xref: /freebsd/sys/netinet6/nd6.c (revision e796cc77c586c2955b2f3940dbf4991b31e8d289)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/mutex.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/protosw.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/rwlock.h>
55 #include <sys/queue.h>
56 #include <sys/sdt.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arc.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/iso88025.h>
65 #include <net/fddi.h>
66 #include <net/route.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_kdtrace.h>
71 #include <net/if_llatbl.h>
72 #include <netinet/if_ether.h>
73 #include <netinet6/in6_var.h>
74 #include <netinet/ip6.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/scope6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet6/in6_ifattach.h>
79 #include <netinet/icmp6.h>
80 #include <netinet6/send.h>
81 
82 #include <sys/limits.h>
83 
84 #include <security/mac/mac_framework.h>
85 
86 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
87 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
88 
89 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
90 
91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
92 
93 /* timer values */
94 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
95 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
96 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
97 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
98 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
99 					 * local traffic */
100 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
101 					 * collection timer */
102 
103 /* preventing too many loops in ND option parsing */
104 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
105 
106 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
107 					 * layer hints */
108 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
109 					 * ND entries */
110 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
111 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
112 
113 #ifdef ND6_DEBUG
114 VNET_DEFINE(int, nd6_debug) = 1;
115 #else
116 VNET_DEFINE(int, nd6_debug) = 0;
117 #endif
118 
119 static eventhandler_tag lle_event_eh, iflladdr_event_eh;
120 
121 VNET_DEFINE(struct nd_drhead, nd_defrouter);
122 VNET_DEFINE(struct nd_prhead, nd_prefix);
123 VNET_DEFINE(struct rwlock, nd6_lock);
124 VNET_DEFINE(uint64_t, nd6_list_genid);
125 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
126 
127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
128 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
129 
130 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
131 
132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
133 	struct ifnet *);
134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
135 static void nd6_slowtimo(void *);
136 static int regen_tmpaddr(struct in6_ifaddr *);
137 static void nd6_free(struct llentry **, int);
138 static void nd6_free_redirect(const struct llentry *);
139 static void nd6_llinfo_timer(void *);
140 static void nd6_llinfo_settimer_locked(struct llentry *, long);
141 static void clear_llinfo_pqueue(struct llentry *);
142 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
143 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
144     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
145 static int nd6_need_cache(struct ifnet *);
146 
147 
148 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
149 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
150 
151 VNET_DEFINE(struct callout, nd6_timer_ch);
152 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
153 
154 static void
155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
156 {
157 	struct rt_addrinfo rtinfo;
158 	struct sockaddr_in6 dst;
159 	struct sockaddr_dl gw;
160 	struct ifnet *ifp;
161 	int type;
162 	int fibnum;
163 
164 	LLE_WLOCK_ASSERT(lle);
165 
166 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
167 		return;
168 
169 	switch (evt) {
170 	case LLENTRY_RESOLVED:
171 		type = RTM_ADD;
172 		KASSERT(lle->la_flags & LLE_VALID,
173 		    ("%s: %p resolved but not valid?", __func__, lle));
174 		break;
175 	case LLENTRY_EXPIRED:
176 		type = RTM_DELETE;
177 		break;
178 	default:
179 		return;
180 	}
181 
182 	ifp = lltable_get_ifp(lle->lle_tbl);
183 
184 	bzero(&dst, sizeof(dst));
185 	bzero(&gw, sizeof(gw));
186 	bzero(&rtinfo, sizeof(rtinfo));
187 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
188 	dst.sin6_scope_id = in6_getscopezone(ifp,
189 	    in6_addrscope(&dst.sin6_addr));
190 	gw.sdl_len = sizeof(struct sockaddr_dl);
191 	gw.sdl_family = AF_LINK;
192 	gw.sdl_alen = ifp->if_addrlen;
193 	gw.sdl_index = ifp->if_index;
194 	gw.sdl_type = ifp->if_type;
195 	if (evt == LLENTRY_RESOLVED)
196 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
197 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
198 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
199 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
200 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
201 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
202 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
203 }
204 
205 /*
206  * A handler for interface link layer address change event.
207  */
208 static void
209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
210 {
211 
212 	lltable_update_ifaddr(LLTABLE6(ifp));
213 }
214 
215 void
216 nd6_init(void)
217 {
218 
219 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
220 	rw_init(&V_nd6_lock, "nd6 list");
221 
222 	LIST_INIT(&V_nd_prefix);
223 	TAILQ_INIT(&V_nd_defrouter);
224 
225 	/* Start timers. */
226 	callout_init(&V_nd6_slowtimo_ch, 0);
227 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
228 	    nd6_slowtimo, curvnet);
229 
230 	callout_init(&V_nd6_timer_ch, 0);
231 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
232 
233 	nd6_dad_init();
234 	if (IS_DEFAULT_VNET(curvnet)) {
235 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
236 		    NULL, EVENTHANDLER_PRI_ANY);
237 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
238 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
239 	}
240 }
241 
242 #ifdef VIMAGE
243 void
244 nd6_destroy()
245 {
246 
247 	callout_drain(&V_nd6_slowtimo_ch);
248 	callout_drain(&V_nd6_timer_ch);
249 	if (IS_DEFAULT_VNET(curvnet)) {
250 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
251 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
252 	}
253 	rw_destroy(&V_nd6_lock);
254 	mtx_destroy(&V_nd6_onlink_mtx);
255 }
256 #endif
257 
258 struct nd_ifinfo *
259 nd6_ifattach(struct ifnet *ifp)
260 {
261 	struct nd_ifinfo *nd;
262 
263 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
264 	nd->initialized = 1;
265 
266 	nd->chlim = IPV6_DEFHLIM;
267 	nd->basereachable = REACHABLE_TIME;
268 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
269 	nd->retrans = RETRANS_TIMER;
270 
271 	nd->flags = ND6_IFF_PERFORMNUD;
272 
273 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
274 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
275 	 * default regardless of the V_ip6_auto_linklocal configuration to
276 	 * give a reasonable default behavior.
277 	 */
278 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
279 	    (ifp->if_flags & IFF_LOOPBACK))
280 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
281 	/*
282 	 * A loopback interface does not need to accept RTADV.
283 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
284 	 * default regardless of the V_ip6_accept_rtadv configuration to
285 	 * prevent the interface from accepting RA messages arrived
286 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
287 	 */
288 	if (V_ip6_accept_rtadv &&
289 	    !(ifp->if_flags & IFF_LOOPBACK) &&
290 	    (ifp->if_type != IFT_BRIDGE))
291 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
292 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
293 		nd->flags |= ND6_IFF_NO_RADR;
294 
295 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
296 	nd6_setmtu0(ifp, nd);
297 
298 	return nd;
299 }
300 
301 void
302 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
303 {
304 	struct ifaddr *ifa, *next;
305 
306 	IF_ADDR_RLOCK(ifp);
307 	TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
308 		if (ifa->ifa_addr->sa_family != AF_INET6)
309 			continue;
310 
311 		/* stop DAD processing */
312 		nd6_dad_stop(ifa);
313 	}
314 	IF_ADDR_RUNLOCK(ifp);
315 
316 	free(nd, M_IP6NDP);
317 }
318 
319 /*
320  * Reset ND level link MTU. This function is called when the physical MTU
321  * changes, which means we might have to adjust the ND level MTU.
322  */
323 void
324 nd6_setmtu(struct ifnet *ifp)
325 {
326 	if (ifp->if_afdata[AF_INET6] == NULL)
327 		return;
328 
329 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
330 }
331 
332 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
333 void
334 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
335 {
336 	u_int32_t omaxmtu;
337 
338 	omaxmtu = ndi->maxmtu;
339 
340 	switch (ifp->if_type) {
341 	case IFT_ARCNET:
342 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
343 		break;
344 	case IFT_FDDI:
345 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
346 		break;
347 	case IFT_ISO88025:
348 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
349 		 break;
350 	default:
351 		ndi->maxmtu = ifp->if_mtu;
352 		break;
353 	}
354 
355 	/*
356 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
357 	 * undesirable situation.  We thus notify the operator of the change
358 	 * explicitly.  The check for omaxmtu is necessary to restrict the
359 	 * log to the case of changing the MTU, not initializing it.
360 	 */
361 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
362 		log(LOG_NOTICE, "nd6_setmtu0: "
363 		    "new link MTU on %s (%lu) is too small for IPv6\n",
364 		    if_name(ifp), (unsigned long)ndi->maxmtu);
365 	}
366 
367 	if (ndi->maxmtu > V_in6_maxmtu)
368 		in6_setmaxmtu(); /* check all interfaces just in case */
369 
370 }
371 
372 void
373 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
374 {
375 
376 	bzero(ndopts, sizeof(*ndopts));
377 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
378 	ndopts->nd_opts_last
379 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
380 
381 	if (icmp6len == 0) {
382 		ndopts->nd_opts_done = 1;
383 		ndopts->nd_opts_search = NULL;
384 	}
385 }
386 
387 /*
388  * Take one ND option.
389  */
390 struct nd_opt_hdr *
391 nd6_option(union nd_opts *ndopts)
392 {
393 	struct nd_opt_hdr *nd_opt;
394 	int olen;
395 
396 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
397 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
398 	    __func__));
399 	if (ndopts->nd_opts_search == NULL)
400 		return NULL;
401 	if (ndopts->nd_opts_done)
402 		return NULL;
403 
404 	nd_opt = ndopts->nd_opts_search;
405 
406 	/* make sure nd_opt_len is inside the buffer */
407 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
408 		bzero(ndopts, sizeof(*ndopts));
409 		return NULL;
410 	}
411 
412 	olen = nd_opt->nd_opt_len << 3;
413 	if (olen == 0) {
414 		/*
415 		 * Message validation requires that all included
416 		 * options have a length that is greater than zero.
417 		 */
418 		bzero(ndopts, sizeof(*ndopts));
419 		return NULL;
420 	}
421 
422 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
423 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
424 		/* option overruns the end of buffer, invalid */
425 		bzero(ndopts, sizeof(*ndopts));
426 		return NULL;
427 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
428 		/* reached the end of options chain */
429 		ndopts->nd_opts_done = 1;
430 		ndopts->nd_opts_search = NULL;
431 	}
432 	return nd_opt;
433 }
434 
435 /*
436  * Parse multiple ND options.
437  * This function is much easier to use, for ND routines that do not need
438  * multiple options of the same type.
