1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 /* timer values */ 89 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 90 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 91 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 92 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 93 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 94 * local traffic */ 95 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 96 * collection timer */ 97 98 /* preventing too many loops in ND option parsing */ 99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 100 101 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 102 * layer hints */ 103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 104 * ND entries */ 105 #define V_nd6_maxndopt VNET(nd6_maxndopt) 106 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 107 108 #ifdef ND6_DEBUG 109 VNET_DEFINE(int, nd6_debug) = 1; 110 #else 111 VNET_DEFINE(int, nd6_debug) = 0; 112 #endif 113 114 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 115 116 VNET_DEFINE(struct nd_drhead, nd_defrouter); 117 VNET_DEFINE(struct nd_prhead, nd_prefix); 118 VNET_DEFINE(struct rwlock, nd6_lock); 119 120 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 121 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 122 123 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 124 125 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 126 struct ifnet *); 127 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 128 static void nd6_slowtimo(void *); 129 static int regen_tmpaddr(struct in6_ifaddr *); 130 static void nd6_free(struct llentry **, int); 131 static void nd6_free_redirect(const struct llentry *); 132 static void nd6_llinfo_timer(void *); 133 static void nd6_llinfo_settimer_locked(struct llentry *, long); 134 static void clear_llinfo_pqueue(struct llentry *); 135 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 136 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 137 const struct sockaddr_in6 *, u_char *, uint32_t *); 138 static int nd6_need_cache(struct ifnet *); 139 140 141 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 142 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 143 144 VNET_DEFINE(struct callout, nd6_timer_ch); 145 #define V_nd6_timer_ch VNET(nd6_timer_ch) 146 147 static void 148 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 149 { 150 struct rt_addrinfo rtinfo; 151 struct sockaddr_in6 dst; 152 struct sockaddr_dl gw; 153 struct ifnet *ifp; 154 int type; 155 156 LLE_WLOCK_ASSERT(lle); 157 158 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 159 return; 160 161 switch (evt) { 162 case LLENTRY_RESOLVED: 163 type = RTM_ADD; 164 KASSERT(lle->la_flags & LLE_VALID, 165 ("%s: %p resolved but not valid?", __func__, lle)); 166 break; 167 case LLENTRY_EXPIRED: 168 type = RTM_DELETE; 169 break; 170 default: 171 return; 172 } 173 174 ifp = lltable_get_ifp(lle->lle_tbl); 175 176 bzero(&dst, sizeof(dst)); 177 bzero(&gw, sizeof(gw)); 178 bzero(&rtinfo, sizeof(rtinfo)); 179 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 180 dst.sin6_scope_id = in6_getscopezone(ifp, 181 in6_addrscope(&dst.sin6_addr)); 182 gw.sdl_len = sizeof(struct sockaddr_dl); 183 gw.sdl_family = AF_LINK; 184 gw.sdl_alen = ifp->if_addrlen; 185 gw.sdl_index = ifp->if_index; 186 gw.sdl_type = ifp->if_type; 187 if (evt == LLENTRY_RESOLVED) 188 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 189 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 190 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 191 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 192 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 193 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 194 } 195 196 /* 197 * A handler for interface link layer address change event. 198 */ 199 static void 200 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 201 { 202 203 lltable_update_ifaddr(LLTABLE6(ifp)); 204 } 205 206 void 207 nd6_init(void) 208 { 209 210 rw_init(&V_nd6_lock, "nd6"); 211 212 LIST_INIT(&V_nd_prefix); 213 214 /* initialization of the default router list */ 215 TAILQ_INIT(&V_nd_defrouter); 216 217 /* Start timers. */ 218 callout_init(&V_nd6_slowtimo_ch, 0); 219 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 220 nd6_slowtimo, curvnet); 221 222 callout_init(&V_nd6_timer_ch, 0); 223 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 224 225 nd6_dad_init(); 226 if (IS_DEFAULT_VNET(curvnet)) { 227 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 228 NULL, EVENTHANDLER_PRI_ANY); 229 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 230 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 231 } 232 } 233 234 #ifdef VIMAGE 235 void 236 nd6_destroy() 237 { 238 239 callout_drain(&V_nd6_slowtimo_ch); 240 callout_drain(&V_nd6_timer_ch); 241 if (IS_DEFAULT_VNET(curvnet)) { 242 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 243 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 244 } 245 rw_destroy(&V_nd6_lock); 246 } 247 #endif 248 249 struct nd_ifinfo * 250 nd6_ifattach(struct ifnet *ifp) 251 { 252 struct nd_ifinfo *nd; 253 254 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 255 nd->initialized = 1; 256 257 nd->chlim = IPV6_DEFHLIM; 258 nd->basereachable = REACHABLE_TIME; 259 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 260 nd->retrans = RETRANS_TIMER; 261 262 nd->flags = ND6_IFF_PERFORMNUD; 263 264 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 265 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 266 * default regardless of the V_ip6_auto_linklocal configuration to 267 * give a reasonable default behavior. 268 */ 269 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 270 (ifp->if_flags & IFF_LOOPBACK)) 271 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 272 /* 273 * A loopback interface does not need to accept RTADV. 274 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 275 * default regardless of the V_ip6_accept_rtadv configuration to 276 * prevent the interface from accepting RA messages arrived 277 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 278 */ 279 if (V_ip6_accept_rtadv && 280 !(ifp->if_flags & IFF_LOOPBACK) && 281 (ifp->if_type != IFT_BRIDGE)) 282 nd->flags |= ND6_IFF_ACCEPT_RTADV; 283 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 284 nd->flags |= ND6_IFF_NO_RADR; 285 286 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 287 nd6_setmtu0(ifp, nd); 288 289 return nd; 290 } 291 292 void 293 nd6_ifdetach(struct nd_ifinfo *nd) 294 { 295 296 free(nd, M_IP6NDP); 297 } 298 299 /* 300 * Reset ND level link MTU. This function is called when the physical MTU 301 * changes, which means we might have to adjust the ND level MTU. 302 */ 303 void 304 nd6_setmtu(struct ifnet *ifp) 305 { 306 if (ifp->if_afdata[AF_INET6] == NULL) 307 return; 308 309 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 310 } 311 312 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 313 void 314 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 315 { 316 u_int32_t omaxmtu; 317 318 omaxmtu = ndi->maxmtu; 319 320 switch (ifp->if_type) { 321 case IFT_ARCNET: 322 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 323 break; 324 case IFT_FDDI: 325 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 326 break; 327 case IFT_ISO88025: 328 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 329 break; 330 default: 331 ndi->maxmtu = ifp->if_mtu; 332 break; 333 } 334 335 /* 336 * Decreasing the interface MTU under IPV6 minimum MTU may cause 337 * undesirable situation. We thus notify the operator of the change 338 * explicitly. The check for omaxmtu is necessary to restrict the 339 * log to the case of changing the MTU, not initializing it. 340 */ 341 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 342 log(LOG_NOTICE, "nd6_setmtu0: " 343 "new link MTU on %s (%lu) is too small for IPv6\n", 344 if_name(ifp), (unsigned long)ndi->maxmtu); 345 } 346 347 if (ndi->maxmtu > V_in6_maxmtu) 348 in6_setmaxmtu(); /* check all interfaces just in case */ 349 350 } 351 352 void 353 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 354 { 355 356 bzero(ndopts, sizeof(*ndopts)); 357 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 358 ndopts->nd_opts_last 359 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 360 361 if (icmp6len == 0) { 362 ndopts->nd_opts_done = 1; 363 ndopts->nd_opts_search = NULL; 364 } 365 } 366 367 /* 368 * Take one ND option. 369 */ 370 struct nd_opt_hdr * 371 nd6_option(union nd_opts *ndopts) 372 { 373 struct nd_opt_hdr *nd_opt; 374 int olen; 375 376 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 377 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 378 __func__)); 379 if (ndopts->nd_opts_search == NULL) 380 return NULL; 381 if (ndopts->nd_opts_done) 382 return NULL; 383 384 nd_opt = ndopts->nd_opts_search; 385 386 /* make sure nd_opt_len is inside the buffer */ 387 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 388 bzero(ndopts, sizeof(*ndopts)); 389 return NULL; 390 } 391 392 olen = nd_opt->nd_opt_len << 3; 393 if (olen == 0) { 394 /* 395 * Message validation requires that all included 396 * options have a length that is greater than zero. 397 */ 398 bzero(ndopts, sizeof(*ndopts)); 399 return NULL; 400 } 401 402 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 403 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 404 /* option overruns the end of buffer, invalid */ 405 bzero(ndopts, sizeof(*ndopts)); 406 return NULL; 407 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 408 /* reached the end of options chain */ 409 ndopts->nd_opts_done = 1; 410 ndopts->nd_opts_search = NULL; 411 } 412 return nd_opt; 413 } 414 415 /* 416 * Parse multiple ND options. 