1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 89 90 /* timer values */ 91 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 92 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 93 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 94 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 95 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 96 * local traffic */ 97 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 98 * collection timer */ 99 100 /* preventing too many loops in ND option parsing */ 101 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 102 103 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 104 * layer hints */ 105 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 106 * ND entries */ 107 #define V_nd6_maxndopt VNET(nd6_maxndopt) 108 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 109 110 #ifdef ND6_DEBUG 111 VNET_DEFINE(int, nd6_debug) = 1; 112 #else 113 VNET_DEFINE(int, nd6_debug) = 0; 114 #endif 115 116 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 117 118 VNET_DEFINE(struct nd_drhead, nd_defrouter); 119 VNET_DEFINE(struct nd_prhead, nd_prefix); 120 VNET_DEFINE(struct rwlock, nd6_lock); 121 122 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 123 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 124 125 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 126 127 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 128 struct ifnet *); 129 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 130 static void nd6_slowtimo(void *); 131 static int regen_tmpaddr(struct in6_ifaddr *); 132 static void nd6_free(struct llentry **, int); 133 static void nd6_free_redirect(const struct llentry *); 134 static void nd6_llinfo_timer(void *); 135 static void nd6_llinfo_settimer_locked(struct llentry *, long); 136 static void clear_llinfo_pqueue(struct llentry *); 137 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 138 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 139 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 140 static int nd6_need_cache(struct ifnet *); 141 142 143 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 144 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 145 146 VNET_DEFINE(struct callout, nd6_timer_ch); 147 #define V_nd6_timer_ch VNET(nd6_timer_ch) 148 149 static void 150 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 151 { 152 struct rt_addrinfo rtinfo; 153 struct sockaddr_in6 dst; 154 struct sockaddr_dl gw; 155 struct ifnet *ifp; 156 int type; 157 158 LLE_WLOCK_ASSERT(lle); 159 160 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 161 return; 162 163 switch (evt) { 164 case LLENTRY_RESOLVED: 165 type = RTM_ADD; 166 KASSERT(lle->la_flags & LLE_VALID, 167 ("%s: %p resolved but not valid?", __func__, lle)); 168 break; 169 case LLENTRY_EXPIRED: 170 type = RTM_DELETE; 171 break; 172 default: 173 return; 174 } 175 176 ifp = lltable_get_ifp(lle->lle_tbl); 177 178 bzero(&dst, sizeof(dst)); 179 bzero(&gw, sizeof(gw)); 180 bzero(&rtinfo, sizeof(rtinfo)); 181 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 182 dst.sin6_scope_id = in6_getscopezone(ifp, 183 in6_addrscope(&dst.sin6_addr)); 184 gw.sdl_len = sizeof(struct sockaddr_dl); 185 gw.sdl_family = AF_LINK; 186 gw.sdl_alen = ifp->if_addrlen; 187 gw.sdl_index = ifp->if_index; 188 gw.sdl_type = ifp->if_type; 189 if (evt == LLENTRY_RESOLVED) 190 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 191 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 192 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 193 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 194 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 195 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 196 } 197 198 /* 199 * A handler for interface link layer address change event. 200 */ 201 static void 202 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 203 { 204 205 lltable_update_ifaddr(LLTABLE6(ifp)); 206 } 207 208 void 209 nd6_init(void) 210 { 211 212 rw_init(&V_nd6_lock, "nd6"); 213 214 LIST_INIT(&V_nd_prefix); 215 216 /* initialization of the default router list */ 217 TAILQ_INIT(&V_nd_defrouter); 218 219 /* Start timers. */ 220 callout_init(&V_nd6_slowtimo_ch, 0); 221 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 222 nd6_slowtimo, curvnet); 223 224 callout_init(&V_nd6_timer_ch, 0); 225 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 226 227 nd6_dad_init(); 228 if (IS_DEFAULT_VNET(curvnet)) { 229 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 230 NULL, EVENTHANDLER_PRI_ANY); 231 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 232 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 233 } 234 } 235 236 #ifdef VIMAGE 237 void 238 nd6_destroy() 239 { 240 241 callout_drain(&V_nd6_slowtimo_ch); 242 callout_drain(&V_nd6_timer_ch); 243 if (IS_DEFAULT_VNET(curvnet)) { 244 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 245 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 246 } 247 rw_destroy(&V_nd6_lock); 248 } 249 #endif 250 251 struct nd_ifinfo * 252 nd6_ifattach(struct ifnet *ifp) 253 { 254 struct nd_ifinfo *nd; 255 256 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 257 nd->initialized = 1; 258 259 nd->chlim = IPV6_DEFHLIM; 260 nd->basereachable = REACHABLE_TIME; 261 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 262 nd->retrans = RETRANS_TIMER; 263 264 nd->flags = ND6_IFF_PERFORMNUD; 265 266 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 267 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 268 * default regardless of the V_ip6_auto_linklocal configuration to 269 * give a reasonable default behavior. 270 */ 271 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 272 (ifp->if_flags & IFF_LOOPBACK)) 273 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 274 /* 275 * A loopback interface does not need to accept RTADV. 276 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 277 * default regardless of the V_ip6_accept_rtadv configuration to 278 * prevent the interface from accepting RA messages arrived 279 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 280 */ 281 if (V_ip6_accept_rtadv && 282 !(ifp->if_flags & IFF_LOOPBACK) && 283 (ifp->if_type != IFT_BRIDGE)) 284 nd->flags |= ND6_IFF_ACCEPT_RTADV; 285 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 286 nd->flags |= ND6_IFF_NO_RADR; 287 288 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 289 nd6_setmtu0(ifp, nd); 290 291 return nd; 292 } 293 294 void 295 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 296 { 297 struct ifaddr *ifa, *next; 298 299 IF_ADDR_RLOCK(ifp); 300 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 301 if (ifa->ifa_addr->sa_family != AF_INET6) 302 continue; 303 304 /* stop DAD processing */ 305 nd6_dad_stop(ifa); 306 } 307 IF_ADDR_RUNLOCK(ifp); 308 309 free(nd, M_IP6NDP); 310 } 311 312 /* 313 * Reset ND level link MTU. This function is called when the physical MTU 314 * changes, which means we might have to adjust the ND level MTU. 315 */ 316 void 317 nd6_setmtu(struct ifnet *ifp) 318 { 319 if (ifp->if_afdata[AF_INET6] == NULL) 320 return; 321 322 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 323 } 324 325 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 326 void 327 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 328 { 329 u_int32_t omaxmtu; 330 331 omaxmtu = ndi->maxmtu; 332 333 switch (ifp->if_type) { 334 case IFT_ARCNET: 335 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 336 break; 337 case IFT_FDDI: 338 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 339 break; 340 case IFT_ISO88025: 341 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 342 break; 343 default: 344 ndi->maxmtu = ifp->if_mtu; 345 break; 346 } 347 348 /* 349 * Decreasing the interface MTU under IPV6 minimum MTU may cause 350 * undesirable situation. We thus notify the operator of the change 351 * explicitly. The check for omaxmtu is necessary to restrict the 352 * log to the case of changing the MTU, not initializing it. 353 */ 354 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 355 log(LOG_NOTICE, "nd6_setmtu0: " 356 "new link MTU on %s (%lu) is too small for IPv6\n", 357 if_name(ifp), (unsigned long)ndi->maxmtu); 358 } 359 360 if (ndi->maxmtu > V_in6_maxmtu) 361 in6_setmaxmtu(); /* check all interfaces just in case */ 362 363 } 364 365 void 366 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 367 { 368 369 bzero(ndopts, sizeof(*ndopts)); 370 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 371 ndopts->nd_opts_last 372 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 373 374 if (icmp6len == 0) { 375 ndopts->nd_opts_done = 1; 376 ndopts->nd_opts_search = NULL; 377 } 378 } 379 380 /* 381 * Take one ND option. 