439  */
440 int
441 nd6_options(union nd_opts *ndopts)
442 {
443 	struct nd_opt_hdr *nd_opt;
444 	int i = 0;
445 
446 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
447 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
448 	    __func__));
449 	if (ndopts->nd_opts_search == NULL)
450 		return 0;
451 
452 	while (1) {
453 		nd_opt = nd6_option(ndopts);
454 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
455 			/*
456 			 * Message validation requires that all included
457 			 * options have a length that is greater than zero.
458 			 */
459 			ICMP6STAT_INC(icp6s_nd_badopt);
460 			bzero(ndopts, sizeof(*ndopts));
461 			return -1;
462 		}
463 
464 		if (nd_opt == NULL)
465 			goto skip1;
466 
467 		switch (nd_opt->nd_opt_type) {
468 		case ND_OPT_SOURCE_LINKADDR:
469 		case ND_OPT_TARGET_LINKADDR:
470 		case ND_OPT_MTU:
471 		case ND_OPT_REDIRECTED_HEADER:
472 		case ND_OPT_NONCE:
473 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
474 				nd6log((LOG_INFO,
475 				    "duplicated ND6 option found (type=%d)\n",
476 				    nd_opt->nd_opt_type));
477 				/* XXX bark? */
478 			} else {
479 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
480 					= nd_opt;
481 			}
482 			break;
483 		case ND_OPT_PREFIX_INFORMATION:
484 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
485 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
486 					= nd_opt;
487 			}
488 			ndopts->nd_opts_pi_end =
489 				(struct nd_opt_prefix_info *)nd_opt;
490 			break;
491 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
492 		case ND_OPT_RDNSS:	/* RFC 6106 */
493 		case ND_OPT_DNSSL:	/* RFC 6106 */
494 			/*
495 			 * Silently ignore options we know and do not care about
496 			 * in the kernel.
497 			 */
498 			break;
499 		default:
500 			/*
501 			 * Unknown options must be silently ignored,
502 			 * to accommodate future extension to the protocol.
503 			 */
504 			nd6log((LOG_DEBUG,
505 			    "nd6_options: unsupported option %d - "
506 			    "option ignored\n", nd_opt->nd_opt_type));
507 		}
508 
509 skip1:
510 		i++;
511 		if (i > V_nd6_maxndopt) {
512 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
513 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
514 			break;
515 		}
516 
517 		if (ndopts->nd_opts_done)
518 			break;
519 	}
520 
521 	return 0;
522 }
523 
524 /*
525  * ND6 timer routine to handle ND6 entries
526  */
527 static void
528 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
529 {
530 	int canceled;
531 
532 	LLE_WLOCK_ASSERT(ln);
533 
534 	if (tick < 0) {
535 		ln->la_expire = 0;
536 		ln->ln_ntick = 0;
537 		canceled = callout_stop(&ln->lle_timer);
538 	} else {
539 		ln->la_expire = time_uptime + tick / hz;
540 		LLE_ADDREF(ln);
541 		if (tick > INT_MAX) {
542 			ln->ln_ntick = tick - INT_MAX;
543 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
544 			    nd6_llinfo_timer, ln);
545 		} else {
546 			ln->ln_ntick = 0;
547 			canceled = callout_reset(&ln->lle_timer, tick,
548 			    nd6_llinfo_timer, ln);
549 		}
550 	}
551 	if (canceled > 0)
552 		LLE_REMREF(ln);
553 }
554 
555 /*
556  * Gets source address of the first packet in hold queue
557  * and stores it in @src.
558  * Returns pointer to @src (if hold queue is not empty) or NULL.
559  *
560  * Set noinline to be dtrace-friendly
561  */
562 static __noinline struct in6_addr *
563 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
564 {
565 	struct ip6_hdr hdr;
566 	struct mbuf *m;
567 
568 	if (ln->la_hold == NULL)
569 		return (NULL);
570 
571 	/*
572 	 * assume every packet in la_hold has the same IP header
573 	 */
574 	m = ln->la_hold;
575 	if (sizeof(hdr) > m->m_len)
576 		return (NULL);
577 
578 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
579 	*src = hdr.ip6_src;
580 
581 	return (src);
582 }
583 
584 /*
585  * Checks if we need to switch from STALE state.
586  *
587  * RFC 4861 requires switching from STALE to DELAY state
588  * on first packet matching entry, waiting V_nd6_delay and
589  * transition to PROBE state (if upper layer confirmation was
590  * not received).
591  *
592  * This code performs a bit differently:
593  * On packet hit we don't change state (but desired state
594  * can be guessed by control plane). However, after V_nd6_delay
595  * seconds code will transition to PROBE state (so DELAY state
596  * is kinda skipped in most situations).
597  *
598  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
599  * we perform the following upon entering STALE state:
600  *
601  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
602  * if packet was transmitted at the start of given interval, we
603  * would be able to switch to PROBE state in V_nd6_delay seconds
604  * as user expects.
605  *
606  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
607  * lle in STALE state (remaining timer value stored in lle_remtime).
608  *
609  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
610  * seconds ago.
611  *
612  * Returns non-zero value if the entry is still STALE (storing
613  * the next timer interval in @pdelay).
614  *
615  * Returns zero value if original timer expired or we need to switch to
616  * PROBE (store that in @do_switch variable).
617  */
618 static int
619 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
620 {
621 	int nd_delay, nd_gctimer, r_skip_req;
622 	time_t lle_hittime;
623 	long delay;
624 
625 	*do_switch = 0;
626 	nd_gctimer = V_nd6_gctimer;
627 	nd_delay = V_nd6_delay;
628 
629 	LLE_REQ_LOCK(lle);
630 	r_skip_req = lle->r_skip_req;
631 	lle_hittime = lle->lle_hittime;
632 	LLE_REQ_UNLOCK(lle);
633 
634 	if (r_skip_req > 0) {
635 
636 		/*
637 		 * Nonzero r_skip_req value was set upon entering
638 		 * STALE state. Since value was not changed, no
639 		 * packets were passed using this lle. Ask for
640 		 * timer reschedule and keep STALE state.
641 		 */
642 		delay = (long)(MIN(nd_gctimer, nd_delay));
643 		delay *= hz;
644 		if (lle->lle_remtime > delay)
645 			lle->lle_remtime -= delay;
646 		else {
647 			delay = lle->lle_remtime;
648 			lle->lle_remtime = 0;
649 		}
650 
651 		if (delay == 0) {
652 
653 			/*
654 			 * The original ng6_gctime timeout ended,
655 			 * no more rescheduling.
656 			 */
657 			return (0);
658 		}
659 
660 		*pdelay = delay;
661 		return (1);
662 	}
663 
664 	/*
665 	 * Packet received. Verify timestamp
666 	 */
667 	delay = (long)(time_uptime - lle_hittime);
668 	if (delay < nd_delay) {
669 
670 		/*
671 		 * V_nd6_delay still not passed since the first
672 		 * hit in STALE state.
673 		 * Reshedule timer and return.
674 		 */
675 		*pdelay = (long)(nd_delay - delay) * hz;
676 		return (1);
677 	}
678 
679 	/* Request switching to probe */
680 	*do_switch = 1;
681 	return (0);
682 }
683 
684 
685 /*
686  * Switch @lle state to new state optionally arming timers.
687  *
688  * Set noinline to be dtrace-friendly
689  */
690 __noinline void
691 nd6_llinfo_setstate(struct llentry *lle, int newstate)
692 {
693 	struct ifnet *ifp;
694 	int nd_gctimer, nd_delay;
695 	long delay, remtime;
696 
697 	delay = 0;
698 	remtime = 0;
699 
700 	switch (newstate) {
701 	case ND6_LLINFO_INCOMPLETE:
702 		ifp = lle->lle_tbl->llt_ifp;
703 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
704 		break;
705 	case ND6_LLINFO_REACHABLE:
706 		if (!ND6_LLINFO_PERMANENT(lle)) {
707 			ifp = lle->lle_tbl->llt_ifp;
708 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
709 		}
710 		break;
711 	case ND6_LLINFO_STALE:
712 
713 		/*
714 		 * Notify fast path that we want to know if any packet
715 		 * is transmitted by setting r_skip_req.
716 		 */
717 		LLE_REQ_LOCK(lle);
718 		lle->r_skip_req = 1;
719 		LLE_REQ_UNLOCK(lle);
720 		nd_delay = V_nd6_delay;
721 		nd_gctimer = V_nd6_gctimer;
722 
723 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
724 		remtime = (long)nd_gctimer * hz - delay;
725 		break;
726 	case ND6_LLINFO_DELAY:
727 		lle->la_asked = 0;
728 		delay = (long)V_nd6_delay * hz;
729 		break;
730 	}
731 
732 	if (delay > 0)
733 		nd6_llinfo_settimer_locked(lle, delay);
734 
735 	lle->lle_remtime = remtime;
736 	lle->ln_state = newstate;
737 }
738 
739 /*
740  * Timer-dependent part of nd state machine.
741  *
742  * Set noinline to be dtrace-friendly
743  */
744 static __noinline void
745 nd6_llinfo_timer(void *arg)
746 {
747 	struct llentry *ln;
748 	struct in6_addr *dst, *pdst, *psrc, src;
749 	struct ifnet *ifp;
750 	struct nd_ifinfo *ndi;
751 	int do_switch, send_ns;
752 	long delay;
753 
754 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
755 	ln = (struct llentry *)arg;
756 	ifp = lltable_get_ifp(ln->lle_tbl);
757 	CURVNET_SET(ifp->if_vnet);
758 
759 	ND6_RLOCK();
760 	LLE_WLOCK(ln);
761 	if (callout_pending(&ln->lle_timer)) {
762 		/*
763 		 * Here we are a bit odd here in the treatment of
764 		 * active/pending. If the pending bit is set, it got
765 		 * rescheduled before I ran. The active
766 		 * bit we ignore, since if it was stopped
767 		 * in ll_tablefree() and was currently running
768 		 * it would have return 0 so the code would
769 		 * not have deleted it since the callout could
770 		 * not be stopped so we want to go through
771 		 * with the delete here now. If the callout
772 		 * was restarted, the pending bit will be back on and
773 		 * we just want to bail since the callout_reset would
774 		 * return 1 and our reference would have been removed
775 		 * by nd6_llinfo_settimer_locked above since canceled
776 		 * would have been 1.
