xref: /freebsd/sys/netinet6/nd6.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*	$FreeBSD$	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/queue.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/if.h>
54 #include <net/if_arc.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/iso88025.h>
58 #include <net/fddi.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/if_ether.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 
70 #include <sys/limits.h>
71 
72 #include <net/net_osdep.h>
73 
74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76 
77 #define SIN6(s) ((struct sockaddr_in6 *)s)
78 #define SDL(s) ((struct sockaddr_dl *)s)
79 
80 /* timer values */
81 int	nd6_prune	= 1;	/* walk list every 1 seconds */
82 int	nd6_delay	= 5;	/* delay first probe time 5 second */
83 int	nd6_umaxtries	= 3;	/* maximum unicast query */
84 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
85 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87 
88 /* preventing too many loops in ND option parsing */
89 int nd6_maxndopt = 10;	/* max # of ND options allowed */
90 
91 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
93 
94 #ifdef ND6_DEBUG
95 int nd6_debug = 1;
96 #else
97 int nd6_debug = 0;
98 #endif
99 
100 /* for debugging? */
101 static int nd6_inuse, nd6_allocated;
102 
103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104 struct nd_drhead nd_defrouter;
105 struct nd_prhead nd_prefix = { 0 };
106 
107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108 static struct sockaddr_in6 all1_sa;
109 
110 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
111 	struct ifnet *));
112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113 static void nd6_slowtimo __P((void *));
114 static int regen_tmpaddr __P((struct in6_ifaddr *));
115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116 static void nd6_llinfo_timer __P((void *));
117 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
118 
119 struct callout nd6_slowtimo_ch;
120 struct callout nd6_timer_ch;
121 extern struct callout in6_tmpaddrtimer_ch;
122 
123 void
124 nd6_init()
125 {
126 	static int nd6_init_done = 0;
127 	int i;
128 
129 	if (nd6_init_done) {
130 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131 		return;
132 	}
133 
134 	all1_sa.sin6_family = AF_INET6;
135 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
138 
139 	/* initialization of the default router list */
140 	TAILQ_INIT(&nd_defrouter);
141 
142 	nd6_init_done = 1;
143 
144 	/* start timer */
145 	callout_init(&nd6_slowtimo_ch, 0);
146 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147 	    nd6_slowtimo, NULL);
148 }
149 
150 struct nd_ifinfo *
151 nd6_ifattach(ifp)
152 	struct ifnet *ifp;
153 {
154 	struct nd_ifinfo *nd;
155 
156 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157 	bzero(nd, sizeof(*nd));
158 
159 	nd->initialized = 1;
160 
161 	nd->chlim = IPV6_DEFHLIM;
162 	nd->basereachable = REACHABLE_TIME;
163 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164 	nd->retrans = RETRANS_TIMER;
165 	/*
166 	 * Note that the default value of ip6_accept_rtadv is 0, which means
167 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
168 	 * here.
169 	 */
170 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
171 
172 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173 	nd6_setmtu0(ifp, nd);
174 
175 	return nd;
176 }
177 
178 void
179 nd6_ifdetach(nd)
180 	struct nd_ifinfo *nd;
181 {
182 
183 	free(nd, M_IP6NDP);
184 }
185 
186 /*
187  * Reset ND level link MTU. This function is called when the physical MTU
188  * changes, which means we might have to adjust the ND level MTU.
189  */
190 void
191 nd6_setmtu(ifp)
192 	struct ifnet *ifp;
193 {
194 
195 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
196 }
197 
198 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199 void
200 nd6_setmtu0(ifp, ndi)
201 	struct ifnet *ifp;
202 	struct nd_ifinfo *ndi;
203 {
204 	u_int32_t omaxmtu;
205 
206 	omaxmtu = ndi->maxmtu;
207 
208 	switch (ifp->if_type) {
209 	case IFT_ARCNET:
210 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
211 		break;
212 	case IFT_FDDI:
213 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
214 		break;
215 	case IFT_ISO88025:
216 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
217 		 break;
218 	default:
219 		ndi->maxmtu = ifp->if_mtu;
220 		break;
221 	}
222 
223 	/*
224 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
225 	 * undesirable situation.  We thus notify the operator of the change
226 	 * explicitly.  The check for omaxmtu is necessary to restrict the
227 	 * log to the case of changing the MTU, not initializing it.
228 	 */
229 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
230 		log(LOG_NOTICE, "nd6_setmtu0: "
231 		    "new link MTU on %s (%lu) is too small for IPv6\n",
232 		    if_name(ifp), (unsigned long)ndi->maxmtu);
233 	}
234 
235 	if (ndi->maxmtu > in6_maxmtu)
236 		in6_setmaxmtu(); /* check all interfaces just in case */
237 
238 #undef MIN
239 }
240 
241 void
242 nd6_option_init(opt, icmp6len, ndopts)
243 	void *opt;
244 	int icmp6len;
245 	union nd_opts *ndopts;
246 {
247 
248 	bzero(ndopts, sizeof(*ndopts));
249 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
250 	ndopts->nd_opts_last
251 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
252 
253 	if (icmp6len == 0) {
254 		ndopts->nd_opts_done = 1;
255 		ndopts->nd_opts_search = NULL;
256 	}
257 }
258 
259 /*
260  * Take one ND option.
261  */
262 struct nd_opt_hdr *
263 nd6_option(ndopts)
264 	union nd_opts *ndopts;
265 {
266 	struct nd_opt_hdr *nd_opt;
267 	int olen;
268 
269 	if (ndopts == NULL)
270 		panic("ndopts == NULL in nd6_option");
271 	if (ndopts->nd_opts_last == NULL)
272 		panic("uninitialized ndopts in nd6_option");
273 	if (ndopts->nd_opts_search == NULL)
274 		return NULL;
275 	if (ndopts->nd_opts_done)
276 		return NULL;
277 
278 	nd_opt = ndopts->nd_opts_search;
279 
280 	/* make sure nd_opt_len is inside the buffer */
281 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
282 		bzero(ndopts, sizeof(*ndopts));
283 		return NULL;
284 	}
285 
286 	olen = nd_opt->nd_opt_len << 3;
287 	if (olen == 0) {
288 		/*
289 		 * Message validation requires that all included
290 		 * options have a length that is greater than zero.
291 		 */
292 		bzero(ndopts, sizeof(*ndopts));
293 		return NULL;
294 	}
295 
296 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
297 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
298 		/* option overruns the end of buffer, invalid */
299 		bzero(ndopts, sizeof(*ndopts));
300 		return NULL;
301 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
302 		/* reached the end of options chain */
303 		ndopts->nd_opts_done = 1;
304 		ndopts->nd_opts_search = NULL;
305 	}
306 	return nd_opt;
307 }
308 
309 /*
310  * Parse multiple ND options.
311  * This function is much easier to use, for ND routines that do not need
312  * multiple options of the same type.
313  */
314 int
315 nd6_options(ndopts)
316 	union nd_opts *ndopts;
317 {
318 	struct nd_opt_hdr *nd_opt;
319 	int i = 0;
320 
321 	if (ndopts == NULL)
322 		panic("ndopts == NULL in nd6_options");
323 	if (ndopts->nd_opts_last == NULL)
324 		panic("uninitialized ndopts in nd6_options");
325 	if (ndopts->nd_opts_search == NULL)
326 		return 0;
327 
328 	while (1) {
329 		nd_opt = nd6_option(ndopts);
330 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
331 			/*
332 			 * Message validation requires that all included
333 			 * options have a length that is greater than zero.
334 			 */
335 			icmp6stat.icp6s_nd_badopt++;
336 			bzero(ndopts, sizeof(*ndopts));
337 			return -1;
338 		}
339 
340 		if (nd_opt == NULL)
341 			goto skip1;
342 
343 		switch (nd_opt->nd_opt_type) {
344 		case ND_OPT_SOURCE_LINKADDR:
345 		case ND_OPT_TARGET_LINKADDR:
346 		case ND_OPT_MTU:
347 		case ND_OPT_REDIRECTED_HEADER:
348 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
349 				nd6log((LOG_INFO,
350 				    "duplicated ND6 option found (type=%d)\n",
351 				    nd_opt->nd_opt_type));
352 				/* XXX bark? */
353 			} else {
354 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
355 					= nd_opt;
356 			}
357 			break;
358 		case ND_OPT_PREFIX_INFORMATION:
359 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
360 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
361 					= nd_opt;
362 			}
363 			ndopts->nd_opts_pi_end =
364 				(struct nd_opt_prefix_info *)nd_opt;
365 			break;
366 		default:
367 			/*
368 			 * Unknown options must be silently ignored,
369 			 * to accomodate future extension to the protocol.
