1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_kdtrace.h> 69 #include <net/if_llatbl.h> 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 90 91 /* timer values */ 92 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 93 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 94 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 95 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 96 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 97 * local traffic */ 98 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 99 * collection timer */ 100 101 /* preventing too many loops in ND option parsing */ 102 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 103 104 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 105 * layer hints */ 106 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 107 * ND entries */ 108 #define V_nd6_maxndopt VNET(nd6_maxndopt) 109 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 110 111 #ifdef ND6_DEBUG 112 VNET_DEFINE(int, nd6_debug) = 1; 113 #else 114 VNET_DEFINE(int, nd6_debug) = 0; 115 #endif 116 117 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 118 119 VNET_DEFINE(struct nd_drhead, nd_defrouter); 120 VNET_DEFINE(struct nd_prhead, nd_prefix); 121 VNET_DEFINE(struct rwlock, nd6_lock); 122 VNET_DEFINE(uint64_t, nd6_list_genid); 123 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 124 125 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 126 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 127 128 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 129 130 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 131 struct ifnet *); 132 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 133 static void nd6_slowtimo(void *); 134 static int regen_tmpaddr(struct in6_ifaddr *); 135 static void nd6_free(struct llentry **, int); 136 static void nd6_free_redirect(const struct llentry *); 137 static void nd6_llinfo_timer(void *); 138 static void nd6_llinfo_settimer_locked(struct llentry *, long); 139 static void clear_llinfo_pqueue(struct llentry *); 140 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 141 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 142 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 143 static int nd6_need_cache(struct ifnet *); 144 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 static void 153 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 154 { 155 struct rt_addrinfo rtinfo; 156 struct sockaddr_in6 dst; 157 struct sockaddr_dl gw; 158 struct ifnet *ifp; 159 int type; 160 int fibnum; 161 162 LLE_WLOCK_ASSERT(lle); 163 164 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 165 return; 166 167 switch (evt) { 168 case LLENTRY_RESOLVED: 169 type = RTM_ADD; 170 KASSERT(lle->la_flags & LLE_VALID, 171 ("%s: %p resolved but not valid?", __func__, lle)); 172 break; 173 case LLENTRY_EXPIRED: 174 type = RTM_DELETE; 175 break; 176 default: 177 return; 178 } 179 180 ifp = lltable_get_ifp(lle->lle_tbl); 181 182 bzero(&dst, sizeof(dst)); 183 bzero(&gw, sizeof(gw)); 184 bzero(&rtinfo, sizeof(rtinfo)); 185 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 186 dst.sin6_scope_id = in6_getscopezone(ifp, 187 in6_addrscope(&dst.sin6_addr)); 188 gw.sdl_len = sizeof(struct sockaddr_dl); 189 gw.sdl_family = AF_LINK; 190 gw.sdl_alen = ifp->if_addrlen; 191 gw.sdl_index = ifp->if_index; 192 gw.sdl_type = ifp->if_type; 193 if (evt == LLENTRY_RESOLVED) 194 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 195 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 196 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 197 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 198 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 199 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 200 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 201 } 202 203 /* 204 * A handler for interface link layer address change event. 205 */ 206 static void 207 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 208 { 209 210 lltable_update_ifaddr(LLTABLE6(ifp)); 211 } 212 213 void 214 nd6_init(void) 215 { 216 217 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 218 rw_init(&V_nd6_lock, "nd6 list"); 219 220 LIST_INIT(&V_nd_prefix); 221 TAILQ_INIT(&V_nd_defrouter); 222 223 /* Start timers. */ 224 callout_init(&V_nd6_slowtimo_ch, 0); 225 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 226 nd6_slowtimo, curvnet); 227 228 callout_init(&V_nd6_timer_ch, 0); 229 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 230 231 nd6_dad_init(); 232 if (IS_DEFAULT_VNET(curvnet)) { 233 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 234 NULL, EVENTHANDLER_PRI_ANY); 235 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 236 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 237 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 238 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 239 } 240 } 241 242 #ifdef VIMAGE 243 void 244 nd6_destroy() 245 { 246 247 callout_drain(&V_nd6_slowtimo_ch); 248 callout_drain(&V_nd6_timer_ch); 249 if (IS_DEFAULT_VNET(curvnet)) { 250 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 251 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 252 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 253 } 254 rw_destroy(&V_nd6_lock); 255 mtx_destroy(&V_nd6_onlink_mtx); 256 } 257 #endif 258 259 struct nd_ifinfo * 260 nd6_ifattach(struct ifnet *ifp) 261 { 262 struct nd_ifinfo *nd; 263 264 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 265 nd->initialized = 1; 266 267 nd->chlim = IPV6_DEFHLIM; 268 nd->basereachable = REACHABLE_TIME; 269 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 270 nd->retrans = RETRANS_TIMER; 271 272 nd->flags = ND6_IFF_PERFORMNUD; 273 274 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 275 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 276 * default regardless of the V_ip6_auto_linklocal configuration to 277 * give a reasonable default behavior. 278 */ 279 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 280 (ifp->if_flags & IFF_LOOPBACK)) 281 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 282 /* 283 * A loopback interface does not need to accept RTADV. 284 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 285 * default regardless of the V_ip6_accept_rtadv configuration to 286 * prevent the interface from accepting RA messages arrived 287 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 288 */ 289 if (V_ip6_accept_rtadv && 290 !(ifp->if_flags & IFF_LOOPBACK) && 291 (ifp->if_type != IFT_BRIDGE)) 292 nd->flags |= ND6_IFF_ACCEPT_RTADV; 293 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 294 nd->flags |= ND6_IFF_NO_RADR; 295 296 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 297 nd6_setmtu0(ifp, nd); 298 299 return nd; 300 } 301 302 void 303 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 304 { 305 struct epoch_tracker et; 306 struct ifaddr *ifa, *next; 307 308 NET_EPOCH_ENTER(et); 309 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 310 if (ifa->ifa_addr->sa_family != AF_INET6) 311 continue; 312 313 /* stop DAD processing */ 314 nd6_dad_stop(ifa); 315 } 316 NET_EPOCH_EXIT(et); 317 318 free(nd, M_IP6NDP); 319 } 320 321 /* 322 * Reset ND level link MTU. This function is called when the physical MTU 323 * changes, which means we might have to adjust the ND level MTU. 324 */ 325 void 326 nd6_setmtu(struct ifnet *ifp) 327 { 328 if (ifp->if_afdata[AF_INET6] == NULL) 329 return; 330 331 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 332 } 333 334 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 335 void 336 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 337 { 338 u_int32_t omaxmtu; 339 340 omaxmtu = ndi->maxmtu; 341 ndi->maxmtu = ifp->if_mtu; 342 343 /* 344 * Decreasing the interface MTU under IPV6 minimum MTU may cause 345 * undesirable situation. We thus notify the operator of the change 346 * explicitly. The check for omaxmtu is necessary to restrict the 347 * log to the case of changing the MTU, not initializing it. 348 */ 349 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 350 log(LOG_NOTICE, "nd6_setmtu0: " 351 "new link MTU on %s (%lu) is too small for IPv6\n", 352 if_name(ifp), (unsigned long)ndi->maxmtu); 353 } 354 355 if (ndi->maxmtu > V_in6_maxmtu) 356 in6_setmaxmtu(); /* check all interfaces just in case */ 357 358 } 359 360 void 361 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 362 { 363 364 bzero(ndopts, sizeof(*ndopts)); 365 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 366 ndopts->nd_opts_last 367 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 368 369 if (icmp6len == 0) { 370 ndopts->nd_opts_done = 1; 371 ndopts->nd_opts_search = NULL; 372 } 373 } 374 375 /* 376 * Take one ND option. 