777 		 */
778 		LLE_WUNLOCK(ln);
779 		ND6_RUNLOCK();
780 		CURVNET_RESTORE();
781 		return;
782 	}
783 	ndi = ND_IFINFO(ifp);
784 	send_ns = 0;
785 	dst = &ln->r_l3addr.addr6;
786 	pdst = dst;
787 
788 	if (ln->ln_ntick > 0) {
789 		if (ln->ln_ntick > INT_MAX) {
790 			ln->ln_ntick -= INT_MAX;
791 			nd6_llinfo_settimer_locked(ln, INT_MAX);
792 		} else {
793 			ln->ln_ntick = 0;
794 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
795 		}
796 		goto done;
797 	}
798 
799 	if (ln->la_flags & LLE_STATIC) {
800 		goto done;
801 	}
802 
803 	if (ln->la_flags & LLE_DELETED) {
804 		nd6_free(&ln, 0);
805 		goto done;
806 	}
807 
808 	switch (ln->ln_state) {
809 	case ND6_LLINFO_INCOMPLETE:
810 		if (ln->la_asked < V_nd6_mmaxtries) {
811 			ln->la_asked++;
812 			send_ns = 1;
813 			/* Send NS to multicast address */
814 			pdst = NULL;
815 		} else {
816 			struct mbuf *m = ln->la_hold;
817 			if (m) {
818 				struct mbuf *m0;
819 
820 				/*
821 				 * assuming every packet in la_hold has the
822 				 * same IP header.  Send error after unlock.
823 				 */
824 				m0 = m->m_nextpkt;
825 				m->m_nextpkt = NULL;
826 				ln->la_hold = m0;
827 				clear_llinfo_pqueue(ln);
828 			}
829 			nd6_free(&ln, 0);
830 			if (m != NULL)
831 				icmp6_error2(m, ICMP6_DST_UNREACH,
832 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
833 		}
834 		break;
835 	case ND6_LLINFO_REACHABLE:
836 		if (!ND6_LLINFO_PERMANENT(ln))
837 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
838 		break;
839 
840 	case ND6_LLINFO_STALE:
841 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
842 
843 			/*
844 			 * No packet has used this entry and GC timeout
845 			 * has not been passed. Reshedule timer and
846 			 * return.
847 			 */
848 			nd6_llinfo_settimer_locked(ln, delay);
849 			break;
850 		}
851 
852 		if (do_switch == 0) {
853 
854 			/*
855 			 * GC timer has ended and entry hasn't been used.
856 			 * Run Garbage collector (RFC 4861, 5.3)
857 			 */
858 			if (!ND6_LLINFO_PERMANENT(ln))
859 				nd6_free(&ln, 1);
860 			break;
861 		}
862 
863 		/* Entry has been used AND delay timer has ended. */
864 
865 		/* FALLTHROUGH */
866 
867 	case ND6_LLINFO_DELAY:
868 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
869 			/* We need NUD */
870 			ln->la_asked = 1;
871 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
872 			send_ns = 1;
873 		} else
874 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
875 		break;
876 	case ND6_LLINFO_PROBE:
877 		if (ln->la_asked < V_nd6_umaxtries) {
878 			ln->la_asked++;
879 			send_ns = 1;
880 		} else {
881 			nd6_free(&ln, 0);
882 		}
883 		break;
884 	default:
885 		panic("%s: paths in a dark night can be confusing: %d",
886 		    __func__, ln->ln_state);
887 	}
888 done:
889 	if (ln != NULL)
890 		ND6_RUNLOCK();
891 	if (send_ns != 0) {
892 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
893 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
894 		LLE_FREE_LOCKED(ln);
895 		ln = NULL;
896 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
897 	}
898 
899 	if (ln != NULL)
900 		LLE_FREE_LOCKED(ln);
901 	CURVNET_RESTORE();
902 }
903 
904 
905 /*
906  * ND6 timer routine to expire default route list and prefix list
907  */
908 void
909 nd6_timer(void *arg)
910 {
911 	CURVNET_SET((struct vnet *) arg);
912 	struct nd_drhead drq;
913 	struct nd_prhead prl;
914 	struct nd_defrouter *dr, *ndr;
915 	struct nd_prefix *pr, *npr;
916 	struct in6_ifaddr *ia6, *nia6;
917 	uint64_t genid;
918 
919 	TAILQ_INIT(&drq);
920 	LIST_INIT(&prl);
921 
922 	ND6_WLOCK();
923 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
924 		if (dr->expire && dr->expire < time_uptime)
925 			defrouter_unlink(dr, &drq);
926 	ND6_WUNLOCK();
927 
928 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
929 		TAILQ_REMOVE(&drq, dr, dr_entry);
930 		defrouter_del(dr);
931 	}
932 
933 	/*
934 	 * expire interface addresses.
935 	 * in the past the loop was inside prefix expiry processing.
936 	 * However, from a stricter speci-confrmance standpoint, we should
937 	 * rather separate address lifetimes and prefix lifetimes.
938 	 *
939 	 * XXXRW: in6_ifaddrhead locking.
940 	 */
941   addrloop:
942 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
943 		/* check address lifetime */
944 		if (IFA6_IS_INVALID(ia6)) {
945 			int regen = 0;
946 
947 			/*
948 			 * If the expiring address is temporary, try
949 			 * regenerating a new one.  This would be useful when
950 			 * we suspended a laptop PC, then turned it on after a
951 			 * period that could invalidate all temporary
952 			 * addresses.  Although we may have to restart the
953 			 * loop (see below), it must be after purging the
954 			 * address.  Otherwise, we'd see an infinite loop of
955 			 * regeneration.
956 			 */
957 			if (V_ip6_use_tempaddr &&
958 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
959 				if (regen_tmpaddr(ia6) == 0)
960 					regen = 1;
961 			}
962 
963 			in6_purgeaddr(&ia6->ia_ifa);
964 
965 			if (regen)
966 				goto addrloop; /* XXX: see below */
967 		} else if (IFA6_IS_DEPRECATED(ia6)) {
968 			int oldflags = ia6->ia6_flags;
969 
970 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
971 
972 			/*
973 			 * If a temporary address has just become deprecated,
974 			 * regenerate a new one if possible.
975 			 */
976 			if (V_ip6_use_tempaddr &&
977 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
978 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
979 
980 				if (regen_tmpaddr(ia6) == 0) {
981 					/*
982 					 * A new temporary address is
983 					 * generated.
984 					 * XXX: this means the address chain
985 					 * has changed while we are still in
986 					 * the loop.  Although the change
987 					 * would not cause disaster (because
988 					 * it's not a deletion, but an
989 					 * addition,) we'd rather restart the
990 					 * loop just for safety.  Or does this
991 					 * significantly reduce performance??
992 					 */
993 					goto addrloop;
994 				}
995 			}
996 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
997 			/*
998 			 * Schedule DAD for a tentative address.  This happens
999 			 * if the interface was down or not running
1000 			 * when the address was configured.
1001 			 */
1002 			int delay;
1003 
1004 			delay = arc4random() %
1005 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1006 			nd6_dad_start((struct ifaddr *)ia6, delay);
1007 		} else {
1008 			/*
1009 			 * Check status of the interface.  If it is down,
1010 			 * mark the address as tentative for future DAD.
1011 			 */
1012 			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
1013 			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
1014 				== 0 ||
1015 			    (ND_IFINFO(ia6->ia_ifp)->flags &
1016 				ND6_IFF_IFDISABLED) != 0) {
1017 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1018 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1019 			}
1020 			/*
1021 			 * A new RA might have made a deprecated address
1022 			 * preferred.
1023 			 */
1024 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1025 		}
1026 	}
1027 
1028 	ND6_WLOCK();
1029 restart:
1030 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1031 		/*
1032 		 * Expire prefixes. Since the pltime is only used for
1033 		 * autoconfigured addresses, pltime processing for prefixes is
1034 		 * not necessary.
1035 		 *
1036 		 * Only unlink after all derived addresses have expired. This
1037 		 * may not occur until two hours after the prefix has expired
1038 		 * per RFC 4862. If the prefix expires before its derived
1039 		 * addresses, mark it off-link. This will be done automatically
1040 		 * after unlinking if no address references remain.
1041 		 */
1042 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1043 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1044 			continue;
1045 
1046 		if (pr->ndpr_addrcnt == 0) {
1047 			nd6_prefix_unlink(pr, &prl);
1048 			continue;
1049 		}
1050 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1051 			genid = V_nd6_list_genid;
1052 			nd6_prefix_ref(pr);
1053 			ND6_WUNLOCK();
1054 			ND6_ONLINK_LOCK();
1055 			(void)nd6_prefix_offlink(pr);
1056 			ND6_ONLINK_UNLOCK();
1057 			ND6_WLOCK();
1058 			nd6_prefix_rele(pr);
1059 			if (genid != V_nd6_list_genid)
1060 				goto restart;
1061 		}
1062 	}
1063 	ND6_WUNLOCK();
1064 
1065 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1066 		LIST_REMOVE(pr, ndpr_entry);
1067 		nd6_prefix_del(pr);
1068 	}
1069 
1070 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1071 	    nd6_timer, curvnet);
1072 
1073 	CURVNET_RESTORE();
1074 }
1075 
1076 /*
1077  * ia6 - deprecated/invalidated temporary address
1078  */
1079 static int
1080 regen_tmpaddr(struct in6_ifaddr *ia6)
1081 {
1082 	struct ifaddr *ifa;
1083 	struct ifnet *ifp;
1084 	struct in6_ifaddr *public_ifa6 = NULL;
1085 
1086 	ifp = ia6->ia_ifa.ifa_ifp;
1087 	IF_ADDR_RLOCK(ifp);
1088 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1089 		struct in6_ifaddr *it6;
1090 
1091 		if (ifa->ifa_addr->sa_family != AF_INET6)
1092 			continue;
1093 
1094 		it6 = (struct in6_ifaddr *)ifa;
1095 
1096 		/* ignore no autoconf addresses. */
1097 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1098 			continue;
1099 
1100 		/* ignore autoconf addresses with different prefixes. */
1101 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1102 			continue;
1103 
1104 		/*
1105 		 * Now we are looking at an autoconf address with the same
1106 		 * prefix as ours.  If the address is temporary and is still
1107 		 * preferred, do not create another one.  It would be rare, but
1108 		 * could happen, for example, when we resume a laptop PC after
1109 		 * a long period.
