xref: /freebsd/sys/netinet6/nd6.c (revision e27abb6689c5733dd08ce240d5402a0de3a42254)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arc.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/iso88025.h>
62 #include <net/fddi.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
89 
90 /* timer values */
91 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
92 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
93 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
94 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
95 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
96 					 * local traffic */
97 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
98 					 * collection timer */
99 
100 /* preventing too many loops in ND option parsing */
101 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
102 
103 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
104 					 * layer hints */
105 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
106 					 * ND entries */
107 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
108 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
109 
110 #ifdef ND6_DEBUG
111 VNET_DEFINE(int, nd6_debug) = 1;
112 #else
113 VNET_DEFINE(int, nd6_debug) = 0;
114 #endif
115 
116 static eventhandler_tag lle_event_eh, iflladdr_event_eh;
117 
118 VNET_DEFINE(struct nd_drhead, nd_defrouter);
119 VNET_DEFINE(struct nd_prhead, nd_prefix);
120 VNET_DEFINE(struct rwlock, nd6_lock);
121 
122 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
123 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
124 
125 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
126 
127 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
128 	struct ifnet *);
129 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
130 static void nd6_slowtimo(void *);
131 static int regen_tmpaddr(struct in6_ifaddr *);
132 static void nd6_free(struct llentry **, int);
133 static void nd6_free_redirect(const struct llentry *);
134 static void nd6_llinfo_timer(void *);
135 static void nd6_llinfo_settimer_locked(struct llentry *, long);
136 static void clear_llinfo_pqueue(struct llentry *);
137 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
138 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
139     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
140 static int nd6_need_cache(struct ifnet *);
141 
142 
143 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
144 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
145 
146 VNET_DEFINE(struct callout, nd6_timer_ch);
147 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
148 
149 static void
150 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
151 {
152 	struct rt_addrinfo rtinfo;
153 	struct sockaddr_in6 dst;
154 	struct sockaddr_dl gw;
155 	struct ifnet *ifp;
156 	int type;
157 
158 	LLE_WLOCK_ASSERT(lle);
159 
160 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
161 		return;
162 
163 	switch (evt) {
164 	case LLENTRY_RESOLVED:
165 		type = RTM_ADD;
166 		KASSERT(lle->la_flags & LLE_VALID,
167 		    ("%s: %p resolved but not valid?", __func__, lle));
168 		break;
169 	case LLENTRY_EXPIRED:
170 		type = RTM_DELETE;
171 		break;
172 	default:
173 		return;
174 	}
175 
176 	ifp = lltable_get_ifp(lle->lle_tbl);
177 
178 	bzero(&dst, sizeof(dst));
179 	bzero(&gw, sizeof(gw));
180 	bzero(&rtinfo, sizeof(rtinfo));
181 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
182 	dst.sin6_scope_id = in6_getscopezone(ifp,
183 	    in6_addrscope(&dst.sin6_addr));
184 	gw.sdl_len = sizeof(struct sockaddr_dl);
185 	gw.sdl_family = AF_LINK;
186 	gw.sdl_alen = ifp->if_addrlen;
187 	gw.sdl_index = ifp->if_index;
188 	gw.sdl_type = ifp->if_type;
189 	if (evt == LLENTRY_RESOLVED)
190 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
191 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
192 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
193 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
194 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
195 	    type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB);
196 }
197 
198 /*
199  * A handler for interface link layer address change event.
200  */
201 static void
202 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
203 {
204 
205 	lltable_update_ifaddr(LLTABLE6(ifp));
206 }
207 
208 void
209 nd6_init(void)
210 {
211 
212 	rw_init(&V_nd6_lock, "nd6");
213 
214 	LIST_INIT(&V_nd_prefix);
215 
216 	/* initialization of the default router list */
217 	TAILQ_INIT(&V_nd_defrouter);
218 
219 	/* Start timers. */
220 	callout_init(&V_nd6_slowtimo_ch, 0);
221 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
222 	    nd6_slowtimo, curvnet);
223 
224 	callout_init(&V_nd6_timer_ch, 0);
225 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
226 
227 	nd6_dad_init();
228 	if (IS_DEFAULT_VNET(curvnet)) {
229 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
230 		    NULL, EVENTHANDLER_PRI_ANY);
231 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
232 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
233 	}
234 }
235 
236 #ifdef VIMAGE
237 void
238 nd6_destroy()
239 {
240 
241 	callout_drain(&V_nd6_slowtimo_ch);
242 	callout_drain(&V_nd6_timer_ch);
243 	if (IS_DEFAULT_VNET(curvnet)) {
244 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
245 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
246 	}
247 	rw_destroy(&V_nd6_lock);
248 }
249 #endif
250 
251 struct nd_ifinfo *
252 nd6_ifattach(struct ifnet *ifp)
253 {
254 	struct nd_ifinfo *nd;
255 
256 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
257 	nd->initialized = 1;
258 
259 	nd->chlim = IPV6_DEFHLIM;
260 	nd->basereachable = REACHABLE_TIME;
261 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
262 	nd->retrans = RETRANS_TIMER;
263 
264 	nd->flags = ND6_IFF_PERFORMNUD;
265 
266 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
267 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
268 	 * default regardless of the V_ip6_auto_linklocal configuration to
269 	 * give a reasonable default behavior.
270 	 */
271 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
272 	    (ifp->if_flags & IFF_LOOPBACK))
273 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
274 	/*
275 	 * A loopback interface does not need to accept RTADV.
276 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
277 	 * default regardless of the V_ip6_accept_rtadv configuration to
278 	 * prevent the interface from accepting RA messages arrived
279 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
280 	 */
281 	if (V_ip6_accept_rtadv &&
282 	    !(ifp->if_flags & IFF_LOOPBACK) &&
283 	    (ifp->if_type != IFT_BRIDGE))
284 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
285 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
286 		nd->flags |= ND6_IFF_NO_RADR;
287 
288 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
289 	nd6_setmtu0(ifp, nd);
290 
291 	return nd;
292 }
293 
294 void
295 nd6_ifdetach(struct nd_ifinfo *nd)
296 {
297 
298 	free(nd, M_IP6NDP);
299 }
300 
301 /*
302  * Reset ND level link MTU. This function is called when the physical MTU
303  * changes, which means we might have to adjust the ND level MTU.
304  */
305 void
306 nd6_setmtu(struct ifnet *ifp)
307 {
308 	if (ifp->if_afdata[AF_INET6] == NULL)
309 		return;
310 
311 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
312 }
313 
314 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
315 void
316 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
317 {
318 	u_int32_t omaxmtu;
319 
320 	omaxmtu = ndi->maxmtu;
321 
322 	switch (ifp->if_type) {
323 	case IFT_ARCNET:
324 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
325 		break;
326 	case IFT_FDDI:
327 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
328 		break;
329 	case IFT_ISO88025:
330 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
331 		 break;
332 	default:
333 		ndi->maxmtu = ifp->if_mtu;
334 		break;
335 	}
336 
337 	/*
338 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
339 	 * undesirable situation.  We thus notify the operator of the change
340 	 * explicitly.  The check for omaxmtu is necessary to restrict the
341 	 * log to the case of changing the MTU, not initializing it.
342 	 */
343 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
344 		log(LOG_NOTICE, "nd6_setmtu0: "
345 		    "new link MTU on %s (%lu) is too small for IPv6\n",
346 		    if_name(ifp), (unsigned long)ndi->maxmtu);
347 	}
348 
349 	if (ndi->maxmtu > V_in6_maxmtu)
350 		in6_setmaxmtu(); /* check all interfaces just in case */
351 
352 }
353 
354 void
355 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
356 {
357 
358 	bzero(ndopts, sizeof(*ndopts));
359 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
360 	ndopts->nd_opts_last
361 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
362 
363 	if (icmp6len == 0) {
364 		ndopts->nd_opts_done = 1;
365 		ndopts->nd_opts_search = NULL;
366 	}
367 }
368 
369 /*
370  * Take one ND option.
371  */
372 struct nd_opt_hdr *
373 nd6_option(union nd_opts *ndopts)
374 {
375 	struct nd_opt_hdr *nd_opt;
376 	int olen;
377 
378 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
379 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
380 	    __func__));
381 	if (ndopts->nd_opts_search == NULL)
382 		return NULL;
383 	if (ndopts->nd_opts_done)
384 		return NULL;
385 
386 	nd_opt = ndopts->nd_opts_search;
387 
388 	/* make sure nd_opt_len is inside the buffer */
389 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
390 		bzero(ndopts, sizeof(*ndopts));
391 		return NULL;
392 	}
393 
394 	olen = nd_opt->nd_opt_len << 3;
395 	if (olen == 0) {
396 		/*
397 		 * Message validation requires that all included
398 		 * options have a length that is greater than zero.
399 		 */
400 		bzero(ndopts, sizeof(*ndopts));
401 		return NULL;
402 	}
403 
404 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
405 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
406 		/* option overruns the end of buffer, invalid */
407 		bzero(ndopts, sizeof(*ndopts));
408 		return NULL;
409 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
410 		/* reached the end of options chain */
411 		ndopts->nd_opts_done = 1;
412 		ndopts->nd_opts_search = NULL;
413 	}
414 	return nd_opt;
415 }
416 
417 /*
418  * Parse multiple ND options.
419  * This function is much easier to use, for ND routines that do not need
420  * multiple options of the same type.
421  */
422 int
423 nd6_options(union nd_opts *ndopts)
424 {
425 	struct nd_opt_hdr *nd_opt;
426 	int i = 0;
427 
428 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
429 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
430 	    __func__));
431 	if (ndopts->nd_opts_search == NULL)
432 		return 0;
433 
434 	while (1) {
435 		nd_opt = nd6_option(ndopts);
436 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
437 			/*
438 			 * Message validation requires that all included
439 			 * options have a length that is greater than zero.