377 */ 378 struct nd_opt_hdr * 379 nd6_option(union nd_opts *ndopts) 380 { 381 struct nd_opt_hdr *nd_opt; 382 int olen; 383 384 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 385 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 386 __func__)); 387 if (ndopts->nd_opts_search == NULL) 388 return NULL; 389 if (ndopts->nd_opts_done) 390 return NULL; 391 392 nd_opt = ndopts->nd_opts_search; 393 394 /* make sure nd_opt_len is inside the buffer */ 395 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 396 bzero(ndopts, sizeof(*ndopts)); 397 return NULL; 398 } 399 400 olen = nd_opt->nd_opt_len << 3; 401 if (olen == 0) { 402 /* 403 * Message validation requires that all included 404 * options have a length that is greater than zero. 405 */ 406 bzero(ndopts, sizeof(*ndopts)); 407 return NULL; 408 } 409 410 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 411 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 412 /* option overruns the end of buffer, invalid */ 413 bzero(ndopts, sizeof(*ndopts)); 414 return NULL; 415 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 416 /* reached the end of options chain */ 417 ndopts->nd_opts_done = 1; 418 ndopts->nd_opts_search = NULL; 419 } 420 return nd_opt; 421 } 422 423 /* 424 * Parse multiple ND options. 425 * This function is much easier to use, for ND routines that do not need 426 * multiple options of the same type. 427 */ 428 int 429 nd6_options(union nd_opts *ndopts) 430 { 431 struct nd_opt_hdr *nd_opt; 432 int i = 0; 433 434 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 435 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 436 __func__)); 437 if (ndopts->nd_opts_search == NULL) 438 return 0; 439 440 while (1) { 441 nd_opt = nd6_option(ndopts); 442 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 443 /* 444 * Message validation requires that all included 445 * options have a length that is greater than zero. 446 */ 447 ICMP6STAT_INC(icp6s_nd_badopt); 448 bzero(ndopts, sizeof(*ndopts)); 449 return -1; 450 } 451 452 if (nd_opt == NULL) 453 goto skip1; 454 455 switch (nd_opt->nd_opt_type) { 456 case ND_OPT_SOURCE_LINKADDR: 457 case ND_OPT_TARGET_LINKADDR: 458 case ND_OPT_MTU: 459 case ND_OPT_REDIRECTED_HEADER: 460 case ND_OPT_NONCE: 461 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 462 nd6log((LOG_INFO, 463 "duplicated ND6 option found (type=%d)\n", 464 nd_opt->nd_opt_type)); 465 /* XXX bark? */ 466 } else { 467 ndopts->nd_opt_array[nd_opt->nd_opt_type] 468 = nd_opt; 469 } 470 break; 471 case ND_OPT_PREFIX_INFORMATION: 472 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 473 ndopts->nd_opt_array[nd_opt->nd_opt_type] 474 = nd_opt; 475 } 476 ndopts->nd_opts_pi_end = 477 (struct nd_opt_prefix_info *)nd_opt; 478 break; 479 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 480 case ND_OPT_RDNSS: /* RFC 6106 */ 481 case ND_OPT_DNSSL: /* RFC 6106 */ 482 /* 483 * Silently ignore options we know and do not care about 484 * in the kernel. 485 */ 486 break; 487 default: 488 /* 489 * Unknown options must be silently ignored, 490 * to accommodate future extension to the protocol. 491 */ 492 nd6log((LOG_DEBUG, 493 "nd6_options: unsupported option %d - " 494 "option ignored\n", nd_opt->nd_opt_type)); 495 } 496 497 skip1: 498 i++; 499 if (i > V_nd6_maxndopt) { 500 ICMP6STAT_INC(icp6s_nd_toomanyopt); 501 nd6log((LOG_INFO, "too many loop in nd opt\n")); 502 break; 503 } 504 505 if (ndopts->nd_opts_done) 506 break; 507 } 508 509 return 0; 510 } 511 512 /* 513 * ND6 timer routine to handle ND6 entries 514 */ 515 static void 516 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 517 { 518 int canceled; 519 520 LLE_WLOCK_ASSERT(ln); 521 522 if (tick < 0) { 523 ln->la_expire = 0; 524 ln->ln_ntick = 0; 525 canceled = callout_stop(&ln->lle_timer); 526 } else { 527 ln->la_expire = time_uptime + tick / hz; 528 LLE_ADDREF(ln); 529 if (tick > INT_MAX) { 530 ln->ln_ntick = tick - INT_MAX; 531 canceled = callout_reset(&ln->lle_timer, INT_MAX, 532 nd6_llinfo_timer, ln); 533 } else { 534 ln->ln_ntick = 0; 535 canceled = callout_reset(&ln->lle_timer, tick, 536 nd6_llinfo_timer, ln); 537 } 538 } 539 if (canceled > 0) 540 LLE_REMREF(ln); 541 } 542 543 /* 544 * Gets source address of the first packet in hold queue 545 * and stores it in @src. 546 * Returns pointer to @src (if hold queue is not empty) or NULL. 547 * 548 * Set noinline to be dtrace-friendly 549 */ 550 static __noinline struct in6_addr * 551 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 552 { 553 struct ip6_hdr hdr; 554 struct mbuf *m; 555 556 if (ln->la_hold == NULL) 557 return (NULL); 558 559 /* 560 * assume every packet in la_hold has the same IP header 561 */ 562 m = ln->la_hold; 563 if (sizeof(hdr) > m->m_len) 564 return (NULL); 565 566 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 567 *src = hdr.ip6_src; 568 569 return (src); 570 } 571 572 /* 573 * Checks if we need to switch from STALE state. 574 * 575 * RFC 4861 requires switching from STALE to DELAY state 576 * on first packet matching entry, waiting V_nd6_delay and 577 * transition to PROBE state (if upper layer confirmation was 578 * not received). 579 * 580 * This code performs a bit differently: 581 * On packet hit we don't change state (but desired state 582 * can be guessed by control plane). However, after V_nd6_delay 583 * seconds code will transition to PROBE state (so DELAY state 584 * is kinda skipped in most situations). 585 * 586 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 587 * we perform the following upon entering STALE state: 588 * 589 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 590 * if packet was transmitted at the start of given interval, we 591 * would be able to switch to PROBE state in V_nd6_delay seconds 592 * as user expects. 593 * 594 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 595 * lle in STALE state (remaining timer value stored in lle_remtime). 596 * 597 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 598 * seconds ago. 599 * 600 * Returns non-zero value if the entry is still STALE (storing 601 * the next timer interval in @pdelay). 602 * 603 * Returns zero value if original timer expired or we need to switch to 604 * PROBE (store that in @do_switch variable). 605 */ 606 static int 607 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 608 { 609 int nd_delay, nd_gctimer, r_skip_req; 610 time_t lle_hittime; 611 long delay; 612 613 *do_switch = 0; 614 nd_gctimer = V_nd6_gctimer; 615 nd_delay = V_nd6_delay; 616 617 LLE_REQ_LOCK(lle); 618 r_skip_req = lle->r_skip_req; 619 lle_hittime = lle->lle_hittime; 620 LLE_REQ_UNLOCK(lle); 621 622 if (r_skip_req > 0) { 623 624 /* 625 * Nonzero r_skip_req value was set upon entering 626 * STALE state. Since value was not changed, no 627 * packets were passed using this lle. Ask for 628 * timer reschedule and keep STALE state. 629 */ 630 delay = (long)(MIN(nd_gctimer, nd_delay)); 631 delay *= hz; 632 if (lle->lle_remtime > delay) 633 lle->lle_remtime -= delay; 634 else { 635 delay = lle->lle_remtime; 636 lle->lle_remtime = 0; 637 } 638 639 if (delay == 0) { 640 641 /* 642 * The original ng6_gctime timeout ended, 643 * no more rescheduling. 644 */ 645 return (0); 646 } 647 648 *pdelay = delay; 649 return (1); 650 } 651 652 /* 653 * Packet received. Verify timestamp 654 */ 655 delay = (long)(time_uptime - lle_hittime); 656 if (delay < nd_delay) { 657 658 /* 659 * V_nd6_delay still not passed since the first 660 * hit in STALE state. 661 * Reshedule timer and return. 662 */ 663 *pdelay = (long)(nd_delay - delay) * hz; 664 return (1); 665 } 666 667 /* Request switching to probe */ 668 *do_switch = 1; 669 return (0); 670 } 671 672 673 /* 674 * Switch @lle state to new state optionally arming timers. 675 * 676 * Set noinline to be dtrace-friendly 677 */ 678 __noinline void 679 nd6_llinfo_setstate(struct llentry *lle, int newstate) 680 { 681 struct ifnet *ifp; 682 int nd_gctimer, nd_delay; 683 long delay, remtime; 684 685 delay = 0; 686 remtime = 0; 687 688 switch (newstate) { 689 case ND6_LLINFO_INCOMPLETE: 690 ifp = lle->lle_tbl->llt_ifp; 691 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 692 break; 693 case ND6_LLINFO_REACHABLE: 694 if (!ND6_LLINFO_PERMANENT(lle)) { 695 ifp = lle->lle_tbl->llt_ifp; 696 delay = (long)ND_IFINFO(ifp)->reachable * hz; 697 } 698 break; 699 case ND6_LLINFO_STALE: 700 701 /* 702 * Notify fast path that we want to know if any packet 703 * is transmitted by setting r_skip_req. 704 */ 705 LLE_REQ_LOCK(lle); 706 lle->r_skip_req = 1; 707 LLE_REQ_UNLOCK(lle); 708 nd_delay = V_nd6_delay; 709 nd_gctimer = V_nd6_gctimer; 710 711 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 712 remtime = (long)nd_gctimer * hz - delay; 713 break; 714 case ND6_LLINFO_DELAY: 715 lle->la_asked = 0; 716 delay = (long)V_nd6_delay * hz; 717 break; 718 } 719 720 if (delay > 0) 721 nd6_llinfo_settimer_locked(lle, delay); 722 723 lle->lle_remtime = remtime; 724 lle->ln_state = newstate; 725 } 726 727 /* 728 * Timer-dependent part of nd state machine. 729 * 730 * Set noinline to be dtrace-friendly 731 */ 732 static __noinline void 733 nd6_llinfo_timer(void *arg) 734 { 735 struct epoch_tracker et; 736 struct llentry *ln; 737 struct in6_addr *dst, *pdst, *psrc, src; 738 struct ifnet *ifp; 739 struct nd_ifinfo *ndi; 740 int do_switch, send_ns; 741 long delay; 742 743 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 744 ln = (struct llentry *)arg; 745 ifp = lltable_get_ifp(ln->lle_tbl); 746 CURVNET_SET(ifp->if_vnet); 747 748 ND6_RLOCK(); 749 LLE_WLOCK(ln); 750 if (callout_pending(&ln->lle_timer)) { 751 /* 752 * Here we are a bit odd here in the treatment of 753 * active/pending. If the pending bit is set, it got 754 * rescheduled before I ran. The active 755 * bit we ignore, since if it was stopped 756 * in ll_tablefree() and was currently running 757 * it would have return 0 so the code would 758 * not have deleted it since the callout could 759 * not be stopped so we want to go through 760 * with the delete here now. If the callout 761 * was restarted, the pending bit will be back on and 762 * we just want to bail since the callout_reset would 763 * return 1 and our reference would have been removed 764 * by nd6_llinfo_settimer_locked above since canceled 765 * would have been 1. 