1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/nhop.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <net/if_llatbl.h> 73 #include <netinet/if_ether.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 /* timer values */ 95 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 96 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 97 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 98 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 99 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 100 * local traffic */ 101 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 102 * collection timer */ 103 104 /* preventing too many loops in ND option parsing */ 105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 106 107 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 108 * layer hints */ 109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 110 * ND entries */ 111 #define V_nd6_maxndopt VNET(nd6_maxndopt) 112 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 113 114 #ifdef ND6_DEBUG 115 VNET_DEFINE(int, nd6_debug) = 1; 116 #else 117 VNET_DEFINE(int, nd6_debug) = 0; 118 #endif 119 120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 121 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 VNET_DEFINE(struct rwlock, nd6_lock); 124 VNET_DEFINE(uint64_t, nd6_list_genid); 125 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 126 127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 128 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 129 130 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 131 132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 133 struct ifnet *); 134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 135 static void nd6_slowtimo(void *); 136 static int regen_tmpaddr(struct in6_ifaddr *); 137 static void nd6_free(struct llentry **, int); 138 static void nd6_free_redirect(const struct llentry *); 139 static void nd6_llinfo_timer(void *); 140 static void nd6_llinfo_settimer_locked(struct llentry *, long); 141 static void clear_llinfo_pqueue(struct llentry *); 142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 212 lltable_update_ifaddr(LLTABLE6(ifp)); 213 } 214 215 void 216 nd6_init(void) 217 { 218 219 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 220 rw_init(&V_nd6_lock, "nd6 list"); 221 222 LIST_INIT(&V_nd_prefix); 223 nd6_defrouter_init(); 224 225 /* Start timers. */ 226 callout_init(&V_nd6_slowtimo_ch, 0); 227 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 228 nd6_slowtimo, curvnet); 229 230 callout_init(&V_nd6_timer_ch, 0); 231 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 232 233 nd6_dad_init(); 234 if (IS_DEFAULT_VNET(curvnet)) { 235 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 236 NULL, EVENTHANDLER_PRI_ANY); 237 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 238 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 239 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 240 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 241 } 242 } 243 244 #ifdef VIMAGE 245 void 246 nd6_destroy() 247 { 248 249 callout_drain(&V_nd6_slowtimo_ch); 250 callout_drain(&V_nd6_timer_ch); 251 if (IS_DEFAULT_VNET(curvnet)) { 252 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 253 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 254 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 255 } 256 rw_destroy(&V_nd6_lock); 257 mtx_destroy(&V_nd6_onlink_mtx); 258 } 259 #endif 260 261 struct nd_ifinfo * 262 nd6_ifattach(struct ifnet *ifp) 263 { 264 struct nd_ifinfo *nd; 265 266 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 267 nd->initialized = 1; 268 269 nd->chlim = IPV6_DEFHLIM; 270 nd->basereachable = REACHABLE_TIME; 271 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 272 nd->retrans = RETRANS_TIMER; 273 274 nd->flags = ND6_IFF_PERFORMNUD; 275 276 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 277 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 278 * default regardless of the V_ip6_auto_linklocal configuration to 279 * give a reasonable default behavior. 280 */ 281 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 282 (ifp->if_flags & IFF_LOOPBACK)) 283 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 284 /* 285 * A loopback interface does not need to accept RTADV. 286 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 287 * default regardless of the V_ip6_accept_rtadv configuration to 288 * prevent the interface from accepting RA messages arrived 289 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 290 */ 291 if (V_ip6_accept_rtadv && 292 !(ifp->if_flags & IFF_LOOPBACK) && 293 (ifp->if_type != IFT_BRIDGE)) 294 nd->flags |= ND6_IFF_ACCEPT_RTADV; 295 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 296 nd->flags |= ND6_IFF_NO_RADR; 297 298 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 299 nd6_setmtu0(ifp, nd); 300 301 return nd; 302 } 303 304 void 305 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 306 { 307 struct epoch_tracker et; 308 struct ifaddr *ifa, *next; 309 310 NET_EPOCH_ENTER(et); 311 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 312 if (ifa->ifa_addr->sa_family != AF_INET6) 313 continue; 314 315 /* stop DAD processing */ 316 nd6_dad_stop(ifa); 317 } 318 NET_EPOCH_EXIT(et); 319 320 free(nd, M_IP6NDP); 321 } 322 323 /* 324 * Reset ND level link MTU. This function is called when the physical MTU 325 * changes, which means we might have to adjust the ND level MTU. 326 */ 327 void 328 nd6_setmtu(struct ifnet *ifp) 329 { 330 if (ifp->if_afdata[AF_INET6] == NULL) 331 return; 332 333 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 334 } 335 336 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 337 void 338 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 339 { 340 u_int32_t omaxmtu; 341 342 omaxmtu = ndi->maxmtu; 343 ndi->maxmtu = ifp->if_mtu; 344 345 /* 346 * Decreasing the interface MTU under IPV6 minimum MTU may cause 347 * undesirable situation. We thus notify the operator of the change 348 * explicitly. The check for omaxmtu is necessary to restrict the 349 * log to the case of changing the MTU, not initializing it. 350 */ 351 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 352 log(LOG_NOTICE, "nd6_setmtu0: " 353 "new link MTU on %s (%lu) is too small for IPv6\n", 354 if_name(ifp), (unsigned long)ndi->maxmtu); 355 } 356 357 if (ndi->maxmtu > V_in6_maxmtu) 358 in6_setmaxmtu(); /* check all interfaces just in case */ 359 360 } 361 362 void 363 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 364 { 365 366 bzero(ndopts, sizeof(*ndopts)); 367 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 368 ndopts->nd_opts_last 369 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 370 371 if (icmp6len == 0) { 372 ndopts->nd_opts_done = 1; 373 ndopts->nd_opts_search = NULL; 374 } 375 } 376 377 /* 378 * Take one ND option. 379 */ 380 struct nd_opt_hdr * 381 nd6_option(union nd_opts *ndopts) 382 { 383 struct nd_opt_hdr *nd_opt; 384 int olen; 385 386 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 387 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 388 __func__)); 389 if (ndopts->nd_opts_search == NULL) 390 return NULL; 391 if (ndopts->nd_opts_done) 392 return NULL; 393 394 nd_opt = ndopts->nd_opts_search; 395 396 /* make sure nd_opt_len is inside the buffer */ 397 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 398 bzero(ndopts, sizeof(*ndopts)); 399 return NULL; 400 } 401 402 olen = nd_opt->nd_opt_len << 3; 403 if (olen == 0) { 404 /* 405 * Message validation requires that all included 406 * options have a length that is greater than zero. 407 */ 408 bzero(ndopts, sizeof(*ndopts)); 409 return NULL; 410 } 411 412 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 413 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 414 /* option overruns the end of buffer, invalid */ 415 bzero(ndopts, sizeof(*ndopts)); 416 return NULL; 417 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 418 /* reached the end of options chain */ 419 ndopts->nd_opts_done = 1; 420 ndopts->nd_opts_search = NULL; 421 } 422 return nd_opt; 423 } 424 425 /* 426 * Parse multiple ND options. 