1 /* $FreeBSD$ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mac.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/callout.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/time.h> 45 #include <sys/kernel.h> 46 #include <sys/protosw.h> 47 #include <sys/errno.h> 48 #include <sys/syslog.h> 49 #include <sys/queue.h> 50 #include <sys/sysctl.h> 51 52 #include <net/if.h> 53 #include <net/if_arc.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 #include <net/iso88025.h> 57 #include <net/fddi.h> 58 #include <net/route.h> 59 60 #include <netinet/in.h> 61 #include <netinet/if_ether.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet6/ip6_var.h> 65 #include <netinet6/scope6_var.h> 66 #include <netinet6/nd6.h> 67 #include <netinet/icmp6.h> 68 69 #include <sys/limits.h> 70 71 #include <security/mac/mac_framework.h> 72 73 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 74 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 75 76 #define SIN6(s) ((struct sockaddr_in6 *)s) 77 #define SDL(s) ((struct sockaddr_dl *)s) 78 79 /* timer values */ 80 int nd6_prune = 1; /* walk list every 1 seconds */ 81 int nd6_delay = 5; /* delay first probe time 5 second */ 82 int nd6_umaxtries = 3; /* maximum unicast query */ 83 int nd6_mmaxtries = 3; /* maximum multicast query */ 84 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 85 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 86 87 /* preventing too many loops in ND option parsing */ 88 int nd6_maxndopt = 10; /* max # of ND options allowed */ 89 90 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 91 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 92 93 #ifdef ND6_DEBUG 94 int nd6_debug = 1; 95 #else 96 int nd6_debug = 0; 97 #endif 98 99 /* for debugging? */ 100 static int nd6_inuse, nd6_allocated; 101 102 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 103 struct nd_drhead nd_defrouter; 104 struct nd_prhead nd_prefix = { 0 }; 105 106 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 107 static struct sockaddr_in6 all1_sa; 108 109 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 110 struct ifnet *)); 111 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 112 static void nd6_slowtimo __P((void *)); 113 static int regen_tmpaddr __P((struct in6_ifaddr *)); 114 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 115 static void nd6_llinfo_timer __P((void *)); 116 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *)); 117 118 struct callout nd6_slowtimo_ch; 119 struct callout nd6_timer_ch; 120 extern struct callout in6_tmpaddrtimer_ch; 121 122 void 123 nd6_init(void) 124 { 125 static int nd6_init_done = 0; 126 int i; 127 128 if (nd6_init_done) { 129 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 130 return; 131 } 132 133 all1_sa.sin6_family = AF_INET6; 134 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 135 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 136 all1_sa.sin6_addr.s6_addr[i] = 0xff; 137 138 /* initialization of the default router list */ 139 TAILQ_INIT(&nd_defrouter); 140 141 nd6_init_done = 1; 142 143 /* start timer */ 144 callout_init(&nd6_slowtimo_ch, 0); 145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 146 nd6_slowtimo, NULL); 147 } 148 149 struct nd_ifinfo * 150 nd6_ifattach(struct ifnet *ifp) 151 { 152 struct nd_ifinfo *nd; 153 154 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 155 bzero(nd, sizeof(*nd)); 156 157 nd->initialized = 1; 158 159 nd->chlim = IPV6_DEFHLIM; 160 nd->basereachable = REACHABLE_TIME; 161 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 162 nd->retrans = RETRANS_TIMER; 163 /* 164 * Note that the default value of ip6_accept_rtadv is 0, which means 165 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 166 * here. 167 */ 168 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 169 170 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 171 nd6_setmtu0(ifp, nd); 172 173 return nd; 174 } 175 176 void 177 nd6_ifdetach(struct nd_ifinfo *nd) 178 { 179 180 free(nd, M_IP6NDP); 181 } 182 183 /* 184 * Reset ND level link MTU. This function is called when the physical MTU 185 * changes, which means we might have to adjust the ND level MTU. 186 */ 187 void 188 nd6_setmtu(struct ifnet *ifp) 189 { 190 191 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 192 } 193 194 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 195 void 196 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 197 { 198 u_int32_t omaxmtu; 199 200 omaxmtu = ndi->maxmtu; 201 202 switch (ifp->if_type) { 203 case IFT_ARCNET: 204 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 205 break; 206 case IFT_FDDI: 207 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 208 break; 209 case IFT_ISO88025: 210 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 211 break; 212 default: 213 ndi->maxmtu = ifp->if_mtu; 214 break; 215 } 216 217 /* 218 * Decreasing the interface MTU under IPV6 minimum MTU may cause 219 * undesirable situation. We thus notify the operator of the change 220 * explicitly. The check for omaxmtu is necessary to restrict the 221 * log to the case of changing the MTU, not initializing it. 222 */ 223 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 224 log(LOG_NOTICE, "nd6_setmtu0: " 225 "new link MTU on %s (%lu) is too small for IPv6\n", 226 if_name(ifp), (unsigned long)ndi->maxmtu); 227 } 228 229 if (ndi->maxmtu > in6_maxmtu) 230 in6_setmaxmtu(); /* check all interfaces just in case */ 231 232 #undef MIN 233 } 234 235 void 236 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 237 { 238 239 bzero(ndopts, sizeof(*ndopts)); 240 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 241 ndopts->nd_opts_last 242 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 243 244 if (icmp6len == 0) { 245 ndopts->nd_opts_done = 1; 246 ndopts->nd_opts_search = NULL; 247 } 248 } 249 250 /* 251 * Take one ND option. 252 */ 253 struct nd_opt_hdr * 254 nd6_option(union nd_opts *ndopts) 255 { 256 struct nd_opt_hdr *nd_opt; 257 int olen; 258 259 if (ndopts == NULL) 260 panic("ndopts == NULL in nd6_option"); 261 if (ndopts->nd_opts_last == NULL) 262 panic("uninitialized ndopts in nd6_option"); 263 if (ndopts->nd_opts_search == NULL) 264 return NULL; 265 if (ndopts->nd_opts_done) 266 return NULL; 267 268 nd_opt = ndopts->nd_opts_search; 269 270 /* make sure nd_opt_len is inside the buffer */ 271 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 272 bzero(ndopts, sizeof(*ndopts)); 273 return NULL; 274 } 275 276 olen = nd_opt->nd_opt_len << 3; 277 if (olen == 0) { 278 /* 279 * Message validation requires that all included 280 * options have a length that is greater than zero. 281 */ 282 bzero(ndopts, sizeof(*ndopts)); 283 return NULL; 284 } 285 286 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 287 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 288 /* option overruns the end of buffer, invalid */ 289 bzero(ndopts, sizeof(*ndopts)); 290 return NULL; 291 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 292 /* reached the end of options chain */ 293 ndopts->nd_opts_done = 1; 294 ndopts->nd_opts_search = NULL; 295 } 296 return nd_opt; 297 } 298 299 /* 300 * Parse multiple ND options. 301 * This function is much easier to use, for ND routines that do not need 302 * multiple options of the same type. 303 */ 304 int 305 nd6_options(union nd_opts *ndopts) 306 { 307 struct nd_opt_hdr *nd_opt; 308 int i = 0; 309 310 if (ndopts == NULL) 311 panic("ndopts == NULL in nd6_options"); 312 if (ndopts->nd_opts_last == NULL) 313 panic("uninitialized ndopts in nd6_options"); 314 if (ndopts->nd_opts_search == NULL) 315 return 0; 316 317 while (1) { 318 nd_opt = nd6_option(ndopts); 319 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 320 /* 321 * Message validation requires that all included 322 * options have a length that is greater than zero. 323 */ 324 icmp6stat.icp6s_nd_badopt++; 325 bzero(ndopts, sizeof(*ndopts)); 326 return -1; 327 } 328 329 if (nd_opt == NULL) 330 goto skip1; 331 332 switch (nd_opt->nd_opt_type) { 333 case ND_OPT_SOURCE_LINKADDR: 334 case ND_OPT_TARGET_LINKADDR: 335 case ND_OPT_MTU: 336 case ND_OPT_REDIRECTED_HEADER: 337 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 338 nd6log((LOG_INFO, 339 "duplicated ND6 option found (type=%d)\n", 340 nd_opt->nd_opt_type)); 341 /* XXX bark? */ 342 } else { 343 ndopts->nd_opt_array[nd_opt->nd_opt_type] 344 = nd_opt; 345 } 346 break; 347 case ND_OPT_PREFIX_INFORMATION: 348 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 349 ndopts->nd_opt_array[nd_opt->nd_opt_type] 350 = nd_opt; 351 } 352 ndopts->nd_opts_pi_end = 353 (struct nd_opt_prefix_info *)nd_opt; 354 break; 355 default: 356 /* 357 * Unknown options must be silently ignored, 358 * to accomodate future extension to the protocol. 