1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/callout.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/protosw.h> 52 #include <sys/errno.h> 53 #include <sys/syslog.h> 54 #include <sys/rwlock.h> 55 #include <sys/queue.h> 56 #include <sys/sdt.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_types.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 89 90 /* timer values */ 91 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 92 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 93 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 94 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 95 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 96 * local traffic */ 97 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 98 * collection timer */ 99 100 /* preventing too many loops in ND option parsing */ 101 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 102 103 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 104 * layer hints */ 105 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 106 * ND entries */ 107 #define V_nd6_maxndopt VNET(nd6_maxndopt) 108 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 109 110 #ifdef ND6_DEBUG 111 VNET_DEFINE(int, nd6_debug) = 1; 112 #else 113 VNET_DEFINE(int, nd6_debug) = 0; 114 #endif 115 116 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 117 118 VNET_DEFINE(struct nd_drhead, nd_defrouter); 119 VNET_DEFINE(struct nd_prhead, nd_prefix); 120 VNET_DEFINE(struct rwlock, nd6_lock); 121 VNET_DEFINE(uint64_t, nd6_list_genid); 122 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 123 124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 125 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 126 127 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 128 129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 130 struct ifnet *); 131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 132 static void nd6_slowtimo(void *); 133 static int regen_tmpaddr(struct in6_ifaddr *); 134 static void nd6_free(struct llentry **, int); 135 static void nd6_free_redirect(const struct llentry *); 136 static void nd6_llinfo_timer(void *); 137 static void nd6_llinfo_settimer_locked(struct llentry *, long); 138 static void clear_llinfo_pqueue(struct llentry *); 139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 141 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 142 static int nd6_need_cache(struct ifnet *); 143 144 145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 146 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 147 148 VNET_DEFINE(struct callout, nd6_timer_ch); 149 #define V_nd6_timer_ch VNET(nd6_timer_ch) 150 151 static void 152 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 153 { 154 struct rt_addrinfo rtinfo; 155 struct sockaddr_in6 dst; 156 struct sockaddr_dl gw; 157 struct ifnet *ifp; 158 int type; 159 int fibnum; 160 161 LLE_WLOCK_ASSERT(lle); 162 163 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 164 return; 165 166 switch (evt) { 167 case LLENTRY_RESOLVED: 168 type = RTM_ADD; 169 KASSERT(lle->la_flags & LLE_VALID, 170 ("%s: %p resolved but not valid?", __func__, lle)); 171 break; 172 case LLENTRY_EXPIRED: 173 type = RTM_DELETE; 174 break; 175 default: 176 return; 177 } 178 179 ifp = lltable_get_ifp(lle->lle_tbl); 180 181 bzero(&dst, sizeof(dst)); 182 bzero(&gw, sizeof(gw)); 183 bzero(&rtinfo, sizeof(rtinfo)); 184 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 185 dst.sin6_scope_id = in6_getscopezone(ifp, 186 in6_addrscope(&dst.sin6_addr)); 187 gw.sdl_len = sizeof(struct sockaddr_dl); 188 gw.sdl_family = AF_LINK; 189 gw.sdl_alen = ifp->if_addrlen; 190 gw.sdl_index = ifp->if_index; 191 gw.sdl_type = ifp->if_type; 192 if (evt == LLENTRY_RESOLVED) 193 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 194 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 195 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 196 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 197 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 198 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 199 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 200 } 201 202 /* 203 * A handler for interface link layer address change event. 204 */ 205 static void 206 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 207 { 208 209 lltable_update_ifaddr(LLTABLE6(ifp)); 210 } 211 212 void 213 nd6_init(void) 214 { 215 216 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 217 rw_init(&V_nd6_lock, "nd6 list"); 218 219 LIST_INIT(&V_nd_prefix); 220 TAILQ_INIT(&V_nd_defrouter); 221 222 /* Start timers. */ 223 callout_init(&V_nd6_slowtimo_ch, 0); 224 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 225 nd6_slowtimo, curvnet); 226 227 callout_init(&V_nd6_timer_ch, 0); 228 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 229 230 nd6_dad_init(); 231 if (IS_DEFAULT_VNET(curvnet)) { 232 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 233 NULL, EVENTHANDLER_PRI_ANY); 234 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 235 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 236 } 237 } 238 239 #ifdef VIMAGE 240 void 241 nd6_destroy() 242 { 243 244 callout_drain(&V_nd6_slowtimo_ch); 245 callout_drain(&V_nd6_timer_ch); 246 if (IS_DEFAULT_VNET(curvnet)) { 247 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 248 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 249 } 250 rw_destroy(&V_nd6_lock); 251 mtx_destroy(&V_nd6_onlink_mtx); 252 } 253 #endif 254 255 struct nd_ifinfo * 256 nd6_ifattach(struct ifnet *ifp) 257 { 258 struct nd_ifinfo *nd; 259 260 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 261 nd->initialized = 1; 262 263 nd->chlim = IPV6_DEFHLIM; 264 nd->basereachable = REACHABLE_TIME; 265 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 266 nd->retrans = RETRANS_TIMER; 267 268 nd->flags = ND6_IFF_PERFORMNUD; 269 270 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 271 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 272 * default regardless of the V_ip6_auto_linklocal configuration to 273 * give a reasonable default behavior. 274 */ 275 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 276 (ifp->if_flags & IFF_LOOPBACK)) 277 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 278 /* 279 * A loopback interface does not need to accept RTADV. 280 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 281 * default regardless of the V_ip6_accept_rtadv configuration to 282 * prevent the interface from accepting RA messages arrived 283 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 284 */ 285 if (V_ip6_accept_rtadv && 286 !(ifp->if_flags & IFF_LOOPBACK) && 287 (ifp->if_type != IFT_BRIDGE)) 288 nd->flags |= ND6_IFF_ACCEPT_RTADV; 289 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 290 nd->flags |= ND6_IFF_NO_RADR; 291 292 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 293 nd6_setmtu0(ifp, nd); 294 295 return nd; 296 } 297 298 void 299 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 300 { 301 struct ifaddr *ifa, *next; 302 303 IF_ADDR_RLOCK(ifp); 304 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 305 if (ifa->ifa_addr->sa_family != AF_INET6) 306 continue; 307 308 /* stop DAD processing */ 309 nd6_dad_stop(ifa); 310 } 311 IF_ADDR_RUNLOCK(ifp); 312 313 free(nd, M_IP6NDP); 314 } 315 316 /* 317 * Reset ND level link MTU. This function is called when the physical MTU 318 * changes, which means we might have to adjust the ND level MTU. 319 */ 320 void 321 nd6_setmtu(struct ifnet *ifp) 322 { 323 if (ifp->if_afdata[AF_INET6] == NULL) 324 return; 325 326 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 327 } 328 329 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 330 void 331 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 332 { 333 u_int32_t omaxmtu; 334 335 omaxmtu = ndi->maxmtu; 336 ndi->maxmtu = ifp->if_mtu; 337 338 /* 339 * Decreasing the interface MTU under IPV6 minimum MTU may cause 340 * undesirable situation. We thus notify the operator of the change 341 * explicitly. The check for omaxmtu is necessary to restrict the 342 * log to the case of changing the MTU, not initializing it. 343 */ 344 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 345 log(LOG_NOTICE, "nd6_setmtu0: " 346 "new link MTU on %s (%lu) is too small for IPv6\n", 347 if_name(ifp), (unsigned long)ndi->maxmtu); 348 } 349 350 if (ndi->maxmtu > V_in6_maxmtu) 351 in6_setmaxmtu(); /* check all interfaces just in case */ 352 353 } 354 355 void 356 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 357 { 358 359 bzero(ndopts, sizeof(*ndopts)); 360 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 361 ndopts->nd_opts_last 362 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 363 364 if (icmp6len == 0) { 365 ndopts->nd_opts_done = 1; 366 ndopts->nd_opts_search = NULL; 367 } 368 } 369 370 /* 371 * Take one ND option. 