382 */ 383 struct nd_opt_hdr * 384 nd6_option(union nd_opts *ndopts) 385 { 386 struct nd_opt_hdr *nd_opt; 387 int olen; 388 389 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 390 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 391 __func__)); 392 if (ndopts->nd_opts_search == NULL) 393 return NULL; 394 if (ndopts->nd_opts_done) 395 return NULL; 396 397 nd_opt = ndopts->nd_opts_search; 398 399 /* make sure nd_opt_len is inside the buffer */ 400 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 401 bzero(ndopts, sizeof(*ndopts)); 402 return NULL; 403 } 404 405 olen = nd_opt->nd_opt_len << 3; 406 if (olen == 0) { 407 /* 408 * Message validation requires that all included 409 * options have a length that is greater than zero. 410 */ 411 bzero(ndopts, sizeof(*ndopts)); 412 return NULL; 413 } 414 415 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 416 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 417 /* option overruns the end of buffer, invalid */ 418 bzero(ndopts, sizeof(*ndopts)); 419 return NULL; 420 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 421 /* reached the end of options chain */ 422 ndopts->nd_opts_done = 1; 423 ndopts->nd_opts_search = NULL; 424 } 425 return nd_opt; 426 } 427 428 /* 429 * Parse multiple ND options. 430 * This function is much easier to use, for ND routines that do not need 431 * multiple options of the same type. 432 */ 433 int 434 nd6_options(union nd_opts *ndopts) 435 { 436 struct nd_opt_hdr *nd_opt; 437 int i = 0; 438 439 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 440 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 441 __func__)); 442 if (ndopts->nd_opts_search == NULL) 443 return 0; 444 445 while (1) { 446 nd_opt = nd6_option(ndopts); 447 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 448 /* 449 * Message validation requires that all included 450 * options have a length that is greater than zero. 451 */ 452 ICMP6STAT_INC(icp6s_nd_badopt); 453 bzero(ndopts, sizeof(*ndopts)); 454 return -1; 455 } 456 457 if (nd_opt == NULL) 458 goto skip1; 459 460 switch (nd_opt->nd_opt_type) { 461 case ND_OPT_SOURCE_LINKADDR: 462 case ND_OPT_TARGET_LINKADDR: 463 case ND_OPT_MTU: 464 case ND_OPT_REDIRECTED_HEADER: 465 case ND_OPT_NONCE: 466 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 467 nd6log((LOG_INFO, 468 "duplicated ND6 option found (type=%d)\n", 469 nd_opt->nd_opt_type)); 470 /* XXX bark? */ 471 } else { 472 ndopts->nd_opt_array[nd_opt->nd_opt_type] 473 = nd_opt; 474 } 475 break; 476 case ND_OPT_PREFIX_INFORMATION: 477 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 478 ndopts->nd_opt_array[nd_opt->nd_opt_type] 479 = nd_opt; 480 } 481 ndopts->nd_opts_pi_end = 482 (struct nd_opt_prefix_info *)nd_opt; 483 break; 484 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 485 case ND_OPT_RDNSS: /* RFC 6106 */ 486 case ND_OPT_DNSSL: /* RFC 6106 */ 487 /* 488 * Silently ignore options we know and do not care about 489 * in the kernel. 490 */ 491 break; 492 default: 493 /* 494 * Unknown options must be silently ignored, 495 * to accommodate future extension to the protocol. 496 */ 497 nd6log((LOG_DEBUG, 498 "nd6_options: unsupported option %d - " 499 "option ignored\n", nd_opt->nd_opt_type)); 500 } 501 502 skip1: 503 i++; 504 if (i > V_nd6_maxndopt) { 505 ICMP6STAT_INC(icp6s_nd_toomanyopt); 506 nd6log((LOG_INFO, "too many loop in nd opt\n")); 507 break; 508 } 509 510 if (ndopts->nd_opts_done) 511 break; 512 } 513 514 return 0; 515 } 516 517 /* 518 * ND6 timer routine to handle ND6 entries 519 */ 520 static void 521 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 522 { 523 int canceled; 524 525 LLE_WLOCK_ASSERT(ln); 526 527 if (tick < 0) { 528 ln->la_expire = 0; 529 ln->ln_ntick = 0; 530 canceled = callout_stop(&ln->lle_timer); 531 } else { 532 ln->la_expire = time_uptime + tick / hz; 533 LLE_ADDREF(ln); 534 if (tick > INT_MAX) { 535 ln->ln_ntick = tick - INT_MAX; 536 canceled = callout_reset(&ln->lle_timer, INT_MAX, 537 nd6_llinfo_timer, ln); 538 } else { 539 ln->ln_ntick = 0; 540 canceled = callout_reset(&ln->lle_timer, tick, 541 nd6_llinfo_timer, ln); 542 } 543 } 544 if (canceled > 0) 545 LLE_REMREF(ln); 546 } 547 548 /* 549 * Gets source address of the first packet in hold queue 550 * and stores it in @src. 551 * Returns pointer to @src (if hold queue is not empty) or NULL. 552 * 553 * Set noinline to be dtrace-friendly 554 */ 555 static __noinline struct in6_addr * 556 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 557 { 558 struct ip6_hdr hdr; 559 struct mbuf *m; 560 561 if (ln->la_hold == NULL) 562 return (NULL); 563 564 /* 565 * assume every packet in la_hold has the same IP header 566 */ 567 m = ln->la_hold; 568 if (sizeof(hdr) > m->m_len) 569 return (NULL); 570 571 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 572 *src = hdr.ip6_src; 573 574 return (src); 575 } 576 577 /* 578 * Checks if we need to switch from STALE state. 579 * 580 * RFC 4861 requires switching from STALE to DELAY state 581 * on first packet matching entry, waiting V_nd6_delay and 582 * transition to PROBE state (if upper layer confirmation was 583 * not received). 584 * 585 * This code performs a bit differently: 586 * On packet hit we don't change state (but desired state 587 * can be guessed by control plane). However, after V_nd6_delay 588 * seconds code will transition to PROBE state (so DELAY state 589 * is kinda skipped in most situations). 590 * 591 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 592 * we perform the following upon entering STALE state: 593 * 594 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 595 * if packet was transmitted at the start of given interval, we 596 * would be able to switch to PROBE state in V_nd6_delay seconds 597 * as user expects. 598 * 599 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 600 * lle in STALE state (remaining timer value stored in lle_remtime). 601 * 602 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 603 * seconds ago. 604 * 605 * Returns non-zero value if the entry is still STALE (storing 606 * the next timer interval in @pdelay). 607 * 608 * Returns zero value if original timer expired or we need to switch to 609 * PROBE (store that in @do_switch variable). 610 */ 611 static int 612 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 613 { 614 int nd_delay, nd_gctimer, r_skip_req; 615 time_t lle_hittime; 616 long delay; 617 618 *do_switch = 0; 619 nd_gctimer = V_nd6_gctimer; 620 nd_delay = V_nd6_delay; 621 622 LLE_REQ_LOCK(lle); 623 r_skip_req = lle->r_skip_req; 624 lle_hittime = lle->lle_hittime; 625 LLE_REQ_UNLOCK(lle); 626 627 if (r_skip_req > 0) { 628 629 /* 630 * Nonzero r_skip_req value was set upon entering 631 * STALE state. Since value was not changed, no 632 * packets were passed using this lle. Ask for 633 * timer reschedule and keep STALE state. 634 */ 635 delay = (long)(MIN(nd_gctimer, nd_delay)); 636 delay *= hz; 637 if (lle->lle_remtime > delay) 638 lle->lle_remtime -= delay; 639 else { 640 delay = lle->lle_remtime; 641 lle->lle_remtime = 0; 642 } 643 644 if (delay == 0) { 645 646 /* 647 * The original ng6_gctime timeout ended, 648 * no more rescheduling. 649 */ 650 return (0); 651 } 652 653 *pdelay = delay; 654 return (1); 655 } 656 657 /* 658 * Packet received. Verify timestamp 659 */ 660 delay = (long)(time_uptime - lle_hittime); 661 if (delay < nd_delay) { 662 663 /* 664 * V_nd6_delay still not passed since the first 665 * hit in STALE state. 666 * Reshedule timer and return. 667 */ 668 *pdelay = (long)(nd_delay - delay) * hz; 669 return (1); 670 } 671 672 /* Request switching to probe */ 673 *do_switch = 1; 674 return (0); 675 } 676 677 678 /* 679 * Switch @lle state to new state optionally arming timers. 680 * 681 * Set noinline to be dtrace-friendly 682 */ 683 __noinline void 684 nd6_llinfo_setstate(struct llentry *lle, int newstate) 685 { 686 struct ifnet *ifp; 687 int nd_gctimer, nd_delay; 688 long delay, remtime; 689 690 delay = 0; 691 remtime = 0; 692 693 switch (newstate) { 694 case ND6_LLINFO_INCOMPLETE: 695 ifp = lle->lle_tbl->llt_ifp; 696 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 697 break; 698 case ND6_LLINFO_REACHABLE: 699 if (!ND6_LLINFO_PERMANENT(lle)) { 700 ifp = lle->lle_tbl->llt_ifp; 701 delay = (long)ND_IFINFO(ifp)->reachable * hz; 702 } 703 break; 704 case ND6_LLINFO_STALE: 705 706 /* 707 * Notify fast path that we want to know if any packet 708 * is transmitted by setting r_skip_req. 709 */ 710 LLE_REQ_LOCK(lle); 711 lle->r_skip_req = 1; 712 LLE_REQ_UNLOCK(lle); 713 nd_delay = V_nd6_delay; 714 nd_gctimer = V_nd6_gctimer; 715 716 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 717 remtime = (long)nd_gctimer * hz - delay; 718 break; 719 case ND6_LLINFO_DELAY: 720 lle->la_asked = 0; 721 delay = (long)V_nd6_delay * hz; 722 break; 723 } 724 725 if (delay > 0) 726 nd6_llinfo_settimer_locked(lle, delay); 727 728 lle->lle_remtime = remtime; 729 lle->ln_state = newstate; 730 } 731 732 /* 733 * Timer-dependent part of nd state machine. 