427 * This function is much easier to use, for ND routines that do not need 428 * multiple options of the same type. 429 */ 430 int 431 nd6_options(union nd_opts *ndopts) 432 { 433 struct nd_opt_hdr *nd_opt; 434 int i = 0; 435 436 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 437 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 438 __func__)); 439 if (ndopts->nd_opts_search == NULL) 440 return 0; 441 442 while (1) { 443 nd_opt = nd6_option(ndopts); 444 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 445 /* 446 * Message validation requires that all included 447 * options have a length that is greater than zero. 448 */ 449 ICMP6STAT_INC(icp6s_nd_badopt); 450 bzero(ndopts, sizeof(*ndopts)); 451 return -1; 452 } 453 454 if (nd_opt == NULL) 455 goto skip1; 456 457 switch (nd_opt->nd_opt_type) { 458 case ND_OPT_SOURCE_LINKADDR: 459 case ND_OPT_TARGET_LINKADDR: 460 case ND_OPT_MTU: 461 case ND_OPT_REDIRECTED_HEADER: 462 case ND_OPT_NONCE: 463 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 464 nd6log((LOG_INFO, 465 "duplicated ND6 option found (type=%d)\n", 466 nd_opt->nd_opt_type)); 467 /* XXX bark? */ 468 } else { 469 ndopts->nd_opt_array[nd_opt->nd_opt_type] 470 = nd_opt; 471 } 472 break; 473 case ND_OPT_PREFIX_INFORMATION: 474 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 475 ndopts->nd_opt_array[nd_opt->nd_opt_type] 476 = nd_opt; 477 } 478 ndopts->nd_opts_pi_end = 479 (struct nd_opt_prefix_info *)nd_opt; 480 break; 481 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 482 case ND_OPT_RDNSS: /* RFC 6106 */ 483 case ND_OPT_DNSSL: /* RFC 6106 */ 484 /* 485 * Silently ignore options we know and do not care about 486 * in the kernel. 487 */ 488 break; 489 default: 490 /* 491 * Unknown options must be silently ignored, 492 * to accommodate future extension to the protocol. 493 */ 494 nd6log((LOG_DEBUG, 495 "nd6_options: unsupported option %d - " 496 "option ignored\n", nd_opt->nd_opt_type)); 497 } 498 499 skip1: 500 i++; 501 if (i > V_nd6_maxndopt) { 502 ICMP6STAT_INC(icp6s_nd_toomanyopt); 503 nd6log((LOG_INFO, "too many loop in nd opt\n")); 504 break; 505 } 506 507 if (ndopts->nd_opts_done) 508 break; 509 } 510 511 return 0; 512 } 513 514 /* 515 * ND6 timer routine to handle ND6 entries 516 */ 517 static void 518 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 519 { 520 int canceled; 521 522 LLE_WLOCK_ASSERT(ln); 523 524 if (tick < 0) { 525 ln->la_expire = 0; 526 ln->ln_ntick = 0; 527 canceled = callout_stop(&ln->lle_timer); 528 } else { 529 ln->la_expire = time_uptime + tick / hz; 530 LLE_ADDREF(ln); 531 if (tick > INT_MAX) { 532 ln->ln_ntick = tick - INT_MAX; 533 canceled = callout_reset(&ln->lle_timer, INT_MAX, 534 nd6_llinfo_timer, ln); 535 } else { 536 ln->ln_ntick = 0; 537 canceled = callout_reset(&ln->lle_timer, tick, 538 nd6_llinfo_timer, ln); 539 } 540 } 541 if (canceled > 0) 542 LLE_REMREF(ln); 543 } 544 545 /* 546 * Gets source address of the first packet in hold queue 547 * and stores it in @src. 548 * Returns pointer to @src (if hold queue is not empty) or NULL. 549 * 550 * Set noinline to be dtrace-friendly 551 */ 552 static __noinline struct in6_addr * 553 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 554 { 555 struct ip6_hdr hdr; 556 struct mbuf *m; 557 558 if (ln->la_hold == NULL) 559 return (NULL); 560 561 /* 562 * assume every packet in la_hold has the same IP header 563 */ 564 m = ln->la_hold; 565 if (sizeof(hdr) > m->m_len) 566 return (NULL); 567 568 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 569 *src = hdr.ip6_src; 570 571 return (src); 572 } 573 574 /* 575 * Checks if we need to switch from STALE state. 576 * 577 * RFC 4861 requires switching from STALE to DELAY state 578 * on first packet matching entry, waiting V_nd6_delay and 579 * transition to PROBE state (if upper layer confirmation was 580 * not received). 581 * 582 * This code performs a bit differently: 583 * On packet hit we don't change state (but desired state 584 * can be guessed by control plane). However, after V_nd6_delay 585 * seconds code will transition to PROBE state (so DELAY state 586 * is kinda skipped in most situations). 587 * 588 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 589 * we perform the following upon entering STALE state: 590 * 591 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 592 * if packet was transmitted at the start of given interval, we 593 * would be able to switch to PROBE state in V_nd6_delay seconds 594 * as user expects. 595 * 596 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 597 * lle in STALE state (remaining timer value stored in lle_remtime). 598 * 599 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 600 * seconds ago. 601 * 602 * Returns non-zero value if the entry is still STALE (storing 603 * the next timer interval in @pdelay). 604 * 605 * Returns zero value if original timer expired or we need to switch to 606 * PROBE (store that in @do_switch variable). 607 */ 608 static int 609 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 610 { 611 int nd_delay, nd_gctimer, r_skip_req; 612 time_t lle_hittime; 613 long delay; 614 615 *do_switch = 0; 616 nd_gctimer = V_nd6_gctimer; 617 nd_delay = V_nd6_delay; 618 619 LLE_REQ_LOCK(lle); 620 r_skip_req = lle->r_skip_req; 621 lle_hittime = lle->lle_hittime; 622 LLE_REQ_UNLOCK(lle); 623 624 if (r_skip_req > 0) { 625 /* 626 * Nonzero r_skip_req value was set upon entering 627 * STALE state. Since value was not changed, no 628 * packets were passed using this lle. Ask for 629 * timer reschedule and keep STALE state. 630 */ 631 delay = (long)(MIN(nd_gctimer, nd_delay)); 632 delay *= hz; 633 if (lle->lle_remtime > delay) 634 lle->lle_remtime -= delay; 635 else { 636 delay = lle->lle_remtime; 637 lle->lle_remtime = 0; 638 } 639 640 if (delay == 0) { 641 /* 642 * The original ng6_gctime timeout ended, 643 * no more rescheduling. 644 */ 645 return (0); 646 } 647 648 *pdelay = delay; 649 return (1); 650 } 651 652 /* 653 * Packet received. Verify timestamp 654 */ 655 delay = (long)(time_uptime - lle_hittime); 656 if (delay < nd_delay) { 657 /* 658 * V_nd6_delay still not passed since the first 659 * hit in STALE state. 660 * Reshedule timer and return. 661 */ 662 *pdelay = (long)(nd_delay - delay) * hz; 663 return (1); 664 } 665 666 /* Request switching to probe */ 667 *do_switch = 1; 668 return (0); 669 } 670 671 /* 672 * Switch @lle state to new state optionally arming timers. 673 * 674 * Set noinline to be dtrace-friendly 675 */ 676 __noinline void 677 nd6_llinfo_setstate(struct llentry *lle, int newstate) 678 { 679 struct ifnet *ifp; 680 int nd_gctimer, nd_delay; 681 long delay, remtime; 682 683 delay = 0; 684 remtime = 0; 685 686 switch (newstate) { 687 case ND6_LLINFO_INCOMPLETE: 688 ifp = lle->lle_tbl->llt_ifp; 689 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 690 break; 691 case ND6_LLINFO_REACHABLE: 692 if (!ND6_LLINFO_PERMANENT(lle)) { 693 ifp = lle->lle_tbl->llt_ifp; 694 delay = (long)ND_IFINFO(ifp)->reachable * hz; 695 } 696 break; 697 case ND6_LLINFO_STALE: 698 699 /* 700 * Notify fast path that we want to know if any packet 701 * is transmitted by setting r_skip_req. 702 */ 703 LLE_REQ_LOCK(lle); 704 lle->r_skip_req = 1; 705 LLE_REQ_UNLOCK(lle); 706 nd_delay = V_nd6_delay; 707 nd_gctimer = V_nd6_gctimer; 708 709 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 710 remtime = (long)nd_gctimer * hz - delay; 711 break; 712 case ND6_LLINFO_DELAY: 713 lle->la_asked = 0; 714 delay = (long)V_nd6_delay * hz; 715 break; 716 } 717 718 if (delay > 0) 719 nd6_llinfo_settimer_locked(lle, delay); 720 721 lle->lle_remtime = remtime; 722 lle->ln_state = newstate; 723 } 724 725 /* 726 * Timer-dependent part of nd state machine. 727 * 728 * Set noinline to be dtrace-friendly 729 */ 730 static __noinline void 731 nd6_llinfo_timer(void *arg) 732 { 733 struct epoch_tracker et; 734 struct llentry *ln; 735 struct in6_addr *dst, *pdst, *psrc, src; 736 struct ifnet *ifp; 737 struct nd_ifinfo *ndi; 738 int do_switch, send_ns; 739 long delay; 740 741 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 742 ln = (struct llentry *)arg; 743 ifp = lltable_get_ifp(ln->lle_tbl); 744 CURVNET_SET(ifp->if_vnet); 745 746 ND6_RLOCK(); 747 LLE_WLOCK(ln); 748 if (callout_pending(&ln->lle_timer)) { 749 /* 750 * Here we are a bit odd here in the treatment of 751 * active/pending. If the pending bit is set, it got 752 * rescheduled before I ran. The active 753 * bit we ignore, since if it was stopped 754 * in ll_tablefree() and was currently running 755 * it would have return 0 so the code would 756 * not have deleted it since the callout could 757 * not be stopped so we want to go through 758 * with the delete here now. If the callout 759 * was restarted, the pending bit will be back on and 760 * we just want to bail since the callout_reset would 761 * return 1 and our reference would have been removed 762 * by nd6_llinfo_settimer_locked above since canceled 763 * would have been 1. 