440 			 */
441 			ICMP6STAT_INC(icp6s_nd_badopt);
442 			bzero(ndopts, sizeof(*ndopts));
443 			return -1;
444 		}
445 
446 		if (nd_opt == NULL)
447 			goto skip1;
448 
449 		switch (nd_opt->nd_opt_type) {
450 		case ND_OPT_SOURCE_LINKADDR:
451 		case ND_OPT_TARGET_LINKADDR:
452 		case ND_OPT_MTU:
453 		case ND_OPT_REDIRECTED_HEADER:
454 		case ND_OPT_NONCE:
455 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
456 				nd6log((LOG_INFO,
457 				    "duplicated ND6 option found (type=%d)\n",
458 				    nd_opt->nd_opt_type));
459 				/* XXX bark? */
460 			} else {
461 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
462 					= nd_opt;
463 			}
464 			break;
465 		case ND_OPT_PREFIX_INFORMATION:
466 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
467 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
468 					= nd_opt;
469 			}
470 			ndopts->nd_opts_pi_end =
471 				(struct nd_opt_prefix_info *)nd_opt;
472 			break;
473 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
474 		case ND_OPT_RDNSS:	/* RFC 6106 */
475 		case ND_OPT_DNSSL:	/* RFC 6106 */
476 			/*
477 			 * Silently ignore options we know and do not care about
478 			 * in the kernel.
479 			 */
480 			break;
481 		default:
482 			/*
483 			 * Unknown options must be silently ignored,
484 			 * to accommodate future extension to the protocol.
485 			 */
486 			nd6log((LOG_DEBUG,
487 			    "nd6_options: unsupported option %d - "
488 			    "option ignored\n", nd_opt->nd_opt_type));
489 		}
490 
491 skip1:
492 		i++;
493 		if (i > V_nd6_maxndopt) {
494 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
495 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
496 			break;
497 		}
498 
499 		if (ndopts->nd_opts_done)
500 			break;
501 	}
502 
503 	return 0;
504 }
505 
506 /*
507  * ND6 timer routine to handle ND6 entries
508  */
509 static void
510 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
511 {
512 	int canceled;
513 
514 	LLE_WLOCK_ASSERT(ln);
515 
516 	if (tick < 0) {
517 		ln->la_expire = 0;
518 		ln->ln_ntick = 0;
519 		canceled = callout_stop(&ln->lle_timer);
520 	} else {
521 		ln->la_expire = time_uptime + tick / hz;
522 		LLE_ADDREF(ln);
523 		if (tick > INT_MAX) {
524 			ln->ln_ntick = tick - INT_MAX;
525 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
526 			    nd6_llinfo_timer, ln);
527 		} else {
528 			ln->ln_ntick = 0;
529 			canceled = callout_reset(&ln->lle_timer, tick,
530 			    nd6_llinfo_timer, ln);
531 		}
532 	}
533 	if (canceled > 0)
534 		LLE_REMREF(ln);
535 }
536 
537 /*
538  * Gets source address of the first packet in hold queue
539  * and stores it in @src.
540  * Returns pointer to @src (if hold queue is not empty) or NULL.
541  *
542  * Set noinline to be dtrace-friendly
543  */
544 static __noinline struct in6_addr *
545 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
546 {
547 	struct ip6_hdr hdr;
548 	struct mbuf *m;
549 
550 	if (ln->la_hold == NULL)
551 		return (NULL);
552 
553 	/*
554 	 * assume every packet in la_hold has the same IP header
555 	 */
556 	m = ln->la_hold;
557 	if (sizeof(hdr) > m->m_len)
558 		return (NULL);
559 
560 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
561 	*src = hdr.ip6_src;
562 
563 	return (src);
564 }
565 
566 /*
567  * Checks if we need to switch from STALE state.
568  *
569  * RFC 4861 requires switching from STALE to DELAY state
570  * on first packet matching entry, waiting V_nd6_delay and
571  * transition to PROBE state (if upper layer confirmation was
572  * not received).
573  *
574  * This code performs a bit differently:
575  * On packet hit we don't change state (but desired state
576  * can be guessed by control plane). However, after V_nd6_delay
577  * seconds code will transition to PROBE state (so DELAY state
578  * is kinda skipped in most situations).
579  *
580  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
581  * we perform the following upon entering STALE state:
582  *
583  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
584  * if packet was transmitted at the start of given interval, we
585  * would be able to switch to PROBE state in V_nd6_delay seconds
586  * as user expects.
587  *
588  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
589  * lle in STALE state (remaining timer value stored in lle_remtime).
590  *
591  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
592  * seconds ago.
593  *
594  * Returns non-zero value if the entry is still STALE (storing
595  * the next timer interval in @pdelay).
596  *
597  * Returns zero value if original timer expired or we need to switch to
598  * PROBE (store that in @do_switch variable).
599  */
600 static int
601 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
602 {
603 	int nd_delay, nd_gctimer, r_skip_req;
604 	time_t lle_hittime;
605 	long delay;
606 
607 	*do_switch = 0;
608 	nd_gctimer = V_nd6_gctimer;
609 	nd_delay = V_nd6_delay;
610 
611 	LLE_REQ_LOCK(lle);
612 	r_skip_req = lle->r_skip_req;
613 	lle_hittime = lle->lle_hittime;
614 	LLE_REQ_UNLOCK(lle);
615 
616 	if (r_skip_req > 0) {
617 
618 		/*
619 		 * Nonzero r_skip_req value was set upon entering
620 		 * STALE state. Since value was not changed, no
621 		 * packets were passed using this lle. Ask for
622 		 * timer reschedule and keep STALE state.
623 		 */
624 		delay = (long)(MIN(nd_gctimer, nd_delay));
625 		delay *= hz;
626 		if (lle->lle_remtime > delay)
627 			lle->lle_remtime -= delay;
628 		else {
629 			delay = lle->lle_remtime;
630 			lle->lle_remtime = 0;
631 		}
632 
633 		if (delay == 0) {
634 
635 			/*
636 			 * The original ng6_gctime timeout ended,
637 			 * no more rescheduling.
638 			 */
639 			return (0);
640 		}
641 
642 		*pdelay = delay;
643 		return (1);
644 	}
645 
646 	/*
647 	 * Packet received. Verify timestamp
648 	 */
649 	delay = (long)(time_uptime - lle_hittime);
650 	if (delay < nd_delay) {
651 
652 		/*
653 		 * V_nd6_delay still not passed since the first
654 		 * hit in STALE state.
655 		 * Reshedule timer and return.
656 		 */
657 		*pdelay = (long)(nd_delay - delay) * hz;
658 		return (1);
659 	}
660 
661 	/* Request switching to probe */
662 	*do_switch = 1;
663 	return (0);
664 }
665 
666 
667 /*
668  * Switch @lle state to new state optionally arming timers.
669  *
670  * Set noinline to be dtrace-friendly
671  */
672 __noinline void
673 nd6_llinfo_setstate(struct llentry *lle, int newstate)
674 {
675 	struct ifnet *ifp;
676 	int nd_gctimer, nd_delay;
677 	long delay, remtime;
678 
679 	delay = 0;
680 	remtime = 0;
681 
682 	switch (newstate) {
683 	case ND6_LLINFO_INCOMPLETE:
684 		ifp = lle->lle_tbl->llt_ifp;
685 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
686 		break;
687 	case ND6_LLINFO_REACHABLE:
688 		if (!ND6_LLINFO_PERMANENT(lle)) {
689 			ifp = lle->lle_tbl->llt_ifp;
690 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
691 		}
692 		break;
693 	case ND6_LLINFO_STALE:
694 
695 		/*
696 		 * Notify fast path that we want to know if any packet
697 		 * is transmitted by setting r_skip_req.
698 		 */
699 		LLE_REQ_LOCK(lle);
700 		lle->r_skip_req = 1;
701 		LLE_REQ_UNLOCK(lle);
702 		nd_delay = V_nd6_delay;
703 		nd_gctimer = V_nd6_gctimer;
704 
705 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
706 		remtime = (long)nd_gctimer * hz - delay;
707 		break;
708 	case ND6_LLINFO_DELAY:
709 		lle->la_asked = 0;
710 		delay = (long)V_nd6_delay * hz;
711 		break;
712 	}
713 
714 	if (delay > 0)
715 		nd6_llinfo_settimer_locked(lle, delay);
716 
717 	lle->lle_remtime = remtime;
718 	lle->ln_state = newstate;
719 }
720 
721 /*
722  * Timer-dependent part of nd state machine.
723  *
724  * Set noinline to be dtrace-friendly
725  */
726 static __noinline void
727 nd6_llinfo_timer(void *arg)
728 {
729 	struct llentry *ln;
730 	struct in6_addr *dst, *pdst, *psrc, src;
731 	struct ifnet *ifp;
732 	struct nd_ifinfo *ndi;
733 	int do_switch, send_ns;
734 	long delay;
735 
736 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
737 	ln = (struct llentry *)arg;
738 	ifp = lltable_get_ifp(ln->lle_tbl);
739 	CURVNET_SET(ifp->if_vnet);
740 
741 	ND6_RLOCK();
742 	LLE_WLOCK(ln);
743 	if (callout_pending(&ln->lle_timer)) {
744 		/*
745 		 * Here we are a bit odd here in the treatment of
746 		 * active/pending. If the pending bit is set, it got
747 		 * rescheduled before I ran. The active
748 		 * bit we ignore, since if it was stopped
749 		 * in ll_tablefree() and was currently running
750 		 * it would have return 0 so the code would
751 		 * not have deleted it since the callout could
752 		 * not be stopped so we want to go through
753 		 * with the delete here now. If the callout
754 		 * was restarted, the pending bit will be back on and
755 		 * we just want to bail since the callout_reset would
756 		 * return 1 and our reference would have been removed
757 		 * by nd6_llinfo_settimer_locked above since canceled
758 		 * would have been 1.