370 			 */
371 			nd6log((LOG_DEBUG,
372 			    "nd6_options: unsupported option %d - "
373 			    "option ignored\n", nd_opt->nd_opt_type));
374 		}
375 
376 skip1:
377 		i++;
378 		if (i > nd6_maxndopt) {
379 			icmp6stat.icp6s_nd_toomanyopt++;
380 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
381 			break;
382 		}
383 
384 		if (ndopts->nd_opts_done)
385 			break;
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * ND6 timer routine to handle ND6 entries
393  */
394 void
395 nd6_llinfo_settimer(ln, tick)
396 	struct llinfo_nd6 *ln;
397 	long tick;
398 {
399 	if (tick < 0) {
400 		ln->ln_expire = 0;
401 		ln->ln_ntick = 0;
402 		callout_stop(&ln->ln_timer_ch);
403 	} else {
404 		ln->ln_expire = time_second + tick / hz;
405 		if (tick > INT_MAX) {
406 			ln->ln_ntick = tick - INT_MAX;
407 			callout_reset(&ln->ln_timer_ch, INT_MAX,
408 			    nd6_llinfo_timer, ln);
409 		} else {
410 			ln->ln_ntick = 0;
411 			callout_reset(&ln->ln_timer_ch, tick,
412 			    nd6_llinfo_timer, ln);
413 		}
414 	}
415 }
416 
417 static void
418 nd6_llinfo_timer(arg)
419 	void *arg;
420 {
421 	struct llinfo_nd6 *ln;
422 	struct rtentry *rt;
423 	struct in6_addr *dst;
424 	struct ifnet *ifp;
425 	struct nd_ifinfo *ndi = NULL;
426 
427 	ln = (struct llinfo_nd6 *)arg;
428 
429 	if (ln->ln_ntick > 0) {
430 		if (ln->ln_ntick > INT_MAX) {
431 			ln->ln_ntick -= INT_MAX;
432 			nd6_llinfo_settimer(ln, INT_MAX);
433 		} else {
434 			ln->ln_ntick = 0;
435 			nd6_llinfo_settimer(ln, ln->ln_ntick);
436 		}
437 		return;
438 	}
439 
440 	if ((rt = ln->ln_rt) == NULL)
441 		panic("ln->ln_rt == NULL");
442 	if ((ifp = rt->rt_ifp) == NULL)
443 		panic("ln->ln_rt->rt_ifp == NULL");
444 	ndi = ND_IFINFO(ifp);
445 
446 	/* sanity check */
447 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
448 		panic("rt_llinfo(%p) is not equal to ln(%p)",
449 		      rt->rt_llinfo, ln);
450 	if (rt_key(rt) == NULL)
451 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
452 
453 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
454 
455 	switch (ln->ln_state) {
456 	case ND6_LLINFO_INCOMPLETE:
457 		if (ln->ln_asked < nd6_mmaxtries) {
458 			ln->ln_asked++;
459 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
460 			nd6_ns_output(ifp, NULL, dst, ln, 0);
461 		} else {
462 			struct mbuf *m = ln->ln_hold;
463 			if (m) {
464 				struct mbuf *m0;
465 
466 				/*
467 				 * assuming every packet in ln_hold has the
468 				 * same IP header
469 				 */
470 				m0 = m->m_nextpkt;
471 				m->m_nextpkt = NULL;
472 				icmp6_error2(m, ICMP6_DST_UNREACH,
473 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
474 
475 				ln->ln_hold = m0;
476 				clear_llinfo_pqueue(ln);
477 			}
478 			if (rt)
479 				(void)nd6_free(rt, 0);
480 			ln = NULL;
481 		}
482 		break;
483 	case ND6_LLINFO_REACHABLE:
484 		if (!ND6_LLINFO_PERMANENT(ln)) {
485 			ln->ln_state = ND6_LLINFO_STALE;
486 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
487 		}
488 		break;
489 
490 	case ND6_LLINFO_STALE:
491 		/* Garbage Collection(RFC 2461 5.3) */
492 		if (!ND6_LLINFO_PERMANENT(ln)) {
493 			(void)nd6_free(rt, 1);
494 			ln = NULL;
495 		}
496 		break;
497 
498 	case ND6_LLINFO_DELAY:
499 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
500 			/* We need NUD */
501 			ln->ln_asked = 1;
502 			ln->ln_state = ND6_LLINFO_PROBE;
503 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 			nd6_ns_output(ifp, dst, dst, ln, 0);
505 		} else {
506 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
507 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
508 		}
509 		break;
510 	case ND6_LLINFO_PROBE:
511 		if (ln->ln_asked < nd6_umaxtries) {
512 			ln->ln_asked++;
513 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
514 			nd6_ns_output(ifp, dst, dst, ln, 0);
515 		} else if (rt->rt_ifa != NULL &&
516 		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
517 		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
518 			/*
519 			 * This is an unreachable neighbor whose address is
520 			 * specified as the destination of a p2p interface
521 			 * (see in6_ifinit()).  We should not free the entry
522 			 * since this is sort of a "static" entry generated
523 			 * via interface address configuration.
524 			 */
525 			ln->ln_asked = 0;
526 			ln->ln_expire = 0; /* make it permanent */
527 			ln->ln_state = ND6_LLINFO_STALE;
528 		} else {
529 			(void)nd6_free(rt, 0);
530 			ln = NULL;
531 		}
532 		break;
533 	}
534 }
535 
536 
537 /*
538  * ND6 timer routine to expire default route list and prefix list
539  */
540 void
541 nd6_timer(ignored_arg)
542 	void	*ignored_arg;
543 {
544 	int s;
545 	struct nd_defrouter *dr;
546 	struct nd_prefix *pr;
547 	struct in6_ifaddr *ia6, *nia6;
548 	struct in6_addrlifetime *lt6;
549 
550 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
551 	    nd6_timer, NULL);
552 
553 	/* expire default router list */
554 	s = splnet();
555 	dr = TAILQ_FIRST(&nd_defrouter);
556 	while (dr) {
557 		if (dr->expire && dr->expire < time_second) {
558 			struct nd_defrouter *t;
559 			t = TAILQ_NEXT(dr, dr_entry);
560 			defrtrlist_del(dr);
561 			dr = t;
562 		} else {
563 			dr = TAILQ_NEXT(dr, dr_entry);
564 		}
565 	}
566 
567 	/*
568 	 * expire interface addresses.
569 	 * in the past the loop was inside prefix expiry processing.
570 	 * However, from a stricter speci-confrmance standpoint, we should
571 	 * rather separate address lifetimes and prefix lifetimes.
572 	 */
573   addrloop:
574 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
575 		nia6 = ia6->ia_next;
576 		/* check address lifetime */
577 		lt6 = &ia6->ia6_lifetime;
578 		if (IFA6_IS_INVALID(ia6)) {
579 			int regen = 0;
580 
581 			/*
582 			 * If the expiring address is temporary, try
583 			 * regenerating a new one.  This would be useful when
584 			 * we suspended a laptop PC, then turned it on after a
585 			 * period that could invalidate all temporary
586 			 * addresses.  Although we may have to restart the
587 			 * loop (see below), it must be after purging the
588 			 * address.  Otherwise, we'd see an infinite loop of
589 			 * regeneration.
590 			 */
591 			if (ip6_use_tempaddr &&
592 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
593 				if (regen_tmpaddr(ia6) == 0)
594 					regen = 1;
595 			}
596 
597 			in6_purgeaddr(&ia6->ia_ifa);
598 
599 			if (regen)
600 				goto addrloop; /* XXX: see below */
601 		} else if (IFA6_IS_DEPRECATED(ia6)) {
602 			int oldflags = ia6->ia6_flags;
603 
604 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
605 
606 			/*
607 			 * If a temporary address has just become deprecated,
608 			 * regenerate a new one if possible.
609 			 */
610 			if (ip6_use_tempaddr &&
611 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
612 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
613 
614 				if (regen_tmpaddr(ia6) == 0) {
615 					/*
616 					 * A new temporary address is
617 					 * generated.
618 					 * XXX: this means the address chain
619 					 * has changed while we are still in
620 					 * the loop.  Although the change
621 					 * would not cause disaster (because
622 					 * it's not a deletion, but an
623 					 * addition,) we'd rather restart the
624 					 * loop just for safety.  Or does this
625 					 * significantly reduce performance??
626 					 */
627 					goto addrloop;
628 				}
629 			}
630 		} else {
631 			/*
632 			 * A new RA might have made a deprecated address
633 			 * preferred.
634 			 */
635 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
636 		}
637 	}
638 
639 	/* expire prefix list */
640 	pr = nd_prefix.lh_first;
641 	while (pr) {
642 		/*
643 		 * check prefix lifetime.
644 		 * since pltime is just for autoconf, pltime processing for
645 		 * prefix is not necessary.
646 		 */
647 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
648 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
649 			struct nd_prefix *t;
650 			t = pr->ndpr_next;
651 
652 			/*
653 			 * address expiration and prefix expiration are
654 			 * separate.  NEVER perform in6_purgeaddr here.
655 			 */
656 
657 			prelist_remove(pr);
658 			pr = t;
659 		} else
660 			pr = pr->ndpr_next;
661 	}
662 	splx(s);
663 }
664 
665 static int
666 regen_tmpaddr(ia6)
667 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
668 {
669 	struct ifaddr *ifa;
670 	struct ifnet *ifp;
671 	struct in6_ifaddr *public_ifa6 = NULL;
672 
673 	ifp = ia6->ia_ifa.ifa_ifp;
674 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
675 	     ifa = ifa->ifa_list.tqe_next) {
676 		struct in6_ifaddr *it6;
677 
678 		if (ifa->ifa_addr->sa_family != AF_INET6)
679 			continue;
680 
681 		it6 = (struct in6_ifaddr *)ifa;
682 
683 		/* ignore no autoconf addresses. */
684 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
685 			continue;
686 
687 		/* ignore autoconf addresses with different prefixes. */
688 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
689 			continue;
690 
691 		/*
692 		 * Now we are looking at an autoconf address with the same
693 		 * prefix as ours.  If the address is temporary and is still
694 		 * preferred, do not create another one.  It would be rare, but
695 		 * could happen, for example, when we resume a laptop PC after
696 		 * a long period.