766 */ 767 LLE_WUNLOCK(ln); 768 ND6_RUNLOCK(); 769 CURVNET_RESTORE(); 770 return; 771 } 772 NET_EPOCH_ENTER(et); 773 ndi = ND_IFINFO(ifp); 774 send_ns = 0; 775 dst = &ln->r_l3addr.addr6; 776 pdst = dst; 777 778 if (ln->ln_ntick > 0) { 779 if (ln->ln_ntick > INT_MAX) { 780 ln->ln_ntick -= INT_MAX; 781 nd6_llinfo_settimer_locked(ln, INT_MAX); 782 } else { 783 ln->ln_ntick = 0; 784 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 785 } 786 goto done; 787 } 788 789 if (ln->la_flags & LLE_STATIC) { 790 goto done; 791 } 792 793 if (ln->la_flags & LLE_DELETED) { 794 nd6_free(&ln, 0); 795 goto done; 796 } 797 798 switch (ln->ln_state) { 799 case ND6_LLINFO_INCOMPLETE: 800 if (ln->la_asked < V_nd6_mmaxtries) { 801 ln->la_asked++; 802 send_ns = 1; 803 /* Send NS to multicast address */ 804 pdst = NULL; 805 } else { 806 struct mbuf *m = ln->la_hold; 807 if (m) { 808 struct mbuf *m0; 809 810 /* 811 * assuming every packet in la_hold has the 812 * same IP header. Send error after unlock. 813 */ 814 m0 = m->m_nextpkt; 815 m->m_nextpkt = NULL; 816 ln->la_hold = m0; 817 clear_llinfo_pqueue(ln); 818 } 819 nd6_free(&ln, 0); 820 if (m != NULL) 821 icmp6_error2(m, ICMP6_DST_UNREACH, 822 ICMP6_DST_UNREACH_ADDR, 0, ifp); 823 } 824 break; 825 case ND6_LLINFO_REACHABLE: 826 if (!ND6_LLINFO_PERMANENT(ln)) 827 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 828 break; 829 830 case ND6_LLINFO_STALE: 831 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 832 833 /* 834 * No packet has used this entry and GC timeout 835 * has not been passed. Reshedule timer and 836 * return. 837 */ 838 nd6_llinfo_settimer_locked(ln, delay); 839 break; 840 } 841 842 if (do_switch == 0) { 843 844 /* 845 * GC timer has ended and entry hasn't been used. 846 * Run Garbage collector (RFC 4861, 5.3) 847 */ 848 if (!ND6_LLINFO_PERMANENT(ln)) 849 nd6_free(&ln, 1); 850 break; 851 } 852 853 /* Entry has been used AND delay timer has ended. */ 854 855 /* FALLTHROUGH */ 856 857 case ND6_LLINFO_DELAY: 858 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 859 /* We need NUD */ 860 ln->la_asked = 1; 861 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 862 send_ns = 1; 863 } else 864 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 865 break; 866 case ND6_LLINFO_PROBE: 867 if (ln->la_asked < V_nd6_umaxtries) { 868 ln->la_asked++; 869 send_ns = 1; 870 } else { 871 nd6_free(&ln, 0); 872 } 873 break; 874 default: 875 panic("%s: paths in a dark night can be confusing: %d", 876 __func__, ln->ln_state); 877 } 878 done: 879 if (ln != NULL) 880 ND6_RUNLOCK(); 881 if (send_ns != 0) { 882 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 883 psrc = nd6_llinfo_get_holdsrc(ln, &src); 884 LLE_FREE_LOCKED(ln); 885 ln = NULL; 886 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 887 } 888 889 if (ln != NULL) 890 LLE_FREE_LOCKED(ln); 891 NET_EPOCH_EXIT(et); 892 CURVNET_RESTORE(); 893 } 894 895 896 /* 897 * ND6 timer routine to expire default route list and prefix list 898 */ 899 void 900 nd6_timer(void *arg) 901 { 902 CURVNET_SET((struct vnet *) arg); 903 struct epoch_tracker et; 904 struct nd_drhead drq; 905 struct nd_prhead prl; 906 struct nd_defrouter *dr, *ndr; 907 struct nd_prefix *pr, *npr; 908 struct ifnet *ifp; 909 struct in6_ifaddr *ia6, *nia6; 910 uint64_t genid; 911 912 TAILQ_INIT(&drq); 913 LIST_INIT(&prl); 914 915 ND6_WLOCK(); 916 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 917 if (dr->expire && dr->expire < time_uptime) 918 defrouter_unlink(dr, &drq); 919 ND6_WUNLOCK(); 920 921 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 922 TAILQ_REMOVE(&drq, dr, dr_entry); 923 defrouter_del(dr); 924 } 925 926 /* 927 * expire interface addresses. 928 * in the past the loop was inside prefix expiry processing. 929 * However, from a stricter speci-confrmance standpoint, we should 930 * rather separate address lifetimes and prefix lifetimes. 931 * 932 * XXXRW: in6_ifaddrhead locking. 933 */ 934 NET_EPOCH_ENTER(et); 935 addrloop: 936 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 937 /* check address lifetime */ 938 if (IFA6_IS_INVALID(ia6)) { 939 int regen = 0; 940 941 /* 942 * If the expiring address is temporary, try 943 * regenerating a new one. This would be useful when 944 * we suspended a laptop PC, then turned it on after a 945 * period that could invalidate all temporary 946 * addresses. Although we may have to restart the 947 * loop (see below), it must be after purging the 948 * address. Otherwise, we'd see an infinite loop of 949 * regeneration. 950 */ 951 if (V_ip6_use_tempaddr && 952 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 953 if (regen_tmpaddr(ia6) == 0) 954 regen = 1; 955 } 956 957 in6_purgeaddr(&ia6->ia_ifa); 958 959 if (regen) 960 goto addrloop; /* XXX: see below */ 961 } else if (IFA6_IS_DEPRECATED(ia6)) { 962 int oldflags = ia6->ia6_flags; 963 964 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 965 966 /* 967 * If a temporary address has just become deprecated, 968 * regenerate a new one if possible. 969 */ 970 if (V_ip6_use_tempaddr && 971 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 972 (oldflags & IN6_IFF_DEPRECATED) == 0) { 973 974 if (regen_tmpaddr(ia6) == 0) { 975 /* 976 * A new temporary address is 977 * generated. 978 * XXX: this means the address chain 979 * has changed while we are still in 980 * the loop. Although the change 981 * would not cause disaster (because 982 * it's not a deletion, but an 983 * addition,) we'd rather restart the 984 * loop just for safety. Or does this 985 * significantly reduce performance?? 986 */ 987 goto addrloop; 988 } 989 } 990 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 991 /* 992 * Schedule DAD for a tentative address. This happens 993 * if the interface was down or not running 994 * when the address was configured. 995 */ 996 int delay; 997 998 delay = arc4random() % 999 (MAX_RTR_SOLICITATION_DELAY * hz); 1000 nd6_dad_start((struct ifaddr *)ia6, delay); 1001 } else { 1002 /* 1003 * Check status of the interface. If it is down, 1004 * mark the address as tentative for future DAD. 1005 */ 1006 ifp = ia6->ia_ifp; 1007 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1008 ((ifp->if_flags & IFF_UP) == 0 || 1009 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1010 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1011 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1012 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1013 } 1014 1015 /* 1016 * A new RA might have made a deprecated address 1017 * preferred. 1018 */ 1019 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1020 } 1021 } 1022 NET_EPOCH_EXIT(et); 1023 1024 ND6_WLOCK(); 1025 restart: 1026 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1027 /* 1028 * Expire prefixes. Since the pltime is only used for 1029 * autoconfigured addresses, pltime processing for prefixes is 1030 * not necessary. 1031 * 1032 * Only unlink after all derived addresses have expired. This 1033 * may not occur until two hours after the prefix has expired 1034 * per RFC 4862. If the prefix expires before its derived 1035 * addresses, mark it off-link. This will be done automatically 1036 * after unlinking if no address references remain. 1037 */ 1038 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1039 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1040 continue; 1041 1042 if (pr->ndpr_addrcnt == 0) { 1043 nd6_prefix_unlink(pr, &prl); 1044 continue; 1045 } 1046 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1047 genid = V_nd6_list_genid; 1048 nd6_prefix_ref(pr); 1049 ND6_WUNLOCK(); 1050 ND6_ONLINK_LOCK(); 1051 (void)nd6_prefix_offlink(pr); 1052 ND6_ONLINK_UNLOCK(); 1053 ND6_WLOCK(); 1054 nd6_prefix_rele(pr); 1055 if (genid != V_nd6_list_genid) 1056 goto restart; 1057 } 1058 } 1059 ND6_WUNLOCK(); 1060 1061 while ((pr = LIST_FIRST(&prl)) != NULL) { 1062 LIST_REMOVE(pr, ndpr_entry); 1063 nd6_prefix_del(pr); 1064 } 1065 1066 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1067 nd6_timer, curvnet); 1068 1069 CURVNET_RESTORE(); 1070 } 1071 1072 /* 1073 * ia6 - deprecated/invalidated temporary address 1074 */ 1075 static int 1076 regen_tmpaddr(struct in6_ifaddr *ia6) 1077 { 1078 struct ifaddr *ifa; 1079 struct ifnet *ifp; 1080 struct in6_ifaddr *public_ifa6 = NULL; 1081 1082 NET_EPOCH_ASSERT(); 1083 1084 ifp = ia6->ia_ifa.ifa_ifp; 1085 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1086 struct in6_ifaddr *it6; 1087 1088 if (ifa->ifa_addr->sa_family != AF_INET6) 1089 continue; 1090 1091 it6 = (struct in6_ifaddr *)ifa; 1092 1093 /* ignore no autoconf addresses. */ 1094 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1095 continue; 1096 1097 /* ignore autoconf addresses with different prefixes. */ 1098 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1099 continue; 1100 1101 /* 1102 * Now we are looking at an autoconf address with the same 1103 * prefix as ours. If the address is temporary and is still 1104 * preferred, do not create another one. It would be rare, but 1105 * could happen, for example, when we resume a laptop PC after 1106 * a long period. 