759 		 */
760 		LLE_WUNLOCK(ln);
761 		ND6_RUNLOCK();
762 		CURVNET_RESTORE();
763 		return;
764 	}
765 	ndi = ND_IFINFO(ifp);
766 	send_ns = 0;
767 	dst = &ln->r_l3addr.addr6;
768 	pdst = dst;
769 
770 	if (ln->ln_ntick > 0) {
771 		if (ln->ln_ntick > INT_MAX) {
772 			ln->ln_ntick -= INT_MAX;
773 			nd6_llinfo_settimer_locked(ln, INT_MAX);
774 		} else {
775 			ln->ln_ntick = 0;
776 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
777 		}
778 		goto done;
779 	}
780 
781 	if (ln->la_flags & LLE_STATIC) {
782 		goto done;
783 	}
784 
785 	if (ln->la_flags & LLE_DELETED) {
786 		nd6_free(&ln, 0);
787 		goto done;
788 	}
789 
790 	switch (ln->ln_state) {
791 	case ND6_LLINFO_INCOMPLETE:
792 		if (ln->la_asked < V_nd6_mmaxtries) {
793 			ln->la_asked++;
794 			send_ns = 1;
795 			/* Send NS to multicast address */
796 			pdst = NULL;
797 		} else {
798 			struct mbuf *m = ln->la_hold;
799 			if (m) {
800 				struct mbuf *m0;
801 
802 				/*
803 				 * assuming every packet in la_hold has the
804 				 * same IP header.  Send error after unlock.
805 				 */
806 				m0 = m->m_nextpkt;
807 				m->m_nextpkt = NULL;
808 				ln->la_hold = m0;
809 				clear_llinfo_pqueue(ln);
810 			}
811 			nd6_free(&ln, 0);
812 			if (m != NULL)
813 				icmp6_error2(m, ICMP6_DST_UNREACH,
814 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
815 		}
816 		break;
817 	case ND6_LLINFO_REACHABLE:
818 		if (!ND6_LLINFO_PERMANENT(ln))
819 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
820 		break;
821 
822 	case ND6_LLINFO_STALE:
823 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
824 
825 			/*
826 			 * No packet has used this entry and GC timeout
827 			 * has not been passed. Reshedule timer and
828 			 * return.
829 			 */
830 			nd6_llinfo_settimer_locked(ln, delay);
831 			break;
832 		}
833 
834 		if (do_switch == 0) {
835 
836 			/*
837 			 * GC timer has ended and entry hasn't been used.
838 			 * Run Garbage collector (RFC 4861, 5.3)
839 			 */
840 			if (!ND6_LLINFO_PERMANENT(ln))
841 				nd6_free(&ln, 1);
842 			break;
843 		}
844 
845 		/* Entry has been used AND delay timer has ended. */
846 
847 		/* FALLTHROUGH */
848 
849 	case ND6_LLINFO_DELAY:
850 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
851 			/* We need NUD */
852 			ln->la_asked = 1;
853 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
854 			send_ns = 1;
855 		} else
856 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
857 		break;
858 	case ND6_LLINFO_PROBE:
859 		if (ln->la_asked < V_nd6_umaxtries) {
860 			ln->la_asked++;
861 			send_ns = 1;
862 		} else {
863 			nd6_free(&ln, 0);
864 		}
865 		break;
866 	default:
867 		panic("%s: paths in a dark night can be confusing: %d",
868 		    __func__, ln->ln_state);
869 	}
870 done:
871 	if (ln != NULL)
872 		ND6_RUNLOCK();
873 	if (send_ns != 0) {
874 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
875 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
876 		LLE_FREE_LOCKED(ln);
877 		ln = NULL;
878 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
879 	}
880 
881 	if (ln != NULL)
882 		LLE_FREE_LOCKED(ln);
883 	CURVNET_RESTORE();
884 }
885 
886 
887 /*
888  * ND6 timer routine to expire default route list and prefix list
889  */
890 void
891 nd6_timer(void *arg)
892 {
893 	CURVNET_SET((struct vnet *) arg);
894 	struct nd_drhead drq;
895 	struct nd_defrouter *dr, *ndr;
896 	struct nd_prefix *pr, *npr;
897 	struct in6_ifaddr *ia6, *nia6;
898 
899 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
900 	    nd6_timer, curvnet);
901 
902 	TAILQ_INIT(&drq);
903 
904 	/* expire default router list */
905 	ND6_WLOCK();
906 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr)
907 		if (dr->expire && dr->expire < time_uptime)
908 			defrouter_unlink(dr, &drq);
909 	ND6_WUNLOCK();
910 
911 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
912 		TAILQ_REMOVE(&drq, dr, dr_entry);
913 		defrouter_del(dr);
914 	}
915 
916 	/*
917 	 * expire interface addresses.
918 	 * in the past the loop was inside prefix expiry processing.
919 	 * However, from a stricter speci-confrmance standpoint, we should
920 	 * rather separate address lifetimes and prefix lifetimes.
921 	 *
922 	 * XXXRW: in6_ifaddrhead locking.
923 	 */
924   addrloop:
925 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
926 		/* check address lifetime */
927 		if (IFA6_IS_INVALID(ia6)) {
928 			int regen = 0;
929 
930 			/*
931 			 * If the expiring address is temporary, try
932 			 * regenerating a new one.  This would be useful when
933 			 * we suspended a laptop PC, then turned it on after a
934 			 * period that could invalidate all temporary
935 			 * addresses.  Although we may have to restart the
936 			 * loop (see below), it must be after purging the
937 			 * address.  Otherwise, we'd see an infinite loop of
938 			 * regeneration.
939 			 */
940 			if (V_ip6_use_tempaddr &&
941 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
942 				if (regen_tmpaddr(ia6) == 0)
943 					regen = 1;
944 			}
945 
946 			in6_purgeaddr(&ia6->ia_ifa);
947 
948 			if (regen)
949 				goto addrloop; /* XXX: see below */
950 		} else if (IFA6_IS_DEPRECATED(ia6)) {
951 			int oldflags = ia6->ia6_flags;
952 
953 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
954 
955 			/*
956 			 * If a temporary address has just become deprecated,
957 			 * regenerate a new one if possible.
958 			 */
959 			if (V_ip6_use_tempaddr &&
960 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
961 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
962 
963 				if (regen_tmpaddr(ia6) == 0) {
964 					/*
965 					 * A new temporary address is
966 					 * generated.
967 					 * XXX: this means the address chain
968 					 * has changed while we are still in
969 					 * the loop.  Although the change
970 					 * would not cause disaster (because
971 					 * it's not a deletion, but an
972 					 * addition,) we'd rather restart the
973 					 * loop just for safety.  Or does this
974 					 * significantly reduce performance??
975 					 */
976 					goto addrloop;
977 				}
978 			}
979 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
980 			/*
981 			 * Schedule DAD for a tentative address.  This happens
982 			 * if the interface was down or not running
983 			 * when the address was configured.
984 			 */
985 			int delay;
986 
987 			delay = arc4random() %
988 			    (MAX_RTR_SOLICITATION_DELAY * hz);
989 			nd6_dad_start((struct ifaddr *)ia6, delay);
990 		} else {
991 			/*
992 			 * Check status of the interface.  If it is down,
993 			 * mark the address as tentative for future DAD.
994 			 */
995 			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
996 			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
997 				== 0 ||
998 			    (ND_IFINFO(ia6->ia_ifp)->flags &
999 				ND6_IFF_IFDISABLED) != 0) {
1000 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1001 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1002 			}
1003 			/*
1004 			 * A new RA might have made a deprecated address
1005 			 * preferred.
1006 			 */
1007 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1008 		}
1009 	}
1010 
1011 	/* expire prefix list */
1012 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1013 		/*
1014 		 * check prefix lifetime.
1015 		 * since pltime is just for autoconf, pltime processing for
1016 		 * prefix is not necessary.
1017 		 */
1018 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
1019 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
1020 
1021 			/*
1022 			 * address expiration and prefix expiration are
1023 			 * separate.  NEVER perform in6_purgeaddr here.
1024 			 */
1025 			prelist_remove(pr);
1026 		}
1027 	}
1028 	CURVNET_RESTORE();
1029 }
1030 
1031 /*
1032  * ia6 - deprecated/invalidated temporary address
1033  */
1034 static int
1035 regen_tmpaddr(struct in6_ifaddr *ia6)
1036 {
1037 	struct ifaddr *ifa;
1038 	struct ifnet *ifp;
1039 	struct in6_ifaddr *public_ifa6 = NULL;
1040 
1041 	ifp = ia6->ia_ifa.ifa_ifp;
1042 	IF_ADDR_RLOCK(ifp);
1043 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1044 		struct in6_ifaddr *it6;
1045 
1046 		if (ifa->ifa_addr->sa_family != AF_INET6)
1047 			continue;
1048 
1049 		it6 = (struct in6_ifaddr *)ifa;
1050 
1051 		/* ignore no autoconf addresses. */
1052 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1053 			continue;
1054 
1055 		/* ignore autoconf addresses with different prefixes. */
1056 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1057 			continue;
1058 
1059 		/*
1060 		 * Now we are looking at an autoconf address with the same
1061 		 * prefix as ours.  If the address is temporary and is still
1062 		 * preferred, do not create another one.  It would be rare, but
1063 		 * could happen, for example, when we resume a laptop PC after
1064 		 * a long period.
1065 		 */
1066 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1067 		    !IFA6_IS_DEPRECATED(it6)) {
1068 			public_ifa6 = NULL;
1069 			break;
1070 		}
1071 
1072 		/*
1073 		 * This is a public autoconf address that has the same prefix
1074 		 * as ours.  If it is preferred, keep it.  We can't break the
1075 		 * loop here, because there may be a still-preferred temporary
1076 		 * address with the prefix.
1077 		 */
1078 		if (!IFA6_IS_DEPRECATED(it6))
1079 			public_ifa6 = it6;
1080 	}
1081 	if (public_ifa6 != NULL)
1082 		ifa_ref(&public_ifa6->ia_ifa);
1083 	IF_ADDR_RUNLOCK(ifp);
1084 
1085 	if (public_ifa6 != NULL) {
1086 		int e;
1087 
1088 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1089 			ifa_free(&public_ifa6->ia_ifa);
1090 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1091 			    " tmp addr,errno=%d\n", e);
1092 			return (-1);
1093 		}
1094 		ifa_free(&public_ifa6->ia_ifa);
1095 		return (0);
1096 	}
1097 
1098 	return (-1);
1099 }
1100 
1101 /*
1102  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1103  * cache entries are freed in in6_domifdetach().