764 */ 765 LLE_WUNLOCK(ln); 766 ND6_RUNLOCK(); 767 CURVNET_RESTORE(); 768 return; 769 } 770 NET_EPOCH_ENTER(et); 771 ndi = ND_IFINFO(ifp); 772 send_ns = 0; 773 dst = &ln->r_l3addr.addr6; 774 pdst = dst; 775 776 if (ln->ln_ntick > 0) { 777 if (ln->ln_ntick > INT_MAX) { 778 ln->ln_ntick -= INT_MAX; 779 nd6_llinfo_settimer_locked(ln, INT_MAX); 780 } else { 781 ln->ln_ntick = 0; 782 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 783 } 784 goto done; 785 } 786 787 if (ln->la_flags & LLE_STATIC) { 788 goto done; 789 } 790 791 if (ln->la_flags & LLE_DELETED) { 792 nd6_free(&ln, 0); 793 goto done; 794 } 795 796 switch (ln->ln_state) { 797 case ND6_LLINFO_INCOMPLETE: 798 if (ln->la_asked < V_nd6_mmaxtries) { 799 ln->la_asked++; 800 send_ns = 1; 801 /* Send NS to multicast address */ 802 pdst = NULL; 803 } else { 804 struct mbuf *m = ln->la_hold; 805 if (m) { 806 struct mbuf *m0; 807 808 /* 809 * assuming every packet in la_hold has the 810 * same IP header. Send error after unlock. 811 */ 812 m0 = m->m_nextpkt; 813 m->m_nextpkt = NULL; 814 ln->la_hold = m0; 815 clear_llinfo_pqueue(ln); 816 } 817 nd6_free(&ln, 0); 818 if (m != NULL) { 819 struct mbuf *n = m; 820 821 /* 822 * if there are any ummapped mbufs, we 823 * must free them, rather than using 824 * them for an ICMP, as they cannot be 825 * checksummed. 826 */ 827 while ((n = n->m_next) != NULL) { 828 if (n->m_flags & M_EXTPG) 829 break; 830 } 831 if (n != NULL) { 832 m_freem(m); 833 m = NULL; 834 } else { 835 icmp6_error2(m, ICMP6_DST_UNREACH, 836 ICMP6_DST_UNREACH_ADDR, 0, ifp); 837 } 838 } 839 } 840 break; 841 case ND6_LLINFO_REACHABLE: 842 if (!ND6_LLINFO_PERMANENT(ln)) 843 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 844 break; 845 846 case ND6_LLINFO_STALE: 847 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 848 /* 849 * No packet has used this entry and GC timeout 850 * has not been passed. Reshedule timer and 851 * return. 852 */ 853 nd6_llinfo_settimer_locked(ln, delay); 854 break; 855 } 856 857 if (do_switch == 0) { 858 /* 859 * GC timer has ended and entry hasn't been used. 860 * Run Garbage collector (RFC 4861, 5.3) 861 */ 862 if (!ND6_LLINFO_PERMANENT(ln)) 863 nd6_free(&ln, 1); 864 break; 865 } 866 867 /* Entry has been used AND delay timer has ended. */ 868 869 /* FALLTHROUGH */ 870 871 case ND6_LLINFO_DELAY: 872 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 873 /* We need NUD */ 874 ln->la_asked = 1; 875 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 876 send_ns = 1; 877 } else 878 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 879 break; 880 case ND6_LLINFO_PROBE: 881 if (ln->la_asked < V_nd6_umaxtries) { 882 ln->la_asked++; 883 send_ns = 1; 884 } else { 885 nd6_free(&ln, 0); 886 } 887 break; 888 default: 889 panic("%s: paths in a dark night can be confusing: %d", 890 __func__, ln->ln_state); 891 } 892 done: 893 if (ln != NULL) 894 ND6_RUNLOCK(); 895 if (send_ns != 0) { 896 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 897 psrc = nd6_llinfo_get_holdsrc(ln, &src); 898 LLE_FREE_LOCKED(ln); 899 ln = NULL; 900 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 901 } 902 903 if (ln != NULL) 904 LLE_FREE_LOCKED(ln); 905 NET_EPOCH_EXIT(et); 906 CURVNET_RESTORE(); 907 } 908 909 /* 910 * ND6 timer routine to expire default route list and prefix list 911 */ 912 void 913 nd6_timer(void *arg) 914 { 915 CURVNET_SET((struct vnet *) arg); 916 struct epoch_tracker et; 917 struct nd_prhead prl; 918 struct nd_prefix *pr, *npr; 919 struct ifnet *ifp; 920 struct in6_ifaddr *ia6, *nia6; 921 uint64_t genid; 922 923 LIST_INIT(&prl); 924 925 NET_EPOCH_ENTER(et); 926 nd6_defrouter_timer(); 927 928 /* 929 * expire interface addresses. 930 * in the past the loop was inside prefix expiry processing. 931 * However, from a stricter speci-confrmance standpoint, we should 932 * rather separate address lifetimes and prefix lifetimes. 933 * 934 * XXXRW: in6_ifaddrhead locking. 935 */ 936 addrloop: 937 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 938 /* check address lifetime */ 939 if (IFA6_IS_INVALID(ia6)) { 940 int regen = 0; 941 942 /* 943 * If the expiring address is temporary, try 944 * regenerating a new one. This would be useful when 945 * we suspended a laptop PC, then turned it on after a 946 * period that could invalidate all temporary 947 * addresses. Although we may have to restart the 948 * loop (see below), it must be after purging the 949 * address. Otherwise, we'd see an infinite loop of 950 * regeneration. 951 */ 952 if (V_ip6_use_tempaddr && 953 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 954 if (regen_tmpaddr(ia6) == 0) 955 regen = 1; 956 } 957 958 in6_purgeaddr(&ia6->ia_ifa); 959 960 if (regen) 961 goto addrloop; /* XXX: see below */ 962 } else if (IFA6_IS_DEPRECATED(ia6)) { 963 int oldflags = ia6->ia6_flags; 964 965 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 966 967 /* 968 * If a temporary address has just become deprecated, 969 * regenerate a new one if possible. 970 */ 971 if (V_ip6_use_tempaddr && 972 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 973 (oldflags & IN6_IFF_DEPRECATED) == 0) { 974 if (regen_tmpaddr(ia6) == 0) { 975 /* 976 * A new temporary address is 977 * generated. 978 * XXX: this means the address chain 979 * has changed while we are still in 980 * the loop. Although the change 981 * would not cause disaster (because 982 * it's not a deletion, but an 983 * addition,) we'd rather restart the 984 * loop just for safety. Or does this 985 * significantly reduce performance?? 986 */ 987 goto addrloop; 988 } 989 } 990 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 991 /* 992 * Schedule DAD for a tentative address. This happens 993 * if the interface was down or not running 994 * when the address was configured. 995 */ 996 int delay; 997 998 delay = arc4random() % 999 (MAX_RTR_SOLICITATION_DELAY * hz); 1000 nd6_dad_start((struct ifaddr *)ia6, delay); 1001 } else { 1002 /* 1003 * Check status of the interface. If it is down, 1004 * mark the address as tentative for future DAD. 1005 */ 1006 ifp = ia6->ia_ifp; 1007 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1008 ((ifp->if_flags & IFF_UP) == 0 || 1009 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1010 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1011 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1012 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1013 } 1014 1015 /* 1016 * A new RA might have made a deprecated address 1017 * preferred. 1018 */ 1019 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1020 } 1021 } 1022 NET_EPOCH_EXIT(et); 1023 1024 ND6_WLOCK(); 1025 restart: 1026 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1027 /* 1028 * Expire prefixes. Since the pltime is only used for 1029 * autoconfigured addresses, pltime processing for prefixes is 1030 * not necessary. 1031 * 1032 * Only unlink after all derived addresses have expired. This 1033 * may not occur until two hours after the prefix has expired 1034 * per RFC 4862. If the prefix expires before its derived 1035 * addresses, mark it off-link. This will be done automatically 1036 * after unlinking if no address references remain. 1037 */ 1038 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1039 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1040 continue; 1041 1042 if (pr->ndpr_addrcnt == 0) { 1043 nd6_prefix_unlink(pr, &prl); 1044 continue; 1045 } 1046 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1047 genid = V_nd6_list_genid; 1048 nd6_prefix_ref(pr); 1049 ND6_WUNLOCK(); 1050 ND6_ONLINK_LOCK(); 1051 (void)nd6_prefix_offlink(pr); 1052 ND6_ONLINK_UNLOCK(); 1053 ND6_WLOCK(); 1054 nd6_prefix_rele(pr); 1055 if (genid != V_nd6_list_genid) 1056 goto restart; 1057 } 1058 } 1059 ND6_WUNLOCK(); 1060 1061 while ((pr = LIST_FIRST(&prl)) != NULL) { 1062 LIST_REMOVE(pr, ndpr_entry); 1063 nd6_prefix_del(pr); 1064 } 1065 1066 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1067 nd6_timer, curvnet); 1068 1069 CURVNET_RESTORE(); 1070 } 1071 1072 /* 1073 * ia6 - deprecated/invalidated temporary address 1074 */ 1075 static int 1076 regen_tmpaddr(struct in6_ifaddr *ia6) 1077 { 1078 struct ifaddr *ifa; 1079 struct ifnet *ifp; 1080 struct in6_ifaddr *public_ifa6 = NULL; 1081 1082 NET_EPOCH_ASSERT(); 1083 1084 ifp = ia6->ia_ifa.ifa_ifp; 1085 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1086 struct in6_ifaddr *it6; 1087 1088 if (ifa->ifa_addr->sa_family != AF_INET6) 1089 continue; 1090 1091 it6 = (struct in6_ifaddr *)ifa; 1092 1093 /* ignore no autoconf addresses. */ 1094 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1095 continue; 1096 1097 /* ignore autoconf addresses with different prefixes. */ 1098 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1099 continue; 1100 1101 /* 1102 * Now we are looking at an autoconf address with the same 1103 * prefix as ours. If the address is temporary and is still 1104 * preferred, do not create another one. It would be rare, but 1105 * could happen, for example, when we resume a laptop PC after 1106 * a long period. 