359 */ 360 nd6log((LOG_DEBUG, 361 "nd6_options: unsupported option %d - " 362 "option ignored\n", nd_opt->nd_opt_type)); 363 } 364 365 skip1: 366 i++; 367 if (i > nd6_maxndopt) { 368 icmp6stat.icp6s_nd_toomanyopt++; 369 nd6log((LOG_INFO, "too many loop in nd opt\n")); 370 break; 371 } 372 373 if (ndopts->nd_opts_done) 374 break; 375 } 376 377 return 0; 378 } 379 380 /* 381 * ND6 timer routine to handle ND6 entries 382 */ 383 void 384 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick) 385 { 386 if (tick < 0) { 387 ln->ln_expire = 0; 388 ln->ln_ntick = 0; 389 callout_stop(&ln->ln_timer_ch); 390 } else { 391 ln->ln_expire = time_second + tick / hz; 392 if (tick > INT_MAX) { 393 ln->ln_ntick = tick - INT_MAX; 394 callout_reset(&ln->ln_timer_ch, INT_MAX, 395 nd6_llinfo_timer, ln); 396 } else { 397 ln->ln_ntick = 0; 398 callout_reset(&ln->ln_timer_ch, tick, 399 nd6_llinfo_timer, ln); 400 } 401 } 402 } 403 404 static void 405 nd6_llinfo_timer(void *arg) 406 { 407 struct llinfo_nd6 *ln; 408 struct rtentry *rt; 409 struct in6_addr *dst; 410 struct ifnet *ifp; 411 struct nd_ifinfo *ndi = NULL; 412 413 ln = (struct llinfo_nd6 *)arg; 414 415 if (ln->ln_ntick > 0) { 416 if (ln->ln_ntick > INT_MAX) { 417 ln->ln_ntick -= INT_MAX; 418 nd6_llinfo_settimer(ln, INT_MAX); 419 } else { 420 ln->ln_ntick = 0; 421 nd6_llinfo_settimer(ln, ln->ln_ntick); 422 } 423 return; 424 } 425 426 if ((rt = ln->ln_rt) == NULL) 427 panic("ln->ln_rt == NULL"); 428 if ((ifp = rt->rt_ifp) == NULL) 429 panic("ln->ln_rt->rt_ifp == NULL"); 430 ndi = ND_IFINFO(ifp); 431 432 /* sanity check */ 433 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 434 panic("rt_llinfo(%p) is not equal to ln(%p)", 435 rt->rt_llinfo, ln); 436 if (rt_key(rt) == NULL) 437 panic("rt key is NULL in nd6_timer(ln=%p)", ln); 438 439 dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 440 441 switch (ln->ln_state) { 442 case ND6_LLINFO_INCOMPLETE: 443 if (ln->ln_asked < nd6_mmaxtries) { 444 ln->ln_asked++; 445 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 446 nd6_ns_output(ifp, NULL, dst, ln, 0); 447 } else { 448 struct mbuf *m = ln->ln_hold; 449 if (m) { 450 struct mbuf *m0; 451 452 /* 453 * assuming every packet in ln_hold has the 454 * same IP header 455 */ 456 m0 = m->m_nextpkt; 457 m->m_nextpkt = NULL; 458 icmp6_error2(m, ICMP6_DST_UNREACH, 459 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); 460 461 ln->ln_hold = m0; 462 clear_llinfo_pqueue(ln); 463 } 464 if (rt && rt->rt_llinfo) 465 (void)nd6_free(rt, 0); 466 ln = NULL; 467 } 468 break; 469 case ND6_LLINFO_REACHABLE: 470 if (!ND6_LLINFO_PERMANENT(ln)) { 471 ln->ln_state = ND6_LLINFO_STALE; 472 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 473 } 474 break; 475 476 case ND6_LLINFO_STALE: 477 /* Garbage Collection(RFC 2461 5.3) */ 478 if (!ND6_LLINFO_PERMANENT(ln)) { 479 if (rt && rt->rt_llinfo) 480 (void)nd6_free(rt, 1); 481 ln = NULL; 482 } 483 break; 484 485 case ND6_LLINFO_DELAY: 486 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 487 /* We need NUD */ 488 ln->ln_asked = 1; 489 ln->ln_state = ND6_LLINFO_PROBE; 490 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 491 nd6_ns_output(ifp, dst, dst, ln, 0); 492 } else { 493 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 494 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 495 } 496 break; 497 case ND6_LLINFO_PROBE: 498 if (ln->ln_asked < nd6_umaxtries) { 499 ln->ln_asked++; 500 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 501 nd6_ns_output(ifp, dst, dst, ln, 0); 502 } else if (rt->rt_ifa != NULL && 503 rt->rt_ifa->ifa_addr->sa_family == AF_INET6 && 504 (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) { 505 /* 506 * This is an unreachable neighbor whose address is 507 * specified as the destination of a p2p interface 508 * (see in6_ifinit()). We should not free the entry 509 * since this is sort of a "static" entry generated 510 * via interface address configuration. 511 */ 512 ln->ln_asked = 0; 513 ln->ln_expire = 0; /* make it permanent */ 514 ln->ln_state = ND6_LLINFO_STALE; 515 } else { 516 if (rt && rt->rt_llinfo) 517 (void)nd6_free(rt, 0); 518 ln = NULL; 519 } 520 break; 521 } 522 } 523 524 525 /* 526 * ND6 timer routine to expire default route list and prefix list 527 */ 528 void 529 nd6_timer(void *ignored_arg) 530 { 531 int s; 532 struct nd_defrouter *dr; 533 struct nd_prefix *pr; 534 struct in6_ifaddr *ia6, *nia6; 535 struct in6_addrlifetime *lt6; 536 537 callout_reset(&nd6_timer_ch, nd6_prune * hz, 538 nd6_timer, NULL); 539 540 /* expire default router list */ 541 s = splnet(); 542 dr = TAILQ_FIRST(&nd_defrouter); 543 while (dr) { 544 if (dr->expire && dr->expire < time_second) { 545 struct nd_defrouter *t; 546 t = TAILQ_NEXT(dr, dr_entry); 547 defrtrlist_del(dr); 548 dr = t; 549 } else { 550 dr = TAILQ_NEXT(dr, dr_entry); 551 } 552 } 553 554 /* 555 * expire interface addresses. 556 * in the past the loop was inside prefix expiry processing. 557 * However, from a stricter speci-confrmance standpoint, we should 558 * rather separate address lifetimes and prefix lifetimes. 559 */ 560 addrloop: 561 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 562 nia6 = ia6->ia_next; 563 /* check address lifetime */ 564 lt6 = &ia6->ia6_lifetime; 565 if (IFA6_IS_INVALID(ia6)) { 566 int regen = 0; 567 568 /* 569 * If the expiring address is temporary, try 570 * regenerating a new one. This would be useful when 571 * we suspended a laptop PC, then turned it on after a 572 * period that could invalidate all temporary 573 * addresses. Although we may have to restart the 574 * loop (see below), it must be after purging the 575 * address. Otherwise, we'd see an infinite loop of 576 * regeneration. 577 */ 578 if (ip6_use_tempaddr && 579 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 580 if (regen_tmpaddr(ia6) == 0) 581 regen = 1; 582 } 583 584 in6_purgeaddr(&ia6->ia_ifa); 585 586 if (regen) 587 goto addrloop; /* XXX: see below */ 588 } else if (IFA6_IS_DEPRECATED(ia6)) { 589 int oldflags = ia6->ia6_flags; 590 591 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 592 593 /* 594 * If a temporary address has just become deprecated, 595 * regenerate a new one if possible. 596 */ 597 if (ip6_use_tempaddr && 598 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 599 (oldflags & IN6_IFF_DEPRECATED) == 0) { 600 601 if (regen_tmpaddr(ia6) == 0) { 602 /* 603 * A new temporary address is 604 * generated. 605 * XXX: this means the address chain 606 * has changed while we are still in 607 * the loop. Although the change 608 * would not cause disaster (because 609 * it's not a deletion, but an 610 * addition,) we'd rather restart the 611 * loop just for safety. Or does this 612 * significantly reduce performance?? 613 */ 614 goto addrloop; 615 } 616 } 617 } else { 618 /* 619 * A new RA might have made a deprecated address 620 * preferred. 621 */ 622 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 623 } 624 } 625 626 /* expire prefix list */ 627 pr = nd_prefix.lh_first; 628 while (pr) { 629 /* 630 * check prefix lifetime. 631 * since pltime is just for autoconf, pltime processing for 632 * prefix is not necessary. 633 */ 634 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 635 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 636 struct nd_prefix *t; 637 t = pr->ndpr_next; 638 639 /* 640 * address expiration and prefix expiration are 641 * separate. NEVER perform in6_purgeaddr here. 642 */ 643 644 prelist_remove(pr); 645 pr = t; 646 } else 647 pr = pr->ndpr_next; 648 } 649 splx(s); 650 } 651 652 /* 653 * ia6 - deprecated/invalidated temporary address 654 */ 655 static int 656 regen_tmpaddr(struct in6_ifaddr *ia6) 657 { 658 struct ifaddr *ifa; 659 struct ifnet *ifp; 660 struct in6_ifaddr *public_ifa6 = NULL; 661 662 ifp = ia6->ia_ifa.ifa_ifp; 663 for (ifa = ifp->if_addrlist.tqh_first; ifa; 664 ifa = ifa->ifa_list.tqe_next) { 665 struct in6_ifaddr *it6; 666 667 if (ifa->ifa_addr->sa_family != AF_INET6) 668 continue; 669 670 it6 = (struct in6_ifaddr *)ifa; 671 672 /* ignore no autoconf addresses. */ 673 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 674 continue; 675 676 /* ignore autoconf addresses with different prefixes. */ 677 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 678 continue; 679 680 /* 681 * Now we are looking at an autoconf address with the same 682 * prefix as ours. If the address is temporary and is still 683 * preferred, do not create another one. It would be rare, but 684 * could happen, for example, when we resume a laptop PC after 685 * a long period. 