1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/route_var.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #include <netinet6/nd6.h> 78 #include <netinet6/in6_ifattach.h> 79 #include <netinet/icmp6.h> 80 #include <netinet6/send.h> 81 82 #include <sys/limits.h> 83 84 #include <security/mac/mac_framework.h> 85 86 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 87 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 88 89 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 90 91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 92 93 /* timer values */ 94 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 95 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 96 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 97 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 98 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 99 * local traffic */ 100 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 101 * collection timer */ 102 103 /* preventing too many loops in ND option parsing */ 104 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 105 106 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 107 * layer hints */ 108 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 109 * ND entries */ 110 #define V_nd6_maxndopt VNET(nd6_maxndopt) 111 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 112 113 #ifdef ND6_DEBUG 114 VNET_DEFINE(int, nd6_debug) = 1; 115 #else 116 VNET_DEFINE(int, nd6_debug) = 0; 117 #endif 118 119 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 120 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 VNET_DEFINE(struct rwlock, nd6_lock); 123 VNET_DEFINE(uint64_t, nd6_list_genid); 124 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 125 126 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 127 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 128 129 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 130 131 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 132 struct ifnet *); 133 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 134 static void nd6_slowtimo(void *); 135 static int regen_tmpaddr(struct in6_ifaddr *); 136 static void nd6_free(struct llentry **, int); 137 static void nd6_free_redirect(const struct llentry *); 138 static void nd6_llinfo_timer(void *); 139 static void nd6_llinfo_settimer_locked(struct llentry *, long); 140 static void clear_llinfo_pqueue(struct llentry *); 141 static void nd6_rtrequest(int, struct rtentry *, struct nhop_object *, 142 struct rt_addrinfo *); 143 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 144 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 145 static int nd6_need_cache(struct ifnet *); 146 147 148 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 149 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 150 151 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 152 #define V_nd6_timer_ch VNET(nd6_timer_ch) 153 154 SYSCTL_DECL(_net_inet6_icmp6); 155 156 static void 157 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 158 { 159 struct rt_addrinfo rtinfo; 160 struct sockaddr_in6 dst; 161 struct sockaddr_dl gw; 162 struct ifnet *ifp; 163 int type; 164 int fibnum; 165 166 LLE_WLOCK_ASSERT(lle); 167 168 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 169 return; 170 171 switch (evt) { 172 case LLENTRY_RESOLVED: 173 type = RTM_ADD; 174 KASSERT(lle->la_flags & LLE_VALID, 175 ("%s: %p resolved but not valid?", __func__, lle)); 176 break; 177 case LLENTRY_EXPIRED: 178 type = RTM_DELETE; 179 break; 180 default: 181 return; 182 } 183 184 ifp = lltable_get_ifp(lle->lle_tbl); 185 186 bzero(&dst, sizeof(dst)); 187 bzero(&gw, sizeof(gw)); 188 bzero(&rtinfo, sizeof(rtinfo)); 189 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 190 dst.sin6_scope_id = in6_getscopezone(ifp, 191 in6_addrscope(&dst.sin6_addr)); 192 gw.sdl_len = sizeof(struct sockaddr_dl); 193 gw.sdl_family = AF_LINK; 194 gw.sdl_alen = ifp->if_addrlen; 195 gw.sdl_index = ifp->if_index; 196 gw.sdl_type = ifp->if_type; 197 if (evt == LLENTRY_RESOLVED) 198 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 199 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 200 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 201 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 202 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 203 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 204 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 205 } 206 207 /* 208 * A handler for interface link layer address change event. 209 */ 210 static void 211 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 212 { 213 214 lltable_update_ifaddr(LLTABLE6(ifp)); 215 } 216 217 void 218 nd6_init(void) 219 { 220 221 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 222 rw_init(&V_nd6_lock, "nd6 list"); 223 224 LIST_INIT(&V_nd_prefix); 225 nd6_defrouter_init(); 226 227 /* Start timers. */ 228 callout_init(&V_nd6_slowtimo_ch, 0); 229 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 230 nd6_slowtimo, curvnet); 231 232 callout_init(&V_nd6_timer_ch, 0); 233 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 234 235 nd6_dad_init(); 236 if (IS_DEFAULT_VNET(curvnet)) { 237 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 238 NULL, EVENTHANDLER_PRI_ANY); 239 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 240 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 241 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 242 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 243 } 244 } 245 246 #ifdef VIMAGE 247 void 248 nd6_destroy() 249 { 250 251 callout_drain(&V_nd6_slowtimo_ch); 252 callout_drain(&V_nd6_timer_ch); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 255 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 256 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 257 } 258 rw_destroy(&V_nd6_lock); 259 mtx_destroy(&V_nd6_onlink_mtx); 260 } 261 #endif 262 263 struct nd_ifinfo * 264 nd6_ifattach(struct ifnet *ifp) 265 { 266 struct nd_ifinfo *nd; 267 268 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 269 nd->initialized = 1; 270 271 nd->chlim = IPV6_DEFHLIM; 272 nd->basereachable = REACHABLE_TIME; 273 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 274 nd->retrans = RETRANS_TIMER; 275 276 nd->flags = ND6_IFF_PERFORMNUD; 277 278 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 279 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 280 * default regardless of the V_ip6_auto_linklocal configuration to 281 * give a reasonable default behavior. 282 */ 283 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 284 (ifp->if_flags & IFF_LOOPBACK)) 285 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 286 /* 287 * A loopback interface does not need to accept RTADV. 288 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 289 * default regardless of the V_ip6_accept_rtadv configuration to 290 * prevent the interface from accepting RA messages arrived 291 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 292 */ 293 if (V_ip6_accept_rtadv && 294 !(ifp->if_flags & IFF_LOOPBACK) && 295 (ifp->if_type != IFT_BRIDGE)) 296 nd->flags |= ND6_IFF_ACCEPT_RTADV; 297 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 298 nd->flags |= ND6_IFF_NO_RADR; 299 300 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 301 nd6_setmtu0(ifp, nd); 302 303 return nd; 304 } 305 306 void 307 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 308 { 309 struct epoch_tracker et; 310 struct ifaddr *ifa, *next; 311 312 NET_EPOCH_ENTER(et); 313 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 314 if (ifa->ifa_addr->sa_family != AF_INET6) 315 continue; 316 317 /* stop DAD processing */ 318 nd6_dad_stop(ifa); 319 } 320 NET_EPOCH_EXIT(et); 321 322 free(nd, M_IP6NDP); 323 } 324 325 /* 326 * Reset ND level link MTU. This function is called when the physical MTU 327 * changes, which means we might have to adjust the ND level MTU. 328 */ 329 void 330 nd6_setmtu(struct ifnet *ifp) 331 { 332 if (ifp->if_afdata[AF_INET6] == NULL) 333 return; 334 335 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 336 } 337 338 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 339 void 340 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 341 { 342 u_int32_t omaxmtu; 343 344 omaxmtu = ndi->maxmtu; 345 ndi->maxmtu = ifp->if_mtu; 346 347 /* 348 * Decreasing the interface MTU under IPV6 minimum MTU may cause 349 * undesirable situation. We thus notify the operator of the change 350 * explicitly. The check for omaxmtu is necessary to restrict the 351 * log to the case of changing the MTU, not initializing it. 352 */ 353 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 354 log(LOG_NOTICE, "nd6_setmtu0: " 355 "new link MTU on %s (%lu) is too small for IPv6\n", 356 if_name(ifp), (unsigned long)ndi->maxmtu); 357 } 358 359 if (ndi->maxmtu > V_in6_maxmtu) 360 in6_setmaxmtu(); /* check all interfaces just in case */ 361 362 } 363 364 void 365 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 366 { 367 368 bzero(ndopts, sizeof(*ndopts)); 369 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 370 ndopts->nd_opts_last 371 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 372 373 if (icmp6len == 0) { 374 ndopts->nd_opts_done = 1; 375 ndopts->nd_opts_search = NULL; 376 } 377 } 378 379 /* 380 * Take one ND option. 