oprl->prefix[i].vltime = pr->ndpr_vltime; 1363 oprl->prefix[i].pltime = pr->ndpr_pltime; 1364 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1365 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1366 oprl->prefix[i].expire = 0; 1367 else { 1368 time_t maxexpire; 1369 1370 /* XXX: we assume time_t is signed. */ 1371 maxexpire = (-1) & 1372 ~((time_t)1 << 1373 ((sizeof(maxexpire) * 8) - 1)); 1374 if (pr->ndpr_vltime < 1375 maxexpire - pr->ndpr_lastupdate) { 1376 oprl->prefix[i].expire = 1377 pr->ndpr_lastupdate + 1378 pr->ndpr_vltime + 1379 (time_second - time_uptime); 1380 } else 1381 oprl->prefix[i].expire = maxexpire; 1382 } 1383 1384 j = 0; 1385 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1386 if (j < DRLSTSIZ) { 1387 #define RTRADDR oprl->prefix[i].advrtr[j] 1388 RTRADDR = pfr->router->rtaddr; 1389 in6_clearscope(&RTRADDR); 1390 #undef RTRADDR 1391 } 1392 j++; 1393 } 1394 oprl->prefix[i].advrtrs = j; 1395 oprl->prefix[i].origin = PR_ORIG_RA; 1396 1397 i++; 1398 } 1399 1400 break; 1401 case OSIOCGIFINFO_IN6: 1402 #define ND ndi->ndi 1403 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1404 bzero(&ND, sizeof(ND)); 1405 ND.linkmtu = IN6_LINKMTU(ifp); 1406 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1407 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1408 ND.reachable = ND_IFINFO(ifp)->reachable; 1409 ND.retrans = ND_IFINFO(ifp)->retrans; 1410 ND.flags = ND_IFINFO(ifp)->flags; 1411 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1412 ND.chlim = ND_IFINFO(ifp)->chlim; 1413 break; 1414 case SIOCGIFINFO_IN6: 1415 ND = *ND_IFINFO(ifp); 1416 break; 1417 case SIOCSIFINFO_IN6: 1418 /* 1419 * used to change host variables from userland. 1420 * intented for a use on router to reflect RA configurations. 1421 */ 1422 /* 0 means 'unspecified' */ 1423 if (ND.linkmtu != 0) { 1424 if (ND.linkmtu < IPV6_MMTU || 1425 ND.linkmtu > IN6_LINKMTU(ifp)) { 1426 error = EINVAL; 1427 break; 1428 } 1429 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1430 } 1431 1432 if (ND.basereachable != 0) { 1433 int obasereachable = ND_IFINFO(ifp)->basereachable; 1434 1435 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1436 if (ND.basereachable != obasereachable) 1437 ND_IFINFO(ifp)->reachable = 1438 ND_COMPUTE_RTIME(ND.basereachable); 1439 } 1440 if (ND.retrans != 0) 1441 ND_IFINFO(ifp)->retrans = ND.retrans; 1442 if (ND.chlim != 0) 1443 ND_IFINFO(ifp)->chlim = ND.chlim; 1444 /* FALLTHROUGH */ 1445 case SIOCSIFINFO_FLAGS: 1446 { 1447 struct ifaddr *ifa; 1448 struct in6_ifaddr *ia; 1449 1450 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1451 !(ND.flags & ND6_IFF_IFDISABLED)) { 1452 /* ifdisabled 1->0 transision */ 1453 1454 /* 1455 * If the interface is marked as ND6_IFF_IFDISABLED and 1456 * has an link-local address with IN6_IFF_DUPLICATED, 1457 * do not clear ND6_IFF_IFDISABLED. 1458 * See RFC 4862, Section 5.4.5. 1459 */ 1460 int duplicated_linklocal = 0; 1461 1462 IF_ADDR_RLOCK(ifp); 1463 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1464 if (ifa->ifa_addr->sa_family != AF_INET6) 1465 continue; 1466 ia = (struct in6_ifaddr *)ifa; 1467 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1468 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1469 duplicated_linklocal = 1; 1470 break; 1471 } 1472 } 1473 IF_ADDR_RUNLOCK(ifp); 1474 1475 if (duplicated_linklocal) { 1476 ND.flags |= ND6_IFF_IFDISABLED; 1477 log(LOG_ERR, "Cannot enable an interface" 1478 " with a link-local address marked" 1479 " duplicate.