417 * This function is much easier to use, for ND routines that do not need 418 * multiple options of the same type. 419 */ 420 int 421 nd6_options(union nd_opts *ndopts) 422 { 423 struct nd_opt_hdr *nd_opt; 424 int i = 0; 425 426 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 427 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 428 __func__)); 429 if (ndopts->nd_opts_search == NULL) 430 return 0; 431 432 while (1) { 433 nd_opt = nd6_option(ndopts); 434 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 435 /* 436 * Message validation requires that all included 437 * options have a length that is greater than zero. 438 */ 439 ICMP6STAT_INC(icp6s_nd_badopt); 440 bzero(ndopts, sizeof(*ndopts)); 441 return -1; 442 } 443 444 if (nd_opt == NULL) 445 goto skip1; 446 447 switch (nd_opt->nd_opt_type) { 448 case ND_OPT_SOURCE_LINKADDR: 449 case ND_OPT_TARGET_LINKADDR: 450 case ND_OPT_MTU: 451 case ND_OPT_REDIRECTED_HEADER: 452 case ND_OPT_NONCE: 453 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 454 nd6log((LOG_INFO, 455 "duplicated ND6 option found (type=%d)\n", 456 nd_opt->nd_opt_type)); 457 /* XXX bark? */ 458 } else { 459 ndopts->nd_opt_array[nd_opt->nd_opt_type] 460 = nd_opt; 461 } 462 break; 463 case ND_OPT_PREFIX_INFORMATION: 464 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 465 ndopts->nd_opt_array[nd_opt->nd_opt_type] 466 = nd_opt; 467 } 468 ndopts->nd_opts_pi_end = 469 (struct nd_opt_prefix_info *)nd_opt; 470 break; 471 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 472 case ND_OPT_RDNSS: /* RFC 6106 */ 473 case ND_OPT_DNSSL: /* RFC 6106 */ 474 /* 475 * Silently ignore options we know and do not care about 476 * in the kernel. 477 */ 478 break; 479 default: 480 /* 481 * Unknown options must be silently ignored, 482 * to accommodate future extension to the protocol. 483 */ 484 nd6log((LOG_DEBUG, 485 "nd6_options: unsupported option %d - " 486 "option ignored\n", nd_opt->nd_opt_type)); 487 } 488 489 skip1: 490 i++; 491 if (i > V_nd6_maxndopt) { 492 ICMP6STAT_INC(icp6s_nd_toomanyopt); 493 nd6log((LOG_INFO, "too many loop in nd opt\n")); 494 break; 495 } 496 497 if (ndopts->nd_opts_done) 498 break; 499 } 500 501 return 0; 502 } 503 504 /* 505 * ND6 timer routine to handle ND6 entries 506 */ 507 static void 508 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 509 { 510 int canceled; 511 512 LLE_WLOCK_ASSERT(ln); 513 514 if (tick < 0) { 515 ln->la_expire = 0; 516 ln->ln_ntick = 0; 517 canceled = callout_stop(&ln->lle_timer); 518 } else { 519 ln->la_expire = time_uptime + tick / hz; 520 LLE_ADDREF(ln); 521 if (tick > INT_MAX) { 522 ln->ln_ntick = tick - INT_MAX; 523 canceled = callout_reset(&ln->lle_timer, INT_MAX, 524 nd6_llinfo_timer, ln); 525 } else { 526 ln->ln_ntick = 0; 527 canceled = callout_reset(&ln->lle_timer, tick, 528 nd6_llinfo_timer, ln); 529 } 530 } 531 if (canceled > 0) 532 LLE_REMREF(ln); 533 } 534 535 /* 536 * Gets source address of the first packet in hold queue 537 * and stores it in @src. 538 * Returns pointer to @src (if hold queue is not empty) or NULL. 539 * 540 * Set noinline to be dtrace-friendly 541 */ 542 static __noinline struct in6_addr * 543 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 544 { 545 struct ip6_hdr hdr; 546 struct mbuf *m; 547 548 if (ln->la_hold == NULL) 549 return (NULL); 550 551 /* 552 * assume every packet in la_hold has the same IP header 553 */ 554 m = ln->la_hold; 555 if (sizeof(hdr) > m->m_len) 556 return (NULL); 557 558 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 559 *src = hdr.ip6_src; 560 561 return (src); 562 } 563 564 /* 565 * Checks if we need to switch from STALE state. 566 * 567 * RFC 4861 requires switching from STALE to DELAY state 568 * on first packet matching entry, waiting V_nd6_delay and 569 * transition to PROBE state (if upper layer confirmation was 570 * not received). 571 * 572 * This code performs a bit differently: 573 * On packet hit we don't change state (but desired state 574 * can be guessed by control plane). However, after V_nd6_delay 575 * seconds code will transition to PROBE state (so DELAY state 576 * is kinda skipped in most situations). 577 * 578 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 579 * we perform the following upon entering STALE state: 580 * 581 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 582 * if packet was transmitted at the start of given interval, we 583 * would be able to switch to PROBE state in V_nd6_delay seconds 584 * as user expects. 585 * 586 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 587 * lle in STALE state (remaining timer value stored in lle_remtime). 588 * 589 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 590 * seconds ago. 591 * 592 * Returns non-zero value if the entry is still STALE (storing 593 * the next timer interval in @pdelay). 594 * 595 * Returns zero value if original timer expired or we need to switch to 596 * PROBE (store that in @do_switch variable). 597 */ 598 static int 599 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 600 { 601 int nd_delay, nd_gctimer, r_skip_req; 602 time_t lle_hittime; 603 long delay; 604 605 *do_switch = 0; 606 nd_gctimer = V_nd6_gctimer; 607 nd_delay = V_nd6_delay; 608 609 LLE_REQ_LOCK(lle); 610 r_skip_req = lle->r_skip_req; 611 lle_hittime = lle->lle_hittime; 612 LLE_REQ_UNLOCK(lle); 613 614 if (r_skip_req > 0) { 615 616 /* 617 * Nonzero r_skip_req value was set upon entering 618 * STALE state. Since value was not changed, no 619 * packets were passed using this lle. Ask for 620 * timer reschedule and keep STALE state. 621 */ 622 delay = (long)(MIN(nd_gctimer, nd_delay)); 623 delay *= hz; 624 if (lle->lle_remtime > delay) 625 lle->lle_remtime -= delay; 626 else { 627 delay = lle->lle_remtime; 628 lle->lle_remtime = 0; 629 } 630 631 if (delay == 0) { 632 633 /* 634 * The original ng6_gctime timeout ended, 635 * no more rescheduling. 636 */ 637 return (0); 638 } 639 640 *pdelay = delay; 641 return (1); 642 } 643 644 /* 645 * Packet received. Verify timestamp 646 */ 647 delay = (long)(time_uptime - lle_hittime); 648 if (delay < nd_delay) { 649 650 /* 651 * V_nd6_delay still not passed since the first 652 * hit in STALE state. 653 * Reshedule timer and return. 654 */ 655 *pdelay = (long)(nd_delay - delay) * hz; 656 return (1); 657 } 658 659 /* Request switching to probe */ 660 *do_switch = 1; 661 return (0); 662 } 663 664 665 /* 666 * Switch @lle state to new state optionally arming timers. 667 * 668 * Set noinline to be dtrace-friendly 669 */ 670 __noinline void 671 nd6_llinfo_setstate(struct llentry *lle, int newstate) 672 { 673 struct ifnet *ifp; 674 int nd_gctimer, nd_delay; 675 long delay, remtime; 676 677 delay = 0; 678 remtime = 0; 679 680 switch (newstate) { 681 case ND6_LLINFO_INCOMPLETE: 682 ifp = lle->lle_tbl->llt_ifp; 683 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 684 break; 685 case ND6_LLINFO_REACHABLE: 686 if (!ND6_LLINFO_PERMANENT(lle)) { 687 ifp = lle->lle_tbl->llt_ifp; 688 delay = (long)ND_IFINFO(ifp)->reachable * hz; 689 } 690 break; 691 case ND6_LLINFO_STALE: 692 693 /* 694 * Notify fast path that we want to know if any packet 695 * is transmitted by setting r_skip_req. 696 */ 697 LLE_REQ_LOCK(lle); 698 lle->r_skip_req = 1; 699 LLE_REQ_UNLOCK(lle); 700 nd_delay = V_nd6_delay; 701 nd_gctimer = V_nd6_gctimer; 702 703 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 704 remtime = (long)nd_gctimer * hz - delay; 705 break; 706 case ND6_LLINFO_DELAY: 707 lle->la_asked = 0; 708 delay = (long)V_nd6_delay * hz; 709 break; 710 } 711 712 if (delay > 0) 713 nd6_llinfo_settimer_locked(lle, delay); 714 715 lle->lle_remtime = remtime; 716 lle->ln_state = newstate; 717 } 718 719 /* 720 * Timer-dependent part of nd state machine. 721 * 722 * Set noinline to be dtrace-friendly 723 */ 724 static __noinline void 725 nd6_llinfo_timer(void *arg) 726 { 727 struct llentry *ln; 728 struct in6_addr *dst, *pdst, *psrc, src; 729 struct ifnet *ifp; 730 struct nd_ifinfo *ndi; 731 int do_switch, send_ns; 732 long delay; 733 734 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 735 ln = (struct llentry *)arg; 736 ifp = lltable_get_ifp(ln->lle_tbl); 737 CURVNET_SET(ifp->if_vnet); 738 739 ND6_RLOCK(); 740 LLE_WLOCK(ln); 741 if (callout_pending(&ln->lle_timer)) { 742 /* 743 * Here we are a bit odd here in the treatment of 744 * active/pending. If the pending bit is set, it got 745 * rescheduled before I ran. The active 746 * bit we ignore, since if it was stopped 747 * in ll_tablefree() and was currently running 748 * it would have return 0 so the code would 749 * not have deleted it since the callout could 750 * not be stopped so we want to go through 751 * with the delete here now. If the callout 752 * was restarted, the pending bit will be back on and 753 * we just want to bail since the callout_reset would 754 * return 1 and our reference would have been removed 755 * by nd6_llinfo_settimer_locked above since canceled 756 * would have been 1. 