1104  */
1105 void
1106 nd6_purge(struct ifnet *ifp)
1107 {
1108 	struct nd_drhead drq;
1109 	struct nd_defrouter *dr, *ndr;
1110 	struct nd_prefix *pr, *npr;
1111 
1112 	TAILQ_INIT(&drq);
1113 
1114 	/*
1115 	 * Nuke default router list entries toward ifp.
1116 	 * We defer removal of default router list entries that is installed
1117 	 * in the routing table, in order to keep additional side effects as
1118 	 * small as possible.
1119 	 */
1120 	ND6_WLOCK();
1121 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1122 		if (dr->installed)
1123 			continue;
1124 		if (dr->ifp == ifp)
1125 			defrouter_unlink(dr, &drq);
1126 	}
1127 
1128 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1129 		if (!dr->installed)
1130 			continue;
1131 		if (dr->ifp == ifp)
1132 			defrouter_unlink(dr, &drq);
1133 	}
1134 	ND6_WUNLOCK();
1135 
1136 	while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1137 		TAILQ_REMOVE(&drq, dr, dr_entry);
1138 		defrouter_del(dr);
1139 	}
1140 
1141 	/* Nuke prefix list entries toward ifp */
1142 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1143 		if (pr->ndpr_ifp == ifp) {
1144 			/*
1145 			 * Because if_detach() does *not* release prefixes
1146 			 * while purging addresses the reference count will
1147 			 * still be above zero. We therefore reset it to
1148 			 * make sure that the prefix really gets purged.
1149 			 */
1150 			pr->ndpr_refcnt = 0;
1151 
1152 			prelist_remove(pr);
1153 		}
1154 	}
1155 
1156 	/* cancel default outgoing interface setting */
1157 	if (V_nd6_defifindex == ifp->if_index)
1158 		nd6_setdefaultiface(0);
1159 
1160 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1161 		/* Refresh default router list. */
1162 		defrouter_select();
1163 	}
1164 }
1165 
1166 /*
1167  * the caller acquires and releases the lock on the lltbls
1168  * Returns the llentry locked
1169  */
1170 struct llentry *
1171 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1172 {
1173 	struct sockaddr_in6 sin6;
1174 	struct llentry *ln;
1175 
1176 	bzero(&sin6, sizeof(sin6));
1177 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1178 	sin6.sin6_family = AF_INET6;
1179 	sin6.sin6_addr = *addr6;
1180 
1181 	IF_AFDATA_LOCK_ASSERT(ifp);
1182 
1183 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1184 
1185 	return (ln);
1186 }
1187 
1188 struct llentry *
1189 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1190 {
1191 	struct sockaddr_in6 sin6;
1192 	struct llentry *ln;
1193 
1194 	bzero(&sin6, sizeof(sin6));
1195 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1196 	sin6.sin6_family = AF_INET6;
1197 	sin6.sin6_addr = *addr6;
1198 
1199 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1200 	if (ln != NULL)
1201 		ln->ln_state = ND6_LLINFO_NOSTATE;
1202 
1203 	return (ln);
1204 }
1205 
1206 /*
1207  * Test whether a given IPv6 address is a neighbor or not, ignoring
1208  * the actual neighbor cache.  The neighbor cache is ignored in order
1209  * to not reenter the routing code from within itself.
1210  */
1211 static int
1212 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1213 {
1214 	struct nd_prefix *pr;
1215 	struct ifaddr *dstaddr;
1216 	struct rt_addrinfo info;
1217 	struct sockaddr_in6 rt_key;
1218 	struct sockaddr *dst6;
1219 	int fibnum;
1220 
1221 	/*
1222 	 * A link-local address is always a neighbor.
1223 	 * XXX: a link does not necessarily specify a single interface.
1224 	 */
1225 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1226 		struct sockaddr_in6 sin6_copy;
1227 		u_int32_t zone;
1228 
1229 		/*
1230 		 * We need sin6_copy since sa6_recoverscope() may modify the
1231 		 * content (XXX).
1232 		 */
1233 		sin6_copy = *addr;
1234 		if (sa6_recoverscope(&sin6_copy))
1235 			return (0); /* XXX: should be impossible */
1236 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1237 			return (0);
1238 		if (sin6_copy.sin6_scope_id == zone)
1239 			return (1);
1240 		else
1241 			return (0);
1242 	}
1243 
1244 	bzero(&rt_key, sizeof(rt_key));
1245 	bzero(&info, sizeof(info));
1246 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1247 
1248 	/* Always use the default FIB here. XXME - why? */
1249 	fibnum = RT_DEFAULT_FIB;
1250 
1251 	/*
1252 	 * If the address matches one of our addresses,
1253 	 * it should be a neighbor.
1254 	 * If the address matches one of our on-link prefixes, it should be a
1255 	 * neighbor.
1256 	 */
1257 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1258 		if (pr->ndpr_ifp != ifp)
1259 			continue;
1260 
1261 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1262 
1263 			/* Always use the default FIB here. */
1264 			dst6 = (struct sockaddr *)&pr->ndpr_prefix;
1265 
1266 			/* Restore length field before retrying lookup */
1267 			rt_key.sin6_len = sizeof(rt_key);
1268 			if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0)
1269 				continue;
1270 			/*
1271 			 * This is the case where multiple interfaces
1272 			 * have the same prefix, but only one is installed
1273 			 * into the routing table and that prefix entry
1274 			 * is not the one being examined here. In the case
1275 			 * where RADIX_MPATH is enabled, multiple route
1276 			 * entries (of the same rt_key value) will be
1277 			 * installed because the interface addresses all
1278 			 * differ.
1279 			 */
1280 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1281 			       &rt_key.sin6_addr))
1282 				continue;
1283 		}
1284 
1285 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1286 		    &addr->sin6_addr, &pr->ndpr_mask))
1287 			return (1);
1288 	}
1289 
1290 	/*
1291 	 * If the address is assigned on the node of the other side of
1292 	 * a p2p interface, the address should be a neighbor.
1293 	 */
1294 	dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS);
1295 	if (dstaddr != NULL) {
1296 		if (dstaddr->ifa_ifp == ifp) {
1297 			ifa_free(dstaddr);
1298 			return (1);
1299 		}
1300 		ifa_free(dstaddr);
1301 	}
1302 
1303 	/*
1304 	 * If the default router list is empty, all addresses are regarded
1305 	 * as on-link, and thus, as a neighbor.
1306 	 */
1307 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1308 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1309 	    V_nd6_defifindex == ifp->if_index) {
1310 		return (1);
1311 	}
1312 
1313 	return (0);
1314 }
1315 
1316 
1317 /*
1318  * Detect if a given IPv6 address identifies a neighbor on a given link.
1319  * XXX: should take care of the destination of a p2p link?
1320  */
1321 int
1322 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1323 {
1324 	struct llentry *lle;
1325 	int rc = 0;
1326 
1327 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1328 	if (nd6_is_new_addr_neighbor(addr, ifp))
1329 		return (1);
1330 
1331 	/*
1332 	 * Even if the address matches none of our addresses, it might be
1333 	 * in the neighbor cache.
1334 	 */
1335 	IF_AFDATA_RLOCK(ifp);
1336 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1337 		LLE_RUNLOCK(lle);
1338 		rc = 1;
1339 	}
1340 	IF_AFDATA_RUNLOCK(ifp);
1341 	return (rc);
1342 }
1343 
1344 /*
1345  * Free an nd6 llinfo entry.
1346  * Since the function would cause significant changes in the kernel, DO NOT
1347  * make it global, unless you have a strong reason for the change, and are sure
1348  * that the change is safe.
1349  *
1350  * Set noinline to be dtrace-friendly
1351  */
1352 static __noinline void
1353 nd6_free(struct llentry **lnp, int gc)
1354 {
1355 	struct ifnet *ifp;
1356 	struct llentry *ln;
1357 	struct nd_defrouter *dr;
1358 
1359 	ln = *lnp;
1360 	*lnp = NULL;
1361 
1362 	LLE_WLOCK_ASSERT(ln);
1363 	ND6_RLOCK_ASSERT();
1364 
1365 	ifp = lltable_get_ifp(ln->lle_tbl);
1366 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1367 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1368 	else
1369 		dr = NULL;
1370 	ND6_RUNLOCK();
1371 
1372 	if ((ln->la_flags & LLE_DELETED) == 0)
1373 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1374 
1375 	/*
1376 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1377 	 * even though it is not harmful, it was not really necessary.
1378 	 */
1379 
1380 	/* cancel timer */
1381 	nd6_llinfo_settimer_locked(ln, -1);
1382 
1383 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1384 		if (dr != NULL && dr->expire &&
1385 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1386 			/*
1387 			 * If the reason for the deletion is just garbage
1388 			 * collection, and the neighbor is an active default
1389 			 * router, do not delete it.  Instead, reset the GC
1390 			 * timer using the router's lifetime.
1391 			 * Simply deleting the entry would affect default
1392 			 * router selection, which is not necessarily a good
1393 			 * thing, especially when we're using router preference
1394 			 * values.
1395 			 * XXX: the check for ln_state would be redundant,
1396 			 *      but we intentionally keep it just in case.
1397 			 */
1398 			if (dr->expire > time_uptime)
1399 				nd6_llinfo_settimer_locked(ln,
1400 				    (dr->expire - time_uptime) * hz);
1401 			else
1402 				nd6_llinfo_settimer_locked(ln,
1403 				    (long)V_nd6_gctimer * hz);
1404 
1405 			LLE_REMREF(ln);
1406 			LLE_WUNLOCK(ln);
1407 			defrouter_rele(dr);
1408 			return;
1409 		}
1410 
1411 		if (dr) {
1412 			/*
1413 			 * Unreachablity of a router might affect the default
1414 			 * router selection and on-link detection of advertised
1415 			 * prefixes.
