1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_route.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/eventhandler.h> 42 #include <sys/callout.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/protosw.h> 52 #include <sys/errno.h> 53 #include <sys/syslog.h> 54 #include <sys/rwlock.h> 55 #include <sys/queue.h> 56 #include <sys/sdt.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_private.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_fib.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 /* timer values */ 95 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 96 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 97 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 98 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 99 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 100 * local traffic */ 101 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 102 * collection timer */ 103 104 /* preventing too many loops in ND option parsing */ 105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 106 107 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 108 * layer hints */ 109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 110 * ND entries */ 111 #define V_nd6_maxndopt VNET(nd6_maxndopt) 112 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 113 114 #ifdef ND6_DEBUG 115 VNET_DEFINE(int, nd6_debug) = 1; 116 #else 117 VNET_DEFINE(int, nd6_debug) = 0; 118 #endif 119 120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 121 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 VNET_DEFINE(struct rwlock, nd6_lock); 124 VNET_DEFINE(uint64_t, nd6_list_genid); 125 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 126 127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 128 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 129 130 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 131 132 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 133 struct ifnet *); 134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 135 static void nd6_slowtimo(void *); 136 static int regen_tmpaddr(struct in6_ifaddr *); 137 static void nd6_free(struct llentry **, int); 138 static void nd6_free_redirect(const struct llentry *); 139 static void nd6_llinfo_timer(void *); 140 static void nd6_llinfo_settimer_locked(struct llentry *, long); 141 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, 142 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 143 static int nd6_need_cache(struct ifnet *); 144 145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 146 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 147 148 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 149 #define V_nd6_timer_ch VNET(nd6_timer_ch) 150 151 SYSCTL_DECL(_net_inet6_icmp6); 152 153 static void 154 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 155 { 156 struct rt_addrinfo rtinfo; 157 struct sockaddr_in6 dst; 158 struct sockaddr_dl gw; 159 struct ifnet *ifp; 160 int type; 161 int fibnum; 162 163 LLE_WLOCK_ASSERT(lle); 164 165 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 166 return; 167 168 switch (evt) { 169 case LLENTRY_RESOLVED: 170 type = RTM_ADD; 171 KASSERT(lle->la_flags & LLE_VALID, 172 ("%s: %p resolved but not valid?", __func__, lle)); 173 break; 174 case LLENTRY_EXPIRED: 175 type = RTM_DELETE; 176 break; 177 default: 178 return; 179 } 180 181 ifp = lltable_get_ifp(lle->lle_tbl); 182 183 bzero(&dst, sizeof(dst)); 184 bzero(&gw, sizeof(gw)); 185 bzero(&rtinfo, sizeof(rtinfo)); 186 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 187 dst.sin6_scope_id = in6_getscopezone(ifp, 188 in6_addrscope(&dst.sin6_addr)); 189 gw.sdl_len = sizeof(struct sockaddr_dl); 190 gw.sdl_family = AF_LINK; 191 gw.sdl_alen = ifp->if_addrlen; 192 gw.sdl_index = ifp->if_index; 193 gw.sdl_type = ifp->if_type; 194 if (evt == LLENTRY_RESOLVED) 195 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 196 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 197 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 198 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 199 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 200 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 201 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 202 } 203 204 /* 205 * A handler for interface link layer address change event. 206 */ 207 static void 208 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 209 { 210 if (ifp->if_afdata[AF_INET6] == NULL) 211 return; 212 213 lltable_update_ifaddr(LLTABLE6(ifp)); 214 } 215 216 void 217 nd6_init(void) 218 { 219 220 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 221 rw_init(&V_nd6_lock, "nd6 list"); 222 223 LIST_INIT(&V_nd_prefix); 224 nd6_defrouter_init(); 225 226 /* Start timers. */ 227 callout_init(&V_nd6_slowtimo_ch, 1); 228 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 229 nd6_slowtimo, curvnet); 230 231 callout_init(&V_nd6_timer_ch, 1); 232 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 233 234 nd6_dad_init(); 235 if (IS_DEFAULT_VNET(curvnet)) { 236 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 237 NULL, EVENTHANDLER_PRI_ANY); 238 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 239 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 240 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 241 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 242 } 243 } 244 245 #ifdef VIMAGE 246 void 247 nd6_destroy(void) 248 { 249 250 callout_drain(&V_nd6_slowtimo_ch); 251 callout_drain(&V_nd6_timer_ch); 252 if (IS_DEFAULT_VNET(curvnet)) { 253 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 254 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 255 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 256 } 257 rw_destroy(&V_nd6_lock); 258 mtx_destroy(&V_nd6_onlink_mtx); 259 } 260 #endif 261 262 struct nd_ifinfo * 263 nd6_ifattach(struct ifnet *ifp) 264 { 265 struct nd_ifinfo *nd; 266 267 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 268 nd->initialized = 1; 269 270 nd->chlim = IPV6_DEFHLIM; 271 nd->basereachable = REACHABLE_TIME; 272 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 273 nd->retrans = RETRANS_TIMER; 274 275 nd->flags = ND6_IFF_PERFORMNUD; 276 277 /* Set IPv6 disabled on all interfaces but loopback by default. */ 278 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 279 nd->flags |= ND6_IFF_IFDISABLED; 280 281 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 282 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 283 * default regardless of the V_ip6_auto_linklocal configuration to 284 * give a reasonable default behavior. 285 */ 286 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE && 287 ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK)) 288 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 289 /* 290 * A loopback interface does not need to accept RTADV. 291 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 292 * default regardless of the V_ip6_accept_rtadv configuration to 293 * prevent the interface from accepting RA messages arrived 294 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 295 */ 296 if (V_ip6_accept_rtadv && 297 !(ifp->if_flags & IFF_LOOPBACK) && 298 (ifp->if_type != IFT_BRIDGE)) { 299 nd->flags |= ND6_IFF_ACCEPT_RTADV; 300 /* If we globally accept rtadv, assume IPv6 on. */ 301 nd->flags &= ~ND6_IFF_IFDISABLED; 302 } 303 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 304 nd->flags |= ND6_IFF_NO_RADR; 305 306 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 307 nd6_setmtu0(ifp, nd); 308 309 return nd; 310 } 311 312 void 313 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 314 { 315 struct epoch_tracker et; 316 struct ifaddr *ifa, *next; 317 318 NET_EPOCH_ENTER(et); 319 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 320 if (ifa->ifa_addr->sa_family != AF_INET6) 321 continue; 322 323 /* stop DAD processing */ 324 nd6_dad_stop(ifa); 325 } 326 NET_EPOCH_EXIT(et); 327 328 free(nd, M_IP6NDP); 329 } 330 331 /* 332 * Reset ND level link MTU. This function is called when the physical MTU 333 * changes, which means we might have to adjust the ND level MTU. 334 */ 335 void 336 nd6_setmtu(struct ifnet *ifp) 337 { 338 if (ifp->if_afdata[AF_INET6] == NULL) 339 return; 340 341 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 342 } 343 344 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 345 void 346 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 347 { 348 u_int32_t omaxmtu; 349 350 omaxmtu = ndi->maxmtu; 351 ndi->maxmtu = ifp->if_mtu; 352 353 /* 354 * Decreasing the interface MTU under IPV6 minimum MTU may cause 355 * undesirable situation. We thus notify the operator of the change 356 * explicitly. The check for omaxmtu is necessary to restrict the 357 * log to the case of changing the MTU, not initializing it. 358 */ 359 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 360 log(LOG_NOTICE, "nd6_setmtu0: " 361 "new link MTU on %s (%lu) is too small for IPv6\n", 362 if_name(ifp), (unsigned long)ndi->maxmtu); 363 } 364 365 if (ndi->maxmtu > V_in6_maxmtu) 366 in6_setmaxmtu(); /* check all interfaces just in case */ 367 368 } 369 370 void 371 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 372 { 373 374 bzero(ndopts, sizeof(*ndopts)); 375 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 376 ndopts->nd_opts_last 377 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 378 379 if (icmp6len == 0) { 380 ndopts->nd_opts_done = 1; 381 ndopts->nd_opts_search = NULL; 382 } 383 } 384 385 /* 386 * Take one ND option. 