1107 */ 1108 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1109 !IFA6_IS_DEPRECATED(it6)) { 1110 public_ifa6 = NULL; 1111 break; 1112 } 1113 1114 /* 1115 * This is a public autoconf address that has the same prefix 1116 * as ours. If it is preferred, keep it. We can't break the 1117 * loop here, because there may be a still-preferred temporary 1118 * address with the prefix. 1119 */ 1120 if (!IFA6_IS_DEPRECATED(it6)) 1121 public_ifa6 = it6; 1122 } 1123 if (public_ifa6 != NULL) 1124 ifa_ref(&public_ifa6->ia_ifa); 1125 1126 if (public_ifa6 != NULL) { 1127 int e; 1128 1129 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1130 ifa_free(&public_ifa6->ia_ifa); 1131 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1132 " tmp addr,errno=%d\n", e); 1133 return (-1); 1134 } 1135 ifa_free(&public_ifa6->ia_ifa); 1136 return (0); 1137 } 1138 1139 return (-1); 1140 } 1141 1142 /* 1143 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1144 * cache entries are freed in in6_domifdetach(). 1145 */ 1146 void 1147 nd6_purge(struct ifnet *ifp) 1148 { 1149 struct nd_prhead prl; 1150 struct nd_prefix *pr, *npr; 1151 1152 LIST_INIT(&prl); 1153 1154 /* Purge default router list entries toward ifp. */ 1155 nd6_defrouter_purge(ifp); 1156 1157 ND6_WLOCK(); 1158 /* 1159 * Remove prefixes on ifp. We should have already removed addresses on 1160 * this interface, so no addresses should be referencing these prefixes. 1161 */ 1162 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1163 if (pr->ndpr_ifp == ifp) 1164 nd6_prefix_unlink(pr, &prl); 1165 } 1166 ND6_WUNLOCK(); 1167 1168 /* Delete the unlinked prefix objects. */ 1169 while ((pr = LIST_FIRST(&prl)) != NULL) { 1170 LIST_REMOVE(pr, ndpr_entry); 1171 nd6_prefix_del(pr); 1172 } 1173 1174 /* cancel default outgoing interface setting */ 1175 if (V_nd6_defifindex == ifp->if_index) 1176 nd6_setdefaultiface(0); 1177 1178 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1179 /* Refresh default router list. */ 1180 defrouter_select_fib(ifp->if_fib); 1181 } 1182 } 1183 1184 /* 1185 * the caller acquires and releases the lock on the lltbls 1186 * Returns the llentry locked 1187 */ 1188 struct llentry * 1189 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1190 { 1191 struct sockaddr_in6 sin6; 1192 struct llentry *ln; 1193 1194 bzero(&sin6, sizeof(sin6)); 1195 sin6.sin6_len = sizeof(struct sockaddr_in6); 1196 sin6.sin6_family = AF_INET6; 1197 sin6.sin6_addr = *addr6; 1198 1199 IF_AFDATA_LOCK_ASSERT(ifp); 1200 1201 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1202 1203 return (ln); 1204 } 1205 1206 static struct llentry * 1207 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1208 { 1209 struct sockaddr_in6 sin6; 1210 struct llentry *ln; 1211 1212 bzero(&sin6, sizeof(sin6)); 1213 sin6.sin6_len = sizeof(struct sockaddr_in6); 1214 sin6.sin6_family = AF_INET6; 1215 sin6.sin6_addr = *addr6; 1216 1217 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1218 if (ln != NULL) 1219 ln->ln_state = ND6_LLINFO_NOSTATE; 1220 1221 return (ln); 1222 } 1223 1224 /* 1225 * Test whether a given IPv6 address is a neighbor or not, ignoring 1226 * the actual neighbor cache. The neighbor cache is ignored in order 1227 * to not reenter the routing code from within itself. 1228 */ 1229 static int 1230 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1231 { 1232 struct nd_prefix *pr; 1233 struct ifaddr *ifa; 1234 struct rt_addrinfo info; 1235 struct sockaddr_in6 rt_key; 1236 const struct sockaddr *dst6; 1237 uint64_t genid; 1238 int error, fibnum; 1239 1240 /* 1241 * A link-local address is always a neighbor. 1242 * XXX: a link does not necessarily specify a single interface. 1243 */ 1244 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1245 struct sockaddr_in6 sin6_copy; 1246 u_int32_t zone; 1247 1248 /* 1249 * We need sin6_copy since sa6_recoverscope() may modify the 1250 * content (XXX). 1251 */ 1252 sin6_copy = *addr; 1253 if (sa6_recoverscope(&sin6_copy)) 1254 return (0); /* XXX: should be impossible */ 1255 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1256 return (0); 1257 if (sin6_copy.sin6_scope_id == zone) 1258 return (1); 1259 else 1260 return (0); 1261 } 1262 1263 bzero(&rt_key, sizeof(rt_key)); 1264 bzero(&info, sizeof(info)); 1265 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1266 1267 /* 1268 * If the address matches one of our addresses, 1269 * it should be a neighbor. 1270 * If the address matches one of our on-link prefixes, it should be a 1271 * neighbor. 1272 */ 1273 ND6_RLOCK(); 1274 restart: 1275 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1276 if (pr->ndpr_ifp != ifp) 1277 continue; 1278 1279 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1280 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1281 1282 /* 1283 * We only need to check all FIBs if add_addr_allfibs 1284 * is unset. If set, checking any FIB will suffice. 1285 */ 1286 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1287 for (; fibnum < rt_numfibs; fibnum++) { 1288 genid = V_nd6_list_genid; 1289 ND6_RUNLOCK(); 1290 1291 /* 1292 * Restore length field before 1293 * retrying lookup 1294 */ 1295 rt_key.sin6_len = sizeof(rt_key); 1296 error = rib_lookup_info(fibnum, dst6, 0, 0, 1297 &info); 1298 1299 ND6_RLOCK(); 1300 if (genid != V_nd6_list_genid) 1301 goto restart; 1302 if (error == 0) 1303 break; 1304 } 1305 if (error != 0) 1306 continue; 1307 1308 /* 1309 * This is the case where multiple interfaces 1310 * have the same prefix, but only one is installed 1311 * into the routing table and that prefix entry 1312 * is not the one being examined here. In the case 1313 * where RADIX_MPATH is enabled, multiple route 1314 * entries (of the same rt_key value) will be 1315 * installed because the interface addresses all 1316 * differ. 1317 */ 1318 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1319 &rt_key.sin6_addr)) 1320 continue; 1321 } 1322 1323 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1324 &addr->sin6_addr, &pr->ndpr_mask)) { 1325 ND6_RUNLOCK(); 1326 return (1); 1327 } 1328 } 1329 ND6_RUNLOCK(); 1330 1331 /* 1332 * If the address is assigned on the node of the other side of 1333 * a p2p interface, the address should be a neighbor. 1334 */ 1335 if (ifp->if_flags & IFF_POINTOPOINT) { 1336 struct epoch_tracker et; 1337 1338 NET_EPOCH_ENTER(et); 1339 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1340 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1341 continue; 1342 if (ifa->ifa_dstaddr != NULL && 1343 sa_equal(addr, ifa->ifa_dstaddr)) { 1344 NET_EPOCH_EXIT(et); 1345 return 1; 1346 } 1347 } 1348 NET_EPOCH_EXIT(et); 1349 } 1350 1351 /* 1352 * If the default router list is empty, all addresses are regarded 1353 * as on-link, and thus, as a neighbor. 1354 */ 1355 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1356 nd6_defrouter_list_empty() && 1357 V_nd6_defifindex == ifp->if_index) { 1358 return (1); 1359 } 1360 1361 return (0); 1362 } 1363 1364 /* 1365 * Detect if a given IPv6 address identifies a neighbor on a given link. 1366 * XXX: should take care of the destination of a p2p link? 1367 */ 1368 int 1369 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1370 { 1371 struct llentry *lle; 1372 int rc = 0; 1373 1374 NET_EPOCH_ASSERT(); 1375 IF_AFDATA_UNLOCK_ASSERT(ifp); 1376 if (nd6_is_new_addr_neighbor(addr, ifp)) 1377 return (1); 1378 1379 /* 1380 * Even if the address matches none of our addresses, it might be 1381 * in the neighbor cache. 1382 */ 1383 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1384 LLE_RUNLOCK(lle); 1385 rc = 1; 1386 } 1387 return (rc); 1388 } 1389 1390 /* 1391 * Free an nd6 llinfo entry. 1392 * Since the function would cause significant changes in the kernel, DO NOT 1393 * make it global, unless you have a strong reason for the change, and are sure 1394 * that the change is safe. 1395 * 1396 * Set noinline to be dtrace-friendly 1397 */ 1398 static __noinline void 1399 nd6_free(struct llentry **lnp, int gc) 1400 { 1401 struct ifnet *ifp; 1402 struct llentry *ln; 1403 struct nd_defrouter *dr; 1404 1405 ln = *lnp; 1406 *lnp = NULL; 1407 1408 LLE_WLOCK_ASSERT(ln); 1409 ND6_RLOCK_ASSERT(); 1410 1411 ifp = lltable_get_ifp(ln->lle_tbl); 1412 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1413 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1414 else 1415 dr = NULL; 1416 ND6_RUNLOCK(); 1417 1418 if ((ln->la_flags & LLE_DELETED) == 0) 1419 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1420 1421 /* 1422 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1423 * even though it is not harmful, it was not really necessary. 1424 */ 1425 1426 /* cancel timer */ 1427 nd6_llinfo_settimer_locked(ln, -1); 1428 1429 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1430 if (dr != NULL && dr->expire && 1431 ln->ln_state == ND6_LLINFO_STALE && gc) { 1432 /* 1433 * If the reason for the deletion is just garbage 1434 * collection, and the neighbor is an active default 1435 * router, do not delete it. Instead, reset the GC 1436 * timer using the router's lifetime. 