686 */ 687 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 688 !IFA6_IS_DEPRECATED(it6)) { 689 public_ifa6 = NULL; 690 break; 691 } 692 693 /* 694 * This is a public autoconf address that has the same prefix 695 * as ours. If it is preferred, keep it. We can't break the 696 * loop here, because there may be a still-preferred temporary 697 * address with the prefix. 698 */ 699 if (!IFA6_IS_DEPRECATED(it6)) 700 public_ifa6 = it6; 701 } 702 703 if (public_ifa6 != NULL) { 704 int e; 705 706 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 707 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 708 " tmp addr,errno=%d\n", e); 709 return (-1); 710 } 711 return (0); 712 } 713 714 return (-1); 715 } 716 717 /* 718 * Nuke neighbor cache/prefix/default router management table, right before 719 * ifp goes away. 720 */ 721 void 722 nd6_purge(struct ifnet *ifp) 723 { 724 struct llinfo_nd6 *ln, *nln; 725 struct nd_defrouter *dr, *ndr; 726 struct nd_prefix *pr, *npr; 727 728 /* 729 * Nuke default router list entries toward ifp. 730 * We defer removal of default router list entries that is installed 731 * in the routing table, in order to keep additional side effects as 732 * small as possible. 733 */ 734 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 735 ndr = TAILQ_NEXT(dr, dr_entry); 736 if (dr->installed) 737 continue; 738 739 if (dr->ifp == ifp) 740 defrtrlist_del(dr); 741 } 742 743 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 744 ndr = TAILQ_NEXT(dr, dr_entry); 745 if (!dr->installed) 746 continue; 747 748 if (dr->ifp == ifp) 749 defrtrlist_del(dr); 750 } 751 752 /* Nuke prefix list entries toward ifp */ 753 for (pr = nd_prefix.lh_first; pr; pr = npr) { 754 npr = pr->ndpr_next; 755 if (pr->ndpr_ifp == ifp) { 756 /* 757 * Because if_detach() does *not* release prefixes 758 * while purging addresses the reference count will 759 * still be above zero. We therefore reset it to 760 * make sure that the prefix really gets purged. 761 */ 762 pr->ndpr_refcnt = 0; 763 764 /* 765 * Previously, pr->ndpr_addr is removed as well, 766 * but I strongly believe we don't have to do it. 767 * nd6_purge() is only called from in6_ifdetach(), 768 * which removes all the associated interface addresses 769 * by itself. 770 * (jinmei@kame.net 20010129) 771 */ 772 prelist_remove(pr); 773 } 774 } 775 776 /* cancel default outgoing interface setting */ 777 if (nd6_defifindex == ifp->if_index) 778 nd6_setdefaultiface(0); 779 780 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 781 /* refresh default router list */ 782 defrouter_select(); 783 } 784 785 /* 786 * Nuke neighbor cache entries for the ifp. 787 * Note that rt->rt_ifp may not be the same as ifp, 788 * due to KAME goto ours hack. See RTM_RESOLVE case in 789 * nd6_rtrequest(), and ip6_input(). 790 */ 791 ln = llinfo_nd6.ln_next; 792 while (ln && ln != &llinfo_nd6) { 793 struct rtentry *rt; 794 struct sockaddr_dl *sdl; 795 796 nln = ln->ln_next; 797 rt = ln->ln_rt; 798 if (rt && rt->rt_gateway && 799 rt->rt_gateway->sa_family == AF_LINK) { 800 sdl = (struct sockaddr_dl *)rt->rt_gateway; 801 if (sdl->sdl_index == ifp->if_index) 802 nln = nd6_free(rt, 0); 803 } 804 ln = nln; 805 } 806 } 807 808 struct rtentry * 809 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 810 { 811 struct rtentry *rt; 812 struct sockaddr_in6 sin6; 813 char ip6buf[INET6_ADDRSTRLEN]; 814 815 bzero(&sin6, sizeof(sin6)); 816 sin6.sin6_len = sizeof(struct sockaddr_in6); 817 sin6.sin6_family = AF_INET6; 818 sin6.sin6_addr = *addr6; 819 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 820 if (rt) { 821 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) { 822 /* 823 * This is the case for the default route. 824 * If we want to create a neighbor cache for the 825 * address, we should free the route for the 826 * destination and allocate an interface route. 827 */ 828 RTFREE_LOCKED(rt); 829 rt = NULL; 830 } 831 } 832 if (rt == NULL) { 833 if (create && ifp) { 834 int e; 835 836 /* 837 * If no route is available and create is set, 838 * we allocate a host route for the destination 839 * and treat it like an interface route. 840 * This hack is necessary for a neighbor which can't 841 * be covered by our own prefix. 842 */ 843 struct ifaddr *ifa = 844 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 845 if (ifa == NULL) 846 return (NULL); 847 848 /* 849 * Create a new route. RTF_LLINFO is necessary 850 * to create a Neighbor Cache entry for the 851 * destination in nd6_rtrequest which will be 852 * called in rtrequest via ifa->ifa_rtrequest. 853 */ 854 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 855 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 856 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 857 ~RTF_CLONING, &rt)) != 0) { 858 log(LOG_ERR, 859 "nd6_lookup: failed to add route for a " 860 "neighbor(%s), errno=%d\n", 861 ip6_sprintf(ip6buf, addr6), e); 862 } 863 if (rt == NULL) 864 return (NULL); 865 RT_LOCK(rt); 866 if (rt->rt_llinfo) { 867 struct llinfo_nd6 *ln = 868 (struct llinfo_nd6 *)rt->rt_llinfo; 869 ln->ln_state = ND6_LLINFO_NOSTATE; 870 } 871 } else 872 return (NULL); 873 } 874 RT_LOCK_ASSERT(rt); 875 RT_REMREF(rt); 876 /* 877 * Validation for the entry. 878 * Note that the check for rt_llinfo is necessary because a cloned 879 * route from a parent route that has the L flag (e.g. the default 880 * route to a p2p interface) may have the flag, too, while the 881 * destination is not actually a neighbor. 882 * XXX: we can't use rt->rt_ifp to check for the interface, since 883 * it might be the loopback interface if the entry is for our 884 * own address on a non-loopback interface. Instead, we should 885 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 886 * interface. 887 * Note also that ifa_ifp and ifp may differ when we connect two 888 * interfaces to a same link, install a link prefix to an interface, 889 * and try to install a neighbor cache on an interface that does not 890 * have a route to the prefix. 891 */ 892 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 893 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 894 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 895 if (create) { 896 nd6log((LOG_DEBUG, 897 "nd6_lookup: failed to lookup %s (if = %s)\n", 898 ip6_sprintf(ip6buf, addr6), 899 ifp ? if_name(ifp) : "unspec")); 900 } 901 RT_UNLOCK(rt); 902 return (NULL); 903 } 904 RT_UNLOCK(rt); /* XXX not ready to return rt locked */ 905 return (rt); 906 } 907 908 /* 909 * Test whether a given IPv6 address is a neighbor or not, ignoring 910 * the actual neighbor cache. The neighbor cache is ignored in order 911 * to not reenter the routing code from within itself. 912 */ 913 static int 914 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 915 { 916 struct nd_prefix *pr; 917 struct ifaddr *dstaddr; 918 919 /* 920 * A link-local address is always a neighbor. 921 * XXX: a link does not necessarily specify a single interface. 922 */ 923 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 924 struct sockaddr_in6 sin6_copy; 925 u_int32_t zone; 926 927 /* 928 * We need sin6_copy since sa6_recoverscope() may modify the 929 * content (XXX). 930 */ 931 sin6_copy = *addr; 932 if (sa6_recoverscope(&sin6_copy)) 933 return (0); /* XXX: should be impossible */ 934 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 935 return (0); 936 if (sin6_copy.sin6_scope_id == zone) 937 return (1); 938 else 939 return (0); 940 } 941 942 /* 943 * If the address matches one of our addresses, 944 * it should be a neighbor. 945 * If the address matches one of our on-link prefixes, it should be a 946 * neighbor. 