1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 #include <sys/time.h> 48 #include <sys/kernel.h> 49 #include <sys/protosw.h> 50 #include <sys/errno.h> 51 #include <sys/syslog.h> 52 #include <sys/rwlock.h> 53 #include <sys/queue.h> 54 #include <sys/sdt.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_arc.h> 60 #include <net/if_dl.h> 61 #include <net/if_types.h> 62 #include <net/iso88025.h> 63 #include <net/fddi.h> 64 #include <net/route.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_kdtrace.h> 69 #include <net/if_llatbl.h> 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 90 91 /* timer values */ 92 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 93 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 94 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 95 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 96 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 97 * local traffic */ 98 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 99 * collection timer */ 100 101 /* preventing too many loops in ND option parsing */ 102 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 103 104 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 105 * layer hints */ 106 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 107 * ND entries */ 108 #define V_nd6_maxndopt VNET(nd6_maxndopt) 109 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 110 111 #ifdef ND6_DEBUG 112 VNET_DEFINE(int, nd6_debug) = 1; 113 #else 114 VNET_DEFINE(int, nd6_debug) = 0; 115 #endif 116 117 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 118 119 VNET_DEFINE(struct nd_drhead, nd_defrouter); 120 VNET_DEFINE(struct nd_prhead, nd_prefix); 121 VNET_DEFINE(struct rwlock, nd6_lock); 122 VNET_DEFINE(uint64_t, nd6_list_genid); 123 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 124 125 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 126 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 127 128 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 129 130 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 131 struct ifnet *); 132 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 133 static void nd6_slowtimo(void *); 134 static int regen_tmpaddr(struct in6_ifaddr *); 135 static void nd6_free(struct llentry **, int); 136 static void nd6_free_redirect(const struct llentry *); 137 static void nd6_llinfo_timer(void *); 138 static void nd6_llinfo_settimer_locked(struct llentry *, long); 139 static void clear_llinfo_pqueue(struct llentry *); 140 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 141 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 142 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 143 static int nd6_need_cache(struct ifnet *); 144 145 146 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 static void 153 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 154 { 155 struct rt_addrinfo rtinfo; 156 struct sockaddr_in6 dst; 157 struct sockaddr_dl gw; 158 struct ifnet *ifp; 159 int type; 160 int fibnum; 161 162 LLE_WLOCK_ASSERT(lle); 163 164 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 165 return; 166 167 switch (evt) { 168 case LLENTRY_RESOLVED: 169 type = RTM_ADD; 170 KASSERT(lle->la_flags & LLE_VALID, 171 ("%s: %p resolved but not valid?", __func__, lle)); 172 break; 173 case LLENTRY_EXPIRED: 174 type = RTM_DELETE; 175 break; 176 default: 177 return; 178 } 179 180 ifp = lltable_get_ifp(lle->lle_tbl); 181 182 bzero(&dst, sizeof(dst)); 183 bzero(&gw, sizeof(gw)); 184 bzero(&rtinfo, sizeof(rtinfo)); 185 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 186 dst.sin6_scope_id = in6_getscopezone(ifp, 187 in6_addrscope(&dst.sin6_addr)); 188 gw.sdl_len = sizeof(struct sockaddr_dl); 189 gw.sdl_family = AF_LINK; 190 gw.sdl_alen = ifp->if_addrlen; 191 gw.sdl_index = ifp->if_index; 192 gw.sdl_type = ifp->if_type; 193 if (evt == LLENTRY_RESOLVED) 194 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 195 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 196 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 197 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 198 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 199 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 200 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 201 } 202 203 /* 204 * A handler for interface link layer address change event. 205 */ 206 static void 207 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 208 { 209 210 lltable_update_ifaddr(LLTABLE6(ifp)); 211 } 212 213 void 214 nd6_init(void) 215 { 216 217 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 218 rw_init(&V_nd6_lock, "nd6 list"); 219 220 LIST_INIT(&V_nd_prefix); 221 TAILQ_INIT(&V_nd_defrouter); 222 223 /* Start timers. */ 224 callout_init(&V_nd6_slowtimo_ch, 0); 225 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 226 nd6_slowtimo, curvnet); 227 228 callout_init(&V_nd6_timer_ch, 0); 229 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 230 231 nd6_dad_init(); 232 if (IS_DEFAULT_VNET(curvnet)) { 233 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 234 NULL, EVENTHANDLER_PRI_ANY); 235 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 236 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 237 } 238 } 239 240 #ifdef VIMAGE 241 void 242 nd6_destroy() 243 { 244 245 callout_drain(&V_nd6_slowtimo_ch); 246 callout_drain(&V_nd6_timer_ch); 247 if (IS_DEFAULT_VNET(curvnet)) { 248 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 249 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 250 } 251 rw_destroy(&V_nd6_lock); 252 mtx_destroy(&V_nd6_onlink_mtx); 253 } 254 #endif 255 256 struct nd_ifinfo * 257 nd6_ifattach(struct ifnet *ifp) 258 { 259 struct nd_ifinfo *nd; 260 261 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 262 nd->initialized = 1; 263 264 nd->chlim = IPV6_DEFHLIM; 265 nd->basereachable = REACHABLE_TIME; 266 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 267 nd->retrans = RETRANS_TIMER; 268 269 nd->flags = ND6_IFF_PERFORMNUD; 270 271 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 272 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 273 * default regardless of the V_ip6_auto_linklocal configuration to 274 * give a reasonable default behavior. 275 */ 276 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 277 (ifp->if_flags & IFF_LOOPBACK)) 278 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 279 /* 280 * A loopback interface does not need to accept RTADV. 281 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 282 * default regardless of the V_ip6_accept_rtadv configuration to 283 * prevent the interface from accepting RA messages arrived 284 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 285 */ 286 if (V_ip6_accept_rtadv && 287 !(ifp->if_flags & IFF_LOOPBACK) && 288 (ifp->if_type != IFT_BRIDGE)) 289 nd->flags |= ND6_IFF_ACCEPT_RTADV; 290 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 291 nd->flags |= ND6_IFF_NO_RADR; 292 293 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 294 nd6_setmtu0(ifp, nd); 295 296 return nd; 297 } 298 299 void 300 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 301 { 302 struct ifaddr *ifa, *next; 303 304 IF_ADDR_RLOCK(ifp); 305 TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 306 if (ifa->ifa_addr->sa_family != AF_INET6) 307 continue; 308 309 /* stop DAD processing */ 310 nd6_dad_stop(ifa); 311 } 312 IF_ADDR_RUNLOCK(ifp); 313 314 free(nd, M_IP6NDP); 315 } 316 317 /* 318 * Reset ND level link MTU. This function is called when the physical MTU 319 * changes, which means we might have to adjust the ND level MTU. 320 */ 321 void 322 nd6_setmtu(struct ifnet *ifp) 323 { 324 if (ifp->if_afdata[AF_INET6] == NULL) 325 return; 326 327 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 328 } 329 330 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 331 void 332 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 333 { 334 u_int32_t omaxmtu; 335 336 omaxmtu = ndi->maxmtu; 337 338 switch (ifp->if_type) { 339 case IFT_ARCNET: 340 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 341 break; 342 case IFT_FDDI: 343 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 344 break; 345 case IFT_ISO88025: 346 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 347 break; 348 default: 349 ndi->maxmtu = ifp->if_mtu; 350 break; 351 } 352 353 /* 354 * Decreasing the interface MTU under IPV6 minimum MTU may cause 355 * undesirable situation. We thus notify the operator of the change 356 * explicitly. The check for omaxmtu is necessary to restrict the 357 * log to the case of changing the MTU, not initializing it. 358 */ 359 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 360 log(LOG_NOTICE, "nd6_setmtu0: " 361 "new link MTU on %s (%lu) is too small for IPv6\n", 362 if_name(ifp), (unsigned long)ndi->maxmtu); 363 } 364 365 if (ndi->maxmtu > V_in6_maxmtu) 366 in6_setmaxmtu(); /* check all interfaces just in case */ 367 368 } 369 370 void 371 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 372 { 373 374 bzero(ndopts, sizeof(*ndopts)); 375 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 376 ndopts->nd_opts_last 377 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 378 379 if (icmp6len == 0) { 380 ndopts->nd_opts_done = 1; 381 ndopts->nd_opts_search = NULL; 382 } 383 } 384 385 /* 386 * Take one ND option. 