387 */ 388 struct nd_opt_hdr * 389 nd6_option(union nd_opts *ndopts) 390 { 391 struct nd_opt_hdr *nd_opt; 392 int olen; 393 394 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 395 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 396 __func__)); 397 if (ndopts->nd_opts_search == NULL) 398 return NULL; 399 if (ndopts->nd_opts_done) 400 return NULL; 401 402 nd_opt = ndopts->nd_opts_search; 403 404 /* make sure nd_opt_len is inside the buffer */ 405 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 406 bzero(ndopts, sizeof(*ndopts)); 407 return NULL; 408 } 409 410 olen = nd_opt->nd_opt_len << 3; 411 if (olen == 0) { 412 /* 413 * Message validation requires that all included 414 * options have a length that is greater than zero. 415 */ 416 bzero(ndopts, sizeof(*ndopts)); 417 return NULL; 418 } 419 420 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 421 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 422 /* option overruns the end of buffer, invalid */ 423 bzero(ndopts, sizeof(*ndopts)); 424 return NULL; 425 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 426 /* reached the end of options chain */ 427 ndopts->nd_opts_done = 1; 428 ndopts->nd_opts_search = NULL; 429 } 430 return nd_opt; 431 } 432 433 /* 434 * Parse multiple ND options. 435 * This function is much easier to use, for ND routines that do not need 436 * multiple options of the same type. 437 */ 438 int 439 nd6_options(union nd_opts *ndopts) 440 { 441 struct nd_opt_hdr *nd_opt; 442 int i = 0; 443 444 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 445 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 446 __func__)); 447 if (ndopts->nd_opts_search == NULL) 448 return 0; 449 450 while (1) { 451 nd_opt = nd6_option(ndopts); 452 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 453 /* 454 * Message validation requires that all included 455 * options have a length that is greater than zero. 456 */ 457 ICMP6STAT_INC(icp6s_nd_badopt); 458 bzero(ndopts, sizeof(*ndopts)); 459 return -1; 460 } 461 462 if (nd_opt == NULL) 463 goto skip1; 464 465 switch (nd_opt->nd_opt_type) { 466 case ND_OPT_SOURCE_LINKADDR: 467 case ND_OPT_TARGET_LINKADDR: 468 case ND_OPT_MTU: 469 case ND_OPT_REDIRECTED_HEADER: 470 case ND_OPT_NONCE: 471 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 472 nd6log((LOG_INFO, 473 "duplicated ND6 option found (type=%d)\n", 474 nd_opt->nd_opt_type)); 475 /* XXX bark? */ 476 } else { 477 ndopts->nd_opt_array[nd_opt->nd_opt_type] 478 = nd_opt; 479 } 480 break; 481 case ND_OPT_PREFIX_INFORMATION: 482 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 483 ndopts->nd_opt_array[nd_opt->nd_opt_type] 484 = nd_opt; 485 } 486 ndopts->nd_opts_pi_end = 487 (struct nd_opt_prefix_info *)nd_opt; 488 break; 489 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 490 case ND_OPT_RDNSS: /* RFC 6106 */ 491 case ND_OPT_DNSSL: /* RFC 6106 */ 492 /* 493 * Silently ignore options we know and do not care about 494 * in the kernel. 495 */ 496 break; 497 default: 498 /* 499 * Unknown options must be silently ignored, 500 * to accommodate future extension to the protocol. 501 */ 502 nd6log((LOG_DEBUG, 503 "nd6_options: unsupported option %d - " 504 "option ignored\n", nd_opt->nd_opt_type)); 505 } 506 507 skip1: 508 i++; 509 if (i > V_nd6_maxndopt) { 510 ICMP6STAT_INC(icp6s_nd_toomanyopt); 511 nd6log((LOG_INFO, "too many loop in nd opt\n")); 512 break; 513 } 514 515 if (ndopts->nd_opts_done) 516 break; 517 } 518 519 return 0; 520 } 521 522 /* 523 * ND6 timer routine to handle ND6 entries 524 */ 525 static void 526 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 527 { 528 int canceled; 529 530 LLE_WLOCK_ASSERT(ln); 531 532 /* Do not schedule timers for child LLEs. */ 533 if (ln->la_flags & LLE_CHILD) 534 return; 535 536 if (tick < 0) { 537 ln->la_expire = 0; 538 ln->ln_ntick = 0; 539 canceled = callout_stop(&ln->lle_timer); 540 } else { 541 ln->la_expire = time_uptime + tick / hz; 542 LLE_ADDREF(ln); 543 if (tick > INT_MAX) { 544 ln->ln_ntick = tick - INT_MAX; 545 canceled = callout_reset(&ln->lle_timer, INT_MAX, 546 nd6_llinfo_timer, ln); 547 } else { 548 ln->ln_ntick = 0; 549 canceled = callout_reset(&ln->lle_timer, tick, 550 nd6_llinfo_timer, ln); 551 } 552 } 553 if (canceled > 0) 554 LLE_REMREF(ln); 555 } 556 557 /* 558 * Gets source address of the first packet in hold queue 559 * and stores it in @src. 560 * Returns pointer to @src (if hold queue is not empty) or NULL. 561 * 562 * Set noinline to be dtrace-friendly 563 */ 564 static __noinline struct in6_addr * 565 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 566 { 567 struct ip6_hdr hdr; 568 struct mbuf *m; 569 570 if (ln->la_hold == NULL) 571 return (NULL); 572 573 /* 574 * assume every packet in la_hold has the same IP header 575 */ 576 m = ln->la_hold; 577 if (sizeof(hdr) > m->m_len) 578 return (NULL); 579 580 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 581 *src = hdr.ip6_src; 582 583 return (src); 584 } 585 586 /* 587 * Checks if we need to switch from STALE state. 588 * 589 * RFC 4861 requires switching from STALE to DELAY state 590 * on first packet matching entry, waiting V_nd6_delay and 591 * transition to PROBE state (if upper layer confirmation was 592 * not received). 593 * 594 * This code performs a bit differently: 595 * On packet hit we don't change state (but desired state 596 * can be guessed by control plane). However, after V_nd6_delay 597 * seconds code will transition to PROBE state (so DELAY state 598 * is kinda skipped in most situations). 599 * 600 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 601 * we perform the following upon entering STALE state: 602 * 603 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 604 * if packet was transmitted at the start of given interval, we 605 * would be able to switch to PROBE state in V_nd6_delay seconds 606 * as user expects. 607 * 608 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 609 * lle in STALE state (remaining timer value stored in lle_remtime). 610 * 611 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 612 * seconds ago. 613 * 614 * Returns non-zero value if the entry is still STALE (storing 615 * the next timer interval in @pdelay). 616 * 617 * Returns zero value if original timer expired or we need to switch to 618 * PROBE (store that in @do_switch variable). 619 */ 620 static int 621 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 622 { 623 int nd_delay, nd_gctimer; 624 time_t lle_hittime; 625 long delay; 626 627 *do_switch = 0; 628 nd_gctimer = V_nd6_gctimer; 629 nd_delay = V_nd6_delay; 630 631 lle_hittime = llentry_get_hittime(lle); 632 633 if (lle_hittime == 0) { 634 /* 635 * Datapath feedback has been requested upon entering 636 * STALE state. No packets has been passed using this lle. 637 * Ask for the timer reschedule and keep STALE state. 638 */ 639 delay = (long)(MIN(nd_gctimer, nd_delay)); 640 delay *= hz; 641 if (lle->lle_remtime > delay) 642 lle->lle_remtime -= delay; 643 else { 644 delay = lle->lle_remtime; 645 lle->lle_remtime = 0; 646 } 647 648 if (delay == 0) { 649 /* 650 * The original ng6_gctime timeout ended, 651 * no more rescheduling. 652 */ 653 return (0); 654 } 655 656 *pdelay = delay; 657 return (1); 658 } 659 660 /* 661 * Packet received. Verify timestamp 662 */ 663 delay = (long)(time_uptime - lle_hittime); 664 if (delay < nd_delay) { 665 /* 666 * V_nd6_delay still not passed since the first 667 * hit in STALE state. 668 * Reschedule timer and return. 669 */ 670 *pdelay = (long)(nd_delay - delay) * hz; 671 return (1); 672 } 673 674 /* Request switching to probe */ 675 *do_switch = 1; 676 return (0); 677 } 678 679 /* 680 * Switch @lle state to new state optionally arming timers. 681 * 682 * Set noinline to be dtrace-friendly 683 */ 684 __noinline void 685 nd6_llinfo_setstate(struct llentry *lle, int newstate) 686 { 687 struct ifnet *ifp; 688 int nd_gctimer, nd_delay; 689 long delay, remtime; 690 691 delay = 0; 692 remtime = 0; 693 694 switch (newstate) { 695 case ND6_LLINFO_INCOMPLETE: 696 ifp = lle->lle_tbl->llt_ifp; 697 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 698 break; 699 case ND6_LLINFO_REACHABLE: 700 if (!ND6_LLINFO_PERMANENT(lle)) { 701 ifp = lle->lle_tbl->llt_ifp; 702 delay = (long)ND_IFINFO(ifp)->reachable * hz; 703 } 704 break; 705 case ND6_LLINFO_STALE: 706 707 llentry_request_feedback(lle); 708 nd_delay = V_nd6_delay; 709 nd_gctimer = V_nd6_gctimer; 710 711 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 712 remtime = (long)nd_gctimer * hz - delay; 713 break; 714 case ND6_LLINFO_DELAY: 715 lle->la_asked = 0; 716 delay = (long)V_nd6_delay * hz; 717 break; 718 } 719 720 if (delay > 0) 721 nd6_llinfo_settimer_locked(lle, delay); 722 723 lle->lle_remtime = remtime; 724 lle->ln_state = newstate; 725 } 726 727 /* 728 * Timer-dependent part of nd state machine. 