381 */ 382 struct nd_opt_hdr * 383 nd6_option(union nd_opts *ndopts) 384 { 385 struct nd_opt_hdr *nd_opt; 386 int olen; 387 388 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 389 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 390 __func__)); 391 if (ndopts->nd_opts_search == NULL) 392 return NULL; 393 if (ndopts->nd_opts_done) 394 return NULL; 395 396 nd_opt = ndopts->nd_opts_search; 397 398 /* make sure nd_opt_len is inside the buffer */ 399 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 400 bzero(ndopts, sizeof(*ndopts)); 401 return NULL; 402 } 403 404 olen = nd_opt->nd_opt_len << 3; 405 if (olen == 0) { 406 /* 407 * Message validation requires that all included 408 * options have a length that is greater than zero. 409 */ 410 bzero(ndopts, sizeof(*ndopts)); 411 return NULL; 412 } 413 414 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 415 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 416 /* option overruns the end of buffer, invalid */ 417 bzero(ndopts, sizeof(*ndopts)); 418 return NULL; 419 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 420 /* reached the end of options chain */ 421 ndopts->nd_opts_done = 1; 422 ndopts->nd_opts_search = NULL; 423 } 424 return nd_opt; 425 } 426 427 /* 428 * Parse multiple ND options. 429 * This function is much easier to use, for ND routines that do not need 430 * multiple options of the same type. 431 */ 432 int 433 nd6_options(union nd_opts *ndopts) 434 { 435 struct nd_opt_hdr *nd_opt; 436 int i = 0; 437 438 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 439 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 440 __func__)); 441 if (ndopts->nd_opts_search == NULL) 442 return 0; 443 444 while (1) { 445 nd_opt = nd6_option(ndopts); 446 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 447 /* 448 * Message validation requires that all included 449 * options have a length that is greater than zero. 450 */ 451 ICMP6STAT_INC(icp6s_nd_badopt); 452 bzero(ndopts, sizeof(*ndopts)); 453 return -1; 454 } 455 456 if (nd_opt == NULL) 457 goto skip1; 458 459 switch (nd_opt->nd_opt_type) { 460 case ND_OPT_SOURCE_LINKADDR: 461 case ND_OPT_TARGET_LINKADDR: 462 case ND_OPT_MTU: 463 case ND_OPT_REDIRECTED_HEADER: 464 case ND_OPT_NONCE: 465 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 466 nd6log((LOG_INFO, 467 "duplicated ND6 option found (type=%d)\n", 468 nd_opt->nd_opt_type)); 469 /* XXX bark? */ 470 } else { 471 ndopts->nd_opt_array[nd_opt->nd_opt_type] 472 = nd_opt; 473 } 474 break; 475 case ND_OPT_PREFIX_INFORMATION: 476 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 477 ndopts->nd_opt_array[nd_opt->nd_opt_type] 478 = nd_opt; 479 } 480 ndopts->nd_opts_pi_end = 481 (struct nd_opt_prefix_info *)nd_opt; 482 break; 483 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 484 case ND_OPT_RDNSS: /* RFC 6106 */ 485 case ND_OPT_DNSSL: /* RFC 6106 */ 486 /* 487 * Silently ignore options we know and do not care about 488 * in the kernel. 489 */ 490 break; 491 default: 492 /* 493 * Unknown options must be silently ignored, 494 * to accommodate future extension to the protocol. 495 */ 496 nd6log((LOG_DEBUG, 497 "nd6_options: unsupported option %d - " 498 "option ignored\n", nd_opt->nd_opt_type)); 499 } 500 501 skip1: 502 i++; 503 if (i > V_nd6_maxndopt) { 504 ICMP6STAT_INC(icp6s_nd_toomanyopt); 505 nd6log((LOG_INFO, "too many loop in nd opt\n")); 506 break; 507 } 508 509 if (ndopts->nd_opts_done) 510 break; 511 } 512 513 return 0; 514 } 515 516 /* 517 * ND6 timer routine to handle ND6 entries 518 */ 519 static void 520 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 521 { 522 int canceled; 523 524 LLE_WLOCK_ASSERT(ln); 525 526 if (tick < 0) { 527 ln->la_expire = 0; 528 ln->ln_ntick = 0; 529 canceled = callout_stop(&ln->lle_timer); 530 } else { 531 ln->la_expire = time_uptime + tick / hz; 532 LLE_ADDREF(ln); 533 if (tick > INT_MAX) { 534 ln->ln_ntick = tick - INT_MAX; 535 canceled = callout_reset(&ln->lle_timer, INT_MAX, 536 nd6_llinfo_timer, ln); 537 } else { 538 ln->ln_ntick = 0; 539 canceled = callout_reset(&ln->lle_timer, tick, 540 nd6_llinfo_timer, ln); 541 } 542 } 543 if (canceled > 0) 544 LLE_REMREF(ln); 545 } 546 547 /* 548 * Gets source address of the first packet in hold queue 549 * and stores it in @src. 550 * Returns pointer to @src (if hold queue is not empty) or NULL. 551 * 552 * Set noinline to be dtrace-friendly 553 */ 554 static __noinline struct in6_addr * 555 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 556 { 557 struct ip6_hdr hdr; 558 struct mbuf *m; 559 560 if (ln->la_hold == NULL) 561 return (NULL); 562 563 /* 564 * assume every packet in la_hold has the same IP header 565 */ 566 m = ln->la_hold; 567 if (sizeof(hdr) > m->m_len) 568 return (NULL); 569 570 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 571 *src = hdr.ip6_src; 572 573 return (src); 574 } 575 576 /* 577 * Checks if we need to switch from STALE state. 578 * 579 * RFC 4861 requires switching from STALE to DELAY state 580 * on first packet matching entry, waiting V_nd6_delay and 581 * transition to PROBE state (if upper layer confirmation was 582 * not received). 583 * 584 * This code performs a bit differently: 585 * On packet hit we don't change state (but desired state 586 * can be guessed by control plane). However, after V_nd6_delay 587 * seconds code will transition to PROBE state (so DELAY state 588 * is kinda skipped in most situations). 589 * 590 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 591 * we perform the following upon entering STALE state: 592 * 593 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 594 * if packet was transmitted at the start of given interval, we 595 * would be able to switch to PROBE state in V_nd6_delay seconds 596 * as user expects. 597 * 598 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 599 * lle in STALE state (remaining timer value stored in lle_remtime). 600 * 601 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 602 * seconds ago. 603 * 604 * Returns non-zero value if the entry is still STALE (storing 605 * the next timer interval in @pdelay). 606 * 607 * Returns zero value if original timer expired or we need to switch to 608 * PROBE (store that in @do_switch variable). 609 */ 610 static int 611 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 612 { 613 int nd_delay, nd_gctimer, r_skip_req; 614 time_t lle_hittime; 615 long delay; 616 617 *do_switch = 0; 618 nd_gctimer = V_nd6_gctimer; 619 nd_delay = V_nd6_delay; 620 621 LLE_REQ_LOCK(lle); 622 r_skip_req = lle->r_skip_req; 623 lle_hittime = lle->lle_hittime; 624 LLE_REQ_UNLOCK(lle); 625 626 if (r_skip_req > 0) { 627 628 /* 629 * Nonzero r_skip_req value was set upon entering 630 * STALE state. Since value was not changed, no 631 * packets were passed using this lle. Ask for 632 * timer reschedule and keep STALE state. 633 */ 634 delay = (long)(MIN(nd_gctimer, nd_delay)); 635 delay *= hz; 636 if (lle->lle_remtime > delay) 637 lle->lle_remtime -= delay; 638 else { 639 delay = lle->lle_remtime; 640 lle->lle_remtime = 0; 641 } 642 643 if (delay == 0) { 644 645 /* 646 * The original ng6_gctime timeout ended, 647 * no more rescheduling. 648 */ 649 return (0); 650 } 651 652 *pdelay = delay; 653 return (1); 654 } 655 656 /* 657 * Packet received. Verify timestamp 658 */ 659 delay = (long)(time_uptime - lle_hittime); 660 if (delay < nd_delay) { 661 662 /* 663 * V_nd6_delay still not passed since the first 664 * hit in STALE state. 665 * Reshedule timer and return. 666 */ 667 *pdelay = (long)(nd_delay - delay) * hz; 668 return (1); 669 } 670 671 /* Request switching to probe */ 672 *do_switch = 1; 673 return (0); 674 } 675 676 677 /* 678 * Switch @lle state to new state optionally arming timers. 679 * 680 * Set noinline to be dtrace-friendly 681 */ 682 __noinline void 683 nd6_llinfo_setstate(struct llentry *lle, int newstate) 684 { 685 struct ifnet *ifp; 686 int nd_gctimer, nd_delay; 687 long delay, remtime; 688 689 delay = 0; 690 remtime = 0; 691 692 switch (newstate) { 693 case ND6_LLINFO_INCOMPLETE: 694 ifp = lle->lle_tbl->llt_ifp; 695 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 696 break; 697 case ND6_LLINFO_REACHABLE: 698 if (!ND6_LLINFO_PERMANENT(lle)) { 699 ifp = lle->lle_tbl->llt_ifp; 700 delay = (long)ND_IFINFO(ifp)->reachable * hz; 701 } 702 break; 703 case ND6_LLINFO_STALE: 704 705 /* 706 * Notify fast path that we want to know if any packet 707 * is transmitted by setting r_skip_req. 708 */ 709 LLE_REQ_LOCK(lle); 710 lle->r_skip_req = 1; 711 LLE_REQ_UNLOCK(lle); 712 nd_delay = V_nd6_delay; 713 nd_gctimer = V_nd6_gctimer; 714 715 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 716 remtime = (long)nd_gctimer * hz - delay; 717 break; 718 case ND6_LLINFO_DELAY: 719 lle->la_asked = 0; 720 delay = (long)V_nd6_delay * hz; 721 break; 722 } 723 724 if (delay > 0) 725 nd6_llinfo_settimer_locked(lle, delay); 726 727 lle->lle_remtime = remtime; 728 lle->ln_state = newstate; 729 } 730 731 /* 732 * Timer-dependent part of nd state machine. 