947 */ 948 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 949 if (pr->ndpr_ifp != ifp) 950 continue; 951 952 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 953 continue; 954 955 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 956 &addr->sin6_addr, &pr->ndpr_mask)) 957 return (1); 958 } 959 960 /* 961 * If the address is assigned on the node of the other side of 962 * a p2p interface, the address should be a neighbor. 963 */ 964 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 965 if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp)) 966 return (1); 967 968 /* 969 * If the default router list is empty, all addresses are regarded 970 * as on-link, and thus, as a neighbor. 971 * XXX: we restrict the condition to hosts, because routers usually do 972 * not have the "default router list". 973 */ 974 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 975 nd6_defifindex == ifp->if_index) { 976 return (1); 977 } 978 979 return (0); 980 } 981 982 983 /* 984 * Detect if a given IPv6 address identifies a neighbor on a given link. 985 * XXX: should take care of the destination of a p2p link? 986 */ 987 int 988 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 989 { 990 991 if (nd6_is_new_addr_neighbor(addr, ifp)) 992 return (1); 993 994 /* 995 * Even if the address matches none of our addresses, it might be 996 * in the neighbor cache. 997 */ 998 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 999 return (1); 1000 1001 return (0); 1002 } 1003 1004 /* 1005 * Free an nd6 llinfo entry. 1006 * Since the function would cause significant changes in the kernel, DO NOT 1007 * make it global, unless you have a strong reason for the change, and are sure 1008 * that the change is safe. 1009 */ 1010 static struct llinfo_nd6 * 1011 nd6_free(struct rtentry *rt, int gc) 1012 { 1013 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 1014 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 1015 struct nd_defrouter *dr; 1016 1017 /* 1018 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1019 * even though it is not harmful, it was not really necessary. 1020 */ 1021 1022 /* cancel timer */ 1023 nd6_llinfo_settimer(ln, -1); 1024 1025 if (!ip6_forwarding) { 1026 int s; 1027 s = splnet(); 1028 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1029 rt->rt_ifp); 1030 1031 if (dr != NULL && dr->expire && 1032 ln->ln_state == ND6_LLINFO_STALE && gc) { 1033 /* 1034 * If the reason for the deletion is just garbage 1035 * collection, and the neighbor is an active default 1036 * router, do not delete it. Instead, reset the GC 1037 * timer using the router's lifetime. 1038 * Simply deleting the entry would affect default 1039 * router selection, which is not necessarily a good 1040 * thing, especially when we're using router preference 1041 * values. 1042 * XXX: the check for ln_state would be redundant, 1043 * but we intentionally keep it just in case. 1044 */ 1045 if (dr->expire > time_second) 1046 nd6_llinfo_settimer(ln, 1047 (dr->expire - time_second) * hz); 1048 else 1049 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1050 splx(s); 1051 return (ln->ln_next); 1052 } 1053 1054 if (ln->ln_router || dr) { 1055 /* 1056 * rt6_flush must be called whether or not the neighbor 1057 * is in the Default Router List. 1058 * See a corresponding comment in nd6_na_input(). 1059 */ 1060 rt6_flush(&in6, rt->rt_ifp); 1061 } 1062 1063 if (dr) { 1064 /* 1065 * Unreachablity of a router might affect the default 1066 * router selection and on-link detection of advertised 1067 * prefixes. 1068 */ 1069 1070 /* 1071 * Temporarily fake the state to choose a new default 1072 * router and to perform on-link determination of 1073 * prefixes correctly. 1074 * Below the state will be set correctly, 1075 * or the entry itself will be deleted. 1076 */ 1077 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1078 1079 /* 1080 * Since defrouter_select() does not affect the 1081 * on-link determination and MIP6 needs the check 1082 * before the default router selection, we perform 1083 * the check now. 1084 */ 1085 pfxlist_onlink_check(); 1086 1087 /* 1088 * refresh default router list 1089 */ 1090 defrouter_select(); 1091 } 1092 splx(s); 1093 } 1094 1095 /* 1096 * Before deleting the entry, remember the next entry as the 1097 * return value. We need this because pfxlist_onlink_check() above 1098 * might have freed other entries (particularly the old next entry) as 1099 * a side effect (XXX). 1100 */ 1101 next = ln->ln_next; 1102 1103 /* 1104 * Detach the route from the routing tree and the list of neighbor 1105 * caches, and disable the route entry not to be used in already 1106 * cached routes. 1107 */ 1108 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1109 rt_mask(rt), 0, (struct rtentry **)0); 1110 1111 return (next); 1112 } 1113 1114 /* 1115 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1116 * 1117 * XXX cost-effective methods? 1118 */ 1119 void 1120 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1121 { 1122 struct llinfo_nd6 *ln; 1123 1124 /* 1125 * If the caller specified "rt", use that. Otherwise, resolve the 1126 * routing table by supplied "dst6". 1127 */ 1128 if (rt == NULL) { 1129 if (dst6 == NULL) 1130 return; 1131 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL) 1132 return; 1133 } 1134 1135 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1136 (rt->rt_flags & RTF_LLINFO) == 0 || 1137 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1138 rt->rt_gateway->sa_family != AF_LINK) { 1139 /* This is not a host route. */ 1140 return; 1141 } 1142 1143 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1144 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1145 return; 1146 1147 /* 1148 * if we get upper-layer reachability confirmation many times, 1149 * it is possible we have false information. 1150 */ 1151 if (!force) { 1152 ln->ln_byhint++; 1153 if (ln->ln_byhint > nd6_maxnudhint) 1154 return; 1155 } 1156 1157 ln->ln_state = ND6_LLINFO_REACHABLE; 1158 if (!ND6_LLINFO_PERMANENT(ln)) { 1159 nd6_llinfo_settimer(ln, 1160 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1161 } 1162 } 1163 1164 /* 1165 * info - XXX unused 1166 */ 1167 void 1168 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1169 { 1170 struct sockaddr *gate = rt->rt_gateway; 1171 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1172 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1173 struct ifnet *ifp = rt->rt_ifp; 1174 struct ifaddr *ifa; 1175 1176 RT_LOCK_ASSERT(rt); 1177 1178 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1179 return; 1180 1181 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1182 /* 1183 * This is probably an interface direct route for a link 1184 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1185 * We do not need special treatment below for such a route. 1186 * Moreover, the RTF_LLINFO flag which would be set below 1187 * would annoy the ndp(8) command. 1188 */ 1189 return; 1190 } 1191 1192 if (req == RTM_RESOLVE && 1193 (nd6_need_cache(ifp) == 0 || /* stf case */ 1194 !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), 1195 ifp))) { 1196 /* 1197 * FreeBSD and BSD/OS often make a cloned host route based 1198 * on a less-specific route (e.g. the default route). 1199 * If the less specific route does not have a "gateway" 1200 * (this is the case when the route just goes to a p2p or an 1201 * stf interface), we'll mistakenly make a neighbor cache for 1202 * the host route, and will see strange neighbor solicitation 1203 * for the corresponding destination. In order to avoid the 1204 * confusion, we check if the destination of the route is 1205 * a neighbor in terms of neighbor discovery, and stop the 1206 * process if not. Additionally, we remove the LLINFO flag 1207 * so that ndp(8) will not try to get the neighbor information 1208 * of the destination. 1209 */ 1210 rt->rt_flags &= ~RTF_LLINFO; 1211 return; 1212 } 1213 1214 switch (req) { 1215 case RTM_ADD: 1216 /* 1217 * There is no backward compatibility :) 1218 * 1219 * if ((rt->rt_flags & RTF_HOST) == 0 && 1220 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1221 * rt->rt_flags |= RTF_CLONING; 1222 */ 1223 if ((rt->rt_flags & RTF_CLONING) || 1224 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { 1225 /* 1226 * Case 1: This route should come from a route to 1227 * interface (RTF_CLONING case) or the route should be 1228 * treated as on-link but is currently not 1229 * (RTF_LLINFO && ln == NULL case). 