1107 */ 1108 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1109 !IFA6_IS_DEPRECATED(it6)) { 1110 public_ifa6 = NULL; 1111 break; 1112 } 1113 1114 /* 1115 * This is a public autoconf address that has the same prefix 1116 * as ours. If it is preferred, keep it. We can't break the 1117 * loop here, because there may be a still-preferred temporary 1118 * address with the prefix. 1119 */ 1120 if (!IFA6_IS_DEPRECATED(it6)) 1121 public_ifa6 = it6; 1122 } 1123 if (public_ifa6 != NULL) 1124 ifa_ref(&public_ifa6->ia_ifa); 1125 1126 if (public_ifa6 != NULL) { 1127 int e; 1128 1129 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1130 ifa_free(&public_ifa6->ia_ifa); 1131 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1132 " tmp addr,errno=%d\n", e); 1133 return (-1); 1134 } 1135 ifa_free(&public_ifa6->ia_ifa); 1136 return (0); 1137 } 1138 1139 return (-1); 1140 } 1141 1142 /* 1143 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1144 * cache entries are freed in in6_domifdetach(). 1145 */ 1146 void 1147 nd6_purge(struct ifnet *ifp) 1148 { 1149 struct nd_drhead drq; 1150 struct nd_prhead prl; 1151 struct nd_defrouter *dr, *ndr; 1152 struct nd_prefix *pr, *npr; 1153 1154 TAILQ_INIT(&drq); 1155 LIST_INIT(&prl); 1156 1157 /* 1158 * Nuke default router list entries toward ifp. 1159 * We defer removal of default router list entries that is installed 1160 * in the routing table, in order to keep additional side effects as 1161 * small as possible. 1162 */ 1163 ND6_WLOCK(); 1164 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1165 if (dr->installed) 1166 continue; 1167 if (dr->ifp == ifp) 1168 defrouter_unlink(dr, &drq); 1169 } 1170 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1171 if (!dr->installed) 1172 continue; 1173 if (dr->ifp == ifp) 1174 defrouter_unlink(dr, &drq); 1175 } 1176 1177 /* 1178 * Remove prefixes on ifp. We should have already removed addresses on 1179 * this interface, so no addresses should be referencing these prefixes. 1180 */ 1181 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1182 if (pr->ndpr_ifp == ifp) 1183 nd6_prefix_unlink(pr, &prl); 1184 } 1185 ND6_WUNLOCK(); 1186 1187 /* Delete the unlinked router and prefix objects. */ 1188 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1189 TAILQ_REMOVE(&drq, dr, dr_entry); 1190 defrouter_del(dr); 1191 } 1192 while ((pr = LIST_FIRST(&prl)) != NULL) { 1193 LIST_REMOVE(pr, ndpr_entry); 1194 nd6_prefix_del(pr); 1195 } 1196 1197 /* cancel default outgoing interface setting */ 1198 if (V_nd6_defifindex == ifp->if_index) 1199 nd6_setdefaultiface(0); 1200 1201 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1202 /* Refresh default router list. */ 1203 defrouter_select_fib(ifp->if_fib); 1204 } 1205 } 1206 1207 /* 1208 * the caller acquires and releases the lock on the lltbls 1209 * Returns the llentry locked 1210 */ 1211 struct llentry * 1212 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1213 { 1214 struct sockaddr_in6 sin6; 1215 struct llentry *ln; 1216 1217 bzero(&sin6, sizeof(sin6)); 1218 sin6.sin6_len = sizeof(struct sockaddr_in6); 1219 sin6.sin6_family = AF_INET6; 1220 sin6.sin6_addr = *addr6; 1221 1222 IF_AFDATA_LOCK_ASSERT(ifp); 1223 1224 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1225 1226 return (ln); 1227 } 1228 1229 struct llentry * 1230 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1231 { 1232 struct sockaddr_in6 sin6; 1233 struct llentry *ln; 1234 1235 bzero(&sin6, sizeof(sin6)); 1236 sin6.sin6_len = sizeof(struct sockaddr_in6); 1237 sin6.sin6_family = AF_INET6; 1238 sin6.sin6_addr = *addr6; 1239 1240 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1241 if (ln != NULL) 1242 ln->ln_state = ND6_LLINFO_NOSTATE; 1243 1244 return (ln); 1245 } 1246 1247 /* 1248 * Test whether a given IPv6 address is a neighbor or not, ignoring 1249 * the actual neighbor cache. The neighbor cache is ignored in order 1250 * to not reenter the routing code from within itself. 1251 */ 1252 static int 1253 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1254 { 1255 struct nd_prefix *pr; 1256 struct ifaddr *ifa; 1257 struct rt_addrinfo info; 1258 struct sockaddr_in6 rt_key; 1259 const struct sockaddr *dst6; 1260 uint64_t genid; 1261 int error, fibnum; 1262 1263 /* 1264 * A link-local address is always a neighbor. 1265 * XXX: a link does not necessarily specify a single interface. 1266 */ 1267 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1268 struct sockaddr_in6 sin6_copy; 1269 u_int32_t zone; 1270 1271 /* 1272 * We need sin6_copy since sa6_recoverscope() may modify the 1273 * content (XXX). 1274 */ 1275 sin6_copy = *addr; 1276 if (sa6_recoverscope(&sin6_copy)) 1277 return (0); /* XXX: should be impossible */ 1278 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1279 return (0); 1280 if (sin6_copy.sin6_scope_id == zone) 1281 return (1); 1282 else 1283 return (0); 1284 } 1285 1286 bzero(&rt_key, sizeof(rt_key)); 1287 bzero(&info, sizeof(info)); 1288 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1289 1290 /* 1291 * If the address matches one of our addresses, 1292 * it should be a neighbor. 1293 * If the address matches one of our on-link prefixes, it should be a 1294 * neighbor. 1295 */ 1296 ND6_RLOCK(); 1297 restart: 1298 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1299 if (pr->ndpr_ifp != ifp) 1300 continue; 1301 1302 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1303 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1304 1305 /* 1306 * We only need to check all FIBs if add_addr_allfibs 1307 * is unset. If set, checking any FIB will suffice. 1308 */ 1309 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1310 for (; fibnum < rt_numfibs; fibnum++) { 1311 genid = V_nd6_list_genid; 1312 ND6_RUNLOCK(); 1313 1314 /* 1315 * Restore length field before 1316 * retrying lookup 1317 */ 1318 rt_key.sin6_len = sizeof(rt_key); 1319 error = rib_lookup_info(fibnum, dst6, 0, 0, 1320 &info); 1321 1322 ND6_RLOCK(); 1323 if (genid != V_nd6_list_genid) 1324 goto restart; 1325 if (error == 0) 1326 break; 1327 } 1328 if (error != 0) 1329 continue; 1330 1331 /* 1332 * This is the case where multiple interfaces 1333 * have the same prefix, but only one is installed 1334 * into the routing table and that prefix entry 1335 * is not the one being examined here. In the case 1336 * where RADIX_MPATH is enabled, multiple route 1337 * entries (of the same rt_key value) will be 1338 * installed because the interface addresses all 1339 * differ. 1340 */ 1341 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1342 &rt_key.sin6_addr)) 1343 continue; 1344 } 1345 1346 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1347 &addr->sin6_addr, &pr->ndpr_mask)) { 1348 ND6_RUNLOCK(); 1349 return (1); 1350 } 1351 } 1352 ND6_RUNLOCK(); 1353 1354 /* 1355 * If the address is assigned on the node of the other side of 1356 * a p2p interface, the address should be a neighbor. 1357 */ 1358 if (ifp->if_flags & IFF_POINTOPOINT) { 1359 struct epoch_tracker et; 1360 1361 NET_EPOCH_ENTER(et); 1362 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1363 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1364 continue; 1365 if (ifa->ifa_dstaddr != NULL && 1366 sa_equal(addr, ifa->ifa_dstaddr)) { 1367 NET_EPOCH_EXIT(et); 1368 return 1; 1369 } 1370 } 1371 NET_EPOCH_EXIT(et); 1372 } 1373 1374 /* 1375 * If the default router list is empty, all addresses are regarded 1376 * as on-link, and thus, as a neighbor. 1377 */ 1378 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1379 TAILQ_EMPTY(&V_nd_defrouter) && 1380 V_nd6_defifindex == ifp->if_index) { 1381 return (1); 1382 } 1383 1384 return (0); 1385 } 1386 1387 1388 /* 1389 * Detect if a given IPv6 address identifies a neighbor on a given link. 1390 * XXX: should take care of the destination of a p2p link? 1391 */ 1392 int 1393 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1394 { 1395 struct llentry *lle; 1396 int rc = 0; 1397 1398 NET_EPOCH_ASSERT(); 1399 IF_AFDATA_UNLOCK_ASSERT(ifp); 1400 if (nd6_is_new_addr_neighbor(addr, ifp)) 1401 return (1); 1402 1403 /* 1404 * Even if the address matches none of our addresses, it might be 1405 * in the neighbor cache. 1406 */ 1407 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1408 LLE_RUNLOCK(lle); 1409 rc = 1; 1410 } 1411 return (rc); 1412 } 1413 1414 /* 1415 * Free an nd6 llinfo entry. 1416 * Since the function would cause significant changes in the kernel, DO NOT 1417 * make it global, unless you have a strong reason for the change, and are sure 1418 * that the change is safe. 1419 * 1420 * Set noinline to be dtrace-friendly 1421 */ 1422 static __noinline void 1423 nd6_free(struct llentry **lnp, int gc) 1424 { 1425 struct ifnet *ifp; 1426 struct llentry *ln; 1427 struct nd_defrouter *dr; 1428 1429 ln = *lnp; 1430 *lnp = NULL; 1431 1432 LLE_WLOCK_ASSERT(ln); 1433 ND6_RLOCK_ASSERT(); 1434 1435 ifp = lltable_get_ifp(ln->lle_tbl); 1436 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1437 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1438 else 1439 dr = NULL; 1440 ND6_RUNLOCK(); 1441 1442 if ((ln->la_flags & LLE_DELETED) == 0) 1443 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1444 1445 /* 1446 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1447 * even though it is not harmful, it was not really necessary. 