729 * 730 * Set noinline to be dtrace-friendly 731 */ 732 static __noinline void 733 nd6_llinfo_timer(void *arg) 734 { 735 struct epoch_tracker et; 736 struct llentry *ln; 737 struct in6_addr *dst, *pdst, *psrc, src; 738 struct ifnet *ifp; 739 struct nd_ifinfo *ndi; 740 int do_switch, send_ns; 741 long delay; 742 743 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 744 ln = (struct llentry *)arg; 745 ifp = lltable_get_ifp(ln->lle_tbl); 746 CURVNET_SET(ifp->if_vnet); 747 748 ND6_RLOCK(); 749 LLE_WLOCK(ln); 750 if (callout_pending(&ln->lle_timer)) { 751 /* 752 * Here we are a bit odd here in the treatment of 753 * active/pending. If the pending bit is set, it got 754 * rescheduled before I ran. The active 755 * bit we ignore, since if it was stopped 756 * in ll_tablefree() and was currently running 757 * it would have return 0 so the code would 758 * not have deleted it since the callout could 759 * not be stopped so we want to go through 760 * with the delete here now. If the callout 761 * was restarted, the pending bit will be back on and 762 * we just want to bail since the callout_reset would 763 * return 1 and our reference would have been removed 764 * by nd6_llinfo_settimer_locked above since canceled 765 * would have been 1. 766 */ 767 LLE_WUNLOCK(ln); 768 ND6_RUNLOCK(); 769 CURVNET_RESTORE(); 770 return; 771 } 772 NET_EPOCH_ENTER(et); 773 ndi = ND_IFINFO(ifp); 774 send_ns = 0; 775 dst = &ln->r_l3addr.addr6; 776 pdst = dst; 777 778 if (ln->ln_ntick > 0) { 779 if (ln->ln_ntick > INT_MAX) { 780 ln->ln_ntick -= INT_MAX; 781 nd6_llinfo_settimer_locked(ln, INT_MAX); 782 } else { 783 ln->ln_ntick = 0; 784 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 785 } 786 goto done; 787 } 788 789 if (ln->la_flags & LLE_STATIC) { 790 goto done; 791 } 792 793 if (ln->la_flags & LLE_DELETED) { 794 nd6_free(&ln, 0); 795 goto done; 796 } 797 798 switch (ln->ln_state) { 799 case ND6_LLINFO_INCOMPLETE: 800 if (ln->la_asked < V_nd6_mmaxtries) { 801 ln->la_asked++; 802 send_ns = 1; 803 /* Send NS to multicast address */ 804 pdst = NULL; 805 } else { 806 struct mbuf *m; 807 808 ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); 809 810 m = ln->la_hold; 811 if (m != NULL) { 812 /* 813 * assuming every packet in la_hold has the 814 * same IP header. Send error after unlock. 815 */ 816 ln->la_hold = m->m_nextpkt; 817 m->m_nextpkt = NULL; 818 ln->la_numheld--; 819 } 820 nd6_free(&ln, 0); 821 if (m != NULL) { 822 struct mbuf *n = m; 823 824 /* 825 * if there are any ummapped mbufs, we 826 * must free them, rather than using 827 * them for an ICMP, as they cannot be 828 * checksummed. 829 */ 830 while ((n = n->m_next) != NULL) { 831 if (n->m_flags & M_EXTPG) 832 break; 833 } 834 if (n != NULL) { 835 m_freem(m); 836 m = NULL; 837 } else { 838 icmp6_error2(m, ICMP6_DST_UNREACH, 839 ICMP6_DST_UNREACH_ADDR, 0, ifp); 840 } 841 } 842 } 843 break; 844 case ND6_LLINFO_REACHABLE: 845 if (!ND6_LLINFO_PERMANENT(ln)) 846 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 847 break; 848 849 case ND6_LLINFO_STALE: 850 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 851 /* 852 * No packet has used this entry and GC timeout 853 * has not been passed. Reschedule timer and 854 * return. 855 */ 856 nd6_llinfo_settimer_locked(ln, delay); 857 break; 858 } 859 860 if (do_switch == 0) { 861 /* 862 * GC timer has ended and entry hasn't been used. 863 * Run Garbage collector (RFC 4861, 5.3) 864 */ 865 if (!ND6_LLINFO_PERMANENT(ln)) 866 nd6_free(&ln, 1); 867 break; 868 } 869 870 /* Entry has been used AND delay timer has ended. */ 871 872 /* FALLTHROUGH */ 873 874 case ND6_LLINFO_DELAY: 875 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 876 /* We need NUD */ 877 ln->la_asked = 1; 878 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 879 send_ns = 1; 880 } else 881 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 882 break; 883 case ND6_LLINFO_PROBE: 884 if (ln->la_asked < V_nd6_umaxtries) { 885 ln->la_asked++; 886 send_ns = 1; 887 } else { 888 nd6_free(&ln, 0); 889 } 890 break; 891 default: 892 panic("%s: paths in a dark night can be confusing: %d", 893 __func__, ln->ln_state); 894 } 895 done: 896 if (ln != NULL) 897 ND6_RUNLOCK(); 898 if (send_ns != 0) { 899 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 900 psrc = nd6_llinfo_get_holdsrc(ln, &src); 901 LLE_FREE_LOCKED(ln); 902 ln = NULL; 903 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 904 } 905 906 if (ln != NULL) 907 LLE_FREE_LOCKED(ln); 908 NET_EPOCH_EXIT(et); 909 CURVNET_RESTORE(); 910 } 911 912 /* 913 * ND6 timer routine to expire default route list and prefix list 914 */ 915 void 916 nd6_timer(void *arg) 917 { 918 CURVNET_SET((struct vnet *) arg); 919 struct epoch_tracker et; 920 struct nd_prhead prl; 921 struct nd_prefix *pr, *npr; 922 struct ifnet *ifp; 923 struct in6_ifaddr *ia6, *nia6; 924 uint64_t genid; 925 926 LIST_INIT(&prl); 927 928 NET_EPOCH_ENTER(et); 929 nd6_defrouter_timer(); 930 931 /* 932 * expire interface addresses. 933 * in the past the loop was inside prefix expiry processing. 934 * However, from a stricter speci-confrmance standpoint, we should 935 * rather separate address lifetimes and prefix lifetimes. 936 * 937 * XXXRW: in6_ifaddrhead locking. 938 */ 939 addrloop: 940 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 941 /* check address lifetime */ 942 if (IFA6_IS_INVALID(ia6)) { 943 int regen = 0; 944 945 /* 946 * If the expiring address is temporary, try 947 * regenerating a new one. This would be useful when 948 * we suspended a laptop PC, then turned it on after a 949 * period that could invalidate all temporary 950 * addresses. Although we may have to restart the 951 * loop (see below), it must be after purging the 952 * address. Otherwise, we'd see an infinite loop of 953 * regeneration. 954 */ 955 if (V_ip6_use_tempaddr && 956 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 957 if (regen_tmpaddr(ia6) == 0) 958 regen = 1; 959 } 960 961 in6_purgeaddr(&ia6->ia_ifa); 962 963 if (regen) 964 goto addrloop; /* XXX: see below */ 965 } else if (IFA6_IS_DEPRECATED(ia6)) { 966 int oldflags = ia6->ia6_flags; 967 968 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 969 970 /* 971 * If a temporary address has just become deprecated, 972 * regenerate a new one if possible. 973 */ 974 if (V_ip6_use_tempaddr && 975 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 976 (oldflags & IN6_IFF_DEPRECATED) == 0) { 977 if (regen_tmpaddr(ia6) == 0) { 978 /* 979 * A new temporary address is 980 * generated. 981 * XXX: this means the address chain 982 * has changed while we are still in 983 * the loop. Although the change 984 * would not cause disaster (because 985 * it's not a deletion, but an 986 * addition,) we'd rather restart the 987 * loop just for safety. Or does this 988 * significantly reduce performance?? 989 */ 990 goto addrloop; 991 } 992 } 993 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 994 /* 995 * Schedule DAD for a tentative address. This happens 996 * if the interface was down or not running 997 * when the address was configured. 998 */ 999 int delay; 1000 1001 delay = arc4random() % 1002 (MAX_RTR_SOLICITATION_DELAY * hz); 1003 nd6_dad_start((struct ifaddr *)ia6, delay); 1004 } else { 1005 /* 1006 * Check status of the interface. If it is down, 1007 * mark the address as tentative for future DAD. 1008 */ 1009 ifp = ia6->ia_ifp; 1010 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1011 ((ifp->if_flags & IFF_UP) == 0 || 1012 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1013 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1014 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1015 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1016 } 1017 1018 /* 1019 * A new RA might have made a deprecated address 1020 * preferred. 1021 */ 1022 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1023 } 1024 } 1025 NET_EPOCH_EXIT(et); 1026 1027 ND6_WLOCK(); 1028 restart: 1029 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1030 /* 1031 * Expire prefixes. Since the pltime is only used for 1032 * autoconfigured addresses, pltime processing for prefixes is 1033 * not necessary. 1034 * 1035 * Only unlink after all derived addresses have expired. This 1036 * may not occur until two hours after the prefix has expired 1037 * per RFC 4862. If the prefix expires before its derived 1038 * addresses, mark it off-link. This will be done automatically 1039 * after unlinking if no address references remain. 1040 */ 1041 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1042 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1043 continue; 1044 1045 if (pr->ndpr_addrcnt == 0) { 1046 nd6_prefix_unlink(pr, &prl); 1047 continue; 1048 } 1049 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1050 genid = V_nd6_list_genid; 1051 nd6_prefix_ref(pr); 1052 ND6_WUNLOCK(); 1053 ND6_ONLINK_LOCK(); 1054 (void)nd6_prefix_offlink(pr); 1055 ND6_ONLINK_UNLOCK(); 1056 ND6_WLOCK(); 1057 nd6_prefix_rele(pr); 1058 if (genid != V_nd6_list_genid) 1059 goto restart; 1060 } 1061 } 1062 ND6_WUNLOCK(); 1063 1064 while ((pr = LIST_FIRST(&prl)) != NULL) { 1065 LIST_REMOVE(pr, ndpr_entry); 1066 nd6_prefix_del(pr); 1067 } 1068 1069 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1070 nd6_timer, curvnet); 1071 1072 CURVNET_RESTORE(); 1073 } 1074 1075 /* 1076 * ia6 - deprecated/invalidated temporary address 1077 */ 1078 static int 1079 regen_tmpaddr(struct in6_ifaddr *ia6) 1080 { 1081 struct ifaddr *ifa; 1082 struct ifnet *ifp; 1083 struct in6_ifaddr *public_ifa6 = NULL; 1084 1085 NET_EPOCH_ASSERT(); 1086 1087 ifp = ia6->ia_ifa.ifa_ifp; 1088 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1089 struct in6_ifaddr *it6; 1090 1091 if (ifa->ifa_addr->sa_family != AF_INET6) 1092 continue; 1093 1094 it6 = (struct in6_ifaddr *)ifa; 1095 1096 /* ignore no autoconf addresses. */ 1097 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1098 continue; 1099 1100 /* ignore autoconf addresses with different prefixes. */ 1101 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1102 continue; 1103 1104 /* 1105 * Now we are looking at an autoconf address with the same 1106 * prefix as ours. If the address is temporary and is still 1107 * preferred, do not create another one. It would be rare, but 1108 * could happen, for example, when we resume a laptop PC after 1109 * a long period. 