733 * 734 * Set noinline to be dtrace-friendly 735 */ 736 static __noinline void 737 nd6_llinfo_timer(void *arg) 738 { 739 struct epoch_tracker et; 740 struct llentry *ln; 741 struct in6_addr *dst, *pdst, *psrc, src; 742 struct ifnet *ifp; 743 struct nd_ifinfo *ndi; 744 int do_switch, send_ns; 745 long delay; 746 747 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 748 ln = (struct llentry *)arg; 749 ifp = lltable_get_ifp(ln->lle_tbl); 750 CURVNET_SET(ifp->if_vnet); 751 752 ND6_RLOCK(); 753 LLE_WLOCK(ln); 754 if (callout_pending(&ln->lle_timer)) { 755 /* 756 * Here we are a bit odd here in the treatment of 757 * active/pending. If the pending bit is set, it got 758 * rescheduled before I ran. The active 759 * bit we ignore, since if it was stopped 760 * in ll_tablefree() and was currently running 761 * it would have return 0 so the code would 762 * not have deleted it since the callout could 763 * not be stopped so we want to go through 764 * with the delete here now. If the callout 765 * was restarted, the pending bit will be back on and 766 * we just want to bail since the callout_reset would 767 * return 1 and our reference would have been removed 768 * by nd6_llinfo_settimer_locked above since canceled 769 * would have been 1. 770 */ 771 LLE_WUNLOCK(ln); 772 ND6_RUNLOCK(); 773 CURVNET_RESTORE(); 774 return; 775 } 776 NET_EPOCH_ENTER(et); 777 ndi = ND_IFINFO(ifp); 778 send_ns = 0; 779 dst = &ln->r_l3addr.addr6; 780 pdst = dst; 781 782 if (ln->ln_ntick > 0) { 783 if (ln->ln_ntick > INT_MAX) { 784 ln->ln_ntick -= INT_MAX; 785 nd6_llinfo_settimer_locked(ln, INT_MAX); 786 } else { 787 ln->ln_ntick = 0; 788 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 789 } 790 goto done; 791 } 792 793 if (ln->la_flags & LLE_STATIC) { 794 goto done; 795 } 796 797 if (ln->la_flags & LLE_DELETED) { 798 nd6_free(&ln, 0); 799 goto done; 800 } 801 802 switch (ln->ln_state) { 803 case ND6_LLINFO_INCOMPLETE: 804 if (ln->la_asked < V_nd6_mmaxtries) { 805 ln->la_asked++; 806 send_ns = 1; 807 /* Send NS to multicast address */ 808 pdst = NULL; 809 } else { 810 struct mbuf *m = ln->la_hold; 811 if (m) { 812 struct mbuf *m0; 813 814 /* 815 * assuming every packet in la_hold has the 816 * same IP header. Send error after unlock. 817 */ 818 m0 = m->m_nextpkt; 819 m->m_nextpkt = NULL; 820 ln->la_hold = m0; 821 clear_llinfo_pqueue(ln); 822 } 823 nd6_free(&ln, 0); 824 if (m != NULL) { 825 struct mbuf *n = m; 826 827 /* 828 * if there are any ummapped mbufs, we 829 * must free them, rather than using 830 * them for an ICMP, as they cannot be 831 * checksummed. 832 */ 833 while ((n = n->m_next) != NULL) { 834 if (n->m_flags & M_EXTPG) 835 break; 836 } 837 if (n != NULL) { 838 m_freem(m); 839 m = NULL; 840 } else { 841 icmp6_error2(m, ICMP6_DST_UNREACH, 842 ICMP6_DST_UNREACH_ADDR, 0, ifp); 843 } 844 } 845 } 846 break; 847 case ND6_LLINFO_REACHABLE: 848 if (!ND6_LLINFO_PERMANENT(ln)) 849 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 850 break; 851 852 case ND6_LLINFO_STALE: 853 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 854 855 /* 856 * No packet has used this entry and GC timeout 857 * has not been passed. Reshedule timer and 858 * return. 859 */ 860 nd6_llinfo_settimer_locked(ln, delay); 861 break; 862 } 863 864 if (do_switch == 0) { 865 866 /* 867 * GC timer has ended and entry hasn't been used. 868 * Run Garbage collector (RFC 4861, 5.3) 869 */ 870 if (!ND6_LLINFO_PERMANENT(ln)) 871 nd6_free(&ln, 1); 872 break; 873 } 874 875 /* Entry has been used AND delay timer has ended. */ 876 877 /* FALLTHROUGH */ 878 879 case ND6_LLINFO_DELAY: 880 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 881 /* We need NUD */ 882 ln->la_asked = 1; 883 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 884 send_ns = 1; 885 } else 886 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 887 break; 888 case ND6_LLINFO_PROBE: 889 if (ln->la_asked < V_nd6_umaxtries) { 890 ln->la_asked++; 891 send_ns = 1; 892 } else { 893 nd6_free(&ln, 0); 894 } 895 break; 896 default: 897 panic("%s: paths in a dark night can be confusing: %d", 898 __func__, ln->ln_state); 899 } 900 done: 901 if (ln != NULL) 902 ND6_RUNLOCK(); 903 if (send_ns != 0) { 904 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 905 psrc = nd6_llinfo_get_holdsrc(ln, &src); 906 LLE_FREE_LOCKED(ln); 907 ln = NULL; 908 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 909 } 910 911 if (ln != NULL) 912 LLE_FREE_LOCKED(ln); 913 NET_EPOCH_EXIT(et); 914 CURVNET_RESTORE(); 915 } 916 917 918 /* 919 * ND6 timer routine to expire default route list and prefix list 920 */ 921 void 922 nd6_timer(void *arg) 923 { 924 CURVNET_SET((struct vnet *) arg); 925 struct epoch_tracker et; 926 struct nd_prhead prl; 927 struct nd_prefix *pr, *npr; 928 struct ifnet *ifp; 929 struct in6_ifaddr *ia6, *nia6; 930 uint64_t genid; 931 932 LIST_INIT(&prl); 933 934 NET_EPOCH_ENTER(et); 935 nd6_defrouter_timer(); 936 937 /* 938 * expire interface addresses. 939 * in the past the loop was inside prefix expiry processing. 940 * However, from a stricter speci-confrmance standpoint, we should 941 * rather separate address lifetimes and prefix lifetimes. 942 * 943 * XXXRW: in6_ifaddrhead locking. 944 */ 945 addrloop: 946 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 947 /* check address lifetime */ 948 if (IFA6_IS_INVALID(ia6)) { 949 int regen = 0; 950 951 /* 952 * If the expiring address is temporary, try 953 * regenerating a new one. This would be useful when 954 * we suspended a laptop PC, then turned it on after a 955 * period that could invalidate all temporary 956 * addresses. Although we may have to restart the 957 * loop (see below), it must be after purging the 958 * address. Otherwise, we'd see an infinite loop of 959 * regeneration. 960 */ 961 if (V_ip6_use_tempaddr && 962 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 963 if (regen_tmpaddr(ia6) == 0) 964 regen = 1; 965 } 966 967 in6_purgeaddr(&ia6->ia_ifa); 968 969 if (regen) 970 goto addrloop; /* XXX: see below */ 971 } else if (IFA6_IS_DEPRECATED(ia6)) { 972 int oldflags = ia6->ia6_flags; 973 974 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 975 976 /* 977 * If a temporary address has just become deprecated, 978 * regenerate a new one if possible. 979 */ 980 if (V_ip6_use_tempaddr && 981 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 982 (oldflags & IN6_IFF_DEPRECATED) == 0) { 983 984 if (regen_tmpaddr(ia6) == 0) { 985 /* 986 * A new temporary address is 987 * generated. 988 * XXX: this means the address chain 989 * has changed while we are still in 990 * the loop. Although the change 991 * would not cause disaster (because 992 * it's not a deletion, but an 993 * addition,) we'd rather restart the 994 * loop just for safety. Or does this 995 * significantly reduce performance?? 996 */ 997 goto addrloop; 998 } 999 } 1000 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 1001 /* 1002 * Schedule DAD for a tentative address. This happens 1003 * if the interface was down or not running 1004 * when the address was configured. 1005 */ 1006 int delay; 1007 1008 delay = arc4random() % 1009 (MAX_RTR_SOLICITATION_DELAY * hz); 1010 nd6_dad_start((struct ifaddr *)ia6, delay); 1011 } else { 1012 /* 1013 * Check status of the interface. If it is down, 1014 * mark the address as tentative for future DAD. 1015 */ 1016 ifp = ia6->ia_ifp; 1017 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1018 ((ifp->if_flags & IFF_UP) == 0 || 1019 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1020 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1021 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1022 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1023 } 1024 1025 /* 1026 * A new RA might have made a deprecated address 1027 * preferred. 1028 */ 1029 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1030 } 1031 } 1032 NET_EPOCH_EXIT(et); 1033 1034 ND6_WLOCK(); 1035 restart: 1036 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1037 /* 1038 * Expire prefixes. Since the pltime is only used for 1039 * autoconfigured addresses, pltime processing for prefixes is 1040 * not necessary. 1041 * 1042 * Only unlink after all derived addresses have expired. This 1043 * may not occur until two hours after the prefix has expired 1044 * per RFC 4862. If the prefix expires before its derived 1045 * addresses, mark it off-link. This will be done automatically 1046 * after unlinking if no address references remain. 