1448 */ 1449 1450 /* cancel timer */ 1451 nd6_llinfo_settimer_locked(ln, -1); 1452 1453 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1454 if (dr != NULL && dr->expire && 1455 ln->ln_state == ND6_LLINFO_STALE && gc) { 1456 /* 1457 * If the reason for the deletion is just garbage 1458 * collection, and the neighbor is an active default 1459 * router, do not delete it. Instead, reset the GC 1460 * timer using the router's lifetime. 1461 * Simply deleting the entry would affect default 1462 * router selection, which is not necessarily a good 1463 * thing, especially when we're using router preference 1464 * values. 1465 * XXX: the check for ln_state would be redundant, 1466 * but we intentionally keep it just in case. 1467 */ 1468 if (dr->expire > time_uptime) 1469 nd6_llinfo_settimer_locked(ln, 1470 (dr->expire - time_uptime) * hz); 1471 else 1472 nd6_llinfo_settimer_locked(ln, 1473 (long)V_nd6_gctimer * hz); 1474 1475 LLE_REMREF(ln); 1476 LLE_WUNLOCK(ln); 1477 defrouter_rele(dr); 1478 return; 1479 } 1480 1481 if (dr) { 1482 /* 1483 * Unreachablity of a router might affect the default 1484 * router selection and on-link detection of advertised 1485 * prefixes. 1486 */ 1487 1488 /* 1489 * Temporarily fake the state to choose a new default 1490 * router and to perform on-link determination of 1491 * prefixes correctly. 1492 * Below the state will be set correctly, 1493 * or the entry itself will be deleted. 1494 */ 1495 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1496 } 1497 1498 if (ln->ln_router || dr) { 1499 1500 /* 1501 * We need to unlock to avoid a LOR with rt6_flush() with the 1502 * rnh and for the calls to pfxlist_onlink_check() and 1503 * defrouter_select_fib() in the block further down for calls 1504 * into nd6_lookup(). We still hold a ref. 1505 */ 1506 LLE_WUNLOCK(ln); 1507 1508 /* 1509 * rt6_flush must be called whether or not the neighbor 1510 * is in the Default Router List. 1511 * See a corresponding comment in nd6_na_input(). 1512 */ 1513 rt6_flush(&ln->r_l3addr.addr6, ifp); 1514 } 1515 1516 if (dr) { 1517 /* 1518 * Since defrouter_select_fib() does not affect the 1519 * on-link determination and MIP6 needs the check 1520 * before the default router selection, we perform 1521 * the check now. 1522 */ 1523 pfxlist_onlink_check(); 1524 1525 /* 1526 * Refresh default router list. 1527 */ 1528 defrouter_select_fib(dr->ifp->if_fib); 1529 } 1530 1531 /* 1532 * If this entry was added by an on-link redirect, remove the 1533 * corresponding host route. 1534 */ 1535 if (ln->la_flags & LLE_REDIRECT) 1536 nd6_free_redirect(ln); 1537 1538 if (ln->ln_router || dr) 1539 LLE_WLOCK(ln); 1540 } 1541 1542 /* 1543 * Save to unlock. We still hold an extra reference and will not 1544 * free(9) in llentry_free() if someone else holds one as well. 1545 */ 1546 LLE_WUNLOCK(ln); 1547 IF_AFDATA_LOCK(ifp); 1548 LLE_WLOCK(ln); 1549 /* Guard against race with other llentry_free(). */ 1550 if (ln->la_flags & LLE_LINKED) { 1551 /* Remove callout reference */ 1552 LLE_REMREF(ln); 1553 lltable_unlink_entry(ln->lle_tbl, ln); 1554 } 1555 IF_AFDATA_UNLOCK(ifp); 1556 1557 llentry_free(ln); 1558 if (dr != NULL) 1559 defrouter_rele(dr); 1560 } 1561 1562 static int 1563 nd6_isdynrte(const struct rtentry *rt, void *xap) 1564 { 1565 1566 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1567 return (1); 1568 1569 return (0); 1570 } 1571 /* 1572 * Remove the rtentry for the given llentry, 1573 * both of which were installed by a redirect. 1574 */ 1575 static void 1576 nd6_free_redirect(const struct llentry *ln) 1577 { 1578 int fibnum; 1579 struct sockaddr_in6 sin6; 1580 struct rt_addrinfo info; 1581 1582 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1583 memset(&info, 0, sizeof(info)); 1584 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1585 info.rti_filter = nd6_isdynrte; 1586 1587 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1588 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1589 } 1590 1591 /* 1592 * Rejuvenate this function for routing operations related 1593 * processing. 1594 */ 1595 void 1596 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1597 { 1598 struct sockaddr_in6 *gateway; 1599 struct nd_defrouter *dr; 1600 struct ifnet *ifp; 1601 1602 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1603 ifp = rt->rt_ifp; 1604 1605 switch (req) { 1606 case RTM_ADD: 1607 break; 1608 1609 case RTM_DELETE: 1610 if (!ifp) 1611 return; 1612 /* 1613 * Only indirect routes are interesting. 1614 */ 1615 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1616 return; 1617 /* 1618 * check for default route 1619 */ 1620 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1621 &SIN6(rt_key(rt))->sin6_addr)) { 1622 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1623 if (dr != NULL) { 1624 dr->installed = 0; 1625 defrouter_rele(dr); 1626 } 1627 } 1628 break; 1629 } 1630 } 1631 1632 1633 int 1634 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1635 { 1636 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1637 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1638 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1639 struct epoch_tracker et; 1640 int error = 0; 1641 1642 if (ifp->if_afdata[AF_INET6] == NULL) 1643 return (EPFNOSUPPORT); 1644 switch (cmd) { 1645 case OSIOCGIFINFO_IN6: 1646 #define ND ndi->ndi 1647 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1648 bzero(&ND, sizeof(ND)); 1649 ND.linkmtu = IN6_LINKMTU(ifp); 1650 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1651 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1652 ND.reachable = ND_IFINFO(ifp)->reachable; 1653 ND.retrans = ND_IFINFO(ifp)->retrans; 1654 ND.flags = ND_IFINFO(ifp)->flags; 1655 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1656 ND.chlim = ND_IFINFO(ifp)->chlim; 1657 break; 1658 case SIOCGIFINFO_IN6: 1659 ND = *ND_IFINFO(ifp); 1660 break; 1661 case SIOCSIFINFO_IN6: 1662 /* 1663 * used to change host variables from userland. 1664 * intended for a use on router to reflect RA configurations. 1665 */ 1666 /* 0 means 'unspecified' */ 1667 if (ND.linkmtu != 0) { 1668 if (ND.linkmtu < IPV6_MMTU || 1669 ND.linkmtu > IN6_LINKMTU(ifp)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1674 } 1675 1676 if (ND.basereachable != 0) { 1677 int obasereachable = ND_IFINFO(ifp)->basereachable; 1678 1679 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1680 if (ND.basereachable != obasereachable) 1681 ND_IFINFO(ifp)->reachable = 1682 ND_COMPUTE_RTIME(ND.basereachable); 1683 } 1684 if (ND.retrans != 0) 1685 ND_IFINFO(ifp)->retrans = ND.retrans; 1686 if (ND.chlim != 0) 1687 ND_IFINFO(ifp)->chlim = ND.chlim; 1688 /* FALLTHROUGH */ 1689 case SIOCSIFINFO_FLAGS: 1690 { 1691 struct ifaddr *ifa; 1692 struct in6_ifaddr *ia; 1693 1694 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1695 !(ND.flags & ND6_IFF_IFDISABLED)) { 1696 /* ifdisabled 1->0 transision */ 1697 1698 /* 1699 * If the interface is marked as ND6_IFF_IFDISABLED and 1700 * has an link-local address with IN6_IFF_DUPLICATED, 1701 * do not clear ND6_IFF_IFDISABLED. 1702 * See RFC 4862, Section 5.4.5. 1703 */ 1704 NET_EPOCH_ENTER(et); 1705 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1706 if (ifa->ifa_addr->sa_family != AF_INET6) 1707 continue; 1708 ia = (struct in6_ifaddr *)ifa; 1709 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1710 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1711 break; 1712 } 1713 NET_EPOCH_EXIT(et); 1714 1715 if (ifa != NULL) { 1716 /* LLA is duplicated. */ 1717 ND.flags |= ND6_IFF_IFDISABLED; 1718 log(LOG_ERR, "Cannot enable an interface" 1719 " with a link-local address marked" 1720 " duplicate.\n"); 1721 } else { 1722 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1723 if (ifp->if_flags & IFF_UP) 1724 in6_if_up(ifp); 1725 } 1726 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1727 (ND.flags & ND6_IFF_IFDISABLED)) { 1728 /* ifdisabled 0->1 transision */ 1729 /* Mark all IPv6 address as tentative. */ 1730 1731 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1732 if (V_ip6_dad_count > 0 && 1733 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1734 NET_EPOCH_ENTER(et); 1735 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1736 ifa_link) { 1737 if (ifa->ifa_addr->sa_family != 1738 AF_INET6) 1739 continue; 1740 ia = (struct in6_ifaddr *)ifa; 1741 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1742 } 1743 NET_EPOCH_EXIT(et); 1744 } 1745 } 1746 1747 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1748 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1749 /* auto_linklocal 0->1 transision */ 1750 1751 /* If no link-local address on ifp, configure */ 1752 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1753 in6_ifattach(ifp, NULL); 1754 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1755 ifp->if_flags & IFF_UP) { 1756 /* 1757 * When the IF already has 1758 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1759 * address is assigned, and IFF_UP, try to 1760 * assign one. 1761 */ 1762 NET_EPOCH_ENTER(et); 1763 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1764 ifa_link) { 1765 if (ifa->ifa_addr->sa_family != 1766 AF_INET6) 1767 continue; 1768 