757 */ 758 LLE_WUNLOCK(ln); 759 ND6_RUNLOCK(); 760 CURVNET_RESTORE(); 761 return; 762 } 763 ndi = ND_IFINFO(ifp); 764 send_ns = 0; 765 dst = &ln->r_l3addr.addr6; 766 pdst = dst; 767 768 if (ln->ln_ntick > 0) { 769 if (ln->ln_ntick > INT_MAX) { 770 ln->ln_ntick -= INT_MAX; 771 nd6_llinfo_settimer_locked(ln, INT_MAX); 772 } else { 773 ln->ln_ntick = 0; 774 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 775 } 776 goto done; 777 } 778 779 if (ln->la_flags & LLE_STATIC) { 780 goto done; 781 } 782 783 if (ln->la_flags & LLE_DELETED) { 784 nd6_free(&ln, 0); 785 goto done; 786 } 787 788 switch (ln->ln_state) { 789 case ND6_LLINFO_INCOMPLETE: 790 if (ln->la_asked < V_nd6_mmaxtries) { 791 ln->la_asked++; 792 send_ns = 1; 793 /* Send NS to multicast address */ 794 pdst = NULL; 795 } else { 796 struct mbuf *m = ln->la_hold; 797 if (m) { 798 struct mbuf *m0; 799 800 /* 801 * assuming every packet in la_hold has the 802 * same IP header. Send error after unlock. 803 */ 804 m0 = m->m_nextpkt; 805 m->m_nextpkt = NULL; 806 ln->la_hold = m0; 807 clear_llinfo_pqueue(ln); 808 } 809 nd6_free(&ln, 0); 810 if (m != NULL) 811 icmp6_error2(m, ICMP6_DST_UNREACH, 812 ICMP6_DST_UNREACH_ADDR, 0, ifp); 813 } 814 break; 815 case ND6_LLINFO_REACHABLE: 816 if (!ND6_LLINFO_PERMANENT(ln)) 817 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 818 break; 819 820 case ND6_LLINFO_STALE: 821 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 822 823 /* 824 * No packet has used this entry and GC timeout 825 * has not been passed. Reshedule timer and 826 * return. 827 */ 828 nd6_llinfo_settimer_locked(ln, delay); 829 break; 830 } 831 832 if (do_switch == 0) { 833 834 /* 835 * GC timer has ended and entry hasn't been used. 836 * Run Garbage collector (RFC 4861, 5.3) 837 */ 838 if (!ND6_LLINFO_PERMANENT(ln)) 839 nd6_free(&ln, 1); 840 break; 841 } 842 843 /* Entry has been used AND delay timer has ended. */ 844 845 /* FALLTHROUGH */ 846 847 case ND6_LLINFO_DELAY: 848 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 849 /* We need NUD */ 850 ln->la_asked = 1; 851 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 852 send_ns = 1; 853 } else 854 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 855 break; 856 case ND6_LLINFO_PROBE: 857 if (ln->la_asked < V_nd6_umaxtries) { 858 ln->la_asked++; 859 send_ns = 1; 860 } else { 861 nd6_free(&ln, 0); 862 } 863 break; 864 default: 865 panic("%s: paths in a dark night can be confusing: %d", 866 __func__, ln->ln_state); 867 } 868 done: 869 if (ln != NULL) 870 ND6_RUNLOCK(); 871 if (send_ns != 0) { 872 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 873 psrc = nd6_llinfo_get_holdsrc(ln, &src); 874 LLE_FREE_LOCKED(ln); 875 ln = NULL; 876 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 877 } 878 879 if (ln != NULL) 880 LLE_FREE_LOCKED(ln); 881 CURVNET_RESTORE(); 882 } 883 884 885 /* 886 * ND6 timer routine to expire default route list and prefix list 887 */ 888 void 889 nd6_timer(void *arg) 890 { 891 CURVNET_SET((struct vnet *) arg); 892 struct nd_drhead drq; 893 struct nd_defrouter *dr, *ndr; 894 struct nd_prefix *pr, *npr; 895 struct in6_ifaddr *ia6, *nia6; 896 897 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 898 nd6_timer, curvnet); 899 900 TAILQ_INIT(&drq); 901 902 /* expire default router list */ 903 ND6_WLOCK(); 904 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 905 if (dr->expire && dr->expire < time_uptime) 906 defrouter_unlink(dr, &drq); 907 ND6_WUNLOCK(); 908 909 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 910 TAILQ_REMOVE(&drq, dr, dr_entry); 911 defrouter_del(dr); 912 } 913 914 /* 915 * expire interface addresses. 916 * in the past the loop was inside prefix expiry processing. 917 * However, from a stricter speci-confrmance standpoint, we should 918 * rather separate address lifetimes and prefix lifetimes. 919 * 920 * XXXRW: in6_ifaddrhead locking. 921 */ 922 addrloop: 923 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 924 /* check address lifetime */ 925 if (IFA6_IS_INVALID(ia6)) { 926 int regen = 0; 927 928 /* 929 * If the expiring address is temporary, try 930 * regenerating a new one. This would be useful when 931 * we suspended a laptop PC, then turned it on after a 932 * period that could invalidate all temporary 933 * addresses. Although we may have to restart the 934 * loop (see below), it must be after purging the 935 * address. Otherwise, we'd see an infinite loop of 936 * regeneration. 937 */ 938 if (V_ip6_use_tempaddr && 939 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 940 if (regen_tmpaddr(ia6) == 0) 941 regen = 1; 942 } 943 944 in6_purgeaddr(&ia6->ia_ifa); 945 946 if (regen) 947 goto addrloop; /* XXX: see below */ 948 } else if (IFA6_IS_DEPRECATED(ia6)) { 949 int oldflags = ia6->ia6_flags; 950 951 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 952 953 /* 954 * If a temporary address has just become deprecated, 955 * regenerate a new one if possible. 956 */ 957 if (V_ip6_use_tempaddr && 958 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 959 (oldflags & IN6_IFF_DEPRECATED) == 0) { 960 961 if (regen_tmpaddr(ia6) == 0) { 962 /* 963 * A new temporary address is 964 * generated. 965 * XXX: this means the address chain 966 * has changed while we are still in 967 * the loop. Although the change 968 * would not cause disaster (because 969 * it's not a deletion, but an 970 * addition,) we'd rather restart the 971 * loop just for safety. Or does this 972 * significantly reduce performance?? 973 */ 974 goto addrloop; 975 } 976 } 977 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 978 /* 979 * Schedule DAD for a tentative address. This happens 980 * if the interface was down or not running 981 * when the address was configured. 982 */ 983 int delay; 984 985 delay = arc4random() % 986 (MAX_RTR_SOLICITATION_DELAY * hz); 987 nd6_dad_start((struct ifaddr *)ia6, delay); 988 } else { 989 /* 990 * Check status of the interface. If it is down, 991 * mark the address as tentative for future DAD. 992 */ 993 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 994 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 995 == 0 || 996 (ND_IFINFO(ia6->ia_ifp)->flags & 997 ND6_IFF_IFDISABLED) != 0) { 998 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 999 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1000 } 1001 /* 1002 * A new RA might have made a deprecated address 1003 * preferred. 1004 */ 1005 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1006 } 1007 } 1008 1009 /* expire prefix list */ 1010 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1011 /* 1012 * check prefix lifetime. 1013 * since pltime is just for autoconf, pltime processing for 1014 * prefix is not necessary. 1015 */ 1016 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1017 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1018 1019 /* 1020 * address expiration and prefix expiration are 1021 * separate. NEVER perform in6_purgeaddr here. 1022 */ 1023 prelist_remove(pr); 1024 } 1025 } 1026 CURVNET_RESTORE(); 1027 } 1028 1029 /* 1030 * ia6 - deprecated/invalidated temporary address 1031 */ 1032 static int 1033 regen_tmpaddr(struct in6_ifaddr *ia6) 1034 { 1035 struct ifaddr *ifa; 1036 struct ifnet *ifp; 1037 struct in6_ifaddr *public_ifa6 = NULL; 1038 1039 ifp = ia6->ia_ifa.ifa_ifp; 1040 IF_ADDR_RLOCK(ifp); 1041 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1042 struct in6_ifaddr *it6; 1043 1044 if (ifa->ifa_addr->sa_family != AF_INET6) 1045 continue; 1046 1047 it6 = (struct in6_ifaddr *)ifa; 1048 1049 /* ignore no autoconf addresses. */ 1050 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1051 continue; 1052 1053 /* ignore autoconf addresses with different prefixes. */ 1054 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1055 continue; 1056 1057 /* 1058 * Now we are looking at an autoconf address with the same 1059 * prefix as ours. If the address is temporary and is still 1060 * preferred, do not create another one. It would be rare, but 1061 * could happen, for example, when we resume a laptop PC after 1062 * a long period. 1063 */ 1064 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1065 !IFA6_IS_DEPRECATED(it6)) { 1066 public_ifa6 = NULL; 1067 break; 1068 } 1069 1070 /* 1071 * This is a public autoconf address that has the same prefix 1072 * as ours. If it is preferred, keep it. We can't break the 1073 * loop here, because there may be a still-preferred temporary 1074 * address with the prefix. 