387 */ 388 struct nd_opt_hdr * 389 nd6_option(union nd_opts *ndopts) 390 { 391 struct nd_opt_hdr *nd_opt; 392 int olen; 393 394 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 395 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 396 __func__)); 397 if (ndopts->nd_opts_search == NULL) 398 return NULL; 399 if (ndopts->nd_opts_done) 400 return NULL; 401 402 nd_opt = ndopts->nd_opts_search; 403 404 /* make sure nd_opt_len is inside the buffer */ 405 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 406 bzero(ndopts, sizeof(*ndopts)); 407 return NULL; 408 } 409 410 olen = nd_opt->nd_opt_len << 3; 411 if (olen == 0) { 412 /* 413 * Message validation requires that all included 414 * options have a length that is greater than zero. 415 */ 416 bzero(ndopts, sizeof(*ndopts)); 417 return NULL; 418 } 419 420 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 421 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 422 /* option overruns the end of buffer, invalid */ 423 bzero(ndopts, sizeof(*ndopts)); 424 return NULL; 425 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 426 /* reached the end of options chain */ 427 ndopts->nd_opts_done = 1; 428 ndopts->nd_opts_search = NULL; 429 } 430 return nd_opt; 431 } 432 433 /* 434 * Parse multiple ND options. 435 * This function is much easier to use, for ND routines that do not need 436 * multiple options of the same type. 437 */ 438 int 439 nd6_options(union nd_opts *ndopts) 440 { 441 struct nd_opt_hdr *nd_opt; 442 int i = 0; 443 444 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 445 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 446 __func__)); 447 if (ndopts->nd_opts_search == NULL) 448 return 0; 449 450 while (1) { 451 nd_opt = nd6_option(ndopts); 452 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 453 /* 454 * Message validation requires that all included 455 * options have a length that is greater than zero. 456 */ 457 ICMP6STAT_INC(icp6s_nd_badopt); 458 bzero(ndopts, sizeof(*ndopts)); 459 return -1; 460 } 461 462 if (nd_opt == NULL) 463 goto skip1; 464 465 switch (nd_opt->nd_opt_type) { 466 case ND_OPT_SOURCE_LINKADDR: 467 case ND_OPT_TARGET_LINKADDR: 468 case ND_OPT_MTU: 469 case ND_OPT_REDIRECTED_HEADER: 470 case ND_OPT_NONCE: 471 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 472 nd6log((LOG_INFO, 473 "duplicated ND6 option found (type=%d)\n", 474 nd_opt->nd_opt_type)); 475 /* XXX bark? */ 476 } else { 477 ndopts->nd_opt_array[nd_opt->nd_opt_type] 478 = nd_opt; 479 } 480 break; 481 case ND_OPT_PREFIX_INFORMATION: 482 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 483 ndopts->nd_opt_array[nd_opt->nd_opt_type] 484 = nd_opt; 485 } 486 ndopts->nd_opts_pi_end = 487 (struct nd_opt_prefix_info *)nd_opt; 488 break; 489 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 490 case ND_OPT_RDNSS: /* RFC 6106 */ 491 case ND_OPT_DNSSL: /* RFC 6106 */ 492 /* 493 * Silently ignore options we know and do not care about 494 * in the kernel. 495 */ 496 break; 497 default: 498 /* 499 * Unknown options must be silently ignored, 500 * to accommodate future extension to the protocol. 501 */ 502 nd6log((LOG_DEBUG, 503 "nd6_options: unsupported option %d - " 504 "option ignored\n", nd_opt->nd_opt_type)); 505 } 506 507 skip1: 508 i++; 509 if (i > V_nd6_maxndopt) { 510 ICMP6STAT_INC(icp6s_nd_toomanyopt); 511 nd6log((LOG_INFO, "too many loop in nd opt\n")); 512 break; 513 } 514 515 if (ndopts->nd_opts_done) 516 break; 517 } 518 519 return 0; 520 } 521 522 /* 523 * ND6 timer routine to handle ND6 entries 524 */ 525 static void 526 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 527 { 528 int canceled; 529 530 LLE_WLOCK_ASSERT(ln); 531 532 if (tick < 0) { 533 ln->la_expire = 0; 534 ln->ln_ntick = 0; 535 canceled = callout_stop(&ln->lle_timer); 536 } else { 537 ln->la_expire = time_uptime + tick / hz; 538 LLE_ADDREF(ln); 539 if (tick > INT_MAX) { 540 ln->ln_ntick = tick - INT_MAX; 541 canceled = callout_reset(&ln->lle_timer, INT_MAX, 542 nd6_llinfo_timer, ln); 543 } else { 544 ln->ln_ntick = 0; 545 canceled = callout_reset(&ln->lle_timer, tick, 546 nd6_llinfo_timer, ln); 547 } 548 } 549 if (canceled > 0) 550 LLE_REMREF(ln); 551 } 552 553 /* 554 * Gets source address of the first packet in hold queue 555 * and stores it in @src. 556 * Returns pointer to @src (if hold queue is not empty) or NULL. 557 * 558 * Set noinline to be dtrace-friendly 559 */ 560 static __noinline struct in6_addr * 561 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 562 { 563 struct ip6_hdr hdr; 564 struct mbuf *m; 565 566 if (ln->la_hold == NULL) 567 return (NULL); 568 569 /* 570 * assume every packet in la_hold has the same IP header 571 */ 572 m = ln->la_hold; 573 if (sizeof(hdr) > m->m_len) 574 return (NULL); 575 576 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 577 *src = hdr.ip6_src; 578 579 return (src); 580 } 581 582 /* 583 * Checks if we need to switch from STALE state. 584 * 585 * RFC 4861 requires switching from STALE to DELAY state 586 * on first packet matching entry, waiting V_nd6_delay and 587 * transition to PROBE state (if upper layer confirmation was 588 * not received). 589 * 590 * This code performs a bit differently: 591 * On packet hit we don't change state (but desired state 592 * can be guessed by control plane). However, after V_nd6_delay 593 * seconds code will transition to PROBE state (so DELAY state 594 * is kinda skipped in most situations). 595 * 596 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 597 * we perform the following upon entering STALE state: 598 * 599 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 600 * if packet was transmitted at the start of given interval, we 601 * would be able to switch to PROBE state in V_nd6_delay seconds 602 * as user expects. 603 * 604 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 605 * lle in STALE state (remaining timer value stored in lle_remtime). 606 * 607 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 608 * seconds ago. 609 * 610 * Returns non-zero value if the entry is still STALE (storing 611 * the next timer interval in @pdelay). 612 * 613 * Returns zero value if original timer expired or we need to switch to 614 * PROBE (store that in @do_switch variable). 615 */ 616 static int 617 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 618 { 619 int nd_delay, nd_gctimer, r_skip_req; 620 time_t lle_hittime; 621 long delay; 622 623 *do_switch = 0; 624 nd_gctimer = V_nd6_gctimer; 625 nd_delay = V_nd6_delay; 626 627 LLE_REQ_LOCK(lle); 628 r_skip_req = lle->r_skip_req; 629 lle_hittime = lle->lle_hittime; 630 LLE_REQ_UNLOCK(lle); 631 632 if (r_skip_req > 0) { 633 634 /* 635 * Nonzero r_skip_req value was set upon entering 636 * STALE state. Since value was not changed, no 637 * packets were passed using this lle. Ask for 638 * timer reschedule and keep STALE state. 639 */ 640 delay = (long)(MIN(nd_gctimer, nd_delay)); 641 delay *= hz; 642 if (lle->lle_remtime > delay) 643 lle->lle_remtime -= delay; 644 else { 645 delay = lle->lle_remtime; 646 lle->lle_remtime = 0; 647 } 648 649 if (delay == 0) { 650 651 /* 652 * The original ng6_gctime timeout ended, 653 * no more rescheduling. 654 */ 655 return (0); 656 } 657 658 *pdelay = delay; 659 return (1); 660 } 661 662 /* 663 * Packet received. Verify timestamp 664 */ 665 delay = (long)(time_uptime - lle_hittime); 666 if (delay < nd_delay) { 667 668 /* 669 * V_nd6_delay still not passed since the first 670 * hit in STALE state. 671 * Reshedule timer and return. 672 */ 673 *pdelay = (long)(nd_delay - delay) * hz; 674 return (1); 675 } 676 677 /* Request switching to probe */ 678 *do_switch = 1; 679 return (0); 680 } 681 682 683 /* 684 * Switch @lle state to new state optionally arming timers. 685 * 686 * Set noinline to be dtrace-friendly 687 */ 688 __noinline void 689 nd6_llinfo_setstate(struct llentry *lle, int newstate) 690 { 691 struct ifnet *ifp; 692 int nd_gctimer, nd_delay; 693 long delay, remtime; 694 695 delay = 0; 696 remtime = 0; 697 698 switch (newstate) { 699 case ND6_LLINFO_INCOMPLETE: 700 ifp = lle->lle_tbl->llt_ifp; 701 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 702 break; 703 case ND6_LLINFO_REACHABLE: 704 if (!ND6_LLINFO_PERMANENT(lle)) { 705 ifp = lle->lle_tbl->llt_ifp; 706 delay = (long)ND_IFINFO(ifp)->reachable * hz; 707 } 708 break; 709 case ND6_LLINFO_STALE: 710 711 /* 712 * Notify fast path that we want to know if any packet 713 * is transmitted by setting r_skip_req. 714 */ 715 LLE_REQ_LOCK(lle); 716 lle->r_skip_req = 1; 717 LLE_REQ_UNLOCK(lle); 718 nd_delay = V_nd6_delay; 719 nd_gctimer = V_nd6_gctimer; 720 721 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 722 remtime = (long)nd_gctimer * hz - delay; 723 break; 724 case ND6_LLINFO_DELAY: 725 lle->la_asked = 0; 726 delay = (long)V_nd6_delay * hz; 727 break; 728 } 729 730 if (delay > 0) 731 nd6_llinfo_settimer_locked(lle, delay); 732 733 lle->lle_remtime = remtime; 734 lle->ln_state = newstate; 735 } 736 737 /* 738 * Timer-dependent part of nd state machine. 