ia = (struct in6_ifaddr *)ifa; 1769 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1770 break; 1771 } 1772 NET_EPOCH_EXIT(et); 1773 if (ifa != NULL) 1774 /* No LLA is configured. */ 1775 in6_ifattach(ifp, NULL); 1776 } 1777 } 1778 ND_IFINFO(ifp)->flags = ND.flags; 1779 break; 1780 } 1781 #undef ND 1782 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1783 /* sync kernel routing table with the default router list */ 1784 defrouter_reset(); 1785 defrouter_select(); 1786 break; 1787 case SIOCSPFXFLUSH_IN6: 1788 { 1789 /* flush all the prefix advertised by routers */ 1790 struct in6_ifaddr *ia, *ia_next; 1791 struct nd_prefix *pr, *next; 1792 struct nd_prhead prl; 1793 1794 LIST_INIT(&prl); 1795 1796 ND6_WLOCK(); 1797 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1798 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1799 continue; /* XXX */ 1800 nd6_prefix_unlink(pr, &prl); 1801 } 1802 ND6_WUNLOCK(); 1803 1804 while ((pr = LIST_FIRST(&prl)) != NULL) { 1805 LIST_REMOVE(pr, ndpr_entry); 1806 /* XXXRW: in6_ifaddrhead locking. */ 1807 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1808 ia_next) { 1809 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1810 continue; 1811 1812 if (ia->ia6_ndpr == pr) 1813 in6_purgeaddr(&ia->ia_ifa); 1814 } 1815 nd6_prefix_del(pr); 1816 } 1817 break; 1818 } 1819 case SIOCSRTRFLUSH_IN6: 1820 { 1821 /* flush all the default routers */ 1822 struct nd_drhead drq; 1823 struct nd_defrouter *dr; 1824 1825 TAILQ_INIT(&drq); 1826 1827 defrouter_reset(); 1828 1829 ND6_WLOCK(); 1830 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1831 defrouter_unlink(dr, &drq); 1832 ND6_WUNLOCK(); 1833 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1834 TAILQ_REMOVE(&drq, dr, dr_entry); 1835 defrouter_del(dr); 1836 } 1837 1838 defrouter_select(); 1839 break; 1840 } 1841 case SIOCGNBRINFO_IN6: 1842 { 1843 struct llentry *ln; 1844 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1845 1846 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1847 return (error); 1848 1849 NET_EPOCH_ENTER(et); 1850 ln = nd6_lookup(&nb_addr, 0, ifp); 1851 NET_EPOCH_EXIT(et); 1852 1853 if (ln == NULL) { 1854 error = EINVAL; 1855 break; 1856 } 1857 nbi->state = ln->ln_state; 1858 nbi->asked = ln->la_asked; 1859 nbi->isrouter = ln->ln_router; 1860 if (ln->la_expire == 0) 1861 nbi->expire = 0; 1862 else 1863 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1864 (time_second - time_uptime); 1865 LLE_RUNLOCK(ln); 1866 break; 1867 } 1868 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1869 ndif->ifindex = V_nd6_defifindex; 1870 break; 1871 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1872 return (nd6_setdefaultiface(ndif->ifindex)); 1873 } 1874 return (error); 1875 } 1876 1877 /* 1878 * Calculates new isRouter value based on provided parameters and 1879 * returns it. 1880 */ 1881 static int 1882 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1883 int ln_router) 1884 { 1885 1886 /* 1887 * ICMP6 type dependent behavior. 1888 * 1889 * NS: clear IsRouter if new entry 1890 * RS: clear IsRouter 1891 * RA: set IsRouter if there's lladdr 1892 * redir: clear IsRouter if new entry 1893 * 1894 * RA case, (1): 1895 * The spec says that we must set IsRouter in the following cases: 1896 * - If lladdr exist, set IsRouter. This means (1-5). 1897 * - If it is old entry (!newentry), set IsRouter. This means (7). 1898 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1899 * A quetion arises for (1) case. (1) case has no lladdr in the 1900 * neighbor cache, this is similar to (6). 1901 * This case is rare but we figured that we MUST NOT set IsRouter. 1902 * 1903 * is_new old_addr new_addr NS RS RA redir 1904 * D R 1905 * 0 n n (1) c ? s 1906 * 0 y n (2) c s s 1907 * 0 n y (3) c s s 1908 * 0 y y (4) c s s 1909 * 0 y y (5) c s s 1910 * 1 -- n (6) c c c s 1911 * 1 -- y (7) c c s c s 1912 * 1913 * (c=clear s=set) 1914 */ 1915 switch (type & 0xff) { 1916 case ND_NEIGHBOR_SOLICIT: 1917 /* 1918 * New entry must have is_router flag cleared. 1919 */ 1920 if (is_new) /* (6-7) */ 1921 ln_router = 0; 1922 break; 1923 case ND_REDIRECT: 1924 /* 1925 * If the icmp is a redirect to a better router, always set the 1926 * is_router flag. Otherwise, if the entry is newly created, 1927 * clear the flag. [RFC 2461, sec 8.3] 1928 */ 1929 if (code == ND_REDIRECT_ROUTER) 1930 ln_router = 1; 1931 else { 1932 if (is_new) /* (6-7) */ 1933 ln_router = 0; 1934 } 1935 break; 1936 case ND_ROUTER_SOLICIT: 1937 /* 1938 * is_router flag must always be cleared. 1939 */ 1940 ln_router = 0; 1941 break; 1942 case ND_ROUTER_ADVERT: 1943 /* 1944 * Mark an entry with lladdr as a router. 1945 */ 1946 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1947 (is_new && new_addr)) { /* (7) */ 1948 ln_router = 1; 1949 } 1950 break; 1951 } 1952 1953 return (ln_router); 1954 } 1955 1956 /* 1957 * Create neighbor cache entry and cache link-layer address, 1958 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1959 * 1960 * type - ICMP6 type 1961 * code - type dependent information 1962 * 1963 */ 1964 void 1965 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1966 int lladdrlen, int type, int code) 1967 { 1968 struct llentry *ln = NULL, *ln_tmp; 1969 int is_newentry; 1970 int do_update; 1971 int olladdr; 1972 int llchange; 1973 int flags; 1974 uint16_t router = 0; 1975 struct sockaddr_in6 sin6; 1976 struct mbuf *chain = NULL; 1977 u_char linkhdr[LLE_MAX_LINKHDR]; 1978 size_t linkhdrsize; 1979 int lladdr_off; 1980 1981 NET_EPOCH_ASSERT(); 1982 IF_AFDATA_UNLOCK_ASSERT(ifp); 1983 1984 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1985 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1986 1987 /* nothing must be updated for unspecified address */ 1988 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1989 return; 1990 1991 /* 1992 * Validation about ifp->if_addrlen and lladdrlen must be done in 1993 * the caller. 1994 * 1995 * XXX If the link does not have link-layer adderss, what should 1996 * we do? (ifp->if_addrlen == 0) 1997 * Spec says nothing in sections for RA, RS and NA. There's small 1998 * description on it in NS section (RFC 2461 7.2.3). 1999 */ 2000 flags = lladdr ? LLE_EXCLUSIVE : 0; 2001 ln = nd6_lookup(from, flags, ifp); 2002 is_newentry = 0; 2003 if (ln == NULL) { 2004 flags |= LLE_EXCLUSIVE; 2005 ln = nd6_alloc(from, 0, ifp); 2006 if (ln == NULL) 2007 return; 2008 2009 /* 2010 * Since we already know all the data for the new entry, 2011 * fill it before insertion. 2012 */ 2013 if (lladdr != NULL) { 2014 linkhdrsize = sizeof(linkhdr); 2015 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2016 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2017 return; 2018 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2019 lladdr_off); 2020 } 2021 2022 IF_AFDATA_WLOCK(ifp); 2023 LLE_WLOCK(ln); 2024 /* Prefer any existing lle over newly-created one */ 2025 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2026 if (ln_tmp == NULL) 2027 lltable_link_entry(LLTABLE6(ifp), ln); 2028 IF_AFDATA_WUNLOCK(ifp); 2029 if (ln_tmp == NULL) { 2030 /* No existing lle, mark as new entry (6,7) */ 2031 is_newentry = 1; 2032 if (lladdr != NULL) { /* (7) */ 2033 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2034 EVENTHANDLER_INVOKE(lle_event, ln, 2035 LLENTRY_RESOLVED); 2036 } 2037 } else { 2038 lltable_free_entry(LLTABLE6(ifp), ln); 2039 ln = ln_tmp; 2040 ln_tmp = NULL; 2041 } 2042 } 2043 /* do nothing if static ndp is set */ 2044 if ((ln->la_flags & LLE_STATIC)) { 2045 if (flags & LLE_EXCLUSIVE) 2046 LLE_WUNLOCK(ln); 2047 else 2048 LLE_RUNLOCK(ln); 2049 return; 2050 } 2051 2052 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2053 if (olladdr && lladdr) { 2054 llchange = bcmp(lladdr, ln->ll_addr, 2055 ifp->if_addrlen); 2056 } else if (!olladdr && lladdr) 2057 llchange = 1; 2058 else 2059 llchange = 0; 2060 2061 /* 2062 * newentry olladdr lladdr llchange (*=record) 2063 * 0 n n -- (1) 2064 * 0 y n -- (2) 2065 * 0 n y y (3) * STALE 2066 * 0 y y n (4) * 2067 * 0 y y y (5) * STALE 2068 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2069 * 1 -- y -- (7) * STALE 2070 */ 2071 2072 do_update = 0; 2073 if (is_newentry == 0 && llchange != 0) { 2074 do_update = 1; /* (3,5) */ 2075 2076 /* 2077 * Record source link-layer address 2078 * XXX is it dependent to ifp->if_type? 2079 */ 2080 linkhdrsize = sizeof(linkhdr); 2081 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2082 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2083 return; 2084 2085 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2086 lladdr_off) == 0) { 2087 /* Entry was deleted */ 2088 return; 2089 } 2090 2091 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2092 2093 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2094 2095 if (ln->la_hold != NULL) 2096 nd6_grab_holdchain(ln, &chain, &sin6); 2097 } 2098 2099 /* Calculates new router status */ 2100 router = nd6_is_router(type, code, is_newentry, olladdr, 2101 lladdr != NULL ? 1 : 0, ln->ln_router); 2102 2103 ln->ln_router = router; 2104 /* Mark non-router redirects with special flag */ 2105 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2106 ln->la_flags |= LLE_REDIRECT; 2107 2108 if (flags & LLE_EXCLUSIVE) 2109 LLE_WUNLOCK(ln); 2110 else 2111 LLE_RUNLOCK(ln); 2112 2113 if (chain != NULL) 2114 nd6_flush_holdchain(ifp, chain, &sin6); 2115 2116 /* 2117 * When the link-layer address of a router changes, select the 2118 * best router again. In particular, when the neighbor entry is newly 2119 * created, it might affect the selection policy. 