\n"); 1480 } else { 1481 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1482 if (ifp->if_flags & IFF_UP) 1483 in6_if_up(ifp); 1484 } 1485 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1486 (ND.flags & ND6_IFF_IFDISABLED)) { 1487 /* ifdisabled 0->1 transision */ 1488 /* Mark all IPv6 address as tentative. */ 1489 1490 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1491 IF_ADDR_RLOCK(ifp); 1492 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1493 if (ifa->ifa_addr->sa_family != AF_INET6) 1494 continue; 1495 ia = (struct in6_ifaddr *)ifa; 1496 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1497 } 1498 IF_ADDR_RUNLOCK(ifp); 1499 } 1500 1501 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1502 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1503 /* auto_linklocal 0->1 transision */ 1504 1505 /* If no link-local address on ifp, configure */ 1506 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1507 in6_ifattach(ifp, NULL); 1508 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1509 ifp->if_flags & IFF_UP) { 1510 /* 1511 * When the IF already has 1512 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1513 * address is assigned, and IFF_UP, try to 1514 * assign one. 1515 */ 1516 int haslinklocal = 0; 1517 1518 IF_ADDR_RLOCK(ifp); 1519 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1520 if (ifa->ifa_addr->sa_family != AF_INET6) 1521 continue; 1522 ia = (struct in6_ifaddr *)ifa; 1523 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1524 haslinklocal = 1; 1525 break; 1526 } 1527 } 1528 IF_ADDR_RUNLOCK(ifp); 1529 if (!haslinklocal) 1530 in6_ifattach(ifp, NULL); 1531 } 1532 } 1533 } 1534 ND_IFINFO(ifp)->flags = ND.flags; 1535 break; 1536 #undef ND 1537 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1538 /* sync kernel routing table with the default router list */ 1539 defrouter_reset(); 1540 defrouter_select(); 1541 break; 1542 case SIOCSPFXFLUSH_IN6: 1543 { 1544 /* flush all the prefix advertised by routers */ 1545 struct nd_prefix *pr, *next; 1546 1547 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1548 struct in6_ifaddr *ia, *ia_next; 1549 1550 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1551 continue; /* XXX */ 1552 1553 /* do we really have to remove addresses as well? */ 1554 /* XXXRW: in6_ifaddrhead locking. */ 1555 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1556 ia_next) { 1557 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1558 continue; 1559 1560 if (ia->ia6_ndpr == pr) 1561 in6_purgeaddr(&ia->ia_ifa); 1562 } 1563 prelist_remove(pr); 1564 } 1565 break; 1566 } 1567 case SIOCSRTRFLUSH_IN6: 1568 { 1569 /* flush all the default routers */ 1570 struct nd_defrouter *dr, *next; 1571 1572 defrouter_reset(); 1573 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1574 defrtrlist_del(dr); 1575 } 1576 defrouter_select(); 1577 break; 1578 } 1579 case SIOCGNBRINFO_IN6: 1580 { 1581 struct llentry *ln; 1582 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1583 1584 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1585 return (error); 1586 1587 IF_AFDATA_RLOCK(ifp); 1588 ln = nd6_lookup(&nb_addr, 0, ifp); 1589 IF_AFDATA_RUNLOCK(ifp); 1590 1591 if (ln == NULL) { 1592 error = EINVAL; 1593 break; 1594 } 1595 nbi->state = ln->ln_state; 1596 nbi->asked = ln->la_asked; 1597 nbi->isrouter = ln->ln_router; 1598 if (ln->la_expire == 0) 1599 nbi->expire = 0; 1600 else 1601 nbi->expire = ln->la_expire + 1602 (time_second - time_uptime); 1603 LLE_RUNLOCK(ln); 1604 break; 1605 } 1606 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1607 ndif->ifindex = V_nd6_defifindex; 1608 break; 1609 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1610 return (nd6_setdefaultiface(ndif->ifindex)); 1611 } 1612 return (error); 1613 } 1614 1615 /* 1616 * Create neighbor cache entry and cache link-layer address, 1617 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1618 * 1619 * type - ICMP6 type 1620 * code - type dependent information 1621 * 1622 * XXXXX 1623 * The caller of this function already acquired the ndp 1624 * cache table lock because the cache entry is returned. 