734 * 735 * Set noinline to be dtrace-friendly 736 */ 737 static __noinline void 738 nd6_llinfo_timer(void *arg) 739 { 740 struct llentry *ln; 741 struct in6_addr *dst, *pdst, *psrc, src; 742 struct ifnet *ifp; 743 struct nd_ifinfo *ndi; 744 int do_switch, send_ns; 745 long delay; 746 747 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 748 ln = (struct llentry *)arg; 749 ifp = lltable_get_ifp(ln->lle_tbl); 750 CURVNET_SET(ifp->if_vnet); 751 752 ND6_RLOCK(); 753 LLE_WLOCK(ln); 754 if (callout_pending(&ln->lle_timer)) { 755 /* 756 * Here we are a bit odd here in the treatment of 757 * active/pending. If the pending bit is set, it got 758 * rescheduled before I ran. The active 759 * bit we ignore, since if it was stopped 760 * in ll_tablefree() and was currently running 761 * it would have return 0 so the code would 762 * not have deleted it since the callout could 763 * not be stopped so we want to go through 764 * with the delete here now. If the callout 765 * was restarted, the pending bit will be back on and 766 * we just want to bail since the callout_reset would 767 * return 1 and our reference would have been removed 768 * by nd6_llinfo_settimer_locked above since canceled 769 * would have been 1. 770 */ 771 LLE_WUNLOCK(ln); 772 ND6_RUNLOCK(); 773 CURVNET_RESTORE(); 774 return; 775 } 776 ndi = ND_IFINFO(ifp); 777 send_ns = 0; 778 dst = &ln->r_l3addr.addr6; 779 pdst = dst; 780 781 if (ln->ln_ntick > 0) { 782 if (ln->ln_ntick > INT_MAX) { 783 ln->ln_ntick -= INT_MAX; 784 nd6_llinfo_settimer_locked(ln, INT_MAX); 785 } else { 786 ln->ln_ntick = 0; 787 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 788 } 789 goto done; 790 } 791 792 if (ln->la_flags & LLE_STATIC) { 793 goto done; 794 } 795 796 if (ln->la_flags & LLE_DELETED) { 797 nd6_free(&ln, 0); 798 goto done; 799 } 800 801 switch (ln->ln_state) { 802 case ND6_LLINFO_INCOMPLETE: 803 if (ln->la_asked < V_nd6_mmaxtries) { 804 ln->la_asked++; 805 send_ns = 1; 806 /* Send NS to multicast address */ 807 pdst = NULL; 808 } else { 809 struct mbuf *m = ln->la_hold; 810 if (m) { 811 struct mbuf *m0; 812 813 /* 814 * assuming every packet in la_hold has the 815 * same IP header. Send error after unlock. 816 */ 817 m0 = m->m_nextpkt; 818 m->m_nextpkt = NULL; 819 ln->la_hold = m0; 820 clear_llinfo_pqueue(ln); 821 } 822 nd6_free(&ln, 0); 823 if (m != NULL) 824 icmp6_error2(m, ICMP6_DST_UNREACH, 825 ICMP6_DST_UNREACH_ADDR, 0, ifp); 826 } 827 break; 828 case ND6_LLINFO_REACHABLE: 829 if (!ND6_LLINFO_PERMANENT(ln)) 830 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 831 break; 832 833 case ND6_LLINFO_STALE: 834 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 835 836 /* 837 * No packet has used this entry and GC timeout 838 * has not been passed. Reshedule timer and 839 * return. 840 */ 841 nd6_llinfo_settimer_locked(ln, delay); 842 break; 843 } 844 845 if (do_switch == 0) { 846 847 /* 848 * GC timer has ended and entry hasn't been used. 849 * Run Garbage collector (RFC 4861, 5.3) 850 */ 851 if (!ND6_LLINFO_PERMANENT(ln)) 852 nd6_free(&ln, 1); 853 break; 854 } 855 856 /* Entry has been used AND delay timer has ended. */ 857 858 /* FALLTHROUGH */ 859 860 case ND6_LLINFO_DELAY: 861 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 862 /* We need NUD */ 863 ln->la_asked = 1; 864 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 865 send_ns = 1; 866 } else 867 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 868 break; 869 case ND6_LLINFO_PROBE: 870 if (ln->la_asked < V_nd6_umaxtries) { 871 ln->la_asked++; 872 send_ns = 1; 873 } else { 874 nd6_free(&ln, 0); 875 } 876 break; 877 default: 878 panic("%s: paths in a dark night can be confusing: %d", 879 __func__, ln->ln_state); 880 } 881 done: 882 if (ln != NULL) 883 ND6_RUNLOCK(); 884 if (send_ns != 0) { 885 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 886 psrc = nd6_llinfo_get_holdsrc(ln, &src); 887 LLE_FREE_LOCKED(ln); 888 ln = NULL; 889 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 890 } 891 892 if (ln != NULL) 893 LLE_FREE_LOCKED(ln); 894 CURVNET_RESTORE(); 895 } 896 897 898 /* 899 * ND6 timer routine to expire default route list and prefix list 900 */ 901 void 902 nd6_timer(void *arg) 903 { 904 CURVNET_SET((struct vnet *) arg); 905 struct nd_drhead drq; 906 struct nd_defrouter *dr, *ndr; 907 struct nd_prefix *pr, *npr; 908 struct in6_ifaddr *ia6, *nia6; 909 910 TAILQ_INIT(&drq); 911 912 /* expire default router list */ 913 ND6_WLOCK(); 914 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 915 if (dr->expire && dr->expire < time_uptime) 916 defrouter_unlink(dr, &drq); 917 ND6_WUNLOCK(); 918 919 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 920 TAILQ_REMOVE(&drq, dr, dr_entry); 921 defrouter_del(dr); 922 } 923 924 /* 925 * expire interface addresses. 926 * in the past the loop was inside prefix expiry processing. 927 * However, from a stricter speci-confrmance standpoint, we should 928 * rather separate address lifetimes and prefix lifetimes. 929 * 930 * XXXRW: in6_ifaddrhead locking. 931 */ 932 addrloop: 933 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 934 /* check address lifetime */ 935 if (IFA6_IS_INVALID(ia6)) { 936 int regen = 0; 937 938 /* 939 * If the expiring address is temporary, try 940 * regenerating a new one. This would be useful when 941 * we suspended a laptop PC, then turned it on after a 942 * period that could invalidate all temporary 943 * addresses. Although we may have to restart the 944 * loop (see below), it must be after purging the 945 * address. Otherwise, we'd see an infinite loop of 946 * regeneration. 947 */ 948 if (V_ip6_use_tempaddr && 949 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 950 if (regen_tmpaddr(ia6) == 0) 951 regen = 1; 952 } 953 954 in6_purgeaddr(&ia6->ia_ifa); 955 956 if (regen) 957 goto addrloop; /* XXX: see below */ 958 } else if (IFA6_IS_DEPRECATED(ia6)) { 959 int oldflags = ia6->ia6_flags; 960 961 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 962 963 /* 964 * If a temporary address has just become deprecated, 965 * regenerate a new one if possible. 966 */ 967 if (V_ip6_use_tempaddr && 968 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 969 (oldflags & IN6_IFF_DEPRECATED) == 0) { 970 971 if (regen_tmpaddr(ia6) == 0) { 972 /* 973 * A new temporary address is 974 * generated. 975 * XXX: this means the address chain 976 * has changed while we are still in 977 * the loop. Although the change 978 * would not cause disaster (because 979 * it's not a deletion, but an 980 * addition,) we'd rather restart the 981 * loop just for safety. Or does this 982 * significantly reduce performance?? 983 */ 984 goto addrloop; 985 } 986 } 987 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 988 /* 989 * Schedule DAD for a tentative address. This happens 990 * if the interface was down or not running 991 * when the address was configured. 992 */ 993 int delay; 994 995 delay = arc4random() % 996 (MAX_RTR_SOLICITATION_DELAY * hz); 997 nd6_dad_start((struct ifaddr *)ia6, delay); 998 } else { 999 /* 1000 * Check status of the interface. If it is down, 1001 * mark the address as tentative for future DAD. 1002 */ 1003 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 1004 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 1005 == 0 || 1006 (ND_IFINFO(ia6->ia_ifp)->flags & 1007 ND6_IFF_IFDISABLED) != 0) { 1008 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1009 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1010 } 1011 /* 1012 * A new RA might have made a deprecated address 1013 * preferred. 1014 */ 1015 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1016 } 1017 } 1018 1019 /* expire prefix list */ 1020 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1021 /* 1022 * check prefix lifetime. 1023 * since pltime is just for autoconf, pltime processing for 1024 * prefix is not necessary. 1025 */ 1026 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1027 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1028 1029 /* 1030 * address expiration and prefix expiration are 1031 * separate. NEVER perform in6_purgeaddr here. 1032 */ 1033 prelist_remove(pr); 1034 } 1035 } 1036 1037 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1038 nd6_timer, curvnet); 1039 1040 CURVNET_RESTORE(); 1041 } 1042 1043 /* 1044 * ia6 - deprecated/invalidated temporary address 1045 */ 1046 static int 1047 regen_tmpaddr(struct in6_ifaddr *ia6) 1048 { 1049 struct ifaddr *ifa; 1050 struct ifnet *ifp; 1051 struct in6_ifaddr *public_ifa6 = NULL; 1052 1053 ifp = ia6->ia_ifa.ifa_ifp; 1054 IF_ADDR_RLOCK(ifp); 1055 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1056 struct in6_ifaddr *it6; 1057 1058 if (ifa->ifa_addr->sa_family != AF_INET6) 1059 continue; 1060 1061 it6 = (struct in6_ifaddr *)ifa; 1062 1063 /* ignore no autoconf addresses. */ 1064 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1065 continue; 1066 1067 /* ignore autoconf addresses with different prefixes. */ 1068 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1069 continue; 1070 1071 /* 1072 * Now we are looking at an autoconf address with the same 1073 * prefix as ours. If the address is temporary and is still 1074 * preferred, do not create another one. It would be rare, but 1075 * could happen, for example, when we resume a laptop PC after 1076 * a long period. 1077 */ 1078 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1079 !IFA6_IS_DEPRECATED(it6)) { 1080 public_ifa6 = NULL; 1081 break; 1082 } 1083 1084 /* 1085 * This is a public autoconf address that has the same prefix 1086 * as ours. If it is preferred, keep it. We can't break the 1087 * loop here, because there may be a still-preferred temporary 1088 * address with the prefix. 