1416 			 */
1417 
1418 			/*
1419 			 * Temporarily fake the state to choose a new default
1420 			 * router and to perform on-link determination of
1421 			 * prefixes correctly.
1422 			 * Below the state will be set correctly,
1423 			 * or the entry itself will be deleted.
1424 			 */
1425 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1426 		}
1427 
1428 		if (ln->ln_router || dr) {
1429 
1430 			/*
1431 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1432 			 * rnh and for the calls to pfxlist_onlink_check() and
1433 			 * defrouter_select() in the block further down for calls
1434 			 * into nd6_lookup().  We still hold a ref.
1435 			 */
1436 			LLE_WUNLOCK(ln);
1437 
1438 			/*
1439 			 * rt6_flush must be called whether or not the neighbor
1440 			 * is in the Default Router List.
1441 			 * See a corresponding comment in nd6_na_input().
1442 			 */
1443 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1444 		}
1445 
1446 		if (dr) {
1447 			/*
1448 			 * Since defrouter_select() does not affect the
1449 			 * on-link determination and MIP6 needs the check
1450 			 * before the default router selection, we perform
1451 			 * the check now.
1452 			 */
1453 			pfxlist_onlink_check();
1454 
1455 			/*
1456 			 * Refresh default router list.
1457 			 */
1458 			defrouter_select();
1459 		}
1460 
1461 		/*
1462 		 * If this entry was added by an on-link redirect, remove the
1463 		 * corresponding host route.
1464 		 */
1465 		if (ln->la_flags & LLE_REDIRECT)
1466 			nd6_free_redirect(ln);
1467 
1468 		if (ln->ln_router || dr)
1469 			LLE_WLOCK(ln);
1470 	}
1471 
1472 	/*
1473 	 * Save to unlock. We still hold an extra reference and will not
1474 	 * free(9) in llentry_free() if someone else holds one as well.
1475 	 */
1476 	LLE_WUNLOCK(ln);
1477 	IF_AFDATA_LOCK(ifp);
1478 	LLE_WLOCK(ln);
1479 	/* Guard against race with other llentry_free(). */
1480 	if (ln->la_flags & LLE_LINKED) {
1481 		/* Remove callout reference */
1482 		LLE_REMREF(ln);
1483 		lltable_unlink_entry(ln->lle_tbl, ln);
1484 	}
1485 	IF_AFDATA_UNLOCK(ifp);
1486 
1487 	llentry_free(ln);
1488 	if (dr != NULL)
1489 		defrouter_rele(dr);
1490 }
1491 
1492 static int
1493 nd6_isdynrte(const struct rtentry *rt, void *xap)
1494 {
1495 
1496 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1497 		return (1);
1498 
1499 	return (0);
1500 }
1501 /*
1502  * Remove the rtentry for the given llentry,
1503  * both of which were installed by a redirect.
1504  */
1505 static void
1506 nd6_free_redirect(const struct llentry *ln)
1507 {
1508 	int fibnum;
1509 	struct sockaddr_in6 sin6;
1510 	struct rt_addrinfo info;
1511 
1512 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1513 	memset(&info, 0, sizeof(info));
1514 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1515 	info.rti_filter = nd6_isdynrte;
1516 
1517 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1518 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1519 }
1520 
1521 /*
1522  * Rejuvenate this function for routing operations related
1523  * processing.
1524  */
1525 void
1526 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1527 {
1528 	struct sockaddr_in6 *gateway;
1529 	struct nd_defrouter *dr;
1530 	struct ifnet *ifp;
1531 
1532 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1533 	ifp = rt->rt_ifp;
1534 
1535 	switch (req) {
1536 	case RTM_ADD:
1537 		break;
1538 
1539 	case RTM_DELETE:
1540 		if (!ifp)
1541 			return;
1542 		/*
1543 		 * Only indirect routes are interesting.
1544 		 */
1545 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1546 			return;
1547 		/*
1548 		 * check for default route
1549 		 */
1550 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1551 		    &SIN6(rt_key(rt))->sin6_addr)) {
1552 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1553 			if (dr != NULL) {
1554 				dr->installed = 0;
1555 				defrouter_rele(dr);
1556 			}
1557 		}
1558 		break;
1559 	}
1560 }
1561 
1562 
1563 int
1564 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1565 {
1566 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1567 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1568 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1569 	int error = 0;
1570 
1571 	if (ifp->if_afdata[AF_INET6] == NULL)
1572 		return (EPFNOSUPPORT);
1573 	switch (cmd) {
1574 	case OSIOCGIFINFO_IN6:
1575 #define ND	ndi->ndi
1576 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1577 		bzero(&ND, sizeof(ND));
1578 		ND.linkmtu = IN6_LINKMTU(ifp);
1579 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1580 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1581 		ND.reachable = ND_IFINFO(ifp)->reachable;
1582 		ND.retrans = ND_IFINFO(ifp)->retrans;
1583 		ND.flags = ND_IFINFO(ifp)->flags;
1584 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1585 		ND.chlim = ND_IFINFO(ifp)->chlim;
1586 		break;
1587 	case SIOCGIFINFO_IN6:
1588 		ND = *ND_IFINFO(ifp);
1589 		break;
1590 	case SIOCSIFINFO_IN6:
1591 		/*
1592 		 * used to change host variables from userland.
1593 		 * intended for a use on router to reflect RA configurations.
1594 		 */
1595 		/* 0 means 'unspecified' */
1596 		if (ND.linkmtu != 0) {
1597 			if (ND.linkmtu < IPV6_MMTU ||
1598 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1599 				error = EINVAL;
1600 				break;
1601 			}
1602 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1603 		}
1604 
1605 		if (ND.basereachable != 0) {
1606 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1607 
1608 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1609 			if (ND.basereachable != obasereachable)
1610 				ND_IFINFO(ifp)->reachable =
1611 				    ND_COMPUTE_RTIME(ND.basereachable);
1612 		}
1613 		if (ND.retrans != 0)
1614 			ND_IFINFO(ifp)->retrans = ND.retrans;
1615 		if (ND.chlim != 0)
1616 			ND_IFINFO(ifp)->chlim = ND.chlim;
1617 		/* FALLTHROUGH */
1618 	case SIOCSIFINFO_FLAGS:
1619 	{
1620 		struct ifaddr *ifa;
1621 		struct in6_ifaddr *ia;
1622 
1623 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1624 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1625 			/* ifdisabled 1->0 transision */
1626 
1627 			/*
1628 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1629 			 * has an link-local address with IN6_IFF_DUPLICATED,
1630 			 * do not clear ND6_IFF_IFDISABLED.
1631 			 * See RFC 4862, Section 5.4.5.
1632 			 */
1633 			IF_ADDR_RLOCK(ifp);
1634 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1635 				if (ifa->ifa_addr->sa_family != AF_INET6)
1636 					continue;
1637 				ia = (struct in6_ifaddr *)ifa;
1638 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1639 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1640 					break;
1641 			}
1642 			IF_ADDR_RUNLOCK(ifp);
1643 
1644 			if (ifa != NULL) {
1645 				/* LLA is duplicated. */
1646 				ND.flags |= ND6_IFF_IFDISABLED;
1647 				log(LOG_ERR, "Cannot enable an interface"
1648 				    " with a link-local address marked"
1649 				    " duplicate.\n");
1650 			} else {
1651 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1652 				if (ifp->if_flags & IFF_UP)
1653 					in6_if_up(ifp);
1654 			}
1655 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1656 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1657 			/* ifdisabled 0->1 transision */
1658 			/* Mark all IPv6 address as tentative. */
1659 
1660 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1661 			if (V_ip6_dad_count > 0 &&
1662 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1663 				IF_ADDR_RLOCK(ifp);
1664 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1665 				    ifa_link) {
1666 					if (ifa->ifa_addr->sa_family !=
1667 					    AF_INET6)
1668 						continue;
1669 					ia = (struct in6_ifaddr *)ifa;
1670 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1671 				}
1672 				IF_ADDR_RUNLOCK(ifp);
1673 			}
1674 		}
1675 
1676 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1677 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1678 				/* auto_linklocal 0->1 transision */
1679 
1680 				/* If no link-local address on ifp, configure */
1681 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1682 				in6_ifattach(ifp, NULL);
1683 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1684 			    ifp->if_flags & IFF_UP) {
1685 				/*
1686 				 * When the IF already has
1687 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1688 				 * address is assigned, and IFF_UP, try to
1689 				 * assign one.