2120 * Question: can we restrict the first condition to the "is_newentry" 2121 * case? 2122 * XXX: when we hear an RA from a new router with the link-layer 2123 * address option, defrouter_select_fib() is called twice, since 2124 * defrtrlist_update called the function as well. However, I believe 2125 * we can compromise the overhead, since it only happens the first 2126 * time. 2127 * XXX: although defrouter_select_fib() should not have a bad effect 2128 * for those are not autoconfigured hosts, we explicitly avoid such 2129 * cases for safety. 2130 */ 2131 if ((do_update || is_newentry) && router && 2132 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2133 /* 2134 * guaranteed recursion 2135 */ 2136 defrouter_select_fib(ifp->if_fib); 2137 } 2138 } 2139 2140 static void 2141 nd6_slowtimo(void *arg) 2142 { 2143 struct epoch_tracker et; 2144 CURVNET_SET((struct vnet *) arg); 2145 struct nd_ifinfo *nd6if; 2146 struct ifnet *ifp; 2147 2148 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2149 nd6_slowtimo, curvnet); 2150 NET_EPOCH_ENTER(et); 2151 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2152 if (ifp->if_afdata[AF_INET6] == NULL) 2153 continue; 2154 nd6if = ND_IFINFO(ifp); 2155 if (nd6if->basereachable && /* already initialized */ 2156 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2157 /* 2158 * Since reachable time rarely changes by router 2159 * advertisements, we SHOULD insure that a new random 2160 * value gets recomputed at least once every few hours. 2161 * (RFC 2461, 6.3.4) 2162 */ 2163 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2164 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2165 } 2166 } 2167 NET_EPOCH_EXIT(et); 2168 CURVNET_RESTORE(); 2169 } 2170 2171 void 2172 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2173 struct sockaddr_in6 *sin6) 2174 { 2175 2176 LLE_WLOCK_ASSERT(ln); 2177 2178 *chain = ln->la_hold; 2179 ln->la_hold = NULL; 2180 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2181 2182 if (ln->ln_state == ND6_LLINFO_STALE) { 2183 2184 /* 2185 * The first time we send a packet to a 2186 * neighbor whose entry is STALE, we have 2187 * to change the state to DELAY and a sets 2188 * a timer to expire in DELAY_FIRST_PROBE_TIME 2189 * seconds to ensure do neighbor unreachability 2190 * detection on expiration. 2191 * (RFC 2461 7.3.3) 2192 */ 2193 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2194 } 2195 } 2196 2197 int 2198 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2199 struct sockaddr_in6 *dst, struct route *ro) 2200 { 2201 int error; 2202 int ip6len; 2203 struct ip6_hdr *ip6; 2204 struct m_tag *mtag; 2205 2206 #ifdef MAC 2207 mac_netinet6_nd6_send(ifp, m); 2208 #endif 2209 2210 /* 2211 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2212 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2213 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2214 * to be diverted to user space. When re-injected into the kernel, 2215 * send_output() will directly dispatch them to the outgoing interface. 2216 */ 2217 if (send_sendso_input_hook != NULL) { 2218 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2219 if (mtag != NULL) { 2220 ip6 = mtod(m, struct ip6_hdr *); 2221 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2222 /* Use the SEND socket */ 2223 error = send_sendso_input_hook(m, ifp, SND_OUT, 2224 ip6len); 2225 /* -1 == no app on SEND socket */ 2226 if (error == 0 || error != -1) 2227 return (error); 2228 } 2229 } 2230 2231 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2232 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2233 mtod(m, struct ip6_hdr *)); 2234 2235 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2236 origifp = ifp; 2237 2238 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2239 return (error); 2240 } 2241 2242 /* 2243 * Lookup link headerfor @sa_dst address. Stores found 2244 * data in @desten buffer. Copy of lle ln_flags can be also 2245 * saved in @pflags if @pflags is non-NULL. 2246 * 2247 * If destination LLE does not exists or lle state modification 2248 * is required, call "slow" version. 2249 * 2250 * Return values: 2251 * - 0 on success (address copied to buffer). 2252 * - EWOULDBLOCK (no local error, but address is still unresolved) 2253 * - other errors (alloc failure, etc) 2254 */ 2255 int 2256 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2257 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2258 struct llentry **plle) 2259 { 2260 struct llentry *ln = NULL; 2261 const struct sockaddr_in6 *dst6; 2262 2263 NET_EPOCH_ASSERT(); 2264 2265 if (pflags != NULL) 2266 *pflags = 0; 2267 2268 dst6 = (const struct sockaddr_in6 *)sa_dst; 2269 2270 /* discard the packet if IPv6 operation is disabled on the interface */ 2271 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2272 m_freem(m); 2273 return (ENETDOWN); /* better error? */ 2274 } 2275 2276 if (m != NULL && m->m_flags & M_MCAST) { 2277 switch (ifp->if_type) { 2278 case IFT_ETHER: 2279 case IFT_L2VLAN: 2280 case IFT_BRIDGE: 2281 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2282 desten); 2283 return (0); 2284 default: 2285 m_freem(m); 2286 return (EAFNOSUPPORT); 2287 } 2288 } 2289 2290 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2291 ifp); 2292 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2293 /* Entry found, let's copy lle info */ 2294 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2295 if (pflags != NULL) 2296 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2297 /* Check if we have feedback request from nd6 timer */ 2298 if (ln->r_skip_req != 0) { 2299 LLE_REQ_LOCK(ln); 2300 ln->r_skip_req = 0; /* Notify that entry was used */ 2301 ln->lle_hittime = time_uptime; 2302 LLE_REQ_UNLOCK(ln); 2303 } 2304 if (plle) { 2305 LLE_ADDREF(ln); 2306 *plle = ln; 2307 LLE_WUNLOCK(ln); 2308 } 2309 return (0); 2310 } else if (plle && ln) 2311 LLE_WUNLOCK(ln); 2312 2313 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2314 } 2315 2316 2317 /* 2318 * Do L2 address resolution for @sa_dst address. Stores found 2319 * address in @desten buffer. Copy of lle ln_flags can be also 2320 * saved in @pflags if @pflags is non-NULL. 2321 * 2322 * Heavy version. 2323 * Function assume that destination LLE does not exist, 2324 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2325 * 2326 * Set noinline to be dtrace-friendly 2327 */ 2328 static __noinline int 2329 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2330 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2331 struct llentry **plle) 2332 { 2333 struct llentry *lle = NULL, *lle_tmp; 2334 struct in6_addr *psrc, src; 2335 int send_ns, ll_len; 2336 char *lladdr; 2337 2338 NET_EPOCH_ASSERT(); 2339 2340 /* 2341 * Address resolution or Neighbor Unreachability Detection 2342 * for the next hop. 2343 * At this point, the destination of the packet must be a unicast 2344 * or an anycast address(i.e. not a multicast). 2345 */ 2346 if (lle == NULL) { 2347 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2348 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2349 /* 2350 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2351 * the condition below is not very efficient. But we believe 2352 * it is tolerable, because this should be a rare case. 2353 */ 2354 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2355 if (lle == NULL) { 2356 char ip6buf[INET6_ADDRSTRLEN]; 2357 log(LOG_DEBUG, 2358 "nd6_output: can't allocate llinfo for %s " 2359 "(ln=%p)\n", 2360 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2361 m_freem(m); 2362 return (ENOBUFS); 2363 } 2364 2365 IF_AFDATA_WLOCK(ifp); 2366 LLE_WLOCK(lle); 2367 /* Prefer any existing entry over newly-created one */ 2368 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2369 if (lle_tmp == NULL) 2370 lltable_link_entry(LLTABLE6(ifp), lle); 2371 IF_AFDATA_WUNLOCK(ifp); 2372 if (lle_tmp != NULL) { 2373 lltable_free_entry(LLTABLE6(ifp), lle); 2374 lle = lle_tmp; 2375 lle_tmp = NULL; 2376 } 2377 } 2378 } 2379 if (lle == NULL) { 2380 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2381 m_freem(m); 2382 return (ENOBUFS); 2383 } 2384 2385 if (m != NULL) 2386 m_freem(m); 2387 return (ENOBUFS); 2388 } 2389 2390 LLE_WLOCK_ASSERT(lle); 2391 2392 /* 2393 * The first time we send a packet to a neighbor whose entry is 2394 * STALE, we have to change the state to DELAY and a sets a timer to 2395 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2396 * neighbor unreachability detection on expiration. 2397 * (RFC 2461 7.3.3) 2398 */ 2399 if (lle->ln_state == ND6_LLINFO_STALE) 2400 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2401 2402 /* 2403 * If the neighbor cache entry has a state other than INCOMPLETE 2404 * (i.e. its link-layer address is already resolved), just 2405 * send the packet. 