697 		 */
698 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
699 		    !IFA6_IS_DEPRECATED(it6)) {
700 			public_ifa6 = NULL;
701 			break;
702 		}
703 
704 		/*
705 		 * This is a public autoconf address that has the same prefix
706 		 * as ours.  If it is preferred, keep it.  We can't break the
707 		 * loop here, because there may be a still-preferred temporary
708 		 * address with the prefix.
709 		 */
710 		if (!IFA6_IS_DEPRECATED(it6))
711 		    public_ifa6 = it6;
712 	}
713 
714 	if (public_ifa6 != NULL) {
715 		int e;
716 
717 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
718 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
719 			    " tmp addr,errno=%d\n", e);
720 			return (-1);
721 		}
722 		return (0);
723 	}
724 
725 	return (-1);
726 }
727 
728 /*
729  * Nuke neighbor cache/prefix/default router management table, right before
730  * ifp goes away.
731  */
732 void
733 nd6_purge(ifp)
734 	struct ifnet *ifp;
735 {
736 	struct llinfo_nd6 *ln, *nln;
737 	struct nd_defrouter *dr, *ndr;
738 	struct nd_prefix *pr, *npr;
739 
740 	/*
741 	 * Nuke default router list entries toward ifp.
742 	 * We defer removal of default router list entries that is installed
743 	 * in the routing table, in order to keep additional side effects as
744 	 * small as possible.
745 	 */
746 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
747 		ndr = TAILQ_NEXT(dr, dr_entry);
748 		if (dr->installed)
749 			continue;
750 
751 		if (dr->ifp == ifp)
752 			defrtrlist_del(dr);
753 	}
754 
755 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
756 		ndr = TAILQ_NEXT(dr, dr_entry);
757 		if (!dr->installed)
758 			continue;
759 
760 		if (dr->ifp == ifp)
761 			defrtrlist_del(dr);
762 	}
763 
764 	/* Nuke prefix list entries toward ifp */
765 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
766 		npr = pr->ndpr_next;
767 		if (pr->ndpr_ifp == ifp) {
768 			/*
769 			 * Because if_detach() does *not* release prefixes
770 			 * while purging addresses the reference count will
771 			 * still be above zero. We therefore reset it to
772 			 * make sure that the prefix really gets purged.
773 			 */
774 			pr->ndpr_refcnt = 0;
775 
776 			/*
777 			 * Previously, pr->ndpr_addr is removed as well,
778 			 * but I strongly believe we don't have to do it.
779 			 * nd6_purge() is only called from in6_ifdetach(),
780 			 * which removes all the associated interface addresses
781 			 * by itself.
782 			 * (jinmei@kame.net 20010129)
783 			 */
784 			prelist_remove(pr);
785 		}
786 	}
787 
788 	/* cancel default outgoing interface setting */
789 	if (nd6_defifindex == ifp->if_index)
790 		nd6_setdefaultiface(0);
791 
792 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
793 		/* refresh default router list */
794 		defrouter_select();
795 	}
796 
797 	/*
798 	 * Nuke neighbor cache entries for the ifp.
799 	 * Note that rt->rt_ifp may not be the same as ifp,
800 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
801 	 * nd6_rtrequest(), and ip6_input().
802 	 */
803 	ln = llinfo_nd6.ln_next;
804 	while (ln && ln != &llinfo_nd6) {
805 		struct rtentry *rt;
806 		struct sockaddr_dl *sdl;
807 
808 		nln = ln->ln_next;
809 		rt = ln->ln_rt;
810 		if (rt && rt->rt_gateway &&
811 		    rt->rt_gateway->sa_family == AF_LINK) {
812 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
813 			if (sdl->sdl_index == ifp->if_index)
814 				nln = nd6_free(rt, 0);
815 		}
816 		ln = nln;
817 	}
818 }
819 
820 struct rtentry *
821 nd6_lookup(addr6, create, ifp)
822 	struct in6_addr *addr6;
823 	int create;
824 	struct ifnet *ifp;
825 {
826 	struct rtentry *rt;
827 	struct sockaddr_in6 sin6;
828 
829 	bzero(&sin6, sizeof(sin6));
830 	sin6.sin6_len = sizeof(struct sockaddr_in6);
831 	sin6.sin6_family = AF_INET6;
832 	sin6.sin6_addr = *addr6;
833 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
834 	if (rt) {
835 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
836 			/*
837 			 * This is the case for the default route.
838 			 * If we want to create a neighbor cache for the
839 			 * address, we should free the route for the
840 			 * destination and allocate an interface route.
841 			 */
842 			RTFREE_LOCKED(rt);
843 			rt = NULL;
844 		}
845 	}
846 	if (rt == NULL) {
847 		if (create && ifp) {
848 			int e;
849 
850 			/*
851 			 * If no route is available and create is set,
852 			 * we allocate a host route for the destination
853 			 * and treat it like an interface route.
854 			 * This hack is necessary for a neighbor which can't
855 			 * be covered by our own prefix.
856 			 */
857 			struct ifaddr *ifa =
858 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
859 			if (ifa == NULL)
860 				return (NULL);
861 
862 			/*
863 			 * Create a new route.  RTF_LLINFO is necessary
864 			 * to create a Neighbor Cache entry for the
865 			 * destination in nd6_rtrequest which will be
866 			 * called in rtrequest via ifa->ifa_rtrequest.
867 			 */
868 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
869 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
870 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
871 			    ~RTF_CLONING, &rt)) != 0) {
872 				log(LOG_ERR,
873 				    "nd6_lookup: failed to add route for a "
874 				    "neighbor(%s), errno=%d\n",
875 				    ip6_sprintf(addr6), e);
876 			}
877 			if (rt == NULL)
878 				return (NULL);
879 			RT_LOCK(rt);
880 			if (rt->rt_llinfo) {
881 				struct llinfo_nd6 *ln =
882 				    (struct llinfo_nd6 *)rt->rt_llinfo;
883 				ln->ln_state = ND6_LLINFO_NOSTATE;
884 			}
885 		} else
886 			return (NULL);
887 	}
888 	RT_LOCK_ASSERT(rt);
889 	RT_REMREF(rt);
890 	/*
891 	 * Validation for the entry.
892 	 * Note that the check for rt_llinfo is necessary because a cloned
893 	 * route from a parent route that has the L flag (e.g. the default
894 	 * route to a p2p interface) may have the flag, too, while the
895 	 * destination is not actually a neighbor.
896 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
897 	 *      it might be the loopback interface if the entry is for our
898 	 *      own address on a non-loopback interface. Instead, we should
899 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
900 	 *	interface.
901 	 * Note also that ifa_ifp and ifp may differ when we connect two
902 	 * interfaces to a same link, install a link prefix to an interface,
903 	 * and try to install a neighbor cache on an interface that does not
904 	 * have a route to the prefix.
905 	 */
906 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
907 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
908 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
909 		if (create) {
910 			nd6log((LOG_DEBUG,
911 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
912 			    ip6_sprintf(addr6),
913 			    ifp ? if_name(ifp) : "unspec"));
914 		}
915 		RT_UNLOCK(rt);
916 		return (NULL);
917 	}
918 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
919 	return (rt);
920 }
921 
922 /*
923  * Test whether a given IPv6 address is a neighbor or not, ignoring
924  * the actual neighbor cache.  The neighbor cache is ignored in order
925  * to not reenter the routing code from within itself.
926  */
927 static int
928 nd6_is_new_addr_neighbor(addr, ifp)
929 	struct sockaddr_in6 *addr;
930 	struct ifnet *ifp;
931 {
932 	struct nd_prefix *pr;
933 	struct ifaddr *dstaddr;
934 
935 	/*
936 	 * A link-local address is always a neighbor.
937 	 * XXX: a link does not necessarily specify a single interface.
938 	 */
939 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
940 		struct sockaddr_in6 sin6_copy;
941 		u_int32_t zone;
942 
943 		/*
944 		 * We need sin6_copy since sa6_recoverscope() may modify the
945 		 * content (XXX).
946 		 */
947 		sin6_copy = *addr;
948 		if (sa6_recoverscope(&sin6_copy))
949 			return (0); /* XXX: should be impossible */
950 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
951 			return (0);
952 		if (sin6_copy.sin6_scope_id == zone)
953 			return (1);
954 		else
955 			return (0);
956 	}
957 
958 	/*
959 	 * If the address matches one of our addresses,
960 	 * it should be a neighbor.
961 	 * If the address matches one of our on-link prefixes, it should be a
962 	 * neighbor.
963 	 */
964 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
965 		if (pr->ndpr_ifp != ifp)
966 			continue;
967 
968 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
969 			continue;
970 
971 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
972 		    &addr->sin6_addr, &pr->ndpr_mask))
973 			return (1);
974 	}
975 
976 	/*
977 	 * If the address is assigned on the node of the other side of
978 	 * a p2p interface, the address should be a neighbor.
979 	 */
980 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
981 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
982 		return (1);
983 
984 	/*
985 	 * If the default router list is empty, all addresses are regarded
986 	 * as on-link, and thus, as a neighbor.
987 	 * XXX: we restrict the condition to hosts, because routers usually do
988 	 * not have the "default router list".
989 	 */
990 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
991 	    nd6_defifindex == ifp->if_index) {
992 		return (1);
993 	}
994 
995 	return (0);
996 }
997 
998 
999 /*
1000  * Detect if a given IPv6 address identifies a neighbor on a given link.