1047 */ 1048 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1049 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1050 continue; 1051 1052 if (pr->ndpr_addrcnt == 0) { 1053 nd6_prefix_unlink(pr, &prl); 1054 continue; 1055 } 1056 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1057 genid = V_nd6_list_genid; 1058 nd6_prefix_ref(pr); 1059 ND6_WUNLOCK(); 1060 ND6_ONLINK_LOCK(); 1061 (void)nd6_prefix_offlink(pr); 1062 ND6_ONLINK_UNLOCK(); 1063 ND6_WLOCK(); 1064 nd6_prefix_rele(pr); 1065 if (genid != V_nd6_list_genid) 1066 goto restart; 1067 } 1068 } 1069 ND6_WUNLOCK(); 1070 1071 while ((pr = LIST_FIRST(&prl)) != NULL) { 1072 LIST_REMOVE(pr, ndpr_entry); 1073 nd6_prefix_del(pr); 1074 } 1075 1076 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1077 nd6_timer, curvnet); 1078 1079 CURVNET_RESTORE(); 1080 } 1081 1082 /* 1083 * ia6 - deprecated/invalidated temporary address 1084 */ 1085 static int 1086 regen_tmpaddr(struct in6_ifaddr *ia6) 1087 { 1088 struct ifaddr *ifa; 1089 struct ifnet *ifp; 1090 struct in6_ifaddr *public_ifa6 = NULL; 1091 1092 NET_EPOCH_ASSERT(); 1093 1094 ifp = ia6->ia_ifa.ifa_ifp; 1095 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1096 struct in6_ifaddr *it6; 1097 1098 if (ifa->ifa_addr->sa_family != AF_INET6) 1099 continue; 1100 1101 it6 = (struct in6_ifaddr *)ifa; 1102 1103 /* ignore no autoconf addresses. */ 1104 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1105 continue; 1106 1107 /* ignore autoconf addresses with different prefixes. */ 1108 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1109 continue; 1110 1111 /* 1112 * Now we are looking at an autoconf address with the same 1113 * prefix as ours. If the address is temporary and is still 1114 * preferred, do not create another one. It would be rare, but 1115 * could happen, for example, when we resume a laptop PC after 1116 * a long period. 1117 */ 1118 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1119 !IFA6_IS_DEPRECATED(it6)) { 1120 public_ifa6 = NULL; 1121 break; 1122 } 1123 1124 /* 1125 * This is a public autoconf address that has the same prefix 1126 * as ours. If it is preferred, keep it. We can't break the 1127 * loop here, because there may be a still-preferred temporary 1128 * address with the prefix. 1129 */ 1130 if (!IFA6_IS_DEPRECATED(it6)) 1131 public_ifa6 = it6; 1132 } 1133 if (public_ifa6 != NULL) 1134 ifa_ref(&public_ifa6->ia_ifa); 1135 1136 if (public_ifa6 != NULL) { 1137 int e; 1138 1139 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1140 ifa_free(&public_ifa6->ia_ifa); 1141 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1142 " tmp addr,errno=%d\n", e); 1143 return (-1); 1144 } 1145 ifa_free(&public_ifa6->ia_ifa); 1146 return (0); 1147 } 1148 1149 return (-1); 1150 } 1151 1152 /* 1153 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1154 * cache entries are freed in in6_domifdetach(). 1155 */ 1156 void 1157 nd6_purge(struct ifnet *ifp) 1158 { 1159 struct nd_prhead prl; 1160 struct nd_prefix *pr, *npr; 1161 1162 LIST_INIT(&prl); 1163 1164 /* Purge default router list entries toward ifp. */ 1165 nd6_defrouter_purge(ifp); 1166 1167 ND6_WLOCK(); 1168 /* 1169 * Remove prefixes on ifp. We should have already removed addresses on 1170 * this interface, so no addresses should be referencing these prefixes. 1171 */ 1172 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1173 if (pr->ndpr_ifp == ifp) 1174 nd6_prefix_unlink(pr, &prl); 1175 } 1176 ND6_WUNLOCK(); 1177 1178 /* Delete the unlinked prefix objects. */ 1179 while ((pr = LIST_FIRST(&prl)) != NULL) { 1180 LIST_REMOVE(pr, ndpr_entry); 1181 nd6_prefix_del(pr); 1182 } 1183 1184 /* cancel default outgoing interface setting */ 1185 if (V_nd6_defifindex == ifp->if_index) 1186 nd6_setdefaultiface(0); 1187 1188 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1189 /* Refresh default router list. */ 1190 defrouter_select_fib(ifp->if_fib); 1191 } 1192 } 1193 1194 /* 1195 * the caller acquires and releases the lock on the lltbls 1196 * Returns the llentry locked 1197 */ 1198 struct llentry * 1199 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1200 { 1201 struct sockaddr_in6 sin6; 1202 struct llentry *ln; 1203 1204 bzero(&sin6, sizeof(sin6)); 1205 sin6.sin6_len = sizeof(struct sockaddr_in6); 1206 sin6.sin6_family = AF_INET6; 1207 sin6.sin6_addr = *addr6; 1208 1209 IF_AFDATA_LOCK_ASSERT(ifp); 1210 1211 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1212 1213 return (ln); 1214 } 1215 1216 static struct llentry * 1217 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1218 { 1219 struct sockaddr_in6 sin6; 1220 struct llentry *ln; 1221 1222 bzero(&sin6, sizeof(sin6)); 1223 sin6.sin6_len = sizeof(struct sockaddr_in6); 1224 sin6.sin6_family = AF_INET6; 1225 sin6.sin6_addr = *addr6; 1226 1227 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1228 if (ln != NULL) 1229 ln->ln_state = ND6_LLINFO_NOSTATE; 1230 1231 return (ln); 1232 } 1233 1234 /* 1235 * Test whether a given IPv6 address is a neighbor or not, ignoring 1236 * the actual neighbor cache. The neighbor cache is ignored in order 1237 * to not reenter the routing code from within itself. 1238 */ 1239 static int 1240 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1241 { 1242 struct nd_prefix *pr; 1243 struct ifaddr *ifa; 1244 struct rt_addrinfo info; 1245 struct sockaddr_in6 rt_key; 1246 const struct sockaddr *dst6; 1247 uint64_t genid; 1248 int error, fibnum; 1249 1250 /* 1251 * A link-local address is always a neighbor. 1252 * XXX: a link does not necessarily specify a single interface. 1253 */ 1254 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1255 struct sockaddr_in6 sin6_copy; 1256 u_int32_t zone; 1257 1258 /* 1259 * We need sin6_copy since sa6_recoverscope() may modify the 1260 * content (XXX). 1261 */ 1262 sin6_copy = *addr; 1263 if (sa6_recoverscope(&sin6_copy)) 1264 return (0); /* XXX: should be impossible */ 1265 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1266 return (0); 1267 if (sin6_copy.sin6_scope_id == zone) 1268 return (1); 1269 else 1270 return (0); 1271 } 1272 1273 bzero(&rt_key, sizeof(rt_key)); 1274 bzero(&info, sizeof(info)); 1275 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1276 1277 /* 1278 * If the address matches one of our addresses, 1279 * it should be a neighbor. 1280 * If the address matches one of our on-link prefixes, it should be a 1281 * neighbor. 1282 */ 1283 ND6_RLOCK(); 1284 restart: 1285 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1286 if (pr->ndpr_ifp != ifp) 1287 continue; 1288 1289 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1290 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1291 1292 /* 1293 * We only need to check all FIBs if add_addr_allfibs 1294 * is unset. If set, checking any FIB will suffice. 1295 */ 1296 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1297 for (; fibnum < rt_numfibs; fibnum++) { 1298 genid = V_nd6_list_genid; 1299 ND6_RUNLOCK(); 1300 1301 /* 1302 * Restore length field before 1303 * retrying lookup 1304 */ 1305 rt_key.sin6_len = sizeof(rt_key); 1306 error = rib_lookup_info(fibnum, dst6, 0, 0, 1307 &info); 1308 1309 ND6_RLOCK(); 1310 if (genid != V_nd6_list_genid) 1311 goto restart; 1312 if (error == 0) 1313 break; 1314 } 1315 if (error != 0) 1316 continue; 1317 1318 /* 1319 * This is the case where multiple interfaces 1320 * have the same prefix, but only one is installed 1321 * into the routing table and that prefix entry 1322 * is not the one being examined here. In the case 1323 * where RADIX_MPATH is enabled, multiple route 1324 * entries (of the same rt_key value) will be 1325 * installed because the interface addresses all 1326 * differ. 1327 */ 1328 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1329 &rt_key.sin6_addr)) 1330 continue; 1331 } 1332 1333 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1334 &addr->sin6_addr, &pr->ndpr_mask)) { 1335 ND6_RUNLOCK(); 1336 return (1); 1337 } 1338 } 1339 ND6_RUNLOCK(); 1340 1341 /* 1342 * If the address is assigned on the node of the other side of 1343 * a p2p interface, the address should be a neighbor. 1344 */ 1345 if (ifp->if_flags & IFF_POINTOPOINT) { 1346 struct epoch_tracker et; 1347 1348 NET_EPOCH_ENTER(et); 1349 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1350 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1351 continue; 1352 if (ifa->ifa_dstaddr != NULL && 1353 sa_equal(addr, ifa->ifa_dstaddr)) { 1354 NET_EPOCH_EXIT(et); 1355 return 1; 1356 } 1357 } 1358 NET_EPOCH_EXIT(et); 1359 } 1360 1361 /* 1362 * If the default router list is empty, all addresses are regarded 1363 * as on-link, and thus, as a neighbor. 1364 */ 1365 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1366 nd6_defrouter_list_empty() && 1367 V_nd6_defifindex == ifp->if_index) { 1368 return (1); 1369 } 1370 1371 return (0); 1372 } 1373 1374 1375 /* 1376 * Detect if a given IPv6 address identifies a neighbor on a given link. 1377 * XXX: should take care of the destination of a p2p link? 1378 */ 1379 int 1380 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1381 { 1382 struct llentry *lle; 1383 int rc = 0; 1384 1385 NET_EPOCH_ASSERT(); 1386 IF_AFDATA_UNLOCK_ASSERT(ifp); 1387 if (nd6_is_new_addr_neighbor(addr, ifp)) 1388 return (1); 1389 1390 /* 1391 * Even if the address matches none of our addresses, it might be 1392 * in the neighbor cache. 1393 */ 1394 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1395 LLE_RUNLOCK(lle); 1396 rc = 1; 1397 } 1398 return (rc); 1399 } 1400 1401 /* 1402 * Free an nd6 llinfo entry. 