372 */ 373 struct nd_opt_hdr * 374 nd6_option(union nd_opts *ndopts) 375 { 376 struct nd_opt_hdr *nd_opt; 377 int olen; 378 379 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 380 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 381 __func__)); 382 if (ndopts->nd_opts_search == NULL) 383 return NULL; 384 if (ndopts->nd_opts_done) 385 return NULL; 386 387 nd_opt = ndopts->nd_opts_search; 388 389 /* make sure nd_opt_len is inside the buffer */ 390 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 391 bzero(ndopts, sizeof(*ndopts)); 392 return NULL; 393 } 394 395 olen = nd_opt->nd_opt_len << 3; 396 if (olen == 0) { 397 /* 398 * Message validation requires that all included 399 * options have a length that is greater than zero. 400 */ 401 bzero(ndopts, sizeof(*ndopts)); 402 return NULL; 403 } 404 405 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 406 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 407 /* option overruns the end of buffer, invalid */ 408 bzero(ndopts, sizeof(*ndopts)); 409 return NULL; 410 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 411 /* reached the end of options chain */ 412 ndopts->nd_opts_done = 1; 413 ndopts->nd_opts_search = NULL; 414 } 415 return nd_opt; 416 } 417 418 /* 419 * Parse multiple ND options. 420 * This function is much easier to use, for ND routines that do not need 421 * multiple options of the same type. 422 */ 423 int 424 nd6_options(union nd_opts *ndopts) 425 { 426 struct nd_opt_hdr *nd_opt; 427 int i = 0; 428 429 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 430 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 431 __func__)); 432 if (ndopts->nd_opts_search == NULL) 433 return 0; 434 435 while (1) { 436 nd_opt = nd6_option(ndopts); 437 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 438 /* 439 * Message validation requires that all included 440 * options have a length that is greater than zero. 441 */ 442 ICMP6STAT_INC(icp6s_nd_badopt); 443 bzero(ndopts, sizeof(*ndopts)); 444 return -1; 445 } 446 447 if (nd_opt == NULL) 448 goto skip1; 449 450 switch (nd_opt->nd_opt_type) { 451 case ND_OPT_SOURCE_LINKADDR: 452 case ND_OPT_TARGET_LINKADDR: 453 case ND_OPT_MTU: 454 case ND_OPT_REDIRECTED_HEADER: 455 case ND_OPT_NONCE: 456 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 457 nd6log((LOG_INFO, 458 "duplicated ND6 option found (type=%d)\n", 459 nd_opt->nd_opt_type)); 460 /* XXX bark? */ 461 } else { 462 ndopts->nd_opt_array[nd_opt->nd_opt_type] 463 = nd_opt; 464 } 465 break; 466 case ND_OPT_PREFIX_INFORMATION: 467 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 468 ndopts->nd_opt_array[nd_opt->nd_opt_type] 469 = nd_opt; 470 } 471 ndopts->nd_opts_pi_end = 472 (struct nd_opt_prefix_info *)nd_opt; 473 break; 474 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 475 case ND_OPT_RDNSS: /* RFC 6106 */ 476 case ND_OPT_DNSSL: /* RFC 6106 */ 477 /* 478 * Silently ignore options we know and do not care about 479 * in the kernel. 480 */ 481 break; 482 default: 483 /* 484 * Unknown options must be silently ignored, 485 * to accommodate future extension to the protocol. 486 */ 487 nd6log((LOG_DEBUG, 488 "nd6_options: unsupported option %d - " 489 "option ignored\n", nd_opt->nd_opt_type)); 490 } 491 492 skip1: 493 i++; 494 if (i > V_nd6_maxndopt) { 495 ICMP6STAT_INC(icp6s_nd_toomanyopt); 496 nd6log((LOG_INFO, "too many loop in nd opt\n")); 497 break; 498 } 499 500 if (ndopts->nd_opts_done) 501 break; 502 } 503 504 return 0; 505 } 506 507 /* 508 * ND6 timer routine to handle ND6 entries 509 */ 510 static void 511 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 512 { 513 int canceled; 514 515 LLE_WLOCK_ASSERT(ln); 516 517 if (tick < 0) { 518 ln->la_expire = 0; 519 ln->ln_ntick = 0; 520 canceled = callout_stop(&ln->lle_timer); 521 } else { 522 ln->la_expire = time_uptime + tick / hz; 523 LLE_ADDREF(ln); 524 if (tick > INT_MAX) { 525 ln->ln_ntick = tick - INT_MAX; 526 canceled = callout_reset(&ln->lle_timer, INT_MAX, 527 nd6_llinfo_timer, ln); 528 } else { 529 ln->ln_ntick = 0; 530 canceled = callout_reset(&ln->lle_timer, tick, 531 nd6_llinfo_timer, ln); 532 } 533 } 534 if (canceled > 0) 535 LLE_REMREF(ln); 536 } 537 538 /* 539 * Gets source address of the first packet in hold queue 540 * and stores it in @src. 541 * Returns pointer to @src (if hold queue is not empty) or NULL. 542 * 543 * Set noinline to be dtrace-friendly 544 */ 545 static __noinline struct in6_addr * 546 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 547 { 548 struct ip6_hdr hdr; 549 struct mbuf *m; 550 551 if (ln->la_hold == NULL) 552 return (NULL); 553 554 /* 555 * assume every packet in la_hold has the same IP header 556 */ 557 m = ln->la_hold; 558 if (sizeof(hdr) > m->m_len) 559 return (NULL); 560 561 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 562 *src = hdr.ip6_src; 563 564 return (src); 565 } 566 567 /* 568 * Checks if we need to switch from STALE state. 569 * 570 * RFC 4861 requires switching from STALE to DELAY state 571 * on first packet matching entry, waiting V_nd6_delay and 572 * transition to PROBE state (if upper layer confirmation was 573 * not received). 574 * 575 * This code performs a bit differently: 576 * On packet hit we don't change state (but desired state 577 * can be guessed by control plane). However, after V_nd6_delay 578 * seconds code will transition to PROBE state (so DELAY state 579 * is kinda skipped in most situations). 580 * 581 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 582 * we perform the following upon entering STALE state: 583 * 584 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 585 * if packet was transmitted at the start of given interval, we 586 * would be able to switch to PROBE state in V_nd6_delay seconds 587 * as user expects. 588 * 589 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 590 * lle in STALE state (remaining timer value stored in lle_remtime). 591 * 592 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 593 * seconds ago. 594 * 595 * Returns non-zero value if the entry is still STALE (storing 596 * the next timer interval in @pdelay). 597 * 598 * Returns zero value if original timer expired or we need to switch to 599 * PROBE (store that in @do_switch variable). 600 */ 601 static int 602 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 603 { 604 int nd_delay, nd_gctimer, r_skip_req; 605 time_t lle_hittime; 606 long delay; 607 608 *do_switch = 0; 609 nd_gctimer = V_nd6_gctimer; 610 nd_delay = V_nd6_delay; 611 612 LLE_REQ_LOCK(lle); 613 r_skip_req = lle->r_skip_req; 614 lle_hittime = lle->lle_hittime; 615 LLE_REQ_UNLOCK(lle); 616 617 if (r_skip_req > 0) { 618 619 /* 620 * Nonzero r_skip_req value was set upon entering 621 * STALE state. Since value was not changed, no 622 * packets were passed using this lle. Ask for 623 * timer reschedule and keep STALE state. 624 */ 625 delay = (long)(MIN(nd_gctimer, nd_delay)); 626 delay *= hz; 627 if (lle->lle_remtime > delay) 628 lle->lle_remtime -= delay; 629 else { 630 delay = lle->lle_remtime; 631 lle->lle_remtime = 0; 632 } 633 634 if (delay == 0) { 635 636 /* 637 * The original ng6_gctime timeout ended, 638 * no more rescheduling. 639 */ 640 return (0); 641 } 642 643 *pdelay = delay; 644 return (1); 645 } 646 647 /* 648 * Packet received. Verify timestamp 649 */ 650 delay = (long)(time_uptime - lle_hittime); 651 if (delay < nd_delay) { 652 653 /* 654 * V_nd6_delay still not passed since the first 655 * hit in STALE state. 656 * Reshedule timer and return. 657 */ 658 *pdelay = (long)(nd_delay - delay) * hz; 659 return (1); 660 } 661 662 /* Request switching to probe */ 663 *do_switch = 1; 664 return (0); 665 } 666 667 668 /* 669 * Switch @lle state to new state optionally arming timers. 670 * 671 * Set noinline to be dtrace-friendly 672 */ 673 __noinline void 674 nd6_llinfo_setstate(struct llentry *lle, int newstate) 675 { 676 struct ifnet *ifp; 677 int nd_gctimer, nd_delay; 678 long delay, remtime; 679 680 delay = 0; 681 remtime = 0; 682 683 switch (newstate) { 684 case ND6_LLINFO_INCOMPLETE: 685 ifp = lle->lle_tbl->llt_ifp; 686 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 687 break; 688 case ND6_LLINFO_REACHABLE: 689 if (!ND6_LLINFO_PERMANENT(lle)) { 690 ifp = lle->lle_tbl->llt_ifp; 691 delay = (long)ND_IFINFO(ifp)->reachable * hz; 692 } 693 break; 694 case ND6_LLINFO_STALE: 695 696 /* 697 * Notify fast path that we want to know if any packet 698 * is transmitted by setting r_skip_req. 699 */ 700 LLE_REQ_LOCK(lle); 701 lle->r_skip_req = 1; 702 LLE_REQ_UNLOCK(lle); 703 nd_delay = V_nd6_delay; 704 nd_gctimer = V_nd6_gctimer; 705 706 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 707 remtime = (long)nd_gctimer * hz - delay; 708 break; 709 case ND6_LLINFO_DELAY: 710 lle->la_asked = 0; 711 delay = (long)V_nd6_delay * hz; 712 break; 713 } 714 715 if (delay > 0) 716 nd6_llinfo_settimer_locked(lle, delay); 717 718 lle->lle_remtime = remtime; 719 lle->ln_state = newstate; 720 } 721 722 /* 723 * Timer-dependent part of nd state machine. 724 * 725 * Set noinline to be dtrace-friendly 726 */ 727 static __noinline void 728 nd6_llinfo_timer(void *arg) 729 { 730 struct llentry *ln; 731 struct in6_addr *dst, *pdst, *psrc, src; 732 struct ifnet *ifp; 733 struct nd_ifinfo *ndi; 734 int do_switch, send_ns; 735 long delay; 736 737 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 738 ln = (struct llentry *)arg; 739 ifp = lltable_get_ifp(ln->lle_tbl); 740 CURVNET_SET(ifp->if_vnet); 741 742 ND6_RLOCK(); 743 LLE_WLOCK(ln); 744 if (callout_pending(&ln->lle_timer)) { 745 /* 746 * Here we are a bit odd here in the treatment of 747 * active/pending. If the pending bit is set, it got 748 * rescheduled before I ran. The active 749 * bit we ignore, since if it was stopped 750 * in ll_tablefree() and was currently running 751 * it would have return 0 so the code would 752 * not have deleted it since the callout could 753 * not be stopped so we want to go through 754 * with the delete here now. If the callout 755 * was restarted, the pending bit will be back on and 756 * we just want to bail since the callout_reset would 757 * return 1 and our reference would have been removed 758 * by nd6_llinfo_settimer_locked above since canceled 759 * would have been 1. 