1001  * XXX: should take care of the destination of a p2p link?
1002  */
1003 int
1004 nd6_is_addr_neighbor(addr, ifp)
1005 	struct sockaddr_in6 *addr;
1006 	struct ifnet *ifp;
1007 {
1008 
1009 	if (nd6_is_new_addr_neighbor(addr, ifp))
1010 		return (1);
1011 
1012 	/*
1013 	 * Even if the address matches none of our addresses, it might be
1014 	 * in the neighbor cache.
1015 	 */
1016 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1017 		return (1);
1018 
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Free an nd6 llinfo entry.
1024  * Since the function would cause significant changes in the kernel, DO NOT
1025  * make it global, unless you have a strong reason for the change, and are sure
1026  * that the change is safe.
1027  */
1028 static struct llinfo_nd6 *
1029 nd6_free(rt, gc)
1030 	struct rtentry *rt;
1031 	int gc;
1032 {
1033 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1034 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1035 	struct nd_defrouter *dr;
1036 
1037 	/*
1038 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1039 	 * even though it is not harmful, it was not really necessary.
1040 	 */
1041 
1042 	/* cancel timer */
1043 	nd6_llinfo_settimer(ln, -1);
1044 
1045 	if (!ip6_forwarding) {
1046 		int s;
1047 		s = splnet();
1048 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1049 		    rt->rt_ifp);
1050 
1051 		if (dr != NULL && dr->expire &&
1052 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1053 			/*
1054 			 * If the reason for the deletion is just garbage
1055 			 * collection, and the neighbor is an active default
1056 			 * router, do not delete it.  Instead, reset the GC
1057 			 * timer using the router's lifetime.
1058 			 * Simply deleting the entry would affect default
1059 			 * router selection, which is not necessarily a good
1060 			 * thing, especially when we're using router preference
1061 			 * values.
1062 			 * XXX: the check for ln_state would be redundant,
1063 			 *      but we intentionally keep it just in case.
1064 			 */
1065 			if (dr->expire > time_second)
1066 				nd6_llinfo_settimer(ln,
1067 				    (dr->expire - time_second) * hz);
1068 			else
1069 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1070 			splx(s);
1071 			return (ln->ln_next);
1072 		}
1073 
1074 		if (ln->ln_router || dr) {
1075 			/*
1076 			 * rt6_flush must be called whether or not the neighbor
1077 			 * is in the Default Router List.
1078 			 * See a corresponding comment in nd6_na_input().
1079 			 */
1080 			rt6_flush(&in6, rt->rt_ifp);
1081 		}
1082 
1083 		if (dr) {
1084 			/*
1085 			 * Unreachablity of a router might affect the default
1086 			 * router selection and on-link detection of advertised
1087 			 * prefixes.
1088 			 */
1089 
1090 			/*
1091 			 * Temporarily fake the state to choose a new default
1092 			 * router and to perform on-link determination of
1093 			 * prefixes correctly.
1094 			 * Below the state will be set correctly,
1095 			 * or the entry itself will be deleted.
1096 			 */
1097 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1098 
1099 			/*
1100 			 * Since defrouter_select() does not affect the
1101 			 * on-link determination and MIP6 needs the check
1102 			 * before the default router selection, we perform
1103 			 * the check now.
1104 			 */
1105 			pfxlist_onlink_check();
1106 
1107 			/*
1108 			 * refresh default router list
1109 			 */
1110 			defrouter_select();
1111 		}
1112 		splx(s);
1113 	}
1114 
1115 	/*
1116 	 * Before deleting the entry, remember the next entry as the
1117 	 * return value.  We need this because pfxlist_onlink_check() above
1118 	 * might have freed other entries (particularly the old next entry) as
1119 	 * a side effect (XXX).
1120 	 */
1121 	next = ln->ln_next;
1122 
1123 	/*
1124 	 * Detach the route from the routing tree and the list of neighbor
1125 	 * caches, and disable the route entry not to be used in already
1126 	 * cached routes.
1127 	 */
1128 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1129 	    rt_mask(rt), 0, (struct rtentry **)0);
1130 
1131 	return (next);
1132 }
1133 
1134 /*
1135  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1136  *
1137  * XXX cost-effective methods?
1138  */
1139 void
1140 nd6_nud_hint(rt, dst6, force)
1141 	struct rtentry *rt;
1142 	struct in6_addr *dst6;
1143 	int force;
1144 {
1145 	struct llinfo_nd6 *ln;
1146 
1147 	/*
1148 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1149 	 * routing table by supplied "dst6".
1150 	 */
1151 	if (rt == NULL) {
1152 		if (dst6 == NULL)
1153 			return;
1154 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1155 			return;
1156 	}
1157 
1158 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1159 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1160 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1161 	    rt->rt_gateway->sa_family != AF_LINK) {
1162 		/* This is not a host route. */
1163 		return;
1164 	}
1165 
1166 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1167 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1168 		return;
1169 
1170 	/*
1171 	 * if we get upper-layer reachability confirmation many times,
1172 	 * it is possible we have false information.
1173 	 */
1174 	if (!force) {
1175 		ln->ln_byhint++;
1176 		if (ln->ln_byhint > nd6_maxnudhint)
1177 			return;
1178 	}
1179 
1180 	ln->ln_state = ND6_LLINFO_REACHABLE;
1181 	if (!ND6_LLINFO_PERMANENT(ln)) {
1182 		nd6_llinfo_settimer(ln,
1183 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1184 	}
1185 }
1186 
1187 void
1188 nd6_rtrequest(req, rt, info)
1189 	int	req;
1190 	struct rtentry *rt;
1191 	struct rt_addrinfo *info; /* xxx unused */
1192 {
1193 	struct sockaddr *gate = rt->rt_gateway;
1194 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1195 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1196 	struct ifnet *ifp = rt->rt_ifp;
1197 	struct ifaddr *ifa;
1198 
1199 	RT_LOCK_ASSERT(rt);
1200 
1201 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1202 		return;
1203 
1204 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1205 		/*
1206 		 * This is probably an interface direct route for a link
1207 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1208 		 * We do not need special treatment below for such a route.
1209 		 * Moreover, the RTF_LLINFO flag which would be set below
1210 		 * would annoy the ndp(8) command.
1211 		 */
1212 		return;
1213 	}
1214 
1215 	if (req == RTM_RESOLVE &&
1216 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1217 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1218 	     ifp))) {
1219 		/*
1220 		 * FreeBSD and BSD/OS often make a cloned host route based
1221 		 * on a less-specific route (e.g. the default route).
1222 		 * If the less specific route does not have a "gateway"
1223 		 * (this is the case when the route just goes to a p2p or an
1224 		 * stf interface), we'll mistakenly make a neighbor cache for
1225 		 * the host route, and will see strange neighbor solicitation
1226 		 * for the corresponding destination.  In order to avoid the
1227 		 * confusion, we check if the destination of the route is
1228 		 * a neighbor in terms of neighbor discovery, and stop the
1229 		 * process if not.  Additionally, we remove the LLINFO flag
1230 		 * so that ndp(8) will not try to get the neighbor information
1231 		 * of the destination.
1232 		 */
1233 		rt->rt_flags &= ~RTF_LLINFO;
1234 		return;
1235 	}
1236 
1237 	switch (req) {
1238 	case RTM_ADD:
1239 		/*
1240 		 * There is no backward compatibility :)
1241 		 *
1242 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1243 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1244 		 *	   rt->rt_flags |= RTF_CLONING;
1245 		 */
1246 		if ((rt->rt_flags & RTF_CLONING) ||
1247 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1248 			/*
1249 			 * Case 1: This route should come from a route to
1250 			 * interface (RTF_CLONING case) or the route should be
1251 			 * treated as on-link but is currently not
1252 			 * (RTF_LLINFO && ln == NULL case).
1253 			 */
1254 			rt_setgate(rt, rt_key(rt),
1255 				   (struct sockaddr *)&null_sdl);
1256 			gate = rt->rt_gateway;
1257 			SDL(gate)->sdl_type = ifp->if_type;
1258 			SDL(gate)->sdl_index = ifp->if_index;
1259 			if (ln)
1260 				nd6_llinfo_settimer(ln, 0);
1261 			if ((rt->rt_flags & RTF_CLONING) != 0)
1262 				break;
1263 		}
1264 		/*
1265 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1266 		 * We don't do that here since llinfo is not ready yet.
1267 		 *
1268 		 * There are also couple of other things to be discussed:
1269 		 * - unsolicited NA code needs improvement beforehand
1270 		 * - RFC2461 says we MAY send multicast unsolicited NA
1271 		 *   (7.2.6 paragraph 4), however, it also says that we
1272 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1273 		 *   we don't have anything like it right now.
1274 		 *   note that the mechanism needs a mutual agreement
1275 		 *   between proxies, which means that we need to implement
1276 		 *   a new protocol, or a new kludge.
1277 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1278 		 *   we need to check ip6forwarding before sending it.
1279 		 *   (or should we allow proxy ND configuration only for
1280 		 *   routers?  there's no mention about proxy ND from hosts)
1281 		 */
1282 		/* FALLTHROUGH */
1283 	case RTM_RESOLVE:
1284 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1285 			/*
1286 			 * Address resolution isn't necessary for a point to
1287 			 * point link, so we can skip this test for a p2p link.