739 * 740 * Set noinline to be dtrace-friendly 741 */ 742 static __noinline void 743 nd6_llinfo_timer(void *arg) 744 { 745 struct llentry *ln; 746 struct in6_addr *dst, *pdst, *psrc, src; 747 struct ifnet *ifp; 748 struct nd_ifinfo *ndi; 749 int do_switch, send_ns; 750 long delay; 751 752 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 753 ln = (struct llentry *)arg; 754 ifp = lltable_get_ifp(ln->lle_tbl); 755 CURVNET_SET(ifp->if_vnet); 756 757 ND6_RLOCK(); 758 LLE_WLOCK(ln); 759 if (callout_pending(&ln->lle_timer)) { 760 /* 761 * Here we are a bit odd here in the treatment of 762 * active/pending. If the pending bit is set, it got 763 * rescheduled before I ran. The active 764 * bit we ignore, since if it was stopped 765 * in ll_tablefree() and was currently running 766 * it would have return 0 so the code would 767 * not have deleted it since the callout could 768 * not be stopped so we want to go through 769 * with the delete here now. If the callout 770 * was restarted, the pending bit will be back on and 771 * we just want to bail since the callout_reset would 772 * return 1 and our reference would have been removed 773 * by nd6_llinfo_settimer_locked above since canceled 774 * would have been 1. 775 */ 776 LLE_WUNLOCK(ln); 777 ND6_RUNLOCK(); 778 CURVNET_RESTORE(); 779 return; 780 } 781 ndi = ND_IFINFO(ifp); 782 send_ns = 0; 783 dst = &ln->r_l3addr.addr6; 784 pdst = dst; 785 786 if (ln->ln_ntick > 0) { 787 if (ln->ln_ntick > INT_MAX) { 788 ln->ln_ntick -= INT_MAX; 789 nd6_llinfo_settimer_locked(ln, INT_MAX); 790 } else { 791 ln->ln_ntick = 0; 792 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 793 } 794 goto done; 795 } 796 797 if (ln->la_flags & LLE_STATIC) { 798 goto done; 799 } 800 801 if (ln->la_flags & LLE_DELETED) { 802 nd6_free(&ln, 0); 803 goto done; 804 } 805 806 switch (ln->ln_state) { 807 case ND6_LLINFO_INCOMPLETE: 808 if (ln->la_asked < V_nd6_mmaxtries) { 809 ln->la_asked++; 810 send_ns = 1; 811 /* Send NS to multicast address */ 812 pdst = NULL; 813 } else { 814 struct mbuf *m = ln->la_hold; 815 if (m) { 816 struct mbuf *m0; 817 818 /* 819 * assuming every packet in la_hold has the 820 * same IP header. Send error after unlock. 821 */ 822 m0 = m->m_nextpkt; 823 m->m_nextpkt = NULL; 824 ln->la_hold = m0; 825 clear_llinfo_pqueue(ln); 826 } 827 nd6_free(&ln, 0); 828 if (m != NULL) 829 icmp6_error2(m, ICMP6_DST_UNREACH, 830 ICMP6_DST_UNREACH_ADDR, 0, ifp); 831 } 832 break; 833 case ND6_LLINFO_REACHABLE: 834 if (!ND6_LLINFO_PERMANENT(ln)) 835 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 836 break; 837 838 case ND6_LLINFO_STALE: 839 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 840 841 /* 842 * No packet has used this entry and GC timeout 843 * has not been passed. Reshedule timer and 844 * return. 845 */ 846 nd6_llinfo_settimer_locked(ln, delay); 847 break; 848 } 849 850 if (do_switch == 0) { 851 852 /* 853 * GC timer has ended and entry hasn't been used. 854 * Run Garbage collector (RFC 4861, 5.3) 855 */ 856 if (!ND6_LLINFO_PERMANENT(ln)) 857 nd6_free(&ln, 1); 858 break; 859 } 860 861 /* Entry has been used AND delay timer has ended. */ 862 863 /* FALLTHROUGH */ 864 865 case ND6_LLINFO_DELAY: 866 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 867 /* We need NUD */ 868 ln->la_asked = 1; 869 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 870 send_ns = 1; 871 } else 872 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 873 break; 874 case ND6_LLINFO_PROBE: 875 if (ln->la_asked < V_nd6_umaxtries) { 876 ln->la_asked++; 877 send_ns = 1; 878 } else { 879 nd6_free(&ln, 0); 880 } 881 break; 882 default: 883 panic("%s: paths in a dark night can be confusing: %d", 884 __func__, ln->ln_state); 885 } 886 done: 887 if (ln != NULL) 888 ND6_RUNLOCK(); 889 if (send_ns != 0) { 890 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 891 psrc = nd6_llinfo_get_holdsrc(ln, &src); 892 LLE_FREE_LOCKED(ln); 893 ln = NULL; 894 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 895 } 896 897 if (ln != NULL) 898 LLE_FREE_LOCKED(ln); 899 CURVNET_RESTORE(); 900 } 901 902 903 /* 904 * ND6 timer routine to expire default route list and prefix list 905 */ 906 void 907 nd6_timer(void *arg) 908 { 909 CURVNET_SET((struct vnet *) arg); 910 struct nd_drhead drq; 911 struct nd_prhead prl; 912 struct nd_defrouter *dr, *ndr; 913 struct nd_prefix *pr, *npr; 914 struct in6_ifaddr *ia6, *nia6; 915 uint64_t genid; 916 917 TAILQ_INIT(&drq); 918 LIST_INIT(&prl); 919 920 ND6_WLOCK(); 921 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 922 if (dr->expire && dr->expire < time_uptime) 923 defrouter_unlink(dr, &drq); 924 ND6_WUNLOCK(); 925 926 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 927 TAILQ_REMOVE(&drq, dr, dr_entry); 928 defrouter_del(dr); 929 } 930 931 /* 932 * expire interface addresses. 933 * in the past the loop was inside prefix expiry processing. 934 * However, from a stricter speci-confrmance standpoint, we should 935 * rather separate address lifetimes and prefix lifetimes. 936 * 937 * XXXRW: in6_ifaddrhead locking. 938 */ 939 addrloop: 940 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 941 /* check address lifetime */ 942 if (IFA6_IS_INVALID(ia6)) { 943 int regen = 0; 944 945 /* 946 * If the expiring address is temporary, try 947 * regenerating a new one. This would be useful when 948 * we suspended a laptop PC, then turned it on after a 949 * period that could invalidate all temporary 950 * addresses. Although we may have to restart the 951 * loop (see below), it must be after purging the 952 * address. Otherwise, we'd see an infinite loop of 953 * regeneration. 954 */ 955 if (V_ip6_use_tempaddr && 956 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 957 if (regen_tmpaddr(ia6) == 0) 958 regen = 1; 959 } 960 961 in6_purgeaddr(&ia6->ia_ifa); 962 963 if (regen) 964 goto addrloop; /* XXX: see below */ 965 } else if (IFA6_IS_DEPRECATED(ia6)) { 966 int oldflags = ia6->ia6_flags; 967 968 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 969 970 /* 971 * If a temporary address has just become deprecated, 972 * regenerate a new one if possible. 973 */ 974 if (V_ip6_use_tempaddr && 975 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 976 (oldflags & IN6_IFF_DEPRECATED) == 0) { 977 978 if (regen_tmpaddr(ia6) == 0) { 979 /* 980 * A new temporary address is 981 * generated. 982 * XXX: this means the address chain 983 * has changed while we are still in 984 * the loop. Although the change 985 * would not cause disaster (because 986 * it's not a deletion, but an 987 * addition,) we'd rather restart the 988 * loop just for safety. Or does this 989 * significantly reduce performance?? 990 */ 991 goto addrloop; 992 } 993 } 994 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 995 /* 996 * Schedule DAD for a tentative address. This happens 997 * if the interface was down or not running 998 * when the address was configured. 999 */ 1000 int delay; 1001 1002 delay = arc4random() % 1003 (MAX_RTR_SOLICITATION_DELAY * hz); 1004 nd6_dad_start((struct ifaddr *)ia6, delay); 1005 } else { 1006 /* 1007 * Check status of the interface. If it is down, 1008 * mark the address as tentative for future DAD. 1009 */ 1010 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 1011 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 1012 == 0 || 1013 (ND_IFINFO(ia6->ia_ifp)->flags & 1014 ND6_IFF_IFDISABLED) != 0) { 1015 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1016 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1017 } 1018 /* 1019 * A new RA might have made a deprecated address 1020 * preferred. 1021 */ 1022 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1023 } 1024 } 1025 1026 ND6_WLOCK(); 1027 restart: 1028 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1029 /* 1030 * Expire prefixes. Since the pltime is only used for 1031 * autoconfigured addresses, pltime processing for prefixes is 1032 * not necessary. 1033 * 1034 * Only unlink after all derived addresses have expired. This 1035 * may not occur until two hours after the prefix has expired 1036 * per RFC 4862. If the prefix expires before its derived 1037 * addresses, mark it off-link. This will be done automatically 1038 * after unlinking if no address references remain. 1039 */ 1040 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1041 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1042 continue; 1043 1044 if (pr->ndpr_addrcnt == 0) { 1045 nd6_prefix_unlink(pr, &prl); 1046 continue; 1047 } 1048 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1049 genid = V_nd6_list_genid; 1050 nd6_prefix_ref(pr); 1051 ND6_WUNLOCK(); 1052 ND6_ONLINK_LOCK(); 1053 (void)nd6_prefix_offlink(pr); 1054 ND6_ONLINK_UNLOCK(); 1055 ND6_WLOCK(); 1056 nd6_prefix_rele(pr); 1057 if (genid != V_nd6_list_genid) 1058 goto restart; 1059 } 1060 } 1061 ND6_WUNLOCK(); 1062 1063 while ((pr = LIST_FIRST(&prl)) != NULL) { 1064 LIST_REMOVE(pr, ndpr_entry); 1065 nd6_prefix_del(pr); 1066 } 1067 1068 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1069 nd6_timer, curvnet); 1070 1071 CURVNET_RESTORE(); 1072 } 1073 1074 /* 1075 * ia6 - deprecated/invalidated temporary address 1076 */ 1077 static int 1078 regen_tmpaddr(struct in6_ifaddr *ia6) 1079 { 1080 struct ifaddr *ifa; 1081 struct ifnet *ifp; 1082 struct in6_ifaddr *public_ifa6 = NULL; 1083 1084 ifp = ia6->ia_ifa.ifa_ifp; 1085 IF_ADDR_RLOCK(ifp); 1086 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1087 struct in6_ifaddr *it6; 1088 1089 if (ifa->ifa_addr->sa_family != AF_INET6) 1090 continue; 1091 1092 it6 = (struct in6_ifaddr *)ifa; 1093 1094 /* ignore no autoconf addresses. */ 1095 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1096 continue; 1097 1098 /* ignore autoconf addresses with different prefixes. */ 1099 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1100 continue; 1101 1102 /* 1103 * Now we are looking at an autoconf address with the same 1104 * prefix as ours. If the address is temporary and is still 1105 * preferred, do not create another one. It would be rare, but 1106 * could happen, for example, when we resume a laptop PC after 1107 * a long period. 