1230 */ 1231 rt_setgate(rt, rt_key(rt), 1232 (struct sockaddr *)&null_sdl); 1233 gate = rt->rt_gateway; 1234 SDL(gate)->sdl_type = ifp->if_type; 1235 SDL(gate)->sdl_index = ifp->if_index; 1236 if (ln) 1237 nd6_llinfo_settimer(ln, 0); 1238 if ((rt->rt_flags & RTF_CLONING) != 0) 1239 break; 1240 } 1241 /* 1242 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1243 * We don't do that here since llinfo is not ready yet. 1244 * 1245 * There are also couple of other things to be discussed: 1246 * - unsolicited NA code needs improvement beforehand 1247 * - RFC2461 says we MAY send multicast unsolicited NA 1248 * (7.2.6 paragraph 4), however, it also says that we 1249 * SHOULD provide a mechanism to prevent multicast NA storm. 1250 * we don't have anything like it right now. 1251 * note that the mechanism needs a mutual agreement 1252 * between proxies, which means that we need to implement 1253 * a new protocol, or a new kludge. 1254 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1255 * we need to check ip6forwarding before sending it. 1256 * (or should we allow proxy ND configuration only for 1257 * routers? there's no mention about proxy ND from hosts) 1258 */ 1259 /* FALLTHROUGH */ 1260 case RTM_RESOLVE: 1261 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1262 /* 1263 * Address resolution isn't necessary for a point to 1264 * point link, so we can skip this test for a p2p link. 1265 */ 1266 if (gate->sa_family != AF_LINK || 1267 gate->sa_len < sizeof(null_sdl)) { 1268 log(LOG_DEBUG, 1269 "nd6_rtrequest: bad gateway value: %s\n", 1270 if_name(ifp)); 1271 break; 1272 } 1273 SDL(gate)->sdl_type = ifp->if_type; 1274 SDL(gate)->sdl_index = ifp->if_index; 1275 } 1276 if (ln != NULL) 1277 break; /* This happens on a route change */ 1278 /* 1279 * Case 2: This route may come from cloning, or a manual route 1280 * add with a LL address. 1281 */ 1282 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1283 rt->rt_llinfo = (caddr_t)ln; 1284 if (ln == NULL) { 1285 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1286 break; 1287 } 1288 nd6_inuse++; 1289 nd6_allocated++; 1290 bzero(ln, sizeof(*ln)); 1291 RT_ADDREF(rt); 1292 ln->ln_rt = rt; 1293 callout_init(&ln->ln_timer_ch, 0); 1294 1295 /* this is required for "ndp" command. - shin */ 1296 if (req == RTM_ADD) { 1297 /* 1298 * gate should have some valid AF_LINK entry, 1299 * and ln->ln_expire should have some lifetime 1300 * which is specified by ndp command. 1301 */ 1302 ln->ln_state = ND6_LLINFO_REACHABLE; 1303 ln->ln_byhint = 0; 1304 } else { 1305 /* 1306 * When req == RTM_RESOLVE, rt is created and 1307 * initialized in rtrequest(), so rt_expire is 0. 1308 */ 1309 ln->ln_state = ND6_LLINFO_NOSTATE; 1310 nd6_llinfo_settimer(ln, 0); 1311 } 1312 rt->rt_flags |= RTF_LLINFO; 1313 ln->ln_next = llinfo_nd6.ln_next; 1314 llinfo_nd6.ln_next = ln; 1315 ln->ln_prev = &llinfo_nd6; 1316 ln->ln_next->ln_prev = ln; 1317 1318 /* 1319 * check if rt_key(rt) is one of my address assigned 1320 * to the interface. 1321 */ 1322 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1323 &SIN6(rt_key(rt))->sin6_addr); 1324 if (ifa) { 1325 caddr_t macp = nd6_ifptomac(ifp); 1326 nd6_llinfo_settimer(ln, -1); 1327 ln->ln_state = ND6_LLINFO_REACHABLE; 1328 ln->ln_byhint = 0; 1329 if (macp) { 1330 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1331 SDL(gate)->sdl_alen = ifp->if_addrlen; 1332 } 1333 if (nd6_useloopback) { 1334 rt->rt_ifp = &loif[0]; /* XXX */ 1335 /* 1336 * Make sure rt_ifa be equal to the ifaddr 1337 * corresponding to the address. 1338 * We need this because when we refer 1339 * rt_ifa->ia6_flags in ip6_input, we assume 1340 * that the rt_ifa points to the address instead 1341 * of the loopback address. 1342 */ 1343 if (ifa != rt->rt_ifa) { 1344 IFAFREE(rt->rt_ifa); 1345 IFAREF(ifa); 1346 rt->rt_ifa = ifa; 1347 } 1348 } 1349 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1350 nd6_llinfo_settimer(ln, -1); 1351 ln->ln_state = ND6_LLINFO_REACHABLE; 1352 ln->ln_byhint = 0; 1353 1354 /* join solicited node multicast for proxy ND */ 1355 if (ifp->if_flags & IFF_MULTICAST) { 1356 struct in6_addr llsol; 1357 int error; 1358 1359 llsol = SIN6(rt_key(rt))->sin6_addr; 1360 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1361 llsol.s6_addr32[1] = 0; 1362 llsol.s6_addr32[2] = htonl(1); 1363 llsol.s6_addr8[12] = 0xff; 1364 if (in6_setscope(&llsol, ifp, NULL)) 1365 break; 1366 if (in6_addmulti(&llsol, ifp, 1367 &error, 0) == NULL) { 1368 char ip6buf[INET6_ADDRSTRLEN]; 1369 nd6log((LOG_ERR, "%s: failed to join " 1370 "%s (errno=%d)\n", if_name(ifp), 1371 ip6_sprintf(ip6buf, &llsol), 1372 error)); 1373 } 1374 } 1375 } 1376 break; 1377 1378 case RTM_DELETE: 1379 if (ln == NULL) 1380 break; 1381 /* leave from solicited node multicast for proxy ND */ 1382 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1383 (ifp->if_flags & IFF_MULTICAST) != 0) { 1384 struct in6_addr llsol; 1385 struct in6_multi *in6m; 1386 1387 llsol = SIN6(rt_key(rt))->sin6_addr; 1388 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1389 llsol.s6_addr32[1] = 0; 1390 llsol.s6_addr32[2] = htonl(1); 1391 llsol.s6_addr8[12] = 0xff; 1392 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1393 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1394 if (in6m) 1395 in6_delmulti(in6m); 1396 } else 1397 ; /* XXX: should not happen. bark here? */ 1398 } 1399 nd6_inuse--; 1400 ln->ln_next->ln_prev = ln->ln_prev; 1401 ln->ln_prev->ln_next = ln->ln_next; 1402 ln->ln_prev = NULL; 1403 nd6_llinfo_settimer(ln, -1); 1404 RT_REMREF(rt); 1405 rt->rt_llinfo = 0; 1406 rt->rt_flags &= ~RTF_LLINFO; 1407 clear_llinfo_pqueue(ln); 1408 Free((caddr_t)ln); 1409 } 1410 } 1411 1412 int 1413 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1414 { 1415 struct in6_drlist *drl = (struct in6_drlist *)data; 1416 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1417 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1418 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1419 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1420 struct nd_defrouter *dr; 1421 struct nd_prefix *pr; 1422 struct rtentry *rt; 1423 int i = 0, error = 0; 1424 int s; 1425 1426 switch (cmd) { 1427 case SIOCGDRLST_IN6: 1428 /* 1429 * obsolete API, use sysctl under net.inet6.icmp6 1430 */ 1431 bzero(drl, sizeof(*drl)); 1432 s = splnet(); 1433 dr = TAILQ_FIRST(&nd_defrouter); 1434 while (dr && i < DRLSTSIZ) { 1435 drl->defrouter[i].rtaddr = dr->rtaddr; 1436 in6_clearscope(&drl->defrouter[i].rtaddr); 1437 1438 drl->defrouter[i].flags = dr->flags; 1439 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1440 drl->defrouter[i].expire = dr->expire; 1441 drl->defrouter[i].if_index = dr->ifp->if_index; 1442 i++; 1443 dr = TAILQ_NEXT(dr, dr_entry); 1444 } 1445 splx(s); 1446 break; 1447 case SIOCGPRLST_IN6: 1448 /* 1449 * obsolete API, use sysctl under net.inet6.icmp6 1450 * 1451 * XXX the structure in6_prlist was changed in backward- 1452 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1453 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1454 */ 1455 /* 1456 * XXX meaning of fields, especialy "raflags", is very 1457 * differnet between RA prefix list and RR/static prefix list. 1458 * how about separating ioctls into two? 1459 */ 1460 bzero(oprl, sizeof(*oprl)); 1461 s = splnet(); 1462 pr = nd_prefix.lh_first; 1463 while (pr && i < PRLSTSIZ) { 1464 struct nd_pfxrouter *pfr; 1465 int j; 1466 1467 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1468 oprl->prefix[i].raflags = pr->ndpr_raf; 1469 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1470 oprl->prefix[i].vltime = pr->ndpr_vltime; 1471 oprl->prefix[i].pltime = pr->ndpr_pltime; 1472 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1473 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1474 oprl->prefix[i].expire = 0; 1475 else { 1476 time_t maxexpire; 1477 1478 /* XXX: we assume time_t is signed. */ 1479 maxexpire = (-1) & 1480 ~((time_t)1 << 1481 ((sizeof(maxexpire) * 8) - 1)); 1482 if (pr->ndpr_vltime < 1483 maxexpire - pr->ndpr_lastupdate) { 1484 oprl->prefix[i].expire = 1485 pr->ndpr_lastupdate + 1486 pr->ndpr_vltime; 1487 } else 1488 oprl->prefix[i].expire = maxexpire; 1489 } 1490 1491 pfr = pr->ndpr_advrtrs.lh_first; 1492 j = 0; 1493 while (pfr) { 1494 if (j < DRLSTSIZ) { 1495 #define RTRADDR oprl->prefix[i].advrtr[j] 1496 RTRADDR = pfr->router->rtaddr; 1497 in6_clearscope(&RTRADDR); 1498 #undef RTRADDR 1499 } 1500 j++; 1501 pfr = pfr->pfr_next; 1502 } 1503 oprl->prefix[i].advrtrs = j; 1504 oprl->prefix[i].origin = PR_ORIG_RA; 1505 1506 i++; 1507 pr = pr->ndpr_next; 1508 } 1509 splx(s); 1510 1511 break; 1512 case OSIOCGIFINFO_IN6: 1513 #define ND ndi->ndi 1514 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1515 bzero(&ND, sizeof(ND)); 1516 ND.linkmtu = IN6_LINKMTU(ifp); 1517 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1518 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1519 ND.reachable = ND_IFINFO(ifp)->reachable; 1520 ND.retrans = ND_IFINFO(ifp)->retrans; 1521 ND.flags = ND_IFINFO(ifp)->flags; 1522 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1523 ND.chlim = ND_IFINFO(ifp)->chlim; 1524 break; 1525 case SIOCGIFINFO_IN6: 1526 ND = *ND_IFINFO(ifp); 1527 break; 1528 case SIOCSIFINFO_IN6: 1529 /* 1530 * used to change host variables from userland. 