1288 			 */
1289 			if (gate->sa_family != AF_LINK ||
1290 			    gate->sa_len < sizeof(null_sdl)) {
1291 				log(LOG_DEBUG,
1292 				    "nd6_rtrequest: bad gateway value: %s\n",
1293 				    if_name(ifp));
1294 				break;
1295 			}
1296 			SDL(gate)->sdl_type = ifp->if_type;
1297 			SDL(gate)->sdl_index = ifp->if_index;
1298 		}
1299 		if (ln != NULL)
1300 			break;	/* This happens on a route change */
1301 		/*
1302 		 * Case 2: This route may come from cloning, or a manual route
1303 		 * add with a LL address.
1304 		 */
1305 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1306 		rt->rt_llinfo = (caddr_t)ln;
1307 		if (ln == NULL) {
1308 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1309 			break;
1310 		}
1311 		nd6_inuse++;
1312 		nd6_allocated++;
1313 		bzero(ln, sizeof(*ln));
1314 		ln->ln_rt = rt;
1315 		callout_init(&ln->ln_timer_ch, 0);
1316 
1317 		/* this is required for "ndp" command. - shin */
1318 		if (req == RTM_ADD) {
1319 		        /*
1320 			 * gate should have some valid AF_LINK entry,
1321 			 * and ln->ln_expire should have some lifetime
1322 			 * which is specified by ndp command.
1323 			 */
1324 			ln->ln_state = ND6_LLINFO_REACHABLE;
1325 			ln->ln_byhint = 0;
1326 		} else {
1327 		        /*
1328 			 * When req == RTM_RESOLVE, rt is created and
1329 			 * initialized in rtrequest(), so rt_expire is 0.
1330 			 */
1331 			ln->ln_state = ND6_LLINFO_NOSTATE;
1332 			nd6_llinfo_settimer(ln, 0);
1333 		}
1334 		rt->rt_flags |= RTF_LLINFO;
1335 		ln->ln_next = llinfo_nd6.ln_next;
1336 		llinfo_nd6.ln_next = ln;
1337 		ln->ln_prev = &llinfo_nd6;
1338 		ln->ln_next->ln_prev = ln;
1339 
1340 		/*
1341 		 * check if rt_key(rt) is one of my address assigned
1342 		 * to the interface.
1343 		 */
1344 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1345 		    &SIN6(rt_key(rt))->sin6_addr);
1346 		if (ifa) {
1347 			caddr_t macp = nd6_ifptomac(ifp);
1348 			nd6_llinfo_settimer(ln, -1);
1349 			ln->ln_state = ND6_LLINFO_REACHABLE;
1350 			ln->ln_byhint = 0;
1351 			if (macp) {
1352 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1353 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1354 			}
1355 			if (nd6_useloopback) {
1356 				rt->rt_ifp = &loif[0];	/* XXX */
1357 				/*
1358 				 * Make sure rt_ifa be equal to the ifaddr
1359 				 * corresponding to the address.
1360 				 * We need this because when we refer
1361 				 * rt_ifa->ia6_flags in ip6_input, we assume
1362 				 * that the rt_ifa points to the address instead
1363 				 * of the loopback address.
1364 				 */
1365 				if (ifa != rt->rt_ifa) {
1366 					IFAFREE(rt->rt_ifa);
1367 					IFAREF(ifa);
1368 					rt->rt_ifa = ifa;
1369 				}
1370 			}
1371 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1372 			nd6_llinfo_settimer(ln, -1);
1373 			ln->ln_state = ND6_LLINFO_REACHABLE;
1374 			ln->ln_byhint = 0;
1375 
1376 			/* join solicited node multicast for proxy ND */
1377 			if (ifp->if_flags & IFF_MULTICAST) {
1378 				struct in6_addr llsol;
1379 				int error;
1380 
1381 				llsol = SIN6(rt_key(rt))->sin6_addr;
1382 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1383 				llsol.s6_addr32[1] = 0;
1384 				llsol.s6_addr32[2] = htonl(1);
1385 				llsol.s6_addr8[12] = 0xff;
1386 				if (in6_setscope(&llsol, ifp, NULL))
1387 					break;
1388 				if (in6_addmulti(&llsol, ifp,
1389 				    &error, 0) == NULL) {
1390 					nd6log((LOG_ERR, "%s: failed to join "
1391 					    "%s (errno=%d)\n", if_name(ifp),
1392 					    ip6_sprintf(&llsol), error));
1393 				}
1394 			}
1395 		}
1396 		break;
1397 
1398 	case RTM_DELETE:
1399 		if (ln == NULL)
1400 			break;
1401 		/* leave from solicited node multicast for proxy ND */
1402 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1403 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1404 			struct in6_addr llsol;
1405 			struct in6_multi *in6m;
1406 
1407 			llsol = SIN6(rt_key(rt))->sin6_addr;
1408 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1409 			llsol.s6_addr32[1] = 0;
1410 			llsol.s6_addr32[2] = htonl(1);
1411 			llsol.s6_addr8[12] = 0xff;
1412 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1413 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1414 				if (in6m)
1415 					in6_delmulti(in6m);
1416 			} else
1417 				; /* XXX: should not happen. bark here? */
1418 		}
1419 		nd6_inuse--;
1420 		ln->ln_next->ln_prev = ln->ln_prev;
1421 		ln->ln_prev->ln_next = ln->ln_next;
1422 		ln->ln_prev = NULL;
1423 		nd6_llinfo_settimer(ln, -1);
1424 		rt->rt_llinfo = 0;
1425 		rt->rt_flags &= ~RTF_LLINFO;
1426 		clear_llinfo_pqueue(ln);
1427 		Free((caddr_t)ln);
1428 	}
1429 }
1430 
1431 int
1432 nd6_ioctl(cmd, data, ifp)
1433 	u_long cmd;
1434 	caddr_t	data;
1435 	struct ifnet *ifp;
1436 {
1437 	struct in6_drlist *drl = (struct in6_drlist *)data;
1438 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1439 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1440 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1441 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1442 	struct nd_defrouter *dr;
1443 	struct nd_prefix *pr;
1444 	struct rtentry *rt;
1445 	int i = 0, error = 0;
1446 	int s;
1447 
1448 	switch (cmd) {
1449 	case SIOCGDRLST_IN6:
1450 		/*
1451 		 * obsolete API, use sysctl under net.inet6.icmp6
1452 		 */
1453 		bzero(drl, sizeof(*drl));
1454 		s = splnet();
1455 		dr = TAILQ_FIRST(&nd_defrouter);
1456 		while (dr && i < DRLSTSIZ) {
1457 			drl->defrouter[i].rtaddr = dr->rtaddr;
1458 			in6_clearscope(&drl->defrouter[i].rtaddr);
1459 
1460 			drl->defrouter[i].flags = dr->flags;
1461 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1462 			drl->defrouter[i].expire = dr->expire;
1463 			drl->defrouter[i].if_index = dr->ifp->if_index;
1464 			i++;
1465 			dr = TAILQ_NEXT(dr, dr_entry);
1466 		}
1467 		splx(s);
1468 		break;
1469 	case SIOCGPRLST_IN6:
1470 		/*
1471 		 * obsolete API, use sysctl under net.inet6.icmp6
1472 		 *
1473 		 * XXX the structure in6_prlist was changed in backward-
1474 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1475 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1476 		 */
1477 		/*
1478 		 * XXX meaning of fields, especialy "raflags", is very
1479 		 * differnet between RA prefix list and RR/static prefix list.
1480 		 * how about separating ioctls into two?
1481 		 */
1482 		bzero(oprl, sizeof(*oprl));
1483 		s = splnet();
1484 		pr = nd_prefix.lh_first;
1485 		while (pr && i < PRLSTSIZ) {
1486 			struct nd_pfxrouter *pfr;
1487 			int j;
1488 
1489 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1490 			oprl->prefix[i].raflags = pr->ndpr_raf;
1491 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1492 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1493 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1494 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1495 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1496 				oprl->prefix[i].expire = 0;
1497 			else {
1498 				time_t maxexpire;
1499 
1500 				/* XXX: we assume time_t is signed. */
1501 				maxexpire = (-1) &
1502 				    ~((time_t)1 <<
1503 				    ((sizeof(maxexpire) * 8) - 1));
1504 				if (pr->ndpr_vltime <
1505 				    maxexpire - pr->ndpr_lastupdate) {
1506 					oprl->prefix[i].expire =
1507 					    pr->ndpr_lastupdate +
1508 					    pr->ndpr_vltime;
1509 				} else
1510 					oprl->prefix[i].expire = maxexpire;
1511 			}
1512 
1513 			pfr = pr->ndpr_advrtrs.lh_first;
1514 			j = 0;
1515 			while (pfr) {
1516 				if (j < DRLSTSIZ) {
1517 #define RTRADDR oprl->prefix[i].advrtr[j]
1518 					RTRADDR = pfr->router->rtaddr;
1519 					in6_clearscope(&RTRADDR);
1520 #undef RTRADDR
1521 				}
1522 				j++;
1523 				pfr = pfr->pfr_next;
1524 			}
1525 			oprl->prefix[i].advrtrs = j;
1526 			oprl->prefix[i].origin = PR_ORIG_RA;
1527 
1528 			i++;
1529 			pr = pr->ndpr_next;
1530 		}
1531 		splx(s);
1532 
1533 		break;
1534 	case OSIOCGIFINFO_IN6:
1535 #define ND	ndi->ndi
1536 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1537 		bzero(&ND, sizeof(ND));
1538 		ND.linkmtu = IN6_LINKMTU(ifp);
1539 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1540 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1541 		ND.reachable = ND_IFINFO(ifp)->reachable;
1542 		ND.retrans = ND_IFINFO(ifp)->retrans;
1543 		ND.flags = ND_IFINFO(ifp)->flags;
1544 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1545 		ND.chlim = ND_IFINFO(ifp)->chlim;
1546 		break;
1547 	case SIOCGIFINFO_IN6:
1548 		ND = *ND_IFINFO(ifp);
1549 		break;
1550 	case SIOCSIFINFO_IN6:
1551 		/*
1552 		 * used to change host variables from userland.