1108 */ 1109 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1110 !IFA6_IS_DEPRECATED(it6)) { 1111 public_ifa6 = NULL; 1112 break; 1113 } 1114 1115 /* 1116 * This is a public autoconf address that has the same prefix 1117 * as ours. If it is preferred, keep it. We can't break the 1118 * loop here, because there may be a still-preferred temporary 1119 * address with the prefix. 1120 */ 1121 if (!IFA6_IS_DEPRECATED(it6)) 1122 public_ifa6 = it6; 1123 } 1124 if (public_ifa6 != NULL) 1125 ifa_ref(&public_ifa6->ia_ifa); 1126 IF_ADDR_RUNLOCK(ifp); 1127 1128 if (public_ifa6 != NULL) { 1129 int e; 1130 1131 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1132 ifa_free(&public_ifa6->ia_ifa); 1133 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1134 " tmp addr,errno=%d\n", e); 1135 return (-1); 1136 } 1137 ifa_free(&public_ifa6->ia_ifa); 1138 return (0); 1139 } 1140 1141 return (-1); 1142 } 1143 1144 /* 1145 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1146 * cache entries are freed in in6_domifdetach(). 1147 */ 1148 void 1149 nd6_purge(struct ifnet *ifp) 1150 { 1151 struct nd_drhead drq; 1152 struct nd_prhead prl; 1153 struct nd_defrouter *dr, *ndr; 1154 struct nd_prefix *pr, *npr; 1155 1156 TAILQ_INIT(&drq); 1157 LIST_INIT(&prl); 1158 1159 /* 1160 * Nuke default router list entries toward ifp. 1161 * We defer removal of default router list entries that is installed 1162 * in the routing table, in order to keep additional side effects as 1163 * small as possible. 1164 */ 1165 ND6_WLOCK(); 1166 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1167 if (dr->installed) 1168 continue; 1169 if (dr->ifp == ifp) 1170 defrouter_unlink(dr, &drq); 1171 } 1172 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1173 if (!dr->installed) 1174 continue; 1175 if (dr->ifp == ifp) 1176 defrouter_unlink(dr, &drq); 1177 } 1178 1179 /* 1180 * Remove prefixes on ifp. We should have already removed addresses on 1181 * this interface, so no addresses should be referencing these prefixes. 1182 */ 1183 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1184 if (pr->ndpr_ifp == ifp) 1185 nd6_prefix_unlink(pr, &prl); 1186 } 1187 ND6_WUNLOCK(); 1188 1189 /* Delete the unlinked router and prefix objects. */ 1190 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1191 TAILQ_REMOVE(&drq, dr, dr_entry); 1192 defrouter_del(dr); 1193 } 1194 while ((pr = LIST_FIRST(&prl)) != NULL) { 1195 LIST_REMOVE(pr, ndpr_entry); 1196 nd6_prefix_del(pr); 1197 } 1198 1199 /* cancel default outgoing interface setting */ 1200 if (V_nd6_defifindex == ifp->if_index) 1201 nd6_setdefaultiface(0); 1202 1203 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1204 /* Refresh default router list. */ 1205 defrouter_select_fib(ifp->if_fib); 1206 } 1207 } 1208 1209 /* 1210 * the caller acquires and releases the lock on the lltbls 1211 * Returns the llentry locked 1212 */ 1213 struct llentry * 1214 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1215 { 1216 struct sockaddr_in6 sin6; 1217 struct llentry *ln; 1218 1219 bzero(&sin6, sizeof(sin6)); 1220 sin6.sin6_len = sizeof(struct sockaddr_in6); 1221 sin6.sin6_family = AF_INET6; 1222 sin6.sin6_addr = *addr6; 1223 1224 IF_AFDATA_LOCK_ASSERT(ifp); 1225 1226 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1227 1228 return (ln); 1229 } 1230 1231 struct llentry * 1232 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1233 { 1234 struct sockaddr_in6 sin6; 1235 struct llentry *ln; 1236 1237 bzero(&sin6, sizeof(sin6)); 1238 sin6.sin6_len = sizeof(struct sockaddr_in6); 1239 sin6.sin6_family = AF_INET6; 1240 sin6.sin6_addr = *addr6; 1241 1242 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1243 if (ln != NULL) 1244 ln->ln_state = ND6_LLINFO_NOSTATE; 1245 1246 return (ln); 1247 } 1248 1249 /* 1250 * Test whether a given IPv6 address is a neighbor or not, ignoring 1251 * the actual neighbor cache. The neighbor cache is ignored in order 1252 * to not reenter the routing code from within itself. 1253 */ 1254 static int 1255 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1256 { 1257 struct nd_prefix *pr; 1258 struct ifaddr *ifa; 1259 struct rt_addrinfo info; 1260 struct sockaddr_in6 rt_key; 1261 const struct sockaddr *dst6; 1262 uint64_t genid; 1263 int error, fibnum; 1264 1265 /* 1266 * A link-local address is always a neighbor. 1267 * XXX: a link does not necessarily specify a single interface. 1268 */ 1269 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1270 struct sockaddr_in6 sin6_copy; 1271 u_int32_t zone; 1272 1273 /* 1274 * We need sin6_copy since sa6_recoverscope() may modify the 1275 * content (XXX). 1276 */ 1277 sin6_copy = *addr; 1278 if (sa6_recoverscope(&sin6_copy)) 1279 return (0); /* XXX: should be impossible */ 1280 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1281 return (0); 1282 if (sin6_copy.sin6_scope_id == zone) 1283 return (1); 1284 else 1285 return (0); 1286 } 1287 1288 bzero(&rt_key, sizeof(rt_key)); 1289 bzero(&info, sizeof(info)); 1290 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1291 1292 /* 1293 * If the address matches one of our addresses, 1294 * it should be a neighbor. 1295 * If the address matches one of our on-link prefixes, it should be a 1296 * neighbor. 1297 */ 1298 ND6_RLOCK(); 1299 restart: 1300 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1301 if (pr->ndpr_ifp != ifp) 1302 continue; 1303 1304 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1305 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1306 1307 /* 1308 * We only need to check all FIBs if add_addr_allfibs 1309 * is unset. If set, checking any FIB will suffice. 1310 */ 1311 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1312 for (; fibnum < rt_numfibs; fibnum++) { 1313 genid = V_nd6_list_genid; 1314 ND6_RUNLOCK(); 1315 1316 /* 1317 * Restore length field before 1318 * retrying lookup 1319 */ 1320 rt_key.sin6_len = sizeof(rt_key); 1321 error = rib_lookup_info(fibnum, dst6, 0, 0, 1322 &info); 1323 1324 ND6_RLOCK(); 1325 if (genid != V_nd6_list_genid) 1326 goto restart; 1327 if (error == 0) 1328 break; 1329 } 1330 if (error != 0) 1331 continue; 1332 1333 /* 1334 * This is the case where multiple interfaces 1335 * have the same prefix, but only one is installed 1336 * into the routing table and that prefix entry 1337 * is not the one being examined here. In the case 1338 * where RADIX_MPATH is enabled, multiple route 1339 * entries (of the same rt_key value) will be 1340 * installed because the interface addresses all 1341 * differ. 1342 */ 1343 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1344 &rt_key.sin6_addr)) 1345 continue; 1346 } 1347 1348 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1349 &addr->sin6_addr, &pr->ndpr_mask)) { 1350 ND6_RUNLOCK(); 1351 return (1); 1352 } 1353 } 1354 ND6_RUNLOCK(); 1355 1356 /* 1357 * If the address is assigned on the node of the other side of 1358 * a p2p interface, the address should be a neighbor. 1359 */ 1360 if (ifp->if_flags & IFF_POINTOPOINT) { 1361 IF_ADDR_RLOCK(ifp); 1362 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1363 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1364 continue; 1365 if (ifa->ifa_dstaddr != NULL && 1366 sa_equal(addr, ifa->ifa_dstaddr)) { 1367 IF_ADDR_RUNLOCK(ifp); 1368 return 1; 1369 } 1370 } 1371 IF_ADDR_RUNLOCK(ifp); 1372 } 1373 1374 /* 1375 * If the default router list is empty, all addresses are regarded 1376 * as on-link, and thus, as a neighbor. 1377 */ 1378 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1379 TAILQ_EMPTY(&V_nd_defrouter) && 1380 V_nd6_defifindex == ifp->if_index) { 1381 return (1); 1382 } 1383 1384 return (0); 1385 } 1386 1387 1388 /* 1389 * Detect if a given IPv6 address identifies a neighbor on a given link. 1390 * XXX: should take care of the destination of a p2p link? 1391 */ 1392 int 1393 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1394 { 1395 struct llentry *lle; 1396 int rc = 0; 1397 1398 IF_AFDATA_UNLOCK_ASSERT(ifp); 1399 if (nd6_is_new_addr_neighbor(addr, ifp)) 1400 return (1); 1401 1402 /* 1403 * Even if the address matches none of our addresses, it might be 1404 * in the neighbor cache. 1405 */ 1406 IF_AFDATA_RLOCK(ifp); 1407 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1408 LLE_RUNLOCK(lle); 1409 rc = 1; 1410 } 1411 IF_AFDATA_RUNLOCK(ifp); 1412 return (rc); 1413 } 1414 1415 /* 1416 * Free an nd6 llinfo entry. 1417 * Since the function would cause significant changes in the kernel, DO NOT 1418 * make it global, unless you have a strong reason for the change, and are sure 1419 * that the change is safe. 1420 * 1421 * Set noinline to be dtrace-friendly 1422 */ 1423 static __noinline void 1424 nd6_free(struct llentry **lnp, int gc) 1425 { 1426 struct ifnet *ifp; 1427 struct llentry *ln; 1428 struct nd_defrouter *dr; 1429 1430 ln = *lnp; 1431 *lnp = NULL; 1432 1433 LLE_WLOCK_ASSERT(ln); 1434 ND6_RLOCK_ASSERT(); 1435 1436 ifp = lltable_get_ifp(ln->lle_tbl); 1437 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1438 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1439 else 1440 dr = NULL; 1441 ND6_RUNLOCK(); 1442 1443 if ((ln->la_flags & LLE_DELETED) == 0) 1444 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1445 1446 /* 1447 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1448 * even though it is not harmful, it was not really necessary. 