1089 */ 1090 if (!IFA6_IS_DEPRECATED(it6)) 1091 public_ifa6 = it6; 1092 } 1093 if (public_ifa6 != NULL) 1094 ifa_ref(&public_ifa6->ia_ifa); 1095 IF_ADDR_RUNLOCK(ifp); 1096 1097 if (public_ifa6 != NULL) { 1098 int e; 1099 1100 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1101 ifa_free(&public_ifa6->ia_ifa); 1102 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1103 " tmp addr,errno=%d\n", e); 1104 return (-1); 1105 } 1106 ifa_free(&public_ifa6->ia_ifa); 1107 return (0); 1108 } 1109 1110 return (-1); 1111 } 1112 1113 /* 1114 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1115 * cache entries are freed in in6_domifdetach(). 1116 */ 1117 void 1118 nd6_purge(struct ifnet *ifp) 1119 { 1120 struct nd_drhead drq; 1121 struct nd_defrouter *dr, *ndr; 1122 struct nd_prefix *pr, *npr; 1123 1124 TAILQ_INIT(&drq); 1125 1126 /* 1127 * Nuke default router list entries toward ifp. 1128 * We defer removal of default router list entries that is installed 1129 * in the routing table, in order to keep additional side effects as 1130 * small as possible. 1131 */ 1132 ND6_WLOCK(); 1133 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1134 if (dr->installed) 1135 continue; 1136 if (dr->ifp == ifp) 1137 defrouter_unlink(dr, &drq); 1138 } 1139 1140 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1141 if (!dr->installed) 1142 continue; 1143 if (dr->ifp == ifp) 1144 defrouter_unlink(dr, &drq); 1145 } 1146 ND6_WUNLOCK(); 1147 1148 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1149 TAILQ_REMOVE(&drq, dr, dr_entry); 1150 defrouter_del(dr); 1151 } 1152 1153 /* Nuke prefix list entries toward ifp */ 1154 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1155 if (pr->ndpr_ifp == ifp) { 1156 /* 1157 * Because if_detach() does *not* release prefixes 1158 * while purging addresses the reference count will 1159 * still be above zero. We therefore reset it to 1160 * make sure that the prefix really gets purged. 1161 */ 1162 pr->ndpr_refcnt = 0; 1163 1164 prelist_remove(pr); 1165 } 1166 } 1167 1168 /* cancel default outgoing interface setting */ 1169 if (V_nd6_defifindex == ifp->if_index) 1170 nd6_setdefaultiface(0); 1171 1172 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1173 /* Refresh default router list. */ 1174 defrouter_select(); 1175 } 1176 } 1177 1178 /* 1179 * the caller acquires and releases the lock on the lltbls 1180 * Returns the llentry locked 1181 */ 1182 struct llentry * 1183 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1184 { 1185 struct sockaddr_in6 sin6; 1186 struct llentry *ln; 1187 1188 bzero(&sin6, sizeof(sin6)); 1189 sin6.sin6_len = sizeof(struct sockaddr_in6); 1190 sin6.sin6_family = AF_INET6; 1191 sin6.sin6_addr = *addr6; 1192 1193 IF_AFDATA_LOCK_ASSERT(ifp); 1194 1195 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1196 1197 return (ln); 1198 } 1199 1200 struct llentry * 1201 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1202 { 1203 struct sockaddr_in6 sin6; 1204 struct llentry *ln; 1205 1206 bzero(&sin6, sizeof(sin6)); 1207 sin6.sin6_len = sizeof(struct sockaddr_in6); 1208 sin6.sin6_family = AF_INET6; 1209 sin6.sin6_addr = *addr6; 1210 1211 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1212 if (ln != NULL) 1213 ln->ln_state = ND6_LLINFO_NOSTATE; 1214 1215 return (ln); 1216 } 1217 1218 /* 1219 * Test whether a given IPv6 address is a neighbor or not, ignoring 1220 * the actual neighbor cache. The neighbor cache is ignored in order 1221 * to not reenter the routing code from within itself. 1222 */ 1223 static int 1224 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1225 { 1226 struct nd_prefix *pr; 1227 struct ifaddr *dstaddr; 1228 struct rt_addrinfo info; 1229 struct sockaddr_in6 rt_key; 1230 struct sockaddr *dst6; 1231 int fibnum; 1232 1233 /* 1234 * A link-local address is always a neighbor. 1235 * XXX: a link does not necessarily specify a single interface. 1236 */ 1237 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1238 struct sockaddr_in6 sin6_copy; 1239 u_int32_t zone; 1240 1241 /* 1242 * We need sin6_copy since sa6_recoverscope() may modify the 1243 * content (XXX). 1244 */ 1245 sin6_copy = *addr; 1246 if (sa6_recoverscope(&sin6_copy)) 1247 return (0); /* XXX: should be impossible */ 1248 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1249 return (0); 1250 if (sin6_copy.sin6_scope_id == zone) 1251 return (1); 1252 else 1253 return (0); 1254 } 1255 1256 bzero(&rt_key, sizeof(rt_key)); 1257 bzero(&info, sizeof(info)); 1258 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1259 1260 /* Always use the default FIB here. XXME - why? */ 1261 fibnum = RT_DEFAULT_FIB; 1262 1263 /* 1264 * If the address matches one of our addresses, 1265 * it should be a neighbor. 1266 * If the address matches one of our on-link prefixes, it should be a 1267 * neighbor. 1268 */ 1269 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1270 if (pr->ndpr_ifp != ifp) 1271 continue; 1272 1273 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1274 1275 /* Always use the default FIB here. */ 1276 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1277 1278 /* Restore length field before retrying lookup */ 1279 rt_key.sin6_len = sizeof(rt_key); 1280 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1281 continue; 1282 /* 1283 * This is the case where multiple interfaces 1284 * have the same prefix, but only one is installed 1285 * into the routing table and that prefix entry 1286 * is not the one being examined here. In the case 1287 * where RADIX_MPATH is enabled, multiple route 1288 * entries (of the same rt_key value) will be 1289 * installed because the interface addresses all 1290 * differ. 1291 */ 1292 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1293 &rt_key.sin6_addr)) 1294 continue; 1295 } 1296 1297 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1298 &addr->sin6_addr, &pr->ndpr_mask)) 1299 return (1); 1300 } 1301 1302 /* 1303 * If the address is assigned on the node of the other side of 1304 * a p2p interface, the address should be a neighbor. 1305 */ 1306 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1307 if (dstaddr != NULL) { 1308 if (dstaddr->ifa_ifp == ifp) { 1309 ifa_free(dstaddr); 1310 return (1); 1311 } 1312 ifa_free(dstaddr); 1313 } 1314 1315 /* 1316 * If the default router list is empty, all addresses are regarded 1317 * as on-link, and thus, as a neighbor. 1318 */ 1319 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1320 TAILQ_EMPTY(&V_nd_defrouter) && 1321 V_nd6_defifindex == ifp->if_index) { 1322 return (1); 1323 } 1324 1325 return (0); 1326 } 1327 1328 1329 /* 1330 * Detect if a given IPv6 address identifies a neighbor on a given link. 1331 * XXX: should take care of the destination of a p2p link? 1332 */ 1333 int 1334 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1335 { 1336 struct llentry *lle; 1337 int rc = 0; 1338 1339 IF_AFDATA_UNLOCK_ASSERT(ifp); 1340 if (nd6_is_new_addr_neighbor(addr, ifp)) 1341 return (1); 1342 1343 /* 1344 * Even if the address matches none of our addresses, it might be 1345 * in the neighbor cache. 1346 */ 1347 IF_AFDATA_RLOCK(ifp); 1348 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1349 LLE_RUNLOCK(lle); 1350 rc = 1; 1351 } 1352 IF_AFDATA_RUNLOCK(ifp); 1353 return (rc); 1354 } 1355 1356 /* 1357 * Free an nd6 llinfo entry. 1358 * Since the function would cause significant changes in the kernel, DO NOT 1359 * make it global, unless you have a strong reason for the change, and are sure 1360 * that the change is safe. 1361 * 1362 * Set noinline to be dtrace-friendly 1363 */ 1364 static __noinline void 1365 nd6_free(struct llentry **lnp, int gc) 1366 { 1367 struct ifnet *ifp; 1368 struct llentry *ln; 1369 struct nd_defrouter *dr; 1370 1371 ln = *lnp; 1372 *lnp = NULL; 1373 1374 LLE_WLOCK_ASSERT(ln); 1375 ND6_RLOCK_ASSERT(); 1376 1377 ifp = lltable_get_ifp(ln->lle_tbl); 1378 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1379 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1380 else 1381 dr = NULL; 1382 ND6_RUNLOCK(); 1383 1384 if ((ln->la_flags & LLE_DELETED) == 0) 1385 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1386 1387 /* 1388 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1389 * even though it is not harmful, it was not really necessary. 1390 */ 1391 1392 /* cancel timer */ 1393 nd6_llinfo_settimer_locked(ln, -1); 1394 1395 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1396 if (dr != NULL && dr->expire && 1397 ln->ln_state == ND6_LLINFO_STALE && gc) { 1398 /* 1399 * If the reason for the deletion is just garbage 1400 * collection, and the neighbor is an active default 1401 * router, do not delete it. Instead, reset the GC 1402 * timer using the router's lifetime. 1403 * Simply deleting the entry would affect default 1404 * router selection, which is not necessarily a good 1405 * thing, especially when we're using router preference 1406 * values. 