1553 		 * intented for a use on router to reflect RA configurations.
1554 		 */
1555 		/* 0 means 'unspecified' */
1556 		if (ND.linkmtu != 0) {
1557 			if (ND.linkmtu < IPV6_MMTU ||
1558 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1559 				error = EINVAL;
1560 				break;
1561 			}
1562 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1563 		}
1564 
1565 		if (ND.basereachable != 0) {
1566 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1567 
1568 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1569 			if (ND.basereachable != obasereachable)
1570 				ND_IFINFO(ifp)->reachable =
1571 				    ND_COMPUTE_RTIME(ND.basereachable);
1572 		}
1573 		if (ND.retrans != 0)
1574 			ND_IFINFO(ifp)->retrans = ND.retrans;
1575 		if (ND.chlim != 0)
1576 			ND_IFINFO(ifp)->chlim = ND.chlim;
1577 		/* FALLTHROUGH */
1578 	case SIOCSIFINFO_FLAGS:
1579 		ND_IFINFO(ifp)->flags = ND.flags;
1580 		break;
1581 #undef ND
1582 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1583 		/* sync kernel routing table with the default router list */
1584 		defrouter_reset();
1585 		defrouter_select();
1586 		break;
1587 	case SIOCSPFXFLUSH_IN6:
1588 	{
1589 		/* flush all the prefix advertised by routers */
1590 		struct nd_prefix *pr, *next;
1591 
1592 		s = splnet();
1593 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1594 			struct in6_ifaddr *ia, *ia_next;
1595 
1596 			next = pr->ndpr_next;
1597 
1598 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1599 				continue; /* XXX */
1600 
1601 			/* do we really have to remove addresses as well? */
1602 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1603 				/* ia might be removed.  keep the next ptr. */
1604 				ia_next = ia->ia_next;
1605 
1606 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1607 					continue;
1608 
1609 				if (ia->ia6_ndpr == pr)
1610 					in6_purgeaddr(&ia->ia_ifa);
1611 			}
1612 			prelist_remove(pr);
1613 		}
1614 		splx(s);
1615 		break;
1616 	}
1617 	case SIOCSRTRFLUSH_IN6:
1618 	{
1619 		/* flush all the default routers */
1620 		struct nd_defrouter *dr, *next;
1621 
1622 		s = splnet();
1623 		defrouter_reset();
1624 		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1625 			next = TAILQ_NEXT(dr, dr_entry);
1626 			defrtrlist_del(dr);
1627 		}
1628 		defrouter_select();
1629 		splx(s);
1630 		break;
1631 	}
1632 	case SIOCGNBRINFO_IN6:
1633 	{
1634 		struct llinfo_nd6 *ln;
1635 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1636 
1637 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1638 			return (error);
1639 
1640 		s = splnet();
1641 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1642 			error = EINVAL;
1643 			splx(s);
1644 			break;
1645 		}
1646 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1647 		nbi->state = ln->ln_state;
1648 		nbi->asked = ln->ln_asked;
1649 		nbi->isrouter = ln->ln_router;
1650 		nbi->expire = ln->ln_expire;
1651 		splx(s);
1652 
1653 		break;
1654 	}
1655 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1656 		ndif->ifindex = nd6_defifindex;
1657 		break;
1658 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1659 		return (nd6_setdefaultiface(ndif->ifindex));
1660 	}
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Create neighbor cache entry and cache link-layer address,
1666  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1667  */
1668 struct rtentry *
1669 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1670 	struct ifnet *ifp;
1671 	struct in6_addr *from;
1672 	char *lladdr;
1673 	int lladdrlen;
1674 	int type;	/* ICMP6 type */
1675 	int code;	/* type dependent information */
1676 {
1677 	struct rtentry *rt = NULL;
1678 	struct llinfo_nd6 *ln = NULL;
1679 	int is_newentry;
1680 	struct sockaddr_dl *sdl = NULL;
1681 	int do_update;
1682 	int olladdr;
1683 	int llchange;
1684 	int newstate = 0;
1685 
1686 	if (ifp == NULL)
1687 		panic("ifp == NULL in nd6_cache_lladdr");
1688 	if (from == NULL)
1689 		panic("from == NULL in nd6_cache_lladdr");
1690 
1691 	/* nothing must be updated for unspecified address */
1692 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1693 		return NULL;
1694 
1695 	/*
1696 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1697 	 * the caller.
1698 	 *
1699 	 * XXX If the link does not have link-layer adderss, what should
1700 	 * we do? (ifp->if_addrlen == 0)
1701 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1702 	 * description on it in NS section (RFC 2461 7.2.3).
1703 	 */
1704 
1705 	rt = nd6_lookup(from, 0, ifp);
1706 	if (rt == NULL) {
1707 		rt = nd6_lookup(from, 1, ifp);
1708 		is_newentry = 1;
1709 	} else {
1710 		/* do nothing if static ndp is set */
1711 		if (rt->rt_flags & RTF_STATIC)
1712 			return NULL;
1713 		is_newentry = 0;
1714 	}
1715 
1716 	if (rt == NULL)
1717 		return NULL;
1718 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1719 fail:
1720 		(void)nd6_free(rt, 0);
1721 		return NULL;
1722 	}
1723 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1724 	if (ln == NULL)
1725 		goto fail;
1726 	if (rt->rt_gateway == NULL)
1727 		goto fail;
1728 	if (rt->rt_gateway->sa_family != AF_LINK)
1729 		goto fail;
1730 	sdl = SDL(rt->rt_gateway);
1731 
1732 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1733 	if (olladdr && lladdr) {
1734 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1735 			llchange = 1;
1736 		else
1737 			llchange = 0;
1738 	} else
1739 		llchange = 0;
1740 
1741 	/*
1742 	 * newentry olladdr  lladdr  llchange	(*=record)
1743 	 *	0	n	n	--	(1)
1744 	 *	0	y	n	--	(2)
1745 	 *	0	n	y	--	(3) * STALE
1746 	 *	0	y	y	n	(4) *
1747 	 *	0	y	y	y	(5) * STALE
1748 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1749 	 *	1	--	y	--	(7) * STALE
1750 	 */
1751 
1752 	if (lladdr) {		/* (3-5) and (7) */
1753 		/*
1754 		 * Record source link-layer address
1755 		 * XXX is it dependent to ifp->if_type?
1756 		 */
1757 		sdl->sdl_alen = ifp->if_addrlen;
1758 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1759 	}
1760 
1761 	if (!is_newentry) {
1762 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1763 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1764 			do_update = 1;
1765 			newstate = ND6_LLINFO_STALE;
1766 		} else					/* (1-2,4) */
1767 			do_update = 0;
1768 	} else {
1769 		do_update = 1;
1770 		if (lladdr == NULL)			/* (6) */
1771 			newstate = ND6_LLINFO_NOSTATE;
1772 		else					/* (7) */
1773 			newstate = ND6_LLINFO_STALE;
1774 	}
1775 
1776 	if (do_update) {
1777 		/*
1778 		 * Update the state of the neighbor cache.
1779 		 */
1780 		ln->ln_state = newstate;
1781 
1782 		if (ln->ln_state == ND6_LLINFO_STALE) {
1783 			/*
1784 			 * XXX: since nd6_output() below will cause
1785 			 * state tansition to DELAY and reset the timer,
1786 			 * we must set the timer now, although it is actually
1787 			 * meaningless.
1788 			 */
1789 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1790 
1791 			if (ln->ln_hold) {
1792 				struct mbuf *m_hold, *m_hold_next;
1793 				for (m_hold = ln->ln_hold; m_hold;
1794 				     m_hold = m_hold_next) {
1795 					struct mbuf *mpkt = NULL;
1796 
1797 					m_hold_next = m_hold->m_nextpkt;
1798 					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1799 					if (mpkt == NULL) {
1800 						m_freem(m_hold);
1801 						break;
1802 					}
1803 					mpkt->m_nextpkt = NULL;
1804 
1805 					/*
1806 					 * we assume ifp is not a p2p here, so
1807 					 * just set the 2nd argument as the
1808 					 * 1st one.
1809 					 */
1810 					nd6_output(ifp, ifp, mpkt,
1811 					     (struct sockaddr_in6 *)rt_key(rt),
1812 					     rt);
1813 				}
1814 				ln->ln_hold = NULL;
1815 			}
1816 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1817 			/* probe right away */
1818 			nd6_llinfo_settimer((void *)ln, 0);
1819 		}
1820 	}
1821 
1822 	/*
1823 	 * ICMP6 type dependent behavior.
1824 	 *
1825 	 * NS: clear IsRouter if new entry
1826 	 * RS: clear IsRouter
1827 	 * RA: set IsRouter if there's lladdr
1828 	 * redir: clear IsRouter if new entry
1829 	 *
1830 	 * RA case, (1):
1831 	 * The spec says that we must set IsRouter in the following cases:
1832 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1833 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1834 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1835 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1836 	 * neighbor cache, this is similar to (6).