760 */ 761 LLE_WUNLOCK(ln); 762 ND6_RUNLOCK(); 763 CURVNET_RESTORE(); 764 return; 765 } 766 ndi = ND_IFINFO(ifp); 767 send_ns = 0; 768 dst = &ln->r_l3addr.addr6; 769 pdst = dst; 770 771 if (ln->ln_ntick > 0) { 772 if (ln->ln_ntick > INT_MAX) { 773 ln->ln_ntick -= INT_MAX; 774 nd6_llinfo_settimer_locked(ln, INT_MAX); 775 } else { 776 ln->ln_ntick = 0; 777 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 778 } 779 goto done; 780 } 781 782 if (ln->la_flags & LLE_STATIC) { 783 goto done; 784 } 785 786 if (ln->la_flags & LLE_DELETED) { 787 nd6_free(&ln, 0); 788 goto done; 789 } 790 791 switch (ln->ln_state) { 792 case ND6_LLINFO_INCOMPLETE: 793 if (ln->la_asked < V_nd6_mmaxtries) { 794 ln->la_asked++; 795 send_ns = 1; 796 /* Send NS to multicast address */ 797 pdst = NULL; 798 } else { 799 struct mbuf *m = ln->la_hold; 800 if (m) { 801 struct mbuf *m0; 802 803 /* 804 * assuming every packet in la_hold has the 805 * same IP header. Send error after unlock. 806 */ 807 m0 = m->m_nextpkt; 808 m->m_nextpkt = NULL; 809 ln->la_hold = m0; 810 clear_llinfo_pqueue(ln); 811 } 812 nd6_free(&ln, 0); 813 if (m != NULL) 814 icmp6_error2(m, ICMP6_DST_UNREACH, 815 ICMP6_DST_UNREACH_ADDR, 0, ifp); 816 } 817 break; 818 case ND6_LLINFO_REACHABLE: 819 if (!ND6_LLINFO_PERMANENT(ln)) 820 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 821 break; 822 823 case ND6_LLINFO_STALE: 824 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 825 826 /* 827 * No packet has used this entry and GC timeout 828 * has not been passed. Reshedule timer and 829 * return. 830 */ 831 nd6_llinfo_settimer_locked(ln, delay); 832 break; 833 } 834 835 if (do_switch == 0) { 836 837 /* 838 * GC timer has ended and entry hasn't been used. 839 * Run Garbage collector (RFC 4861, 5.3) 840 */ 841 if (!ND6_LLINFO_PERMANENT(ln)) 842 nd6_free(&ln, 1); 843 break; 844 } 845 846 /* Entry has been used AND delay timer has ended. */ 847 848 /* FALLTHROUGH */ 849 850 case ND6_LLINFO_DELAY: 851 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 852 /* We need NUD */ 853 ln->la_asked = 1; 854 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 855 send_ns = 1; 856 } else 857 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 858 break; 859 case ND6_LLINFO_PROBE: 860 if (ln->la_asked < V_nd6_umaxtries) { 861 ln->la_asked++; 862 send_ns = 1; 863 } else { 864 nd6_free(&ln, 0); 865 } 866 break; 867 default: 868 panic("%s: paths in a dark night can be confusing: %d", 869 __func__, ln->ln_state); 870 } 871 done: 872 if (ln != NULL) 873 ND6_RUNLOCK(); 874 if (send_ns != 0) { 875 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 876 psrc = nd6_llinfo_get_holdsrc(ln, &src); 877 LLE_FREE_LOCKED(ln); 878 ln = NULL; 879 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 880 } 881 882 if (ln != NULL) 883 LLE_FREE_LOCKED(ln); 884 CURVNET_RESTORE(); 885 } 886 887 888 /* 889 * ND6 timer routine to expire default route list and prefix list 890 */ 891 void 892 nd6_timer(void *arg) 893 { 894 CURVNET_SET((struct vnet *) arg); 895 struct nd_drhead drq; 896 struct nd_prhead prl; 897 struct nd_defrouter *dr, *ndr; 898 struct nd_prefix *pr, *npr; 899 struct in6_ifaddr *ia6, *nia6; 900 uint64_t genid; 901 902 TAILQ_INIT(&drq); 903 LIST_INIT(&prl); 904 905 ND6_WLOCK(); 906 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 907 if (dr->expire && dr->expire < time_uptime) 908 defrouter_unlink(dr, &drq); 909 ND6_WUNLOCK(); 910 911 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 912 TAILQ_REMOVE(&drq, dr, dr_entry); 913 defrouter_del(dr); 914 } 915 916 /* 917 * expire interface addresses. 918 * in the past the loop was inside prefix expiry processing. 919 * However, from a stricter speci-confrmance standpoint, we should 920 * rather separate address lifetimes and prefix lifetimes. 921 * 922 * XXXRW: in6_ifaddrhead locking. 923 */ 924 addrloop: 925 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 926 /* check address lifetime */ 927 if (IFA6_IS_INVALID(ia6)) { 928 int regen = 0; 929 930 /* 931 * If the expiring address is temporary, try 932 * regenerating a new one. This would be useful when 933 * we suspended a laptop PC, then turned it on after a 934 * period that could invalidate all temporary 935 * addresses. Although we may have to restart the 936 * loop (see below), it must be after purging the 937 * address. Otherwise, we'd see an infinite loop of 938 * regeneration. 939 */ 940 if (V_ip6_use_tempaddr && 941 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 942 if (regen_tmpaddr(ia6) == 0) 943 regen = 1; 944 } 945 946 in6_purgeaddr(&ia6->ia_ifa); 947 948 if (regen) 949 goto addrloop; /* XXX: see below */ 950 } else if (IFA6_IS_DEPRECATED(ia6)) { 951 int oldflags = ia6->ia6_flags; 952 953 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 954 955 /* 956 * If a temporary address has just become deprecated, 957 * regenerate a new one if possible. 958 */ 959 if (V_ip6_use_tempaddr && 960 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 961 (oldflags & IN6_IFF_DEPRECATED) == 0) { 962 963 if (regen_tmpaddr(ia6) == 0) { 964 /* 965 * A new temporary address is 966 * generated. 967 * XXX: this means the address chain 968 * has changed while we are still in 969 * the loop. Although the change 970 * would not cause disaster (because 971 * it's not a deletion, but an 972 * addition,) we'd rather restart the 973 * loop just for safety. Or does this 974 * significantly reduce performance?? 975 */ 976 goto addrloop; 977 } 978 } 979 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 980 /* 981 * Schedule DAD for a tentative address. This happens 982 * if the interface was down or not running 983 * when the address was configured. 984 */ 985 int delay; 986 987 delay = arc4random() % 988 (MAX_RTR_SOLICITATION_DELAY * hz); 989 nd6_dad_start((struct ifaddr *)ia6, delay); 990 } else { 991 /* 992 * Check status of the interface. If it is down, 993 * mark the address as tentative for future DAD. 994 */ 995 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 996 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 997 == 0 || 998 (ND_IFINFO(ia6->ia_ifp)->flags & 999 ND6_IFF_IFDISABLED) != 0) { 1000 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1001 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1002 } 1003 /* 1004 * A new RA might have made a deprecated address 1005 * preferred. 1006 */ 1007 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1008 } 1009 } 1010 1011 ND6_WLOCK(); 1012 restart: 1013 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1014 /* 1015 * Expire prefixes. Since the pltime is only used for 1016 * autoconfigured addresses, pltime processing for prefixes is 1017 * not necessary. 1018 * 1019 * Only unlink after all derived addresses have expired. This 1020 * may not occur until two hours after the prefix has expired 1021 * per RFC 4862. If the prefix expires before its derived 1022 * addresses, mark it off-link. This will be done automatically 1023 * after unlinking if no address references remain. 1024 */ 1025 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1026 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1027 continue; 1028 1029 if (pr->ndpr_addrcnt == 0) { 1030 nd6_prefix_unlink(pr, &prl); 1031 continue; 1032 } 1033 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1034 genid = V_nd6_list_genid; 1035 nd6_prefix_ref(pr); 1036 ND6_WUNLOCK(); 1037 ND6_ONLINK_LOCK(); 1038 (void)nd6_prefix_offlink(pr); 1039 ND6_ONLINK_UNLOCK(); 1040 ND6_WLOCK(); 1041 nd6_prefix_rele(pr); 1042 if (genid != V_nd6_list_genid) 1043 goto restart; 1044 } 1045 } 1046 ND6_WUNLOCK(); 1047 1048 while ((pr = LIST_FIRST(&prl)) != NULL) { 1049 LIST_REMOVE(pr, ndpr_entry); 1050 nd6_prefix_del(pr); 1051 } 1052 1053 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1054 nd6_timer, curvnet); 1055 1056 CURVNET_RESTORE(); 1057 } 1058 1059 /* 1060 * ia6 - deprecated/invalidated temporary address 1061 */ 1062 static int 1063 regen_tmpaddr(struct in6_ifaddr *ia6) 1064 { 1065 struct ifaddr *ifa; 1066 struct ifnet *ifp; 1067 struct in6_ifaddr *public_ifa6 = NULL; 1068 1069 ifp = ia6->ia_ifa.ifa_ifp; 1070 IF_ADDR_RLOCK(ifp); 1071 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1072 struct in6_ifaddr *it6; 1073 1074 if (ifa->ifa_addr->sa_family != AF_INET6) 1075 continue; 1076 1077 it6 = (struct in6_ifaddr *)ifa; 1078 1079 /* ignore no autoconf addresses. */ 1080 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1081 continue; 1082 1083 /* ignore autoconf addresses with different prefixes. */ 1084 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1085 continue; 1086 1087 /* 1088 * Now we are looking at an autoconf address with the same 1089 * prefix as ours. If the address is temporary and is still 1090 * preferred, do not create another one. It would be rare, but 1091 * could happen, for example, when we resume a laptop PC after 1092 * a long period. 