2406 */ 2407 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2408 if (flags & LLE_ADDRONLY) { 2409 lladdr = lle->ll_addr; 2410 ll_len = ifp->if_addrlen; 2411 } else { 2412 lladdr = lle->r_linkdata; 2413 ll_len = lle->r_hdrlen; 2414 } 2415 bcopy(lladdr, desten, ll_len); 2416 if (pflags != NULL) 2417 *pflags = lle->la_flags; 2418 if (plle) { 2419 LLE_ADDREF(lle); 2420 *plle = lle; 2421 } 2422 LLE_WUNLOCK(lle); 2423 return (0); 2424 } 2425 2426 /* 2427 * There is a neighbor cache entry, but no ethernet address 2428 * response yet. Append this latest packet to the end of the 2429 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2430 * the oldest packet in the queue will be removed. 2431 */ 2432 2433 if (lle->la_hold != NULL) { 2434 struct mbuf *m_hold; 2435 int i; 2436 2437 i = 0; 2438 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2439 i++; 2440 if (m_hold->m_nextpkt == NULL) { 2441 m_hold->m_nextpkt = m; 2442 break; 2443 } 2444 } 2445 while (i >= V_nd6_maxqueuelen) { 2446 m_hold = lle->la_hold; 2447 lle->la_hold = lle->la_hold->m_nextpkt; 2448 m_freem(m_hold); 2449 i--; 2450 } 2451 } else { 2452 lle->la_hold = m; 2453 } 2454 2455 /* 2456 * If there has been no NS for the neighbor after entering the 2457 * INCOMPLETE state, send the first solicitation. 2458 * Note that for newly-created lle la_asked will be 0, 2459 * so we will transition from ND6_LLINFO_NOSTATE to 2460 * ND6_LLINFO_INCOMPLETE state here. 2461 */ 2462 psrc = NULL; 2463 send_ns = 0; 2464 if (lle->la_asked == 0) { 2465 lle->la_asked++; 2466 send_ns = 1; 2467 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2468 2469 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2470 } 2471 LLE_WUNLOCK(lle); 2472 if (send_ns != 0) 2473 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2474 2475 return (EWOULDBLOCK); 2476 } 2477 2478 /* 2479 * Do L2 address resolution for @sa_dst address. Stores found 2480 * address in @desten buffer. Copy of lle ln_flags can be also 2481 * saved in @pflags if @pflags is non-NULL. 2482 * 2483 * Return values: 2484 * - 0 on success (address copied to buffer). 2485 * - EWOULDBLOCK (no local error, but address is still unresolved) 2486 * - other errors (alloc failure, etc) 2487 */ 2488 int 2489 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2490 char *desten, uint32_t *pflags) 2491 { 2492 int error; 2493 2494 flags |= LLE_ADDRONLY; 2495 error = nd6_resolve_slow(ifp, flags, NULL, 2496 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2497 return (error); 2498 } 2499 2500 int 2501 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2502 struct sockaddr_in6 *dst) 2503 { 2504 struct mbuf *m, *m_head; 2505 int error = 0; 2506 2507 m_head = chain; 2508 2509 while (m_head) { 2510 m = m_head; 2511 m_head = m_head->m_nextpkt; 2512 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2513 } 2514 2515 /* 2516 * XXX 2517 * note that intermediate errors are blindly ignored 2518 */ 2519 return (error); 2520 } 2521 2522 static int 2523 nd6_need_cache(struct ifnet *ifp) 2524 { 2525 /* 2526 * XXX: we currently do not make neighbor cache on any interface 2527 * other than Ethernet and GIF. 2528 * 2529 * RFC2893 says: 2530 * - unidirectional tunnels needs no ND 2531 */ 2532 switch (ifp->if_type) { 2533 case IFT_ETHER: 2534 case IFT_IEEE1394: 2535 case IFT_L2VLAN: 2536 case IFT_INFINIBAND: 2537 case IFT_BRIDGE: 2538 case IFT_PROPVIRTUAL: 2539 return (1); 2540 default: 2541 return (0); 2542 } 2543 } 2544 2545 /* 2546 * Add pernament ND6 link-layer record for given 2547 * interface address. 2548 * 2549 * Very similar to IPv4 arp_ifinit(), but: 2550 * 1) IPv6 DAD is performed in different place 2551 * 2) It is called by IPv6 protocol stack in contrast to 2552 * arp_ifinit() which is typically called in SIOCSIFADDR 2553 * driver ioctl handler. 2554 * 2555 */ 2556 int 2557 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2558 { 2559 struct ifnet *ifp; 2560 struct llentry *ln, *ln_tmp; 2561 struct sockaddr *dst; 2562 2563 ifp = ia->ia_ifa.ifa_ifp; 2564 if (nd6_need_cache(ifp) == 0) 2565 return (0); 2566 2567 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2568 dst = (struct sockaddr *)&ia->ia_addr; 2569 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2570 if (ln == NULL) 2571 return (ENOBUFS); 2572 2573 IF_AFDATA_WLOCK(ifp); 2574 LLE_WLOCK(ln); 2575 /* Unlink any entry if exists */ 2576 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2577 if (ln_tmp != NULL) 2578 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2579 lltable_link_entry(LLTABLE6(ifp), ln); 2580 IF_AFDATA_WUNLOCK(ifp); 2581 2582 if (ln_tmp != NULL) 2583 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2584 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2585 2586 LLE_WUNLOCK(ln); 2587 if (ln_tmp != NULL) 2588 llentry_free(ln_tmp); 2589 2590 return (0); 2591 } 2592 2593 /* 2594 * Removes either all lle entries for given @ia, or lle 2595 * corresponding to @ia address. 2596 */ 2597 void 2598 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2599 { 2600 struct sockaddr_in6 mask, addr; 2601 struct sockaddr *saddr, *smask; 2602 struct ifnet *ifp; 2603 2604 ifp = ia->ia_ifa.ifa_ifp; 2605 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2606 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2607 saddr = (struct sockaddr *)&addr; 2608 smask = (struct sockaddr *)&mask; 2609 2610 if (all != 0) 2611 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2612 else 2613 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2614 } 2615 2616 static void 2617 clear_llinfo_pqueue(struct llentry *ln) 2618 { 2619 struct mbuf *m_hold, *m_hold_next; 2620 2621 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2622 m_hold_next = m_hold->m_nextpkt; 2623 m_freem(m_hold); 2624 } 2625 2626 ln->la_hold = NULL; 2627 } 2628 2629 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2630 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2631 2632 SYSCTL_DECL(_net_inet6_icmp6); 2633 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2634 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2635 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2636 "NDP default router list"); 2637 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2638 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2639 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2640 "NDP prefix list"); 2641 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2642 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2643 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2644 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2645 2646 static int 2647 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2648 { 2649 struct in6_defrouter d; 2650 struct nd_defrouter *dr; 2651 int error; 2652 2653 if (req->newptr != NULL) 2654 return (EPERM); 2655 2656 error = sysctl_wire_old_buffer(req, 0); 2657 if (error != 0) 2658 return (error); 2659 2660 bzero(&d, sizeof(d)); 2661 d.rtaddr.sin6_family = AF_INET6; 2662 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2663 2664 ND6_RLOCK(); 2665 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2666 d.rtaddr.sin6_addr = dr->rtaddr; 2667 error = sa6_recoverscope(&d.rtaddr); 2668 if (error != 0) 2669 break; 2670 d.flags = dr->raflags; 2671 d.rtlifetime = dr->rtlifetime; 2672 d.expire = dr->expire + (time_second - time_uptime); 2673 d.if_index = dr->ifp->if_index; 2674 error = SYSCTL_OUT(req, &d, sizeof(d)); 2675 if (error != 0) 2676 break; 2677 } 2678 ND6_RUNLOCK(); 2679 return (error); 2680 } 2681 2682 static int 2683 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2684 { 2685 struct in6_prefix p; 2686 struct sockaddr_in6 s6; 2687 struct nd_prefix *pr; 2688 struct nd_pfxrouter *pfr; 2689 time_t maxexpire; 2690 int error; 2691 char ip6buf[INET6_ADDRSTRLEN]; 2692 2693 if (req->newptr) 2694 return (EPERM); 2695 2696 error = sysctl_wire_old_buffer(req, 0); 2697 if (error != 0) 2698 return (error); 2699 2700 bzero(&p, sizeof(p)); 2701 p.origin = PR_ORIG_RA; 2702 bzero(&s6, sizeof(s6)); 2703 s6.sin6_family = AF_INET6; 2704 s6.sin6_len = sizeof(s6); 2705 2706 ND6_RLOCK(); 2707 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2708 p.prefix = pr->ndpr_prefix; 2709 if (sa6_recoverscope(&p.prefix)) { 2710 log(LOG_ERR, "scope error in prefix list (%s)\n", 2711 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2712 /* XXX: press on... */ 2713 } 2714 p.raflags = pr->ndpr_raf; 2715 p.prefixlen = pr->ndpr_plen; 2716 p.vltime = pr->ndpr_vltime; 2717 p.pltime = pr->ndpr_pltime; 2718 p.if_index = pr->ndpr_ifp->if_index; 2719 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2720 p.expire = 0; 2721 else { 2722 /* XXX: we assume time_t is signed. */ 2723 maxexpire = (-1) & 2724 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2725 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2726 p.expire = pr->ndpr_lastupdate + 2727 pr->ndpr_vltime + 2728 (time_second - time_uptime); 2729 else 2730 p.expire = maxexpire; 2731 } 2732 p.refcnt = pr->ndpr_addrcnt; 2733 p.flags = pr->ndpr_stateflags; 2734 p.advrtrs = 0; 2735 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2736 p.advrtrs++; 2737 error = SYSCTL_OUT(req, &p, sizeof(p)); 2738 if (error != 0) 2739 break; 2740 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2741 s6.sin6_addr = pfr->router->rtaddr; 2742 if (sa6_recoverscope(&s6)) 2743 log(LOG_ERR, 2744 "scope error in prefix list (%s)\n", 2745 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2746 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2747 if (error != 0) 2748 goto out; 2749 } 2750 } 2751 out: 2752 ND6_RUNLOCK(); 2753 return (error); 2754 } 2755