1837 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1838 	 *
1839 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1840 	 *							D R
1841 	 *	0	n	n	--	(1)	c   ?     s
1842 	 *	0	y	n	--	(2)	c   s     s
1843 	 *	0	n	y	--	(3)	c   s     s
1844 	 *	0	y	y	n	(4)	c   s     s
1845 	 *	0	y	y	y	(5)	c   s     s
1846 	 *	1	--	n	--	(6) c	c 	c s
1847 	 *	1	--	y	--	(7) c	c   s	c s
1848 	 *
1849 	 *					(c=clear s=set)
1850 	 */
1851 	switch (type & 0xff) {
1852 	case ND_NEIGHBOR_SOLICIT:
1853 		/*
1854 		 * New entry must have is_router flag cleared.
1855 		 */
1856 		if (is_newentry)	/* (6-7) */
1857 			ln->ln_router = 0;
1858 		break;
1859 	case ND_REDIRECT:
1860 		/*
1861 		 * If the icmp is a redirect to a better router, always set the
1862 		 * is_router flag.  Otherwise, if the entry is newly created,
1863 		 * clear the flag.  [RFC 2461, sec 8.3]
1864 		 */
1865 		if (code == ND_REDIRECT_ROUTER)
1866 			ln->ln_router = 1;
1867 		else if (is_newentry) /* (6-7) */
1868 			ln->ln_router = 0;
1869 		break;
1870 	case ND_ROUTER_SOLICIT:
1871 		/*
1872 		 * is_router flag must always be cleared.
1873 		 */
1874 		ln->ln_router = 0;
1875 		break;
1876 	case ND_ROUTER_ADVERT:
1877 		/*
1878 		 * Mark an entry with lladdr as a router.
1879 		 */
1880 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1881 		    (is_newentry && lladdr)) {			/* (7) */
1882 			ln->ln_router = 1;
1883 		}
1884 		break;
1885 	}
1886 
1887 	/*
1888 	 * When the link-layer address of a router changes, select the
1889 	 * best router again.  In particular, when the neighbor entry is newly
1890 	 * created, it might affect the selection policy.
1891 	 * Question: can we restrict the first condition to the "is_newentry"
1892 	 * case?
1893 	 * XXX: when we hear an RA from a new router with the link-layer
1894 	 * address option, defrouter_select() is called twice, since
1895 	 * defrtrlist_update called the function as well.  However, I believe
1896 	 * we can compromise the overhead, since it only happens the first
1897 	 * time.
1898 	 * XXX: although defrouter_select() should not have a bad effect
1899 	 * for those are not autoconfigured hosts, we explicitly avoid such
1900 	 * cases for safety.
1901 	 */
1902 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1903 		defrouter_select();
1904 
1905 	return rt;
1906 }
1907 
1908 static void
1909 nd6_slowtimo(ignored_arg)
1910     void *ignored_arg;
1911 {
1912 	struct nd_ifinfo *nd6if;
1913 	struct ifnet *ifp;
1914 
1915 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1916 	    nd6_slowtimo, NULL);
1917 	IFNET_RLOCK();
1918 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1919 		nd6if = ND_IFINFO(ifp);
1920 		if (nd6if->basereachable && /* already initialized */
1921 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1922 			/*
1923 			 * Since reachable time rarely changes by router
1924 			 * advertisements, we SHOULD insure that a new random
1925 			 * value gets recomputed at least once every few hours.
1926 			 * (RFC 2461, 6.3.4)
1927 			 */
1928 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1929 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1930 		}
1931 	}
1932 	IFNET_RUNLOCK();
1933 }
1934 
1935 #define senderr(e) { error = (e); goto bad;}
1936 int
1937 nd6_output(ifp, origifp, m0, dst, rt0)
1938 	struct ifnet *ifp;
1939 	struct ifnet *origifp;
1940 	struct mbuf *m0;
1941 	struct sockaddr_in6 *dst;
1942 	struct rtentry *rt0;
1943 {
1944 	struct mbuf *m = m0;
1945 	struct rtentry *rt = rt0;
1946 	struct sockaddr_in6 *gw6 = NULL;
1947 	struct llinfo_nd6 *ln = NULL;
1948 	int error = 0;
1949 
1950 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1951 		goto sendpkt;
1952 
1953 	if (nd6_need_cache(ifp) == 0)
1954 		goto sendpkt;
1955 
1956 	/*
1957 	 * next hop determination.  This routine is derived from ether_output.
1958 	 */
1959 again:
1960 	if (rt) {
1961 		if ((rt->rt_flags & RTF_UP) == 0) {
1962 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1963 			if (rt != NULL) {
1964 				RT_REMREF(rt);
1965 				RT_UNLOCK(rt);
1966 				if (rt->rt_ifp != ifp)
1967 					/*
1968 					 * XXX maybe we should update ifp too,
1969 					 * but the original code didn't and I
1970 					 * don't know what is correct here.
1971 					 */
1972 					goto again;
1973 			} else
1974 				senderr(EHOSTUNREACH);
1975 		}
1976 
1977 		if (rt->rt_flags & RTF_GATEWAY) {
1978 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1979 
1980 			/*
1981 			 * We skip link-layer address resolution and NUD
1982 			 * if the gateway is not a neighbor from ND point
1983 			 * of view, regardless of the value of nd_ifinfo.flags.
1984 			 * The second condition is a bit tricky; we skip
1985 			 * if the gateway is our own address, which is
1986 			 * sometimes used to install a route to a p2p link.
1987 			 */
1988 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1989 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1990 				/*
1991 				 * We allow this kind of tricky route only
1992 				 * when the outgoing interface is p2p.
1993 				 * XXX: we may need a more generic rule here.
1994 				 */
1995 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1996 					senderr(EHOSTUNREACH);
1997 
1998 				goto sendpkt;
1999 			}
2000 
2001 			if (rt->rt_gwroute == 0)
2002 				goto lookup;
2003 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2004 				RT_LOCK(rt);
2005 				rtfree(rt); rt = rt0;
2006 			lookup:
2007 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
2008 				if ((rt = rt->rt_gwroute) == 0)
2009 					senderr(EHOSTUNREACH);
2010 				RT_UNLOCK(rt);
2011 			}
2012 		}
2013 	}
2014 
2015 	/*
2016 	 * Address resolution or Neighbor Unreachability Detection
2017 	 * for the next hop.
2018 	 * At this point, the destination of the packet must be a unicast
2019 	 * or an anycast address(i.e. not a multicast).
2020 	 */
2021 
2022 	/* Look up the neighbor cache for the nexthop */
2023 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2024 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2025 	else {
2026 		/*
2027 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2028 		 * the condition below is not very efficient.  But we believe
2029 		 * it is tolerable, because this should be a rare case.
2030 		 */
2031 		if (nd6_is_addr_neighbor(dst, ifp) &&
2032 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2033 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2034 	}
2035 	if (ln == NULL || rt == NULL) {
2036 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2037 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2038 			log(LOG_DEBUG,
2039 			    "nd6_output: can't allocate llinfo for %s "
2040 			    "(ln=%p, rt=%p)\n",
2041 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2042 			senderr(EIO);	/* XXX: good error? */
2043 		}
2044 
2045 		goto sendpkt;	/* send anyway */
2046 	}
2047 
2048 	/* We don't have to do link-layer address resolution on a p2p link. */
2049 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2050 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2051 		ln->ln_state = ND6_LLINFO_STALE;
2052 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2053 	}
2054 
2055 	/*
2056 	 * The first time we send a packet to a neighbor whose entry is
2057 	 * STALE, we have to change the state to DELAY and a sets a timer to
2058 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2059 	 * neighbor unreachability detection on expiration.
2060 	 * (RFC 2461 7.3.3)
2061 	 */
2062 	if (ln->ln_state == ND6_LLINFO_STALE) {
2063 		ln->ln_asked = 0;
2064 		ln->ln_state = ND6_LLINFO_DELAY;
2065 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2066 	}
2067 
2068 	/*
2069 	 * If the neighbor cache entry has a state other than INCOMPLETE
2070 	 * (i.e. its link-layer address is already resolved), just
2071 	 * send the packet.
2072 	 */
2073 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2074 		goto sendpkt;
2075 
2076 	/*
2077 	 * There is a neighbor cache entry, but no ethernet address
2078 	 * response yet.  Append this latest packet to the end of the
2079 	 * packet queue in the mbuf, unless the number of the packet
2080 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2081 	 * the oldest packet in the queue will be removed.
2082 	 */
2083 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2084 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2085 	if (ln->ln_hold) {
2086 		struct mbuf *m_hold;
2087 		int i;
2088 
2089 		i = 0;
2090 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2091 			i++;
2092 			if (m_hold->m_nextpkt == NULL) {
2093 				m_hold->m_nextpkt = m;
2094 				break;
2095 			}
2096 		}
2097 		while (i >= nd6_maxqueuelen) {
2098 			m_hold = ln->ln_hold;
2099 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2100 			m_freem(m_hold);
2101 			i--;
2102 		}
2103 	} else {
2104 		ln->ln_hold = m;
2105 	}
2106 
2107 	/*
2108 	 * If there has been no NS for the neighbor after entering the
2109 	 * INCOMPLETE state, send the first solicitation.