1437 * Simply deleting the entry would affect default 1438 * router selection, which is not necessarily a good 1439 * thing, especially when we're using router preference 1440 * values. 1441 * XXX: the check for ln_state would be redundant, 1442 * but we intentionally keep it just in case. 1443 */ 1444 if (dr->expire > time_uptime) 1445 nd6_llinfo_settimer_locked(ln, 1446 (dr->expire - time_uptime) * hz); 1447 else 1448 nd6_llinfo_settimer_locked(ln, 1449 (long)V_nd6_gctimer * hz); 1450 1451 LLE_REMREF(ln); 1452 LLE_WUNLOCK(ln); 1453 defrouter_rele(dr); 1454 return; 1455 } 1456 1457 if (dr) { 1458 /* 1459 * Unreachablity of a router might affect the default 1460 * router selection and on-link detection of advertised 1461 * prefixes. 1462 */ 1463 1464 /* 1465 * Temporarily fake the state to choose a new default 1466 * router and to perform on-link determination of 1467 * prefixes correctly. 1468 * Below the state will be set correctly, 1469 * or the entry itself will be deleted. 1470 */ 1471 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1472 } 1473 1474 if (ln->ln_router || dr) { 1475 /* 1476 * We need to unlock to avoid a LOR with rt6_flush() with the 1477 * rnh and for the calls to pfxlist_onlink_check() and 1478 * defrouter_select_fib() in the block further down for calls 1479 * into nd6_lookup(). We still hold a ref. 1480 */ 1481 LLE_WUNLOCK(ln); 1482 1483 /* 1484 * rt6_flush must be called whether or not the neighbor 1485 * is in the Default Router List. 1486 * See a corresponding comment in nd6_na_input(). 1487 */ 1488 rt6_flush(&ln->r_l3addr.addr6, ifp); 1489 } 1490 1491 if (dr) { 1492 /* 1493 * Since defrouter_select_fib() does not affect the 1494 * on-link determination and MIP6 needs the check 1495 * before the default router selection, we perform 1496 * the check now. 1497 */ 1498 pfxlist_onlink_check(); 1499 1500 /* 1501 * Refresh default router list. 1502 */ 1503 defrouter_select_fib(dr->ifp->if_fib); 1504 } 1505 1506 /* 1507 * If this entry was added by an on-link redirect, remove the 1508 * corresponding host route. 1509 */ 1510 if (ln->la_flags & LLE_REDIRECT) 1511 nd6_free_redirect(ln); 1512 1513 if (ln->ln_router || dr) 1514 LLE_WLOCK(ln); 1515 } 1516 1517 /* 1518 * Save to unlock. We still hold an extra reference and will not 1519 * free(9) in llentry_free() if someone else holds one as well. 1520 */ 1521 LLE_WUNLOCK(ln); 1522 IF_AFDATA_LOCK(ifp); 1523 LLE_WLOCK(ln); 1524 /* Guard against race with other llentry_free(). */ 1525 if (ln->la_flags & LLE_LINKED) { 1526 /* Remove callout reference */ 1527 LLE_REMREF(ln); 1528 lltable_unlink_entry(ln->lle_tbl, ln); 1529 } 1530 IF_AFDATA_UNLOCK(ifp); 1531 1532 llentry_free(ln); 1533 if (dr != NULL) 1534 defrouter_rele(dr); 1535 } 1536 1537 static int 1538 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1539 { 1540 1541 if (nh->nh_flags & NHF_REDIRECT) 1542 return (1); 1543 1544 return (0); 1545 } 1546 1547 /* 1548 * Remove the rtentry for the given llentry, 1549 * both of which were installed by a redirect. 1550 */ 1551 static void 1552 nd6_free_redirect(const struct llentry *ln) 1553 { 1554 int fibnum; 1555 struct sockaddr_in6 sin6; 1556 struct rt_addrinfo info; 1557 struct rib_cmd_info rc; 1558 struct epoch_tracker et; 1559 1560 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1561 memset(&info, 0, sizeof(info)); 1562 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1563 info.rti_filter = nd6_isdynrte; 1564 1565 NET_EPOCH_ENTER(et); 1566 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1567 rib_action(fibnum, RTM_DELETE, &info, &rc); 1568 NET_EPOCH_EXIT(et); 1569 } 1570 1571 /* 1572 * Updates status of the default router route. 1573 */ 1574 static void 1575 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) 1576 { 1577 struct nd_defrouter *dr; 1578 struct nhop_object *nh; 1579 1580 nh = rc->rc_nh_old; 1581 1582 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1583 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1584 if (dr != NULL) { 1585 dr->installed = 0; 1586 defrouter_rele(dr); 1587 } 1588 } 1589 } 1590 1591 void 1592 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1593 { 1594 1595 #ifdef ROUTE_MPATH 1596 rib_decompose_notification(rc, check_release_defrouter, NULL); 1597 #else 1598 check_release_defrouter(rc, NULL); 1599 #endif 1600 } 1601 1602 int 1603 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1604 { 1605 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1606 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1607 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1608 struct epoch_tracker et; 1609 int error = 0; 1610 1611 if (ifp->if_afdata[AF_INET6] == NULL) 1612 return (EPFNOSUPPORT); 1613 switch (cmd) { 1614 case OSIOCGIFINFO_IN6: 1615 #define ND ndi->ndi 1616 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1617 bzero(&ND, sizeof(ND)); 1618 ND.linkmtu = IN6_LINKMTU(ifp); 1619 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1620 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1621 ND.reachable = ND_IFINFO(ifp)->reachable; 1622 ND.retrans = ND_IFINFO(ifp)->retrans; 1623 ND.flags = ND_IFINFO(ifp)->flags; 1624 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1625 ND.chlim = ND_IFINFO(ifp)->chlim; 1626 break; 1627 case SIOCGIFINFO_IN6: 1628 ND = *ND_IFINFO(ifp); 1629 break; 1630 case SIOCSIFINFO_IN6: 1631 /* 1632 * used to change host variables from userland. 1633 * intended for a use on router to reflect RA configurations. 1634 */ 1635 /* 0 means 'unspecified' */ 1636 if (ND.linkmtu != 0) { 1637 if (ND.linkmtu < IPV6_MMTU || 1638 ND.linkmtu > IN6_LINKMTU(ifp)) { 1639 error = EINVAL; 1640 break; 1641 } 1642 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1643 } 1644 1645 if (ND.basereachable != 0) { 1646 int obasereachable = ND_IFINFO(ifp)->basereachable; 1647 1648 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1649 if (ND.basereachable != obasereachable) 1650 ND_IFINFO(ifp)->reachable = 1651 ND_COMPUTE_RTIME(ND.basereachable); 1652 } 1653 if (ND.retrans != 0) 1654 ND_IFINFO(ifp)->retrans = ND.retrans; 1655 if (ND.chlim != 0) 1656 ND_IFINFO(ifp)->chlim = ND.chlim; 1657 /* FALLTHROUGH */ 1658 case SIOCSIFINFO_FLAGS: 1659 { 1660 struct ifaddr *ifa; 1661 struct in6_ifaddr *ia; 1662 1663 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1664 !(ND.flags & ND6_IFF_IFDISABLED)) { 1665 /* ifdisabled 1->0 transision */ 1666 1667 /* 1668 * If the interface is marked as ND6_IFF_IFDISABLED and 1669 * has an link-local address with IN6_IFF_DUPLICATED, 1670 * do not clear ND6_IFF_IFDISABLED. 1671 * See RFC 4862, Section 5.4.5. 1672 */ 1673 NET_EPOCH_ENTER(et); 1674 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1675 if (ifa->ifa_addr->sa_family != AF_INET6) 1676 continue; 1677 ia = (struct in6_ifaddr *)ifa; 1678 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1679 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1680 break; 1681 } 1682 NET_EPOCH_EXIT(et); 1683 1684 if (ifa != NULL) { 1685 /* LLA is duplicated. */ 1686 ND.flags |= ND6_IFF_IFDISABLED; 1687 log(LOG_ERR, "Cannot enable an interface" 1688 " with a link-local address marked" 1689 " duplicate.\n"); 1690 } else { 1691 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1692 if (ifp->if_flags & IFF_UP) 1693 in6_if_up(ifp); 1694 } 1695 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1696 (ND.flags & ND6_IFF_IFDISABLED)) { 1697 /* ifdisabled 0->1 transision */ 1698 /* Mark all IPv6 address as tentative. */ 1699 1700 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1701 if (V_ip6_dad_count > 0 && 1702 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1703 NET_EPOCH_ENTER(et); 1704 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1705 ifa_link) { 1706 if (ifa->ifa_addr->sa_family != 1707 AF_INET6) 1708 continue; 1709 ia = (struct in6_ifaddr *)ifa; 1710 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1711 } 1712 NET_EPOCH_EXIT(et); 1713 } 1714 } 1715 1716 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1717 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1718 /* auto_linklocal 0->1 transision */ 1719 1720 /* If no link-local address on ifp, configure */ 1721 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1722 in6_ifattach(ifp, NULL); 1723 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1724 ifp->if_flags & IFF_UP) { 1725 /* 1726 * When the IF already has 1727 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1728 * address is assigned, and IFF_UP, try to 1729 * assign one. 1730 */ 1731 NET_EPOCH_ENTER(et); 1732 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1733 