1110 		 */
1111 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1112 		    !IFA6_IS_DEPRECATED(it6)) {
1113 			public_ifa6 = NULL;
1114 			break;
1115 		}
1116 
1117 		/*
1118 		 * This is a public autoconf address that has the same prefix
1119 		 * as ours.  If it is preferred, keep it.  We can't break the
1120 		 * loop here, because there may be a still-preferred temporary
1121 		 * address with the prefix.
1122 		 */
1123 		if (!IFA6_IS_DEPRECATED(it6))
1124 			public_ifa6 = it6;
1125 	}
1126 	if (public_ifa6 != NULL)
1127 		ifa_ref(&public_ifa6->ia_ifa);
1128 	IF_ADDR_RUNLOCK(ifp);
1129 
1130 	if (public_ifa6 != NULL) {
1131 		int e;
1132 
1133 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1134 			ifa_free(&public_ifa6->ia_ifa);
1135 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1136 			    " tmp addr,errno=%d\n", e);
1137 			return (-1);
1138 		}
1139 		ifa_free(&public_ifa6->ia_ifa);
1140 		return (0);
1141 	}
1142 
1143 	return (-1);
1144 }
1145 
1146 /*
1147  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1148  * cache entries are freed in in6_domifdetach().
1149  */
1150 void
1151 nd6_purge(struct ifnet *ifp)
1152 {
1153 	struct nd_drhead drq;
1154 	struct nd_prhead prl;
1155 	struct nd_defrouter *dr, *ndr;
1156 	struct nd_prefix *pr, *npr;
1157 
1158 	TAILQ_INIT(&drq);
1159 	LIST_INIT(&prl);
1160 
1161 	/*
1162 	 * Nuke default router list entries toward ifp.
1163 	 * We defer removal of default router list entries that is installed
1164 	 * in the routing table, in order to keep additional side effects as
1165 	 * small as possible.
1166 	 */
1167 	ND6_WLOCK();
1168 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1169 		if (dr->installed)
1170 			continue;
1171 		if (dr->ifp == ifp)
1172 			defrouter_unlink(dr, &drq);
1173 	}
1174 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1175 		if (!dr->installed)
1176 			continue;
1177 		if (dr->ifp == ifp)
1178 			defrouter_unlink(dr, &drq);
1179 	}
1180 
1181 	/*
1182 	 * Remove prefixes on ifp. We should have already removed addresses on
1183 	 * this interface, so no addresses should be referencing these prefixes.
1184 	 */
1185 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1186 		if (pr->ndpr_ifp == ifp)
1187 			nd6_prefix_unlink(pr, &prl);
1188 	}
1189 	ND6_WUNLOCK();
1190 
1191 	/* Delete the unlinked router and prefix objects. */
1192 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1193 		TAILQ_REMOVE(&drq, dr, dr_entry);
1194 		defrouter_del(dr);
1195 	}
1196 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1197 		LIST_REMOVE(pr, ndpr_entry);
1198 		nd6_prefix_del(pr);
1199 	}
1200 
1201 	/* cancel default outgoing interface setting */
1202 	if (V_nd6_defifindex == ifp->if_index)
1203 		nd6_setdefaultiface(0);
1204 
1205 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1206 		/* Refresh default router list. */
1207 		defrouter_select_fib(ifp->if_fib);
1208 	}
1209 }
1210 
1211 /*
1212  * the caller acquires and releases the lock on the lltbls
1213  * Returns the llentry locked
1214  */
1215 struct llentry *
1216 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1217 {
1218 	struct sockaddr_in6 sin6;
1219 	struct llentry *ln;
1220 
1221 	bzero(&sin6, sizeof(sin6));
1222 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1223 	sin6.sin6_family = AF_INET6;
1224 	sin6.sin6_addr = *addr6;
1225 
1226 	IF_AFDATA_LOCK_ASSERT(ifp);
1227 
1228 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1229 
1230 	return (ln);
1231 }
1232 
1233 struct llentry *
1234 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1235 {
1236 	struct sockaddr_in6 sin6;
1237 	struct llentry *ln;
1238 
1239 	bzero(&sin6, sizeof(sin6));
1240 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1241 	sin6.sin6_family = AF_INET6;
1242 	sin6.sin6_addr = *addr6;
1243 
1244 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1245 	if (ln != NULL)
1246 		ln->ln_state = ND6_LLINFO_NOSTATE;
1247 
1248 	return (ln);
1249 }
1250 
1251 /*
1252  * Test whether a given IPv6 address is a neighbor or not, ignoring
1253  * the actual neighbor cache.  The neighbor cache is ignored in order
1254  * to not reenter the routing code from within itself.
1255  */
1256 static int
1257 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1258 {
1259 	struct nd_prefix *pr;
1260 	struct ifaddr *ifa;
1261 	struct rt_addrinfo info;
1262 	struct sockaddr_in6 rt_key;
1263 	const struct sockaddr *dst6;
1264 	uint64_t genid;
1265 	int error, fibnum;
1266 
1267 	/*
1268 	 * A link-local address is always a neighbor.
1269 	 * XXX: a link does not necessarily specify a single interface.
1270 	 */
1271 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1272 		struct sockaddr_in6 sin6_copy;
1273 		u_int32_t zone;
1274 
1275 		/*
1276 		 * We need sin6_copy since sa6_recoverscope() may modify the
1277 		 * content (XXX).
1278 		 */
1279 		sin6_copy = *addr;
1280 		if (sa6_recoverscope(&sin6_copy))
1281 			return (0); /* XXX: should be impossible */
1282 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1283 			return (0);
1284 		if (sin6_copy.sin6_scope_id == zone)
1285 			return (1);
1286 		else
1287 			return (0);
1288 	}
1289 
1290 	bzero(&rt_key, sizeof(rt_key));
1291 	bzero(&info, sizeof(info));
1292 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1293 
1294 	/*
1295 	 * If the address matches one of our addresses,
1296 	 * it should be a neighbor.
1297 	 * If the address matches one of our on-link prefixes, it should be a
1298 	 * neighbor.
1299 	 */
1300 	ND6_RLOCK();
1301 restart:
1302 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1303 		if (pr->ndpr_ifp != ifp)
1304 			continue;
1305 
1306 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1307 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1308 
1309 			/*
1310 			 * We only need to check all FIBs if add_addr_allfibs
1311 			 * is unset. If set, checking any FIB will suffice.
1312 			 */
1313 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1314 			for (; fibnum < rt_numfibs; fibnum++) {
1315 				genid = V_nd6_list_genid;
1316 				ND6_RUNLOCK();
1317 
1318 				/*
1319 				 * Restore length field before
1320 				 * retrying lookup
1321 				 */
1322 				rt_key.sin6_len = sizeof(rt_key);
1323 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1324 						        &info);
1325 
1326 				ND6_RLOCK();
1327 				if (genid != V_nd6_list_genid)
1328 					goto restart;
1329 				if (error == 0)
1330 					break;
1331 			}
1332 			if (error != 0)
1333 				continue;
1334 
1335 			/*
1336 			 * This is the case where multiple interfaces
1337 			 * have the same prefix, but only one is installed
1338 			 * into the routing table and that prefix entry
1339 			 * is not the one being examined here. In the case
1340 			 * where RADIX_MPATH is enabled, multiple route
1341 			 * entries (of the same rt_key value) will be
1342 			 * installed because the interface addresses all
1343 			 * differ.
1344 			 */
1345 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1346 			    &rt_key.sin6_addr))
1347 				continue;
1348 		}
1349 
1350 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1351 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1352 			ND6_RUNLOCK();
1353 			return (1);
1354 		}
1355 	}
1356 	ND6_RUNLOCK();
1357 
1358 	/*
1359 	 * If the address is assigned on the node of the other side of
1360 	 * a p2p interface, the address should be a neighbor.
1361 	 */
1362 	if (ifp->if_flags & IFF_POINTOPOINT) {
1363 		IF_ADDR_RLOCK(ifp);
1364 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1365 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1366 				continue;
1367 			if (ifa->ifa_dstaddr != NULL &&
1368 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1369 				IF_ADDR_RUNLOCK(ifp);
1370 				return 1;
1371 			}
1372 		}
1373 		IF_ADDR_RUNLOCK(ifp);
1374 	}
1375 
1376 	/*
1377 	 * If the default router list is empty, all addresses are regarded
1378 	 * as on-link, and thus, as a neighbor.
1379 	 */
1380 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1381 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1382 	    V_nd6_defifindex == ifp->if_index) {
1383 		return (1);
1384 	}
1385 
1386 	return (0);
1387 }
1388 
1389 
1390 /*
1391  * Detect if a given IPv6 address identifies a neighbor on a given link.
1392  * XXX: should take care of the destination of a p2p link?
1393  */
1394 int
1395 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1396 {
1397 	struct llentry *lle;
1398 	int rc = 0;
1399 
1400 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1401 	if (nd6_is_new_addr_neighbor(addr, ifp))
1402 		return (1);
1403 
1404 	/*
1405 	 * Even if the address matches none of our addresses, it might be
1406 	 * in the neighbor cache.
1407 	 */
1408 	IF_AFDATA_RLOCK(ifp);
1409 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1410 		LLE_RUNLOCK(lle);
1411 		rc = 1;
1412 	}
1413 	IF_AFDATA_RUNLOCK(ifp);
1414 	return (rc);
1415 }
1416 
1417 /*
1418  * Free an nd6 llinfo entry.
1419  * Since the function would cause significant changes in the kernel, DO NOT
1420  * make it global, unless you have a strong reason for the change, and are sure
1421  * that the change is safe.
1422  *
1423  * Set noinline to be dtrace-friendly
1424  */
1425 static __noinline void
1426 nd6_free(struct llentry **lnp, int gc)
1427 {
1428 	struct ifnet *ifp;
1429 	struct llentry *ln;
1430 	struct nd_defrouter *dr;
1431 
1432 	ln = *lnp;
1433 	*lnp = NULL;
1434 
1435 	LLE_WLOCK_ASSERT(ln);
1436 	ND6_RLOCK_ASSERT();
1437 
1438 	ifp = lltable_get_ifp(ln->lle_tbl);
1439 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1440 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1441 	else
1442 		dr = NULL;
1443 	ND6_RUNLOCK();
1444 
1445 	if ((ln->la_flags & LLE_DELETED) == 0)
1446 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1447 
1448 	/*
1449 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1450 	 * even though it is not harmful, it was not really necessary.