1403 * Since the function would cause significant changes in the kernel, DO NOT 1404 * make it global, unless you have a strong reason for the change, and are sure 1405 * that the change is safe. 1406 * 1407 * Set noinline to be dtrace-friendly 1408 */ 1409 static __noinline void 1410 nd6_free(struct llentry **lnp, int gc) 1411 { 1412 struct ifnet *ifp; 1413 struct llentry *ln; 1414 struct nd_defrouter *dr; 1415 1416 ln = *lnp; 1417 *lnp = NULL; 1418 1419 LLE_WLOCK_ASSERT(ln); 1420 ND6_RLOCK_ASSERT(); 1421 1422 ifp = lltable_get_ifp(ln->lle_tbl); 1423 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1424 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1425 else 1426 dr = NULL; 1427 ND6_RUNLOCK(); 1428 1429 if ((ln->la_flags & LLE_DELETED) == 0) 1430 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1431 1432 /* 1433 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1434 * even though it is not harmful, it was not really necessary. 1435 */ 1436 1437 /* cancel timer */ 1438 nd6_llinfo_settimer_locked(ln, -1); 1439 1440 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1441 if (dr != NULL && dr->expire && 1442 ln->ln_state == ND6_LLINFO_STALE && gc) { 1443 /* 1444 * If the reason for the deletion is just garbage 1445 * collection, and the neighbor is an active default 1446 * router, do not delete it. Instead, reset the GC 1447 * timer using the router's lifetime. 1448 * Simply deleting the entry would affect default 1449 * router selection, which is not necessarily a good 1450 * thing, especially when we're using router preference 1451 * values. 1452 * XXX: the check for ln_state would be redundant, 1453 * but we intentionally keep it just in case. 1454 */ 1455 if (dr->expire > time_uptime) 1456 nd6_llinfo_settimer_locked(ln, 1457 (dr->expire - time_uptime) * hz); 1458 else 1459 nd6_llinfo_settimer_locked(ln, 1460 (long)V_nd6_gctimer * hz); 1461 1462 LLE_REMREF(ln); 1463 LLE_WUNLOCK(ln); 1464 defrouter_rele(dr); 1465 return; 1466 } 1467 1468 if (dr) { 1469 /* 1470 * Unreachablity of a router might affect the default 1471 * router selection and on-link detection of advertised 1472 * prefixes. 1473 */ 1474 1475 /* 1476 * Temporarily fake the state to choose a new default 1477 * router and to perform on-link determination of 1478 * prefixes correctly. 1479 * Below the state will be set correctly, 1480 * or the entry itself will be deleted. 1481 */ 1482 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1483 } 1484 1485 if (ln->ln_router || dr) { 1486 1487 /* 1488 * We need to unlock to avoid a LOR with rt6_flush() with the 1489 * rnh and for the calls to pfxlist_onlink_check() and 1490 * defrouter_select_fib() in the block further down for calls 1491 * into nd6_lookup(). We still hold a ref. 1492 */ 1493 LLE_WUNLOCK(ln); 1494 1495 /* 1496 * rt6_flush must be called whether or not the neighbor 1497 * is in the Default Router List. 1498 * See a corresponding comment in nd6_na_input(). 1499 */ 1500 rt6_flush(&ln->r_l3addr.addr6, ifp); 1501 } 1502 1503 if (dr) { 1504 /* 1505 * Since defrouter_select_fib() does not affect the 1506 * on-link determination and MIP6 needs the check 1507 * before the default router selection, we perform 1508 * the check now. 1509 */ 1510 pfxlist_onlink_check(); 1511 1512 /* 1513 * Refresh default router list. 1514 */ 1515 defrouter_select_fib(dr->ifp->if_fib); 1516 } 1517 1518 /* 1519 * If this entry was added by an on-link redirect, remove the 1520 * corresponding host route. 1521 */ 1522 if (ln->la_flags & LLE_REDIRECT) 1523 nd6_free_redirect(ln); 1524 1525 if (ln->ln_router || dr) 1526 LLE_WLOCK(ln); 1527 } 1528 1529 /* 1530 * Save to unlock. We still hold an extra reference and will not 1531 * free(9) in llentry_free() if someone else holds one as well. 1532 */ 1533 LLE_WUNLOCK(ln); 1534 IF_AFDATA_LOCK(ifp); 1535 LLE_WLOCK(ln); 1536 /* Guard against race with other llentry_free(). */ 1537 if (ln->la_flags & LLE_LINKED) { 1538 /* Remove callout reference */ 1539 LLE_REMREF(ln); 1540 lltable_unlink_entry(ln->lle_tbl, ln); 1541 } 1542 IF_AFDATA_UNLOCK(ifp); 1543 1544 llentry_free(ln); 1545 if (dr != NULL) 1546 defrouter_rele(dr); 1547 } 1548 1549 static int 1550 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1551 { 1552 1553 if (nh->nh_flags & NHF_REDIRECT) 1554 return (1); 1555 1556 return (0); 1557 } 1558 1559 /* 1560 * Remove the rtentry for the given llentry, 1561 * both of which were installed by a redirect. 1562 */ 1563 static void 1564 nd6_free_redirect(const struct llentry *ln) 1565 { 1566 int fibnum; 1567 struct sockaddr_in6 sin6; 1568 struct rt_addrinfo info; 1569 struct epoch_tracker et; 1570 1571 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1572 memset(&info, 0, sizeof(info)); 1573 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1574 info.rti_filter = nd6_isdynrte; 1575 1576 NET_EPOCH_ENTER(et); 1577 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1578 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1579 NET_EPOCH_EXIT(et); 1580 } 1581 1582 /* 1583 * Rejuvenate this function for routing operations related 1584 * processing. 1585 */ 1586 void 1587 nd6_rtrequest(int req, struct rtentry *rt, struct nhop_object *nh, 1588 struct rt_addrinfo *info) 1589 { 1590 struct sockaddr_in6 *gateway; 1591 struct nd_defrouter *dr; 1592 1593 gateway = &nh->gw6_sa; 1594 1595 switch (req) { 1596 case RTM_ADD: 1597 break; 1598 1599 case RTM_DELETE: 1600 /* 1601 * Only indirect routes are interesting. 1602 */ 1603 if ((nh->nh_flags & NHF_GATEWAY) == 0) 1604 return; 1605 /* 1606 * check for default route 1607 */ 1608 if (nh->nh_flags & NHF_DEFAULT) { 1609 dr = defrouter_lookup(&gateway->sin6_addr, nh->nh_ifp); 1610 if (dr != NULL) { 1611 dr->installed = 0; 1612 defrouter_rele(dr); 1613 } 1614 } 1615 break; 1616 } 1617 } 1618 1619 1620 int 1621 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1622 { 1623 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1624 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1625 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1626 struct epoch_tracker et; 1627 int error = 0; 1628 1629 if (ifp->if_afdata[AF_INET6] == NULL) 1630 return (EPFNOSUPPORT); 1631 switch (cmd) { 1632 case OSIOCGIFINFO_IN6: 1633 #define ND ndi->ndi 1634 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1635 bzero(&ND, sizeof(ND)); 1636 ND.linkmtu = IN6_LINKMTU(ifp); 1637 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1638 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1639 ND.reachable = ND_IFINFO(ifp)->reachable; 1640 ND.retrans = ND_IFINFO(ifp)->retrans; 1641 ND.flags = ND_IFINFO(ifp)->flags; 1642 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1643 ND.chlim = ND_IFINFO(ifp)->chlim; 1644 break; 1645 case SIOCGIFINFO_IN6: 1646 ND = *ND_IFINFO(ifp); 1647 break; 1648 case SIOCSIFINFO_IN6: 1649 /* 1650 * used to change host variables from userland. 1651 * intended for a use on router to reflect RA configurations. 1652 */ 1653 /* 0 means 'unspecified' */ 1654 if (ND.linkmtu != 0) { 1655 if (ND.linkmtu < IPV6_MMTU || 1656 ND.linkmtu > IN6_LINKMTU(ifp)) { 1657 error = EINVAL; 1658 break; 1659 } 1660 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1661 } 1662 1663 if (ND.basereachable != 0) { 1664 int obasereachable = ND_IFINFO(ifp)->basereachable; 1665 1666 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1667 if (ND.basereachable != obasereachable) 1668 ND_IFINFO(ifp)->reachable = 1669 ND_COMPUTE_RTIME(ND.basereachable); 1670 } 1671 if (ND.retrans != 0) 1672 ND_IFINFO(ifp)->retrans = ND.retrans; 1673 if (ND.chlim != 0) 1674 ND_IFINFO(ifp)->chlim = ND.chlim; 1675 /* FALLTHROUGH */ 1676 case SIOCSIFINFO_FLAGS: 1677 { 1678 struct ifaddr *ifa; 1679 struct in6_ifaddr *ia; 1680 1681 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1682 !(ND.flags & ND6_IFF_IFDISABLED)) { 1683 /* ifdisabled 1->0 transision */ 1684 1685 /* 1686 * If the interface is marked as ND6_IFF_IFDISABLED and 1687 * has an link-local address with IN6_IFF_DUPLICATED, 1688 * do not clear ND6_IFF_IFDISABLED. 1689 * See RFC 4862, Section 5.4.5. 1690 */ 1691 NET_EPOCH_ENTER(et); 1692 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1693 if (ifa->ifa_addr->sa_family != AF_INET6) 1694 continue; 1695 ia = (struct in6_ifaddr *)ifa; 1696 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1697 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1698 break; 1699 } 1700 NET_EPOCH_EXIT(et); 1701 1702 if (ifa != NULL) { 1703 /* LLA is duplicated. */ 1704 ND.flags |= ND6_IFF_IFDISABLED; 1705 log(LOG_ERR, "Cannot enable an interface" 1706 " with a link-local address marked" 1707 " duplicate.