1407 * XXX: the check for ln_state would be redundant, 1408 * but we intentionally keep it just in case. 1409 */ 1410 if (dr->expire > time_uptime) 1411 nd6_llinfo_settimer_locked(ln, 1412 (dr->expire - time_uptime) * hz); 1413 else 1414 nd6_llinfo_settimer_locked(ln, 1415 (long)V_nd6_gctimer * hz); 1416 1417 LLE_REMREF(ln); 1418 LLE_WUNLOCK(ln); 1419 defrouter_rele(dr); 1420 return; 1421 } 1422 1423 if (dr) { 1424 /* 1425 * Unreachablity of a router might affect the default 1426 * router selection and on-link detection of advertised 1427 * prefixes. 1428 */ 1429 1430 /* 1431 * Temporarily fake the state to choose a new default 1432 * router and to perform on-link determination of 1433 * prefixes correctly. 1434 * Below the state will be set correctly, 1435 * or the entry itself will be deleted. 1436 */ 1437 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1438 } 1439 1440 if (ln->ln_router || dr) { 1441 1442 /* 1443 * We need to unlock to avoid a LOR with rt6_flush() with the 1444 * rnh and for the calls to pfxlist_onlink_check() and 1445 * defrouter_select() in the block further down for calls 1446 * into nd6_lookup(). We still hold a ref. 1447 */ 1448 LLE_WUNLOCK(ln); 1449 1450 /* 1451 * rt6_flush must be called whether or not the neighbor 1452 * is in the Default Router List. 1453 * See a corresponding comment in nd6_na_input(). 1454 */ 1455 rt6_flush(&ln->r_l3addr.addr6, ifp); 1456 } 1457 1458 if (dr) { 1459 /* 1460 * Since defrouter_select() does not affect the 1461 * on-link determination and MIP6 needs the check 1462 * before the default router selection, we perform 1463 * the check now. 1464 */ 1465 pfxlist_onlink_check(); 1466 1467 /* 1468 * Refresh default router list. 1469 */ 1470 defrouter_select(); 1471 } 1472 1473 /* 1474 * If this entry was added by an on-link redirect, remove the 1475 * corresponding host route. 1476 */ 1477 if (ln->la_flags & LLE_REDIRECT) 1478 nd6_free_redirect(ln); 1479 1480 if (ln->ln_router || dr) 1481 LLE_WLOCK(ln); 1482 } 1483 1484 /* 1485 * Save to unlock. We still hold an extra reference and will not 1486 * free(9) in llentry_free() if someone else holds one as well. 1487 */ 1488 LLE_WUNLOCK(ln); 1489 IF_AFDATA_LOCK(ifp); 1490 LLE_WLOCK(ln); 1491 /* Guard against race with other llentry_free(). */ 1492 if (ln->la_flags & LLE_LINKED) { 1493 /* Remove callout reference */ 1494 LLE_REMREF(ln); 1495 lltable_unlink_entry(ln->lle_tbl, ln); 1496 } 1497 IF_AFDATA_UNLOCK(ifp); 1498 1499 llentry_free(ln); 1500 if (dr != NULL) 1501 defrouter_rele(dr); 1502 } 1503 1504 static int 1505 nd6_isdynrte(const struct rtentry *rt, void *xap) 1506 { 1507 1508 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1509 return (1); 1510 1511 return (0); 1512 } 1513 /* 1514 * Remove the rtentry for the given llentry, 1515 * both of which were installed by a redirect. 1516 */ 1517 static void 1518 nd6_free_redirect(const struct llentry *ln) 1519 { 1520 int fibnum; 1521 struct sockaddr_in6 sin6; 1522 struct rt_addrinfo info; 1523 1524 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1525 memset(&info, 0, sizeof(info)); 1526 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1527 info.rti_filter = nd6_isdynrte; 1528 1529 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1530 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1531 } 1532 1533 /* 1534 * Rejuvenate this function for routing operations related 1535 * processing. 1536 */ 1537 void 1538 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1539 { 1540 struct sockaddr_in6 *gateway; 1541 struct nd_defrouter *dr; 1542 struct ifnet *ifp; 1543 1544 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1545 ifp = rt->rt_ifp; 1546 1547 switch (req) { 1548 case RTM_ADD: 1549 break; 1550 1551 case RTM_DELETE: 1552 if (!ifp) 1553 return; 1554 /* 1555 * Only indirect routes are interesting. 1556 */ 1557 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1558 return; 1559 /* 1560 * check for default route 1561 */ 1562 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1563 &SIN6(rt_key(rt))->sin6_addr)) { 1564 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1565 if (dr != NULL) { 1566 dr->installed = 0; 1567 defrouter_rele(dr); 1568 } 1569 } 1570 break; 1571 } 1572 } 1573 1574 1575 int 1576 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1577 { 1578 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1579 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1580 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1581 int error = 0; 1582 1583 if (ifp->if_afdata[AF_INET6] == NULL) 1584 return (EPFNOSUPPORT); 1585 switch (cmd) { 1586 case OSIOCGIFINFO_IN6: 1587 #define ND ndi->ndi 1588 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1589 bzero(&ND, sizeof(ND)); 1590 ND.linkmtu = IN6_LINKMTU(ifp); 1591 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1592 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1593 ND.reachable = ND_IFINFO(ifp)->reachable; 1594 ND.retrans = ND_IFINFO(ifp)->retrans; 1595 ND.flags = ND_IFINFO(ifp)->flags; 1596 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1597 ND.chlim = ND_IFINFO(ifp)->chlim; 1598 break; 1599 case SIOCGIFINFO_IN6: 1600 ND = *ND_IFINFO(ifp); 1601 break; 1602 case SIOCSIFINFO_IN6: 1603 /* 1604 * used to change host variables from userland. 1605 * intended for a use on router to reflect RA configurations. 1606 */ 1607 /* 0 means 'unspecified' */ 1608 if (ND.linkmtu != 0) { 1609 if (ND.linkmtu < IPV6_MMTU || 1610 ND.linkmtu > IN6_LINKMTU(ifp)) { 1611 error = EINVAL; 1612 break; 1613 } 1614 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1615 } 1616 1617 if (ND.basereachable != 0) { 1618 int obasereachable = ND_IFINFO(ifp)->basereachable; 1619 1620 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1621 if (ND.basereachable != obasereachable) 1622 ND_IFINFO(ifp)->reachable = 1623 ND_COMPUTE_RTIME(ND.basereachable); 1624 } 1625 if (ND.retrans != 0) 1626 ND_IFINFO(ifp)->retrans = ND.retrans; 1627 if (ND.chlim != 0) 1628 ND_IFINFO(ifp)->chlim = ND.chlim; 1629 /* FALLTHROUGH */ 1630 case SIOCSIFINFO_FLAGS: 1631 { 1632 struct ifaddr *ifa; 1633 struct in6_ifaddr *ia; 1634 1635 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1636 !(ND.flags & ND6_IFF_IFDISABLED)) { 1637 /* ifdisabled 1->0 transision */ 1638 1639 /* 1640 * If the interface is marked as ND6_IFF_IFDISABLED and 1641 * has an link-local address with IN6_IFF_DUPLICATED, 1642 * do not clear ND6_IFF_IFDISABLED. 1643 * See RFC 4862, Section 5.4.5. 1644 */ 1645 IF_ADDR_RLOCK(ifp); 1646 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1647 if (ifa->ifa_addr->sa_family != AF_INET6) 1648 continue; 1649 ia = (struct in6_ifaddr *)ifa; 1650 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1651 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1652 break; 1653 } 1654 IF_ADDR_RUNLOCK(ifp); 1655 1656 if (ifa != NULL) { 1657 /* LLA is duplicated. */ 1658 ND.flags |= ND6_IFF_IFDISABLED; 1659 log(LOG_ERR, "Cannot enable an interface" 1660 " with a link-local address marked" 1661 " duplicate.\n"); 1662 } else { 1663 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1664 if (ifp->if_flags & IFF_UP) 1665 in6_if_up(ifp); 1666 } 1667 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1668 (ND.flags & ND6_IFF_IFDISABLED)) { 1669 /* ifdisabled 0->1 transision */ 1670 /* Mark all IPv6 address as tentative. */ 1671 1672 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1673 if (V_ip6_dad_count > 0 && 1674 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1675 IF_ADDR_RLOCK(ifp); 1676 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1677 ifa_link) { 1678 if (ifa->ifa_addr->sa_family != 1679 AF_INET6) 1680 continue; 1681 ia = (struct in6_ifaddr *)ifa; 1682 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1683 } 1684 IF_ADDR_RUNLOCK(ifp); 1685 } 1686 } 1687 1688 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1689 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1690 /* auto_linklocal 0->1 transision */ 1691 1692 /* If no link-local address on ifp, configure */ 1693 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1694 in6_ifattach(ifp, NULL); 1695 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1696 ifp->if_flags & IFF_UP) { 1697 /* 1698 * When the IF already has 1699 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1700 * address is assigned, and IFF_UP, try to 1701 * assign one. 1702 */ 1703 IF_ADDR_RLOCK(ifp); 1704 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1705 ifa_link) { 1706 if (ifa->ifa_addr->sa_family != 1707 AF_INET6) 1708 continue; 1709 ia = (struct in6_ifaddr *)ifa; 1710 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1711 break; 1712 } 1713 IF_ADDR_RUNLOCK(ifp); 1714 if (ifa != NULL) 1715 /* No LLA is configured. */ 1716 in6_ifattach(ifp, NULL); 1717 } 1718 } 1719 } 1720 ND_IFINFO(ifp)->flags = ND.flags; 1721 break; 1722 #undef ND 1723 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1724 /* sync kernel routing table with the default router list */ 1725 defrouter_reset(); 1726 defrouter_select(); 1727 break; 1728 case SIOCSPFXFLUSH_IN6: 1729 { 1730 /* flush all the prefix advertised by routers */ 1731 struct nd_prefix *pr, *next; 1732 1733 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1734 