1451 	 */
1452 
1453 	/* cancel timer */
1454 	nd6_llinfo_settimer_locked(ln, -1);
1455 
1456 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1457 		if (dr != NULL && dr->expire &&
1458 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1459 			/*
1460 			 * If the reason for the deletion is just garbage
1461 			 * collection, and the neighbor is an active default
1462 			 * router, do not delete it.  Instead, reset the GC
1463 			 * timer using the router's lifetime.
1464 			 * Simply deleting the entry would affect default
1465 			 * router selection, which is not necessarily a good
1466 			 * thing, especially when we're using router preference
1467 			 * values.
1468 			 * XXX: the check for ln_state would be redundant,
1469 			 *      but we intentionally keep it just in case.
1470 			 */
1471 			if (dr->expire > time_uptime)
1472 				nd6_llinfo_settimer_locked(ln,
1473 				    (dr->expire - time_uptime) * hz);
1474 			else
1475 				nd6_llinfo_settimer_locked(ln,
1476 				    (long)V_nd6_gctimer * hz);
1477 
1478 			LLE_REMREF(ln);
1479 			LLE_WUNLOCK(ln);
1480 			defrouter_rele(dr);
1481 			return;
1482 		}
1483 
1484 		if (dr) {
1485 			/*
1486 			 * Unreachablity of a router might affect the default
1487 			 * router selection and on-link detection of advertised
1488 			 * prefixes.
1489 			 */
1490 
1491 			/*
1492 			 * Temporarily fake the state to choose a new default
1493 			 * router and to perform on-link determination of
1494 			 * prefixes correctly.
1495 			 * Below the state will be set correctly,
1496 			 * or the entry itself will be deleted.
1497 			 */
1498 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1499 		}
1500 
1501 		if (ln->ln_router || dr) {
1502 
1503 			/*
1504 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1505 			 * rnh and for the calls to pfxlist_onlink_check() and
1506 			 * defrouter_select_fib() in the block further down for calls
1507 			 * into nd6_lookup().  We still hold a ref.
1508 			 */
1509 			LLE_WUNLOCK(ln);
1510 
1511 			/*
1512 			 * rt6_flush must be called whether or not the neighbor
1513 			 * is in the Default Router List.
1514 			 * See a corresponding comment in nd6_na_input().
1515 			 */
1516 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1517 		}
1518 
1519 		if (dr) {
1520 			/*
1521 			 * Since defrouter_select_fib() does not affect the
1522 			 * on-link determination and MIP6 needs the check
1523 			 * before the default router selection, we perform
1524 			 * the check now.
1525 			 */
1526 			pfxlist_onlink_check();
1527 
1528 			/*
1529 			 * Refresh default router list.
1530 			 */
1531 			defrouter_select_fib(dr->ifp->if_fib);
1532 		}
1533 
1534 		/*
1535 		 * If this entry was added by an on-link redirect, remove the
1536 		 * corresponding host route.
1537 		 */
1538 		if (ln->la_flags & LLE_REDIRECT)
1539 			nd6_free_redirect(ln);
1540 
1541 		if (ln->ln_router || dr)
1542 			LLE_WLOCK(ln);
1543 	}
1544 
1545 	/*
1546 	 * Save to unlock. We still hold an extra reference and will not
1547 	 * free(9) in llentry_free() if someone else holds one as well.
1548 	 */
1549 	LLE_WUNLOCK(ln);
1550 	IF_AFDATA_LOCK(ifp);
1551 	LLE_WLOCK(ln);
1552 	/* Guard against race with other llentry_free(). */
1553 	if (ln->la_flags & LLE_LINKED) {
1554 		/* Remove callout reference */
1555 		LLE_REMREF(ln);
1556 		lltable_unlink_entry(ln->lle_tbl, ln);
1557 	}
1558 	IF_AFDATA_UNLOCK(ifp);
1559 
1560 	llentry_free(ln);
1561 	if (dr != NULL)
1562 		defrouter_rele(dr);
1563 }
1564 
1565 static int
1566 nd6_isdynrte(const struct rtentry *rt, void *xap)
1567 {
1568 
1569 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1570 		return (1);
1571 
1572 	return (0);
1573 }
1574 /*
1575  * Remove the rtentry for the given llentry,
1576  * both of which were installed by a redirect.
1577  */
1578 static void
1579 nd6_free_redirect(const struct llentry *ln)
1580 {
1581 	int fibnum;
1582 	struct sockaddr_in6 sin6;
1583 	struct rt_addrinfo info;
1584 
1585 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1586 	memset(&info, 0, sizeof(info));
1587 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1588 	info.rti_filter = nd6_isdynrte;
1589 
1590 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1591 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1592 }
1593 
1594 /*
1595  * Rejuvenate this function for routing operations related
1596  * processing.
1597  */
1598 void
1599 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1600 {
1601 	struct sockaddr_in6 *gateway;
1602 	struct nd_defrouter *dr;
1603 	struct ifnet *ifp;
1604 
1605 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1606 	ifp = rt->rt_ifp;
1607 
1608 	switch (req) {
1609 	case RTM_ADD:
1610 		break;
1611 
1612 	case RTM_DELETE:
1613 		if (!ifp)
1614 			return;
1615 		/*
1616 		 * Only indirect routes are interesting.
1617 		 */
1618 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1619 			return;
1620 		/*
1621 		 * check for default route
1622 		 */
1623 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1624 		    &SIN6(rt_key(rt))->sin6_addr)) {
1625 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1626 			if (dr != NULL) {
1627 				dr->installed = 0;
1628 				defrouter_rele(dr);
1629 			}
1630 		}
1631 		break;
1632 	}
1633 }
1634 
1635 
1636 int
1637 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1638 {
1639 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1640 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1641 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1642 	int error = 0;
1643 
1644 	if (ifp->if_afdata[AF_INET6] == NULL)
1645 		return (EPFNOSUPPORT);
1646 	switch (cmd) {
1647 	case OSIOCGIFINFO_IN6:
1648 #define ND	ndi->ndi
1649 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1650 		bzero(&ND, sizeof(ND));
1651 		ND.linkmtu = IN6_LINKMTU(ifp);
1652 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1653 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1654 		ND.reachable = ND_IFINFO(ifp)->reachable;
1655 		ND.retrans = ND_IFINFO(ifp)->retrans;
1656 		ND.flags = ND_IFINFO(ifp)->flags;
1657 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1658 		ND.chlim = ND_IFINFO(ifp)->chlim;
1659 		break;
1660 	case SIOCGIFINFO_IN6:
1661 		ND = *ND_IFINFO(ifp);
1662 		break;
1663 	case SIOCSIFINFO_IN6:
1664 		/*
1665 		 * used to change host variables from userland.
1666 		 * intended for a use on router to reflect RA configurations.
1667 		 */
1668 		/* 0 means 'unspecified' */
1669 		if (ND.linkmtu != 0) {
1670 			if (ND.linkmtu < IPV6_MMTU ||
1671 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1672 				error = EINVAL;
1673 				break;
1674 			}
1675 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1676 		}
1677 
1678 		if (ND.basereachable != 0) {
1679 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1680 
1681 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1682 			if (ND.basereachable != obasereachable)
1683 				ND_IFINFO(ifp)->reachable =
1684 				    ND_COMPUTE_RTIME(ND.basereachable);
1685 		}
1686 		if (ND.retrans != 0)
1687 			ND_IFINFO(ifp)->retrans = ND.retrans;
1688 		if (ND.chlim != 0)
1689 			ND_IFINFO(ifp)->chlim = ND.chlim;
1690 		/* FALLTHROUGH */
1691 	case SIOCSIFINFO_FLAGS:
1692 	{
1693 		struct ifaddr *ifa;
1694 		struct in6_ifaddr *ia;
1695 
1696 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1697 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1698 			/* ifdisabled 1->0 transision */
1699 
1700 			/*
1701 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1702 			 * has an link-local address with IN6_IFF_DUPLICATED,
1703 			 * do not clear ND6_IFF_IFDISABLED.
1704 			 * See RFC 4862, Section 5.4.5.
1705 			 */
1706 			IF_ADDR_RLOCK(ifp);
1707 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1708 				if (ifa->ifa_addr->sa_family != AF_INET6)
1709 					continue;
1710 				ia = (struct in6_ifaddr *)ifa;
1711 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1712 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1713 					break;
1714 			}
1715 			IF_ADDR_RUNLOCK(ifp);
1716 
1717 			if (ifa != NULL) {
1718 				/* LLA is duplicated. */
1719 				ND.flags |= ND6_IFF_IFDISABLED;
1720 				log(LOG_ERR, "Cannot enable an interface"
1721 				    " with a link-local address marked"
1722 				    " duplicate.\n");
1723 			} else {
1724 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1725 				if (ifp->if_flags & IFF_UP)
1726 					in6_if_up(ifp);
1727 			}
1728 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1729 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1730 			/* ifdisabled 0->1 transision */
1731 			/* Mark all IPv6 address as tentative. */
1732 
1733 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1734 			if (V_ip6_dad_count > 0 &&
1735 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1736 				IF_ADDR_RLOCK(ifp);
1737 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1738 				    ifa_link) {
1739 					if (ifa->ifa_addr->sa_family !=
1740 					    AF_INET6)
1741 						continue;
1742 					ia = (struct in6_ifaddr *)ifa;
1743 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1744 				}
1745 				IF_ADDR_RUNLOCK(ifp);
1746 			}
1747 		}
1748 
1749 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1750 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1751 				/* auto_linklocal 0->1 transision */
1752 
1753 				/* If no link-local address on ifp, configure */
1754 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1755 				in6_ifattach(ifp, NULL);
1756 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1757 			    ifp->if_flags & IFF_UP) {
1758 				/*
1759 				 * When the IF already has
1760 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1761 				 * address is assigned, and IFF_UP, try to
1762 				 * assign one.