1093 */ 1094 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1095 !IFA6_IS_DEPRECATED(it6)) { 1096 public_ifa6 = NULL; 1097 break; 1098 } 1099 1100 /* 1101 * This is a public autoconf address that has the same prefix 1102 * as ours. If it is preferred, keep it. We can't break the 1103 * loop here, because there may be a still-preferred temporary 1104 * address with the prefix. 1105 */ 1106 if (!IFA6_IS_DEPRECATED(it6)) 1107 public_ifa6 = it6; 1108 } 1109 if (public_ifa6 != NULL) 1110 ifa_ref(&public_ifa6->ia_ifa); 1111 IF_ADDR_RUNLOCK(ifp); 1112 1113 if (public_ifa6 != NULL) { 1114 int e; 1115 1116 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1117 ifa_free(&public_ifa6->ia_ifa); 1118 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1119 " tmp addr,errno=%d\n", e); 1120 return (-1); 1121 } 1122 ifa_free(&public_ifa6->ia_ifa); 1123 return (0); 1124 } 1125 1126 return (-1); 1127 } 1128 1129 /* 1130 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1131 * cache entries are freed in in6_domifdetach(). 1132 */ 1133 void 1134 nd6_purge(struct ifnet *ifp) 1135 { 1136 struct nd_drhead drq; 1137 struct nd_prhead prl; 1138 struct nd_defrouter *dr, *ndr; 1139 struct nd_prefix *pr, *npr; 1140 1141 TAILQ_INIT(&drq); 1142 LIST_INIT(&prl); 1143 1144 /* 1145 * Nuke default router list entries toward ifp. 1146 * We defer removal of default router list entries that is installed 1147 * in the routing table, in order to keep additional side effects as 1148 * small as possible. 1149 */ 1150 ND6_WLOCK(); 1151 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1152 if (dr->installed) 1153 continue; 1154 if (dr->ifp == ifp) 1155 defrouter_unlink(dr, &drq); 1156 } 1157 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1158 if (!dr->installed) 1159 continue; 1160 if (dr->ifp == ifp) 1161 defrouter_unlink(dr, &drq); 1162 } 1163 1164 /* 1165 * Remove prefixes on ifp. We should have already removed addresses on 1166 * this interface, so no addresses should be referencing these prefixes. 1167 */ 1168 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1169 if (pr->ndpr_ifp == ifp) 1170 nd6_prefix_unlink(pr, &prl); 1171 } 1172 ND6_WUNLOCK(); 1173 1174 /* Delete the unlinked router and prefix objects. */ 1175 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1176 TAILQ_REMOVE(&drq, dr, dr_entry); 1177 defrouter_del(dr); 1178 } 1179 while ((pr = LIST_FIRST(&prl)) != NULL) { 1180 LIST_REMOVE(pr, ndpr_entry); 1181 nd6_prefix_del(pr); 1182 } 1183 1184 /* cancel default outgoing interface setting */ 1185 if (V_nd6_defifindex == ifp->if_index) 1186 nd6_setdefaultiface(0); 1187 1188 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1189 /* Refresh default router list. */ 1190 defrouter_select_fib(ifp->if_fib); 1191 } 1192 } 1193 1194 /* 1195 * the caller acquires and releases the lock on the lltbls 1196 * Returns the llentry locked 1197 */ 1198 struct llentry * 1199 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1200 { 1201 struct sockaddr_in6 sin6; 1202 struct llentry *ln; 1203 1204 bzero(&sin6, sizeof(sin6)); 1205 sin6.sin6_len = sizeof(struct sockaddr_in6); 1206 sin6.sin6_family = AF_INET6; 1207 sin6.sin6_addr = *addr6; 1208 1209 IF_AFDATA_LOCK_ASSERT(ifp); 1210 1211 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1212 1213 return (ln); 1214 } 1215 1216 struct llentry * 1217 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1218 { 1219 struct sockaddr_in6 sin6; 1220 struct llentry *ln; 1221 1222 bzero(&sin6, sizeof(sin6)); 1223 sin6.sin6_len = sizeof(struct sockaddr_in6); 1224 sin6.sin6_family = AF_INET6; 1225 sin6.sin6_addr = *addr6; 1226 1227 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1228 if (ln != NULL) 1229 ln->ln_state = ND6_LLINFO_NOSTATE; 1230 1231 return (ln); 1232 } 1233 1234 /* 1235 * Test whether a given IPv6 address is a neighbor or not, ignoring 1236 * the actual neighbor cache. The neighbor cache is ignored in order 1237 * to not reenter the routing code from within itself. 1238 */ 1239 static int 1240 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1241 { 1242 struct nd_prefix *pr; 1243 struct ifaddr *ifa; 1244 struct rt_addrinfo info; 1245 struct sockaddr_in6 rt_key; 1246 const struct sockaddr *dst6; 1247 uint64_t genid; 1248 int error, fibnum; 1249 1250 /* 1251 * A link-local address is always a neighbor. 1252 * XXX: a link does not necessarily specify a single interface. 1253 */ 1254 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1255 struct sockaddr_in6 sin6_copy; 1256 u_int32_t zone; 1257 1258 /* 1259 * We need sin6_copy since sa6_recoverscope() may modify the 1260 * content (XXX). 1261 */ 1262 sin6_copy = *addr; 1263 if (sa6_recoverscope(&sin6_copy)) 1264 return (0); /* XXX: should be impossible */ 1265 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1266 return (0); 1267 if (sin6_copy.sin6_scope_id == zone) 1268 return (1); 1269 else 1270 return (0); 1271 } 1272 1273 bzero(&rt_key, sizeof(rt_key)); 1274 bzero(&info, sizeof(info)); 1275 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1276 1277 /* 1278 * If the address matches one of our addresses, 1279 * it should be a neighbor. 1280 * If the address matches one of our on-link prefixes, it should be a 1281 * neighbor. 1282 */ 1283 ND6_RLOCK(); 1284 restart: 1285 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1286 if (pr->ndpr_ifp != ifp) 1287 continue; 1288 1289 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1290 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1291 1292 /* 1293 * We only need to check all FIBs if add_addr_allfibs 1294 * is unset. If set, checking any FIB will suffice. 1295 */ 1296 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1297 for (; fibnum < rt_numfibs; fibnum++) { 1298 genid = V_nd6_list_genid; 1299 ND6_RUNLOCK(); 1300 1301 /* 1302 * Restore length field before 1303 * retrying lookup 1304 */ 1305 rt_key.sin6_len = sizeof(rt_key); 1306 error = rib_lookup_info(fibnum, dst6, 0, 0, 1307 &info); 1308 1309 ND6_RLOCK(); 1310 if (genid != V_nd6_list_genid) 1311 goto restart; 1312 if (error == 0) 1313 break; 1314 } 1315 if (error != 0) 1316 continue; 1317 1318 /* 1319 * This is the case where multiple interfaces 1320 * have the same prefix, but only one is installed 1321 * into the routing table and that prefix entry 1322 * is not the one being examined here. In the case 1323 * where RADIX_MPATH is enabled, multiple route 1324 * entries (of the same rt_key value) will be 1325 * installed because the interface addresses all 1326 * differ. 1327 */ 1328 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1329 &rt_key.sin6_addr)) 1330 continue; 1331 } 1332 1333 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1334 &addr->sin6_addr, &pr->ndpr_mask)) { 1335 ND6_RUNLOCK(); 1336 return (1); 1337 } 1338 } 1339 ND6_RUNLOCK(); 1340 1341 /* 1342 * If the address is assigned on the node of the other side of 1343 * a p2p interface, the address should be a neighbor. 1344 */ 1345 if (ifp->if_flags & IFF_POINTOPOINT) { 1346 IF_ADDR_RLOCK(ifp); 1347 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1348 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1349 continue; 1350 if (ifa->ifa_dstaddr != NULL && 1351 sa_equal(addr, ifa->ifa_dstaddr)) { 1352 IF_ADDR_RUNLOCK(ifp); 1353 return 1; 1354 } 1355 } 1356 IF_ADDR_RUNLOCK(ifp); 1357 } 1358 1359 /* 1360 * If the default router list is empty, all addresses are regarded 1361 * as on-link, and thus, as a neighbor. 1362 */ 1363 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1364 TAILQ_EMPTY(&V_nd_defrouter) && 1365 V_nd6_defifindex == ifp->if_index) { 1366 return (1); 1367 } 1368 1369 return (0); 1370 } 1371 1372 1373 /* 1374 * Detect if a given IPv6 address identifies a neighbor on a given link. 1375 * XXX: should take care of the destination of a p2p link? 1376 */ 1377 int 1378 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1379 { 1380 struct llentry *lle; 1381 int rc = 0; 1382 1383 IF_AFDATA_UNLOCK_ASSERT(ifp); 1384 if (nd6_is_new_addr_neighbor(addr, ifp)) 1385 return (1); 1386 1387 /* 1388 * Even if the address matches none of our addresses, it might be 1389 * in the neighbor cache. 1390 */ 1391 IF_AFDATA_RLOCK(ifp); 1392 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1393 LLE_RUNLOCK(lle); 1394 rc = 1; 1395 } 1396 IF_AFDATA_RUNLOCK(ifp); 1397 return (rc); 1398 } 1399 1400 /* 1401 * Free an nd6 llinfo entry. 1402 * Since the function would cause significant changes in the kernel, DO NOT 1403 * make it global, unless you have a strong reason for the change, and are sure 1404 * that the change is safe. 1405 * 1406 * Set noinline to be dtrace-friendly 1407 */ 1408 static __noinline void 1409 nd6_free(struct llentry **lnp, int gc) 1410 { 1411 struct ifnet *ifp; 1412 struct llentry *ln; 1413 struct nd_defrouter *dr; 1414 1415 ln = *lnp; 1416 *lnp = NULL; 1417 1418 LLE_WLOCK_ASSERT(ln); 1419 ND6_RLOCK_ASSERT(); 1420 1421 ifp = lltable_get_ifp(ln->lle_tbl); 1422 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1423 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1424 else 1425 dr = NULL; 1426 ND6_RUNLOCK(); 1427 1428 if ((ln->la_flags & LLE_DELETED) == 0) 1429 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1430 1431 /* 1432 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1433 * even though it is not harmful, it was not really necessary. 