\n"); 1708 } else { 1709 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1710 if (ifp->if_flags & IFF_UP) 1711 in6_if_up(ifp); 1712 } 1713 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1714 (ND.flags & ND6_IFF_IFDISABLED)) { 1715 /* ifdisabled 0->1 transision */ 1716 /* Mark all IPv6 address as tentative. */ 1717 1718 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1719 if (V_ip6_dad_count > 0 && 1720 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1721 NET_EPOCH_ENTER(et); 1722 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1723 ifa_link) { 1724 if (ifa->ifa_addr->sa_family != 1725 AF_INET6) 1726 continue; 1727 ia = (struct in6_ifaddr *)ifa; 1728 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1729 } 1730 NET_EPOCH_EXIT(et); 1731 } 1732 } 1733 1734 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1735 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1736 /* auto_linklocal 0->1 transision */ 1737 1738 /* If no link-local address on ifp, configure */ 1739 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1740 in6_ifattach(ifp, NULL); 1741 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1742 ifp->if_flags & IFF_UP) { 1743 /* 1744 * When the IF already has 1745 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1746 * address is assigned, and IFF_UP, try to 1747 * assign one. 1748 */ 1749 NET_EPOCH_ENTER(et); 1750 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1751 ifa_link) { 1752 if (ifa->ifa_addr->sa_family != 1753 AF_INET6) 1754 continue; 1755 ia = (struct in6_ifaddr *)ifa; 1756 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1757 break; 1758 } 1759 NET_EPOCH_EXIT(et); 1760 if (ifa != NULL) 1761 /* No LLA is configured. */ 1762 in6_ifattach(ifp, NULL); 1763 } 1764 } 1765 ND_IFINFO(ifp)->flags = ND.flags; 1766 break; 1767 } 1768 #undef ND 1769 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1770 /* sync kernel routing table with the default router list */ 1771 defrouter_reset(); 1772 defrouter_select_fib(RT_ALL_FIBS); 1773 break; 1774 case SIOCSPFXFLUSH_IN6: 1775 { 1776 /* flush all the prefix advertised by routers */ 1777 struct in6_ifaddr *ia, *ia_next; 1778 struct nd_prefix *pr, *next; 1779 struct nd_prhead prl; 1780 1781 LIST_INIT(&prl); 1782 1783 ND6_WLOCK(); 1784 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1785 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1786 continue; /* XXX */ 1787 nd6_prefix_unlink(pr, &prl); 1788 } 1789 ND6_WUNLOCK(); 1790 1791 while ((pr = LIST_FIRST(&prl)) != NULL) { 1792 LIST_REMOVE(pr, ndpr_entry); 1793 /* XXXRW: in6_ifaddrhead locking. */ 1794 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1795 ia_next) { 1796 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1797 continue; 1798 1799 if (ia->ia6_ndpr == pr) 1800 in6_purgeaddr(&ia->ia_ifa); 1801 } 1802 nd6_prefix_del(pr); 1803 } 1804 break; 1805 } 1806 case SIOCSRTRFLUSH_IN6: 1807 { 1808 /* flush all the default routers */ 1809 1810 defrouter_reset(); 1811 nd6_defrouter_flush_all(); 1812 defrouter_select_fib(RT_ALL_FIBS); 1813 break; 1814 } 1815 case SIOCGNBRINFO_IN6: 1816 { 1817 struct llentry *ln; 1818 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1819 1820 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1821 return (error); 1822 1823 NET_EPOCH_ENTER(et); 1824 ln = nd6_lookup(&nb_addr, 0, ifp); 1825 NET_EPOCH_EXIT(et); 1826 1827 if (ln == NULL) { 1828 error = EINVAL; 1829 break; 1830 } 1831 nbi->state = ln->ln_state; 1832 nbi->asked = ln->la_asked; 1833 nbi->isrouter = ln->ln_router; 1834 if (ln->la_expire == 0) 1835 nbi->expire = 0; 1836 else 1837 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1838 (time_second - time_uptime); 1839 LLE_RUNLOCK(ln); 1840 break; 1841 } 1842 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1843 ndif->ifindex = V_nd6_defifindex; 1844 break; 1845 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1846 return (nd6_setdefaultiface(ndif->ifindex)); 1847 } 1848 return (error); 1849 } 1850 1851 /* 1852 * Calculates new isRouter value based on provided parameters and 1853 * returns it. 1854 */ 1855 static int 1856 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1857 int ln_router) 1858 { 1859 1860 /* 1861 * ICMP6 type dependent behavior. 1862 * 1863 * NS: clear IsRouter if new entry 1864 * RS: clear IsRouter 1865 * RA: set IsRouter if there's lladdr 1866 * redir: clear IsRouter if new entry 1867 * 1868 * RA case, (1): 1869 * The spec says that we must set IsRouter in the following cases: 1870 * - If lladdr exist, set IsRouter. This means (1-5). 1871 * - If it is old entry (!newentry), set IsRouter. This means (7). 1872 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1873 * A quetion arises for (1) case. (1) case has no lladdr in the 1874 * neighbor cache, this is similar to (6). 1875 * This case is rare but we figured that we MUST NOT set IsRouter. 1876 * 1877 * is_new old_addr new_addr NS RS RA redir 1878 * D R 1879 * 0 n n (1) c ? s 1880 * 0 y n (2) c s s 1881 * 0 n y (3) c s s 1882 * 0 y y (4) c s s 1883 * 0 y y (5) c s s 1884 * 1 -- n (6) c c c s 1885 * 1 -- y (7) c c s c s 1886 * 1887 * (c=clear s=set) 1888 */ 1889 switch (type & 0xff) { 1890 case ND_NEIGHBOR_SOLICIT: 1891 /* 1892 * New entry must have is_router flag cleared. 1893 */ 1894 if (is_new) /* (6-7) */ 1895 ln_router = 0; 1896 break; 1897 case ND_REDIRECT: 1898 /* 1899 * If the icmp is a redirect to a better router, always set the 1900 * is_router flag. Otherwise, if the entry is newly created, 1901 * clear the flag. [RFC 2461, sec 8.3] 1902 */ 1903 if (code == ND_REDIRECT_ROUTER) 1904 ln_router = 1; 1905 else { 1906 if (is_new) /* (6-7) */ 1907 ln_router = 0; 1908 } 1909 break; 1910 case ND_ROUTER_SOLICIT: 1911 /* 1912 * is_router flag must always be cleared. 1913 */ 1914 ln_router = 0; 1915 break; 1916 case ND_ROUTER_ADVERT: 1917 /* 1918 * Mark an entry with lladdr as a router. 1919 */ 1920 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1921 (is_new && new_addr)) { /* (7) */ 1922 ln_router = 1; 1923 } 1924 break; 1925 } 1926 1927 return (ln_router); 1928 } 1929 1930 /* 1931 * Create neighbor cache entry and cache link-layer address, 1932 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1933 * 1934 * type - ICMP6 type 1935 * code - type dependent information 1936 * 1937 */ 1938 void 1939 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1940 int lladdrlen, int type, int code) 1941 { 1942 struct llentry *ln = NULL, *ln_tmp; 1943 int is_newentry; 1944 int do_update; 1945 int olladdr; 1946 int llchange; 1947 int flags; 1948 uint16_t router = 0; 1949 struct sockaddr_in6 sin6; 1950 struct mbuf *chain = NULL; 1951 u_char linkhdr[LLE_MAX_LINKHDR]; 1952 size_t linkhdrsize; 1953 int lladdr_off; 1954 1955 NET_EPOCH_ASSERT(); 1956 IF_AFDATA_UNLOCK_ASSERT(ifp); 1957 1958 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1959 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1960 1961 /* nothing must be updated for unspecified address */ 1962 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1963 return; 1964 1965 /* 1966 * Validation about ifp->if_addrlen and lladdrlen must be done in 1967 * the caller. 1968 * 1969 * XXX If the link does not have link-layer adderss, what should 1970 * we do? (ifp->if_addrlen == 0) 1971 * Spec says nothing in sections for RA, RS and NA. There's small 1972 * description on it in NS section (RFC 2461 7.2.3). 1973 */ 1974 flags = lladdr ? LLE_EXCLUSIVE : 0; 1975 ln = nd6_lookup(from, flags, ifp); 1976 is_newentry = 0; 1977 if (ln == NULL) { 1978 flags |= LLE_EXCLUSIVE; 1979 ln = nd6_alloc(from, 0, ifp); 1980 if (ln == NULL) 1981 return; 1982 1983 /* 1984 * Since we already know all the data for the new entry, 1985 * fill it before insertion. 1986 */ 1987 if (lladdr != NULL) { 1988 linkhdrsize = sizeof(linkhdr); 1989 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1990 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1991 return; 1992 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1993 lladdr_off); 1994 } 1995 1996 IF_AFDATA_WLOCK(ifp); 1997 LLE_WLOCK(ln); 1998 /* Prefer any existing lle over newly-created one */ 1999 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2000 if (ln_tmp == NULL) 2001 lltable_link_entry(LLTABLE6(ifp), ln); 2002 IF_AFDATA_WUNLOCK(ifp); 2003 if (ln_tmp == NULL) { 2004 /* No existing lle, mark as new entry (6,7) */ 2005 is_newentry = 1; 2006 if (lladdr != NULL) { /* (7) */ 2007 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2008 EVENTHANDLER_INVOKE(lle_event, ln, 2009 LLENTRY_RESOLVED); 2010 } 2011 } else { 2012 lltable_free_entry(LLTABLE6(ifp), ln); 2013 ln = ln_tmp; 2014 ln_tmp = NULL; 2015 } 2016 } 2017 /* do nothing if static ndp is set */ 2018 if ((ln->la_flags & LLE_STATIC)) { 2019 if (flags & LLE_EXCLUSIVE) 2020 LLE_WUNLOCK(ln); 2021 else 2022 LLE_RUNLOCK(ln); 2023 return; 2024 } 2025 2026 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2027 if (olladdr && lladdr) { 2028 llchange = bcmp(lladdr, ln->ll_addr, 2029 ifp->if_addrlen); 2030 } else if (!olladdr && lladdr) 2031 llchange = 1; 2032 else 2033 llchange = 0; 2034 2035 /* 2036 * newentry olladdr lladdr llchange (*=record) 2037 * 0 n n -- (1) 2038 * 0 y n -- (2) 2039 * 0 n y y (3) * STALE 2040 * 0 y y n (4) * 2041 * 0 y y y (5) * STALE 2042 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2043 * 1 -- y -- (7) * STALE 2044 */ 2045 2046 do_update = 0; 2047 if (is_newentry == 0 && llchange != 0) { 2048 do_update = 1; /* (3,5) */ 2049 2050 /* 2051 * Record source link-layer address 2052 * XXX is it dependent to ifp->if_type? 2053 */ 2054 linkhdrsize = sizeof(linkhdr); 2055 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2056 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2057 return; 2058 2059 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2060 lladdr_off) == 0) { 2061 /* Entry was deleted */ 2062 return; 2063 } 2064 2065 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2066 2067 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2068 2069 if (ln->la_hold != NULL) 2070 nd6_grab_holdchain(ln, &chain, &sin6); 2071 } 2072 2073 /* Calculates new router status */ 2074 router = nd6_is_router(type, code, is_newentry, olladdr, 2075 lladdr != NULL ? 