1531 * intented for a use on router to reflect RA configurations. 1532 */ 1533 /* 0 means 'unspecified' */ 1534 if (ND.linkmtu != 0) { 1535 if (ND.linkmtu < IPV6_MMTU || 1536 ND.linkmtu > IN6_LINKMTU(ifp)) { 1537 error = EINVAL; 1538 break; 1539 } 1540 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1541 } 1542 1543 if (ND.basereachable != 0) { 1544 int obasereachable = ND_IFINFO(ifp)->basereachable; 1545 1546 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1547 if (ND.basereachable != obasereachable) 1548 ND_IFINFO(ifp)->reachable = 1549 ND_COMPUTE_RTIME(ND.basereachable); 1550 } 1551 if (ND.retrans != 0) 1552 ND_IFINFO(ifp)->retrans = ND.retrans; 1553 if (ND.chlim != 0) 1554 ND_IFINFO(ifp)->chlim = ND.chlim; 1555 /* FALLTHROUGH */ 1556 case SIOCSIFINFO_FLAGS: 1557 ND_IFINFO(ifp)->flags = ND.flags; 1558 break; 1559 #undef ND 1560 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1561 /* sync kernel routing table with the default router list */ 1562 defrouter_reset(); 1563 defrouter_select(); 1564 break; 1565 case SIOCSPFXFLUSH_IN6: 1566 { 1567 /* flush all the prefix advertised by routers */ 1568 struct nd_prefix *pr, *next; 1569 1570 s = splnet(); 1571 for (pr = nd_prefix.lh_first; pr; pr = next) { 1572 struct in6_ifaddr *ia, *ia_next; 1573 1574 next = pr->ndpr_next; 1575 1576 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1577 continue; /* XXX */ 1578 1579 /* do we really have to remove addresses as well? */ 1580 for (ia = in6_ifaddr; ia; ia = ia_next) { 1581 /* ia might be removed. keep the next ptr. */ 1582 ia_next = ia->ia_next; 1583 1584 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1585 continue; 1586 1587 if (ia->ia6_ndpr == pr) 1588 in6_purgeaddr(&ia->ia_ifa); 1589 } 1590 prelist_remove(pr); 1591 } 1592 splx(s); 1593 break; 1594 } 1595 case SIOCSRTRFLUSH_IN6: 1596 { 1597 /* flush all the default routers */ 1598 struct nd_defrouter *dr, *next; 1599 1600 s = splnet(); 1601 defrouter_reset(); 1602 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1603 next = TAILQ_NEXT(dr, dr_entry); 1604 defrtrlist_del(dr); 1605 } 1606 defrouter_select(); 1607 splx(s); 1608 break; 1609 } 1610 case SIOCGNBRINFO_IN6: 1611 { 1612 struct llinfo_nd6 *ln; 1613 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1614 1615 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1616 return (error); 1617 1618 s = splnet(); 1619 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1620 error = EINVAL; 1621 splx(s); 1622 break; 1623 } 1624 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1625 nbi->state = ln->ln_state; 1626 nbi->asked = ln->ln_asked; 1627 nbi->isrouter = ln->ln_router; 1628 nbi->expire = ln->ln_expire; 1629 splx(s); 1630 1631 break; 1632 } 1633 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1634 ndif->ifindex = nd6_defifindex; 1635 break; 1636 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1637 return (nd6_setdefaultiface(ndif->ifindex)); 1638 } 1639 return (error); 1640 } 1641 1642 /* 1643 * Create neighbor cache entry and cache link-layer address, 1644 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1645 * 1646 * type - ICMP6 type 1647 * code - type dependent information 1648 */ 1649 struct rtentry * 1650 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1651 int lladdrlen, int type, int code) 1652 { 1653 struct rtentry *rt = NULL; 1654 struct llinfo_nd6 *ln = NULL; 1655 int is_newentry; 1656 struct sockaddr_dl *sdl = NULL; 1657 int do_update; 1658 int olladdr; 1659 int llchange; 1660 int newstate = 0; 1661 1662 if (ifp == NULL) 1663 panic("ifp == NULL in nd6_cache_lladdr"); 1664 if (from == NULL) 1665 panic("from == NULL in nd6_cache_lladdr"); 1666 1667 /* nothing must be updated for unspecified address */ 1668 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1669 return NULL; 1670 1671 /* 1672 * Validation about ifp->if_addrlen and lladdrlen must be done in 1673 * the caller. 1674 * 1675 * XXX If the link does not have link-layer adderss, what should 1676 * we do? (ifp->if_addrlen == 0) 1677 * Spec says nothing in sections for RA, RS and NA. There's small 1678 * description on it in NS section (RFC 2461 7.2.3). 1679 */ 1680 1681 rt = nd6_lookup(from, 0, ifp); 1682 if (rt == NULL) { 1683 rt = nd6_lookup(from, 1, ifp); 1684 is_newentry = 1; 1685 } else { 1686 /* do nothing if static ndp is set */ 1687 if (rt->rt_flags & RTF_STATIC) 1688 return NULL; 1689 is_newentry = 0; 1690 } 1691 1692 if (rt == NULL) 1693 return NULL; 1694 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1695 fail: 1696 (void)nd6_free(rt, 0); 1697 return NULL; 1698 } 1699 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1700 if (ln == NULL) 1701 goto fail; 1702 if (rt->rt_gateway == NULL) 1703 goto fail; 1704 if (rt->rt_gateway->sa_family != AF_LINK) 1705 goto fail; 1706 sdl = SDL(rt->rt_gateway); 1707 1708 olladdr = (sdl->sdl_alen) ? 1 : 0; 1709 if (olladdr && lladdr) { 1710 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1711 llchange = 1; 1712 else 1713 llchange = 0; 1714 } else 1715 llchange = 0; 1716 1717 /* 1718 * newentry olladdr lladdr llchange (*=record) 1719 * 0 n n -- (1) 1720 * 0 y n -- (2) 1721 * 0 n y -- (3) * STALE 1722 * 0 y y n (4) * 1723 * 0 y y y (5) * STALE 1724 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1725 * 1 -- y -- (7) * STALE 1726 */ 1727 1728 if (lladdr) { /* (3-5) and (7) */ 1729 /* 1730 * Record source link-layer address 1731 * XXX is it dependent to ifp->if_type? 1732 */ 1733 sdl->sdl_alen = ifp->if_addrlen; 1734 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1735 } 1736 1737 if (!is_newentry) { 1738 if ((!olladdr && lladdr != NULL) || /* (3) */ 1739 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1740 do_update = 1; 1741 newstate = ND6_LLINFO_STALE; 1742 } else /* (1-2,4) */ 1743 do_update = 0; 1744 } else { 1745 do_update = 1; 1746 if (lladdr == NULL) /* (6) */ 1747 newstate = ND6_LLINFO_NOSTATE; 1748 else /* (7) */ 1749 newstate = ND6_LLINFO_STALE; 1750 } 1751 1752 if (do_update) { 1753 /* 1754 * Update the state of the neighbor cache. 1755 */ 1756 ln->ln_state = newstate; 1757 1758 if (ln->ln_state == ND6_LLINFO_STALE) { 1759 /* 1760 * XXX: since nd6_output() below will cause 1761 * state tansition to DELAY and reset the timer, 1762 * we must set the timer now, although it is actually 1763 * meaningless. 1764 */ 1765 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1766 1767 if (ln->ln_hold) { 1768 struct mbuf *m_hold, *m_hold_next; 1769 1770 /* 1771 * reset the ln_hold in advance, to explicitly 1772 * prevent a ln_hold lookup in nd6_output() 1773 * (wouldn't happen, though...) 1774 */ 1775 for (m_hold = ln->ln_hold, ln->ln_hold = NULL; 1776 m_hold; m_hold = m_hold_next) { 1777 m_hold_next = m_hold->m_nextpkt; 1778 m_hold->m_nextpkt = NULL; 1779 1780 /* 1781 * we assume ifp is not a p2p here, so 1782 * just set the 2nd argument as the 1783 * 1st one. 1784 */ 1785 nd6_output(ifp, ifp, m_hold, 1786 (struct sockaddr_in6 *)rt_key(rt), 1787 rt); 1788 } 1789 } 1790 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1791 /* probe right away */ 1792 nd6_llinfo_settimer((void *)ln, 0); 1793 } 1794 } 1795 1796 /* 1797 * ICMP6 type dependent behavior. 1798 * 1799 * NS: clear IsRouter if new entry 1800 * RS: clear IsRouter 1801 * RA: set IsRouter if there's lladdr 1802 * redir: clear IsRouter if new entry 1803 * 1804 * RA case, (1): 1805 * The spec says that we must set IsRouter in the following cases: 1806 * - If lladdr exist, set IsRouter. This means (1-5). 