1625 */ 1626 struct llentry * 1627 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1628 int lladdrlen, int type, int code) 1629 { 1630 struct llentry *ln = NULL; 1631 int is_newentry; 1632 int do_update; 1633 int olladdr; 1634 int llchange; 1635 int flags; 1636 int newstate = 0; 1637 uint16_t router = 0; 1638 struct sockaddr_in6 sin6; 1639 struct mbuf *chain = NULL; 1640 int static_route = 0; 1641 1642 IF_AFDATA_UNLOCK_ASSERT(ifp); 1643 1644 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1645 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1646 1647 /* nothing must be updated for unspecified address */ 1648 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1649 return NULL; 1650 1651 /* 1652 * Validation about ifp->if_addrlen and lladdrlen must be done in 1653 * the caller. 1654 * 1655 * XXX If the link does not have link-layer adderss, what should 1656 * we do? (ifp->if_addrlen == 0) 1657 * Spec says nothing in sections for RA, RS and NA. There's small 1658 * description on it in NS section (RFC 2461 7.2.3). 1659 */ 1660 flags = lladdr ? ND6_EXCLUSIVE : 0; 1661 IF_AFDATA_RLOCK(ifp); 1662 ln = nd6_lookup(from, flags, ifp); 1663 IF_AFDATA_RUNLOCK(ifp); 1664 if (ln == NULL) { 1665 flags |= ND6_EXCLUSIVE; 1666 IF_AFDATA_LOCK(ifp); 1667 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1668 IF_AFDATA_UNLOCK(ifp); 1669 is_newentry = 1; 1670 } else { 1671 /* do nothing if static ndp is set */ 1672 if (ln->la_flags & LLE_STATIC) { 1673 static_route = 1; 1674 goto done; 1675 } 1676 is_newentry = 0; 1677 } 1678 if (ln == NULL) 1679 return (NULL); 1680 1681 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1682 if (olladdr && lladdr) { 1683 llchange = bcmp(lladdr, &ln->ll_addr, 1684 ifp->if_addrlen); 1685 } else 1686 llchange = 0; 1687 1688 /* 1689 * newentry olladdr lladdr llchange (*=record) 1690 * 0 n n -- (1) 1691 * 0 y n -- (2) 1692 * 0 n y -- (3) * STALE 1693 * 0 y y n (4) * 1694 * 0 y y y (5) * STALE 1695 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1696 * 1 -- y -- (7) * STALE 1697 */ 1698 1699 if (lladdr) { /* (3-5) and (7) */ 1700 /* 1701 * Record source link-layer address 1702 * XXX is it dependent to ifp->if_type? 1703 */ 1704 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1705 ln->la_flags |= LLE_VALID; 1706 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1707 } 1708 1709 if (!is_newentry) { 1710 if ((!olladdr && lladdr != NULL) || /* (3) */ 1711 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1712 do_update = 1; 1713 newstate = ND6_LLINFO_STALE; 1714 } else /* (1-2,4) */ 1715 do_update = 0; 1716 } else { 1717 do_update = 1; 1718 if (lladdr == NULL) /* (6) */ 1719 newstate = ND6_LLINFO_NOSTATE; 1720 else /* (7) */ 1721 newstate = ND6_LLINFO_STALE; 1722 } 1723 1724 if (do_update) { 1725 /* 1726 * Update the state of the neighbor cache. 1727 */ 1728 ln->ln_state = newstate; 1729 1730 if (ln->ln_state == ND6_LLINFO_STALE) { 1731 if (ln->la_hold != NULL) 1732 nd6_grab_holdchain(ln, &chain, &sin6); 1733 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1734 /* probe right away */ 1735 nd6_llinfo_settimer_locked((void *)ln, 0); 1736 } 1737 } 1738 1739 /* 1740 * ICMP6 type dependent behavior. 1741 * 1742 * NS: clear IsRouter if new entry 1743 * RS: clear IsRouter 1744 * RA: set IsRouter if there's lladdr 1745 * redir: clear IsRouter if new entry 1746 * 1747 * RA case, (1): 1748 * The spec says that we must set IsRouter in the following cases: 1749 * - If lladdr exist, set IsRouter. This means (1-5). 1750 * - If it is old entry (!newentry), set IsRouter. This means (7). 1751 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1752 * A quetion arises for (1) case. (1) case has no lladdr in the 1753 * neighbor cache, this is similar to (6). 1754 * This case is rare but we figured that we MUST NOT set IsRouter. 1755 * 1756 * newentry olladdr lladdr llchange NS RS RA redir 1757 * D R 1758 * 0 n n -- (1) c ? s 1759 * 0 y n -- (2) c s s 1760 * 0 n y -- (3) c s s 1761 * 0 y y n (4) c s s 1762 * 0 y y y (5) c s s 1763 * 1 -- n -- (6) c c c s 1764 * 1 -- y -- (7) c c s c s 1765 * 1766 * (c=clear s=set) 1767 */ 1768 switch (type & 0xff) { 1769 case ND_NEIGHBOR_SOLICIT: 1770 /* 1771 * New entry must have is_router flag cleared. 