1763 				 */
1764 				IF_ADDR_RLOCK(ifp);
1765 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1766 				    ifa_link) {
1767 					if (ifa->ifa_addr->sa_family !=
1768 					    AF_INET6)
1769 						continue;
1770 					ia = (struct in6_ifaddr *)ifa;
1771 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1772 						break;
1773 				}
1774 				IF_ADDR_RUNLOCK(ifp);
1775 				if (ifa != NULL)
1776 					/* No LLA is configured. */
1777 					in6_ifattach(ifp, NULL);
1778 			}
1779 		}
1780 	}
1781 		ND_IFINFO(ifp)->flags = ND.flags;
1782 		break;
1783 #undef ND
1784 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1785 		/* sync kernel routing table with the default router list */
1786 		defrouter_reset();
1787 		defrouter_select();
1788 		break;
1789 	case SIOCSPFXFLUSH_IN6:
1790 	{
1791 		/* flush all the prefix advertised by routers */
1792 		struct in6_ifaddr *ia, *ia_next;
1793 		struct nd_prefix *pr, *next;
1794 		struct nd_prhead prl;
1795 
1796 		LIST_INIT(&prl);
1797 
1798 		ND6_WLOCK();
1799 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1800 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1801 				continue; /* XXX */
1802 			nd6_prefix_unlink(pr, &prl);
1803 		}
1804 		ND6_WUNLOCK();
1805 
1806 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1807 			LIST_REMOVE(pr, ndpr_entry);
1808 			/* XXXRW: in6_ifaddrhead locking. */
1809 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1810 			    ia_next) {
1811 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1812 					continue;
1813 
1814 				if (ia->ia6_ndpr == pr)
1815 					in6_purgeaddr(&ia->ia_ifa);
1816 			}
1817 			nd6_prefix_del(pr);
1818 		}
1819 		break;
1820 	}
1821 	case SIOCSRTRFLUSH_IN6:
1822 	{
1823 		/* flush all the default routers */
1824 		struct nd_drhead drq;
1825 		struct nd_defrouter *dr;
1826 
1827 		TAILQ_INIT(&drq);
1828 
1829 		defrouter_reset();
1830 
1831 		ND6_WLOCK();
1832 		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1833 			defrouter_unlink(dr, &drq);
1834 		ND6_WUNLOCK();
1835 		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1836 			TAILQ_REMOVE(&drq, dr, dr_entry);
1837 			defrouter_del(dr);
1838 		}
1839 
1840 		defrouter_select();
1841 		break;
1842 	}
1843 	case SIOCGNBRINFO_IN6:
1844 	{
1845 		struct llentry *ln;
1846 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1847 
1848 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1849 			return (error);
1850 
1851 		IF_AFDATA_RLOCK(ifp);
1852 		ln = nd6_lookup(&nb_addr, 0, ifp);
1853 		IF_AFDATA_RUNLOCK(ifp);
1854 
1855 		if (ln == NULL) {
1856 			error = EINVAL;
1857 			break;
1858 		}
1859 		nbi->state = ln->ln_state;
1860 		nbi->asked = ln->la_asked;
1861 		nbi->isrouter = ln->ln_router;
1862 		if (ln->la_expire == 0)
1863 			nbi->expire = 0;
1864 		else
1865 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1866 			    (time_second - time_uptime);
1867 		LLE_RUNLOCK(ln);
1868 		break;
1869 	}
1870 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1871 		ndif->ifindex = V_nd6_defifindex;
1872 		break;
1873 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1874 		return (nd6_setdefaultiface(ndif->ifindex));
1875 	}
1876 	return (error);
1877 }
1878 
1879 /*
1880  * Calculates new isRouter value based on provided parameters and
1881  * returns it.
1882  */
1883 static int
1884 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1885     int ln_router)
1886 {
1887 
1888 	/*
1889 	 * ICMP6 type dependent behavior.
1890 	 *
1891 	 * NS: clear IsRouter if new entry
1892 	 * RS: clear IsRouter
1893 	 * RA: set IsRouter if there's lladdr
1894 	 * redir: clear IsRouter if new entry
1895 	 *
1896 	 * RA case, (1):
1897 	 * The spec says that we must set IsRouter in the following cases:
1898 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1899 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1900 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1901 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1902 	 * neighbor cache, this is similar to (6).
1903 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1904 	 *
1905 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1906 	 *							D R
1907 	 *	0	n	n	(1)	c   ?     s
1908 	 *	0	y	n	(2)	c   s     s
1909 	 *	0	n	y	(3)	c   s     s
1910 	 *	0	y	y	(4)	c   s     s
1911 	 *	0	y	y	(5)	c   s     s
1912 	 *	1	--	n	(6) c	c	c s
1913 	 *	1	--	y	(7) c	c   s	c s
1914 	 *
1915 	 *					(c=clear s=set)
1916 	 */
1917 	switch (type & 0xff) {
1918 	case ND_NEIGHBOR_SOLICIT:
1919 		/*
1920 		 * New entry must have is_router flag cleared.
1921 		 */
1922 		if (is_new)					/* (6-7) */
1923 			ln_router = 0;
1924 		break;
1925 	case ND_REDIRECT:
1926 		/*
1927 		 * If the icmp is a redirect to a better router, always set the
1928 		 * is_router flag.  Otherwise, if the entry is newly created,
1929 		 * clear the flag.  [RFC 2461, sec 8.3]
1930 		 */
1931 		if (code == ND_REDIRECT_ROUTER)
1932 			ln_router = 1;
1933 		else {
1934 			if (is_new)				/* (6-7) */
1935 				ln_router = 0;
1936 		}
1937 		break;
1938 	case ND_ROUTER_SOLICIT:
1939 		/*
1940 		 * is_router flag must always be cleared.
1941 		 */
1942 		ln_router = 0;
1943 		break;
1944 	case ND_ROUTER_ADVERT:
1945 		/*
1946 		 * Mark an entry with lladdr as a router.
1947 		 */
1948 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1949 		    (is_new && new_addr)) {			/* (7) */
1950 			ln_router = 1;
1951 		}
1952 		break;
1953 	}
1954 
1955 	return (ln_router);
1956 }
1957 
1958 /*
1959  * Create neighbor cache entry and cache link-layer address,
1960  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1961  *
1962  * type - ICMP6 type
1963  * code - type dependent information
1964  *
1965  */
1966 void
1967 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1968     int lladdrlen, int type, int code)
1969 {
1970 	struct llentry *ln = NULL, *ln_tmp;
1971 	int is_newentry;
1972 	int do_update;
1973 	int olladdr;
1974 	int llchange;
1975 	int flags;
1976 	uint16_t router = 0;
1977 	struct sockaddr_in6 sin6;
1978 	struct mbuf *chain = NULL;
1979 	u_char linkhdr[LLE_MAX_LINKHDR];
1980 	size_t linkhdrsize;
1981 	int lladdr_off;
1982 
1983 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1984 
1985 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1986 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1987 
1988 	/* nothing must be updated for unspecified address */
1989 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1990 		return;
1991 
1992 	/*
1993 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1994 	 * the caller.
1995 	 *
1996 	 * XXX If the link does not have link-layer adderss, what should
1997 	 * we do? (ifp->if_addrlen == 0)
1998 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1999 	 * description on it in NS section (RFC 2461 7.2.3).
2000 	 */
2001 	flags = lladdr ? LLE_EXCLUSIVE : 0;
2002 	IF_AFDATA_RLOCK(ifp);
2003 	ln = nd6_lookup(from, flags, ifp);
2004 	IF_AFDATA_RUNLOCK(ifp);
2005 	is_newentry = 0;
2006 	if (ln == NULL) {
2007 		flags |= LLE_EXCLUSIVE;
2008 		ln = nd6_alloc(from, 0, ifp);
2009 		if (ln == NULL)
2010 			return;
2011 
2012 		/*
2013 		 * Since we already know all the data for the new entry,
2014 		 * fill it before insertion.
2015 		 */
2016 		if (lladdr != NULL) {
2017 			linkhdrsize = sizeof(linkhdr);
2018 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2019 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2020 				return;
2021 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2022 			    lladdr_off);
2023 		}
2024 
2025 		IF_AFDATA_WLOCK(ifp);
2026 		LLE_WLOCK(ln);
2027 		/* Prefer any existing lle over newly-created one */
2028 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
2029 		if (ln_tmp == NULL)
2030 			lltable_link_entry(LLTABLE6(ifp), ln);
2031 		IF_AFDATA_WUNLOCK(ifp);
2032 		if (ln_tmp == NULL) {
2033 			/* No existing lle, mark as new entry (6,7) */
2034 			is_newentry = 1;
2035 			if (lladdr != NULL) {	/* (7) */
2036 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2037 				EVENTHANDLER_INVOKE(lle_event, ln,
2038 				    LLENTRY_RESOLVED);
2039 			}
2040 		} else {
2041 			lltable_free_entry(LLTABLE6(ifp), ln);
2042 			ln = ln_tmp;
2043 			ln_tmp = NULL;
2044 		}
2045 	}
2046 	/* do nothing if static ndp is set */
2047 	if ((ln->la_flags & LLE_STATIC)) {
2048 		if (flags & LLE_EXCLUSIVE)
2049 			LLE_WUNLOCK(ln);
2050 		else
2051 			LLE_RUNLOCK(ln);
2052 		return;
2053 	}
2054 
2055 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2056 	if (olladdr && lladdr) {
2057 		llchange = bcmp(lladdr, ln->ll_addr,
2058 		    ifp->if_addrlen);
2059 	} else if (!olladdr && lladdr)
2060 		llchange = 1;
2061 	else
2062 		llchange = 0;
2063 
2064 	/*
2065 	 * newentry olladdr  lladdr  llchange	(*=record)
2066 	 *	0	n	n	--	(1)
2067 	 *	0	y	n	--	(2)
2068 	 *	0	n	y	y	(3) * STALE
2069 	 *	0	y	y	n	(4) *
2070 	 *	0	y	y	y	(5) * STALE
2071 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2072 	 *	1	--	y	--	(7) * STALE
2073 	 */
2074 
2075 	do_update = 0;
2076 	if (is_newentry == 0 && llchange != 0) {
2077 		do_update = 1;	/* (3,5) */
2078 
2079 		/*
2080 		 * Record source link-layer address
2081 		 * XXX is it dependent to ifp->if_type?