struct in6_ifaddr *ia, *ia_next; 1735 1736 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1737 continue; /* XXX */ 1738 1739 /* do we really have to remove addresses as well? */ 1740 /* XXXRW: in6_ifaddrhead locking. */ 1741 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1742 ia_next) { 1743 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1744 continue; 1745 1746 if (ia->ia6_ndpr == pr) 1747 in6_purgeaddr(&ia->ia_ifa); 1748 } 1749 prelist_remove(pr); 1750 } 1751 break; 1752 } 1753 case SIOCSRTRFLUSH_IN6: 1754 { 1755 /* flush all the default routers */ 1756 struct nd_drhead drq; 1757 struct nd_defrouter *dr; 1758 1759 TAILQ_INIT(&drq); 1760 1761 defrouter_reset(); 1762 1763 ND6_WLOCK(); 1764 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1765 defrouter_unlink(dr, &drq); 1766 ND6_WUNLOCK(); 1767 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1768 TAILQ_REMOVE(&drq, dr, dr_entry); 1769 defrouter_del(dr); 1770 } 1771 1772 defrouter_select(); 1773 break; 1774 } 1775 case SIOCGNBRINFO_IN6: 1776 { 1777 struct llentry *ln; 1778 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1779 1780 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1781 return (error); 1782 1783 IF_AFDATA_RLOCK(ifp); 1784 ln = nd6_lookup(&nb_addr, 0, ifp); 1785 IF_AFDATA_RUNLOCK(ifp); 1786 1787 if (ln == NULL) { 1788 error = EINVAL; 1789 break; 1790 } 1791 nbi->state = ln->ln_state; 1792 nbi->asked = ln->la_asked; 1793 nbi->isrouter = ln->ln_router; 1794 if (ln->la_expire == 0) 1795 nbi->expire = 0; 1796 else 1797 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1798 (time_second - time_uptime); 1799 LLE_RUNLOCK(ln); 1800 break; 1801 } 1802 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1803 ndif->ifindex = V_nd6_defifindex; 1804 break; 1805 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1806 return (nd6_setdefaultiface(ndif->ifindex)); 1807 } 1808 return (error); 1809 } 1810 1811 /* 1812 * Calculates new isRouter value based on provided parameters and 1813 * returns it. 1814 */ 1815 static int 1816 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1817 int ln_router) 1818 { 1819 1820 /* 1821 * ICMP6 type dependent behavior. 1822 * 1823 * NS: clear IsRouter if new entry 1824 * RS: clear IsRouter 1825 * RA: set IsRouter if there's lladdr 1826 * redir: clear IsRouter if new entry 1827 * 1828 * RA case, (1): 1829 * The spec says that we must set IsRouter in the following cases: 1830 * - If lladdr exist, set IsRouter. This means (1-5). 1831 * - If it is old entry (!newentry), set IsRouter. This means (7). 1832 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1833 * A quetion arises for (1) case. (1) case has no lladdr in the 1834 * neighbor cache, this is similar to (6). 1835 * This case is rare but we figured that we MUST NOT set IsRouter. 1836 * 1837 * is_new old_addr new_addr NS RS RA redir 1838 * D R 1839 * 0 n n (1) c ? s 1840 * 0 y n (2) c s s 1841 * 0 n y (3) c s s 1842 * 0 y y (4) c s s 1843 * 0 y y (5) c s s 1844 * 1 -- n (6) c c c s 1845 * 1 -- y (7) c c s c s 1846 * 1847 * (c=clear s=set) 1848 */ 1849 switch (type & 0xff) { 1850 case ND_NEIGHBOR_SOLICIT: 1851 /* 1852 * New entry must have is_router flag cleared. 1853 */ 1854 if (is_new) /* (6-7) */ 1855 ln_router = 0; 1856 break; 1857 case ND_REDIRECT: 1858 /* 1859 * If the icmp is a redirect to a better router, always set the 1860 * is_router flag. Otherwise, if the entry is newly created, 1861 * clear the flag. [RFC 2461, sec 8.3] 1862 */ 1863 if (code == ND_REDIRECT_ROUTER) 1864 ln_router = 1; 1865 else { 1866 if (is_new) /* (6-7) */ 1867 ln_router = 0; 1868 } 1869 break; 1870 case ND_ROUTER_SOLICIT: 1871 /* 1872 * is_router flag must always be cleared. 1873 */ 1874 ln_router = 0; 1875 break; 1876 case ND_ROUTER_ADVERT: 1877 /* 1878 * Mark an entry with lladdr as a router. 1879 */ 1880 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1881 (is_new && new_addr)) { /* (7) */ 1882 ln_router = 1; 1883 } 1884 break; 1885 } 1886 1887 return (ln_router); 1888 } 1889 1890 /* 1891 * Create neighbor cache entry and cache link-layer address, 1892 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1893 * 1894 * type - ICMP6 type 1895 * code - type dependent information 1896 * 1897 */ 1898 void 1899 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1900 int lladdrlen, int type, int code) 1901 { 1902 struct llentry *ln = NULL, *ln_tmp; 1903 int is_newentry; 1904 int do_update; 1905 int olladdr; 1906 int llchange; 1907 int flags; 1908 uint16_t router = 0; 1909 struct sockaddr_in6 sin6; 1910 struct mbuf *chain = NULL; 1911 u_char linkhdr[LLE_MAX_LINKHDR]; 1912 size_t linkhdrsize; 1913 int lladdr_off; 1914 1915 IF_AFDATA_UNLOCK_ASSERT(ifp); 1916 1917 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1918 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1919 1920 /* nothing must be updated for unspecified address */ 1921 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1922 return; 1923 1924 /* 1925 * Validation about ifp->if_addrlen and lladdrlen must be done in 1926 * the caller. 1927 * 1928 * XXX If the link does not have link-layer adderss, what should 1929 * we do? (ifp->if_addrlen == 0) 1930 * Spec says nothing in sections for RA, RS and NA. There's small 1931 * description on it in NS section (RFC 2461 7.2.3). 1932 */ 1933 flags = lladdr ? LLE_EXCLUSIVE : 0; 1934 IF_AFDATA_RLOCK(ifp); 1935 ln = nd6_lookup(from, flags, ifp); 1936 IF_AFDATA_RUNLOCK(ifp); 1937 is_newentry = 0; 1938 if (ln == NULL) { 1939 flags |= LLE_EXCLUSIVE; 1940 ln = nd6_alloc(from, 0, ifp); 1941 if (ln == NULL) 1942 return; 1943 1944 /* 1945 * Since we already know all the data for the new entry, 1946 * fill it before insertion. 1947 */ 1948 if (lladdr != NULL) { 1949 linkhdrsize = sizeof(linkhdr); 1950 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1951 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1952 return; 1953 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1954 lladdr_off); 1955 } 1956 1957 IF_AFDATA_WLOCK(ifp); 1958 LLE_WLOCK(ln); 1959 /* Prefer any existing lle over newly-created one */ 1960 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1961 if (ln_tmp == NULL) 1962 lltable_link_entry(LLTABLE6(ifp), ln); 1963 IF_AFDATA_WUNLOCK(ifp); 1964 if (ln_tmp == NULL) { 1965 /* No existing lle, mark as new entry (6,7) */ 1966 is_newentry = 1; 1967 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1968 if (lladdr != NULL) /* (7) */ 1969 EVENTHANDLER_INVOKE(lle_event, ln, 1970 LLENTRY_RESOLVED); 1971 } else { 1972 lltable_free_entry(LLTABLE6(ifp), ln); 1973 ln = ln_tmp; 1974 ln_tmp = NULL; 1975 } 1976 } 1977 /* do nothing if static ndp is set */ 1978 if ((ln->la_flags & LLE_STATIC)) { 1979 if (flags & LLE_EXCLUSIVE) 1980 LLE_WUNLOCK(ln); 1981 else 1982 LLE_RUNLOCK(ln); 1983 return; 1984 } 1985 1986 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1987 if (olladdr && lladdr) { 1988 llchange = bcmp(lladdr, ln->ll_addr, 1989 ifp->if_addrlen); 1990 } else if (!olladdr && lladdr) 1991 llchange = 1; 1992 else 1993 llchange = 0; 1994 1995 /* 1996 * newentry olladdr lladdr llchange (*=record) 1997 * 0 n n -- (1) 1998 * 0 y n -- (2) 1999 * 0 n y y (3) * STALE 2000 * 0 y y n (4) * 2001 * 0 y y y (5) * STALE 2002 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2003 * 1 -- y -- (7) * STALE 2004 */ 2005 2006 do_update = 0; 2007 if (is_newentry == 0 && llchange != 0) { 2008 do_update = 1; /* (3,5) */ 2009 2010 /* 2011 * Record source link-layer address 2012 * XXX is it dependent to ifp->if_type? 2013 */ 2014 linkhdrsize = sizeof(linkhdr); 2015 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2016 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2017 return; 2018 2019 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2020 lladdr_off) == 0) { 2021 /* Entry was deleted */ 2022 return; 2023 } 2024 2025 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2026 2027 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2028 2029 if (ln->la_hold != NULL) 2030 nd6_grab_holdchain(ln, &chain, &sin6); 2031 } 2032 2033 /* Calculates new router status */ 2034 router = nd6_is_router(type, code, is_newentry, olladdr, 2035 lladdr != NULL ? 1 : 0, ln->ln_router); 2036 2037 ln->ln_router = router; 2038 /* Mark non-router redirects with special flag */ 2039 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2040 ln->la_flags |= LLE_REDIRECT; 2041 2042 if (flags & LLE_EXCLUSIVE) 2043 LLE_WUNLOCK(ln); 2044 else 2045 LLE_RUNLOCK(ln); 2046 2047 if (chain != NULL) 2048 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2049 2050 /* 2051 * When the link-layer address of a router changes, select the 2052 * best router again. In particular, when the neighbor entry is newly 2053 * created, it might affect the selection policy. 2054 * Question: can we restrict the first condition to the "is_newentry" 2055 * case? 2056 * XXX: when we hear an RA from a new router with the link-layer 2057 * address option, defrouter_select() is called twice, since 2058 * defrtrlist_update called the function as well. However, I believe 2059 * we can compromise the overhead, since it only happens the first 2060 * time. 2061 * XXX: although defrouter_select() should not have a bad effect 2062 * for those are not autoconfigured hosts, we explicitly avoid such 2063 * cases for safety. 