1434 */ 1435 1436 /* cancel timer */ 1437 nd6_llinfo_settimer_locked(ln, -1); 1438 1439 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1440 if (dr != NULL && dr->expire && 1441 ln->ln_state == ND6_LLINFO_STALE && gc) { 1442 /* 1443 * If the reason for the deletion is just garbage 1444 * collection, and the neighbor is an active default 1445 * router, do not delete it. Instead, reset the GC 1446 * timer using the router's lifetime. 1447 * Simply deleting the entry would affect default 1448 * router selection, which is not necessarily a good 1449 * thing, especially when we're using router preference 1450 * values. 1451 * XXX: the check for ln_state would be redundant, 1452 * but we intentionally keep it just in case. 1453 */ 1454 if (dr->expire > time_uptime) 1455 nd6_llinfo_settimer_locked(ln, 1456 (dr->expire - time_uptime) * hz); 1457 else 1458 nd6_llinfo_settimer_locked(ln, 1459 (long)V_nd6_gctimer * hz); 1460 1461 LLE_REMREF(ln); 1462 LLE_WUNLOCK(ln); 1463 defrouter_rele(dr); 1464 return; 1465 } 1466 1467 if (dr) { 1468 /* 1469 * Unreachablity of a router might affect the default 1470 * router selection and on-link detection of advertised 1471 * prefixes. 1472 */ 1473 1474 /* 1475 * Temporarily fake the state to choose a new default 1476 * router and to perform on-link determination of 1477 * prefixes correctly. 1478 * Below the state will be set correctly, 1479 * or the entry itself will be deleted. 1480 */ 1481 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1482 } 1483 1484 if (ln->ln_router || dr) { 1485 1486 /* 1487 * We need to unlock to avoid a LOR with rt6_flush() with the 1488 * rnh and for the calls to pfxlist_onlink_check() and 1489 * defrouter_select_fib() in the block further down for calls 1490 * into nd6_lookup(). We still hold a ref. 1491 */ 1492 LLE_WUNLOCK(ln); 1493 1494 /* 1495 * rt6_flush must be called whether or not the neighbor 1496 * is in the Default Router List. 1497 * See a corresponding comment in nd6_na_input(). 1498 */ 1499 rt6_flush(&ln->r_l3addr.addr6, ifp); 1500 } 1501 1502 if (dr) { 1503 /* 1504 * Since defrouter_select_fib() does not affect the 1505 * on-link determination and MIP6 needs the check 1506 * before the default router selection, we perform 1507 * the check now. 1508 */ 1509 pfxlist_onlink_check(); 1510 1511 /* 1512 * Refresh default router list. 1513 */ 1514 defrouter_select_fib(dr->ifp->if_fib); 1515 } 1516 1517 /* 1518 * If this entry was added by an on-link redirect, remove the 1519 * corresponding host route. 1520 */ 1521 if (ln->la_flags & LLE_REDIRECT) 1522 nd6_free_redirect(ln); 1523 1524 if (ln->ln_router || dr) 1525 LLE_WLOCK(ln); 1526 } 1527 1528 /* 1529 * Save to unlock. We still hold an extra reference and will not 1530 * free(9) in llentry_free() if someone else holds one as well. 1531 */ 1532 LLE_WUNLOCK(ln); 1533 IF_AFDATA_LOCK(ifp); 1534 LLE_WLOCK(ln); 1535 /* Guard against race with other llentry_free(). */ 1536 if (ln->la_flags & LLE_LINKED) { 1537 /* Remove callout reference */ 1538 LLE_REMREF(ln); 1539 lltable_unlink_entry(ln->lle_tbl, ln); 1540 } 1541 IF_AFDATA_UNLOCK(ifp); 1542 1543 llentry_free(ln); 1544 if (dr != NULL) 1545 defrouter_rele(dr); 1546 } 1547 1548 static int 1549 nd6_isdynrte(const struct rtentry *rt, void *xap) 1550 { 1551 1552 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1553 return (1); 1554 1555 return (0); 1556 } 1557 /* 1558 * Remove the rtentry for the given llentry, 1559 * both of which were installed by a redirect. 1560 */ 1561 static void 1562 nd6_free_redirect(const struct llentry *ln) 1563 { 1564 int fibnum; 1565 struct sockaddr_in6 sin6; 1566 struct rt_addrinfo info; 1567 1568 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1569 memset(&info, 0, sizeof(info)); 1570 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1571 info.rti_filter = nd6_isdynrte; 1572 1573 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1574 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1575 } 1576 1577 /* 1578 * Rejuvenate this function for routing operations related 1579 * processing. 1580 */ 1581 void 1582 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1583 { 1584 struct sockaddr_in6 *gateway; 1585 struct nd_defrouter *dr; 1586 struct ifnet *ifp; 1587 1588 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1589 ifp = rt->rt_ifp; 1590 1591 switch (req) { 1592 case RTM_ADD: 1593 break; 1594 1595 case RTM_DELETE: 1596 if (!ifp) 1597 return; 1598 /* 1599 * Only indirect routes are interesting. 1600 */ 1601 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1602 return; 1603 /* 1604 * check for default route 1605 */ 1606 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1607 &SIN6(rt_key(rt))->sin6_addr)) { 1608 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1609 if (dr != NULL) { 1610 dr->installed = 0; 1611 defrouter_rele(dr); 1612 } 1613 } 1614 break; 1615 } 1616 } 1617 1618 1619 int 1620 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1621 { 1622 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1623 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1624 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1625 int error = 0; 1626 1627 if (ifp->if_afdata[AF_INET6] == NULL) 1628 return (EPFNOSUPPORT); 1629 switch (cmd) { 1630 case OSIOCGIFINFO_IN6: 1631 #define ND ndi->ndi 1632 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1633 bzero(&ND, sizeof(ND)); 1634 ND.linkmtu = IN6_LINKMTU(ifp); 1635 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1636 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1637 ND.reachable = ND_IFINFO(ifp)->reachable; 1638 ND.retrans = ND_IFINFO(ifp)->retrans; 1639 ND.flags = ND_IFINFO(ifp)->flags; 1640 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1641 ND.chlim = ND_IFINFO(ifp)->chlim; 1642 break; 1643 case SIOCGIFINFO_IN6: 1644 ND = *ND_IFINFO(ifp); 1645 break; 1646 case SIOCSIFINFO_IN6: 1647 /* 1648 * used to change host variables from userland. 1649 * intended for a use on router to reflect RA configurations. 1650 */ 1651 /* 0 means 'unspecified' */ 1652 if (ND.linkmtu != 0) { 1653 if (ND.linkmtu < IPV6_MMTU || 1654 ND.linkmtu > IN6_LINKMTU(ifp)) { 1655 error = EINVAL; 1656 break; 1657 } 1658 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1659 } 1660 1661 if (ND.basereachable != 0) { 1662 int obasereachable = ND_IFINFO(ifp)->basereachable; 1663 1664 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1665 if (ND.basereachable != obasereachable) 1666 ND_IFINFO(ifp)->reachable = 1667 ND_COMPUTE_RTIME(ND.basereachable); 1668 } 1669 if (ND.retrans != 0) 1670 ND_IFINFO(ifp)->retrans = ND.retrans; 1671 if (ND.chlim != 0) 1672 ND_IFINFO(ifp)->chlim = ND.chlim; 1673 /* FALLTHROUGH */ 1674 case SIOCSIFINFO_FLAGS: 1675 { 1676 struct ifaddr *ifa; 1677 struct in6_ifaddr *ia; 1678 1679 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1680 !(ND.flags & ND6_IFF_IFDISABLED)) { 1681 /* ifdisabled 1->0 transision */ 1682 1683 /* 1684 * If the interface is marked as ND6_IFF_IFDISABLED and 1685 * has an link-local address with IN6_IFF_DUPLICATED, 1686 * do not clear ND6_IFF_IFDISABLED. 1687 * See RFC 4862, Section 5.4.5. 1688 */ 1689 IF_ADDR_RLOCK(ifp); 1690 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1691 if (ifa->ifa_addr->sa_family != AF_INET6) 1692 continue; 1693 ia = (struct in6_ifaddr *)ifa; 1694 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1695 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1696 break; 1697 } 1698 IF_ADDR_RUNLOCK(ifp); 1699 1700 if (ifa != NULL) { 1701 /* LLA is duplicated. */ 1702 ND.flags |= ND6_IFF_IFDISABLED; 1703 log(LOG_ERR, "Cannot enable an interface" 1704 " with a link-local address marked" 1705 " duplicate.\n"); 1706 } else { 1707 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1708 if (ifp->if_flags & IFF_UP) 1709 in6_if_up(ifp); 1710 } 1711 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1712 (ND.flags & ND6_IFF_IFDISABLED)) { 1713 /* ifdisabled 0->1 transision */ 1714 /* Mark all IPv6 address as tentative. */ 1715 1716 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1717 if (V_ip6_dad_count > 0 && 1718 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1719 IF_ADDR_RLOCK(ifp); 1720 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1721 ifa_link) { 1722 if (ifa->ifa_addr->sa_family != 1723 AF_INET6) 1724 continue; 1725 ia = (struct in6_ifaddr *)ifa; 1726 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1727 } 1728 IF_ADDR_RUNLOCK(ifp); 1729 } 1730 } 1731 1732 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1733 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1734 /* auto_linklocal 0->1 transision */ 1735 1736 /* If no link-local address on ifp, configure */ 1737 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1738 in6_ifattach(ifp, NULL); 1739 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1740 ifp->if_flags & IFF_UP) { 1741 /* 1742 * When the IF already has 1743 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1744 * address is assigned, and IFF_UP, try to 1745 * assign one. 1746 */ 1747 IF_ADDR_RLOCK(ifp); 1748 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1749 ifa_link) { 1750 if (ifa->ifa_addr->sa_family != 1751 AF_INET6) 1752 continue; 1753 ia = (struct in6_ifaddr *)ifa; 1754 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1755 