1449 */ 1450 1451 /* cancel timer */ 1452 nd6_llinfo_settimer_locked(ln, -1); 1453 1454 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1455 if (dr != NULL && dr->expire && 1456 ln->ln_state == ND6_LLINFO_STALE && gc) { 1457 /* 1458 * If the reason for the deletion is just garbage 1459 * collection, and the neighbor is an active default 1460 * router, do not delete it. Instead, reset the GC 1461 * timer using the router's lifetime. 1462 * Simply deleting the entry would affect default 1463 * router selection, which is not necessarily a good 1464 * thing, especially when we're using router preference 1465 * values. 1466 * XXX: the check for ln_state would be redundant, 1467 * but we intentionally keep it just in case. 1468 */ 1469 if (dr->expire > time_uptime) 1470 nd6_llinfo_settimer_locked(ln, 1471 (dr->expire - time_uptime) * hz); 1472 else 1473 nd6_llinfo_settimer_locked(ln, 1474 (long)V_nd6_gctimer * hz); 1475 1476 LLE_REMREF(ln); 1477 LLE_WUNLOCK(ln); 1478 defrouter_rele(dr); 1479 return; 1480 } 1481 1482 if (dr) { 1483 /* 1484 * Unreachablity of a router might affect the default 1485 * router selection and on-link detection of advertised 1486 * prefixes. 1487 */ 1488 1489 /* 1490 * Temporarily fake the state to choose a new default 1491 * router and to perform on-link determination of 1492 * prefixes correctly. 1493 * Below the state will be set correctly, 1494 * or the entry itself will be deleted. 1495 */ 1496 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1497 } 1498 1499 if (ln->ln_router || dr) { 1500 1501 /* 1502 * We need to unlock to avoid a LOR with rt6_flush() with the 1503 * rnh and for the calls to pfxlist_onlink_check() and 1504 * defrouter_select_fib() in the block further down for calls 1505 * into nd6_lookup(). We still hold a ref. 1506 */ 1507 LLE_WUNLOCK(ln); 1508 1509 /* 1510 * rt6_flush must be called whether or not the neighbor 1511 * is in the Default Router List. 1512 * See a corresponding comment in nd6_na_input(). 1513 */ 1514 rt6_flush(&ln->r_l3addr.addr6, ifp); 1515 } 1516 1517 if (dr) { 1518 /* 1519 * Since defrouter_select_fib() does not affect the 1520 * on-link determination and MIP6 needs the check 1521 * before the default router selection, we perform 1522 * the check now. 1523 */ 1524 pfxlist_onlink_check(); 1525 1526 /* 1527 * Refresh default router list. 1528 */ 1529 defrouter_select_fib(dr->ifp->if_fib); 1530 } 1531 1532 /* 1533 * If this entry was added by an on-link redirect, remove the 1534 * corresponding host route. 1535 */ 1536 if (ln->la_flags & LLE_REDIRECT) 1537 nd6_free_redirect(ln); 1538 1539 if (ln->ln_router || dr) 1540 LLE_WLOCK(ln); 1541 } 1542 1543 /* 1544 * Save to unlock. We still hold an extra reference and will not 1545 * free(9) in llentry_free() if someone else holds one as well. 1546 */ 1547 LLE_WUNLOCK(ln); 1548 IF_AFDATA_LOCK(ifp); 1549 LLE_WLOCK(ln); 1550 /* Guard against race with other llentry_free(). */ 1551 if (ln->la_flags & LLE_LINKED) { 1552 /* Remove callout reference */ 1553 LLE_REMREF(ln); 1554 lltable_unlink_entry(ln->lle_tbl, ln); 1555 } 1556 IF_AFDATA_UNLOCK(ifp); 1557 1558 llentry_free(ln); 1559 if (dr != NULL) 1560 defrouter_rele(dr); 1561 } 1562 1563 static int 1564 nd6_isdynrte(const struct rtentry *rt, void *xap) 1565 { 1566 1567 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1568 return (1); 1569 1570 return (0); 1571 } 1572 /* 1573 * Remove the rtentry for the given llentry, 1574 * both of which were installed by a redirect. 1575 */ 1576 static void 1577 nd6_free_redirect(const struct llentry *ln) 1578 { 1579 int fibnum; 1580 struct sockaddr_in6 sin6; 1581 struct rt_addrinfo info; 1582 1583 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1584 memset(&info, 0, sizeof(info)); 1585 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1586 info.rti_filter = nd6_isdynrte; 1587 1588 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1589 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1590 } 1591 1592 /* 1593 * Rejuvenate this function for routing operations related 1594 * processing. 1595 */ 1596 void 1597 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1598 { 1599 struct sockaddr_in6 *gateway; 1600 struct nd_defrouter *dr; 1601 struct ifnet *ifp; 1602 1603 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1604 ifp = rt->rt_ifp; 1605 1606 switch (req) { 1607 case RTM_ADD: 1608 break; 1609 1610 case RTM_DELETE: 1611 if (!ifp) 1612 return; 1613 /* 1614 * Only indirect routes are interesting. 1615 */ 1616 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1617 return; 1618 /* 1619 * check for default route 1620 */ 1621 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1622 &SIN6(rt_key(rt))->sin6_addr)) { 1623 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1624 if (dr != NULL) { 1625 dr->installed = 0; 1626 defrouter_rele(dr); 1627 } 1628 } 1629 break; 1630 } 1631 } 1632 1633 1634 int 1635 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1636 { 1637 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1638 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1639 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1640 int error = 0; 1641 1642 if (ifp->if_afdata[AF_INET6] == NULL) 1643 return (EPFNOSUPPORT); 1644 switch (cmd) { 1645 case OSIOCGIFINFO_IN6: 1646 #define ND ndi->ndi 1647 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1648 bzero(&ND, sizeof(ND)); 1649 ND.linkmtu = IN6_LINKMTU(ifp); 1650 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1651 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1652 ND.reachable = ND_IFINFO(ifp)->reachable; 1653 ND.retrans = ND_IFINFO(ifp)->retrans; 1654 ND.flags = ND_IFINFO(ifp)->flags; 1655 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1656 ND.chlim = ND_IFINFO(ifp)->chlim; 1657 break; 1658 case SIOCGIFINFO_IN6: 1659 ND = *ND_IFINFO(ifp); 1660 break; 1661 case SIOCSIFINFO_IN6: 1662 /* 1663 * used to change host variables from userland. 1664 * intended for a use on router to reflect RA configurations. 1665 */ 1666 /* 0 means 'unspecified' */ 1667 if (ND.linkmtu != 0) { 1668 if (ND.linkmtu < IPV6_MMTU || 1669 ND.linkmtu > IN6_LINKMTU(ifp)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1674 } 1675 1676 if (ND.basereachable != 0) { 1677 int obasereachable = ND_IFINFO(ifp)->basereachable; 1678 1679 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1680 if (ND.basereachable != obasereachable) 1681 ND_IFINFO(ifp)->reachable = 1682 ND_COMPUTE_RTIME(ND.basereachable); 1683 } 1684 if (ND.retrans != 0) 1685 ND_IFINFO(ifp)->retrans = ND.retrans; 1686 if (ND.chlim != 0) 1687 ND_IFINFO(ifp)->chlim = ND.chlim; 1688 /* FALLTHROUGH */ 1689 case SIOCSIFINFO_FLAGS: 1690 { 1691 struct ifaddr *ifa; 1692 struct in6_ifaddr *ia; 1693 1694 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1695 !(ND.flags & ND6_IFF_IFDISABLED)) { 1696 /* ifdisabled 1->0 transision */ 1697 1698 /* 1699 * If the interface is marked as ND6_IFF_IFDISABLED and 1700 * has an link-local address with IN6_IFF_DUPLICATED, 1701 * do not clear ND6_IFF_IFDISABLED. 1702 * See RFC 4862, Section 5.4.5. 1703 */ 1704 IF_ADDR_RLOCK(ifp); 1705 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1706 if (ifa->ifa_addr->sa_family != AF_INET6) 1707 continue; 1708 ia = (struct in6_ifaddr *)ifa; 1709 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1710 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1711 break; 1712 } 1713 IF_ADDR_RUNLOCK(ifp); 1714 1715 if (ifa != NULL) { 1716 /* LLA is duplicated. */ 1717 ND.flags |= ND6_IFF_IFDISABLED; 1718 log(LOG_ERR, "Cannot enable an interface" 1719 " with a link-local address marked" 1720 " duplicate.\n"); 1721 } else { 1722 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1723 if (ifp->if_flags & IFF_UP) 1724 in6_if_up(ifp); 1725 } 1726 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1727 (ND.flags & ND6_IFF_IFDISABLED)) { 1728 /* ifdisabled 0->1 transision */ 1729 /* Mark all IPv6 address as tentative. */ 1730 1731 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1732 if (V_ip6_dad_count > 0 && 1733 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1734 IF_ADDR_RLOCK(ifp); 1735 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1736 ifa_link) { 1737 if (ifa->ifa_addr->sa_family != 1738 AF_INET6) 1739 continue; 1740 ia = (struct in6_ifaddr *)ifa; 1741 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1742 } 1743 IF_ADDR_RUNLOCK(ifp); 1744 } 1745 } 1746 1747 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1748 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1749 /* auto_linklocal 0->1 transision */ 1750 1751 /* If no link-local address on ifp, configure */ 1752 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1753 in6_ifattach(ifp, NULL); 1754 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1755 ifp->if_flags & IFF_UP) { 1756 /* 1757 * When the IF already has 1758 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1759 * address is assigned, and IFF_UP, try to 1760 * assign one. 1761 */ 1762 IF_ADDR_RLOCK(ifp); 1763 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1764 ifa_link) { 1765 if (ifa->ifa_addr->sa_family != 1766 AF_INET6) 1767 continue; 1768 ia = (struct in6_ifaddr *)ifa; 1769 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1770 