2110 	 */
2111 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2112 		ln->ln_asked++;
2113 		nd6_llinfo_settimer(ln,
2114 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2115 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2116 	}
2117 	return (0);
2118 
2119   sendpkt:
2120 	/* discard the packet if IPv6 operation is disabled on the interface */
2121 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2122 		error = ENETDOWN; /* better error? */
2123 		goto bad;
2124 	}
2125 
2126 #ifdef IPSEC
2127 	/* clean ipsec history once it goes out of the node */
2128 	ipsec_delaux(m);
2129 #endif
2130 
2131 #ifdef MAC
2132 	mac_create_mbuf_linklayer(ifp, m);
2133 #endif
2134 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2135 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2136 		    rt));
2137 	}
2138 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2139 
2140   bad:
2141 	if (m)
2142 		m_freem(m);
2143 	return (error);
2144 }
2145 #undef senderr
2146 
2147 int
2148 nd6_need_cache(ifp)
2149 	struct ifnet *ifp;
2150 {
2151 	/*
2152 	 * XXX: we currently do not make neighbor cache on any interface
2153 	 * other than ARCnet, Ethernet, FDDI and GIF.
2154 	 *
2155 	 * RFC2893 says:
2156 	 * - unidirectional tunnels needs no ND
2157 	 */
2158 	switch (ifp->if_type) {
2159 	case IFT_ARCNET:
2160 	case IFT_ETHER:
2161 	case IFT_FDDI:
2162 	case IFT_IEEE1394:
2163 #ifdef IFT_L2VLAN
2164 	case IFT_L2VLAN:
2165 #endif
2166 #ifdef IFT_IEEE80211
2167 	case IFT_IEEE80211:
2168 #endif
2169 #ifdef IFT_CARP
2170 	case IFT_CARP:
2171 #endif
2172 	case IFT_GIF:		/* XXX need more cases? */
2173 	case IFT_PPP:
2174 	case IFT_TUNNEL:
2175 	case IFT_BRIDGE:
2176 		return (1);
2177 	default:
2178 		return (0);
2179 	}
2180 }
2181 
2182 int
2183 nd6_storelladdr(ifp, rt0, m, dst, desten)
2184 	struct ifnet *ifp;
2185 	struct rtentry *rt0;
2186 	struct mbuf *m;
2187 	struct sockaddr *dst;
2188 	u_char *desten;
2189 {
2190 	struct sockaddr_dl *sdl;
2191 	struct rtentry *rt;
2192 	int error;
2193 
2194 	if (m->m_flags & M_MCAST) {
2195 		int i;
2196 
2197 		switch (ifp->if_type) {
2198 		case IFT_ETHER:
2199 		case IFT_FDDI:
2200 #ifdef IFT_L2VLAN
2201 		case IFT_L2VLAN:
2202 #endif
2203 #ifdef IFT_IEEE80211
2204 		case IFT_IEEE80211:
2205 #endif
2206 		case IFT_BRIDGE:
2207 		case IFT_ISO88025:
2208 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2209 						 desten);
2210 			return (0);
2211 		case IFT_IEEE1394:
2212 			/*
2213 			 * netbsd can use if_broadcastaddr, but we don't do so
2214 			 * to reduce # of ifdef.
2215 			 */
2216 			for (i = 0; i < ifp->if_addrlen; i++)
2217 				desten[i] = ~0;
2218 			return (0);
2219 		case IFT_ARCNET:
2220 			*desten = 0;
2221 			return (0);
2222 		default:
2223 			m_freem(m);
2224 			return (EAFNOSUPPORT);
2225 		}
2226 	}
2227 
2228 	if (rt0 == NULL) {
2229 		/* this could happen, if we could not allocate memory */
2230 		m_freem(m);
2231 		return (ENOMEM);
2232 	}
2233 
2234 	error = rt_check(&rt, &rt0, dst);
2235 	if (error) {
2236 		m_freem(m);
2237 		return (error);
2238 	}
2239 	RT_UNLOCK(rt);
2240 
2241 	if (rt->rt_gateway->sa_family != AF_LINK) {
2242 		printf("nd6_storelladdr: something odd happens\n");
2243 		m_freem(m);
2244 		return (EINVAL);
2245 	}
2246 	sdl = SDL(rt->rt_gateway);
2247 	if (sdl->sdl_alen == 0) {
2248 		/* this should be impossible, but we bark here for debugging */
2249 		printf("nd6_storelladdr: sdl_alen == 0\n");
2250 		m_freem(m);
2251 		return (EINVAL);
2252 	}
2253 
2254 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2255 	return (0);
2256 }
2257 
2258 static void
2259 clear_llinfo_pqueue(ln)
2260 	struct llinfo_nd6 *ln;
2261 {
2262 	struct mbuf *m_hold, *m_hold_next;
2263 
2264 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2265 		m_hold_next = m_hold->m_nextpkt;
2266 		m_hold->m_nextpkt = NULL;
2267 		m_freem(m_hold);
2268 	}
2269 
2270 	ln->ln_hold = NULL;
2271 	return;
2272 }
2273 
2274 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2275 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2276 #ifdef SYSCTL_DECL
2277 SYSCTL_DECL(_net_inet6_icmp6);
2278 #endif
2279 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2280 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2281 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2282 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2283 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2284 	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2285 
2286 static int
2287 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2288 {
2289 	int error;
2290 	char buf[1024];
2291 	struct in6_defrouter *d, *de;
2292 	struct nd_defrouter *dr;
2293 
2294 	if (req->newptr)
2295 		return EPERM;
2296 	error = 0;
2297 
2298 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2299 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2300 		d = (struct in6_defrouter *)buf;
2301 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2302 
2303 		if (d + 1 <= de) {
2304 			bzero(d, sizeof(*d));
2305 			d->rtaddr.sin6_family = AF_INET6;
2306 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2307 			d->rtaddr.sin6_addr = dr->rtaddr;
2308 			sa6_recoverscope(&d->rtaddr);
2309 			d->flags = dr->flags;
2310 			d->rtlifetime = dr->rtlifetime;
2311 			d->expire = dr->expire;
2312 			d->if_index = dr->ifp->if_index;
2313 		} else
2314 			panic("buffer too short");
2315 
2316 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2317 		if (error)
2318 			break;
2319 	}
2320 
2321 	return (error);
2322 }
2323 
2324 static int
2325 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2326 {
2327 	int error;
2328 	char buf[1024];
2329 	struct in6_prefix *p, *pe;
2330 	struct nd_prefix *pr;
2331 
2332 	if (req->newptr)
2333 		return EPERM;
2334 	error = 0;
2335 
2336 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2337 		u_short advrtrs;
2338 		size_t advance;
2339 		struct sockaddr_in6 *sin6, *s6;
2340 		struct nd_pfxrouter *pfr;
2341 
2342 		p = (struct in6_prefix *)buf;
2343 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2344 
2345 		if (p + 1 <= pe) {
2346 			bzero(p, sizeof(*p));
2347 			sin6 = (struct sockaddr_in6 *)(p + 1);
2348 
2349 			p->prefix = pr->ndpr_prefix;
2350 			if (sa6_recoverscope(&p->prefix)) {
2351 				log(LOG_ERR,
2352 				    "scope error in prefix list (%s)\n",
2353 				    ip6_sprintf(&p->prefix.sin6_addr));
2354 				/* XXX: press on... */
2355 			}
2356 			p->raflags = pr->ndpr_raf;
2357 			p->prefixlen = pr->ndpr_plen;
2358 			p->vltime = pr->ndpr_vltime;
2359 			p->pltime = pr->ndpr_pltime;
2360 			p->if_index = pr->ndpr_ifp->if_index;
2361 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2362 				p->expire = 0;
2363 			else {
2364 				time_t maxexpire;
2365 
2366 				/* XXX: we assume time_t is signed. */
2367 				maxexpire = (-1) &
2368 				    ~((time_t)1 <<
2369 				    ((sizeof(maxexpire) * 8) - 1));
2370 				if (pr->ndpr_vltime <
2371 				    maxexpire - pr->ndpr_lastupdate) {
2372 				    p->expire = pr->ndpr_lastupdate +
2373 				        pr->ndpr_vltime;
2374 				} else
2375 					p->expire = maxexpire;
2376 			}
2377 			p->refcnt = pr->ndpr_refcnt;
2378 			p->flags = pr->ndpr_stateflags;
2379 			p->origin = PR_ORIG_RA;
2380 			advrtrs = 0;
2381 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2382 			     pfr = pfr->pfr_next) {
2383 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2384 					advrtrs++;
2385 					continue;
2386 				}
2387 				s6 = &sin6[advrtrs];
2388 				bzero(s6, sizeof(*s6));
2389 				s6->sin6_family = AF_INET6;
2390 				s6->sin6_len = sizeof(*sin6);
2391 				s6->sin6_addr = pfr->router->rtaddr;
2392 				if (sa6_recoverscope(s6)) {
2393 					log(LOG_ERR,
2394 					    "scope error in "
2395 					    "prefix list (%s)\n",
2396 					    ip6_sprintf(&pfr->router->rtaddr));
2397 				}
2398 				advrtrs++;
2399 			}
2400 			p->advrtrs = advrtrs;
2401 		} else
2402 			panic("buffer too short");
2403 
2404 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2405 		error = SYSCTL_OUT(req, buf, advance);
2406 		if (error)
2407 			break;
2408 	}
2409 
2410 	return (error);
2411 }
2412