1075 */ 1076 if (!IFA6_IS_DEPRECATED(it6)) 1077 public_ifa6 = it6; 1078 } 1079 if (public_ifa6 != NULL) 1080 ifa_ref(&public_ifa6->ia_ifa); 1081 IF_ADDR_RUNLOCK(ifp); 1082 1083 if (public_ifa6 != NULL) { 1084 int e; 1085 1086 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1087 ifa_free(&public_ifa6->ia_ifa); 1088 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1089 " tmp addr,errno=%d\n", e); 1090 return (-1); 1091 } 1092 ifa_free(&public_ifa6->ia_ifa); 1093 return (0); 1094 } 1095 1096 return (-1); 1097 } 1098 1099 /* 1100 * Nuke neighbor cache/prefix/default router management table, right before 1101 * ifp goes away. 1102 */ 1103 void 1104 nd6_purge(struct ifnet *ifp) 1105 { 1106 struct nd_drhead drq; 1107 struct nd_defrouter *dr, *ndr; 1108 struct nd_prefix *pr, *npr; 1109 1110 TAILQ_INIT(&drq); 1111 1112 /* 1113 * Nuke default router list entries toward ifp. 1114 * We defer removal of default router list entries that is installed 1115 * in the routing table, in order to keep additional side effects as 1116 * small as possible. 1117 */ 1118 ND6_WLOCK(); 1119 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1120 if (dr->installed) 1121 continue; 1122 if (dr->ifp == ifp) 1123 defrouter_unlink(dr, &drq); 1124 } 1125 1126 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1127 if (!dr->installed) 1128 continue; 1129 if (dr->ifp == ifp) 1130 defrouter_unlink(dr, &drq); 1131 } 1132 ND6_WUNLOCK(); 1133 1134 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1135 TAILQ_REMOVE(&drq, dr, dr_entry); 1136 defrouter_del(dr); 1137 } 1138 1139 /* Nuke prefix list entries toward ifp */ 1140 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1141 if (pr->ndpr_ifp == ifp) { 1142 /* 1143 * Because if_detach() does *not* release prefixes 1144 * while purging addresses the reference count will 1145 * still be above zero. We therefore reset it to 1146 * make sure that the prefix really gets purged. 1147 */ 1148 pr->ndpr_refcnt = 0; 1149 1150 /* 1151 * Previously, pr->ndpr_addr is removed as well, 1152 * but I strongly believe we don't have to do it. 1153 * nd6_purge() is only called from in6_ifdetach(), 1154 * which removes all the associated interface addresses 1155 * by itself. 1156 * (jinmei@kame.net 20010129) 1157 */ 1158 prelist_remove(pr); 1159 } 1160 } 1161 1162 /* cancel default outgoing interface setting */ 1163 if (V_nd6_defifindex == ifp->if_index) 1164 nd6_setdefaultiface(0); 1165 1166 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1167 /* Refresh default router list. */ 1168 defrouter_select(); 1169 } 1170 1171 /* XXXXX 1172 * We do not nuke the neighbor cache entries here any more 1173 * because the neighbor cache is kept in if_afdata[AF_INET6]. 1174 * nd6_purge() is invoked by in6_ifdetach() which is called 1175 * from if_detach() where everything gets purged. So let 1176 * in6_domifdetach() do the actual L2 table purging work. 1177 */ 1178 } 1179 1180 /* 1181 * the caller acquires and releases the lock on the lltbls 1182 * Returns the llentry locked 1183 */ 1184 struct llentry * 1185 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1186 { 1187 struct sockaddr_in6 sin6; 1188 struct llentry *ln; 1189 1190 bzero(&sin6, sizeof(sin6)); 1191 sin6.sin6_len = sizeof(struct sockaddr_in6); 1192 sin6.sin6_family = AF_INET6; 1193 sin6.sin6_addr = *addr6; 1194 1195 IF_AFDATA_LOCK_ASSERT(ifp); 1196 1197 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1198 1199 return (ln); 1200 } 1201 1202 struct llentry * 1203 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1204 { 1205 struct sockaddr_in6 sin6; 1206 struct llentry *ln; 1207 1208 bzero(&sin6, sizeof(sin6)); 1209 sin6.sin6_len = sizeof(struct sockaddr_in6); 1210 sin6.sin6_family = AF_INET6; 1211 sin6.sin6_addr = *addr6; 1212 1213 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1214 if (ln != NULL) 1215 ln->ln_state = ND6_LLINFO_NOSTATE; 1216 1217 return (ln); 1218 } 1219 1220 /* 1221 * Test whether a given IPv6 address is a neighbor or not, ignoring 1222 * the actual neighbor cache. The neighbor cache is ignored in order 1223 * to not reenter the routing code from within itself. 1224 */ 1225 static int 1226 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1227 { 1228 struct nd_prefix *pr; 1229 struct ifaddr *dstaddr; 1230 struct rt_addrinfo info; 1231 struct sockaddr_in6 rt_key; 1232 struct sockaddr *dst6; 1233 int fibnum; 1234 1235 /* 1236 * A link-local address is always a neighbor. 1237 * XXX: a link does not necessarily specify a single interface. 1238 */ 1239 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1240 struct sockaddr_in6 sin6_copy; 1241 u_int32_t zone; 1242 1243 /* 1244 * We need sin6_copy since sa6_recoverscope() may modify the 1245 * content (XXX). 1246 */ 1247 sin6_copy = *addr; 1248 if (sa6_recoverscope(&sin6_copy)) 1249 return (0); /* XXX: should be impossible */ 1250 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1251 return (0); 1252 if (sin6_copy.sin6_scope_id == zone) 1253 return (1); 1254 else 1255 return (0); 1256 } 1257 1258 bzero(&rt_key, sizeof(rt_key)); 1259 bzero(&info, sizeof(info)); 1260 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1261 1262 /* Always use the default FIB here. XXME - why? */ 1263 fibnum = RT_DEFAULT_FIB; 1264 1265 /* 1266 * If the address matches one of our addresses, 1267 * it should be a neighbor. 1268 * If the address matches one of our on-link prefixes, it should be a 1269 * neighbor. 1270 */ 1271 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1272 if (pr->ndpr_ifp != ifp) 1273 continue; 1274 1275 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1276 1277 /* Always use the default FIB here. */ 1278 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1279 1280 /* Restore length field before retrying lookup */ 1281 rt_key.sin6_len = sizeof(rt_key); 1282 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1283 continue; 1284 /* 1285 * This is the case where multiple interfaces 1286 * have the same prefix, but only one is installed 1287 * into the routing table and that prefix entry 1288 * is not the one being examined here. In the case 1289 * where RADIX_MPATH is enabled, multiple route 1290 * entries (of the same rt_key value) will be 1291 * installed because the interface addresses all 1292 * differ. 1293 */ 1294 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1295 &rt_key.sin6_addr)) 1296 continue; 1297 } 1298 1299 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1300 &addr->sin6_addr, &pr->ndpr_mask)) 1301 return (1); 1302 } 1303 1304 /* 1305 * If the address is assigned on the node of the other side of 1306 * a p2p interface, the address should be a neighbor. 1307 */ 1308 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1309 if (dstaddr != NULL) { 1310 if (dstaddr->ifa_ifp == ifp) { 1311 ifa_free(dstaddr); 1312 return (1); 1313 } 1314 ifa_free(dstaddr); 1315 } 1316 1317 /* 1318 * If the default router list is empty, all addresses are regarded 1319 * as on-link, and thus, as a neighbor. 1320 */ 1321 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1322 TAILQ_EMPTY(&V_nd_defrouter) && 1323 V_nd6_defifindex == ifp->if_index) { 1324 return (1); 1325 } 1326 1327 return (0); 1328 } 1329 1330 1331 /* 1332 * Detect if a given IPv6 address identifies a neighbor on a given link. 1333 * XXX: should take care of the destination of a p2p link? 1334 */ 1335 int 1336 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1337 { 1338 struct llentry *lle; 1339 int rc = 0; 1340 1341 IF_AFDATA_UNLOCK_ASSERT(ifp); 1342 if (nd6_is_new_addr_neighbor(addr, ifp)) 1343 return (1); 1344 1345 /* 1346 * Even if the address matches none of our addresses, it might be 1347 * in the neighbor cache. 1348 */ 1349 IF_AFDATA_RLOCK(ifp); 1350 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1351 LLE_RUNLOCK(lle); 1352 rc = 1; 1353 } 1354 IF_AFDATA_RUNLOCK(ifp); 1355 return (rc); 1356 } 1357 1358 /* 1359 * Free an nd6 llinfo entry. 1360 * Since the function would cause significant changes in the kernel, DO NOT 1361 * make it global, unless you have a strong reason for the change, and are sure 1362 * that the change is safe. 1363 * 1364 * Set noinline to be dtrace-friendly 1365 */ 1366 static __noinline void 1367 nd6_free(struct llentry **lnp, int gc) 1368 { 1369 struct ifnet *ifp; 1370 struct llentry *ln; 1371 struct nd_defrouter *dr; 1372 1373 ln = *lnp; 1374 *lnp = NULL; 1375 1376 LLE_WLOCK_ASSERT(ln); 1377 ND6_RLOCK_ASSERT(); 1378 1379 ifp = lltable_get_ifp(ln->lle_tbl); 1380 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1381 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1382 else 1383 dr = NULL; 1384 ND6_RUNLOCK(); 1385 1386 if ((ln->la_flags & LLE_DELETED) == 0) 1387 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1388 1389 /* 1390 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1391 * even though it is not harmful, it was not really necessary. 1392 */ 1393 1394 /* cancel timer */ 1395 nd6_llinfo_settimer_locked(ln, -1); 1396 1397 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1398 if (dr != NULL && dr->expire && 1399 ln->ln_state == ND6_LLINFO_STALE && gc) { 1400 /* 1401 * If the reason for the deletion is just garbage 1402 * collection, and the neighbor is an active default 1403 * router, do not delete it. Instead, reset the GC 1404 * timer using the router's lifetime. 