1772 */ 1773 if (is_newentry) /* (6-7) */ 1774 ln->ln_router = 0; 1775 break; 1776 case ND_REDIRECT: 1777 /* 1778 * If the icmp is a redirect to a better router, always set the 1779 * is_router flag. Otherwise, if the entry is newly created, 1780 * clear the flag. [RFC 2461, sec 8.3] 1781 */ 1782 if (code == ND_REDIRECT_ROUTER) 1783 ln->ln_router = 1; 1784 else if (is_newentry) /* (6-7) */ 1785 ln->ln_router = 0; 1786 break; 1787 case ND_ROUTER_SOLICIT: 1788 /* 1789 * is_router flag must always be cleared. 1790 */ 1791 ln->ln_router = 0; 1792 break; 1793 case ND_ROUTER_ADVERT: 1794 /* 1795 * Mark an entry with lladdr as a router. 1796 */ 1797 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1798 (is_newentry && lladdr)) { /* (7) */ 1799 ln->ln_router = 1; 1800 } 1801 break; 1802 } 1803 1804 if (ln != NULL) { 1805 static_route = (ln->la_flags & LLE_STATIC); 1806 router = ln->ln_router; 1807 1808 if (flags & ND6_EXCLUSIVE) 1809 LLE_WUNLOCK(ln); 1810 else 1811 LLE_RUNLOCK(ln); 1812 if (static_route) 1813 ln = NULL; 1814 } 1815 if (chain != NULL) 1816 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 1817 1818 /* 1819 * When the link-layer address of a router changes, select the 1820 * best router again. In particular, when the neighbor entry is newly 1821 * created, it might affect the selection policy. 1822 * Question: can we restrict the first condition to the "is_newentry" 1823 * case? 1824 * XXX: when we hear an RA from a new router with the link-layer 1825 * address option, defrouter_select() is called twice, since 1826 * defrtrlist_update called the function as well. However, I believe 1827 * we can compromise the overhead, since it only happens the first 1828 * time. 1829 * XXX: although defrouter_select() should not have a bad effect 1830 * for those are not autoconfigured hosts, we explicitly avoid such 1831 * cases for safety. 1832 */ 1833 if (do_update && router && 1834 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1835 /* 1836 * guaranteed recursion 1837 */ 1838 defrouter_select(); 1839 } 1840 1841 return (ln); 1842 done: 1843 if (ln != NULL) { 1844 if (flags & ND6_EXCLUSIVE) 1845 LLE_WUNLOCK(ln); 1846 else 1847 LLE_RUNLOCK(ln); 1848 if (static_route) 1849 ln = NULL; 1850 } 1851 return (ln); 1852 } 1853 1854 static void 1855 nd6_slowtimo(void *arg) 1856 { 1857 CURVNET_SET((struct vnet *) arg); 1858 struct nd_ifinfo *nd6if; 1859 struct ifnet *ifp; 1860 1861 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1862 nd6_slowtimo, curvnet); 1863 IFNET_RLOCK_NOSLEEP(); 1864 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1865 if (ifp->if_afdata[AF_INET6] == NULL) 1866 continue; 1867 nd6if = ND_IFINFO(ifp); 1868 if (nd6if->basereachable && /* already initialized */ 1869 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1870 /* 1871 * Since reachable time rarely changes by router 1872 * advertisements, we SHOULD insure that a new random 1873 * value gets recomputed at least once every few hours. 1874 * (RFC 2461, 6.3.4) 1875 */ 1876 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1877 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1878 } 1879 } 1880 IFNET_RUNLOCK_NOSLEEP(); 1881 CURVNET_RESTORE(); 1882 } 1883 1884 void 1885 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 1886 struct sockaddr_in6 *sin6) 1887 { 1888 1889 LLE_WLOCK_ASSERT(ln); 1890 1891 *chain = ln->la_hold; 1892 ln->la_hold = NULL; 1893 memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6)); 1894 1895 if (ln->ln_state == ND6_LLINFO_STALE) { 1896 1897 /* 1898 * The first time we send a packet to a 1899 * neighbor whose entry is STALE, we have 1900 * to change the state to DELAY and a sets 1901 * a timer to expire in DELAY_FIRST_PROBE_TIME 1902 * seconds to ensure do neighbor unreachability 1903 * detection on expiration. 