1110 */ 1111 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1112 !IFA6_IS_DEPRECATED(it6)) { 1113 public_ifa6 = NULL; 1114 break; 1115 } 1116 1117 /* 1118 * This is a public autoconf address that has the same prefix 1119 * as ours. If it is preferred, keep it. We can't break the 1120 * loop here, because there may be a still-preferred temporary 1121 * address with the prefix. 1122 */ 1123 if (!IFA6_IS_DEPRECATED(it6)) 1124 public_ifa6 = it6; 1125 } 1126 if (public_ifa6 != NULL) 1127 ifa_ref(&public_ifa6->ia_ifa); 1128 1129 if (public_ifa6 != NULL) { 1130 int e; 1131 1132 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1133 ifa_free(&public_ifa6->ia_ifa); 1134 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1135 " tmp addr,errno=%d\n", e); 1136 return (-1); 1137 } 1138 ifa_free(&public_ifa6->ia_ifa); 1139 return (0); 1140 } 1141 1142 return (-1); 1143 } 1144 1145 /* 1146 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1147 * cache entries are freed in in6_domifdetach(). 1148 */ 1149 void 1150 nd6_purge(struct ifnet *ifp) 1151 { 1152 struct nd_prhead prl; 1153 struct nd_prefix *pr, *npr; 1154 1155 LIST_INIT(&prl); 1156 1157 /* Purge default router list entries toward ifp. */ 1158 nd6_defrouter_purge(ifp); 1159 1160 ND6_WLOCK(); 1161 /* 1162 * Remove prefixes on ifp. We should have already removed addresses on 1163 * this interface, so no addresses should be referencing these prefixes. 1164 */ 1165 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1166 if (pr->ndpr_ifp == ifp) 1167 nd6_prefix_unlink(pr, &prl); 1168 } 1169 ND6_WUNLOCK(); 1170 1171 /* Delete the unlinked prefix objects. */ 1172 while ((pr = LIST_FIRST(&prl)) != NULL) { 1173 LIST_REMOVE(pr, ndpr_entry); 1174 nd6_prefix_del(pr); 1175 } 1176 1177 /* cancel default outgoing interface setting */ 1178 if (V_nd6_defifindex == ifp->if_index) 1179 nd6_setdefaultiface(0); 1180 1181 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1182 /* Refresh default router list. */ 1183 defrouter_select_fib(ifp->if_fib); 1184 } 1185 } 1186 1187 /* 1188 * the caller acquires and releases the lock on the lltbls 1189 * Returns the llentry locked 1190 */ 1191 struct llentry * 1192 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1193 { 1194 struct sockaddr_in6 sin6; 1195 struct llentry *ln; 1196 1197 bzero(&sin6, sizeof(sin6)); 1198 sin6.sin6_len = sizeof(struct sockaddr_in6); 1199 sin6.sin6_family = AF_INET6; 1200 sin6.sin6_addr = *addr6; 1201 1202 IF_AFDATA_LOCK_ASSERT(ifp); 1203 1204 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1205 1206 return (ln); 1207 } 1208 1209 static struct llentry * 1210 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1211 { 1212 struct sockaddr_in6 sin6; 1213 struct llentry *ln; 1214 1215 bzero(&sin6, sizeof(sin6)); 1216 sin6.sin6_len = sizeof(struct sockaddr_in6); 1217 sin6.sin6_family = AF_INET6; 1218 sin6.sin6_addr = *addr6; 1219 1220 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1221 if (ln != NULL) 1222 ln->ln_state = ND6_LLINFO_NOSTATE; 1223 1224 return (ln); 1225 } 1226 1227 /* 1228 * Test whether a given IPv6 address can be a neighbor. 1229 */ 1230 static bool 1231 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1232 { 1233 1234 /* 1235 * A link-local address is always a neighbor. 1236 * XXX: a link does not necessarily specify a single interface. 1237 */ 1238 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1239 struct sockaddr_in6 sin6_copy; 1240 u_int32_t zone; 1241 1242 /* 1243 * We need sin6_copy since sa6_recoverscope() may modify the 1244 * content (XXX). 1245 */ 1246 sin6_copy = *addr; 1247 if (sa6_recoverscope(&sin6_copy)) 1248 return (0); /* XXX: should be impossible */ 1249 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1250 return (0); 1251 if (sin6_copy.sin6_scope_id == zone) 1252 return (1); 1253 else 1254 return (0); 1255 } 1256 /* Checking global unicast */ 1257 1258 /* If an address is directly reachable, it is a neigbor */ 1259 struct nhop_object *nh; 1260 nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); 1261 if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) 1262 return (true); 1263 1264 /* 1265 * Check prefixes with desired on-link state, as some may be not 1266 * installed in the routing table. 1267 */ 1268 bool matched = false; 1269 struct nd_prefix *pr; 1270 ND6_RLOCK(); 1271 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1272 if (pr->ndpr_ifp != ifp) 1273 continue; 1274 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) 1275 continue; 1276 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1277 &addr->sin6_addr, &pr->ndpr_mask)) { 1278 matched = true; 1279 break; 1280 } 1281 } 1282 ND6_RUNLOCK(); 1283 if (matched) 1284 return (true); 1285 1286 /* 1287 * If the address is assigned on the node of the other side of 1288 * a p2p interface, the address should be a neighbor. 1289 */ 1290 if (ifp->if_flags & IFF_POINTOPOINT) { 1291 struct ifaddr *ifa; 1292 1293 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1294 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1295 continue; 1296 if (ifa->ifa_dstaddr != NULL && 1297 sa_equal(addr, ifa->ifa_dstaddr)) { 1298 return (true); 1299 } 1300 } 1301 } 1302 1303 /* 1304 * If the default router list is empty, all addresses are regarded 1305 * as on-link, and thus, as a neighbor. 1306 */ 1307 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1308 nd6_defrouter_list_empty() && 1309 V_nd6_defifindex == ifp->if_index) { 1310 return (1); 1311 } 1312 1313 return (0); 1314 } 1315 1316 /* 1317 * Detect if a given IPv6 address identifies a neighbor on a given link. 1318 * XXX: should take care of the destination of a p2p link? 1319 */ 1320 int 1321 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1322 { 1323 struct llentry *lle; 1324 int rc = 0; 1325 1326 NET_EPOCH_ASSERT(); 1327 IF_AFDATA_UNLOCK_ASSERT(ifp); 1328 if (nd6_is_new_addr_neighbor(addr, ifp)) 1329 return (1); 1330 1331 /* 1332 * Even if the address matches none of our addresses, it might be 1333 * in the neighbor cache. 1334 */ 1335 if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { 1336 LLE_RUNLOCK(lle); 1337 rc = 1; 1338 } 1339 return (rc); 1340 } 1341 1342 static __noinline void 1343 nd6_free_children(struct llentry *lle) 1344 { 1345 struct llentry *child_lle; 1346 1347 NET_EPOCH_ASSERT(); 1348 LLE_WLOCK_ASSERT(lle); 1349 1350 while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { 1351 LLE_WLOCK(child_lle); 1352 lltable_unlink_child_entry(child_lle); 1353 llentry_free(child_lle); 1354 } 1355 } 1356 1357 /* 1358 * Tries to update @lle address/prepend data with new @lladdr. 1359 * 1360 * Returns true on success. 1361 * In any case, @lle is returned wlocked. 1362 */ 1363 static __noinline bool 1364 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1365 { 1366 u_char buf[LLE_MAX_LINKHDR]; 1367 int fam, off; 1368 size_t sz; 1369 1370 sz = sizeof(buf); 1371 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) 1372 return (false); 1373 1374 /* Update data */ 1375 lltable_set_entry_addr(ifp, lle, buf, sz, off); 1376 1377 struct llentry *child_lle; 1378 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 1379 LLE_WLOCK(child_lle); 1380 fam = child_lle->r_family; 1381 sz = sizeof(buf); 1382 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { 1383 /* success */ 1384 lltable_set_entry_addr(ifp, child_lle, buf, sz, off); 1385 child_lle->ln_state = ND6_LLINFO_REACHABLE; 1386 } 1387 LLE_WUNLOCK(child_lle); 1388 } 1389 1390 return (true); 1391 } 1392 1393 bool 1394 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1395 { 1396 NET_EPOCH_ASSERT(); 1397 LLE_WLOCK_ASSERT(lle); 1398 1399 if (!lltable_acquire_wlock(ifp, lle)) 1400 return (false); 1401 bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); 1402 IF_AFDATA_WUNLOCK(ifp); 1403 1404 return (ret); 1405 } 1406 1407 /* 1408 * Free an nd6 llinfo entry. 1409 * Since the function would cause significant changes in the kernel, DO NOT 1410 * make it global, unless you have a strong reason for the change, and are sure 1411 * that the change is safe. 1412 * 1413 * Set noinline to be dtrace-friendly 1414 */ 1415 static __noinline void 1416 nd6_free(struct llentry **lnp, int gc) 1417 { 1418 struct ifnet *ifp; 1419 struct llentry *ln; 1420 struct nd_defrouter *dr; 1421 1422 ln = *lnp; 1423 *lnp = NULL; 1424 1425 LLE_WLOCK_ASSERT(ln); 1426 ND6_RLOCK_ASSERT(); 1427 1428 KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); 1429 1430 ifp = lltable_get_ifp(ln->lle_tbl); 1431 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1432 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1433 else 1434 dr = NULL; 1435 ND6_RUNLOCK(); 1436 1437 if ((ln->la_flags & LLE_DELETED) == 0) 1438 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1439 1440 /* 1441 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1442 * even though it is not harmful, it was not really necessary. 