1405 * Simply deleting the entry would affect default 1406 * router selection, which is not necessarily a good 1407 * thing, especially when we're using router preference 1408 * values. 1409 * XXX: the check for ln_state would be redundant, 1410 * but we intentionally keep it just in case. 1411 */ 1412 if (dr->expire > time_uptime) 1413 nd6_llinfo_settimer_locked(ln, 1414 (dr->expire - time_uptime) * hz); 1415 else 1416 nd6_llinfo_settimer_locked(ln, 1417 (long)V_nd6_gctimer * hz); 1418 1419 LLE_REMREF(ln); 1420 LLE_WUNLOCK(ln); 1421 defrouter_rele(dr); 1422 return; 1423 } 1424 1425 if (dr) { 1426 /* 1427 * Unreachablity of a router might affect the default 1428 * router selection and on-link detection of advertised 1429 * prefixes. 1430 */ 1431 1432 /* 1433 * Temporarily fake the state to choose a new default 1434 * router and to perform on-link determination of 1435 * prefixes correctly. 1436 * Below the state will be set correctly, 1437 * or the entry itself will be deleted. 1438 */ 1439 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1440 } 1441 1442 if (ln->ln_router || dr) { 1443 1444 /* 1445 * We need to unlock to avoid a LOR with rt6_flush() with the 1446 * rnh and for the calls to pfxlist_onlink_check() and 1447 * defrouter_select() in the block further down for calls 1448 * into nd6_lookup(). We still hold a ref. 1449 */ 1450 LLE_WUNLOCK(ln); 1451 1452 /* 1453 * rt6_flush must be called whether or not the neighbor 1454 * is in the Default Router List. 1455 * See a corresponding comment in nd6_na_input(). 1456 */ 1457 rt6_flush(&ln->r_l3addr.addr6, ifp); 1458 } 1459 1460 if (dr) { 1461 /* 1462 * Since defrouter_select() does not affect the 1463 * on-link determination and MIP6 needs the check 1464 * before the default router selection, we perform 1465 * the check now. 1466 */ 1467 pfxlist_onlink_check(); 1468 1469 /* 1470 * Refresh default router list. 1471 */ 1472 defrouter_select(); 1473 } 1474 1475 /* 1476 * If this entry was added by an on-link redirect, remove the 1477 * corresponding host route. 1478 */ 1479 if (ln->la_flags & LLE_REDIRECT) 1480 nd6_free_redirect(ln); 1481 1482 if (ln->ln_router || dr) 1483 LLE_WLOCK(ln); 1484 } 1485 1486 /* 1487 * Save to unlock. We still hold an extra reference and will not 1488 * free(9) in llentry_free() if someone else holds one as well. 1489 */ 1490 LLE_WUNLOCK(ln); 1491 IF_AFDATA_LOCK(ifp); 1492 LLE_WLOCK(ln); 1493 /* Guard against race with other llentry_free(). */ 1494 if (ln->la_flags & LLE_LINKED) { 1495 /* Remove callout reference */ 1496 LLE_REMREF(ln); 1497 lltable_unlink_entry(ln->lle_tbl, ln); 1498 } 1499 IF_AFDATA_UNLOCK(ifp); 1500 1501 llentry_free(ln); 1502 if (dr != NULL) 1503 defrouter_rele(dr); 1504 } 1505 1506 static int 1507 nd6_isdynrte(const struct rtentry *rt, void *xap) 1508 { 1509 1510 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1511 return (1); 1512 1513 return (0); 1514 } 1515 /* 1516 * Remove the rtentry for the given llentry, 1517 * both of which were installed by a redirect. 1518 */ 1519 static void 1520 nd6_free_redirect(const struct llentry *ln) 1521 { 1522 int fibnum; 1523 struct sockaddr_in6 sin6; 1524 struct rt_addrinfo info; 1525 1526 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1527 memset(&info, 0, sizeof(info)); 1528 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1529 info.rti_filter = nd6_isdynrte; 1530 1531 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1532 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1533 } 1534 1535 /* 1536 * Rejuvenate this function for routing operations related 1537 * processing. 1538 */ 1539 void 1540 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1541 { 1542 struct sockaddr_in6 *gateway; 1543 struct nd_defrouter *dr; 1544 struct ifnet *ifp; 1545 1546 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1547 ifp = rt->rt_ifp; 1548 1549 switch (req) { 1550 case RTM_ADD: 1551 break; 1552 1553 case RTM_DELETE: 1554 if (!ifp) 1555 return; 1556 /* 1557 * Only indirect routes are interesting. 1558 */ 1559 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1560 return; 1561 /* 1562 * check for default route 1563 */ 1564 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1565 &SIN6(rt_key(rt))->sin6_addr)) { 1566 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1567 if (dr != NULL) { 1568 dr->installed = 0; 1569 defrouter_rele(dr); 1570 } 1571 } 1572 break; 1573 } 1574 } 1575 1576 1577 int 1578 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1579 { 1580 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1581 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1582 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1583 int error = 0; 1584 1585 if (ifp->if_afdata[AF_INET6] == NULL) 1586 return (EPFNOSUPPORT); 1587 switch (cmd) { 1588 case OSIOCGIFINFO_IN6: 1589 #define ND ndi->ndi 1590 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1591 bzero(&ND, sizeof(ND)); 1592 ND.linkmtu = IN6_LINKMTU(ifp); 1593 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1594 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1595 ND.reachable = ND_IFINFO(ifp)->reachable; 1596 ND.retrans = ND_IFINFO(ifp)->retrans; 1597 ND.flags = ND_IFINFO(ifp)->flags; 1598 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1599 ND.chlim = ND_IFINFO(ifp)->chlim; 1600 break; 1601 case SIOCGIFINFO_IN6: 1602 ND = *ND_IFINFO(ifp); 1603 break; 1604 case SIOCSIFINFO_IN6: 1605 /* 1606 * used to change host variables from userland. 1607 * intended for a use on router to reflect RA configurations. 1608 */ 1609 /* 0 means 'unspecified' */ 1610 if (ND.linkmtu != 0) { 1611 if (ND.linkmtu < IPV6_MMTU || 1612 ND.linkmtu > IN6_LINKMTU(ifp)) { 1613 error = EINVAL; 1614 break; 1615 } 1616 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1617 } 1618 1619 if (ND.basereachable != 0) { 1620 int obasereachable = ND_IFINFO(ifp)->basereachable; 1621 1622 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1623 if (ND.basereachable != obasereachable) 1624 ND_IFINFO(ifp)->reachable = 1625 ND_COMPUTE_RTIME(ND.basereachable); 1626 } 1627 if (ND.retrans != 0) 1628 ND_IFINFO(ifp)->retrans = ND.retrans; 1629 if (ND.chlim != 0) 1630 ND_IFINFO(ifp)->chlim = ND.chlim; 1631 /* FALLTHROUGH */ 1632 case SIOCSIFINFO_FLAGS: 1633 { 1634 struct ifaddr *ifa; 1635 struct in6_ifaddr *ia; 1636 1637 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1638 !(ND.flags & ND6_IFF_IFDISABLED)) { 1639 /* ifdisabled 1->0 transision */ 1640 1641 /* 1642 * If the interface is marked as ND6_IFF_IFDISABLED and 1643 * has an link-local address with IN6_IFF_DUPLICATED, 1644 * do not clear ND6_IFF_IFDISABLED. 1645 * See RFC 4862, Section 5.4.5. 1646 */ 1647 IF_ADDR_RLOCK(ifp); 1648 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1649 if (ifa->ifa_addr->sa_family != AF_INET6) 1650 continue; 1651 ia = (struct in6_ifaddr *)ifa; 1652 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1653 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1654 break; 1655 } 1656 IF_ADDR_RUNLOCK(ifp); 1657 1658 if (ifa != NULL) { 1659 /* LLA is duplicated. */ 1660 ND.flags |= ND6_IFF_IFDISABLED; 1661 log(LOG_ERR, "Cannot enable an interface" 1662 " with a link-local address marked" 1663 " duplicate.\n"); 1664 } else { 1665 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1666 if (ifp->if_flags & IFF_UP) 1667 in6_if_up(ifp); 1668 } 1669 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1670 (ND.flags & ND6_IFF_IFDISABLED)) { 1671 /* ifdisabled 0->1 transision */ 1672 /* Mark all IPv6 address as tentative. */ 1673 1674 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1675 if (V_ip6_dad_count > 0 && 1676 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1677 IF_ADDR_RLOCK(ifp); 1678 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1679 ifa_link) { 1680 if (ifa->ifa_addr->sa_family != 1681 AF_INET6) 1682 continue; 1683 ia = (struct in6_ifaddr *)ifa; 1684 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1685 } 1686 IF_ADDR_RUNLOCK(ifp); 1687 } 1688 } 1689 1690 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1691 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1692 /* auto_linklocal 0->1 transision */ 1693 1694 /* If no link-local address on ifp, configure */ 1695 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1696 in6_ifattach(ifp, NULL); 1697 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1698 ifp->if_flags & IFF_UP) { 1699 /* 1700 * When the IF already has 1701 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1702 * address is assigned, and IFF_UP, try to 1703 * assign one. 1704 */ 1705 IF_ADDR_RLOCK(ifp); 1706 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1707 ifa_link) { 1708 if (ifa->ifa_addr->sa_family != 1709 AF_INET6) 1710 continue; 1711 ia = (struct in6_ifaddr *)ifa; 1712 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1713 break; 1714 } 1715 IF_ADDR_RUNLOCK(ifp); 1716 if (ifa != NULL) 1717 /* No LLA is configured. */ 1718 in6_ifattach(ifp, NULL); 1719 } 1720 } 1721 } 1722 ND_IFINFO(ifp)->flags = ND.flags; 1723 break; 1724 #undef ND 1725 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1726 /* sync kernel routing table with the default router list */ 1727 defrouter_reset(); 1728 defrouter_select(); 1729 break; 1730 case SIOCSPFXFLUSH_IN6: 1731 { 1732 /* flush all the prefix advertised by routers */ 1733 struct nd_prefix *pr, *next; 1734 1735 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1736 struct in6_ifaddr *ia, *ia_next; 1737 1738 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1739 continue; /* XXX */ 1740 1741 /* do we really have to remove addresses as well? */ 1742 /* XXXRW: in6_ifaddrhead locking. */ 1743 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1744 ia_next) { 1745 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1746 continue; 1747 1748 if (ia->ia6_ndpr == pr) 1749 in6_purgeaddr(&ia->ia_ifa); 1750 } 1751 prelist_remove(pr); 1752 } 1753 break; 1754 } 1755 case SIOCSRTRFLUSH_IN6: 1756 { 1757 /* flush all the default routers */ 1758 struct nd_drhead drq; 1759 struct nd_defrouter *dr; 1760 1761 TAILQ_INIT(&drq); 1762 1763 defrouter_reset(); 1764 1765 ND6_WLOCK(); 1766 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1767 defrouter_unlink(dr, &drq); 1768 ND6_WUNLOCK(); 1769 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1770 TAILQ_REMOVE(&drq, dr, dr_entry); 1771 defrouter_del(dr); 1772 } 1773 1774 defrouter_select(); 1775 break; 1776 } 1777 case SIOCGNBRINFO_IN6: 1778 { 1779 struct llentry *ln; 1780 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1781 1782 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1783 return (error); 1784 1785 IF_AFDATA_RLOCK(ifp); 1786 ln = nd6_lookup(&nb_addr, 0, ifp); 1787 IF_AFDATA_RUNLOCK(ifp); 1788 1789 if (ln == NULL) { 1790 error = EINVAL; 1791 break; 1792 } 1793 nbi->state = ln->ln_state; 1794 nbi->asked = ln->la_asked; 1795 nbi->isrouter = ln->ln_router; 1796 if (ln->la_expire == 0) 1797 nbi->expire = 0; 1798 else 1799 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1800 (time_second - time_uptime); 1801 LLE_RUNLOCK(ln); 1802 break; 1803 } 1804 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1805 ndif->ifindex = V_nd6_defifindex; 1806 break; 1807 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1808 return (nd6_setdefaultiface(ndif->ifindex)); 1809 } 1810 return (error); 1811 } 1812 1813 /* 1814 * Calculates new isRouter value based on provided parameters and 1815 * returns it. 1816 */ 1817 static int 1818 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1819 int ln_router) 1820 { 1821 1822 /* 1823 * ICMP6 type dependent behavior. 1824 * 1825 * NS: clear IsRouter if new entry 1826 * RS: clear IsRouter 1827 * RA: set IsRouter if there's lladdr 1828 * redir: clear IsRouter if new entry 1829 * 1830 * RA case, (1): 1831 * The spec says that we must set IsRouter in the following cases: 1832 * - If lladdr exist, set IsRouter. This means (1-5). 1833 * - If it is old entry (!newentry), set IsRouter. This means (7). 1834 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1835 * A quetion arises for (1) case. (1) case has no lladdr in the 1836 * neighbor cache, this is similar to (6). 1837 * This case is rare but we figured that we MUST NOT set IsRouter. 1838 * 1839 * is_new old_addr new_addr NS RS RA redir 1840 * D R 1841 * 0 n n (1) c ? s 1842 * 0 y n (2) c s s 1843 * 0 n y (3) c s s 1844 * 0 y y (4) c s s 1845 * 0 y y (5) c s s 1846 * 1 -- n (6) c c c s 1847 * 1 -- y (7) c c s c s 1848 * 1849 * (c=clear s=set) 1850 */ 1851 switch (type & 0xff) { 1852 case ND_NEIGHBOR_SOLICIT: 1853 /* 1854 * New entry must have is_router flag cleared. 1855 */ 1856 if (is_new) /* (6-7) */ 1857 ln_router = 0; 1858 break; 1859 case ND_REDIRECT: 1860 /* 1861 * If the icmp is a redirect to a better router, always set the 1862 * is_router flag. Otherwise, if the entry is newly created, 1863 * clear the flag. [RFC 2461, sec 8.3] 1864 */ 1865 if (code == ND_REDIRECT_ROUTER) 1866 ln_router = 1; 1867 else { 1868 if (is_new) /* (6-7) */ 1869 ln_router = 0; 1870 } 1871 break; 1872 case ND_ROUTER_SOLICIT: 1873 /* 1874 * is_router flag must always be cleared. 1875 */ 1876 ln_router = 0; 1877 break; 1878 case ND_ROUTER_ADVERT: 1879 /* 1880 * Mark an entry with lladdr as a router. 1881 */ 1882 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1883 (is_new && new_addr)) { /* (7) */ 1884 ln_router = 1; 1885 } 1886 break; 1887 } 1888 1889 return (ln_router); 1890 } 1891 1892 /* 1893 * Create neighbor cache entry and cache link-layer address, 1894 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1895 * 1896 * type - ICMP6 type 1897 * code - type dependent information 1898 * 1899 */ 1900 void 1901 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1902 int lladdrlen, int type, int code) 1903 { 1904 struct llentry *ln = NULL, *ln_tmp; 1905 int is_newentry; 1906 int do_update; 1907 int olladdr; 1908 int llchange; 1909 int flags; 1910 uint16_t router = 0; 1911 struct sockaddr_in6 sin6; 1912 struct mbuf *chain = NULL; 1913 u_char linkhdr[LLE_MAX_LINKHDR]; 1914 size_t linkhdrsize; 1915 int lladdr_off; 1916 1917 IF_AFDATA_UNLOCK_ASSERT(ifp); 1918 1919 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1920 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1921 1922 /* nothing must be updated for unspecified address */ 1923 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1924 return; 1925 1926 /* 1927 * Validation about ifp->if_addrlen and lladdrlen must be done in 1928 * the caller. 1929 * 1930 * XXX If the link does not have link-layer adderss, what should 1931 * we do? (ifp->if_addrlen == 0) 1932 * Spec says nothing in sections for RA, RS and NA. There's small 1933 * description on it in NS section (RFC 2461 7.2.3). 1934 */ 1935 flags = lladdr ? LLE_EXCLUSIVE : 0; 1936 IF_AFDATA_RLOCK(ifp); 1937 ln = nd6_lookup(from, flags, ifp); 1938 IF_AFDATA_RUNLOCK(ifp); 1939 is_newentry = 0; 1940 if (ln == NULL) { 1941 flags |= LLE_EXCLUSIVE; 1942 ln = nd6_alloc(from, 0, ifp); 1943 if (ln == NULL) 1944 return; 1945 1946 /* 1947 * Since we already know all the data for the new entry, 1948 * fill it before insertion. 1949 */ 1950 if (lladdr != NULL) { 1951 linkhdrsize = sizeof(linkhdr); 1952 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1953 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1954 return; 1955 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1956 lladdr_off); 1957 } 1958 1959 IF_AFDATA_WLOCK(ifp); 1960 LLE_WLOCK(ln); 1961 /* Prefer any existing lle over newly-created one */ 1962 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1963 if (ln_tmp == NULL) 1964 lltable_link_entry(LLTABLE6(ifp), ln); 1965 IF_AFDATA_WUNLOCK(ifp); 1966 if (ln_tmp == NULL) { 1967 /* No existing lle, mark as new entry (6,7) */ 1968 is_newentry = 1; 1969 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1970 if (lladdr != NULL) /* (7) */ 1971 EVENTHANDLER_INVOKE(lle_event, ln, 1972 LLENTRY_RESOLVED); 1973 } else { 1974 lltable_free_entry(LLTABLE6(ifp), ln); 1975 ln = ln_tmp; 1976 ln_tmp = NULL; 1977 } 1978 } 1979 /* do nothing if static ndp is set */ 1980 if ((ln->la_flags & LLE_STATIC)) { 1981 if (flags & LLE_EXCLUSIVE) 1982 LLE_WUNLOCK(ln); 1983 else 1984 LLE_RUNLOCK(ln); 1985 return; 1986 } 1987 1988 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1989 if (olladdr && lladdr) { 1990 llchange = bcmp(lladdr, ln->ll_addr, 1991 ifp->if_addrlen); 1992 } else if (!olladdr && lladdr) 1993 llchange = 1; 1994 else 1995 llchange = 0; 1996 1997 /* 1998 * newentry olladdr lladdr llchange (*=record) 1999 * 0 n n -- (1) 2000 * 0 y n -- (2) 2001 * 0 n y y (3) * STALE 2002 * 0 y y n (4) * 2003 * 0 y y y (5) * STALE 2004 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2005 * 1 -- y -- (7) * STALE 2006 */ 2007 2008 do_update = 0; 2009 if (is_newentry == 0 && llchange != 0) { 2010 do_update = 1; /* (3,5) */ 2011 2012 /* 2013 * Record source link-layer address 2014 * XXX is it dependent to ifp->if_type? 2015 */ 2016 linkhdrsize = sizeof(linkhdr); 2017 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2018 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2019 return; 2020 2021 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2022 lladdr_off) == 0) { 2023 /* Entry was deleted */ 2024 return; 2025 } 2026 2027 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2028 2029 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2030 2031 if (ln->la_hold != NULL) 2032 nd6_grab_holdchain(ln, &chain, &sin6); 2033 } 2034 2035 /* Calculates new router status */ 2036 router = nd6_is_router(type, code, is_newentry, olladdr, 2037 lladdr != NULL ? 1 : 0, ln->ln_router); 2038 2039 ln->ln_router = router; 2040 /* Mark non-router redirects with special flag */ 2041 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2042 ln->la_flags |= LLE_REDIRECT; 2043 2044 if (flags & LLE_EXCLUSIVE) 2045 LLE_WUNLOCK(ln); 2046 else 2047 LLE_RUNLOCK(ln); 2048 2049 if (chain != NULL) 2050 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2051 2052 /* 2053 * When the link-layer address of a router changes, select the 2054 * best router again. In particular, when the neighbor entry is newly 2055 * created, it might affect the selection policy. 