2082 		 */
2083 		linkhdrsize = sizeof(linkhdr);
2084 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2085 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2086 			return;
2087 
2088 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2089 		    lladdr_off) == 0) {
2090 			/* Entry was deleted */
2091 			return;
2092 		}
2093 
2094 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2095 
2096 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2097 
2098 		if (ln->la_hold != NULL)
2099 			nd6_grab_holdchain(ln, &chain, &sin6);
2100 	}
2101 
2102 	/* Calculates new router status */
2103 	router = nd6_is_router(type, code, is_newentry, olladdr,
2104 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2105 
2106 	ln->ln_router = router;
2107 	/* Mark non-router redirects with special flag */
2108 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2109 		ln->la_flags |= LLE_REDIRECT;
2110 
2111 	if (flags & LLE_EXCLUSIVE)
2112 		LLE_WUNLOCK(ln);
2113 	else
2114 		LLE_RUNLOCK(ln);
2115 
2116 	if (chain != NULL)
2117 		nd6_flush_holdchain(ifp, chain, &sin6);
2118 
2119 	/*
2120 	 * When the link-layer address of a router changes, select the
2121 	 * best router again.  In particular, when the neighbor entry is newly
2122 	 * created, it might affect the selection policy.
2123 	 * Question: can we restrict the first condition to the "is_newentry"
2124 	 * case?
2125 	 * XXX: when we hear an RA from a new router with the link-layer
2126 	 * address option, defrouter_select_fib() is called twice, since
2127 	 * defrtrlist_update called the function as well.  However, I believe
2128 	 * we can compromise the overhead, since it only happens the first
2129 	 * time.
2130 	 * XXX: although defrouter_select_fib() should not have a bad effect
2131 	 * for those are not autoconfigured hosts, we explicitly avoid such
2132 	 * cases for safety.
2133 	 */
2134 	if ((do_update || is_newentry) && router &&
2135 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2136 		/*
2137 		 * guaranteed recursion
2138 		 */
2139 		defrouter_select_fib(ifp->if_fib);
2140 	}
2141 }
2142 
2143 static void
2144 nd6_slowtimo(void *arg)
2145 {
2146 	CURVNET_SET((struct vnet *) arg);
2147 	struct nd_ifinfo *nd6if;
2148 	struct ifnet *ifp;
2149 
2150 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2151 	    nd6_slowtimo, curvnet);
2152 	IFNET_RLOCK_NOSLEEP();
2153 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2154 		if (ifp->if_afdata[AF_INET6] == NULL)
2155 			continue;
2156 		nd6if = ND_IFINFO(ifp);
2157 		if (nd6if->basereachable && /* already initialized */
2158 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2159 			/*
2160 			 * Since reachable time rarely changes by router
2161 			 * advertisements, we SHOULD insure that a new random
2162 			 * value gets recomputed at least once every few hours.
2163 			 * (RFC 2461, 6.3.4)
2164 			 */
2165 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2166 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2167 		}
2168 	}
2169 	IFNET_RUNLOCK_NOSLEEP();
2170 	CURVNET_RESTORE();
2171 }
2172 
2173 void
2174 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2175     struct sockaddr_in6 *sin6)
2176 {
2177 
2178 	LLE_WLOCK_ASSERT(ln);
2179 
2180 	*chain = ln->la_hold;
2181 	ln->la_hold = NULL;
2182 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2183 
2184 	if (ln->ln_state == ND6_LLINFO_STALE) {
2185 
2186 		/*
2187 		 * The first time we send a packet to a
2188 		 * neighbor whose entry is STALE, we have
2189 		 * to change the state to DELAY and a sets
2190 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2191 		 * seconds to ensure do neighbor unreachability
2192 		 * detection on expiration.
2193 		 * (RFC 2461 7.3.3)
2194 		 */
2195 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2196 	}
2197 }
2198 
2199 int
2200 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2201     struct sockaddr_in6 *dst, struct route *ro)
2202 {
2203 	int error;
2204 	int ip6len;
2205 	struct ip6_hdr *ip6;
2206 	struct m_tag *mtag;
2207 
2208 #ifdef MAC
2209 	mac_netinet6_nd6_send(ifp, m);
2210 #endif
2211 
2212 	/*
2213 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2214 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2215 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2216 	 * to be diverted to user space.  When re-injected into the kernel,
2217 	 * send_output() will directly dispatch them to the outgoing interface.
2218 	 */
2219 	if (send_sendso_input_hook != NULL) {
2220 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2221 		if (mtag != NULL) {
2222 			ip6 = mtod(m, struct ip6_hdr *);
2223 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2224 			/* Use the SEND socket */
2225 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2226 			    ip6len);
2227 			/* -1 == no app on SEND socket */
2228 			if (error == 0 || error != -1)
2229 			    return (error);
2230 		}
2231 	}
2232 
2233 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2234 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2235 	    mtod(m, struct ip6_hdr *));
2236 
2237 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2238 		origifp = ifp;
2239 
2240 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2241 	return (error);
2242 }
2243 
2244 /*
2245  * Lookup link headerfor @sa_dst address. Stores found
2246  * data in @desten buffer. Copy of lle ln_flags can be also
2247  * saved in @pflags if @pflags is non-NULL.
2248  *
2249  * If destination LLE does not exists or lle state modification
2250  * is required, call "slow" version.
2251  *
2252  * Return values:
2253  * - 0 on success (address copied to buffer).
2254  * - EWOULDBLOCK (no local error, but address is still unresolved)
2255  * - other errors (alloc failure, etc)
2256  */
2257 int
2258 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2259     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2260     struct llentry **plle)
2261 {
2262 	struct llentry *ln = NULL;
2263 	const struct sockaddr_in6 *dst6;
2264 
2265 	if (pflags != NULL)
2266 		*pflags = 0;
2267 
2268 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2269 
2270 	/* discard the packet if IPv6 operation is disabled on the interface */
2271 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2272 		m_freem(m);
2273 		return (ENETDOWN); /* better error? */
2274 	}
2275 
2276 	if (m != NULL && m->m_flags & M_MCAST) {
2277 		switch (ifp->if_type) {
2278 		case IFT_ETHER:
2279 		case IFT_FDDI:
2280 		case IFT_L2VLAN:
2281 		case IFT_BRIDGE:
2282 		case IFT_ISO88025:
2283 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2284 						 desten);
2285 			return (0);
2286 		default:
2287 			m_freem(m);
2288 			return (EAFNOSUPPORT);
2289 		}
2290 	}
2291 
2292 	IF_AFDATA_RLOCK(ifp);
2293 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2294 	    ifp);
2295 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2296 		/* Entry found, let's copy lle info */
2297 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2298 		if (pflags != NULL)
2299 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2300 		/* Check if we have feedback request from nd6 timer */
2301 		if (ln->r_skip_req != 0) {
2302 			LLE_REQ_LOCK(ln);
2303 			ln->r_skip_req = 0; /* Notify that entry was used */
2304 			ln->lle_hittime = time_uptime;
2305 			LLE_REQ_UNLOCK(ln);
2306 		}
2307 		if (plle) {
2308 			LLE_ADDREF(ln);
2309 			*plle = ln;
2310 			LLE_WUNLOCK(ln);
2311 		}
2312 		IF_AFDATA_RUNLOCK(ifp);
2313 		return (0);
2314 	} else if (plle && ln)
2315 		LLE_WUNLOCK(ln);
2316 	IF_AFDATA_RUNLOCK(ifp);
2317 
2318 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2319 }
2320 
2321 
2322 /*
2323  * Do L2 address resolution for @sa_dst address. Stores found
2324  * address in @desten buffer. Copy of lle ln_flags can be also
2325  * saved in @pflags if @pflags is non-NULL.
2326  *
2327  * Heavy version.
2328  * Function assume that destination LLE does not exist,
2329  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2330  *
2331  * Set noinline to be dtrace-friendly
2332  */
2333 static __noinline int
2334 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2335     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2336     struct llentry **plle)
2337 {
2338 	struct llentry *lle = NULL, *lle_tmp;
2339 	struct in6_addr *psrc, src;
2340 	int send_ns, ll_len;
2341 	char *lladdr;
2342 
2343 	/*
2344 	 * Address resolution or Neighbor Unreachability Detection
2345 	 * for the next hop.
2346 	 * At this point, the destination of the packet must be a unicast
2347 	 * or an anycast address(i.e. not a multicast).
2348 	 */
2349 	if (lle == NULL) {
2350 		IF_AFDATA_RLOCK(ifp);
2351 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2352 		IF_AFDATA_RUNLOCK(ifp);
2353 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2354 			/*
2355 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2356 			 * the condition below is not very efficient.  But we believe
2357 			 * it is tolerable, because this should be a rare case.
2358 			 */
2359 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2360 			if (lle == NULL) {
2361 				char ip6buf[INET6_ADDRSTRLEN];
2362 				log(LOG_DEBUG,
2363 				    "nd6_output: can't allocate llinfo for %s "
2364 				    "(ln=%p)\n",
2365 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2366 				m_freem(m);
2367 				return (ENOBUFS);
2368 			}
2369 
2370 			IF_AFDATA_WLOCK(ifp);
2371 			LLE_WLOCK(lle);
2372 			/* Prefer any existing entry over newly-created one */
2373 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2374 			if (lle_tmp == NULL)
2375 				lltable_link_entry(LLTABLE6(ifp), lle);
2376 			IF_AFDATA_WUNLOCK(ifp);
2377 			if (lle_tmp != NULL) {
2378 				lltable_free_entry(LLTABLE6(ifp), lle);
2379 				lle = lle_tmp;
2380 				lle_tmp = NULL;
2381 			}
2382 		}
2383 	}
2384 	if (lle == NULL) {
2385 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2386 			m_freem(m);
2387 			return (ENOBUFS);
2388 		}
2389 
2390 		if (m != NULL)
2391 			m_freem(m);
2392 		return (ENOBUFS);
2393 	}
2394 
2395 	LLE_WLOCK_ASSERT(lle);
2396 
2397 	/*
2398 	 * The first time we send a packet to a neighbor whose entry is
2399 	 * STALE, we have to change the state to DELAY and a sets a timer to
2400 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2401 	 * neighbor unreachability detection on expiration.
2402 	 * (RFC 2461 7.3.3)
2403 	 */
2404 	if (lle->ln_state == ND6_LLINFO_STALE)
2405 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2406 
2407 	/*
2408 	 * If the neighbor cache entry has a state other than INCOMPLETE
2409 	 * (i.e. its link-layer address is already resolved), just
2410 	 * send the packet.