ifa_link) { 1734 if (ifa->ifa_addr->sa_family != 1735 AF_INET6) 1736 continue; 1737 ia = (struct in6_ifaddr *)ifa; 1738 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1739 break; 1740 } 1741 NET_EPOCH_EXIT(et); 1742 if (ifa != NULL) 1743 /* No LLA is configured. */ 1744 in6_ifattach(ifp, NULL); 1745 } 1746 } 1747 ND_IFINFO(ifp)->flags = ND.flags; 1748 break; 1749 } 1750 #undef ND 1751 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1752 /* sync kernel routing table with the default router list */ 1753 defrouter_reset(); 1754 defrouter_select_fib(RT_ALL_FIBS); 1755 break; 1756 case SIOCSPFXFLUSH_IN6: 1757 { 1758 /* flush all the prefix advertised by routers */ 1759 struct in6_ifaddr *ia, *ia_next; 1760 struct nd_prefix *pr, *next; 1761 struct nd_prhead prl; 1762 1763 LIST_INIT(&prl); 1764 1765 ND6_WLOCK(); 1766 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1767 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1768 continue; /* XXX */ 1769 nd6_prefix_unlink(pr, &prl); 1770 } 1771 ND6_WUNLOCK(); 1772 1773 while ((pr = LIST_FIRST(&prl)) != NULL) { 1774 LIST_REMOVE(pr, ndpr_entry); 1775 /* XXXRW: in6_ifaddrhead locking. */ 1776 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1777 ia_next) { 1778 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1779 continue; 1780 1781 if (ia->ia6_ndpr == pr) 1782 in6_purgeaddr(&ia->ia_ifa); 1783 } 1784 nd6_prefix_del(pr); 1785 } 1786 break; 1787 } 1788 case SIOCSRTRFLUSH_IN6: 1789 { 1790 /* flush all the default routers */ 1791 1792 defrouter_reset(); 1793 nd6_defrouter_flush_all(); 1794 defrouter_select_fib(RT_ALL_FIBS); 1795 break; 1796 } 1797 case SIOCGNBRINFO_IN6: 1798 { 1799 struct llentry *ln; 1800 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1801 1802 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1803 return (error); 1804 1805 NET_EPOCH_ENTER(et); 1806 ln = nd6_lookup(&nb_addr, 0, ifp); 1807 NET_EPOCH_EXIT(et); 1808 1809 if (ln == NULL) { 1810 error = EINVAL; 1811 break; 1812 } 1813 nbi->state = ln->ln_state; 1814 nbi->asked = ln->la_asked; 1815 nbi->isrouter = ln->ln_router; 1816 if (ln->la_expire == 0) 1817 nbi->expire = 0; 1818 else 1819 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1820 (time_second - time_uptime); 1821 LLE_RUNLOCK(ln); 1822 break; 1823 } 1824 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1825 ndif->ifindex = V_nd6_defifindex; 1826 break; 1827 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1828 return (nd6_setdefaultiface(ndif->ifindex)); 1829 } 1830 return (error); 1831 } 1832 1833 /* 1834 * Calculates new isRouter value based on provided parameters and 1835 * returns it. 1836 */ 1837 static int 1838 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1839 int ln_router) 1840 { 1841 1842 /* 1843 * ICMP6 type dependent behavior. 1844 * 1845 * NS: clear IsRouter if new entry 1846 * RS: clear IsRouter 1847 * RA: set IsRouter if there's lladdr 1848 * redir: clear IsRouter if new entry 1849 * 1850 * RA case, (1): 1851 * The spec says that we must set IsRouter in the following cases: 1852 * - If lladdr exist, set IsRouter. This means (1-5). 1853 * - If it is old entry (!newentry), set IsRouter. This means (7). 1854 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1855 * A quetion arises for (1) case. (1) case has no lladdr in the 1856 * neighbor cache, this is similar to (6). 1857 * This case is rare but we figured that we MUST NOT set IsRouter. 1858 * 1859 * is_new old_addr new_addr NS RS RA redir 1860 * D R 1861 * 0 n n (1) c ? s 1862 * 0 y n (2) c s s 1863 * 0 n y (3) c s s 1864 * 0 y y (4) c s s 1865 * 0 y y (5) c s s 1866 * 1 -- n (6) c c c s 1867 * 1 -- y (7) c c s c s 1868 * 1869 * (c=clear s=set) 1870 */ 1871 switch (type & 0xff) { 1872 case ND_NEIGHBOR_SOLICIT: 1873 /* 1874 * New entry must have is_router flag cleared. 1875 */ 1876 if (is_new) /* (6-7) */ 1877 ln_router = 0; 1878 break; 1879 case ND_REDIRECT: 1880 /* 1881 * If the icmp is a redirect to a better router, always set the 1882 * is_router flag. Otherwise, if the entry is newly created, 1883 * clear the flag. [RFC 2461, sec 8.3] 1884 */ 1885 if (code == ND_REDIRECT_ROUTER) 1886 ln_router = 1; 1887 else { 1888 if (is_new) /* (6-7) */ 1889 ln_router = 0; 1890 } 1891 break; 1892 case ND_ROUTER_SOLICIT: 1893 /* 1894 * is_router flag must always be cleared. 1895 */ 1896 ln_router = 0; 1897 break; 1898 case ND_ROUTER_ADVERT: 1899 /* 1900 * Mark an entry with lladdr as a router. 1901 */ 1902 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1903 (is_new && new_addr)) { /* (7) */ 1904 ln_router = 1; 1905 } 1906 break; 1907 } 1908 1909 return (ln_router); 1910 } 1911 1912 /* 1913 * Create neighbor cache entry and cache link-layer address, 1914 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1915 * 1916 * type - ICMP6 type 1917 * code - type dependent information 1918 * 1919 */ 1920 void 1921 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1922 int lladdrlen, int type, int code) 1923 { 1924 struct llentry *ln = NULL, *ln_tmp; 1925 int is_newentry; 1926 int do_update; 1927 int olladdr; 1928 int llchange; 1929 int flags; 1930 uint16_t router = 0; 1931 struct sockaddr_in6 sin6; 1932 struct mbuf *chain = NULL; 1933 u_char linkhdr[LLE_MAX_LINKHDR]; 1934 size_t linkhdrsize; 1935 int lladdr_off; 1936 1937 NET_EPOCH_ASSERT(); 1938 IF_AFDATA_UNLOCK_ASSERT(ifp); 1939 1940 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1941 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1942 1943 /* nothing must be updated for unspecified address */ 1944 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1945 return; 1946 1947 /* 1948 * Validation about ifp->if_addrlen and lladdrlen must be done in 1949 * the caller. 1950 * 1951 * XXX If the link does not have link-layer adderss, what should 1952 * we do? (ifp->if_addrlen == 0) 1953 * Spec says nothing in sections for RA, RS and NA. There's small 1954 * description on it in NS section (RFC 2461 7.2.3). 1955 */ 1956 flags = lladdr ? LLE_EXCLUSIVE : 0; 1957 ln = nd6_lookup(from, flags, ifp); 1958 is_newentry = 0; 1959 if (ln == NULL) { 1960 flags |= LLE_EXCLUSIVE; 1961 ln = nd6_alloc(from, 0, ifp); 1962 if (ln == NULL) 1963 return; 1964 1965 /* 1966 * Since we already know all the data for the new entry, 1967 * fill it before insertion. 1968 */ 1969 if (lladdr != NULL) { 1970 linkhdrsize = sizeof(linkhdr); 1971 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1972 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1973 return; 1974 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1975 lladdr_off); 1976 } 1977 1978 IF_AFDATA_WLOCK(ifp); 1979 LLE_WLOCK(ln); 1980 /* Prefer any existing lle over newly-created one */ 1981 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1982 if (ln_tmp == NULL) 1983 lltable_link_entry(LLTABLE6(ifp), ln); 1984 IF_AFDATA_WUNLOCK(ifp); 1985 if (ln_tmp == NULL) { 1986 /* No existing lle, mark as new entry (6,7) */ 1987 is_newentry = 1; 1988 if (lladdr != NULL) { /* (7) */ 1989 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1990 EVENTHANDLER_INVOKE(lle_event, ln, 1991 LLENTRY_RESOLVED); 1992 } 1993 } else { 1994 lltable_free_entry(LLTABLE6(ifp), ln); 1995 ln = ln_tmp; 1996 ln_tmp = NULL; 1997 } 1998 } 1999 /* do nothing if static ndp is set */ 2000 if ((ln->la_flags & LLE_STATIC)) { 2001 if (flags & LLE_EXCLUSIVE) 2002 LLE_WUNLOCK(ln); 2003 else 2004 LLE_RUNLOCK(ln); 2005 return; 2006 } 2007 2008 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2009 if (olladdr && lladdr) { 2010 llchange = bcmp(lladdr, ln->ll_addr, 2011 ifp->if_addrlen); 2012 } else if (!olladdr && lladdr) 2013 llchange = 1; 2014 else 2015 llchange = 0; 2016 2017 /* 2018 * newentry olladdr lladdr llchange (*=record) 2019 * 0 n n -- (1) 2020 * 0 y n -- (2) 2021 * 0 n y y (3) * STALE 2022 * 0 y y n (4) * 2023 * 0 y y y (5) * STALE 2024 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2025 * 1 -- y -- (7) * STALE 2026 */ 2027 2028 do_update = 0; 2029 if (is_newentry == 0 && llchange != 0) { 2030 do_update = 1; /* (3,5) */ 2031 2032 /* 2033 * Record source link-layer address 2034 * XXX is it dependent to ifp->if_type? 2035 */ 2036 linkhdrsize = sizeof(linkhdr); 2037 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2038 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2039 return; 2040 2041 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2042 lladdr_off) == 0) { 2043 /* Entry was deleted */ 2044 return; 2045 } 2046 2047 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2048 2049 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2050 2051 if (ln->la_hold != NULL) 2052 nd6_grab_holdchain(ln, &chain, &sin6); 2053 } 2054 2055 /* Calculates new router status */ 2056 router = nd6_is_router(type, code, is_newentry, olladdr, 2057 lladdr != NULL ? 