1904 * (RFC 2461 7.3.3) 1905 */ 1906 ln->la_asked = 0; 1907 ln->ln_state = ND6_LLINFO_DELAY; 1908 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1909 } 1910 } 1911 1912 static int 1913 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1914 struct sockaddr_in6 *dst) 1915 { 1916 int error; 1917 int ip6len; 1918 struct ip6_hdr *ip6; 1919 struct m_tag *mtag; 1920 1921 #ifdef MAC 1922 mac_netinet6_nd6_send(ifp, m); 1923 #endif 1924 1925 /* 1926 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 1927 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 1928 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 1929 * to be diverted to user space. When re-injected into the kernel, 1930 * send_output() will directly dispatch them to the outgoing interface. 1931 */ 1932 if (send_sendso_input_hook != NULL) { 1933 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 1934 if (mtag != NULL) { 1935 ip6 = mtod(m, struct ip6_hdr *); 1936 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 1937 /* Use the SEND socket */ 1938 error = send_sendso_input_hook(m, ifp, SND_OUT, 1939 ip6len); 1940 /* -1 == no app on SEND socket */ 1941 if (error == 0 || error != -1) 1942 return (error); 1943 } 1944 } 1945 1946 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 1947 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 1948 mtod(m, struct ip6_hdr *)); 1949 1950 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 1951 origifp = ifp; 1952 1953 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL); 1954 return (error); 1955 } 1956 1957 /* 1958 * IPv6 packet output - light version. 1959 * Checks if destination LLE exists and is in proper state 1960 * (e.g no modification required). If not true, fall back to 1961 * "heavy" version. 1962 */ 1963 int 1964 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1965 struct sockaddr_in6 *dst, struct rtentry *rt0) 1966 { 1967 struct llentry *ln = NULL; 1968 1969 /* discard the packet if IPv6 operation is disabled on the interface */ 1970 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1971 m_freem(m); 1972 return (ENETDOWN); /* better error? */ 1973 } 1974 1975 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1976 goto sendpkt; 1977 1978 if (nd6_need_cache(ifp) == 0) 1979 goto sendpkt; 1980 1981 IF_AFDATA_RLOCK(ifp); 1982 ln = nd6_lookup(&dst->sin6_addr, 0, ifp); 1983 IF_AFDATA_RUNLOCK(ifp); 1984 1985 /* 1986 * Perform fast path for the following cases: 1987 * 1) lle state is REACHABLE 1988 * 2) lle state is DELAY (NS message sentNS message sent) 1989 * 1990 * Every other case involves lle modification, so we handle 1991 * them separately. 1992 */ 1993 if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE && 1994 ln->ln_state != ND6_LLINFO_DELAY)) { 1995 /* Fall back to slow processing path */ 1996 if (ln != NULL) 1997 LLE_RUNLOCK(ln); 1998 return (nd6_output_lle(ifp, origifp, m, dst)); 1999 } 2000 2001 sendpkt: 2002 if (ln != NULL) 2003 LLE_RUNLOCK(ln); 2004 2005 return (nd6_output_ifp(ifp, origifp, m, dst)); 2006 } 2007 2008 2009 /* 2010 * Output IPv6 packet - heavy version. 2011 * Function assume that either 2012 * 1) destination LLE does not exist, is invalid or stale, so 2013 * ND6_EXCLUSIVE lock needs to be acquired 2014 * 2) destination lle is provided (with ND6_EXCLUSIVE lock), 2015 * in that case packets are queued in &chain. 2016 * 2017 */ 2018 static int 2019 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2020 struct sockaddr_in6 *dst) 2021 { 2022 struct llentry *lle = NULL; 2023 int flags = 0; 2024 2025 KASSERT(m != NULL, ("NULL mbuf, nothing to send")); 2026 /* discard the packet if IPv6 operation is disabled on the interface */ 2027 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2028 m_freem(m); 2029 return (ENETDOWN); /* better error? */ 2030 } 2031 2032 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 2033 goto sendpkt; 2034 2035 if (nd6_need_cache(ifp) == 0) 2036 goto sendpkt; 2037 2038 /* 2039 * Address resolution or Neighbor Unreachability Detection 2040 * for the next hop. 2041 * At this point, the destination of the packet must be a unicast 2042 * or an anycast address(i.e. not a multicast). 