1 : 0, ln->ln_router); 2076 2077 ln->ln_router = router; 2078 /* Mark non-router redirects with special flag */ 2079 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2080 ln->la_flags |= LLE_REDIRECT; 2081 2082 if (flags & LLE_EXCLUSIVE) 2083 LLE_WUNLOCK(ln); 2084 else 2085 LLE_RUNLOCK(ln); 2086 2087 if (chain != NULL) 2088 nd6_flush_holdchain(ifp, chain, &sin6); 2089 2090 /* 2091 * When the link-layer address of a router changes, select the 2092 * best router again. In particular, when the neighbor entry is newly 2093 * created, it might affect the selection policy. 2094 * Question: can we restrict the first condition to the "is_newentry" 2095 * case? 2096 * XXX: when we hear an RA from a new router with the link-layer 2097 * address option, defrouter_select_fib() is called twice, since 2098 * defrtrlist_update called the function as well. However, I believe 2099 * we can compromise the overhead, since it only happens the first 2100 * time. 2101 * XXX: although defrouter_select_fib() should not have a bad effect 2102 * for those are not autoconfigured hosts, we explicitly avoid such 2103 * cases for safety. 2104 */ 2105 if ((do_update || is_newentry) && router && 2106 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2107 /* 2108 * guaranteed recursion 2109 */ 2110 defrouter_select_fib(ifp->if_fib); 2111 } 2112 } 2113 2114 static void 2115 nd6_slowtimo(void *arg) 2116 { 2117 struct epoch_tracker et; 2118 CURVNET_SET((struct vnet *) arg); 2119 struct nd_ifinfo *nd6if; 2120 struct ifnet *ifp; 2121 2122 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2123 nd6_slowtimo, curvnet); 2124 NET_EPOCH_ENTER(et); 2125 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2126 if (ifp->if_afdata[AF_INET6] == NULL) 2127 continue; 2128 nd6if = ND_IFINFO(ifp); 2129 if (nd6if->basereachable && /* already initialized */ 2130 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2131 /* 2132 * Since reachable time rarely changes by router 2133 * advertisements, we SHOULD insure that a new random 2134 * value gets recomputed at least once every few hours. 2135 * (RFC 2461, 6.3.4) 2136 */ 2137 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2138 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2139 } 2140 } 2141 NET_EPOCH_EXIT(et); 2142 CURVNET_RESTORE(); 2143 } 2144 2145 void 2146 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2147 struct sockaddr_in6 *sin6) 2148 { 2149 2150 LLE_WLOCK_ASSERT(ln); 2151 2152 *chain = ln->la_hold; 2153 ln->la_hold = NULL; 2154 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2155 2156 if (ln->ln_state == ND6_LLINFO_STALE) { 2157 2158 /* 2159 * The first time we send a packet to a 2160 * neighbor whose entry is STALE, we have 2161 * to change the state to DELAY and a sets 2162 * a timer to expire in DELAY_FIRST_PROBE_TIME 2163 * seconds to ensure do neighbor unreachability 2164 * detection on expiration. 2165 * (RFC 2461 7.3.3) 2166 */ 2167 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2168 } 2169 } 2170 2171 int 2172 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2173 struct sockaddr_in6 *dst, struct route *ro) 2174 { 2175 int error; 2176 int ip6len; 2177 struct ip6_hdr *ip6; 2178 struct m_tag *mtag; 2179 2180 #ifdef MAC 2181 mac_netinet6_nd6_send(ifp, m); 2182 #endif 2183 2184 /* 2185 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2186 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2187 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2188 * to be diverted to user space. When re-injected into the kernel, 2189 * send_output() will directly dispatch them to the outgoing interface. 2190 */ 2191 if (send_sendso_input_hook != NULL) { 2192 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2193 if (mtag != NULL) { 2194 ip6 = mtod(m, struct ip6_hdr *); 2195 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2196 /* Use the SEND socket */ 2197 error = send_sendso_input_hook(m, ifp, SND_OUT, 2198 ip6len); 2199 /* -1 == no app on SEND socket */ 2200 if (error == 0 || error != -1) 2201 return (error); 2202 } 2203 } 2204 2205 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2206 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2207 mtod(m, struct ip6_hdr *)); 2208 2209 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2210 origifp = ifp; 2211 2212 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2213 return (error); 2214 } 2215 2216 /* 2217 * Lookup link headerfor @sa_dst address. Stores found 2218 * data in @desten buffer. Copy of lle ln_flags can be also 2219 * saved in @pflags if @pflags is non-NULL. 2220 * 2221 * If destination LLE does not exists or lle state modification 2222 * is required, call "slow" version. 2223 * 2224 * Return values: 2225 * - 0 on success (address copied to buffer). 2226 * - EWOULDBLOCK (no local error, but address is still unresolved) 2227 * - other errors (alloc failure, etc) 2228 */ 2229 int 2230 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2231 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2232 struct llentry **plle) 2233 { 2234 struct llentry *ln = NULL; 2235 const struct sockaddr_in6 *dst6; 2236 2237 NET_EPOCH_ASSERT(); 2238 2239 if (pflags != NULL) 2240 *pflags = 0; 2241 2242 dst6 = (const struct sockaddr_in6 *)sa_dst; 2243 2244 /* discard the packet if IPv6 operation is disabled on the interface */ 2245 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2246 m_freem(m); 2247 return (ENETDOWN); /* better error? */ 2248 } 2249 2250 if (m != NULL && m->m_flags & M_MCAST) { 2251 switch (ifp->if_type) { 2252 case IFT_ETHER: 2253 case IFT_L2VLAN: 2254 case IFT_BRIDGE: 2255 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2256 desten); 2257 return (0); 2258 default: 2259 m_freem(m); 2260 return (EAFNOSUPPORT); 2261 } 2262 } 2263 2264 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2265 ifp); 2266 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2267 /* Entry found, let's copy lle info */ 2268 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2269 if (pflags != NULL) 2270 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2271 /* Check if we have feedback request from nd6 timer */ 2272 if (ln->r_skip_req != 0) { 2273 LLE_REQ_LOCK(ln); 2274 ln->r_skip_req = 0; /* Notify that entry was used */ 2275 ln->lle_hittime = time_uptime; 2276 LLE_REQ_UNLOCK(ln); 2277 } 2278 if (plle) { 2279 LLE_ADDREF(ln); 2280 *plle = ln; 2281 LLE_WUNLOCK(ln); 2282 } 2283 return (0); 2284 } else if (plle && ln) 2285 LLE_WUNLOCK(ln); 2286 2287 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2288 } 2289 2290 2291 /* 2292 * Do L2 address resolution for @sa_dst address. Stores found 2293 * address in @desten buffer. Copy of lle ln_flags can be also 2294 * saved in @pflags if @pflags is non-NULL. 2295 * 2296 * Heavy version. 2297 * Function assume that destination LLE does not exist, 2298 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2299 * 2300 * Set noinline to be dtrace-friendly 2301 */ 2302 static __noinline int 2303 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2304 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2305 struct llentry **plle) 2306 { 2307 struct llentry *lle = NULL, *lle_tmp; 2308 struct in6_addr *psrc, src; 2309 int send_ns, ll_len; 2310 char *lladdr; 2311 2312 NET_EPOCH_ASSERT(); 2313 2314 /* 2315 * Address resolution or Neighbor Unreachability Detection 2316 * for the next hop. 2317 * At this point, the destination of the packet must be a unicast 2318 * or an anycast address(i.e. not a multicast). 2319 */ 2320 if (lle == NULL) { 2321 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2322 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2323 /* 2324 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2325 * the condition below is not very efficient. But we believe 2326 * it is tolerable, because this should be a rare case. 2327 */ 2328 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2329 if (lle == NULL) { 2330 char ip6buf[INET6_ADDRSTRLEN]; 2331 log(LOG_DEBUG, 2332 "nd6_output: can't allocate llinfo for %s " 2333 "(ln=%p)\n", 2334 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2335 m_freem(m); 2336 return (ENOBUFS); 2337 } 2338 2339 IF_AFDATA_WLOCK(ifp); 2340 LLE_WLOCK(lle); 2341 /* Prefer any existing entry over newly-created one */ 2342 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2343 if (lle_tmp == NULL) 2344 lltable_link_entry(LLTABLE6(ifp), lle); 2345 IF_AFDATA_WUNLOCK(ifp); 2346 if (lle_tmp != NULL) { 2347 lltable_free_entry(LLTABLE6(ifp), lle); 2348 lle = lle_tmp; 2349 lle_tmp = NULL; 2350 } 2351 } 2352 } 2353 if (lle == NULL) { 2354 m_freem(m); 2355 return (ENOBUFS); 2356 } 2357 2358 LLE_WLOCK_ASSERT(lle); 2359 2360 /* 2361 * The first time we send a packet to a neighbor whose entry is 2362 * STALE, we have to change the state to DELAY and a sets a timer to 2363 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2364 * neighbor unreachability detection on expiration. 