1 : 0, ln->ln_router); 2058 2059 ln->ln_router = router; 2060 /* Mark non-router redirects with special flag */ 2061 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2062 ln->la_flags |= LLE_REDIRECT; 2063 2064 if (flags & LLE_EXCLUSIVE) 2065 LLE_WUNLOCK(ln); 2066 else 2067 LLE_RUNLOCK(ln); 2068 2069 if (chain != NULL) 2070 nd6_flush_holdchain(ifp, chain, &sin6); 2071 2072 /* 2073 * When the link-layer address of a router changes, select the 2074 * best router again. In particular, when the neighbor entry is newly 2075 * created, it might affect the selection policy. 2076 * Question: can we restrict the first condition to the "is_newentry" 2077 * case? 2078 * XXX: when we hear an RA from a new router with the link-layer 2079 * address option, defrouter_select_fib() is called twice, since 2080 * defrtrlist_update called the function as well. However, I believe 2081 * we can compromise the overhead, since it only happens the first 2082 * time. 2083 * XXX: although defrouter_select_fib() should not have a bad effect 2084 * for those are not autoconfigured hosts, we explicitly avoid such 2085 * cases for safety. 2086 */ 2087 if ((do_update || is_newentry) && router && 2088 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2089 /* 2090 * guaranteed recursion 2091 */ 2092 defrouter_select_fib(ifp->if_fib); 2093 } 2094 } 2095 2096 static void 2097 nd6_slowtimo(void *arg) 2098 { 2099 struct epoch_tracker et; 2100 CURVNET_SET((struct vnet *) arg); 2101 struct nd_ifinfo *nd6if; 2102 struct ifnet *ifp; 2103 2104 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2105 nd6_slowtimo, curvnet); 2106 NET_EPOCH_ENTER(et); 2107 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2108 if (ifp->if_afdata[AF_INET6] == NULL) 2109 continue; 2110 nd6if = ND_IFINFO(ifp); 2111 if (nd6if->basereachable && /* already initialized */ 2112 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2113 /* 2114 * Since reachable time rarely changes by router 2115 * advertisements, we SHOULD insure that a new random 2116 * value gets recomputed at least once every few hours. 2117 * (RFC 2461, 6.3.4) 2118 */ 2119 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2120 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2121 } 2122 } 2123 NET_EPOCH_EXIT(et); 2124 CURVNET_RESTORE(); 2125 } 2126 2127 void 2128 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2129 struct sockaddr_in6 *sin6) 2130 { 2131 2132 LLE_WLOCK_ASSERT(ln); 2133 2134 *chain = ln->la_hold; 2135 ln->la_hold = NULL; 2136 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2137 2138 if (ln->ln_state == ND6_LLINFO_STALE) { 2139 /* 2140 * The first time we send a packet to a 2141 * neighbor whose entry is STALE, we have 2142 * to change the state to DELAY and a sets 2143 * a timer to expire in DELAY_FIRST_PROBE_TIME 2144 * seconds to ensure do neighbor unreachability 2145 * detection on expiration. 2146 * (RFC 2461 7.3.3) 2147 */ 2148 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2149 } 2150 } 2151 2152 int 2153 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2154 struct sockaddr_in6 *dst, struct route *ro) 2155 { 2156 int error; 2157 int ip6len; 2158 struct ip6_hdr *ip6; 2159 struct m_tag *mtag; 2160 2161 #ifdef MAC 2162 mac_netinet6_nd6_send(ifp, m); 2163 #endif 2164 2165 /* 2166 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2167 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2168 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2169 * to be diverted to user space. When re-injected into the kernel, 2170 * send_output() will directly dispatch them to the outgoing interface. 2171 */ 2172 if (send_sendso_input_hook != NULL) { 2173 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2174 if (mtag != NULL) { 2175 ip6 = mtod(m, struct ip6_hdr *); 2176 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2177 /* Use the SEND socket */ 2178 error = send_sendso_input_hook(m, ifp, SND_OUT, 2179 ip6len); 2180 /* -1 == no app on SEND socket */ 2181 if (error == 0 || error != -1) 2182 return (error); 2183 } 2184 } 2185 2186 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2187 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2188 mtod(m, struct ip6_hdr *)); 2189 2190 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2191 origifp = ifp; 2192 2193 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2194 return (error); 2195 } 2196 2197 /* 2198 * Lookup link headerfor @sa_dst address. Stores found 2199 * data in @desten buffer. Copy of lle ln_flags can be also 2200 * saved in @pflags if @pflags is non-NULL. 2201 * 2202 * If destination LLE does not exists or lle state modification 2203 * is required, call "slow" version. 2204 * 2205 * Return values: 2206 * - 0 on success (address copied to buffer). 2207 * - EWOULDBLOCK (no local error, but address is still unresolved) 2208 * - other errors (alloc failure, etc) 2209 */ 2210 int 2211 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2212 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2213 struct llentry **plle) 2214 { 2215 struct llentry *ln = NULL; 2216 const struct sockaddr_in6 *dst6; 2217 2218 NET_EPOCH_ASSERT(); 2219 2220 if (pflags != NULL) 2221 *pflags = 0; 2222 2223 dst6 = (const struct sockaddr_in6 *)sa_dst; 2224 2225 /* discard the packet if IPv6 operation is disabled on the interface */ 2226 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2227 m_freem(m); 2228 return (ENETDOWN); /* better error? */ 2229 } 2230 2231 if (m != NULL && m->m_flags & M_MCAST) { 2232 switch (ifp->if_type) { 2233 case IFT_ETHER: 2234 case IFT_L2VLAN: 2235 case IFT_BRIDGE: 2236 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2237 desten); 2238 return (0); 2239 default: 2240 m_freem(m); 2241 return (EAFNOSUPPORT); 2242 } 2243 } 2244 2245 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2246 ifp); 2247 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2248 /* Entry found, let's copy lle info */ 2249 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2250 if (pflags != NULL) 2251 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2252 /* Check if we have feedback request from nd6 timer */ 2253 if (ln->r_skip_req != 0) { 2254 LLE_REQ_LOCK(ln); 2255 ln->r_skip_req = 0; /* Notify that entry was used */ 2256 ln->lle_hittime = time_uptime; 2257 LLE_REQ_UNLOCK(ln); 2258 } 2259 if (plle) { 2260 LLE_ADDREF(ln); 2261 *plle = ln; 2262 LLE_WUNLOCK(ln); 2263 } 2264 return (0); 2265 } else if (plle && ln) 2266 LLE_WUNLOCK(ln); 2267 2268 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2269 } 2270 2271 /* 2272 * Do L2 address resolution for @sa_dst address. Stores found 2273 * address in @desten buffer. Copy of lle ln_flags can be also 2274 * saved in @pflags if @pflags is non-NULL. 2275 * 2276 * Heavy version. 2277 * Function assume that destination LLE does not exist, 2278 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2279 * 2280 * Set noinline to be dtrace-friendly 2281 */ 2282 static __noinline int 2283 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2284 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2285 struct llentry **plle) 2286 { 2287 struct llentry *lle = NULL, *lle_tmp; 2288 struct in6_addr *psrc, src; 2289 int send_ns, ll_len; 2290 char *lladdr; 2291 2292 NET_EPOCH_ASSERT(); 2293 2294 /* 2295 * Address resolution or Neighbor Unreachability Detection 2296 * for the next hop. 2297 * At this point, the destination of the packet must be a unicast 2298 * or an anycast address(i.e. not a multicast). 2299 */ 2300 if (lle == NULL) { 2301 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2302 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2303 /* 2304 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2305 * the condition below is not very efficient. But we believe 2306 * it is tolerable, because this should be a rare case. 2307 */ 2308 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2309 if (lle == NULL) { 2310 char ip6buf[INET6_ADDRSTRLEN]; 2311 log(LOG_DEBUG, 2312 "nd6_output: can't allocate llinfo for %s " 2313 "(ln=%p)\n", 2314 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2315 m_freem(m); 2316 return (ENOBUFS); 2317 } 2318 2319 IF_AFDATA_WLOCK(ifp); 2320 LLE_WLOCK(lle); 2321 /* Prefer any existing entry over newly-created one */ 2322 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2323 if (lle_tmp == NULL) 2324 lltable_link_entry(LLTABLE6(ifp), lle); 2325 IF_AFDATA_WUNLOCK(ifp); 2326 if (lle_tmp != NULL) { 2327 lltable_free_entry(LLTABLE6(ifp), lle); 2328 lle = lle_tmp; 2329 lle_tmp = NULL; 2330 } 2331 } 2332 } 2333 if (lle == NULL) { 2334 m_freem(m); 2335 return (ENOBUFS); 2336 } 2337 2338 LLE_WLOCK_ASSERT(lle); 2339 2340 /* 2341 * The first time we send a packet to a neighbor whose entry is 2342 * STALE, we have to change the state to DELAY and a sets a timer to 2343 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2344 * neighbor unreachability detection on expiration. 