1690 				 */
1691 				IF_ADDR_RLOCK(ifp);
1692 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1693 				    ifa_link) {
1694 					if (ifa->ifa_addr->sa_family !=
1695 					    AF_INET6)
1696 						continue;
1697 					ia = (struct in6_ifaddr *)ifa;
1698 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1699 						break;
1700 				}
1701 				IF_ADDR_RUNLOCK(ifp);
1702 				if (ifa != NULL)
1703 					/* No LLA is configured. */
1704 					in6_ifattach(ifp, NULL);
1705 			}
1706 		}
1707 	}
1708 		ND_IFINFO(ifp)->flags = ND.flags;
1709 		break;
1710 #undef ND
1711 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1712 		/* sync kernel routing table with the default router list */
1713 		defrouter_reset();
1714 		defrouter_select();
1715 		break;
1716 	case SIOCSPFXFLUSH_IN6:
1717 	{
1718 		/* flush all the prefix advertised by routers */
1719 		struct nd_prefix *pr, *next;
1720 
1721 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1722 			struct in6_ifaddr *ia, *ia_next;
1723 
1724 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1725 				continue; /* XXX */
1726 
1727 			/* do we really have to remove addresses as well? */
1728 			/* XXXRW: in6_ifaddrhead locking. */
1729 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1730 			    ia_next) {
1731 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1732 					continue;
1733 
1734 				if (ia->ia6_ndpr == pr)
1735 					in6_purgeaddr(&ia->ia_ifa);
1736 			}
1737 			prelist_remove(pr);
1738 		}
1739 		break;
1740 	}
1741 	case SIOCSRTRFLUSH_IN6:
1742 	{
1743 		/* flush all the default routers */
1744 		struct nd_drhead drq;
1745 		struct nd_defrouter *dr;
1746 
1747 		TAILQ_INIT(&drq);
1748 
1749 		defrouter_reset();
1750 
1751 		ND6_WLOCK();
1752 		while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL)
1753 			defrouter_unlink(dr, &drq);
1754 		ND6_WUNLOCK();
1755 		while ((dr = TAILQ_FIRST(&drq)) != NULL) {
1756 			TAILQ_REMOVE(&drq, dr, dr_entry);
1757 			defrouter_del(dr);
1758 		}
1759 
1760 		defrouter_select();
1761 		break;
1762 	}
1763 	case SIOCGNBRINFO_IN6:
1764 	{
1765 		struct llentry *ln;
1766 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1767 
1768 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1769 			return (error);
1770 
1771 		IF_AFDATA_RLOCK(ifp);
1772 		ln = nd6_lookup(&nb_addr, 0, ifp);
1773 		IF_AFDATA_RUNLOCK(ifp);
1774 
1775 		if (ln == NULL) {
1776 			error = EINVAL;
1777 			break;
1778 		}
1779 		nbi->state = ln->ln_state;
1780 		nbi->asked = ln->la_asked;
1781 		nbi->isrouter = ln->ln_router;
1782 		if (ln->la_expire == 0)
1783 			nbi->expire = 0;
1784 		else
1785 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1786 			    (time_second - time_uptime);
1787 		LLE_RUNLOCK(ln);
1788 		break;
1789 	}
1790 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1791 		ndif->ifindex = V_nd6_defifindex;
1792 		break;
1793 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1794 		return (nd6_setdefaultiface(ndif->ifindex));
1795 	}
1796 	return (error);
1797 }
1798 
1799 /*
1800  * Calculates new isRouter value based on provided parameters and
1801  * returns it.
1802  */
1803 static int
1804 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1805     int ln_router)
1806 {
1807 
1808 	/*
1809 	 * ICMP6 type dependent behavior.
1810 	 *
1811 	 * NS: clear IsRouter if new entry
1812 	 * RS: clear IsRouter
1813 	 * RA: set IsRouter if there's lladdr
1814 	 * redir: clear IsRouter if new entry
1815 	 *
1816 	 * RA case, (1):
1817 	 * The spec says that we must set IsRouter in the following cases:
1818 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1819 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1820 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1821 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1822 	 * neighbor cache, this is similar to (6).
1823 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1824 	 *
1825 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1826 	 *							D R
1827 	 *	0	n	n	(1)	c   ?     s
1828 	 *	0	y	n	(2)	c   s     s
1829 	 *	0	n	y	(3)	c   s     s
1830 	 *	0	y	y	(4)	c   s     s
1831 	 *	0	y	y	(5)	c   s     s
1832 	 *	1	--	n	(6) c	c	c s
1833 	 *	1	--	y	(7) c	c   s	c s
1834 	 *
1835 	 *					(c=clear s=set)
1836 	 */
1837 	switch (type & 0xff) {
1838 	case ND_NEIGHBOR_SOLICIT:
1839 		/*
1840 		 * New entry must have is_router flag cleared.
1841 		 */
1842 		if (is_new)					/* (6-7) */
1843 			ln_router = 0;
1844 		break;
1845 	case ND_REDIRECT:
1846 		/*
1847 		 * If the icmp is a redirect to a better router, always set the
1848 		 * is_router flag.  Otherwise, if the entry is newly created,
1849 		 * clear the flag.  [RFC 2461, sec 8.3]
1850 		 */
1851 		if (code == ND_REDIRECT_ROUTER)
1852 			ln_router = 1;
1853 		else {
1854 			if (is_new)				/* (6-7) */
1855 				ln_router = 0;
1856 		}
1857 		break;
1858 	case ND_ROUTER_SOLICIT:
1859 		/*
1860 		 * is_router flag must always be cleared.
1861 		 */
1862 		ln_router = 0;
1863 		break;
1864 	case ND_ROUTER_ADVERT:
1865 		/*
1866 		 * Mark an entry with lladdr as a router.
1867 		 */
1868 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1869 		    (is_new && new_addr)) {			/* (7) */
1870 			ln_router = 1;
1871 		}
1872 		break;
1873 	}
1874 
1875 	return (ln_router);
1876 }
1877 
1878 /*
1879  * Create neighbor cache entry and cache link-layer address,
1880  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1881  *
1882  * type - ICMP6 type
1883  * code - type dependent information
1884  *
1885  */
1886 void
1887 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1888     int lladdrlen, int type, int code)
1889 {
1890 	struct llentry *ln = NULL, *ln_tmp;
1891 	int is_newentry;
1892 	int do_update;
1893 	int olladdr;
1894 	int llchange;
1895 	int flags;
1896 	uint16_t router = 0;
1897 	struct sockaddr_in6 sin6;
1898 	struct mbuf *chain = NULL;
1899 	u_char linkhdr[LLE_MAX_LINKHDR];
1900 	size_t linkhdrsize;
1901 	int lladdr_off;
1902 
1903 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1904 
1905 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1906 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1907 
1908 	/* nothing must be updated for unspecified address */
1909 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1910 		return;
1911 
1912 	/*
1913 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1914 	 * the caller.
1915 	 *
1916 	 * XXX If the link does not have link-layer adderss, what should
1917 	 * we do? (ifp->if_addrlen == 0)
1918 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1919 	 * description on it in NS section (RFC 2461 7.2.3).
1920 	 */
1921 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1922 	IF_AFDATA_RLOCK(ifp);
1923 	ln = nd6_lookup(from, flags, ifp);
1924 	IF_AFDATA_RUNLOCK(ifp);
1925 	is_newentry = 0;
1926 	if (ln == NULL) {
1927 		flags |= LLE_EXCLUSIVE;
1928 		ln = nd6_alloc(from, 0, ifp);
1929 		if (ln == NULL)
1930 			return;
1931 
1932 		/*
1933 		 * Since we already know all the data for the new entry,
1934 		 * fill it before insertion.
1935 		 */
1936 		if (lladdr != NULL) {
1937 			linkhdrsize = sizeof(linkhdr);
1938 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
1939 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
1940 				return;
1941 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
1942 			    lladdr_off);
1943 		}
1944 
1945 		IF_AFDATA_WLOCK(ifp);
1946 		LLE_WLOCK(ln);
1947 		/* Prefer any existing lle over newly-created one */
1948 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
1949 		if (ln_tmp == NULL)
1950 			lltable_link_entry(LLTABLE6(ifp), ln);
1951 		IF_AFDATA_WUNLOCK(ifp);
1952 		if (ln_tmp == NULL) {
1953 			/* No existing lle, mark as new entry (6,7) */
1954 			is_newentry = 1;
1955 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1956 			if (lladdr != NULL)	/* (7) */
1957 				EVENTHANDLER_INVOKE(lle_event, ln,
1958 				    LLENTRY_RESOLVED);
1959 		} else {
1960 			lltable_free_entry(LLTABLE6(ifp), ln);
1961 			ln = ln_tmp;
1962 			ln_tmp = NULL;
1963 		}
1964 	}
1965 	/* do nothing if static ndp is set */
1966 	if ((ln->la_flags & LLE_STATIC)) {
1967 		if (flags & LLE_EXCLUSIVE)
1968 			LLE_WUNLOCK(ln);
1969 		else
1970 			LLE_RUNLOCK(ln);
1971 		return;
1972 	}
1973 
1974 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1975 	if (olladdr && lladdr) {
1976 		llchange = bcmp(lladdr, ln->ll_addr,
1977 		    ifp->if_addrlen);
1978 	} else if (!olladdr && lladdr)
1979 		llchange = 1;
1980 	else
1981 		llchange = 0;
1982 
1983 	/*
1984 	 * newentry olladdr  lladdr  llchange	(*=record)
1985 	 *	0	n	n	--	(1)
1986 	 *	0	y	n	--	(2)
1987 	 *	0	n	y	y	(3) * STALE
1988 	 *	0	y	y	n	(4) *
1989 	 *	0	y	y	y	(5) * STALE
1990 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1991 	 *	1	--	y	--	(7) * STALE
1992 	 */
1993 
1994 	do_update = 0;
1995 	if (is_newentry == 0 && llchange != 0) {
1996 		do_update = 1;	/* (3,5) */
1997 
1998 		/*
1999 		 * Record source link-layer address
2000 		 * XXX is it dependent to ifp->if_type?
2001 		 */
2002 		linkhdrsize = sizeof(linkhdr);
2003 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2004 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2005 			return;
2006 
2007 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2008 		    lladdr_off) == 0) {
2009 			/* Entry was deleted */
2010 			return;
2011 		}
2012 
2013 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2014 
2015 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2016 
2017 		if (ln->la_hold != NULL)
2018 			nd6_grab_holdchain(ln, &chain, &sin6);
2019 	}
2020 
2021 	/* Calculates new router status */
2022 	router = nd6_is_router(type, code, is_newentry, olladdr,
2023 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2024 
2025 	ln->ln_router = router;
2026 	/* Mark non-router redirects with special flag */
2027 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2028 		ln->la_flags |= LLE_REDIRECT;
2029 
2030 	if (flags & LLE_EXCLUSIVE)
2031 		LLE_WUNLOCK(ln);
2032 	else
2033 		LLE_RUNLOCK(ln);
2034 
2035 	if (chain != NULL)
2036 		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
2037 
2038 	/*
2039 	 * When the link-layer address of a router changes, select the
2040 	 * best router again.  In particular, when the neighbor entry is newly
2041 	 * created, it might affect the selection policy.
2042 	 * Question: can we restrict the first condition to the "is_newentry"
2043 	 * case?