1443 */ 1444 1445 /* cancel timer */ 1446 nd6_llinfo_settimer_locked(ln, -1); 1447 1448 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1449 if (dr != NULL && dr->expire && 1450 ln->ln_state == ND6_LLINFO_STALE && gc) { 1451 /* 1452 * If the reason for the deletion is just garbage 1453 * collection, and the neighbor is an active default 1454 * router, do not delete it. Instead, reset the GC 1455 * timer using the router's lifetime. 1456 * Simply deleting the entry would affect default 1457 * router selection, which is not necessarily a good 1458 * thing, especially when we're using router preference 1459 * values. 1460 * XXX: the check for ln_state would be redundant, 1461 * but we intentionally keep it just in case. 1462 */ 1463 if (dr->expire > time_uptime) 1464 nd6_llinfo_settimer_locked(ln, 1465 (dr->expire - time_uptime) * hz); 1466 else 1467 nd6_llinfo_settimer_locked(ln, 1468 (long)V_nd6_gctimer * hz); 1469 1470 LLE_REMREF(ln); 1471 LLE_WUNLOCK(ln); 1472 defrouter_rele(dr); 1473 return; 1474 } 1475 1476 if (dr) { 1477 /* 1478 * Unreachability of a router might affect the default 1479 * router selection and on-link detection of advertised 1480 * prefixes. 1481 */ 1482 1483 /* 1484 * Temporarily fake the state to choose a new default 1485 * router and to perform on-link determination of 1486 * prefixes correctly. 1487 * Below the state will be set correctly, 1488 * or the entry itself will be deleted. 1489 */ 1490 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1491 } 1492 1493 if (ln->ln_router || dr) { 1494 /* 1495 * We need to unlock to avoid a LOR with rt6_flush() with the 1496 * rnh and for the calls to pfxlist_onlink_check() and 1497 * defrouter_select_fib() in the block further down for calls 1498 * into nd6_lookup(). We still hold a ref. 1499 */ 1500 LLE_WUNLOCK(ln); 1501 1502 /* 1503 * rt6_flush must be called whether or not the neighbor 1504 * is in the Default Router List. 1505 * See a corresponding comment in nd6_na_input(). 1506 */ 1507 rt6_flush(&ln->r_l3addr.addr6, ifp); 1508 } 1509 1510 if (dr) { 1511 /* 1512 * Since defrouter_select_fib() does not affect the 1513 * on-link determination and MIP6 needs the check 1514 * before the default router selection, we perform 1515 * the check now. 1516 */ 1517 pfxlist_onlink_check(); 1518 1519 /* 1520 * Refresh default router list. 1521 */ 1522 defrouter_select_fib(dr->ifp->if_fib); 1523 } 1524 1525 /* 1526 * If this entry was added by an on-link redirect, remove the 1527 * corresponding host route. 1528 */ 1529 if (ln->la_flags & LLE_REDIRECT) 1530 nd6_free_redirect(ln); 1531 1532 if (ln->ln_router || dr) 1533 LLE_WLOCK(ln); 1534 } 1535 1536 /* 1537 * Save to unlock. We still hold an extra reference and will not 1538 * free(9) in llentry_free() if someone else holds one as well. 1539 */ 1540 LLE_WUNLOCK(ln); 1541 IF_AFDATA_LOCK(ifp); 1542 LLE_WLOCK(ln); 1543 /* Guard against race with other llentry_free(). */ 1544 if (ln->la_flags & LLE_LINKED) { 1545 /* Remove callout reference */ 1546 LLE_REMREF(ln); 1547 lltable_unlink_entry(ln->lle_tbl, ln); 1548 } 1549 IF_AFDATA_UNLOCK(ifp); 1550 1551 nd6_free_children(ln); 1552 1553 llentry_free(ln); 1554 if (dr != NULL) 1555 defrouter_rele(dr); 1556 } 1557 1558 static int 1559 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1560 { 1561 1562 if (nh->nh_flags & NHF_REDIRECT) 1563 return (1); 1564 1565 return (0); 1566 } 1567 1568 /* 1569 * Remove the rtentry for the given llentry, 1570 * both of which were installed by a redirect. 1571 */ 1572 static void 1573 nd6_free_redirect(const struct llentry *ln) 1574 { 1575 int fibnum; 1576 struct sockaddr_in6 sin6; 1577 struct rib_cmd_info rc; 1578 struct epoch_tracker et; 1579 1580 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1581 1582 NET_EPOCH_ENTER(et); 1583 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1584 rib_del_route_px(fibnum, (struct sockaddr *)&sin6, 128, 1585 nd6_isdynrte, NULL, 0, &rc); 1586 NET_EPOCH_EXIT(et); 1587 } 1588 1589 /* 1590 * Updates status of the default router route. 1591 */ 1592 static void 1593 check_release_defrouter(const struct rib_cmd_info *rc, void *_cbdata) 1594 { 1595 struct nd_defrouter *dr; 1596 struct nhop_object *nh; 1597 1598 nh = rc->rc_nh_old; 1599 1600 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1601 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1602 if (dr != NULL) { 1603 dr->installed = 0; 1604 defrouter_rele(dr); 1605 } 1606 } 1607 } 1608 1609 void 1610 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1611 { 1612 1613 #ifdef ROUTE_MPATH 1614 rib_decompose_notification(rc, check_release_defrouter, NULL); 1615 #else 1616 check_release_defrouter(rc, NULL); 1617 #endif 1618 } 1619 1620 int 1621 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1622 { 1623 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1624 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1625 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1626 struct epoch_tracker et; 1627 int error = 0; 1628 1629 if (ifp->if_afdata[AF_INET6] == NULL) 1630 return (EPFNOSUPPORT); 1631 switch (cmd) { 1632 case OSIOCGIFINFO_IN6: 1633 #define ND ndi->ndi 1634 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1635 bzero(&ND, sizeof(ND)); 1636 ND.linkmtu = IN6_LINKMTU(ifp); 1637 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1638 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1639 ND.reachable = ND_IFINFO(ifp)->reachable; 1640 ND.retrans = ND_IFINFO(ifp)->retrans; 1641 ND.flags = ND_IFINFO(ifp)->flags; 1642 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1643 ND.chlim = ND_IFINFO(ifp)->chlim; 1644 break; 1645 case SIOCGIFINFO_IN6: 1646 ND = *ND_IFINFO(ifp); 1647 break; 1648 case SIOCSIFINFO_IN6: 1649 /* 1650 * used to change host variables from userland. 1651 * intended for a use on router to reflect RA configurations. 1652 */ 1653 /* 0 means 'unspecified' */ 1654 if (ND.linkmtu != 0) { 1655 if (ND.linkmtu < IPV6_MMTU || 1656 ND.linkmtu > IN6_LINKMTU(ifp)) { 1657 error = EINVAL; 1658 break; 1659 } 1660 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1661 } 1662 1663 if (ND.basereachable != 0) { 1664 int obasereachable = ND_IFINFO(ifp)->basereachable; 1665 1666 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1667 if (ND.basereachable != obasereachable) 1668 ND_IFINFO(ifp)->reachable = 1669 ND_COMPUTE_RTIME(ND.basereachable); 1670 } 1671 if (ND.retrans != 0) 1672 ND_IFINFO(ifp)->retrans = ND.retrans; 1673 if (ND.chlim != 0) 1674 ND_IFINFO(ifp)->chlim = ND.chlim; 1675 /* FALLTHROUGH */ 1676 case SIOCSIFINFO_FLAGS: 1677 { 1678 struct ifaddr *ifa; 1679 struct in6_ifaddr *ia; 1680 1681 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1682 !(ND.flags & ND6_IFF_IFDISABLED)) { 1683 /* ifdisabled 1->0 transision */ 1684 1685 /* 1686 * If the interface is marked as ND6_IFF_IFDISABLED and 1687 * has an link-local address with IN6_IFF_DUPLICATED, 1688 * do not clear ND6_IFF_IFDISABLED. 1689 * See RFC 4862, Section 5.4.5. 1690 */ 1691 NET_EPOCH_ENTER(et); 1692 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1693 if (ifa->ifa_addr->sa_family != AF_INET6) 1694 continue; 1695 ia = (struct in6_ifaddr *)ifa; 1696 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1697 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1698 break; 1699 } 1700 NET_EPOCH_EXIT(et); 1701 1702 if (ifa != NULL) { 1703 /* LLA is duplicated. */ 1704 ND.flags |= ND6_IFF_IFDISABLED; 1705 log(LOG_ERR, "Cannot enable an interface" 1706 " with a link-local address marked" 1707 " duplicate.