2345 * (RFC 2461 7.3.3) 2346 */ 2347 if (lle->ln_state == ND6_LLINFO_STALE) 2348 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2349 2350 /* 2351 * If the neighbor cache entry has a state other than INCOMPLETE 2352 * (i.e. its link-layer address is already resolved), just 2353 * send the packet. 2354 */ 2355 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2356 if (flags & LLE_ADDRONLY) { 2357 lladdr = lle->ll_addr; 2358 ll_len = ifp->if_addrlen; 2359 } else { 2360 lladdr = lle->r_linkdata; 2361 ll_len = lle->r_hdrlen; 2362 } 2363 bcopy(lladdr, desten, ll_len); 2364 if (pflags != NULL) 2365 *pflags = lle->la_flags; 2366 if (plle) { 2367 LLE_ADDREF(lle); 2368 *plle = lle; 2369 } 2370 LLE_WUNLOCK(lle); 2371 return (0); 2372 } 2373 2374 /* 2375 * There is a neighbor cache entry, but no ethernet address 2376 * response yet. Append this latest packet to the end of the 2377 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2378 * the oldest packet in the queue will be removed. 2379 */ 2380 2381 if (lle->la_hold != NULL) { 2382 struct mbuf *m_hold; 2383 int i; 2384 2385 i = 0; 2386 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2387 i++; 2388 if (m_hold->m_nextpkt == NULL) { 2389 m_hold->m_nextpkt = m; 2390 break; 2391 } 2392 } 2393 while (i >= V_nd6_maxqueuelen) { 2394 m_hold = lle->la_hold; 2395 lle->la_hold = lle->la_hold->m_nextpkt; 2396 m_freem(m_hold); 2397 i--; 2398 } 2399 } else { 2400 lle->la_hold = m; 2401 } 2402 2403 /* 2404 * If there has been no NS for the neighbor after entering the 2405 * INCOMPLETE state, send the first solicitation. 2406 * Note that for newly-created lle la_asked will be 0, 2407 * so we will transition from ND6_LLINFO_NOSTATE to 2408 * ND6_LLINFO_INCOMPLETE state here. 2409 */ 2410 psrc = NULL; 2411 send_ns = 0; 2412 if (lle->la_asked == 0) { 2413 lle->la_asked++; 2414 send_ns = 1; 2415 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2416 2417 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2418 } 2419 LLE_WUNLOCK(lle); 2420 if (send_ns != 0) 2421 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2422 2423 return (EWOULDBLOCK); 2424 } 2425 2426 /* 2427 * Do L2 address resolution for @sa_dst address. Stores found 2428 * address in @desten buffer. Copy of lle ln_flags can be also 2429 * saved in @pflags if @pflags is non-NULL. 2430 * 2431 * Return values: 2432 * - 0 on success (address copied to buffer). 2433 * - EWOULDBLOCK (no local error, but address is still unresolved) 2434 * - other errors (alloc failure, etc) 2435 */ 2436 int 2437 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2438 char *desten, uint32_t *pflags) 2439 { 2440 int error; 2441 2442 flags |= LLE_ADDRONLY; 2443 error = nd6_resolve_slow(ifp, flags, NULL, 2444 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2445 return (error); 2446 } 2447 2448 int 2449 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2450 struct sockaddr_in6 *dst) 2451 { 2452 struct mbuf *m, *m_head; 2453 int error = 0; 2454 2455 m_head = chain; 2456 2457 while (m_head) { 2458 m = m_head; 2459 m_head = m_head->m_nextpkt; 2460 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2461 } 2462 2463 /* 2464 * XXX 2465 * note that intermediate errors are blindly ignored 2466 */ 2467 return (error); 2468 } 2469 2470 static int 2471 nd6_need_cache(struct ifnet *ifp) 2472 { 2473 /* 2474 * XXX: we currently do not make neighbor cache on any interface 2475 * other than Ethernet and GIF. 2476 * 2477 * RFC2893 says: 2478 * - unidirectional tunnels needs no ND 2479 */ 2480 switch (ifp->if_type) { 2481 case IFT_ETHER: 2482 case IFT_IEEE1394: 2483 case IFT_L2VLAN: 2484 case IFT_INFINIBAND: 2485 case IFT_BRIDGE: 2486 case IFT_PROPVIRTUAL: 2487 return (1); 2488 default: 2489 return (0); 2490 } 2491 } 2492 2493 /* 2494 * Add pernament ND6 link-layer record for given 2495 * interface address. 2496 * 2497 * Very similar to IPv4 arp_ifinit(), but: 2498 * 1) IPv6 DAD is performed in different place 2499 * 2) It is called by IPv6 protocol stack in contrast to 2500 * arp_ifinit() which is typically called in SIOCSIFADDR 2501 * driver ioctl handler. 2502 * 2503 */ 2504 int 2505 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2506 { 2507 struct ifnet *ifp; 2508 struct llentry *ln, *ln_tmp; 2509 struct sockaddr *dst; 2510 2511 ifp = ia->ia_ifa.ifa_ifp; 2512 if (nd6_need_cache(ifp) == 0) 2513 return (0); 2514 2515 dst = (struct sockaddr *)&ia->ia_addr; 2516 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2517 if (ln == NULL) 2518 return (ENOBUFS); 2519 2520 IF_AFDATA_WLOCK(ifp); 2521 LLE_WLOCK(ln); 2522 /* Unlink any entry if exists */ 2523 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2524 if (ln_tmp != NULL) 2525 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2526 lltable_link_entry(LLTABLE6(ifp), ln); 2527 IF_AFDATA_WUNLOCK(ifp); 2528 2529 if (ln_tmp != NULL) 2530 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2531 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2532 2533 LLE_WUNLOCK(ln); 2534 if (ln_tmp != NULL) 2535 llentry_free(ln_tmp); 2536 2537 return (0); 2538 } 2539 2540 /* 2541 * Removes either all lle entries for given @ia, or lle 2542 * corresponding to @ia address. 2543 */ 2544 void 2545 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2546 { 2547 struct sockaddr_in6 mask, addr; 2548 struct sockaddr *saddr, *smask; 2549 struct ifnet *ifp; 2550 2551 ifp = ia->ia_ifa.ifa_ifp; 2552 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2553 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2554 saddr = (struct sockaddr *)&addr; 2555 smask = (struct sockaddr *)&mask; 2556 2557 if (all != 0) 2558 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2559 else 2560 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2561 } 2562 2563 static void 2564 clear_llinfo_pqueue(struct llentry *ln) 2565 { 2566 struct mbuf *m_hold, *m_hold_next; 2567 2568 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2569 m_hold_next = m_hold->m_nextpkt; 2570 m_freem(m_hold); 2571 } 2572 2573 ln->la_hold = NULL; 2574 } 2575 2576 static int 2577 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2578 { 2579 struct in6_prefix p; 2580 struct sockaddr_in6 s6; 2581 struct nd_prefix *pr; 2582 struct nd_pfxrouter *pfr; 2583 time_t maxexpire; 2584 int error; 2585 char ip6buf[INET6_ADDRSTRLEN]; 2586 2587 if (req->newptr) 2588 return (EPERM); 2589 2590 error = sysctl_wire_old_buffer(req, 0); 2591 if (error != 0) 2592 return (error); 2593 2594 bzero(&p, sizeof(p)); 2595 p.origin = PR_ORIG_RA; 2596 bzero(&s6, sizeof(s6)); 2597 s6.sin6_family = AF_INET6; 2598 s6.sin6_len = sizeof(s6); 2599 2600 ND6_RLOCK(); 2601 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2602 p.prefix = pr->ndpr_prefix; 2603 if (sa6_recoverscope(&p.prefix)) { 2604 log(LOG_ERR, "scope error in prefix list (%s)\n", 2605 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2606 /* XXX: press on... */ 2607 } 2608 p.raflags = pr->ndpr_raf; 2609 p.prefixlen = pr->ndpr_plen; 2610 p.vltime = pr->ndpr_vltime; 2611 p.pltime = pr->ndpr_pltime; 2612 p.if_index = pr->ndpr_ifp->if_index; 2613 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2614 p.expire = 0; 2615 else { 2616 /* XXX: we assume time_t is signed. */ 2617 maxexpire = (-1) & 2618 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2619 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2620 p.expire = pr->ndpr_lastupdate + 2621 pr->ndpr_vltime + 2622 (time_second - time_uptime); 2623 else 2624 p.expire = maxexpire; 2625 } 2626 p.refcnt = pr->ndpr_addrcnt; 2627 p.flags = pr->ndpr_stateflags; 2628 p.advrtrs = 0; 2629 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2630 p.advrtrs++; 2631 error = SYSCTL_OUT(req, &p, sizeof(p)); 2632 if (error != 0) 2633 break; 2634 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2635 s6.sin6_addr = pfr->router->rtaddr; 2636 if (sa6_recoverscope(&s6)) 2637 log(LOG_ERR, 2638 "scope error in prefix list (%s)\n", 2639 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2640 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2641 if (error != 0) 2642 goto out; 2643 } 2644 } 2645 out: 2646 ND6_RUNLOCK(); 2647 return (error); 2648 } 2649 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2650 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2651 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2652 "NDP prefix list"); 2653 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2654 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2655 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2656 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2657