2056 * Question: can we restrict the first condition to the "is_newentry" 2057 * case? 2058 * XXX: when we hear an RA from a new router with the link-layer 2059 * address option, defrouter_select() is called twice, since 2060 * defrtrlist_update called the function as well. However, I believe 2061 * we can compromise the overhead, since it only happens the first 2062 * time. 2063 * XXX: although defrouter_select() should not have a bad effect 2064 * for those are not autoconfigured hosts, we explicitly avoid such 2065 * cases for safety. 2066 */ 2067 if ((do_update || is_newentry) && router && 2068 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2069 /* 2070 * guaranteed recursion 2071 */ 2072 defrouter_select(); 2073 } 2074 } 2075 2076 static void 2077 nd6_slowtimo(void *arg) 2078 { 2079 CURVNET_SET((struct vnet *) arg); 2080 struct nd_ifinfo *nd6if; 2081 struct ifnet *ifp; 2082 2083 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2084 nd6_slowtimo, curvnet); 2085 IFNET_RLOCK_NOSLEEP(); 2086 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2087 if (ifp->if_afdata[AF_INET6] == NULL) 2088 continue; 2089 nd6if = ND_IFINFO(ifp); 2090 if (nd6if->basereachable && /* already initialized */ 2091 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2092 /* 2093 * Since reachable time rarely changes by router 2094 * advertisements, we SHOULD insure that a new random 2095 * value gets recomputed at least once every few hours. 2096 * (RFC 2461, 6.3.4) 2097 */ 2098 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2099 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2100 } 2101 } 2102 IFNET_RUNLOCK_NOSLEEP(); 2103 CURVNET_RESTORE(); 2104 } 2105 2106 void 2107 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2108 struct sockaddr_in6 *sin6) 2109 { 2110 2111 LLE_WLOCK_ASSERT(ln); 2112 2113 *chain = ln->la_hold; 2114 ln->la_hold = NULL; 2115 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2116 2117 if (ln->ln_state == ND6_LLINFO_STALE) { 2118 2119 /* 2120 * The first time we send a packet to a 2121 * neighbor whose entry is STALE, we have 2122 * to change the state to DELAY and a sets 2123 * a timer to expire in DELAY_FIRST_PROBE_TIME 2124 * seconds to ensure do neighbor unreachability 2125 * detection on expiration. 2126 * (RFC 2461 7.3.3) 2127 */ 2128 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2129 } 2130 } 2131 2132 int 2133 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2134 struct sockaddr_in6 *dst, struct route *ro) 2135 { 2136 int error; 2137 int ip6len; 2138 struct ip6_hdr *ip6; 2139 struct m_tag *mtag; 2140 2141 #ifdef MAC 2142 mac_netinet6_nd6_send(ifp, m); 2143 #endif 2144 2145 /* 2146 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2147 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2148 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2149 * to be diverted to user space. When re-injected into the kernel, 2150 * send_output() will directly dispatch them to the outgoing interface. 2151 */ 2152 if (send_sendso_input_hook != NULL) { 2153 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2154 if (mtag != NULL) { 2155 ip6 = mtod(m, struct ip6_hdr *); 2156 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2157 /* Use the SEND socket */ 2158 error = send_sendso_input_hook(m, ifp, SND_OUT, 2159 ip6len); 2160 /* -1 == no app on SEND socket */ 2161 if (error == 0 || error != -1) 2162 return (error); 2163 } 2164 } 2165 2166 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2167 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2168 mtod(m, struct ip6_hdr *)); 2169 2170 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2171 origifp = ifp; 2172 2173 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2174 return (error); 2175 } 2176 2177 /* 2178 * Lookup link headerfor @sa_dst address. Stores found 2179 * data in @desten buffer. Copy of lle ln_flags can be also 2180 * saved in @pflags if @pflags is non-NULL. 2181 * 2182 * If destination LLE does not exists or lle state modification 2183 * is required, call "slow" version. 2184 * 2185 * Return values: 2186 * - 0 on success (address copied to buffer). 2187 * - EWOULDBLOCK (no local error, but address is still unresolved) 2188 * - other errors (alloc failure, etc) 2189 */ 2190 int 2191 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2192 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags) 2193 { 2194 struct llentry *ln = NULL; 2195 const struct sockaddr_in6 *dst6; 2196 2197 if (pflags != NULL) 2198 *pflags = 0; 2199 2200 dst6 = (const struct sockaddr_in6 *)sa_dst; 2201 2202 /* discard the packet if IPv6 operation is disabled on the interface */ 2203 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2204 m_freem(m); 2205 return (ENETDOWN); /* better error? */ 2206 } 2207 2208 if (m != NULL && m->m_flags & M_MCAST) { 2209 switch (ifp->if_type) { 2210 case IFT_ETHER: 2211 case IFT_FDDI: 2212 case IFT_L2VLAN: 2213 case IFT_IEEE80211: 2214 case IFT_BRIDGE: 2215 case IFT_ISO88025: 2216 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2217 desten); 2218 return (0); 2219 default: 2220 m_freem(m); 2221 return (EAFNOSUPPORT); 2222 } 2223 } 2224 2225 IF_AFDATA_RLOCK(ifp); 2226 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2227 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2228 /* Entry found, let's copy lle info */ 2229 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2230 if (pflags != NULL) 2231 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2232 /* Check if we have feedback request from nd6 timer */ 2233 if (ln->r_skip_req != 0) { 2234 LLE_REQ_LOCK(ln); 2235 ln->r_skip_req = 0; /* Notify that entry was used */ 2236 ln->lle_hittime = time_uptime; 2237 LLE_REQ_UNLOCK(ln); 2238 } 2239 IF_AFDATA_RUNLOCK(ifp); 2240 return (0); 2241 } 2242 IF_AFDATA_RUNLOCK(ifp); 2243 2244 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags)); 2245 } 2246 2247 2248 /* 2249 * Do L2 address resolution for @sa_dst address. Stores found 2250 * address in @desten buffer. Copy of lle ln_flags can be also 2251 * saved in @pflags if @pflags is non-NULL. 2252 * 2253 * Heavy version. 2254 * Function assume that destination LLE does not exist, 2255 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2256 * 2257 * Set noinline to be dtrace-friendly 2258 */ 2259 static __noinline int 2260 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2261 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags) 2262 { 2263 struct llentry *lle = NULL, *lle_tmp; 2264 struct in6_addr *psrc, src; 2265 int send_ns, ll_len; 2266 char *lladdr; 2267 2268 /* 2269 * Address resolution or Neighbor Unreachability Detection 2270 * for the next hop. 2271 * At this point, the destination of the packet must be a unicast 2272 * or an anycast address(i.e. not a multicast). 2273 */ 2274 if (lle == NULL) { 2275 IF_AFDATA_RLOCK(ifp); 2276 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2277 IF_AFDATA_RUNLOCK(ifp); 2278 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2279 /* 2280 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2281 * the condition below is not very efficient. But we believe 2282 * it is tolerable, because this should be a rare case. 2283 */ 2284 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2285 if (lle == NULL) { 2286 char ip6buf[INET6_ADDRSTRLEN]; 2287 log(LOG_DEBUG, 2288 "nd6_output: can't allocate llinfo for %s " 2289 "(ln=%p)\n", 2290 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2291 m_freem(m); 2292 return (ENOBUFS); 2293 } 2294 2295 IF_AFDATA_WLOCK(ifp); 2296 LLE_WLOCK(lle); 2297 /* Prefer any existing entry over newly-created one */ 2298 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2299 if (lle_tmp == NULL) 2300 lltable_link_entry(LLTABLE6(ifp), lle); 2301 IF_AFDATA_WUNLOCK(ifp); 2302 if (lle_tmp != NULL) { 2303 lltable_free_entry(LLTABLE6(ifp), lle); 2304 lle = lle_tmp; 2305 lle_tmp = NULL; 2306 } 2307 } 2308 } 2309 if (lle == NULL) { 2310 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2311 m_freem(m); 2312 return (ENOBUFS); 2313 } 2314 2315 if (m != NULL) 2316 m_freem(m); 2317 return (ENOBUFS); 2318 } 2319 2320 LLE_WLOCK_ASSERT(lle); 2321 2322 /* 2323 * The first time we send a packet to a neighbor whose entry is 2324 * STALE, we have to change the state to DELAY and a sets a timer to 2325 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2326 * neighbor unreachability detection on expiration. 2327 * (RFC 2461 7.3.3) 2328 */ 2329 if (lle->ln_state == ND6_LLINFO_STALE) 2330 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2331 2332 /* 2333 * If the neighbor cache entry has a state other than INCOMPLETE 2334 * (i.e. its link-layer address is already resolved), just 2335 * send the packet. 2336 */ 2337 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2338 if (flags & LLE_ADDRONLY) { 2339 lladdr = lle->ll_addr; 2340 ll_len = ifp->if_addrlen; 2341 } else { 2342 lladdr = lle->r_linkdata; 2343 ll_len = lle->r_hdrlen; 2344 } 2345 bcopy(lladdr, desten, ll_len); 2346 if (pflags != NULL) 2347 *pflags = lle->la_flags; 2348 LLE_WUNLOCK(lle); 2349 return (0); 2350 } 2351 2352 /* 2353 * There is a neighbor cache entry, but no ethernet address 2354 * response yet. Append this latest packet to the end of the 2355 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2356 * the oldest packet in the queue will be removed. 