break; 1771 } 1772 IF_ADDR_RUNLOCK(ifp); 1773 if (ifa != NULL) 1774 /* No LLA is configured. */ 1775 in6_ifattach(ifp, NULL); 1776 } 1777 } 1778 } 1779 ND_IFINFO(ifp)->flags = ND.flags; 1780 break; 1781 #undef ND 1782 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1783 /* sync kernel routing table with the default router list */ 1784 defrouter_reset(); 1785 defrouter_select(); 1786 break; 1787 case SIOCSPFXFLUSH_IN6: 1788 { 1789 /* flush all the prefix advertised by routers */ 1790 struct in6_ifaddr *ia, *ia_next; 1791 struct nd_prefix *pr, *next; 1792 struct nd_prhead prl; 1793 1794 LIST_INIT(&prl); 1795 1796 ND6_WLOCK(); 1797 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1798 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1799 continue; /* XXX */ 1800 nd6_prefix_unlink(pr, &prl); 1801 } 1802 ND6_WUNLOCK(); 1803 1804 while ((pr = LIST_FIRST(&prl)) != NULL) { 1805 LIST_REMOVE(pr, ndpr_entry); 1806 /* XXXRW: in6_ifaddrhead locking. */ 1807 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1808 ia_next) { 1809 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1810 continue; 1811 1812 if (ia->ia6_ndpr == pr) 1813 in6_purgeaddr(&ia->ia_ifa); 1814 } 1815 nd6_prefix_del(pr); 1816 } 1817 break; 1818 } 1819 case SIOCSRTRFLUSH_IN6: 1820 { 1821 /* flush all the default routers */ 1822 struct nd_drhead drq; 1823 struct nd_defrouter *dr; 1824 1825 TAILQ_INIT(&drq); 1826 1827 defrouter_reset(); 1828 1829 ND6_WLOCK(); 1830 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1831 defrouter_unlink(dr, &drq); 1832 ND6_WUNLOCK(); 1833 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1834 TAILQ_REMOVE(&drq, dr, dr_entry); 1835 defrouter_del(dr); 1836 } 1837 1838 defrouter_select(); 1839 break; 1840 } 1841 case SIOCGNBRINFO_IN6: 1842 { 1843 struct llentry *ln; 1844 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1845 1846 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1847 return (error); 1848 1849 IF_AFDATA_RLOCK(ifp); 1850 ln = nd6_lookup(&nb_addr, 0, ifp); 1851 IF_AFDATA_RUNLOCK(ifp); 1852 1853 if (ln == NULL) { 1854 error = EINVAL; 1855 break; 1856 } 1857 nbi->state = ln->ln_state; 1858 nbi->asked = ln->la_asked; 1859 nbi->isrouter = ln->ln_router; 1860 if (ln->la_expire == 0) 1861 nbi->expire = 0; 1862 else 1863 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1864 (time_second - time_uptime); 1865 LLE_RUNLOCK(ln); 1866 break; 1867 } 1868 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1869 ndif->ifindex = V_nd6_defifindex; 1870 break; 1871 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1872 return (nd6_setdefaultiface(ndif->ifindex)); 1873 } 1874 return (error); 1875 } 1876 1877 /* 1878 * Calculates new isRouter value based on provided parameters and 1879 * returns it. 1880 */ 1881 static int 1882 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1883 int ln_router) 1884 { 1885 1886 /* 1887 * ICMP6 type dependent behavior. 1888 * 1889 * NS: clear IsRouter if new entry 1890 * RS: clear IsRouter 1891 * RA: set IsRouter if there's lladdr 1892 * redir: clear IsRouter if new entry 1893 * 1894 * RA case, (1): 1895 * The spec says that we must set IsRouter in the following cases: 1896 * - If lladdr exist, set IsRouter. This means (1-5). 1897 * - If it is old entry (!newentry), set IsRouter. This means (7). 1898 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1899 * A quetion arises for (1) case. (1) case has no lladdr in the 1900 * neighbor cache, this is similar to (6). 1901 * This case is rare but we figured that we MUST NOT set IsRouter. 1902 * 1903 * is_new old_addr new_addr NS RS RA redir 1904 * D R 1905 * 0 n n (1) c ? s 1906 * 0 y n (2) c s s 1907 * 0 n y (3) c s s 1908 * 0 y y (4) c s s 1909 * 0 y y (5) c s s 1910 * 1 -- n (6) c c c s 1911 * 1 -- y (7) c c s c s 1912 * 1913 * (c=clear s=set) 1914 */ 1915 switch (type & 0xff) { 1916 case ND_NEIGHBOR_SOLICIT: 1917 /* 1918 * New entry must have is_router flag cleared. 1919 */ 1920 if (is_new) /* (6-7) */ 1921 ln_router = 0; 1922 break; 1923 case ND_REDIRECT: 1924 /* 1925 * If the icmp is a redirect to a better router, always set the 1926 * is_router flag. Otherwise, if the entry is newly created, 1927 * clear the flag. [RFC 2461, sec 8.3] 1928 */ 1929 if (code == ND_REDIRECT_ROUTER) 1930 ln_router = 1; 1931 else { 1932 if (is_new) /* (6-7) */ 1933 ln_router = 0; 1934 } 1935 break; 1936 case ND_ROUTER_SOLICIT: 1937 /* 1938 * is_router flag must always be cleared. 1939 */ 1940 ln_router = 0; 1941 break; 1942 case ND_ROUTER_ADVERT: 1943 /* 1944 * Mark an entry with lladdr as a router. 1945 */ 1946 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1947 (is_new && new_addr)) { /* (7) */ 1948 ln_router = 1; 1949 } 1950 break; 1951 } 1952 1953 return (ln_router); 1954 } 1955 1956 /* 1957 * Create neighbor cache entry and cache link-layer address, 1958 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1959 * 1960 * type - ICMP6 type 1961 * code - type dependent information 1962 * 1963 */ 1964 void 1965 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1966 int lladdrlen, int type, int code) 1967 { 1968 struct llentry *ln = NULL, *ln_tmp; 1969 int is_newentry; 1970 int do_update; 1971 int olladdr; 1972 int llchange; 1973 int flags; 1974 uint16_t router = 0; 1975 struct sockaddr_in6 sin6; 1976 struct mbuf *chain = NULL; 1977 u_char linkhdr[LLE_MAX_LINKHDR]; 1978 size_t linkhdrsize; 1979 int lladdr_off; 1980 1981 IF_AFDATA_UNLOCK_ASSERT(ifp); 1982 1983 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1984 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1985 1986 /* nothing must be updated for unspecified address */ 1987 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1988 return; 1989 1990 /* 1991 * Validation about ifp->if_addrlen and lladdrlen must be done in 1992 * the caller. 1993 * 1994 * XXX If the link does not have link-layer adderss, what should 1995 * we do? (ifp->if_addrlen == 0) 1996 * Spec says nothing in sections for RA, RS and NA. There's small 1997 * description on it in NS section (RFC 2461 7.2.3). 1998 */ 1999 flags = lladdr ? LLE_EXCLUSIVE : 0; 2000 IF_AFDATA_RLOCK(ifp); 2001 ln = nd6_lookup(from, flags, ifp); 2002 IF_AFDATA_RUNLOCK(ifp); 2003 is_newentry = 0; 2004 if (ln == NULL) { 2005 flags |= LLE_EXCLUSIVE; 2006 ln = nd6_alloc(from, 0, ifp); 2007 if (ln == NULL) 2008 return; 2009 2010 /* 2011 * Since we already know all the data for the new entry, 2012 * fill it before insertion. 2013 */ 2014 if (lladdr != NULL) { 2015 linkhdrsize = sizeof(linkhdr); 2016 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2017 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2018 return; 2019 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2020 lladdr_off); 2021 } 2022 2023 IF_AFDATA_WLOCK(ifp); 2024 LLE_WLOCK(ln); 2025 /* Prefer any existing lle over newly-created one */ 2026 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2027 if (ln_tmp == NULL) 2028 lltable_link_entry(LLTABLE6(ifp), ln); 2029 IF_AFDATA_WUNLOCK(ifp); 2030 if (ln_tmp == NULL) { 2031 /* No existing lle, mark as new entry (6,7) */ 2032 is_newentry = 1; 2033 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2034 if (lladdr != NULL) /* (7) */ 2035 EVENTHANDLER_INVOKE(lle_event, ln, 2036 LLENTRY_RESOLVED); 2037 } else { 2038 lltable_free_entry(LLTABLE6(ifp), ln); 2039 ln = ln_tmp; 2040 ln_tmp = NULL; 2041 } 2042 } 2043 /* do nothing if static ndp is set */ 2044 if ((ln->la_flags & LLE_STATIC)) { 2045 if (flags & LLE_EXCLUSIVE) 2046 LLE_WUNLOCK(ln); 2047 else 2048 LLE_RUNLOCK(ln); 2049 return; 2050 } 2051 2052 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2053 if (olladdr && lladdr) { 2054 llchange = bcmp(lladdr, ln->ll_addr, 2055 ifp->if_addrlen); 2056 } else if (!olladdr && lladdr) 2057 llchange = 1; 2058 else 2059 llchange = 0; 2060 2061 /* 2062 * newentry olladdr lladdr llchange (*=record) 2063 * 0 n n -- (1) 2064 * 0 y n -- (2) 2065 * 0 n y y (3) * STALE 2066 * 0 y y n (4) * 2067 * 0 y y y (5) * STALE 2068 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2069 * 1 -- y -- (7) * STALE 2070 */ 2071 2072 do_update = 0; 2073 if (is_newentry == 0 && llchange != 0) { 2074 do_update = 1; /* (3,5) */ 2075 2076 /* 2077 * Record source link-layer address 2078 * XXX is it dependent to ifp->if_type? 2079 */ 2080 linkhdrsize = sizeof(linkhdr); 2081 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2082 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2083 return; 2084 2085 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2086 lladdr_off) == 0) { 2087 /* Entry was deleted */ 2088 return; 2089 } 2090 2091 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2092 2093 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2094 2095 if (ln->la_hold != NULL) 2096 nd6_grab_holdchain(ln, &chain, &sin6); 2097 } 2098 2099 /* Calculates new router status */ 2100 router = nd6_is_router(type, code, is_newentry, olladdr, 2101 lladdr != NULL ? 1 : 0, ln->ln_router); 2102 2103 ln->ln_router = router; 2104 /* Mark non-router redirects with special flag */ 2105 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2106 ln->la_flags |= LLE_REDIRECT; 2107 2108 if (flags & LLE_EXCLUSIVE) 2109 LLE_WUNLOCK(ln); 2110 else 2111 LLE_RUNLOCK(ln); 2112 2113 if (chain != NULL) 2114 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2115 2116 /* 2117 * When the link-layer address of a router changes, select the 2118 * best router again. In particular, when the neighbor entry is newly 2119 * created, it might affect the selection policy. 