\n"); 1708 } else { 1709 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1710 if (ifp->if_flags & IFF_UP) 1711 in6_if_up(ifp); 1712 } 1713 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1714 (ND.flags & ND6_IFF_IFDISABLED)) { 1715 /* ifdisabled 0->1 transision */ 1716 /* Mark all IPv6 address as tentative. */ 1717 1718 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1719 if (V_ip6_dad_count > 0 && 1720 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1721 NET_EPOCH_ENTER(et); 1722 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1723 ifa_link) { 1724 if (ifa->ifa_addr->sa_family != 1725 AF_INET6) 1726 continue; 1727 ia = (struct in6_ifaddr *)ifa; 1728 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1729 } 1730 NET_EPOCH_EXIT(et); 1731 } 1732 } 1733 1734 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1735 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1736 /* auto_linklocal 0->1 transision */ 1737 1738 /* If no link-local address on ifp, configure */ 1739 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1740 in6_ifattach(ifp, NULL); 1741 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1742 ifp->if_flags & IFF_UP) { 1743 /* 1744 * When the IF already has 1745 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1746 * address is assigned, and IFF_UP, try to 1747 * assign one. 1748 */ 1749 NET_EPOCH_ENTER(et); 1750 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1751 ifa_link) { 1752 if (ifa->ifa_addr->sa_family != 1753 AF_INET6) 1754 continue; 1755 ia = (struct in6_ifaddr *)ifa; 1756 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1757 break; 1758 } 1759 NET_EPOCH_EXIT(et); 1760 if (ifa != NULL) 1761 /* No LLA is configured. */ 1762 in6_ifattach(ifp, NULL); 1763 } 1764 } 1765 ND_IFINFO(ifp)->flags = ND.flags; 1766 break; 1767 } 1768 #undef ND 1769 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1770 /* sync kernel routing table with the default router list */ 1771 defrouter_reset(); 1772 defrouter_select_fib(RT_ALL_FIBS); 1773 break; 1774 case SIOCSPFXFLUSH_IN6: 1775 { 1776 /* flush all the prefix advertised by routers */ 1777 struct in6_ifaddr *ia, *ia_next; 1778 struct nd_prefix *pr, *next; 1779 struct nd_prhead prl; 1780 1781 LIST_INIT(&prl); 1782 1783 ND6_WLOCK(); 1784 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1785 if (pr->ndpr_raf_ra_derived) 1786 nd6_prefix_unlink(pr, &prl); 1787 } 1788 ND6_WUNLOCK(); 1789 1790 while ((pr = LIST_FIRST(&prl)) != NULL) { 1791 LIST_REMOVE(pr, ndpr_entry); 1792 /* XXXRW: in6_ifaddrhead locking. */ 1793 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1794 ia_next) { 1795 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1796 continue; 1797 1798 if (ia->ia6_ndpr == pr) 1799 in6_purgeaddr(&ia->ia_ifa); 1800 } 1801 nd6_prefix_del(pr); 1802 } 1803 break; 1804 } 1805 case SIOCSRTRFLUSH_IN6: 1806 { 1807 /* flush all the default routers */ 1808 1809 defrouter_reset(); 1810 nd6_defrouter_flush_all(); 1811 defrouter_select_fib(RT_ALL_FIBS); 1812 break; 1813 } 1814 case SIOCGNBRINFO_IN6: 1815 { 1816 struct llentry *ln; 1817 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1818 1819 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1820 return (error); 1821 1822 NET_EPOCH_ENTER(et); 1823 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); 1824 NET_EPOCH_EXIT(et); 1825 1826 if (ln == NULL) { 1827 error = EINVAL; 1828 break; 1829 } 1830 nbi->state = ln->ln_state; 1831 nbi->asked = ln->la_asked; 1832 nbi->isrouter = ln->ln_router; 1833 if (ln->la_expire == 0) 1834 nbi->expire = 0; 1835 else 1836 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1837 (time_second - time_uptime); 1838 LLE_RUNLOCK(ln); 1839 break; 1840 } 1841 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1842 ndif->ifindex = V_nd6_defifindex; 1843 break; 1844 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1845 return (nd6_setdefaultiface(ndif->ifindex)); 1846 } 1847 return (error); 1848 } 1849 1850 /* 1851 * Calculates new isRouter value based on provided parameters and 1852 * returns it. 1853 */ 1854 static int 1855 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1856 int ln_router) 1857 { 1858 1859 /* 1860 * ICMP6 type dependent behavior. 1861 * 1862 * NS: clear IsRouter if new entry 1863 * RS: clear IsRouter 1864 * RA: set IsRouter if there's lladdr 1865 * redir: clear IsRouter if new entry 1866 * 1867 * RA case, (1): 1868 * The spec says that we must set IsRouter in the following cases: 1869 * - If lladdr exist, set IsRouter. This means (1-5). 1870 * - If it is old entry (!newentry), set IsRouter. This means (7). 1871 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1872 * A quetion arises for (1) case. (1) case has no lladdr in the 1873 * neighbor cache, this is similar to (6). 1874 * This case is rare but we figured that we MUST NOT set IsRouter. 1875 * 1876 * is_new old_addr new_addr NS RS RA redir 1877 * D R 1878 * 0 n n (1) c ? s 1879 * 0 y n (2) c s s 1880 * 0 n y (3) c s s 1881 * 0 y y (4) c s s 1882 * 0 y y (5) c s s 1883 * 1 -- n (6) c c c s 1884 * 1 -- y (7) c c s c s 1885 * 1886 * (c=clear s=set) 1887 */ 1888 switch (type & 0xff) { 1889 case ND_NEIGHBOR_SOLICIT: 1890 /* 1891 * New entry must have is_router flag cleared. 1892 */ 1893 if (is_new) /* (6-7) */ 1894 ln_router = 0; 1895 break; 1896 case ND_REDIRECT: 1897 /* 1898 * If the icmp is a redirect to a better router, always set the 1899 * is_router flag. Otherwise, if the entry is newly created, 1900 * clear the flag. [RFC 2461, sec 8.3] 1901 */ 1902 if (code == ND_REDIRECT_ROUTER) 1903 ln_router = 1; 1904 else { 1905 if (is_new) /* (6-7) */ 1906 ln_router = 0; 1907 } 1908 break; 1909 case ND_ROUTER_SOLICIT: 1910 /* 1911 * is_router flag must always be cleared. 1912 */ 1913 ln_router = 0; 1914 break; 1915 case ND_ROUTER_ADVERT: 1916 /* 1917 * Mark an entry with lladdr as a router. 1918 */ 1919 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1920 (is_new && new_addr)) { /* (7) */ 1921 ln_router = 1; 1922 } 1923 break; 1924 } 1925 1926 return (ln_router); 1927 } 1928 1929 /* 1930 * Create neighbor cache entry and cache link-layer address, 1931 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1932 * 1933 * type - ICMP6 type 1934 * code - type dependent information 1935 * 1936 */ 1937 void 1938 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1939 int lladdrlen, int type, int code) 1940 { 1941 struct llentry *ln = NULL, *ln_tmp; 1942 int is_newentry; 1943 int do_update; 1944 int olladdr; 1945 int llchange; 1946 int flags; 1947 uint16_t router = 0; 1948 struct mbuf *chain = NULL; 1949 u_char linkhdr[LLE_MAX_LINKHDR]; 1950 size_t linkhdrsize; 1951 int lladdr_off; 1952 1953 NET_EPOCH_ASSERT(); 1954 IF_AFDATA_UNLOCK_ASSERT(ifp); 1955 1956 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1957 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1958 1959 /* nothing must be updated for unspecified address */ 1960 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1961 return; 1962 1963 /* 1964 * Validation about ifp->if_addrlen and lladdrlen must be done in 1965 * the caller. 1966 * 1967 * XXX If the link does not have link-layer adderss, what should 1968 * we do? (ifp->if_addrlen == 0) 1969 * Spec says nothing in sections for RA, RS and NA. There's small 1970 * description on it in NS section (RFC 2461 7.2.3). 1971 */ 1972 flags = lladdr ? LLE_EXCLUSIVE : 0; 1973 ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); 1974 is_newentry = 0; 1975 if (ln == NULL) { 1976 flags |= LLE_EXCLUSIVE; 1977 ln = nd6_alloc(from, 0, ifp); 1978 if (ln == NULL) 1979 return; 1980 1981 /* 1982 * Since we already know all the data for the new entry, 1983 * fill it before insertion. 1984 */ 1985 if (lladdr != NULL) { 1986 linkhdrsize = sizeof(linkhdr); 1987 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1988 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 1989 lltable_free_entry(LLTABLE6(ifp), ln); 1990 return; 1991 } 1992 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1993 lladdr_off); 1994 } 1995 1996 IF_AFDATA_WLOCK(ifp); 1997 LLE_WLOCK(ln); 1998 /* Prefer any existing lle over newly-created one */ 1999 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2000 if (ln_tmp == NULL) 2001 lltable_link_entry(LLTABLE6(ifp), ln); 2002 IF_AFDATA_WUNLOCK(ifp); 2003 if (ln_tmp == NULL) { 2004 /* No existing lle, mark as new entry (6,7) */ 2005 is_newentry = 1; 2006 if (lladdr != NULL) { /* (7) */ 2007 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2008 EVENTHANDLER_INVOKE(lle_event, ln, 2009 LLENTRY_RESOLVED); 2010 } 2011 } else { 2012 lltable_free_entry(LLTABLE6(ifp), ln); 2013 ln = ln_tmp; 2014 ln_tmp = NULL; 2015 } 2016 } 2017 /* do nothing if static ndp is set */ 2018 if ((ln->la_flags & LLE_STATIC)) { 2019 if (flags & LLE_EXCLUSIVE) 2020 LLE_WUNLOCK(ln); 2021 else 2022 LLE_RUNLOCK(ln); 2023 return; 2024 } 2025 2026 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2027 if (olladdr && lladdr) { 2028 llchange = bcmp(lladdr, ln->ll_addr, 2029 ifp->if_addrlen); 2030 } else if (!olladdr && lladdr) 2031 llchange = 1; 2032 else 2033 llchange = 0; 2034 2035 /* 2036 * newentry olladdr lladdr llchange (*=record) 2037 * 0 n n -- (1) 2038 * 0 y n -- (2) 2039 * 0 n y y (3) * STALE 2040 * 0 y y n (4) * 2041 * 0 y y y (5) * STALE 2042 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2043 * 1 -- y -- (7) * STALE 2044 */ 2045 2046 do_update = 0; 2047 if (is_newentry == 0 && llchange != 0) { 2048 do_update = 1; /* (3,5) */ 2049 2050 /* 2051 * Record source link-layer address 2052 * XXX is it dependent to ifp->if_type? 2053 */ 2054 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { 2055 /* Entry was deleted */ 2056 LLE_WUNLOCK(ln); 2057 return; 2058 } 2059 2060 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2061 2062 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2063 2064 if (ln->la_hold != NULL) 2065 chain = nd6_grab_holdchain(ln); 2066 } 2067 2068 /* Calculates new router status */ 2069 router = nd6_is_router(type, code, is_newentry, olladdr, 2070 lladdr != NULL ? 1 : 0, ln->ln_router); 2071 2072 ln->ln_router = router; 2073 /* Mark non-router redirects with special flag */ 2074 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2075 ln->la_flags |= LLE_REDIRECT; 2076 2077 if (flags & LLE_EXCLUSIVE) 2078 LLE_WUNLOCK(ln); 2079 else 2080 LLE_RUNLOCK(ln); 2081 2082 if (chain != NULL) 2083 nd6_flush_holdchain(ifp, ln, chain); 2084 if (do_update) 2085 nd6_flush_children_holdchain(ifp, ln); 2086 2087 /* 2088 * When the link-layer address of a router changes, select the 2089 * best router again. In particular, when the neighbor entry is newly 2090 * created, it might affect the selection policy. 