1807 * - If it is old entry (!newentry), set IsRouter. This means (7). 1808 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1809 * A quetion arises for (1) case. (1) case has no lladdr in the 1810 * neighbor cache, this is similar to (6). 1811 * This case is rare but we figured that we MUST NOT set IsRouter. 1812 * 1813 * newentry olladdr lladdr llchange NS RS RA redir 1814 * D R 1815 * 0 n n -- (1) c ? s 1816 * 0 y n -- (2) c s s 1817 * 0 n y -- (3) c s s 1818 * 0 y y n (4) c s s 1819 * 0 y y y (5) c s s 1820 * 1 -- n -- (6) c c c s 1821 * 1 -- y -- (7) c c s c s 1822 * 1823 * (c=clear s=set) 1824 */ 1825 switch (type & 0xff) { 1826 case ND_NEIGHBOR_SOLICIT: 1827 /* 1828 * New entry must have is_router flag cleared. 1829 */ 1830 if (is_newentry) /* (6-7) */ 1831 ln->ln_router = 0; 1832 break; 1833 case ND_REDIRECT: 1834 /* 1835 * If the icmp is a redirect to a better router, always set the 1836 * is_router flag. Otherwise, if the entry is newly created, 1837 * clear the flag. [RFC 2461, sec 8.3] 1838 */ 1839 if (code == ND_REDIRECT_ROUTER) 1840 ln->ln_router = 1; 1841 else if (is_newentry) /* (6-7) */ 1842 ln->ln_router = 0; 1843 break; 1844 case ND_ROUTER_SOLICIT: 1845 /* 1846 * is_router flag must always be cleared. 1847 */ 1848 ln->ln_router = 0; 1849 break; 1850 case ND_ROUTER_ADVERT: 1851 /* 1852 * Mark an entry with lladdr as a router. 1853 */ 1854 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1855 (is_newentry && lladdr)) { /* (7) */ 1856 ln->ln_router = 1; 1857 } 1858 break; 1859 } 1860 1861 /* 1862 * When the link-layer address of a router changes, select the 1863 * best router again. In particular, when the neighbor entry is newly 1864 * created, it might affect the selection policy. 1865 * Question: can we restrict the first condition to the "is_newentry" 1866 * case? 1867 * XXX: when we hear an RA from a new router with the link-layer 1868 * address option, defrouter_select() is called twice, since 1869 * defrtrlist_update called the function as well. However, I believe 1870 * we can compromise the overhead, since it only happens the first 1871 * time. 1872 * XXX: although defrouter_select() should not have a bad effect 1873 * for those are not autoconfigured hosts, we explicitly avoid such 1874 * cases for safety. 1875 */ 1876 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1877 defrouter_select(); 1878 1879 return rt; 1880 } 1881 1882 static void 1883 nd6_slowtimo(void *ignored_arg) 1884 { 1885 struct nd_ifinfo *nd6if; 1886 struct ifnet *ifp; 1887 1888 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1889 nd6_slowtimo, NULL); 1890 IFNET_RLOCK(); 1891 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1892 nd6if = ND_IFINFO(ifp); 1893 if (nd6if->basereachable && /* already initialized */ 1894 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1895 /* 1896 * Since reachable time rarely changes by router 1897 * advertisements, we SHOULD insure that a new random 1898 * value gets recomputed at least once every few hours. 1899 * (RFC 2461, 6.3.4) 1900 */ 1901 nd6if->recalctm = nd6_recalc_reachtm_interval; 1902 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1903 } 1904 } 1905 IFNET_RUNLOCK(); 1906 } 1907 1908 #define senderr(e) { error = (e); goto bad;} 1909 int 1910 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1911 struct sockaddr_in6 *dst, struct rtentry *rt0) 1912 { 1913 struct mbuf *m = m0; 1914 struct rtentry *rt = rt0; 1915 struct sockaddr_in6 *gw6 = NULL; 1916 struct llinfo_nd6 *ln = NULL; 1917 int error = 0; 1918 1919 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1920 goto sendpkt; 1921 1922 if (nd6_need_cache(ifp) == 0) 1923 goto sendpkt; 1924 1925 /* 1926 * next hop determination. This routine is derived from ether_output. 1927 */ 1928 /* NB: the locking here is tortuous... */ 1929 if (rt != NULL) 1930 RT_LOCK(rt); 1931 again: 1932 if (rt != NULL) { 1933 if ((rt->rt_flags & RTF_UP) == 0) { 1934 RT_UNLOCK(rt); 1935 rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL); 1936 if (rt != NULL) { 1937 RT_REMREF(rt); 1938 if (rt->rt_ifp != ifp) 1939 /* 1940 * XXX maybe we should update ifp too, 1941 * but the original code didn't and I 1942 * don't know what is correct here. 1943 */ 1944 goto again; 1945 } else 1946 senderr(EHOSTUNREACH); 1947 } 1948 1949 if (rt->rt_flags & RTF_GATEWAY) { 1950 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1951 1952 /* 1953 * We skip link-layer address resolution and NUD 1954 * if the gateway is not a neighbor from ND point 1955 * of view, regardless of the value of nd_ifinfo.flags. 1956 * The second condition is a bit tricky; we skip 1957 * if the gateway is our own address, which is 1958 * sometimes used to install a route to a p2p link. 1959 */ 1960 if (!nd6_is_addr_neighbor(gw6, ifp) || 1961 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1962 RT_UNLOCK(rt); 1963 /* 1964 * We allow this kind of tricky route only 1965 * when the outgoing interface is p2p. 1966 * XXX: we may need a more generic rule here. 1967 */ 1968 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1969 senderr(EHOSTUNREACH); 1970 1971 goto sendpkt; 1972 } 1973 1974 if (rt->rt_gwroute == NULL) 1975 goto lookup; 1976 rt = rt->rt_gwroute; 1977 RT_LOCK(rt); /* NB: gwroute */ 1978 if ((rt->rt_flags & RTF_UP) == 0) { 1979 RTFREE_LOCKED(rt); /* unlock gwroute */ 1980 rt = rt0; 1981 rt0->rt_gwroute = NULL; 1982 lookup: 1983 RT_UNLOCK(rt0); 1984 rt = rtalloc1(rt->rt_gateway, 1, 0UL); 1985 if (rt == rt0) { 1986 RT_REMREF(rt0); 1987 RT_UNLOCK(rt0); 1988 senderr(EHOSTUNREACH); 1989 } 1990 RT_LOCK(rt0); 1991 if (rt0->rt_gwroute != NULL) 1992 RTFREE(rt0->rt_gwroute); 1993 rt0->rt_gwroute = rt; 1994 if (rt == NULL) { 1995 RT_UNLOCK(rt0); 1996 senderr(EHOSTUNREACH); 1997 } 1998 } 1999 RT_UNLOCK(rt0); 2000 } 2001 RT_UNLOCK(rt); 2002 } 2003 2004 /* 2005 * Address resolution or Neighbor Unreachability Detection 2006 * for the next hop. 2007 * At this point, the destination of the packet must be a unicast 2008 * or an anycast address(i.e. not a multicast). 2009 */ 2010 2011 /* Look up the neighbor cache for the nexthop */ 2012 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 2013 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2014 else { 2015 /* 2016 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2017 * the condition below is not very efficient. But we believe 2018 * it is tolerable, because this should be a rare case. 2019 */ 2020 if (nd6_is_addr_neighbor(dst, ifp) && 2021 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 2022 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2023 } 2024 if (ln == NULL || rt == NULL) { 2025 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2026 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2027 char ip6buf[INET6_ADDRSTRLEN]; 2028 log(LOG_DEBUG, 2029 "nd6_output: can't allocate llinfo for %s " 2030 "(ln=%p, rt=%p)\n", 2031 ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt); 2032 senderr(EIO); /* XXX: good error? */ 2033 } 2034 2035 goto sendpkt; /* send anyway */ 2036 } 2037 2038 /* We don't have to do link-layer address resolution on a p2p link. */ 2039 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2040 ln->ln_state < ND6_LLINFO_REACHABLE) { 2041 ln->ln_state = ND6_LLINFO_STALE; 2042 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 2043 } 2044 2045 /* 2046 * The first time we send a packet to a neighbor whose entry is 2047 * STALE, we have to change the state to DELAY and a sets a timer to 2048 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2049 * neighbor unreachability detection on expiration. 2050 * (RFC 2461 7.3.3) 2051 */ 2052 if (ln->ln_state == ND6_LLINFO_STALE) { 2053 ln->ln_asked = 0; 2054 ln->ln_state = ND6_LLINFO_DELAY; 2055 nd6_llinfo_settimer(ln, (long)nd6_delay * hz); 2056 } 2057 2058 /* 2059 * If the neighbor cache entry has a state other than INCOMPLETE 2060 * (i.e. its link-layer address is already resolved), just 2061 * send the packet. 2062 */ 2063 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 2064 goto sendpkt; 2065 2066 /* 2067 * There is a neighbor cache entry, but no ethernet address 2068 * response yet. Append this latest packet to the end of the 2069 * packet queue in the mbuf, unless the number of the packet 2070 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2071 * the oldest packet in the queue will be removed. 