2064 */ 2065 if ((do_update || is_newentry) && router && 2066 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2067 /* 2068 * guaranteed recursion 2069 */ 2070 defrouter_select(); 2071 } 2072 } 2073 2074 static void 2075 nd6_slowtimo(void *arg) 2076 { 2077 CURVNET_SET((struct vnet *) arg); 2078 struct nd_ifinfo *nd6if; 2079 struct ifnet *ifp; 2080 2081 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2082 nd6_slowtimo, curvnet); 2083 IFNET_RLOCK_NOSLEEP(); 2084 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2085 if (ifp->if_afdata[AF_INET6] == NULL) 2086 continue; 2087 nd6if = ND_IFINFO(ifp); 2088 if (nd6if->basereachable && /* already initialized */ 2089 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2090 /* 2091 * Since reachable time rarely changes by router 2092 * advertisements, we SHOULD insure that a new random 2093 * value gets recomputed at least once every few hours. 2094 * (RFC 2461, 6.3.4) 2095 */ 2096 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2097 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2098 } 2099 } 2100 IFNET_RUNLOCK_NOSLEEP(); 2101 CURVNET_RESTORE(); 2102 } 2103 2104 void 2105 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2106 struct sockaddr_in6 *sin6) 2107 { 2108 2109 LLE_WLOCK_ASSERT(ln); 2110 2111 *chain = ln->la_hold; 2112 ln->la_hold = NULL; 2113 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2114 2115 if (ln->ln_state == ND6_LLINFO_STALE) { 2116 2117 /* 2118 * The first time we send a packet to a 2119 * neighbor whose entry is STALE, we have 2120 * to change the state to DELAY and a sets 2121 * a timer to expire in DELAY_FIRST_PROBE_TIME 2122 * seconds to ensure do neighbor unreachability 2123 * detection on expiration. 2124 * (RFC 2461 7.3.3) 2125 */ 2126 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2127 } 2128 } 2129 2130 int 2131 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2132 struct sockaddr_in6 *dst, struct route *ro) 2133 { 2134 int error; 2135 int ip6len; 2136 struct ip6_hdr *ip6; 2137 struct m_tag *mtag; 2138 2139 #ifdef MAC 2140 mac_netinet6_nd6_send(ifp, m); 2141 #endif 2142 2143 /* 2144 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2145 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2146 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2147 * to be diverted to user space. When re-injected into the kernel, 2148 * send_output() will directly dispatch them to the outgoing interface. 2149 */ 2150 if (send_sendso_input_hook != NULL) { 2151 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2152 if (mtag != NULL) { 2153 ip6 = mtod(m, struct ip6_hdr *); 2154 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2155 /* Use the SEND socket */ 2156 error = send_sendso_input_hook(m, ifp, SND_OUT, 2157 ip6len); 2158 /* -1 == no app on SEND socket */ 2159 if (error == 0 || error != -1) 2160 return (error); 2161 } 2162 } 2163 2164 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2165 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2166 mtod(m, struct ip6_hdr *)); 2167 2168 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2169 origifp = ifp; 2170 2171 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2172 return (error); 2173 } 2174 2175 /* 2176 * Lookup link headerfor @sa_dst address. Stores found 2177 * data in @desten buffer. Copy of lle ln_flags can be also 2178 * saved in @pflags if @pflags is non-NULL. 2179 * 2180 * If destination LLE does not exists or lle state modification 2181 * is required, call "slow" version. 2182 * 2183 * Return values: 2184 * - 0 on success (address copied to buffer). 2185 * - EWOULDBLOCK (no local error, but address is still unresolved) 2186 * - other errors (alloc failure, etc) 2187 */ 2188 int 2189 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2190 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2191 struct llentry **plle) 2192 { 2193 struct llentry *ln = NULL; 2194 const struct sockaddr_in6 *dst6; 2195 2196 if (pflags != NULL) 2197 *pflags = 0; 2198 2199 dst6 = (const struct sockaddr_in6 *)sa_dst; 2200 2201 /* discard the packet if IPv6 operation is disabled on the interface */ 2202 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2203 m_freem(m); 2204 return (ENETDOWN); /* better error? */ 2205 } 2206 2207 if (m != NULL && m->m_flags & M_MCAST) { 2208 switch (ifp->if_type) { 2209 case IFT_ETHER: 2210 case IFT_FDDI: 2211 case IFT_L2VLAN: 2212 case IFT_IEEE80211: 2213 case IFT_BRIDGE: 2214 case IFT_ISO88025: 2215 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2216 desten); 2217 return (0); 2218 default: 2219 m_freem(m); 2220 return (EAFNOSUPPORT); 2221 } 2222 } 2223 2224 IF_AFDATA_RLOCK(ifp); 2225 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2226 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2227 /* Entry found, let's copy lle info */ 2228 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2229 if (pflags != NULL) 2230 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2231 /* Check if we have feedback request from nd6 timer */ 2232 if (ln->r_skip_req != 0) { 2233 LLE_REQ_LOCK(ln); 2234 ln->r_skip_req = 0; /* Notify that entry was used */ 2235 ln->lle_hittime = time_uptime; 2236 LLE_REQ_UNLOCK(ln); 2237 } 2238 IF_AFDATA_RUNLOCK(ifp); 2239 return (0); 2240 } 2241 IF_AFDATA_RUNLOCK(ifp); 2242 2243 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2244 } 2245 2246 2247 /* 2248 * Do L2 address resolution for @sa_dst address. Stores found 2249 * address in @desten buffer. Copy of lle ln_flags can be also 2250 * saved in @pflags if @pflags is non-NULL. 2251 * 2252 * Heavy version. 2253 * Function assume that destination LLE does not exist, 2254 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2255 * 2256 * Set noinline to be dtrace-friendly 2257 */ 2258 static __noinline int 2259 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2260 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2261 struct llentry **plle) 2262 { 2263 struct llentry *lle = NULL, *lle_tmp; 2264 struct in6_addr *psrc, src; 2265 int send_ns, ll_len; 2266 char *lladdr; 2267 2268 /* 2269 * Address resolution or Neighbor Unreachability Detection 2270 * for the next hop. 2271 * At this point, the destination of the packet must be a unicast 2272 * or an anycast address(i.e. not a multicast). 2273 */ 2274 if (lle == NULL) { 2275 IF_AFDATA_RLOCK(ifp); 2276 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2277 IF_AFDATA_RUNLOCK(ifp); 2278 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2279 /* 2280 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2281 * the condition below is not very efficient. But we believe 2282 * it is tolerable, because this should be a rare case. 2283 */ 2284 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2285 if (lle == NULL) { 2286 char ip6buf[INET6_ADDRSTRLEN]; 2287 log(LOG_DEBUG, 2288 "nd6_output: can't allocate llinfo for %s " 2289 "(ln=%p)\n", 2290 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2291 m_freem(m); 2292 return (ENOBUFS); 2293 } 2294 2295 IF_AFDATA_WLOCK(ifp); 2296 LLE_WLOCK(lle); 2297 /* Prefer any existing entry over newly-created one */ 2298 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2299 if (lle_tmp == NULL) 2300 lltable_link_entry(LLTABLE6(ifp), lle); 2301 IF_AFDATA_WUNLOCK(ifp); 2302 if (lle_tmp != NULL) { 2303 lltable_free_entry(LLTABLE6(ifp), lle); 2304 lle = lle_tmp; 2305 lle_tmp = NULL; 2306 } 2307 } 2308 } 2309 if (lle == NULL) { 2310 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2311 m_freem(m); 2312 return (ENOBUFS); 2313 } 2314 2315 if (m != NULL) 2316 m_freem(m); 2317 return (ENOBUFS); 2318 } 2319 2320 LLE_WLOCK_ASSERT(lle); 2321 2322 /* 2323 * The first time we send a packet to a neighbor whose entry is 2324 * STALE, we have to change the state to DELAY and a sets a timer to 2325 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2326 * neighbor unreachability detection on expiration. 2327 * (RFC 2461 7.3.3) 2328 */ 2329 if (lle->ln_state == ND6_LLINFO_STALE) 2330 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2331 2332 /* 2333 * If the neighbor cache entry has a state other than INCOMPLETE 2334 * (i.e. its link-layer address is already resolved), just 2335 * send the packet. 2336 */ 2337 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2338 if (flags & LLE_ADDRONLY) { 2339 lladdr = lle->ll_addr; 2340 ll_len = ifp->if_addrlen; 2341 } else { 2342 lladdr = lle->r_linkdata; 2343 ll_len = lle->r_hdrlen; 2344 } 2345 bcopy(lladdr, desten, ll_len); 2346 if (pflags != NULL) 2347 *pflags = lle->la_flags; 2348 if (plle) { 2349 LLE_ADDREF(lle); 2350 *plle = lle; 2351 } 2352 LLE_WUNLOCK(lle); 2353 return (0); 2354 } 2355 2356 /* 2357 * There is a neighbor cache entry, but no ethernet address 2358 * response yet. Append this latest packet to the end of the 2359 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2360 * the oldest packet in the queue will be removed. 