2044 	 * XXX: when we hear an RA from a new router with the link-layer
2045 	 * address option, defrouter_select() is called twice, since
2046 	 * defrtrlist_update called the function as well.  However, I believe
2047 	 * we can compromise the overhead, since it only happens the first
2048 	 * time.
2049 	 * XXX: although defrouter_select() should not have a bad effect
2050 	 * for those are not autoconfigured hosts, we explicitly avoid such
2051 	 * cases for safety.
2052 	 */
2053 	if ((do_update || is_newentry) && router &&
2054 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2055 		/*
2056 		 * guaranteed recursion
2057 		 */
2058 		defrouter_select();
2059 	}
2060 }
2061 
2062 static void
2063 nd6_slowtimo(void *arg)
2064 {
2065 	CURVNET_SET((struct vnet *) arg);
2066 	struct nd_ifinfo *nd6if;
2067 	struct ifnet *ifp;
2068 
2069 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2070 	    nd6_slowtimo, curvnet);
2071 	IFNET_RLOCK_NOSLEEP();
2072 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2073 		if (ifp->if_afdata[AF_INET6] == NULL)
2074 			continue;
2075 		nd6if = ND_IFINFO(ifp);
2076 		if (nd6if->basereachable && /* already initialized */
2077 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2078 			/*
2079 			 * Since reachable time rarely changes by router
2080 			 * advertisements, we SHOULD insure that a new random
2081 			 * value gets recomputed at least once every few hours.
2082 			 * (RFC 2461, 6.3.4)
2083 			 */
2084 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2085 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2086 		}
2087 	}
2088 	IFNET_RUNLOCK_NOSLEEP();
2089 	CURVNET_RESTORE();
2090 }
2091 
2092 void
2093 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2094     struct sockaddr_in6 *sin6)
2095 {
2096 
2097 	LLE_WLOCK_ASSERT(ln);
2098 
2099 	*chain = ln->la_hold;
2100 	ln->la_hold = NULL;
2101 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2102 
2103 	if (ln->ln_state == ND6_LLINFO_STALE) {
2104 
2105 		/*
2106 		 * The first time we send a packet to a
2107 		 * neighbor whose entry is STALE, we have
2108 		 * to change the state to DELAY and a sets
2109 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2110 		 * seconds to ensure do neighbor unreachability
2111 		 * detection on expiration.
2112 		 * (RFC 2461 7.3.3)
2113 		 */
2114 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2115 	}
2116 }
2117 
2118 int
2119 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2120     struct sockaddr_in6 *dst, struct route *ro)
2121 {
2122 	int error;
2123 	int ip6len;
2124 	struct ip6_hdr *ip6;
2125 	struct m_tag *mtag;
2126 
2127 #ifdef MAC
2128 	mac_netinet6_nd6_send(ifp, m);
2129 #endif
2130 
2131 	/*
2132 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2133 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2134 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2135 	 * to be diverted to user space.  When re-injected into the kernel,
2136 	 * send_output() will directly dispatch them to the outgoing interface.
2137 	 */
2138 	if (send_sendso_input_hook != NULL) {
2139 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2140 		if (mtag != NULL) {
2141 			ip6 = mtod(m, struct ip6_hdr *);
2142 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2143 			/* Use the SEND socket */
2144 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2145 			    ip6len);
2146 			/* -1 == no app on SEND socket */
2147 			if (error == 0 || error != -1)
2148 			    return (error);
2149 		}
2150 	}
2151 
2152 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2153 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2154 	    mtod(m, struct ip6_hdr *));
2155 
2156 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2157 		origifp = ifp;
2158 
2159 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2160 	return (error);
2161 }
2162 
2163 /*
2164  * Lookup link headerfor @sa_dst address. Stores found
2165  * data in @desten buffer. Copy of lle ln_flags can be also
2166  * saved in @pflags if @pflags is non-NULL.
2167  *
2168  * If destination LLE does not exists or lle state modification
2169  * is required, call "slow" version.
2170  *
2171  * Return values:
2172  * - 0 on success (address copied to buffer).
2173  * - EWOULDBLOCK (no local error, but address is still unresolved)
2174  * - other errors (alloc failure, etc)
2175  */
2176 int
2177 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2178     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2179     struct llentry **plle)
2180 {
2181 	struct llentry *ln = NULL;
2182 	const struct sockaddr_in6 *dst6;
2183 
2184 	if (pflags != NULL)
2185 		*pflags = 0;
2186 
2187 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2188 
2189 	/* discard the packet if IPv6 operation is disabled on the interface */
2190 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2191 		m_freem(m);
2192 		return (ENETDOWN); /* better error? */
2193 	}
2194 
2195 	if (m != NULL && m->m_flags & M_MCAST) {
2196 		switch (ifp->if_type) {
2197 		case IFT_ETHER:
2198 		case IFT_FDDI:
2199 		case IFT_L2VLAN:
2200 		case IFT_IEEE80211:
2201 		case IFT_BRIDGE:
2202 		case IFT_ISO88025:
2203 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2204 						 desten);
2205 			return (0);
2206 		default:
2207 			m_freem(m);
2208 			return (EAFNOSUPPORT);
2209 		}
2210 	}
2211 
2212 	IF_AFDATA_RLOCK(ifp);
2213 	ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp);
2214 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2215 		/* Entry found, let's copy lle info */
2216 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2217 		if (pflags != NULL)
2218 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2219 		/* Check if we have feedback request from nd6 timer */
2220 		if (ln->r_skip_req != 0) {
2221 			LLE_REQ_LOCK(ln);
2222 			ln->r_skip_req = 0; /* Notify that entry was used */
2223 			ln->lle_hittime = time_uptime;
2224 			LLE_REQ_UNLOCK(ln);
2225 		}
2226 		IF_AFDATA_RUNLOCK(ifp);
2227 		return (0);
2228 	}
2229 	IF_AFDATA_RUNLOCK(ifp);
2230 
2231 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2232 }
2233 
2234 
2235 /*
2236  * Do L2 address resolution for @sa_dst address. Stores found
2237  * address in @desten buffer. Copy of lle ln_flags can be also
2238  * saved in @pflags if @pflags is non-NULL.
2239  *
2240  * Heavy version.
2241  * Function assume that destination LLE does not exist,
2242  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2243  *
2244  * Set noinline to be dtrace-friendly
2245  */
2246 static __noinline int
2247 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2248     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2249     struct llentry **plle)
2250 {
2251 	struct llentry *lle = NULL, *lle_tmp;
2252 	struct in6_addr *psrc, src;
2253 	int send_ns, ll_len;
2254 	char *lladdr;
2255 
2256 	/*
2257 	 * Address resolution or Neighbor Unreachability Detection
2258 	 * for the next hop.
2259 	 * At this point, the destination of the packet must be a unicast
2260 	 * or an anycast address(i.e. not a multicast).
2261 	 */
2262 	if (lle == NULL) {
2263 		IF_AFDATA_RLOCK(ifp);
2264 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2265 		IF_AFDATA_RUNLOCK(ifp);
2266 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2267 			/*
2268 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2269 			 * the condition below is not very efficient.  But we believe
2270 			 * it is tolerable, because this should be a rare case.
2271 			 */
2272 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2273 			if (lle == NULL) {
2274 				char ip6buf[INET6_ADDRSTRLEN];
2275 				log(LOG_DEBUG,
2276 				    "nd6_output: can't allocate llinfo for %s "
2277 				    "(ln=%p)\n",
2278 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2279 				m_freem(m);
2280 				return (ENOBUFS);
2281 			}
2282 
2283 			IF_AFDATA_WLOCK(ifp);
2284 			LLE_WLOCK(lle);
2285 			/* Prefer any existing entry over newly-created one */
2286 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2287 			if (lle_tmp == NULL)
2288 				lltable_link_entry(LLTABLE6(ifp), lle);
2289 			IF_AFDATA_WUNLOCK(ifp);
2290 			if (lle_tmp != NULL) {
2291 				lltable_free_entry(LLTABLE6(ifp), lle);
2292 				lle = lle_tmp;
2293 				lle_tmp = NULL;
2294 			}
2295 		}
2296 	}
2297 	if (lle == NULL) {
2298 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2299 			m_freem(m);
2300 			return (ENOBUFS);
2301 		}
2302 
2303 		if (m != NULL)
2304 			m_freem(m);
2305 		return (ENOBUFS);
2306 	}
2307 
2308 	LLE_WLOCK_ASSERT(lle);
2309 
2310 	/*
2311 	 * The first time we send a packet to a neighbor whose entry is
2312 	 * STALE, we have to change the state to DELAY and a sets a timer to
2313 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2314 	 * neighbor unreachability detection on expiration.
2315 	 * (RFC 2461 7.3.3)
2316 	 */
2317 	if (lle->ln_state == ND6_LLINFO_STALE)
2318 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2319 
2320 	/*
2321 	 * If the neighbor cache entry has a state other than INCOMPLETE
2322 	 * (i.e. its link-layer address is already resolved), just
2323 	 * send the packet.
2324 	 */
2325 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2326 		if (flags & LLE_ADDRONLY) {
2327 			lladdr = lle->ll_addr;
2328 			ll_len = ifp->if_addrlen;
2329 		} else {
2330 			lladdr = lle->r_linkdata;
2331 			ll_len = lle->r_hdrlen;
2332 		}
2333 		bcopy(lladdr, desten, ll_len);
2334 		if (pflags != NULL)
2335 			*pflags = lle->la_flags;
2336 		if (plle) {
2337 			LLE_ADDREF(lle);
2338 			*plle = lle;
2339 		}
2340 		LLE_WUNLOCK(lle);
2341 		return (0);
2342 	}
2343 
2344 	/*
2345 	 * There is a neighbor cache entry, but no ethernet address
2346 	 * response yet.  Append this latest packet to the end of the
2347 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2348 	 * the oldest packet in the queue will be removed.