break; 1756 } 1757 IF_ADDR_RUNLOCK(ifp); 1758 if (ifa != NULL) 1759 /* No LLA is configured. */ 1760 in6_ifattach(ifp, NULL); 1761 } 1762 } 1763 } 1764 ND_IFINFO(ifp)->flags = ND.flags; 1765 break; 1766 #undef ND 1767 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1768 /* sync kernel routing table with the default router list */ 1769 defrouter_reset(); 1770 defrouter_select(); 1771 break; 1772 case SIOCSPFXFLUSH_IN6: 1773 { 1774 /* flush all the prefix advertised by routers */ 1775 struct in6_ifaddr *ia, *ia_next; 1776 struct nd_prefix *pr, *next; 1777 struct nd_prhead prl; 1778 1779 LIST_INIT(&prl); 1780 1781 ND6_WLOCK(); 1782 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1783 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1784 continue; /* XXX */ 1785 nd6_prefix_unlink(pr, &prl); 1786 } 1787 ND6_WUNLOCK(); 1788 1789 while ((pr = LIST_FIRST(&prl)) != NULL) { 1790 LIST_REMOVE(pr, ndpr_entry); 1791 /* XXXRW: in6_ifaddrhead locking. */ 1792 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1793 ia_next) { 1794 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1795 continue; 1796 1797 if (ia->ia6_ndpr == pr) 1798 in6_purgeaddr(&ia->ia_ifa); 1799 } 1800 nd6_prefix_del(pr); 1801 } 1802 break; 1803 } 1804 case SIOCSRTRFLUSH_IN6: 1805 { 1806 /* flush all the default routers */ 1807 struct nd_drhead drq; 1808 struct nd_defrouter *dr; 1809 1810 TAILQ_INIT(&drq); 1811 1812 defrouter_reset(); 1813 1814 ND6_WLOCK(); 1815 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1816 defrouter_unlink(dr, &drq); 1817 ND6_WUNLOCK(); 1818 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1819 TAILQ_REMOVE(&drq, dr, dr_entry); 1820 defrouter_del(dr); 1821 } 1822 1823 defrouter_select(); 1824 break; 1825 } 1826 case SIOCGNBRINFO_IN6: 1827 { 1828 struct llentry *ln; 1829 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1830 1831 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1832 return (error); 1833 1834 IF_AFDATA_RLOCK(ifp); 1835 ln = nd6_lookup(&nb_addr, 0, ifp); 1836 IF_AFDATA_RUNLOCK(ifp); 1837 1838 if (ln == NULL) { 1839 error = EINVAL; 1840 break; 1841 } 1842 nbi->state = ln->ln_state; 1843 nbi->asked = ln->la_asked; 1844 nbi->isrouter = ln->ln_router; 1845 if (ln->la_expire == 0) 1846 nbi->expire = 0; 1847 else 1848 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1849 (time_second - time_uptime); 1850 LLE_RUNLOCK(ln); 1851 break; 1852 } 1853 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1854 ndif->ifindex = V_nd6_defifindex; 1855 break; 1856 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1857 return (nd6_setdefaultiface(ndif->ifindex)); 1858 } 1859 return (error); 1860 } 1861 1862 /* 1863 * Calculates new isRouter value based on provided parameters and 1864 * returns it. 1865 */ 1866 static int 1867 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1868 int ln_router) 1869 { 1870 1871 /* 1872 * ICMP6 type dependent behavior. 1873 * 1874 * NS: clear IsRouter if new entry 1875 * RS: clear IsRouter 1876 * RA: set IsRouter if there's lladdr 1877 * redir: clear IsRouter if new entry 1878 * 1879 * RA case, (1): 1880 * The spec says that we must set IsRouter in the following cases: 1881 * - If lladdr exist, set IsRouter. This means (1-5). 1882 * - If it is old entry (!newentry), set IsRouter. This means (7). 1883 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1884 * A quetion arises for (1) case. (1) case has no lladdr in the 1885 * neighbor cache, this is similar to (6). 1886 * This case is rare but we figured that we MUST NOT set IsRouter. 1887 * 1888 * is_new old_addr new_addr NS RS RA redir 1889 * D R 1890 * 0 n n (1) c ? s 1891 * 0 y n (2) c s s 1892 * 0 n y (3) c s s 1893 * 0 y y (4) c s s 1894 * 0 y y (5) c s s 1895 * 1 -- n (6) c c c s 1896 * 1 -- y (7) c c s c s 1897 * 1898 * (c=clear s=set) 1899 */ 1900 switch (type & 0xff) { 1901 case ND_NEIGHBOR_SOLICIT: 1902 /* 1903 * New entry must have is_router flag cleared. 1904 */ 1905 if (is_new) /* (6-7) */ 1906 ln_router = 0; 1907 break; 1908 case ND_REDIRECT: 1909 /* 1910 * If the icmp is a redirect to a better router, always set the 1911 * is_router flag. Otherwise, if the entry is newly created, 1912 * clear the flag. [RFC 2461, sec 8.3] 1913 */ 1914 if (code == ND_REDIRECT_ROUTER) 1915 ln_router = 1; 1916 else { 1917 if (is_new) /* (6-7) */ 1918 ln_router = 0; 1919 } 1920 break; 1921 case ND_ROUTER_SOLICIT: 1922 /* 1923 * is_router flag must always be cleared. 1924 */ 1925 ln_router = 0; 1926 break; 1927 case ND_ROUTER_ADVERT: 1928 /* 1929 * Mark an entry with lladdr as a router. 1930 */ 1931 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1932 (is_new && new_addr)) { /* (7) */ 1933 ln_router = 1; 1934 } 1935 break; 1936 } 1937 1938 return (ln_router); 1939 } 1940 1941 /* 1942 * Create neighbor cache entry and cache link-layer address, 1943 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1944 * 1945 * type - ICMP6 type 1946 * code - type dependent information 1947 * 1948 */ 1949 void 1950 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1951 int lladdrlen, int type, int code) 1952 { 1953 struct llentry *ln = NULL, *ln_tmp; 1954 int is_newentry; 1955 int do_update; 1956 int olladdr; 1957 int llchange; 1958 int flags; 1959 uint16_t router = 0; 1960 struct sockaddr_in6 sin6; 1961 struct mbuf *chain = NULL; 1962 u_char linkhdr[LLE_MAX_LINKHDR]; 1963 size_t linkhdrsize; 1964 int lladdr_off; 1965 1966 IF_AFDATA_UNLOCK_ASSERT(ifp); 1967 1968 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1969 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1970 1971 /* nothing must be updated for unspecified address */ 1972 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1973 return; 1974 1975 /* 1976 * Validation about ifp->if_addrlen and lladdrlen must be done in 1977 * the caller. 1978 * 1979 * XXX If the link does not have link-layer adderss, what should 1980 * we do? (ifp->if_addrlen == 0) 1981 * Spec says nothing in sections for RA, RS and NA. There's small 1982 * description on it in NS section (RFC 2461 7.2.3). 1983 */ 1984 flags = lladdr ? LLE_EXCLUSIVE : 0; 1985 IF_AFDATA_RLOCK(ifp); 1986 ln = nd6_lookup(from, flags, ifp); 1987 IF_AFDATA_RUNLOCK(ifp); 1988 is_newentry = 0; 1989 if (ln == NULL) { 1990 flags |= LLE_EXCLUSIVE; 1991 ln = nd6_alloc(from, 0, ifp); 1992 if (ln == NULL) 1993 return; 1994 1995 /* 1996 * Since we already know all the data for the new entry, 1997 * fill it before insertion. 1998 */ 1999 if (lladdr != NULL) { 2000 linkhdrsize = sizeof(linkhdr); 2001 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2002 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2003 return; 2004 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2005 lladdr_off); 2006 } 2007 2008 IF_AFDATA_WLOCK(ifp); 2009 LLE_WLOCK(ln); 2010 /* Prefer any existing lle over newly-created one */ 2011 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2012 if (ln_tmp == NULL) 2013 lltable_link_entry(LLTABLE6(ifp), ln); 2014 IF_AFDATA_WUNLOCK(ifp); 2015 if (ln_tmp == NULL) { 2016 /* No existing lle, mark as new entry (6,7) */ 2017 is_newentry = 1; 2018 if (lladdr != NULL) { /* (7) */ 2019 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2020 EVENTHANDLER_INVOKE(lle_event, ln, 2021 LLENTRY_RESOLVED); 2022 } 2023 } else { 2024 lltable_free_entry(LLTABLE6(ifp), ln); 2025 ln = ln_tmp; 2026 ln_tmp = NULL; 2027 } 2028 } 2029 /* do nothing if static ndp is set */ 2030 if ((ln->la_flags & LLE_STATIC)) { 2031 if (flags & LLE_EXCLUSIVE) 2032 LLE_WUNLOCK(ln); 2033 else 2034 LLE_RUNLOCK(ln); 2035 return; 2036 } 2037 2038 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2039 if (olladdr && lladdr) { 2040 llchange = bcmp(lladdr, ln->ll_addr, 2041 ifp->if_addrlen); 2042 } else if (!olladdr && lladdr) 2043 llchange = 1; 2044 else 2045 llchange = 0; 2046 2047 /* 2048 * newentry olladdr lladdr llchange (*=record) 2049 * 0 n n -- (1) 2050 * 0 y n -- (2) 2051 * 0 n y y (3) * STALE 2052 * 0 y y n (4) * 2053 * 0 y y y (5) * STALE 2054 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2055 * 1 -- y -- (7) * STALE 2056 */ 2057 2058 do_update = 0; 2059 if (is_newentry == 0 && llchange != 0) { 2060 do_update = 1; /* (3,5) */ 2061 2062 /* 2063 * Record source link-layer address 2064 * XXX is it dependent to ifp->if_type? 2065 */ 2066 linkhdrsize = sizeof(linkhdr); 2067 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2068 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2069 return; 2070 2071 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2072 lladdr_off) == 0) { 2073 /* Entry was deleted */ 2074 return; 2075 } 2076 2077 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2078 2079 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2080 2081 if (ln->la_hold != NULL) 2082 nd6_grab_holdchain(ln, &chain, &sin6); 2083 } 2084 2085 /* Calculates new router status */ 2086 router = nd6_is_router(type, code, is_newentry, olladdr, 2087 lladdr != NULL ? 1 : 0, ln->ln_router); 2088 2089 ln->ln_router = router; 2090 /* Mark non-router redirects with special flag */ 2091 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2092 ln->la_flags |= LLE_REDIRECT; 2093 2094 if (flags & LLE_EXCLUSIVE) 2095 LLE_WUNLOCK(ln); 2096 else 2097 LLE_RUNLOCK(ln); 2098 2099 if (chain != NULL) 2100 nd6_flush_holdchain(ifp, chain, &sin6); 2101 2102 /* 2103 * When the link-layer address of a router changes, select the 2104 * best router again. In particular, when the neighbor entry is newly 2105 * created, it might affect the selection policy. 