2043 */ 2044 if (lle == NULL) { 2045 IF_AFDATA_RLOCK(ifp); 2046 lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp); 2047 IF_AFDATA_RUNLOCK(ifp); 2048 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2049 /* 2050 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2051 * the condition below is not very efficient. But we believe 2052 * it is tolerable, because this should be a rare case. 2053 */ 2054 flags = ND6_CREATE | ND6_EXCLUSIVE; 2055 IF_AFDATA_LOCK(ifp); 2056 lle = nd6_lookup(&dst->sin6_addr, flags, ifp); 2057 IF_AFDATA_UNLOCK(ifp); 2058 } 2059 } 2060 if (lle == NULL) { 2061 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2062 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2063 char ip6buf[INET6_ADDRSTRLEN]; 2064 log(LOG_DEBUG, 2065 "nd6_output: can't allocate llinfo for %s " 2066 "(ln=%p)\n", 2067 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2068 m_freem(m); 2069 return (ENOBUFS); 2070 } 2071 goto sendpkt; /* send anyway */ 2072 } 2073 2074 LLE_WLOCK_ASSERT(lle); 2075 2076 /* We don't have to do link-layer address resolution on a p2p link. */ 2077 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2078 lle->ln_state < ND6_LLINFO_REACHABLE) { 2079 lle->ln_state = ND6_LLINFO_STALE; 2080 nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz); 2081 } 2082 2083 /* 2084 * The first time we send a packet to a neighbor whose entry is 2085 * STALE, we have to change the state to DELAY and a sets a timer to 2086 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2087 * neighbor unreachability detection on expiration. 2088 * (RFC 2461 7.3.3) 2089 */ 2090 if (lle->ln_state == ND6_LLINFO_STALE) { 2091 lle->la_asked = 0; 2092 lle->ln_state = ND6_LLINFO_DELAY; 2093 nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz); 2094 } 2095 2096 /* 2097 * If the neighbor cache entry has a state other than INCOMPLETE 2098 * (i.e. its link-layer address is already resolved), just 2099 * send the packet. 2100 */ 2101 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) 2102 goto sendpkt; 2103 2104 /* 2105 * There is a neighbor cache entry, but no ethernet address 2106 * response yet. Append this latest packet to the end of the 2107 * packet queue in the mbuf, unless the number of the packet 2108 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2109 * the oldest packet in the queue will be removed. 2110 */ 2111 if (lle->ln_state == ND6_LLINFO_NOSTATE) 2112 lle->ln_state = ND6_LLINFO_INCOMPLETE; 2113 2114 if (lle->la_hold != NULL) { 2115 struct mbuf *m_hold; 2116 int i; 2117 2118 i = 0; 2119 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2120 i++; 2121 if (m_hold->m_nextpkt == NULL) { 2122 m_hold->m_nextpkt = m; 2123 break; 2124 } 2125 } 2126 while (i >= V_nd6_maxqueuelen) { 2127 m_hold = lle->la_hold; 2128 lle->la_hold = lle->la_hold->m_nextpkt; 2129 m_freem(m_hold); 2130 i--; 2131 } 2132 } else { 2133 lle->la_hold = m; 2134 } 2135 2136 /* 2137 * If there has been no NS for the neighbor after entering the 2138 * INCOMPLETE state, send the first solicitation. 2139 */ 2140 if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) { 2141 lle->la_asked++; 2142 2143 nd6_llinfo_settimer_locked(lle, 2144 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2145 LLE_WUNLOCK(lle); 2146 nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, NULL); 2147 } else { 2148 /* We did the lookup so we need to do the unlock here. */ 2149 LLE_WUNLOCK(lle); 2150 } 2151 2152 return (0); 2153 2154 sendpkt: 2155 if (lle != NULL) 2156 LLE_WUNLOCK(lle); 2157 2158 return (nd6_output_ifp(ifp, origifp, m, dst)); 2159 } 2160 2161 2162 int 2163 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2164 struct sockaddr_in6 *dst) 2165 { 2166 struct mbuf *m, *m_head; 2167 struct ifnet *outifp; 2168 int error = 0; 2169 2170 m_head = chain; 2171 