2411 	 */
2412 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2413 		if (flags & LLE_ADDRONLY) {
2414 			lladdr = lle->ll_addr;
2415 			ll_len = ifp->if_addrlen;
2416 		} else {
2417 			lladdr = lle->r_linkdata;
2418 			ll_len = lle->r_hdrlen;
2419 		}
2420 		bcopy(lladdr, desten, ll_len);
2421 		if (pflags != NULL)
2422 			*pflags = lle->la_flags;
2423 		if (plle) {
2424 			LLE_ADDREF(lle);
2425 			*plle = lle;
2426 		}
2427 		LLE_WUNLOCK(lle);
2428 		return (0);
2429 	}
2430 
2431 	/*
2432 	 * There is a neighbor cache entry, but no ethernet address
2433 	 * response yet.  Append this latest packet to the end of the
2434 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2435 	 * the oldest packet in the queue will be removed.
2436 	 */
2437 
2438 	if (lle->la_hold != NULL) {
2439 		struct mbuf *m_hold;
2440 		int i;
2441 
2442 		i = 0;
2443 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2444 			i++;
2445 			if (m_hold->m_nextpkt == NULL) {
2446 				m_hold->m_nextpkt = m;
2447 				break;
2448 			}
2449 		}
2450 		while (i >= V_nd6_maxqueuelen) {
2451 			m_hold = lle->la_hold;
2452 			lle->la_hold = lle->la_hold->m_nextpkt;
2453 			m_freem(m_hold);
2454 			i--;
2455 		}
2456 	} else {
2457 		lle->la_hold = m;
2458 	}
2459 
2460 	/*
2461 	 * If there has been no NS for the neighbor after entering the
2462 	 * INCOMPLETE state, send the first solicitation.
2463 	 * Note that for newly-created lle la_asked will be 0,
2464 	 * so we will transition from ND6_LLINFO_NOSTATE to
2465 	 * ND6_LLINFO_INCOMPLETE state here.
2466 	 */
2467 	psrc = NULL;
2468 	send_ns = 0;
2469 	if (lle->la_asked == 0) {
2470 		lle->la_asked++;
2471 		send_ns = 1;
2472 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2473 
2474 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2475 	}
2476 	LLE_WUNLOCK(lle);
2477 	if (send_ns != 0)
2478 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2479 
2480 	return (EWOULDBLOCK);
2481 }
2482 
2483 /*
2484  * Do L2 address resolution for @sa_dst address. Stores found
2485  * address in @desten buffer. Copy of lle ln_flags can be also
2486  * saved in @pflags if @pflags is non-NULL.
2487  *
2488  * Return values:
2489  * - 0 on success (address copied to buffer).
2490  * - EWOULDBLOCK (no local error, but address is still unresolved)
2491  * - other errors (alloc failure, etc)
2492  */
2493 int
2494 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2495     char *desten, uint32_t *pflags)
2496 {
2497 	int error;
2498 
2499 	flags |= LLE_ADDRONLY;
2500 	error = nd6_resolve_slow(ifp, flags, NULL,
2501 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2502 	return (error);
2503 }
2504 
2505 int
2506 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
2507     struct sockaddr_in6 *dst)
2508 {
2509 	struct mbuf *m, *m_head;
2510 	int error = 0;
2511 
2512 	m_head = chain;
2513 
2514 	while (m_head) {
2515 		m = m_head;
2516 		m_head = m_head->m_nextpkt;
2517 		error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
2518 	}
2519 
2520 	/*
2521 	 * XXX
2522 	 * note that intermediate errors are blindly ignored
2523 	 */
2524 	return (error);
2525 }
2526 
2527 static int
2528 nd6_need_cache(struct ifnet *ifp)
2529 {
2530 	/*
2531 	 * XXX: we currently do not make neighbor cache on any interface
2532 	 * other than ARCnet, Ethernet, FDDI and GIF.
2533 	 *
2534 	 * RFC2893 says:
2535 	 * - unidirectional tunnels needs no ND
2536 	 */
2537 	switch (ifp->if_type) {
2538 	case IFT_ARCNET:
2539 	case IFT_ETHER:
2540 	case IFT_FDDI:
2541 	case IFT_IEEE1394:
2542 	case IFT_L2VLAN:
2543 	case IFT_INFINIBAND:
2544 	case IFT_BRIDGE:
2545 	case IFT_PROPVIRTUAL:
2546 		return (1);
2547 	default:
2548 		return (0);
2549 	}
2550 }
2551 
2552 /*
2553  * Add pernament ND6 link-layer record for given
2554  * interface address.
2555  *
2556  * Very similar to IPv4 arp_ifinit(), but:
2557  * 1) IPv6 DAD is performed in different place
2558  * 2) It is called by IPv6 protocol stack in contrast to
2559  * arp_ifinit() which is typically called in SIOCSIFADDR
2560  * driver ioctl handler.
2561  *
2562  */
2563 int
2564 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2565 {
2566 	struct ifnet *ifp;
2567 	struct llentry *ln, *ln_tmp;
2568 	struct sockaddr *dst;
2569 
2570 	ifp = ia->ia_ifa.ifa_ifp;
2571 	if (nd6_need_cache(ifp) == 0)
2572 		return (0);
2573 
2574 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2575 	dst = (struct sockaddr *)&ia->ia_addr;
2576 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2577 	if (ln == NULL)
2578 		return (ENOBUFS);
2579 
2580 	IF_AFDATA_WLOCK(ifp);
2581 	LLE_WLOCK(ln);
2582 	/* Unlink any entry if exists */
2583 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2584 	if (ln_tmp != NULL)
2585 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2586 	lltable_link_entry(LLTABLE6(ifp), ln);
2587 	IF_AFDATA_WUNLOCK(ifp);
2588 
2589 	if (ln_tmp != NULL)
2590 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2591 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2592 
2593 	LLE_WUNLOCK(ln);
2594 	if (ln_tmp != NULL)
2595 		llentry_free(ln_tmp);
2596 
2597 	return (0);
2598 }
2599 
2600 /*
2601  * Removes either all lle entries for given @ia, or lle
2602  * corresponding to @ia address.
2603  */
2604 void
2605 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2606 {
2607 	struct sockaddr_in6 mask, addr;
2608 	struct sockaddr *saddr, *smask;
2609 	struct ifnet *ifp;
2610 
2611 	ifp = ia->ia_ifa.ifa_ifp;
2612 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2613 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2614 	saddr = (struct sockaddr *)&addr;
2615 	smask = (struct sockaddr *)&mask;
2616 
2617 	if (all != 0)
2618 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2619 	else
2620 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2621 }
2622 
2623 static void
2624 clear_llinfo_pqueue(struct llentry *ln)
2625 {
2626 	struct mbuf *m_hold, *m_hold_next;
2627 
2628 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2629 		m_hold_next = m_hold->m_nextpkt;
2630 		m_freem(m_hold);
2631 	}
2632 
2633 	ln->la_hold = NULL;
2634 }
2635 
2636 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2637 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2638 
2639 SYSCTL_DECL(_net_inet6_icmp6);
2640 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2641 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2642 	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2643 	"NDP default router list");
2644 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2645 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2646 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2647 	"NDP prefix list");
2648 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2649 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2650 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2651 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2652 
2653 static int
2654 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2655 {
2656 	struct in6_defrouter d;
2657 	struct nd_defrouter *dr;
2658 	int error;
2659 
2660 	if (req->newptr != NULL)
2661 		return (EPERM);
2662 
2663 	error = sysctl_wire_old_buffer(req, 0);
2664 	if (error != 0)
2665 		return (error);
2666 
2667 	bzero(&d, sizeof(d));
2668 	d.rtaddr.sin6_family = AF_INET6;
2669 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2670 
2671 	ND6_RLOCK();
2672 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2673 		d.rtaddr.sin6_addr = dr->rtaddr;
2674 		error = sa6_recoverscope(&d.rtaddr);
2675 		if (error != 0)
2676 			break;
2677 		d.flags = dr->raflags;
2678 		d.rtlifetime = dr->rtlifetime;
2679 		d.expire = dr->expire + (time_second - time_uptime);
2680 		d.if_index = dr->ifp->if_index;
2681 		error = SYSCTL_OUT(req, &d, sizeof(d));
2682 		if (error != 0)
2683 			break;
2684 	}
2685 	ND6_RUNLOCK();
2686 	return (error);
2687 }
2688 
2689 static int
2690 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2691 {
2692 	struct in6_prefix p;
2693 	struct sockaddr_in6 s6;
2694 	struct nd_prefix *pr;
2695 	struct nd_pfxrouter *pfr;
2696 	time_t maxexpire;
2697 	int error;
2698 	char ip6buf[INET6_ADDRSTRLEN];
2699 
2700 	if (req->newptr)
2701 		return (EPERM);
2702 
2703 	error = sysctl_wire_old_buffer(req, 0);
2704 	if (error != 0)
2705 		return (error);
2706 
2707 	bzero(&p, sizeof(p));
2708 	p.origin = PR_ORIG_RA;
2709 	bzero(&s6, sizeof(s6));
2710 	s6.sin6_family = AF_INET6;
2711 	s6.sin6_len = sizeof(s6);
2712 
2713 	ND6_RLOCK();
2714 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2715 		p.prefix = pr->ndpr_prefix;
2716 		if (sa6_recoverscope(&p.prefix)) {
2717 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2718 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2719 			/* XXX: press on... */
2720 		}
2721 		p.raflags = pr->ndpr_raf;
2722 		p.prefixlen = pr->ndpr_plen;
2723 		p.vltime = pr->ndpr_vltime;
2724 		p.pltime = pr->ndpr_pltime;
2725 		p.if_index = pr->ndpr_ifp->if_index;
2726 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2727 			p.expire = 0;
2728 		else {
2729 			/* XXX: we assume time_t is signed. */
2730 			maxexpire = (-1) &
2731 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2732 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2733 				p.expire = pr->ndpr_lastupdate +
2734 				    pr->ndpr_vltime +
2735 				    (time_second - time_uptime);
2736 			else
2737 				p.expire = maxexpire;
2738 		}
2739 		p.refcnt = pr->ndpr_addrcnt;
2740 		p.flags = pr->ndpr_stateflags;
2741 		p.advrtrs = 0;
2742 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2743 			p.advrtrs++;
2744 		error = SYSCTL_OUT(req, &p, sizeof(p));
2745 		if (error != 0)
2746 			break;
2747 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2748 			s6.sin6_addr = pfr->router->rtaddr;
2749 			if (sa6_recoverscope(&s6))
2750 				log(LOG_ERR,
2751 				    "scope error in prefix list (%s)\n",
2752 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2753 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2754 			if (error != 0)
2755 				goto out;
2756 		}
2757 	}
2758 out:
2759 	ND6_RUNLOCK();
2760 	return (error);
2761 }
2762