2106 * Question: can we restrict the first condition to the "is_newentry" 2107 * case? 2108 * XXX: when we hear an RA from a new router with the link-layer 2109 * address option, defrouter_select_fib() is called twice, since 2110 * defrtrlist_update called the function as well. However, I believe 2111 * we can compromise the overhead, since it only happens the first 2112 * time. 2113 * XXX: although defrouter_select_fib() should not have a bad effect 2114 * for those are not autoconfigured hosts, we explicitly avoid such 2115 * cases for safety. 2116 */ 2117 if ((do_update || is_newentry) && router && 2118 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2119 /* 2120 * guaranteed recursion 2121 */ 2122 defrouter_select_fib(ifp->if_fib); 2123 } 2124 } 2125 2126 static void 2127 nd6_slowtimo(void *arg) 2128 { 2129 CURVNET_SET((struct vnet *) arg); 2130 struct nd_ifinfo *nd6if; 2131 struct ifnet *ifp; 2132 2133 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2134 nd6_slowtimo, curvnet); 2135 IFNET_RLOCK_NOSLEEP(); 2136 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2137 if (ifp->if_afdata[AF_INET6] == NULL) 2138 continue; 2139 nd6if = ND_IFINFO(ifp); 2140 if (nd6if->basereachable && /* already initialized */ 2141 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2142 /* 2143 * Since reachable time rarely changes by router 2144 * advertisements, we SHOULD insure that a new random 2145 * value gets recomputed at least once every few hours. 2146 * (RFC 2461, 6.3.4) 2147 */ 2148 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2149 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2150 } 2151 } 2152 IFNET_RUNLOCK_NOSLEEP(); 2153 CURVNET_RESTORE(); 2154 } 2155 2156 void 2157 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2158 struct sockaddr_in6 *sin6) 2159 { 2160 2161 LLE_WLOCK_ASSERT(ln); 2162 2163 *chain = ln->la_hold; 2164 ln->la_hold = NULL; 2165 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2166 2167 if (ln->ln_state == ND6_LLINFO_STALE) { 2168 2169 /* 2170 * The first time we send a packet to a 2171 * neighbor whose entry is STALE, we have 2172 * to change the state to DELAY and a sets 2173 * a timer to expire in DELAY_FIRST_PROBE_TIME 2174 * seconds to ensure do neighbor unreachability 2175 * detection on expiration. 2176 * (RFC 2461 7.3.3) 2177 */ 2178 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2179 } 2180 } 2181 2182 int 2183 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2184 struct sockaddr_in6 *dst, struct route *ro) 2185 { 2186 int error; 2187 int ip6len; 2188 struct ip6_hdr *ip6; 2189 struct m_tag *mtag; 2190 2191 #ifdef MAC 2192 mac_netinet6_nd6_send(ifp, m); 2193 #endif 2194 2195 /* 2196 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2197 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2198 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2199 * to be diverted to user space. When re-injected into the kernel, 2200 * send_output() will directly dispatch them to the outgoing interface. 2201 */ 2202 if (send_sendso_input_hook != NULL) { 2203 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2204 if (mtag != NULL) { 2205 ip6 = mtod(m, struct ip6_hdr *); 2206 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2207 /* Use the SEND socket */ 2208 error = send_sendso_input_hook(m, ifp, SND_OUT, 2209 ip6len); 2210 /* -1 == no app on SEND socket */ 2211 if (error == 0 || error != -1) 2212 return (error); 2213 } 2214 } 2215 2216 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2217 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2218 mtod(m, struct ip6_hdr *)); 2219 2220 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2221 origifp = ifp; 2222 2223 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2224 return (error); 2225 } 2226 2227 /* 2228 * Lookup link headerfor @sa_dst address. Stores found 2229 * data in @desten buffer. Copy of lle ln_flags can be also 2230 * saved in @pflags if @pflags is non-NULL. 2231 * 2232 * If destination LLE does not exists or lle state modification 2233 * is required, call "slow" version. 2234 * 2235 * Return values: 2236 * - 0 on success (address copied to buffer). 2237 * - EWOULDBLOCK (no local error, but address is still unresolved) 2238 * - other errors (alloc failure, etc) 2239 */ 2240 int 2241 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2242 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2243 struct llentry **plle) 2244 { 2245 struct llentry *ln = NULL; 2246 const struct sockaddr_in6 *dst6; 2247 2248 if (pflags != NULL) 2249 *pflags = 0; 2250 2251 dst6 = (const struct sockaddr_in6 *)sa_dst; 2252 2253 /* discard the packet if IPv6 operation is disabled on the interface */ 2254 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2255 m_freem(m); 2256 return (ENETDOWN); /* better error? */ 2257 } 2258 2259 if (m != NULL && m->m_flags & M_MCAST) { 2260 switch (ifp->if_type) { 2261 case IFT_ETHER: 2262 case IFT_L2VLAN: 2263 case IFT_BRIDGE: 2264 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2265 desten); 2266 return (0); 2267 default: 2268 m_freem(m); 2269 return (EAFNOSUPPORT); 2270 } 2271 } 2272 2273 IF_AFDATA_RLOCK(ifp); 2274 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2275 ifp); 2276 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2277 /* Entry found, let's copy lle info */ 2278 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2279 if (pflags != NULL) 2280 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2281 /* Check if we have feedback request from nd6 timer */ 2282 if (ln->r_skip_req != 0) { 2283 LLE_REQ_LOCK(ln); 2284 ln->r_skip_req = 0; /* Notify that entry was used */ 2285 ln->lle_hittime = time_uptime; 2286 LLE_REQ_UNLOCK(ln); 2287 } 2288 if (plle) { 2289 LLE_ADDREF(ln); 2290 *plle = ln; 2291 LLE_WUNLOCK(ln); 2292 } 2293 IF_AFDATA_RUNLOCK(ifp); 2294 return (0); 2295 } else if (plle && ln) 2296 LLE_WUNLOCK(ln); 2297 IF_AFDATA_RUNLOCK(ifp); 2298 2299 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2300 } 2301 2302 2303 /* 2304 * Do L2 address resolution for @sa_dst address. Stores found 2305 * address in @desten buffer. Copy of lle ln_flags can be also 2306 * saved in @pflags if @pflags is non-NULL. 2307 * 2308 * Heavy version. 2309 * Function assume that destination LLE does not exist, 2310 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2311 * 2312 * Set noinline to be dtrace-friendly 2313 */ 2314 static __noinline int 2315 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2316 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2317 struct llentry **plle) 2318 { 2319 struct llentry *lle = NULL, *lle_tmp; 2320 struct in6_addr *psrc, src; 2321 int send_ns, ll_len; 2322 char *lladdr; 2323 2324 /* 2325 * Address resolution or Neighbor Unreachability Detection 2326 * for the next hop. 2327 * At this point, the destination of the packet must be a unicast 2328 * or an anycast address(i.e. not a multicast). 2329 */ 2330 if (lle == NULL) { 2331 IF_AFDATA_RLOCK(ifp); 2332 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2333 IF_AFDATA_RUNLOCK(ifp); 2334 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2335 /* 2336 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2337 * the condition below is not very efficient. But we believe 2338 * it is tolerable, because this should be a rare case. 2339 */ 2340 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2341 if (lle == NULL) { 2342 char ip6buf[INET6_ADDRSTRLEN]; 2343 log(LOG_DEBUG, 2344 "nd6_output: can't allocate llinfo for %s " 2345 "(ln=%p)\n", 2346 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2347 m_freem(m); 2348 return (ENOBUFS); 2349 } 2350 2351 IF_AFDATA_WLOCK(ifp); 2352 LLE_WLOCK(lle); 2353 /* Prefer any existing entry over newly-created one */ 2354 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2355 if (lle_tmp == NULL) 2356 lltable_link_entry(LLTABLE6(ifp), lle); 2357 IF_AFDATA_WUNLOCK(ifp); 2358 if (lle_tmp != NULL) { 2359 lltable_free_entry(LLTABLE6(ifp), lle); 2360 lle = lle_tmp; 2361 lle_tmp = NULL; 2362 } 2363 } 2364 } 2365 if (lle == NULL) { 2366 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2367 m_freem(m); 2368 return (ENOBUFS); 2369 } 2370 2371 if (m != NULL) 2372 m_freem(m); 2373 return (ENOBUFS); 2374 } 2375 2376 LLE_WLOCK_ASSERT(lle); 2377 2378 /* 2379 * The first time we send a packet to a neighbor whose entry is 2380 * STALE, we have to change the state to DELAY and a sets a timer to 2381 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2382 * neighbor unreachability detection on expiration. 2383 * (RFC 2461 7.3.3) 2384 */ 2385 if (lle->ln_state == ND6_LLINFO_STALE) 2386 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2387 2388 /* 2389 * If the neighbor cache entry has a state other than INCOMPLETE 2390 * (i.e. its link-layer address is already resolved), just 2391 * send the packet. 