2091 * Question: can we restrict the first condition to the "is_newentry" 2092 * case? 2093 * XXX: when we hear an RA from a new router with the link-layer 2094 * address option, defrouter_select_fib() is called twice, since 2095 * defrtrlist_update called the function as well. However, I believe 2096 * we can compromise the overhead, since it only happens the first 2097 * time. 2098 * XXX: although defrouter_select_fib() should not have a bad effect 2099 * for those are not autoconfigured hosts, we explicitly avoid such 2100 * cases for safety. 2101 */ 2102 if ((do_update || is_newentry) && router && 2103 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2104 /* 2105 * guaranteed recursion 2106 */ 2107 defrouter_select_fib(ifp->if_fib); 2108 } 2109 } 2110 2111 static void 2112 nd6_slowtimo(void *arg) 2113 { 2114 struct epoch_tracker et; 2115 CURVNET_SET((struct vnet *) arg); 2116 struct nd_ifinfo *nd6if; 2117 struct ifnet *ifp; 2118 2119 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2120 nd6_slowtimo, curvnet); 2121 NET_EPOCH_ENTER(et); 2122 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2123 if (ifp->if_afdata[AF_INET6] == NULL) 2124 continue; 2125 nd6if = ND_IFINFO(ifp); 2126 if (nd6if->basereachable && /* already initialized */ 2127 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2128 /* 2129 * Since reachable time rarely changes by router 2130 * advertisements, we SHOULD insure that a new random 2131 * value gets recomputed at least once every few hours. 2132 * (RFC 2461, 6.3.4) 2133 */ 2134 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2135 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2136 } 2137 } 2138 NET_EPOCH_EXIT(et); 2139 CURVNET_RESTORE(); 2140 } 2141 2142 struct mbuf * 2143 nd6_grab_holdchain(struct llentry *ln) 2144 { 2145 struct mbuf *chain; 2146 2147 LLE_WLOCK_ASSERT(ln); 2148 2149 chain = ln->la_hold; 2150 ln->la_hold = NULL; 2151 ln->la_numheld = 0; 2152 2153 if (ln->ln_state == ND6_LLINFO_STALE) { 2154 /* 2155 * The first time we send a packet to a 2156 * neighbor whose entry is STALE, we have 2157 * to change the state to DELAY and a sets 2158 * a timer to expire in DELAY_FIRST_PROBE_TIME 2159 * seconds to ensure do neighbor unreachability 2160 * detection on expiration. 2161 * (RFC 2461 7.3.3) 2162 */ 2163 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2164 } 2165 2166 return (chain); 2167 } 2168 2169 int 2170 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2171 struct sockaddr_in6 *dst, struct route *ro) 2172 { 2173 int error; 2174 int ip6len; 2175 struct ip6_hdr *ip6; 2176 struct m_tag *mtag; 2177 2178 #ifdef MAC 2179 mac_netinet6_nd6_send(ifp, m); 2180 #endif 2181 2182 /* 2183 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2184 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2185 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2186 * to be diverted to user space. When re-injected into the kernel, 2187 * send_output() will directly dispatch them to the outgoing interface. 2188 */ 2189 if (send_sendso_input_hook != NULL) { 2190 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2191 if (mtag != NULL) { 2192 ip6 = mtod(m, struct ip6_hdr *); 2193 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2194 /* Use the SEND socket */ 2195 error = send_sendso_input_hook(m, ifp, SND_OUT, 2196 ip6len); 2197 /* -1 == no app on SEND socket */ 2198 if (error == 0 || error != -1) 2199 return (error); 2200 } 2201 } 2202 2203 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2204 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2205 mtod(m, struct ip6_hdr *)); 2206 2207 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2208 origifp = ifp; 2209 2210 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2211 return (error); 2212 } 2213 2214 /* 2215 * Lookup link headerfor @sa_dst address. Stores found 2216 * data in @desten buffer. Copy of lle ln_flags can be also 2217 * saved in @pflags if @pflags is non-NULL. 2218 * 2219 * If destination LLE does not exists or lle state modification 2220 * is required, call "slow" version. 2221 * 2222 * Return values: 2223 * - 0 on success (address copied to buffer). 2224 * - EWOULDBLOCK (no local error, but address is still unresolved) 2225 * - other errors (alloc failure, etc) 2226 */ 2227 int 2228 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, 2229 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2230 struct llentry **plle) 2231 { 2232 struct llentry *ln = NULL; 2233 const struct sockaddr_in6 *dst6; 2234 2235 NET_EPOCH_ASSERT(); 2236 2237 if (pflags != NULL) 2238 *pflags = 0; 2239 2240 dst6 = (const struct sockaddr_in6 *)sa_dst; 2241 2242 /* discard the packet if IPv6 operation is disabled on the interface */ 2243 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2244 m_freem(m); 2245 return (ENETDOWN); /* better error? */ 2246 } 2247 2248 if (m != NULL && m->m_flags & M_MCAST) { 2249 switch (ifp->if_type) { 2250 case IFT_ETHER: 2251 case IFT_L2VLAN: 2252 case IFT_BRIDGE: 2253 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2254 desten); 2255 return (0); 2256 default: 2257 m_freem(m); 2258 return (EAFNOSUPPORT); 2259 } 2260 } 2261 2262 int family = gw_flags >> 16; 2263 int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; 2264 ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); 2265 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2266 /* Entry found, let's copy lle info */ 2267 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2268 if (pflags != NULL) 2269 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2270 llentry_provide_feedback(ln); 2271 if (plle) { 2272 LLE_ADDREF(ln); 2273 *plle = ln; 2274 LLE_WUNLOCK(ln); 2275 } 2276 return (0); 2277 } else if (plle && ln) 2278 LLE_WUNLOCK(ln); 2279 2280 return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); 2281 } 2282 2283 /* 2284 * Finds or creates a new llentry for @addr and @family. 2285 * Returns wlocked llentry or NULL. 2286 * 2287 * 2288 * Child LLEs. 2289 * 2290 * Do not have their own state machine (gets marked as static) 2291 * settimer bails out for child LLEs just in case. 2292 * 2293 * Locking order: parent lle gets locked first, chen goes the child. 2294 */ 2295 static __noinline struct llentry * 2296 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) 2297 { 2298 struct llentry *child_lle = NULL; 2299 struct llentry *lle, *lle_tmp; 2300 2301 lle = nd6_alloc(addr, 0, ifp); 2302 if (lle != NULL && family != AF_INET6) { 2303 child_lle = nd6_alloc(addr, 0, ifp); 2304 if (child_lle == NULL) { 2305 lltable_free_entry(LLTABLE6(ifp), lle); 2306 return (NULL); 2307 } 2308 child_lle->r_family = family; 2309 child_lle->la_flags |= LLE_CHILD | LLE_STATIC; 2310 child_lle->ln_state = ND6_LLINFO_INCOMPLETE; 2311 } 2312 2313 if (lle == NULL) { 2314 char ip6buf[INET6_ADDRSTRLEN]; 2315 log(LOG_DEBUG, 2316 "nd6_get_llentry: can't allocate llinfo for %s " 2317 "(ln=%p)\n", 2318 ip6_sprintf(ip6buf, addr), lle); 2319 return (NULL); 2320 } 2321 2322 IF_AFDATA_WLOCK(ifp); 2323 LLE_WLOCK(lle); 2324 /* Prefer any existing entry over newly-created one */ 2325 lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2326 if (lle_tmp == NULL) 2327 lltable_link_entry(LLTABLE6(ifp), lle); 2328 else { 2329 lltable_free_entry(LLTABLE6(ifp), lle); 2330 lle = lle_tmp; 2331 } 2332 if (child_lle != NULL) { 2333 /* Check if child lle for the same family exists */ 2334 lle_tmp = llentry_lookup_family(lle, child_lle->r_family); 2335 LLE_WLOCK(child_lle); 2336 if (lle_tmp == NULL) { 2337 /* Attach */ 2338 lltable_link_child_entry(lle, child_lle); 2339 } else { 2340 /* child lle already exists, free newly-created one */ 2341 lltable_free_entry(LLTABLE6(ifp), child_lle); 2342 child_lle = lle_tmp; 2343 } 2344 LLE_WUNLOCK(lle); 2345 lle = child_lle; 2346 } 2347 IF_AFDATA_WUNLOCK(ifp); 2348 return (lle); 2349 } 2350 2351 /* 2352 * Do L2 address resolution for @sa_dst address. Stores found 2353 * address in @desten buffer. Copy of lle ln_flags can be also 2354 * saved in @pflags if @pflags is non-NULL. 2355 * 2356 * Heavy version. 2357 * Function assume that destination LLE does not exist, 2358 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2359 * 2360 * Set noinline to be dtrace-friendly 2361 */ 2362 static __noinline int 2363 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, 2364 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2365 struct llentry **plle) 2366 { 2367 struct llentry *lle = NULL; 2368 struct in6_addr *psrc, src; 2369 int send_ns, ll_len; 2370 char *lladdr; 2371 2372 NET_EPOCH_ASSERT(); 2373 2374 /* 2375 * Address resolution or Neighbor Unreachability Detection 2376 * for the next hop. 2377 * At this point, the destination of the packet must be a unicast 2378 * or an anycast address(i.e. not a multicast). 2379 */ 2380 lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); 2381 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2382 /* 2383 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2384 * the condition below is not very efficient. But we believe 2385 * it is tolerable, because this should be a rare case. 2386 */ 2387 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); 2388 } 2389 2390 if (lle == NULL) { 2391 m_freem(m); 2392 return (ENOBUFS); 2393 } 2394 2395 LLE_WLOCK_ASSERT(lle); 2396 2397 /* 2398 * The first time we send a packet to a neighbor whose entry is 2399 * STALE, we have to change the state to DELAY and a sets a timer to 2400 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2401 * neighbor unreachability detection on expiration. 