2072 */ 2073 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2074 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2075 if (ln->ln_hold) { 2076 struct mbuf *m_hold; 2077 int i; 2078 2079 i = 0; 2080 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2081 i++; 2082 if (m_hold->m_nextpkt == NULL) { 2083 m_hold->m_nextpkt = m; 2084 break; 2085 } 2086 } 2087 while (i >= nd6_maxqueuelen) { 2088 m_hold = ln->ln_hold; 2089 ln->ln_hold = ln->ln_hold->m_nextpkt; 2090 m_freem(m_hold); 2091 i--; 2092 } 2093 } else { 2094 ln->ln_hold = m; 2095 } 2096 2097 /* 2098 * If there has been no NS for the neighbor after entering the 2099 * INCOMPLETE state, send the first solicitation. 2100 */ 2101 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2102 ln->ln_asked++; 2103 nd6_llinfo_settimer(ln, 2104 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2105 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2106 } 2107 return (0); 2108 2109 sendpkt: 2110 /* discard the packet if IPv6 operation is disabled on the interface */ 2111 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2112 error = ENETDOWN; /* better error? */ 2113 goto bad; 2114 } 2115 2116 #ifdef MAC 2117 mac_netinet6_nd6_send(ifp, m); 2118 #endif 2119 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2120 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2121 rt)); 2122 } 2123 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 2124 2125 bad: 2126 if (m) 2127 m_freem(m); 2128 return (error); 2129 } 2130 #undef senderr 2131 2132 int 2133 nd6_need_cache(struct ifnet *ifp) 2134 { 2135 /* 2136 * XXX: we currently do not make neighbor cache on any interface 2137 * other than ARCnet, Ethernet, FDDI and GIF. 2138 * 2139 * RFC2893 says: 2140 * - unidirectional tunnels needs no ND 2141 */ 2142 switch (ifp->if_type) { 2143 case IFT_ARCNET: 2144 case IFT_ETHER: 2145 case IFT_FDDI: 2146 case IFT_IEEE1394: 2147 #ifdef IFT_L2VLAN 2148 case IFT_L2VLAN: 2149 #endif 2150 #ifdef IFT_IEEE80211 2151 case IFT_IEEE80211: 2152 #endif 2153 #ifdef IFT_CARP 2154 case IFT_CARP: 2155 #endif 2156 case IFT_GIF: /* XXX need more cases? */ 2157 case IFT_PPP: 2158 case IFT_TUNNEL: 2159 case IFT_BRIDGE: 2160 case IFT_PROPVIRTUAL: 2161 return (1); 2162 default: 2163 return (0); 2164 } 2165 } 2166 2167 int 2168 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, 2169 struct sockaddr *dst, u_char *desten) 2170 { 2171 struct sockaddr_dl *sdl; 2172 struct rtentry *rt; 2173 int error; 2174 2175 if (m->m_flags & M_MCAST) { 2176 int i; 2177 2178 switch (ifp->if_type) { 2179 case IFT_ETHER: 2180 case IFT_FDDI: 2181 #ifdef IFT_L2VLAN 2182 case IFT_L2VLAN: 2183 #endif 2184 #ifdef IFT_IEEE80211 2185 case IFT_IEEE80211: 2186 #endif 2187 case IFT_BRIDGE: 2188 case IFT_ISO88025: 2189 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2190 desten); 2191 return (0); 2192 case IFT_IEEE1394: 2193 /* 2194 * netbsd can use if_broadcastaddr, but we don't do so 2195 * to reduce # of ifdef. 2196 */ 2197 for (i = 0; i < ifp->if_addrlen; i++) 2198 desten[i] = ~0; 2199 return (0); 2200 case IFT_ARCNET: 2201 *desten = 0; 2202 return (0); 2203 default: 2204 m_freem(m); 2205 return (EAFNOSUPPORT); 2206 } 2207 } 2208 2209 if (rt0 == NULL) { 2210 /* this could happen, if we could not allocate memory */ 2211 m_freem(m); 2212 return (ENOMEM); 2213 } 2214 2215 error = rt_check(&rt, &rt0, dst); 2216 if (error) { 2217 m_freem(m); 2218 return (error); 2219 } 2220 RT_UNLOCK(rt); 2221 2222 if (rt->rt_gateway->sa_family != AF_LINK) { 2223 printf("nd6_storelladdr: something odd happens\n"); 2224 m_freem(m); 2225 return (EINVAL); 2226 } 2227 sdl = SDL(rt->rt_gateway); 2228 if (sdl->sdl_alen == 0) { 2229 /* this should be impossible, but we bark here for debugging */ 2230 printf("nd6_storelladdr: sdl_alen == 0\n"); 2231 m_freem(m); 2232 return (EINVAL); 2233 } 2234 2235 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2236 return (0); 2237 } 2238 2239 static void 2240 clear_llinfo_pqueue(struct llinfo_nd6 *ln) 2241 { 2242 struct mbuf *m_hold, *m_hold_next; 2243 2244 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2245 m_hold_next = m_hold->m_nextpkt; 2246 m_hold->m_nextpkt = NULL; 2247 m_freem(m_hold); 2248 } 2249 2250 ln->ln_hold = NULL; 2251 return; 2252 } 2253 2254 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2255 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2256 #ifdef SYSCTL_DECL 2257 SYSCTL_DECL(_net_inet6_icmp6); 2258 #endif 2259 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2260 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2261 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2262 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2263 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2264 CTLFLAG_RW, &nd6_maxqueuelen, 1, ""); 2265 2266 static int 2267 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2268 { 2269 int error; 2270 char buf[1024] __aligned(4); 2271 struct in6_defrouter *d, *de; 2272 struct nd_defrouter *dr; 2273 2274 if (req->newptr) 2275 return EPERM; 2276 error = 0; 2277 2278 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2279 dr = TAILQ_NEXT(dr, dr_entry)) { 2280 d = (struct in6_defrouter *)buf; 2281 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2282 2283 if (d + 1 <= de) { 2284 bzero(d, sizeof(*d)); 2285 d->rtaddr.sin6_family = AF_INET6; 2286 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2287 d->rtaddr.sin6_addr = dr->rtaddr; 2288 error = sa6_recoverscope(&d->rtaddr); 2289 if (error != 0) 2290 return (error); 2291 d->flags = dr->flags; 2292 d->rtlifetime = dr->rtlifetime; 2293 d->expire = dr->expire; 2294 d->if_index = dr->ifp->if_index; 2295 } else 2296 panic("buffer too short"); 2297 2298 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2299 if (error) 2300 break; 2301 } 2302 2303 return (error); 2304 } 2305 2306 static int 2307 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2308 { 2309 int error; 2310 char buf[1024] __aligned(4); 2311 struct in6_prefix *p, *pe; 2312 struct nd_prefix *pr; 2313 char ip6buf[INET6_ADDRSTRLEN]; 2314 2315 if (req->newptr) 2316 return EPERM; 2317 error = 0; 2318 2319 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2320 u_short advrtrs; 2321 size_t advance; 2322 struct sockaddr_in6 *sin6, *s6; 2323 struct nd_pfxrouter *pfr; 2324 2325 p = (struct in6_prefix *)buf; 2326 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2327 2328 if (p + 1 <= pe) { 2329 bzero(p, sizeof(*p)); 2330 sin6 = (struct sockaddr_in6 *)(p + 1); 2331 2332 p->prefix = pr->ndpr_prefix; 2333 if (sa6_recoverscope(&p->prefix)) { 2334 log(LOG_ERR, 2335 "scope error in prefix list (%s)\n", 2336 ip6_sprintf(ip6buf, &p->prefix.sin6_addr)); 2337 /* XXX: press on... */ 2338 } 2339 p->raflags = pr->ndpr_raf; 2340 p->prefixlen = pr->ndpr_plen; 2341 p->vltime = pr->ndpr_vltime; 2342 p->pltime = pr->ndpr_pltime; 2343 p->if_index = pr->ndpr_ifp->if_index; 2344 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2345 p->expire = 0; 2346 else { 2347 time_t maxexpire; 2348 2349 /* XXX: we assume time_t is signed. */ 2350 maxexpire = (-1) & 2351 ~((time_t)1 << 2352 ((sizeof(maxexpire) * 8) - 1)); 2353 if (pr->ndpr_vltime < 2354 maxexpire - pr->ndpr_lastupdate) { 2355 p->expire = pr->ndpr_lastupdate + 2356 pr->ndpr_vltime; 2357 } else 2358 p->expire = maxexpire; 2359 } 2360 p->refcnt = pr->ndpr_refcnt; 2361 p->flags = pr->ndpr_stateflags; 2362 p->origin = PR_ORIG_RA; 2363 advrtrs = 0; 2364 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2365 pfr = pfr->pfr_next) { 2366 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2367 advrtrs++; 2368 continue; 2369 } 2370 s6 = &sin6[advrtrs]; 2371 bzero(s6, sizeof(*s6)); 2372 s6->sin6_family = AF_INET6; 2373 s6->sin6_len = sizeof(*sin6); 2374 s6->sin6_addr = pfr->router->rtaddr; 2375 if (sa6_recoverscope(s6)) { 2376 log(LOG_ERR, 2377 "scope error in " 2378 "prefix list (%s)\n", 2379 ip6_sprintf(ip6buf, 2380 &pfr->router->rtaddr)); 2381 } 2382 advrtrs++; 2383 } 2384 p->advrtrs = advrtrs; 2385 } else 2386 panic("buffer too short"); 2387 2388 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2389 error = SYSCTL_OUT(req, buf, advance); 2390 if (error) 2391 break; 2392 } 2393 2394 return (error); 2395 } 2396