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2172 outifp = origifp; 2173 else 2174 outifp = ifp; 2175 2176 while (m_head) { 2177 m = m_head; 2178 m_head = m_head->m_nextpkt; 2179 error = nd6_output_ifp(ifp, origifp, m, dst); 2180 } 2181 2182 /* 2183 * XXX 2184 * note that intermediate errors are blindly ignored - but this is 2185 * the same convention as used with nd6_output when called by 2186 * nd6_cache_lladdr 2187 */ 2188 return (error); 2189 } 2190 2191 2192 int 2193 nd6_need_cache(struct ifnet *ifp) 2194 { 2195 /* 2196 * XXX: we currently do not make neighbor cache on any interface 2197 * other than ARCnet, Ethernet, FDDI and GIF. 2198 * 2199 * RFC2893 says: 2200 * - unidirectional tunnels needs no ND 2201 */ 2202 switch (ifp->if_type) { 2203 case IFT_ARCNET: 2204 case IFT_ETHER: 2205 case IFT_FDDI: 2206 case IFT_IEEE1394: 2207 case IFT_L2VLAN: 2208 case IFT_IEEE80211: 2209 case IFT_INFINIBAND: 2210 case IFT_BRIDGE: 2211 case IFT_PROPVIRTUAL: 2212 return (1); 2213 default: 2214 return (0); 2215 } 2216 } 2217 2218 /* 2219 * Add pernament ND6 link-layer record for given 2220 * interface address. 2221 * 2222 * Very similar to IPv4 arp_ifinit(), but: 2223 * 1) IPv6 DAD is performed in different place 2224 * 2) It is called by IPv6 protocol stack in contrast to 2225 * arp_ifinit() which is typically called in SIOCSIFADDR 2226 * driver ioctl handler. 2227 * 2228 */ 2229 int 2230 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2231 { 2232 struct ifnet *ifp; 2233 struct llentry *ln; 2234 2235 ifp = ia->ia_ifa.ifa_ifp; 2236 if (nd6_need_cache(ifp) == 0) 2237 return (0); 2238 IF_AFDATA_LOCK(ifp); 2239 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2240 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 2241 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 2242 IF_AFDATA_UNLOCK(ifp); 2243 if (ln != NULL) { 2244 ln->la_expire = 0; /* for IPv6 this means permanent */ 2245 ln->ln_state = ND6_LLINFO_REACHABLE; 2246 LLE_WUNLOCK(ln); 2247 return (0); 2248 } 2249 2250 return (ENOBUFS); 2251 } 2252 2253 /* 2254 * Removes ALL lle records for interface address prefix. 2255 * XXXME: That's probably not we really want to do, we need 2256 * to remove address record only and keep other records 2257 * until we determine if given prefix is really going 2258 * to be removed. 2259 */ 2260 void 2261 nd6_rem_ifa_lle(struct in6_ifaddr *ia) 2262 { 2263 struct sockaddr_in6 mask, addr; 2264 struct ifnet *ifp; 2265 2266 ifp = ia->ia_ifa.ifa_ifp; 2267 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2268 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2269 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 2270 (struct sockaddr *)&mask, LLE_STATIC); 2271 } 2272 2273 /* 2274 * the callers of this function need to be re-worked to drop 2275 * the lle lock, drop here for now 2276 */ 2277 int 2278 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2279 const struct sockaddr *dst, u_char *desten, uint32_t *pflags) 2280 { 2281 struct llentry *ln; 2282 2283 if (pflags != NULL) 2284 *pflags = 0; 2285 IF_AFDATA_UNLOCK_ASSERT(ifp); 2286 if (m != NULL && m->m_flags & M_MCAST) { 2287 switch (ifp->if_type) { 2288 case IFT_ETHER: 2289 case IFT_FDDI: 2290 case IFT_L2VLAN: 2291 case IFT_IEEE80211: 2292 case IFT_BRIDGE: 2293 case IFT_ISO88025: 2294 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2295 desten); 2296 return (0); 2297 default: 2298 m_freem(m); 2299 return (EAFNOSUPPORT); 2300 } 2301 } 2302 2303 2304 /* 2305 * the entry should have been created in nd6_store_lladdr 2306 */ 2307 IF_AFDATA_RLOCK(ifp); 2308 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2309 IF_AFDATA_RUNLOCK(ifp); 2310 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2311 if (ln != NULL) 2312 LLE_RUNLOCK(ln); 2313 /* this could happen, if we could not allocate memory */ 2314 m_freem(m); 2315 return (1); 2316 } 2317 2318 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2319 if (pflags != NULL) 2320 *pflags = ln->la_flags; 2321 LLE_RUNLOCK(ln); 2322 /* 2323 * A *small* use after free race exists here 2324 */ 2325 return (0); 2326 } 2327 2328 static void 2329 clear_llinfo_pqueue(struct llentry *ln) 2330 { 2331 struct mbuf *m_hold, *m_hold_next; 2332 2333 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2334 m_hold_next = m_hold->m_nextpkt; 2335 m_freem(m_hold); 2336 } 2337 2338 ln->la_hold = NULL; 2339 return; 2340 } 2341 2342 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2343 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2344 #ifdef SYSCTL_DECL 2345 SYSCTL_DECL(_net_inet6_icmp6); 2346 #endif 2347 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2348 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2349 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2350 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2351 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2352 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2353 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2354 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2355 2356 static int 2357 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2358 { 2359 struct in6_defrouter d; 2360 struct nd_defrouter *dr; 2361 int error; 2362 2363 if (req->newptr) 2364 return (EPERM); 2365 2366 bzero(&d, sizeof(d)); 2367 d.rtaddr.sin6_family = AF_INET6; 2368 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2369 2370 /* 2371 * XXX locking 2372 */ 2373 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2374 d.rtaddr.sin6_addr = dr->rtaddr; 2375 error = sa6_recoverscope(&d.rtaddr); 2376 if (error != 0) 2377 return (error); 2378 d.flags = dr->flags; 2379 d.rtlifetime = dr->rtlifetime; 2380 d.expire = dr->expire + (time_second - time_uptime); 2381 d.if_index = dr->ifp->if_index; 2382 error = SYSCTL_OUT(req, &d, sizeof(d)); 2383 if (error != 0) 2384 return (error); 2385 } 2386 return (0); 2387 } 2388 2389 static int 2390 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2391 { 2392 struct in6_prefix p; 2393 struct sockaddr_in6 s6; 2394 struct nd_prefix *pr; 2395 struct nd_pfxrouter *pfr; 2396 time_t maxexpire; 2397 int error; 2398 char ip6buf[INET6_ADDRSTRLEN]; 2399 2400 if (req->newptr) 2401 return (EPERM); 2402 2403 bzero(&p, sizeof(p)); 2404 p.origin = PR_ORIG_RA; 2405 bzero(&s6, sizeof(s6)); 2406 s6.sin6_family = AF_INET6; 2407 s6.sin6_len = sizeof(s6); 2408 2409 /* 2410 * XXX locking 2411 */ 2412 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2413 p.prefix = pr->ndpr_prefix; 2414 if (sa6_recoverscope(&p.prefix)) { 2415 log(LOG_ERR, "scope error in prefix list (%s)\n", 2416 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2417 /* XXX: press on... */ 2418 } 2419 p.raflags = pr->ndpr_raf; 2420 p.prefixlen = pr->ndpr_plen; 2421 p.vltime = pr->ndpr_vltime; 2422 p.pltime = pr->ndpr_pltime; 2423 p.if_index = pr->ndpr_ifp->if_index; 2424 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2425 p.expire = 0; 2426 else { 2427 /* XXX: we assume time_t is signed. */ 2428 maxexpire = (-1) & 2429 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2430 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2431 p.expire = pr->ndpr_lastupdate + 2432 pr->ndpr_vltime + 2433 (time_second - time_uptime); 2434 else 2435 p.expire = maxexpire; 2436 } 2437 p.refcnt = pr->ndpr_refcnt; 2438 p.flags = pr->ndpr_stateflags; 2439 p.advrtrs = 0; 2440 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2441 p.advrtrs++; 2442 error = SYSCTL_OUT(req, &p, sizeof(p)); 2443 if (error != 0) 2444 return (error); 2445 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2446 s6.sin6_addr = pfr->router->rtaddr; 2447 if (sa6_recoverscope(&s6)) 2448 log(LOG_ERR, 2449 "scope error in prefix list (%s)\n", 2450 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2451 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2452 if (error != 0) 2453 return (error); 2454 } 2455 } 2456 return (0); 2457 } 2458