2402 * (RFC 2461 7.3.3) 2403 */ 2404 if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) 2405 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2406 2407 /* 2408 * If the neighbor cache entry has a state other than INCOMPLETE 2409 * (i.e. its link-layer address is already resolved), just 2410 * send the packet. 2411 */ 2412 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2413 if (flags & LLE_ADDRONLY) { 2414 lladdr = lle->ll_addr; 2415 ll_len = ifp->if_addrlen; 2416 } else { 2417 lladdr = lle->r_linkdata; 2418 ll_len = lle->r_hdrlen; 2419 } 2420 bcopy(lladdr, desten, ll_len); 2421 if (pflags != NULL) 2422 *pflags = lle->la_flags; 2423 if (plle) { 2424 LLE_ADDREF(lle); 2425 *plle = lle; 2426 } 2427 LLE_WUNLOCK(lle); 2428 return (0); 2429 } 2430 2431 /* 2432 * There is a neighbor cache entry, but no ethernet address 2433 * response yet. Append this latest packet to the end of the 2434 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2435 * the oldest packet in the queue will be removed. 2436 */ 2437 if (m != NULL) { 2438 size_t dropped; 2439 2440 dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); 2441 ICMP6STAT_ADD(icp6s_dropped, dropped); 2442 } 2443 2444 /* 2445 * If there has been no NS for the neighbor after entering the 2446 * INCOMPLETE state, send the first solicitation. 2447 * Note that for newly-created lle la_asked will be 0, 2448 * so we will transition from ND6_LLINFO_NOSTATE to 2449 * ND6_LLINFO_INCOMPLETE state here. 2450 */ 2451 psrc = NULL; 2452 send_ns = 0; 2453 2454 /* If we have child lle, switch to the parent to send NS */ 2455 if (lle->la_flags & LLE_CHILD) { 2456 struct llentry *lle_parent = lle->lle_parent; 2457 LLE_WUNLOCK(lle); 2458 lle = lle_parent; 2459 LLE_WLOCK(lle); 2460 } 2461 if (lle->la_asked == 0) { 2462 lle->la_asked++; 2463 send_ns = 1; 2464 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2465 2466 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2467 } 2468 LLE_WUNLOCK(lle); 2469 if (send_ns != 0) 2470 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2471 2472 return (EWOULDBLOCK); 2473 } 2474 2475 /* 2476 * Do L2 address resolution for @sa_dst address. Stores found 2477 * address in @desten buffer. Copy of lle ln_flags can be also 2478 * saved in @pflags if @pflags is non-NULL. 2479 * 2480 * Return values: 2481 * - 0 on success (address copied to buffer). 2482 * - EWOULDBLOCK (no local error, but address is still unresolved) 2483 * - other errors (alloc failure, etc) 2484 */ 2485 int 2486 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2487 char *desten, uint32_t *pflags) 2488 { 2489 int error; 2490 2491 flags |= LLE_ADDRONLY; 2492 error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, 2493 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2494 return (error); 2495 } 2496 2497 int 2498 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) 2499 { 2500 struct mbuf *m, *m_head; 2501 struct sockaddr_in6 dst6; 2502 int error = 0; 2503 2504 NET_EPOCH_ASSERT(); 2505 2506 struct route_in6 ro = { 2507 .ro_prepend = lle->r_linkdata, 2508 .ro_plen = lle->r_hdrlen, 2509 }; 2510 2511 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); 2512 m_head = chain; 2513 2514 while (m_head) { 2515 m = m_head; 2516 m_head = m_head->m_nextpkt; 2517 m->m_nextpkt = NULL; 2518 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); 2519 } 2520 2521 /* 2522 * XXX 2523 * note that intermediate errors are blindly ignored 2524 */ 2525 return (error); 2526 } 2527 2528 __noinline void 2529 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) 2530 { 2531 struct llentry *child_lle; 2532 struct mbuf *chain; 2533 2534 NET_EPOCH_ASSERT(); 2535 2536 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 2537 LLE_WLOCK(child_lle); 2538 chain = nd6_grab_holdchain(child_lle); 2539 LLE_WUNLOCK(child_lle); 2540 nd6_flush_holdchain(ifp, child_lle, chain); 2541 } 2542 } 2543 2544 static int 2545 nd6_need_cache(struct ifnet *ifp) 2546 { 2547 /* 2548 * XXX: we currently do not make neighbor cache on any interface 2549 * other than Ethernet and GIF. 2550 * 2551 * RFC2893 says: 2552 * - unidirectional tunnels needs no ND 2553 */ 2554 switch (ifp->if_type) { 2555 case IFT_ETHER: 2556 case IFT_IEEE1394: 2557 case IFT_L2VLAN: 2558 case IFT_INFINIBAND: 2559 case IFT_BRIDGE: 2560 case IFT_PROPVIRTUAL: 2561 return (1); 2562 default: 2563 return (0); 2564 } 2565 } 2566 2567 /* 2568 * Add pernament ND6 link-layer record for given 2569 * interface address. 2570 * 2571 * Very similar to IPv4 arp_ifinit(), but: 2572 * 1) IPv6 DAD is performed in different place 2573 * 2) It is called by IPv6 protocol stack in contrast to 2574 * arp_ifinit() which is typically called in SIOCSIFADDR 2575 * driver ioctl handler. 2576 * 2577 */ 2578 int 2579 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2580 { 2581 struct ifnet *ifp; 2582 struct llentry *ln, *ln_tmp; 2583 struct sockaddr *dst; 2584 2585 ifp = ia->ia_ifa.ifa_ifp; 2586 if (nd6_need_cache(ifp) == 0) 2587 return (0); 2588 2589 dst = (struct sockaddr *)&ia->ia_addr; 2590 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2591 if (ln == NULL) 2592 return (ENOBUFS); 2593 2594 IF_AFDATA_WLOCK(ifp); 2595 LLE_WLOCK(ln); 2596 /* Unlink any entry if exists */ 2597 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); 2598 if (ln_tmp != NULL) 2599 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2600 lltable_link_entry(LLTABLE6(ifp), ln); 2601 IF_AFDATA_WUNLOCK(ifp); 2602 2603 if (ln_tmp != NULL) 2604 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2605 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2606 2607 LLE_WUNLOCK(ln); 2608 if (ln_tmp != NULL) 2609 llentry_free(ln_tmp); 2610 2611 return (0); 2612 } 2613 2614 /* 2615 * Removes either all lle entries for given @ia, or lle 2616 * corresponding to @ia address. 2617 */ 2618 void 2619 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2620 { 2621 struct sockaddr_in6 mask, addr; 2622 struct sockaddr *saddr, *smask; 2623 struct ifnet *ifp; 2624 2625 ifp = ia->ia_ifa.ifa_ifp; 2626 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2627 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2628 saddr = (struct sockaddr *)&addr; 2629 smask = (struct sockaddr *)&mask; 2630 2631 if (all != 0) 2632 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2633 else 2634 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2635 } 2636 2637 static int 2638 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2639 { 2640 struct in6_prefix p; 2641 struct sockaddr_in6 s6; 2642 struct nd_prefix *pr; 2643 struct nd_pfxrouter *pfr; 2644 time_t maxexpire; 2645 int error; 2646 char ip6buf[INET6_ADDRSTRLEN]; 2647 2648 if (req->newptr) 2649 return (EPERM); 2650 2651 error = sysctl_wire_old_buffer(req, 0); 2652 if (error != 0) 2653 return (error); 2654 2655 bzero(&p, sizeof(p)); 2656 p.origin = PR_ORIG_RA; 2657 bzero(&s6, sizeof(s6)); 2658 s6.sin6_family = AF_INET6; 2659 s6.sin6_len = sizeof(s6); 2660 2661 ND6_RLOCK(); 2662 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2663 if (!pr->ndpr_raf_ra_derived) 2664 continue; 2665 p.prefix = pr->ndpr_prefix; 2666 if (sa6_recoverscope(&p.prefix)) { 2667 log(LOG_ERR, "scope error in prefix list (%s)\n", 2668 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2669 /* XXX: press on... */ 2670 } 2671 p.raflags = pr->ndpr_raf; 2672 p.prefixlen = pr->ndpr_plen; 2673 p.vltime = pr->ndpr_vltime; 2674 p.pltime = pr->ndpr_pltime; 2675 p.if_index = pr->ndpr_ifp->if_index; 2676 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2677 p.expire = 0; 2678 else { 2679 /* XXX: we assume time_t is signed. */ 2680 maxexpire = (-1) & 2681 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2682 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2683 p.expire = pr->ndpr_lastupdate + 2684 pr->ndpr_vltime + 2685 (time_second - time_uptime); 2686 else 2687 p.expire = maxexpire; 2688 } 2689 p.refcnt = pr->ndpr_addrcnt; 2690 p.flags = pr->ndpr_stateflags; 2691 p.advrtrs = 0; 2692 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2693 p.advrtrs++; 2694 error = SYSCTL_OUT(req, &p, sizeof(p)); 2695 if (error != 0) 2696 break; 2697 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2698 s6.sin6_addr = pfr->router->rtaddr; 2699 if (sa6_recoverscope(&s6)) 2700 log(LOG_ERR, 2701 "scope error in prefix list (%s)\n", 2702 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2703 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2704 if (error != 0) 2705 goto out; 2706 } 2707 } 2708 out: 2709 ND6_RUNLOCK(); 2710 return (error); 2711 } 2712 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2713 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2714 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2715 "NDP prefix list"); 2716 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2717 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2718 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2719 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2720