2361 */ 2362 2363 if (lle->la_hold != NULL) { 2364 struct mbuf *m_hold; 2365 int i; 2366 2367 i = 0; 2368 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2369 i++; 2370 if (m_hold->m_nextpkt == NULL) { 2371 m_hold->m_nextpkt = m; 2372 break; 2373 } 2374 } 2375 while (i >= V_nd6_maxqueuelen) { 2376 m_hold = lle->la_hold; 2377 lle->la_hold = lle->la_hold->m_nextpkt; 2378 m_freem(m_hold); 2379 i--; 2380 } 2381 } else { 2382 lle->la_hold = m; 2383 } 2384 2385 /* 2386 * If there has been no NS for the neighbor after entering the 2387 * INCOMPLETE state, send the first solicitation. 2388 * Note that for newly-created lle la_asked will be 0, 2389 * so we will transition from ND6_LLINFO_NOSTATE to 2390 * ND6_LLINFO_INCOMPLETE state here. 2391 */ 2392 psrc = NULL; 2393 send_ns = 0; 2394 if (lle->la_asked == 0) { 2395 lle->la_asked++; 2396 send_ns = 1; 2397 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2398 2399 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2400 } 2401 LLE_WUNLOCK(lle); 2402 if (send_ns != 0) 2403 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2404 2405 return (EWOULDBLOCK); 2406 } 2407 2408 /* 2409 * Do L2 address resolution for @sa_dst address. Stores found 2410 * address in @desten buffer. Copy of lle ln_flags can be also 2411 * saved in @pflags if @pflags is non-NULL. 2412 * 2413 * Return values: 2414 * - 0 on success (address copied to buffer). 2415 * - EWOULDBLOCK (no local error, but address is still unresolved) 2416 * - other errors (alloc failure, etc) 2417 */ 2418 int 2419 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2420 char *desten, uint32_t *pflags) 2421 { 2422 int error; 2423 2424 flags |= LLE_ADDRONLY; 2425 error = nd6_resolve_slow(ifp, flags, NULL, 2426 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2427 return (error); 2428 } 2429 2430 int 2431 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2432 struct sockaddr_in6 *dst) 2433 { 2434 struct mbuf *m, *m_head; 2435 struct ifnet *outifp; 2436 int error = 0; 2437 2438 m_head = chain; 2439 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2440 outifp = origifp; 2441 else 2442 outifp = ifp; 2443 2444 while (m_head) { 2445 m = m_head; 2446 m_head = m_head->m_nextpkt; 2447 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2448 } 2449 2450 /* 2451 * XXX 2452 * note that intermediate errors are blindly ignored 2453 */ 2454 return (error); 2455 } 2456 2457 static int 2458 nd6_need_cache(struct ifnet *ifp) 2459 { 2460 /* 2461 * XXX: we currently do not make neighbor cache on any interface 2462 * other than ARCnet, Ethernet, FDDI and GIF. 2463 * 2464 * RFC2893 says: 2465 * - unidirectional tunnels needs no ND 2466 */ 2467 switch (ifp->if_type) { 2468 case IFT_ARCNET: 2469 case IFT_ETHER: 2470 case IFT_FDDI: 2471 case IFT_IEEE1394: 2472 case IFT_L2VLAN: 2473 case IFT_IEEE80211: 2474 case IFT_INFINIBAND: 2475 case IFT_BRIDGE: 2476 case IFT_PROPVIRTUAL: 2477 return (1); 2478 default: 2479 return (0); 2480 } 2481 } 2482 2483 /* 2484 * Add pernament ND6 link-layer record for given 2485 * interface address. 2486 * 2487 * Very similar to IPv4 arp_ifinit(), but: 2488 * 1) IPv6 DAD is performed in different place 2489 * 2) It is called by IPv6 protocol stack in contrast to 2490 * arp_ifinit() which is typically called in SIOCSIFADDR 2491 * driver ioctl handler. 2492 * 2493 */ 2494 int 2495 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2496 { 2497 struct ifnet *ifp; 2498 struct llentry *ln, *ln_tmp; 2499 struct sockaddr *dst; 2500 2501 ifp = ia->ia_ifa.ifa_ifp; 2502 if (nd6_need_cache(ifp) == 0) 2503 return (0); 2504 2505 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2506 dst = (struct sockaddr *)&ia->ia_addr; 2507 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2508 if (ln == NULL) 2509 return (ENOBUFS); 2510 2511 IF_AFDATA_WLOCK(ifp); 2512 LLE_WLOCK(ln); 2513 /* Unlink any entry if exists */ 2514 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2515 if (ln_tmp != NULL) 2516 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2517 lltable_link_entry(LLTABLE6(ifp), ln); 2518 IF_AFDATA_WUNLOCK(ifp); 2519 2520 if (ln_tmp != NULL) 2521 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2522 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2523 2524 LLE_WUNLOCK(ln); 2525 if (ln_tmp != NULL) 2526 llentry_free(ln_tmp); 2527 2528 return (0); 2529 } 2530 2531 /* 2532 * Removes either all lle entries for given @ia, or lle 2533 * corresponding to @ia address. 2534 */ 2535 void 2536 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2537 { 2538 struct sockaddr_in6 mask, addr; 2539 struct sockaddr *saddr, *smask; 2540 struct ifnet *ifp; 2541 2542 ifp = ia->ia_ifa.ifa_ifp; 2543 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2544 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2545 saddr = (struct sockaddr *)&addr; 2546 smask = (struct sockaddr *)&mask; 2547 2548 if (all != 0) 2549 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2550 else 2551 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2552 } 2553 2554 static void 2555 clear_llinfo_pqueue(struct llentry *ln) 2556 { 2557 struct mbuf *m_hold, *m_hold_next; 2558 2559 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2560 m_hold_next = m_hold->m_nextpkt; 2561 m_freem(m_hold); 2562 } 2563 2564 ln->la_hold = NULL; 2565 } 2566 2567 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2568 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2569 2570 SYSCTL_DECL(_net_inet6_icmp6); 2571 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2572 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2573 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2574 "NDP default router list"); 2575 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2576 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2577 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2578 "NDP prefix list"); 2579 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2580 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2581 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2582 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2583 2584 static int 2585 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2586 { 2587 struct in6_defrouter d; 2588 struct nd_defrouter *dr; 2589 int error; 2590 2591 if (req->newptr != NULL) 2592 return (EPERM); 2593 2594 error = sysctl_wire_old_buffer(req, 0); 2595 if (error != 0) 2596 return (error); 2597 2598 bzero(&d, sizeof(d)); 2599 d.rtaddr.sin6_family = AF_INET6; 2600 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2601 2602 ND6_RLOCK(); 2603 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2604 d.rtaddr.sin6_addr = dr->rtaddr; 2605 error = sa6_recoverscope(&d.rtaddr); 2606 if (error != 0) 2607 break; 2608 d.flags = dr->raflags; 2609 d.rtlifetime = dr->rtlifetime; 2610 d.expire = dr->expire + (time_second - time_uptime); 2611 d.if_index = dr->ifp->if_index; 2612 error = SYSCTL_OUT(req, &d, sizeof(d)); 2613 if (error != 0) 2614 break; 2615 } 2616 ND6_RUNLOCK(); 2617 return (error); 2618 } 2619 2620 static int 2621 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2622 { 2623 struct in6_prefix p; 2624 struct sockaddr_in6 s6; 2625 struct nd_prefix *pr; 2626 struct nd_pfxrouter *pfr; 2627 time_t maxexpire; 2628 int error; 2629 char ip6buf[INET6_ADDRSTRLEN]; 2630 2631 if (req->newptr) 2632 return (EPERM); 2633 2634 error = sysctl_wire_old_buffer(req, 0); 2635 if (error != 0) 2636 return (error); 2637 2638 bzero(&p, sizeof(p)); 2639 p.origin = PR_ORIG_RA; 2640 bzero(&s6, sizeof(s6)); 2641 s6.sin6_family = AF_INET6; 2642 s6.sin6_len = sizeof(s6); 2643 2644 ND6_RLOCK(); 2645 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2646 p.prefix = pr->ndpr_prefix; 2647 if (sa6_recoverscope(&p.prefix)) { 2648 log(LOG_ERR, "scope error in prefix list (%s)\n", 2649 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2650 /* XXX: press on... */ 2651 } 2652 p.raflags = pr->ndpr_raf; 2653 p.prefixlen = pr->ndpr_plen; 2654 p.vltime = pr->ndpr_vltime; 2655 p.pltime = pr->ndpr_pltime; 2656 p.if_index = pr->ndpr_ifp->if_index; 2657 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2658 p.expire = 0; 2659 else { 2660 /* XXX: we assume time_t is signed. */ 2661 maxexpire = (-1) & 2662 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2663 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2664 p.expire = pr->ndpr_lastupdate + 2665 pr->ndpr_vltime + 2666 (time_second - time_uptime); 2667 else 2668 p.expire = maxexpire; 2669 } 2670 p.refcnt = pr->ndpr_refcnt; 2671 p.flags = pr->ndpr_stateflags; 2672 p.advrtrs = 0; 2673 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2674 p.advrtrs++; 2675 error = SYSCTL_OUT(req, &p, sizeof(p)); 2676 if (error != 0) 2677 break; 2678 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2679 s6.sin6_addr = pfr->router->rtaddr; 2680 if (sa6_recoverscope(&s6)) 2681 log(LOG_ERR, 2682 "scope error in prefix list (%s)\n", 2683 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2684 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2685 if (error != 0) 2686 break; 2687 } 2688 } 2689 ND6_RUNLOCK(); 2690 return (error); 2691 } 2692