2365 * (RFC 2461 7.3.3) 2366 */ 2367 if (lle->ln_state == ND6_LLINFO_STALE) 2368 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2369 2370 /* 2371 * If the neighbor cache entry has a state other than INCOMPLETE 2372 * (i.e. its link-layer address is already resolved), just 2373 * send the packet. 2374 */ 2375 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2376 if (flags & LLE_ADDRONLY) { 2377 lladdr = lle->ll_addr; 2378 ll_len = ifp->if_addrlen; 2379 } else { 2380 lladdr = lle->r_linkdata; 2381 ll_len = lle->r_hdrlen; 2382 } 2383 bcopy(lladdr, desten, ll_len); 2384 if (pflags != NULL) 2385 *pflags = lle->la_flags; 2386 if (plle) { 2387 LLE_ADDREF(lle); 2388 *plle = lle; 2389 } 2390 LLE_WUNLOCK(lle); 2391 return (0); 2392 } 2393 2394 /* 2395 * There is a neighbor cache entry, but no ethernet address 2396 * response yet. Append this latest packet to the end of the 2397 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2398 * the oldest packet in the queue will be removed. 2399 */ 2400 2401 if (lle->la_hold != NULL) { 2402 struct mbuf *m_hold; 2403 int i; 2404 2405 i = 0; 2406 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2407 i++; 2408 if (m_hold->m_nextpkt == NULL) { 2409 m_hold->m_nextpkt = m; 2410 break; 2411 } 2412 } 2413 while (i >= V_nd6_maxqueuelen) { 2414 m_hold = lle->la_hold; 2415 lle->la_hold = lle->la_hold->m_nextpkt; 2416 m_freem(m_hold); 2417 i--; 2418 } 2419 } else { 2420 lle->la_hold = m; 2421 } 2422 2423 /* 2424 * If there has been no NS for the neighbor after entering the 2425 * INCOMPLETE state, send the first solicitation. 2426 * Note that for newly-created lle la_asked will be 0, 2427 * so we will transition from ND6_LLINFO_NOSTATE to 2428 * ND6_LLINFO_INCOMPLETE state here. 2429 */ 2430 psrc = NULL; 2431 send_ns = 0; 2432 if (lle->la_asked == 0) { 2433 lle->la_asked++; 2434 send_ns = 1; 2435 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2436 2437 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2438 } 2439 LLE_WUNLOCK(lle); 2440 if (send_ns != 0) 2441 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2442 2443 return (EWOULDBLOCK); 2444 } 2445 2446 /* 2447 * Do L2 address resolution for @sa_dst address. Stores found 2448 * address in @desten buffer. Copy of lle ln_flags can be also 2449 * saved in @pflags if @pflags is non-NULL. 2450 * 2451 * Return values: 2452 * - 0 on success (address copied to buffer). 2453 * - EWOULDBLOCK (no local error, but address is still unresolved) 2454 * - other errors (alloc failure, etc) 2455 */ 2456 int 2457 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2458 char *desten, uint32_t *pflags) 2459 { 2460 int error; 2461 2462 flags |= LLE_ADDRONLY; 2463 error = nd6_resolve_slow(ifp, flags, NULL, 2464 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2465 return (error); 2466 } 2467 2468 int 2469 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2470 struct sockaddr_in6 *dst) 2471 { 2472 struct mbuf *m, *m_head; 2473 int error = 0; 2474 2475 m_head = chain; 2476 2477 while (m_head) { 2478 m = m_head; 2479 m_head = m_head->m_nextpkt; 2480 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2481 } 2482 2483 /* 2484 * XXX 2485 * note that intermediate errors are blindly ignored 2486 */ 2487 return (error); 2488 } 2489 2490 static int 2491 nd6_need_cache(struct ifnet *ifp) 2492 { 2493 /* 2494 * XXX: we currently do not make neighbor cache on any interface 2495 * other than Ethernet and GIF. 2496 * 2497 * RFC2893 says: 2498 * - unidirectional tunnels needs no ND 2499 */ 2500 switch (ifp->if_type) { 2501 case IFT_ETHER: 2502 case IFT_IEEE1394: 2503 case IFT_L2VLAN: 2504 case IFT_INFINIBAND: 2505 case IFT_BRIDGE: 2506 case IFT_PROPVIRTUAL: 2507 return (1); 2508 default: 2509 return (0); 2510 } 2511 } 2512 2513 /* 2514 * Add pernament ND6 link-layer record for given 2515 * interface address. 2516 * 2517 * Very similar to IPv4 arp_ifinit(), but: 2518 * 1) IPv6 DAD is performed in different place 2519 * 2) It is called by IPv6 protocol stack in contrast to 2520 * arp_ifinit() which is typically called in SIOCSIFADDR 2521 * driver ioctl handler. 2522 * 2523 */ 2524 int 2525 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2526 { 2527 struct ifnet *ifp; 2528 struct llentry *ln, *ln_tmp; 2529 struct sockaddr *dst; 2530 2531 ifp = ia->ia_ifa.ifa_ifp; 2532 if (nd6_need_cache(ifp) == 0) 2533 return (0); 2534 2535 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2536 dst = (struct sockaddr *)&ia->ia_addr; 2537 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2538 if (ln == NULL) 2539 return (ENOBUFS); 2540 2541 IF_AFDATA_WLOCK(ifp); 2542 LLE_WLOCK(ln); 2543 /* Unlink any entry if exists */ 2544 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2545 if (ln_tmp != NULL) 2546 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2547 lltable_link_entry(LLTABLE6(ifp), ln); 2548 IF_AFDATA_WUNLOCK(ifp); 2549 2550 if (ln_tmp != NULL) 2551 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2552 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2553 2554 LLE_WUNLOCK(ln); 2555 if (ln_tmp != NULL) 2556 llentry_free(ln_tmp); 2557 2558 return (0); 2559 } 2560 2561 /* 2562 * Removes either all lle entries for given @ia, or lle 2563 * corresponding to @ia address. 2564 */ 2565 void 2566 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2567 { 2568 struct sockaddr_in6 mask, addr; 2569 struct sockaddr *saddr, *smask; 2570 struct ifnet *ifp; 2571 2572 ifp = ia->ia_ifa.ifa_ifp; 2573 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2574 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2575 saddr = (struct sockaddr *)&addr; 2576 smask = (struct sockaddr *)&mask; 2577 2578 if (all != 0) 2579 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2580 else 2581 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2582 } 2583 2584 static void 2585 clear_llinfo_pqueue(struct llentry *ln) 2586 { 2587 struct mbuf *m_hold, *m_hold_next; 2588 2589 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2590 m_hold_next = m_hold->m_nextpkt; 2591 m_freem(m_hold); 2592 } 2593 2594 ln->la_hold = NULL; 2595 } 2596 2597 static int 2598 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2599 { 2600 struct in6_prefix p; 2601 struct sockaddr_in6 s6; 2602 struct nd_prefix *pr; 2603 struct nd_pfxrouter *pfr; 2604 time_t maxexpire; 2605 int error; 2606 char ip6buf[INET6_ADDRSTRLEN]; 2607 2608 if (req->newptr) 2609 return (EPERM); 2610 2611 error = sysctl_wire_old_buffer(req, 0); 2612 if (error != 0) 2613 return (error); 2614 2615 bzero(&p, sizeof(p)); 2616 p.origin = PR_ORIG_RA; 2617 bzero(&s6, sizeof(s6)); 2618 s6.sin6_family = AF_INET6; 2619 s6.sin6_len = sizeof(s6); 2620 2621 ND6_RLOCK(); 2622 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2623 p.prefix = pr->ndpr_prefix; 2624 if (sa6_recoverscope(&p.prefix)) { 2625 log(LOG_ERR, "scope error in prefix list (%s)\n", 2626 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2627 /* XXX: press on... */ 2628 } 2629 p.raflags = pr->ndpr_raf; 2630 p.prefixlen = pr->ndpr_plen; 2631 p.vltime = pr->ndpr_vltime; 2632 p.pltime = pr->ndpr_pltime; 2633 p.if_index = pr->ndpr_ifp->if_index; 2634 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2635 p.expire = 0; 2636 else { 2637 /* XXX: we assume time_t is signed. */ 2638 maxexpire = (-1) & 2639 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2640 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2641 p.expire = pr->ndpr_lastupdate + 2642 pr->ndpr_vltime + 2643 (time_second - time_uptime); 2644 else 2645 p.expire = maxexpire; 2646 } 2647 p.refcnt = pr->ndpr_addrcnt; 2648 p.flags = pr->ndpr_stateflags; 2649 p.advrtrs = 0; 2650 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2651 p.advrtrs++; 2652 error = SYSCTL_OUT(req, &p, sizeof(p)); 2653 if (error != 0) 2654 break; 2655 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2656 s6.sin6_addr = pfr->router->rtaddr; 2657 if (sa6_recoverscope(&s6)) 2658 log(LOG_ERR, 2659 "scope error in prefix list (%s)\n", 2660 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2661 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2662 if (error != 0) 2663 goto out; 2664 } 2665 } 2666 out: 2667 ND6_RUNLOCK(); 2668 return (error); 2669 } 2670 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2671 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2672 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2673 "NDP prefix list"); 2674 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2675 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2676 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2677 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2678