2120 * Question: can we restrict the first condition to the "is_newentry" 2121 * case? 2122 * XXX: when we hear an RA from a new router with the link-layer 2123 * address option, defrouter_select_fib() is called twice, since 2124 * defrtrlist_update called the function as well. However, I believe 2125 * we can compromise the overhead, since it only happens the first 2126 * time. 2127 * XXX: although defrouter_select_fib() should not have a bad effect 2128 * for those are not autoconfigured hosts, we explicitly avoid such 2129 * cases for safety. 2130 */ 2131 if ((do_update || is_newentry) && router && 2132 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2133 /* 2134 * guaranteed recursion 2135 */ 2136 defrouter_select_fib(ifp->if_fib); 2137 } 2138 } 2139 2140 static void 2141 nd6_slowtimo(void *arg) 2142 { 2143 CURVNET_SET((struct vnet *) arg); 2144 struct nd_ifinfo *nd6if; 2145 struct ifnet *ifp; 2146 2147 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2148 nd6_slowtimo, curvnet); 2149 IFNET_RLOCK_NOSLEEP(); 2150 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2151 if (ifp->if_afdata[AF_INET6] == NULL) 2152 continue; 2153 nd6if = ND_IFINFO(ifp); 2154 if (nd6if->basereachable && /* already initialized */ 2155 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2156 /* 2157 * Since reachable time rarely changes by router 2158 * advertisements, we SHOULD insure that a new random 2159 * value gets recomputed at least once every few hours. 2160 * (RFC 2461, 6.3.4) 2161 */ 2162 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2163 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2164 } 2165 } 2166 IFNET_RUNLOCK_NOSLEEP(); 2167 CURVNET_RESTORE(); 2168 } 2169 2170 void 2171 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2172 struct sockaddr_in6 *sin6) 2173 { 2174 2175 LLE_WLOCK_ASSERT(ln); 2176 2177 *chain = ln->la_hold; 2178 ln->la_hold = NULL; 2179 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2180 2181 if (ln->ln_state == ND6_LLINFO_STALE) { 2182 2183 /* 2184 * The first time we send a packet to a 2185 * neighbor whose entry is STALE, we have 2186 * to change the state to DELAY and a sets 2187 * a timer to expire in DELAY_FIRST_PROBE_TIME 2188 * seconds to ensure do neighbor unreachability 2189 * detection on expiration. 2190 * (RFC 2461 7.3.3) 2191 */ 2192 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2193 } 2194 } 2195 2196 int 2197 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2198 struct sockaddr_in6 *dst, struct route *ro) 2199 { 2200 int error; 2201 int ip6len; 2202 struct ip6_hdr *ip6; 2203 struct m_tag *mtag; 2204 2205 #ifdef MAC 2206 mac_netinet6_nd6_send(ifp, m); 2207 #endif 2208 2209 /* 2210 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2211 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2212 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2213 * to be diverted to user space. When re-injected into the kernel, 2214 * send_output() will directly dispatch them to the outgoing interface. 2215 */ 2216 if (send_sendso_input_hook != NULL) { 2217 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2218 if (mtag != NULL) { 2219 ip6 = mtod(m, struct ip6_hdr *); 2220 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2221 /* Use the SEND socket */ 2222 error = send_sendso_input_hook(m, ifp, SND_OUT, 2223 ip6len); 2224 /* -1 == no app on SEND socket */ 2225 if (error == 0 || error != -1) 2226 return (error); 2227 } 2228 } 2229 2230 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2231 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2232 mtod(m, struct ip6_hdr *)); 2233 2234 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2235 origifp = ifp; 2236 2237 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2238 return (error); 2239 } 2240 2241 /* 2242 * Lookup link headerfor @sa_dst address. Stores found 2243 * data in @desten buffer. Copy of lle ln_flags can be also 2244 * saved in @pflags if @pflags is non-NULL. 2245 * 2246 * If destination LLE does not exists or lle state modification 2247 * is required, call "slow" version. 2248 * 2249 * Return values: 2250 * - 0 on success (address copied to buffer). 2251 * - EWOULDBLOCK (no local error, but address is still unresolved) 2252 * - other errors (alloc failure, etc) 2253 */ 2254 int 2255 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2256 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2257 struct llentry **plle) 2258 { 2259 struct llentry *ln = NULL; 2260 const struct sockaddr_in6 *dst6; 2261 2262 if (pflags != NULL) 2263 *pflags = 0; 2264 2265 dst6 = (const struct sockaddr_in6 *)sa_dst; 2266 2267 /* discard the packet if IPv6 operation is disabled on the interface */ 2268 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2269 m_freem(m); 2270 return (ENETDOWN); /* better error? */ 2271 } 2272 2273 if (m != NULL && m->m_flags & M_MCAST) { 2274 switch (ifp->if_type) { 2275 case IFT_ETHER: 2276 case IFT_FDDI: 2277 case IFT_L2VLAN: 2278 case IFT_BRIDGE: 2279 case IFT_ISO88025: 2280 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2281 desten); 2282 return (0); 2283 default: 2284 m_freem(m); 2285 return (EAFNOSUPPORT); 2286 } 2287 } 2288 2289 IF_AFDATA_RLOCK(ifp); 2290 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2291 ifp); 2292 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2293 /* Entry found, let's copy lle info */ 2294 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2295 if (pflags != NULL) 2296 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2297 /* Check if we have feedback request from nd6 timer */ 2298 if (ln->r_skip_req != 0) { 2299 LLE_REQ_LOCK(ln); 2300 ln->r_skip_req = 0; /* Notify that entry was used */ 2301 ln->lle_hittime = time_uptime; 2302 LLE_REQ_UNLOCK(ln); 2303 } 2304 if (plle) { 2305 LLE_ADDREF(ln); 2306 *plle = ln; 2307 LLE_WUNLOCK(ln); 2308 } 2309 IF_AFDATA_RUNLOCK(ifp); 2310 return (0); 2311 } else if (plle && ln) 2312 LLE_WUNLOCK(ln); 2313 IF_AFDATA_RUNLOCK(ifp); 2314 2315 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2316 } 2317 2318 2319 /* 2320 * Do L2 address resolution for @sa_dst address. Stores found 2321 * address in @desten buffer. Copy of lle ln_flags can be also 2322 * saved in @pflags if @pflags is non-NULL. 2323 * 2324 * Heavy version. 2325 * Function assume that destination LLE does not exist, 2326 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2327 * 2328 * Set noinline to be dtrace-friendly 2329 */ 2330 static __noinline int 2331 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2332 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2333 struct llentry **plle) 2334 { 2335 struct llentry *lle = NULL, *lle_tmp; 2336 struct in6_addr *psrc, src; 2337 int send_ns, ll_len; 2338 char *lladdr; 2339 2340 /* 2341 * Address resolution or Neighbor Unreachability Detection 2342 * for the next hop. 2343 * At this point, the destination of the packet must be a unicast 2344 * or an anycast address(i.e. not a multicast). 2345 */ 2346 if (lle == NULL) { 2347 IF_AFDATA_RLOCK(ifp); 2348 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2349 IF_AFDATA_RUNLOCK(ifp); 2350 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2351 /* 2352 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2353 * the condition below is not very efficient. But we believe 2354 * it is tolerable, because this should be a rare case. 2355 */ 2356 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2357 if (lle == NULL) { 2358 char ip6buf[INET6_ADDRSTRLEN]; 2359 log(LOG_DEBUG, 2360 "nd6_output: can't allocate llinfo for %s " 2361 "(ln=%p)\n", 2362 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2363 m_freem(m); 2364 return (ENOBUFS); 2365 } 2366 2367 IF_AFDATA_WLOCK(ifp); 2368 LLE_WLOCK(lle); 2369 /* Prefer any existing entry over newly-created one */ 2370 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2371 if (lle_tmp == NULL) 2372 lltable_link_entry(LLTABLE6(ifp), lle); 2373 IF_AFDATA_WUNLOCK(ifp); 2374 if (lle_tmp != NULL) { 2375 lltable_free_entry(LLTABLE6(ifp), lle); 2376 lle = lle_tmp; 2377 lle_tmp = NULL; 2378 } 2379 } 2380 } 2381 if (lle == NULL) { 2382 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2383 m_freem(m); 2384 return (ENOBUFS); 2385 } 2386 2387 if (m != NULL) 2388 m_freem(m); 2389 return (ENOBUFS); 2390 } 2391 2392 LLE_WLOCK_ASSERT(lle); 2393 2394 /* 2395 * The first time we send a packet to a neighbor whose entry is 2396 * STALE, we have to change the state to DELAY and a sets a timer to 2397 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2398 * neighbor unreachability detection on expiration. 2399 * (RFC 2461 7.3.3) 2400 */ 2401 if (lle->ln_state == ND6_LLINFO_STALE) 2402 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2403 2404 /* 2405 * If the neighbor cache entry has a state other than INCOMPLETE 2406 * (i.e. its link-layer address is already resolved), just 2407 * send the packet. 2408 */ 2409 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2410 if (flags & LLE_ADDRONLY) { 2411 lladdr = lle->ll_addr; 2412 ll_len = ifp->if_addrlen; 2413 } else { 2414 lladdr = lle->r_linkdata; 2415 ll_len = lle->r_hdrlen; 2416 } 2417 bcopy(lladdr, desten, ll_len); 2418 if (pflags != NULL) 2419 *pflags = lle->la_flags; 2420 if (plle) { 2421 LLE_ADDREF(lle); 2422 *plle = lle; 2423 } 2424 LLE_WUNLOCK(lle); 2425 return (0); 2426 } 2427 2428 /* 2429 * There is a neighbor cache entry, but no ethernet address 2430 * response yet. Append this latest packet to the end of the 2431 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2432 * the oldest packet in the queue will be removed. 