2349 	 */
2350 
2351 	if (lle->la_hold != NULL) {
2352 		struct mbuf *m_hold;
2353 		int i;
2354 
2355 		i = 0;
2356 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2357 			i++;
2358 			if (m_hold->m_nextpkt == NULL) {
2359 				m_hold->m_nextpkt = m;
2360 				break;
2361 			}
2362 		}
2363 		while (i >= V_nd6_maxqueuelen) {
2364 			m_hold = lle->la_hold;
2365 			lle->la_hold = lle->la_hold->m_nextpkt;
2366 			m_freem(m_hold);
2367 			i--;
2368 		}
2369 	} else {
2370 		lle->la_hold = m;
2371 	}
2372 
2373 	/*
2374 	 * If there has been no NS for the neighbor after entering the
2375 	 * INCOMPLETE state, send the first solicitation.
2376 	 * Note that for newly-created lle la_asked will be 0,
2377 	 * so we will transition from ND6_LLINFO_NOSTATE to
2378 	 * ND6_LLINFO_INCOMPLETE state here.
2379 	 */
2380 	psrc = NULL;
2381 	send_ns = 0;
2382 	if (lle->la_asked == 0) {
2383 		lle->la_asked++;
2384 		send_ns = 1;
2385 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2386 
2387 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2388 	}
2389 	LLE_WUNLOCK(lle);
2390 	if (send_ns != 0)
2391 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2392 
2393 	return (EWOULDBLOCK);
2394 }
2395 
2396 /*
2397  * Do L2 address resolution for @sa_dst address. Stores found
2398  * address in @desten buffer. Copy of lle ln_flags can be also
2399  * saved in @pflags if @pflags is non-NULL.
2400  *
2401  * Return values:
2402  * - 0 on success (address copied to buffer).
2403  * - EWOULDBLOCK (no local error, but address is still unresolved)
2404  * - other errors (alloc failure, etc)
2405  */
2406 int
2407 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2408     char *desten, uint32_t *pflags)
2409 {
2410 	int error;
2411 
2412 	flags |= LLE_ADDRONLY;
2413 	error = nd6_resolve_slow(ifp, flags, NULL,
2414 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2415 	return (error);
2416 }
2417 
2418 int
2419 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2420     struct sockaddr_in6 *dst)
2421 {
2422 	struct mbuf *m, *m_head;
2423 	struct ifnet *outifp;
2424 	int error = 0;
2425 
2426 	m_head = chain;
2427 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2428 		outifp = origifp;
2429 	else
2430 		outifp = ifp;
2431 
2432 	while (m_head) {
2433 		m = m_head;
2434 		m_head = m_head->m_nextpkt;
2435 		error = nd6_output_ifp(ifp, origifp, m, dst, NULL);
2436 	}
2437 
2438 	/*
2439 	 * XXX
2440 	 * note that intermediate errors are blindly ignored
2441 	 */
2442 	return (error);
2443 }
2444 
2445 static int
2446 nd6_need_cache(struct ifnet *ifp)
2447 {
2448 	/*
2449 	 * XXX: we currently do not make neighbor cache on any interface
2450 	 * other than ARCnet, Ethernet, FDDI and GIF.
2451 	 *
2452 	 * RFC2893 says:
2453 	 * - unidirectional tunnels needs no ND
2454 	 */
2455 	switch (ifp->if_type) {
2456 	case IFT_ARCNET:
2457 	case IFT_ETHER:
2458 	case IFT_FDDI:
2459 	case IFT_IEEE1394:
2460 	case IFT_L2VLAN:
2461 	case IFT_IEEE80211:
2462 	case IFT_INFINIBAND:
2463 	case IFT_BRIDGE:
2464 	case IFT_PROPVIRTUAL:
2465 		return (1);
2466 	default:
2467 		return (0);
2468 	}
2469 }
2470 
2471 /*
2472  * Add pernament ND6 link-layer record for given
2473  * interface address.
2474  *
2475  * Very similar to IPv4 arp_ifinit(), but:
2476  * 1) IPv6 DAD is performed in different place
2477  * 2) It is called by IPv6 protocol stack in contrast to
2478  * arp_ifinit() which is typically called in SIOCSIFADDR
2479  * driver ioctl handler.
2480  *
2481  */
2482 int
2483 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2484 {
2485 	struct ifnet *ifp;
2486 	struct llentry *ln, *ln_tmp;
2487 	struct sockaddr *dst;
2488 
2489 	ifp = ia->ia_ifa.ifa_ifp;
2490 	if (nd6_need_cache(ifp) == 0)
2491 		return (0);
2492 
2493 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2494 	dst = (struct sockaddr *)&ia->ia_addr;
2495 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2496 	if (ln == NULL)
2497 		return (ENOBUFS);
2498 
2499 	IF_AFDATA_WLOCK(ifp);
2500 	LLE_WLOCK(ln);
2501 	/* Unlink any entry if exists */
2502 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2503 	if (ln_tmp != NULL)
2504 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2505 	lltable_link_entry(LLTABLE6(ifp), ln);
2506 	IF_AFDATA_WUNLOCK(ifp);
2507 
2508 	if (ln_tmp != NULL)
2509 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2510 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2511 
2512 	LLE_WUNLOCK(ln);
2513 	if (ln_tmp != NULL)
2514 		llentry_free(ln_tmp);
2515 
2516 	return (0);
2517 }
2518 
2519 /*
2520  * Removes either all lle entries for given @ia, or lle
2521  * corresponding to @ia address.
2522  */
2523 void
2524 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2525 {
2526 	struct sockaddr_in6 mask, addr;
2527 	struct sockaddr *saddr, *smask;
2528 	struct ifnet *ifp;
2529 
2530 	ifp = ia->ia_ifa.ifa_ifp;
2531 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2532 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2533 	saddr = (struct sockaddr *)&addr;
2534 	smask = (struct sockaddr *)&mask;
2535 
2536 	if (all != 0)
2537 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2538 	else
2539 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2540 }
2541 
2542 static void
2543 clear_llinfo_pqueue(struct llentry *ln)
2544 {
2545 	struct mbuf *m_hold, *m_hold_next;
2546 
2547 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2548 		m_hold_next = m_hold->m_nextpkt;
2549 		m_freem(m_hold);
2550 	}
2551 
2552 	ln->la_hold = NULL;
2553 }
2554 
2555 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2556 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2557 
2558 SYSCTL_DECL(_net_inet6_icmp6);
2559 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2560 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2561 	NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter",
2562 	"NDP default router list");
2563 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2564 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2565 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2566 	"NDP prefix list");
2567 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2568 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2569 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2570 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2571 
2572 static int
2573 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2574 {
2575 	struct in6_defrouter d;
2576 	struct nd_defrouter *dr;
2577 	int error;
2578 
2579 	if (req->newptr != NULL)
2580 		return (EPERM);
2581 
2582 	error = sysctl_wire_old_buffer(req, 0);
2583 	if (error != 0)
2584 		return (error);
2585 
2586 	bzero(&d, sizeof(d));
2587 	d.rtaddr.sin6_family = AF_INET6;
2588 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2589 
2590 	ND6_RLOCK();
2591 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2592 		d.rtaddr.sin6_addr = dr->rtaddr;
2593 		error = sa6_recoverscope(&d.rtaddr);
2594 		if (error != 0)
2595 			break;
2596 		d.flags = dr->raflags;
2597 		d.rtlifetime = dr->rtlifetime;
2598 		d.expire = dr->expire + (time_second - time_uptime);
2599 		d.if_index = dr->ifp->if_index;
2600 		error = SYSCTL_OUT(req, &d, sizeof(d));
2601 		if (error != 0)
2602 			break;
2603 	}
2604 	ND6_RUNLOCK();
2605 	return (error);
2606 }
2607 
2608 static int
2609 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2610 {
2611 	struct in6_prefix p;
2612 	struct sockaddr_in6 s6;
2613 	struct nd_prefix *pr;
2614 	struct nd_pfxrouter *pfr;
2615 	time_t maxexpire;
2616 	int error;
2617 	char ip6buf[INET6_ADDRSTRLEN];
2618 
2619 	if (req->newptr)
2620 		return (EPERM);
2621 
2622 	error = sysctl_wire_old_buffer(req, 0);
2623 	if (error != 0)
2624 		return (error);
2625 
2626 	bzero(&p, sizeof(p));
2627 	p.origin = PR_ORIG_RA;
2628 	bzero(&s6, sizeof(s6));
2629 	s6.sin6_family = AF_INET6;
2630 	s6.sin6_len = sizeof(s6);
2631 
2632 	ND6_RLOCK();
2633 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2634 		p.prefix = pr->ndpr_prefix;
2635 		if (sa6_recoverscope(&p.prefix)) {
2636 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2637 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2638 			/* XXX: press on... */
2639 		}
2640 		p.raflags = pr->ndpr_raf;
2641 		p.prefixlen = pr->ndpr_plen;
2642 		p.vltime = pr->ndpr_vltime;
2643 		p.pltime = pr->ndpr_pltime;
2644 		p.if_index = pr->ndpr_ifp->if_index;
2645 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2646 			p.expire = 0;
2647 		else {
2648 			/* XXX: we assume time_t is signed. */
2649 			maxexpire = (-1) &
2650 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2651 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2652 				p.expire = pr->ndpr_lastupdate +
2653 				    pr->ndpr_vltime +
2654 				    (time_second - time_uptime);
2655 			else
2656 				p.expire = maxexpire;
2657 		}
2658 		p.refcnt = pr->ndpr_refcnt;
2659 		p.flags = pr->ndpr_stateflags;
2660 		p.advrtrs = 0;
2661 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2662 			p.advrtrs++;
2663 		error = SYSCTL_OUT(req, &p, sizeof(p));
2664 		if (error != 0)
2665 			break;
2666 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2667 			s6.sin6_addr = pfr->router->rtaddr;
2668 			if (sa6_recoverscope(&s6))
2669 				log(LOG_ERR,
2670 				    "scope error in prefix list (%s)\n",
2671 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2672 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2673 			if (error != 0)
2674 				break;
2675 		}
2676 	}
2677 	ND6_RUNLOCK();
2678 	return (error);
2679 }
2680