2392 */ 2393 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2394 if (flags & LLE_ADDRONLY) { 2395 lladdr = lle->ll_addr; 2396 ll_len = ifp->if_addrlen; 2397 } else { 2398 lladdr = lle->r_linkdata; 2399 ll_len = lle->r_hdrlen; 2400 } 2401 bcopy(lladdr, desten, ll_len); 2402 if (pflags != NULL) 2403 *pflags = lle->la_flags; 2404 if (plle) { 2405 LLE_ADDREF(lle); 2406 *plle = lle; 2407 } 2408 LLE_WUNLOCK(lle); 2409 return (0); 2410 } 2411 2412 /* 2413 * There is a neighbor cache entry, but no ethernet address 2414 * response yet. Append this latest packet to the end of the 2415 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2416 * the oldest packet in the queue will be removed. 2417 */ 2418 2419 if (lle->la_hold != NULL) { 2420 struct mbuf *m_hold; 2421 int i; 2422 2423 i = 0; 2424 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2425 i++; 2426 if (m_hold->m_nextpkt == NULL) { 2427 m_hold->m_nextpkt = m; 2428 break; 2429 } 2430 } 2431 while (i >= V_nd6_maxqueuelen) { 2432 m_hold = lle->la_hold; 2433 lle->la_hold = lle->la_hold->m_nextpkt; 2434 m_freem(m_hold); 2435 i--; 2436 } 2437 } else { 2438 lle->la_hold = m; 2439 } 2440 2441 /* 2442 * If there has been no NS for the neighbor after entering the 2443 * INCOMPLETE state, send the first solicitation. 2444 * Note that for newly-created lle la_asked will be 0, 2445 * so we will transition from ND6_LLINFO_NOSTATE to 2446 * ND6_LLINFO_INCOMPLETE state here. 2447 */ 2448 psrc = NULL; 2449 send_ns = 0; 2450 if (lle->la_asked == 0) { 2451 lle->la_asked++; 2452 send_ns = 1; 2453 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2454 2455 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2456 } 2457 LLE_WUNLOCK(lle); 2458 if (send_ns != 0) 2459 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2460 2461 return (EWOULDBLOCK); 2462 } 2463 2464 /* 2465 * Do L2 address resolution for @sa_dst address. Stores found 2466 * address in @desten buffer. Copy of lle ln_flags can be also 2467 * saved in @pflags if @pflags is non-NULL. 2468 * 2469 * Return values: 2470 * - 0 on success (address copied to buffer). 2471 * - EWOULDBLOCK (no local error, but address is still unresolved) 2472 * - other errors (alloc failure, etc) 2473 */ 2474 int 2475 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2476 char *desten, uint32_t *pflags) 2477 { 2478 int error; 2479 2480 flags |= LLE_ADDRONLY; 2481 error = nd6_resolve_slow(ifp, flags, NULL, 2482 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2483 return (error); 2484 } 2485 2486 int 2487 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2488 struct sockaddr_in6 *dst) 2489 { 2490 struct mbuf *m, *m_head; 2491 int error = 0; 2492 2493 m_head = chain; 2494 2495 while (m_head) { 2496 m = m_head; 2497 m_head = m_head->m_nextpkt; 2498 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2499 } 2500 2501 /* 2502 * XXX 2503 * note that intermediate errors are blindly ignored 2504 */ 2505 return (error); 2506 } 2507 2508 static int 2509 nd6_need_cache(struct ifnet *ifp) 2510 { 2511 /* 2512 * XXX: we currently do not make neighbor cache on any interface 2513 * other than Ethernet and GIF. 2514 * 2515 * RFC2893 says: 2516 * - unidirectional tunnels needs no ND 2517 */ 2518 switch (ifp->if_type) { 2519 case IFT_ETHER: 2520 case IFT_IEEE1394: 2521 case IFT_L2VLAN: 2522 case IFT_INFINIBAND: 2523 case IFT_BRIDGE: 2524 case IFT_PROPVIRTUAL: 2525 return (1); 2526 default: 2527 return (0); 2528 } 2529 } 2530 2531 /* 2532 * Add pernament ND6 link-layer record for given 2533 * interface address. 2534 * 2535 * Very similar to IPv4 arp_ifinit(), but: 2536 * 1) IPv6 DAD is performed in different place 2537 * 2) It is called by IPv6 protocol stack in contrast to 2538 * arp_ifinit() which is typically called in SIOCSIFADDR 2539 * driver ioctl handler. 2540 * 2541 */ 2542 int 2543 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2544 { 2545 struct ifnet *ifp; 2546 struct llentry *ln, *ln_tmp; 2547 struct sockaddr *dst; 2548 2549 ifp = ia->ia_ifa.ifa_ifp; 2550 if (nd6_need_cache(ifp) == 0) 2551 return (0); 2552 2553 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2554 dst = (struct sockaddr *)&ia->ia_addr; 2555 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2556 if (ln == NULL) 2557 return (ENOBUFS); 2558 2559 IF_AFDATA_WLOCK(ifp); 2560 LLE_WLOCK(ln); 2561 /* Unlink any entry if exists */ 2562 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2563 if (ln_tmp != NULL) 2564 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2565 lltable_link_entry(LLTABLE6(ifp), ln); 2566 IF_AFDATA_WUNLOCK(ifp); 2567 2568 if (ln_tmp != NULL) 2569 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2570 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2571 2572 LLE_WUNLOCK(ln); 2573 if (ln_tmp != NULL) 2574 llentry_free(ln_tmp); 2575 2576 return (0); 2577 } 2578 2579 /* 2580 * Removes either all lle entries for given @ia, or lle 2581 * corresponding to @ia address. 2582 */ 2583 void 2584 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2585 { 2586 struct sockaddr_in6 mask, addr; 2587 struct sockaddr *saddr, *smask; 2588 struct ifnet *ifp; 2589 2590 ifp = ia->ia_ifa.ifa_ifp; 2591 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2592 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2593 saddr = (struct sockaddr *)&addr; 2594 smask = (struct sockaddr *)&mask; 2595 2596 if (all != 0) 2597 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2598 else 2599 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2600 } 2601 2602 static void 2603 clear_llinfo_pqueue(struct llentry *ln) 2604 { 2605 struct mbuf *m_hold, *m_hold_next; 2606 2607 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2608 m_hold_next = m_hold->m_nextpkt; 2609 m_freem(m_hold); 2610 } 2611 2612 ln->la_hold = NULL; 2613 } 2614 2615 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2616 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2617 2618 SYSCTL_DECL(_net_inet6_icmp6); 2619 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2620 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2621 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2622 "NDP default router list"); 2623 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2624 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2625 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2626 "NDP prefix list"); 2627 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2628 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2629 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2630 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2631 2632 static int 2633 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2634 { 2635 struct in6_defrouter d; 2636 struct nd_defrouter *dr; 2637 int error; 2638 2639 if (req->newptr != NULL) 2640 return (EPERM); 2641 2642 error = sysctl_wire_old_buffer(req, 0); 2643 if (error != 0) 2644 return (error); 2645 2646 bzero(&d, sizeof(d)); 2647 d.rtaddr.sin6_family = AF_INET6; 2648 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2649 2650 ND6_RLOCK(); 2651 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2652 d.rtaddr.sin6_addr = dr->rtaddr; 2653 error = sa6_recoverscope(&d.rtaddr); 2654 if (error != 0) 2655 break; 2656 d.flags = dr->raflags; 2657 d.rtlifetime = dr->rtlifetime; 2658 d.expire = dr->expire + (time_second - time_uptime); 2659 d.if_index = dr->ifp->if_index; 2660 error = SYSCTL_OUT(req, &d, sizeof(d)); 2661 if (error != 0) 2662 break; 2663 } 2664 ND6_RUNLOCK(); 2665 return (error); 2666 } 2667 2668 static int 2669 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2670 { 2671 struct in6_prefix p; 2672 struct sockaddr_in6 s6; 2673 struct nd_prefix *pr; 2674 struct nd_pfxrouter *pfr; 2675 time_t maxexpire; 2676 int error; 2677 char ip6buf[INET6_ADDRSTRLEN]; 2678 2679 if (req->newptr) 2680 return (EPERM); 2681 2682 error = sysctl_wire_old_buffer(req, 0); 2683 if (error != 0) 2684 return (error); 2685 2686 bzero(&p, sizeof(p)); 2687 p.origin = PR_ORIG_RA; 2688 bzero(&s6, sizeof(s6)); 2689 s6.sin6_family = AF_INET6; 2690 s6.sin6_len = sizeof(s6); 2691 2692 ND6_RLOCK(); 2693 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2694 p.prefix = pr->ndpr_prefix; 2695 if (sa6_recoverscope(&p.prefix)) { 2696 log(LOG_ERR, "scope error in prefix list (%s)\n", 2697 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2698 /* XXX: press on... */ 2699 } 2700 p.raflags = pr->ndpr_raf; 2701 p.prefixlen = pr->ndpr_plen; 2702 p.vltime = pr->ndpr_vltime; 2703 p.pltime = pr->ndpr_pltime; 2704 p.if_index = pr->ndpr_ifp->if_index; 2705 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2706 p.expire = 0; 2707 else { 2708 /* XXX: we assume time_t is signed. */ 2709 maxexpire = (-1) & 2710 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2711 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2712 p.expire = pr->ndpr_lastupdate + 2713 pr->ndpr_vltime + 2714 (time_second - time_uptime); 2715 else 2716 p.expire = maxexpire; 2717 } 2718 p.refcnt = pr->ndpr_addrcnt; 2719 p.flags = pr->ndpr_stateflags; 2720 p.advrtrs = 0; 2721 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2722 p.advrtrs++; 2723 error = SYSCTL_OUT(req, &p, sizeof(p)); 2724 if (error != 0) 2725 break; 2726 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2727 s6.sin6_addr = pfr->router->rtaddr; 2728 if (sa6_recoverscope(&s6)) 2729 log(LOG_ERR, 2730 "scope error in prefix list (%s)\n", 2731 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2732 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2733 if (error != 0) 2734 goto out; 2735 } 2736 } 2737 out: 2738 ND6_RUNLOCK(); 2739 return (error); 2740 } 2741