2433 */ 2434 2435 if (lle->la_hold != NULL) { 2436 struct mbuf *m_hold; 2437 int i; 2438 2439 i = 0; 2440 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2441 i++; 2442 if (m_hold->m_nextpkt == NULL) { 2443 m_hold->m_nextpkt = m; 2444 break; 2445 } 2446 } 2447 while (i >= V_nd6_maxqueuelen) { 2448 m_hold = lle->la_hold; 2449 lle->la_hold = lle->la_hold->m_nextpkt; 2450 m_freem(m_hold); 2451 i--; 2452 } 2453 } else { 2454 lle->la_hold = m; 2455 } 2456 2457 /* 2458 * If there has been no NS for the neighbor after entering the 2459 * INCOMPLETE state, send the first solicitation. 2460 * Note that for newly-created lle la_asked will be 0, 2461 * so we will transition from ND6_LLINFO_NOSTATE to 2462 * ND6_LLINFO_INCOMPLETE state here. 2463 */ 2464 psrc = NULL; 2465 send_ns = 0; 2466 if (lle->la_asked == 0) { 2467 lle->la_asked++; 2468 send_ns = 1; 2469 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2470 2471 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2472 } 2473 LLE_WUNLOCK(lle); 2474 if (send_ns != 0) 2475 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2476 2477 return (EWOULDBLOCK); 2478 } 2479 2480 /* 2481 * Do L2 address resolution for @sa_dst address. Stores found 2482 * address in @desten buffer. Copy of lle ln_flags can be also 2483 * saved in @pflags if @pflags is non-NULL. 2484 * 2485 * Return values: 2486 * - 0 on success (address copied to buffer). 2487 * - EWOULDBLOCK (no local error, but address is still unresolved) 2488 * - other errors (alloc failure, etc) 2489 */ 2490 int 2491 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2492 char *desten, uint32_t *pflags) 2493 { 2494 int error; 2495 2496 flags |= LLE_ADDRONLY; 2497 error = nd6_resolve_slow(ifp, flags, NULL, 2498 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2499 return (error); 2500 } 2501 2502 int 2503 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2504 struct sockaddr_in6 *dst) 2505 { 2506 struct mbuf *m, *m_head; 2507 struct ifnet *outifp; 2508 int error = 0; 2509 2510 m_head = chain; 2511 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2512 outifp = origifp; 2513 else 2514 outifp = ifp; 2515 2516 while (m_head) { 2517 m = m_head; 2518 m_head = m_head->m_nextpkt; 2519 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2520 } 2521 2522 /* 2523 * XXX 2524 * note that intermediate errors are blindly ignored 2525 */ 2526 return (error); 2527 } 2528 2529 static int 2530 nd6_need_cache(struct ifnet *ifp) 2531 { 2532 /* 2533 * XXX: we currently do not make neighbor cache on any interface 2534 * other than ARCnet, Ethernet, FDDI and GIF. 2535 * 2536 * RFC2893 says: 2537 * - unidirectional tunnels needs no ND 2538 */ 2539 switch (ifp->if_type) { 2540 case IFT_ARCNET: 2541 case IFT_ETHER: 2542 case IFT_FDDI: 2543 case IFT_IEEE1394: 2544 case IFT_L2VLAN: 2545 case IFT_INFINIBAND: 2546 case IFT_BRIDGE: 2547 case IFT_PROPVIRTUAL: 2548 return (1); 2549 default: 2550 return (0); 2551 } 2552 } 2553 2554 /* 2555 * Add pernament ND6 link-layer record for given 2556 * interface address. 2557 * 2558 * Very similar to IPv4 arp_ifinit(), but: 2559 * 1) IPv6 DAD is performed in different place 2560 * 2) It is called by IPv6 protocol stack in contrast to 2561 * arp_ifinit() which is typically called in SIOCSIFADDR 2562 * driver ioctl handler. 2563 * 2564 */ 2565 int 2566 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2567 { 2568 struct ifnet *ifp; 2569 struct llentry *ln, *ln_tmp; 2570 struct sockaddr *dst; 2571 2572 ifp = ia->ia_ifa.ifa_ifp; 2573 if (nd6_need_cache(ifp) == 0) 2574 return (0); 2575 2576 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2577 dst = (struct sockaddr *)&ia->ia_addr; 2578 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2579 if (ln == NULL) 2580 return (ENOBUFS); 2581 2582 IF_AFDATA_WLOCK(ifp); 2583 LLE_WLOCK(ln); 2584 /* Unlink any entry if exists */ 2585 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2586 if (ln_tmp != NULL) 2587 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2588 lltable_link_entry(LLTABLE6(ifp), ln); 2589 IF_AFDATA_WUNLOCK(ifp); 2590 2591 if (ln_tmp != NULL) 2592 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2593 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2594 2595 LLE_WUNLOCK(ln); 2596 if (ln_tmp != NULL) 2597 llentry_free(ln_tmp); 2598 2599 return (0); 2600 } 2601 2602 /* 2603 * Removes either all lle entries for given @ia, or lle 2604 * corresponding to @ia address. 2605 */ 2606 void 2607 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2608 { 2609 struct sockaddr_in6 mask, addr; 2610 struct sockaddr *saddr, *smask; 2611 struct ifnet *ifp; 2612 2613 ifp = ia->ia_ifa.ifa_ifp; 2614 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2615 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2616 saddr = (struct sockaddr *)&addr; 2617 smask = (struct sockaddr *)&mask; 2618 2619 if (all != 0) 2620 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2621 else 2622 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2623 } 2624 2625 static void 2626 clear_llinfo_pqueue(struct llentry *ln) 2627 { 2628 struct mbuf *m_hold, *m_hold_next; 2629 2630 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2631 m_hold_next = m_hold->m_nextpkt; 2632 m_freem(m_hold); 2633 } 2634 2635 ln->la_hold = NULL; 2636 } 2637 2638 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2639 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2640 2641 SYSCTL_DECL(_net_inet6_icmp6); 2642 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2643 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2644 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2645 "NDP default router list"); 2646 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2647 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2648 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2649 "NDP prefix list"); 2650 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2651 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2652 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2653 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2654 2655 static int 2656 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2657 { 2658 struct in6_defrouter d; 2659 struct nd_defrouter *dr; 2660 int error; 2661 2662 if (req->newptr != NULL) 2663 return (EPERM); 2664 2665 error = sysctl_wire_old_buffer(req, 0); 2666 if (error != 0) 2667 return (error); 2668 2669 bzero(&d, sizeof(d)); 2670 d.rtaddr.sin6_family = AF_INET6; 2671 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2672 2673 ND6_RLOCK(); 2674 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2675 d.rtaddr.sin6_addr = dr->rtaddr; 2676 error = sa6_recoverscope(&d.rtaddr); 2677 if (error != 0) 2678 break; 2679 d.flags = dr->raflags; 2680 d.rtlifetime = dr->rtlifetime; 2681 d.expire = dr->expire + (time_second - time_uptime); 2682 d.if_index = dr->ifp->if_index; 2683 error = SYSCTL_OUT(req, &d, sizeof(d)); 2684 if (error != 0) 2685 break; 2686 } 2687 ND6_RUNLOCK(); 2688 return (error); 2689 } 2690 2691 static int 2692 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2693 { 2694 struct in6_prefix p; 2695 struct sockaddr_in6 s6; 2696 struct nd_prefix *pr; 2697 struct nd_pfxrouter *pfr; 2698 time_t maxexpire; 2699 int error; 2700 char ip6buf[INET6_ADDRSTRLEN]; 2701 2702 if (req->newptr) 2703 return (EPERM); 2704 2705 error = sysctl_wire_old_buffer(req, 0); 2706 if (error != 0) 2707 return (error); 2708 2709 bzero(&p, sizeof(p)); 2710 p.origin = PR_ORIG_RA; 2711 bzero(&s6, sizeof(s6)); 2712 s6.sin6_family = AF_INET6; 2713 s6.sin6_len = sizeof(s6); 2714 2715 ND6_RLOCK(); 2716 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2717 p.prefix = pr->ndpr_prefix; 2718 if (sa6_recoverscope(&p.prefix)) { 2719 log(LOG_ERR, "scope error in prefix list (%s)\n", 2720 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2721 /* XXX: press on... */ 2722 } 2723 p.raflags = pr->ndpr_raf; 2724 p.prefixlen = pr->ndpr_plen; 2725 p.vltime = pr->ndpr_vltime; 2726 p.pltime = pr->ndpr_pltime; 2727 p.if_index = pr->ndpr_ifp->if_index; 2728 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2729 p.expire = 0; 2730 else { 2731 /* XXX: we assume time_t is signed. */ 2732 maxexpire = (-1) & 2733 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2734 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2735 p.expire = pr->ndpr_lastupdate + 2736 pr->ndpr_vltime + 2737 (time_second - time_uptime); 2738 else 2739 p.expire = maxexpire; 2740 } 2741 p.refcnt = pr->ndpr_addrcnt; 2742 p.flags = pr->ndpr_stateflags; 2743 p.advrtrs = 0; 2744 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2745 p.advrtrs++; 2746 error = SYSCTL_OUT(req, &p, sizeof(p)); 2747 if (error != 0) 2748 break; 2749 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2750 s6.sin6_addr = pfr->router->rtaddr; 2751 if (sa6_recoverscope(&s6)) 2752 log(LOG_ERR, 2753 "scope error in prefix list (%s)\n", 2754 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2755 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2756 if (error != 0) 2757 goto out; 2758 } 2759 } 2760 out: 2761 ND6_RUNLOCK(); 2762 return (error); 2763 } 2764