2357 */ 2358 2359 if (lle->la_hold != NULL) { 2360 struct mbuf *m_hold; 2361 int i; 2362 2363 i = 0; 2364 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2365 i++; 2366 if (m_hold->m_nextpkt == NULL) { 2367 m_hold->m_nextpkt = m; 2368 break; 2369 } 2370 } 2371 while (i >= V_nd6_maxqueuelen) { 2372 m_hold = lle->la_hold; 2373 lle->la_hold = lle->la_hold->m_nextpkt; 2374 m_freem(m_hold); 2375 i--; 2376 } 2377 } else { 2378 lle->la_hold = m; 2379 } 2380 2381 /* 2382 * If there has been no NS for the neighbor after entering the 2383 * INCOMPLETE state, send the first solicitation. 2384 * Note that for newly-created lle la_asked will be 0, 2385 * so we will transition from ND6_LLINFO_NOSTATE to 2386 * ND6_LLINFO_INCOMPLETE state here. 2387 */ 2388 psrc = NULL; 2389 send_ns = 0; 2390 if (lle->la_asked == 0) { 2391 lle->la_asked++; 2392 send_ns = 1; 2393 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2394 2395 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2396 } 2397 LLE_WUNLOCK(lle); 2398 if (send_ns != 0) 2399 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2400 2401 return (EWOULDBLOCK); 2402 } 2403 2404 /* 2405 * Do L2 address resolution for @sa_dst address. Stores found 2406 * address in @desten buffer. Copy of lle ln_flags can be also 2407 * saved in @pflags if @pflags is non-NULL. 2408 * 2409 * Return values: 2410 * - 0 on success (address copied to buffer). 2411 * - EWOULDBLOCK (no local error, but address is still unresolved) 2412 * - other errors (alloc failure, etc) 2413 */ 2414 int 2415 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2416 char *desten, uint32_t *pflags) 2417 { 2418 int error; 2419 2420 flags |= LLE_ADDRONLY; 2421 error = nd6_resolve_slow(ifp, flags, NULL, 2422 (const struct sockaddr_in6 *)dst, desten, pflags); 2423 return (error); 2424 } 2425 2426 int 2427 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2428 struct sockaddr_in6 *dst) 2429 { 2430 struct mbuf *m, *m_head; 2431 struct ifnet *outifp; 2432 int error = 0; 2433 2434 m_head = chain; 2435 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2436 outifp = origifp; 2437 else 2438 outifp = ifp; 2439 2440 while (m_head) { 2441 m = m_head; 2442 m_head = m_head->m_nextpkt; 2443 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2444 } 2445 2446 /* 2447 * XXX 2448 * note that intermediate errors are blindly ignored 2449 */ 2450 return (error); 2451 } 2452 2453 static int 2454 nd6_need_cache(struct ifnet *ifp) 2455 { 2456 /* 2457 * XXX: we currently do not make neighbor cache on any interface 2458 * other than ARCnet, Ethernet, FDDI and GIF. 2459 * 2460 * RFC2893 says: 2461 * - unidirectional tunnels needs no ND 2462 */ 2463 switch (ifp->if_type) { 2464 case IFT_ARCNET: 2465 case IFT_ETHER: 2466 case IFT_FDDI: 2467 case IFT_IEEE1394: 2468 case IFT_L2VLAN: 2469 case IFT_IEEE80211: 2470 case IFT_INFINIBAND: 2471 case IFT_BRIDGE: 2472 case IFT_PROPVIRTUAL: 2473 return (1); 2474 default: 2475 return (0); 2476 } 2477 } 2478 2479 /* 2480 * Add pernament ND6 link-layer record for given 2481 * interface address. 2482 * 2483 * Very similar to IPv4 arp_ifinit(), but: 2484 * 1) IPv6 DAD is performed in different place 2485 * 2) It is called by IPv6 protocol stack in contrast to 2486 * arp_ifinit() which is typically called in SIOCSIFADDR 2487 * driver ioctl handler. 2488 * 2489 */ 2490 int 2491 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2492 { 2493 struct ifnet *ifp; 2494 struct llentry *ln, *ln_tmp; 2495 struct sockaddr *dst; 2496 2497 ifp = ia->ia_ifa.ifa_ifp; 2498 if (nd6_need_cache(ifp) == 0) 2499 return (0); 2500 2501 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2502 dst = (struct sockaddr *)&ia->ia_addr; 2503 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2504 if (ln == NULL) 2505 return (ENOBUFS); 2506 2507 IF_AFDATA_WLOCK(ifp); 2508 LLE_WLOCK(ln); 2509 /* Unlink any entry if exists */ 2510 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2511 if (ln_tmp != NULL) 2512 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2513 lltable_link_entry(LLTABLE6(ifp), ln); 2514 IF_AFDATA_WUNLOCK(ifp); 2515 2516 if (ln_tmp != NULL) 2517 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2518 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2519 2520 LLE_WUNLOCK(ln); 2521 if (ln_tmp != NULL) 2522 llentry_free(ln_tmp); 2523 2524 return (0); 2525 } 2526 2527 /* 2528 * Removes either all lle entries for given @ia, or lle 2529 * corresponding to @ia address. 2530 */ 2531 void 2532 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2533 { 2534 struct sockaddr_in6 mask, addr; 2535 struct sockaddr *saddr, *smask; 2536 struct ifnet *ifp; 2537 2538 ifp = ia->ia_ifa.ifa_ifp; 2539 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2540 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2541 saddr = (struct sockaddr *)&addr; 2542 smask = (struct sockaddr *)&mask; 2543 2544 if (all != 0) 2545 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2546 else 2547 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2548 } 2549 2550 static void 2551 clear_llinfo_pqueue(struct llentry *ln) 2552 { 2553 struct mbuf *m_hold, *m_hold_next; 2554 2555 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2556 m_hold_next = m_hold->m_nextpkt; 2557 m_freem(m_hold); 2558 } 2559 2560 ln->la_hold = NULL; 2561 } 2562 2563 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2564 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2565 #ifdef SYSCTL_DECL 2566 SYSCTL_DECL(_net_inet6_icmp6); 2567 #endif 2568 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2569 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2570 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2571 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2572 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2573 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2574 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2575 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2576 2577 static int 2578 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2579 { 2580 struct in6_defrouter d; 2581 struct nd_defrouter *dr; 2582 int error; 2583 2584 if (req->newptr != NULL) 2585 return (EPERM); 2586 2587 error = sysctl_wire_old_buffer(req, 0); 2588 if (error != 0) 2589 return (error); 2590 2591 bzero(&d, sizeof(d)); 2592 d.rtaddr.sin6_family = AF_INET6; 2593 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2594 2595 ND6_RLOCK(); 2596 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2597 d.rtaddr.sin6_addr = dr->rtaddr; 2598 error = sa6_recoverscope(&d.rtaddr); 2599 if (error != 0) 2600 break; 2601 d.flags = dr->raflags; 2602 d.rtlifetime = dr->rtlifetime; 2603 d.expire = dr->expire + (time_second - time_uptime); 2604 d.if_index = dr->ifp->if_index; 2605 error = SYSCTL_OUT(req, &d, sizeof(d)); 2606 if (error != 0) 2607 break; 2608 } 2609 ND6_RUNLOCK(); 2610 return (error); 2611 } 2612 2613 static int 2614 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2615 { 2616 struct in6_prefix p; 2617 struct sockaddr_in6 s6; 2618 struct nd_prefix *pr; 2619 struct nd_pfxrouter *pfr; 2620 time_t maxexpire; 2621 int error; 2622 char ip6buf[INET6_ADDRSTRLEN]; 2623 2624 if (req->newptr) 2625 return (EPERM); 2626 2627 bzero(&p, sizeof(p)); 2628 p.origin = PR_ORIG_RA; 2629 bzero(&s6, sizeof(s6)); 2630 s6.sin6_family = AF_INET6; 2631 s6.sin6_len = sizeof(s6); 2632 2633 /* 2634 * XXX locking 2635 */ 2636 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2637 p.prefix = pr->ndpr_prefix; 2638 if (sa6_recoverscope(&p.prefix)) { 2639 log(LOG_ERR, "scope error in prefix list (%s)\n", 2640 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2641 /* XXX: press on... */ 2642 } 2643 p.raflags = pr->ndpr_raf; 2644 p.prefixlen = pr->ndpr_plen; 2645 p.vltime = pr->ndpr_vltime; 2646 p.pltime = pr->ndpr_pltime; 2647 p.if_index = pr->ndpr_ifp->if_index; 2648 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2649 p.expire = 0; 2650 else { 2651 /* XXX: we assume time_t is signed. */ 2652 maxexpire = (-1) & 2653 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2654 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2655 p.expire = pr->ndpr_lastupdate + 2656 pr->ndpr_vltime + 2657 (time_second - time_uptime); 2658 else 2659 p.expire = maxexpire; 2660 } 2661 p.refcnt = pr->ndpr_refcnt; 2662 p.flags = pr->ndpr_stateflags; 2663 p.advrtrs = 0; 2664 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2665 p.advrtrs++; 2666 error = SYSCTL_OUT(req, &p, sizeof(p)); 2667 if (error != 0) 2668 return (error); 2669 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2670 s6.sin6_addr = pfr->router->rtaddr; 2671 if (sa6_recoverscope(&s6)) 2672 log(LOG_ERR, 2673 "scope error in prefix list (%s)\n", 2674 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2675 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2676 if (error != 0) 2677 return (error); 2678 } 2679 } 2680 return (0); 2681 } 2682