1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/nhop.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <net/if_llatbl.h> 73 #include <netinet/if_ether.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 /* timer values */ 95 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 96 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 97 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 98 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 99 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 100 * local traffic */ 101 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 102 * collection timer */ 103 104 /* preventing too many loops in ND option parsing */ 105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 106 107 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 108 * layer hints */ 109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 110 * ND entries */ 111 #define V_nd6_maxndopt VNET(nd6_maxndopt) 112 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 113 114 #ifdef ND6_DEBUG 115 VNET_DEFINE(int, nd6_debug) = 1; 116 #else 117 VNET_DEFINE(int, nd6_debug) = 0; 118 #endif 119 120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 121 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 VNET_DEFINE(struct rwlock, nd6_lock); 124 VNET_DEFINE(uint64_t, nd6_list_genid); 125 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 126 127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 128 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 129 130 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 131 132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 133 struct ifnet *); 134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 135 static void nd6_slowtimo(void *); 136 static int regen_tmpaddr(struct in6_ifaddr *); 137 static void nd6_free(struct llentry **, int); 138 static void nd6_free_redirect(const struct llentry *); 139 static void nd6_llinfo_timer(void *); 140 static void nd6_llinfo_settimer_locked(struct llentry *, long); 141 static void clear_llinfo_pqueue(struct llentry *); 142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 212 lltable_update_ifaddr(LLTABLE6(ifp)); 213 } 214 215 void 216 nd6_init(void) 217 { 218 219 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 220 rw_init(&V_nd6_lock, "nd6 list"); 221 222 LIST_INIT(&V_nd_prefix); 223 nd6_defrouter_init(); 224 225 /* Start timers. */ 226 callout_init(&V_nd6_slowtimo_ch, 0); 227 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 228 nd6_slowtimo, curvnet); 229 230 callout_init(&V_nd6_timer_ch, 0); 231 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 232 233 nd6_dad_init(); 234 if (IS_DEFAULT_VNET(curvnet)) { 235 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 236 NULL, EVENTHANDLER_PRI_ANY); 237 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 238 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 239 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 240 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 241 } 242 } 243 244 #ifdef VIMAGE 245 void 246 nd6_destroy() 247 { 248 249 callout_drain(&V_nd6_slowtimo_ch); 250 callout_drain(&V_nd6_timer_ch); 251 if (IS_DEFAULT_VNET(curvnet)) { 252 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 253 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 254 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 255 } 256 rw_destroy(&V_nd6_lock); 257 mtx_destroy(&V_nd6_onlink_mtx); 258 } 259 #endif 260 261 struct nd_ifinfo * 262 nd6_ifattach(struct ifnet *ifp) 263 { 264 struct nd_ifinfo *nd; 265 266 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 267 nd->initialized = 1; 268 269 nd->chlim = IPV6_DEFHLIM; 270 nd->basereachable = REACHABLE_TIME; 271 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 272 nd->retrans = RETRANS_TIMER; 273 274 nd->flags = ND6_IFF_PERFORMNUD; 275 276 /* Set IPv6 disabled on all interfaces but loopback by default. */ 277 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 278 nd->flags |= ND6_IFF_IFDISABLED; 279 280 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 281 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 282 * default regardless of the V_ip6_auto_linklocal configuration to 283 * give a reasonable default behavior. 284 */ 285 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 286 (ifp->if_flags & IFF_LOOPBACK)) 287 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 288 /* 289 * A loopback interface does not need to accept RTADV. 290 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 291 * default regardless of the V_ip6_accept_rtadv configuration to 292 * prevent the interface from accepting RA messages arrived 293 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 294 */ 295 if (V_ip6_accept_rtadv && 296 !(ifp->if_flags & IFF_LOOPBACK) && 297 (ifp->if_type != IFT_BRIDGE)) { 298 nd->flags |= ND6_IFF_ACCEPT_RTADV; 299 /* If we globally accept rtadv, assume IPv6 on. */ 300 nd->flags &= ~ND6_IFF_IFDISABLED; 301 } 302 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 303 nd->flags |= ND6_IFF_NO_RADR; 304 305 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 306 nd6_setmtu0(ifp, nd); 307 308 return nd; 309 } 310 311 void 312 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 313 { 314 struct epoch_tracker et; 315 struct ifaddr *ifa, *next; 316 317 NET_EPOCH_ENTER(et); 318 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 319 if (ifa->ifa_addr->sa_family != AF_INET6) 320 continue; 321 322 /* stop DAD processing */ 323 nd6_dad_stop(ifa); 324 } 325 NET_EPOCH_EXIT(et); 326 327 free(nd, M_IP6NDP); 328 } 329 330 /* 331 * Reset ND level link MTU. This function is called when the physical MTU 332 * changes, which means we might have to adjust the ND level MTU. 333 */ 334 void 335 nd6_setmtu(struct ifnet *ifp) 336 { 337 if (ifp->if_afdata[AF_INET6] == NULL) 338 return; 339 340 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 341 } 342 343 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 344 void 345 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 346 { 347 u_int32_t omaxmtu; 348 349 omaxmtu = ndi->maxmtu; 350 ndi->maxmtu = ifp->if_mtu; 351 352 /* 353 * Decreasing the interface MTU under IPV6 minimum MTU may cause 354 * undesirable situation. We thus notify the operator of the change 355 * explicitly. The check for omaxmtu is necessary to restrict the 356 * log to the case of changing the MTU, not initializing it. 357 */ 358 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 359 log(LOG_NOTICE, "nd6_setmtu0: " 360 "new link MTU on %s (%lu) is too small for IPv6\n", 361 if_name(ifp), (unsigned long)ndi->maxmtu); 362 } 363 364 if (ndi->maxmtu > V_in6_maxmtu) 365 in6_setmaxmtu(); /* check all interfaces just in case */ 366 367 } 368 369 void 370 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 371 { 372 373 bzero(ndopts, sizeof(*ndopts)); 374 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 375 ndopts->nd_opts_last 376 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 377 378 if (icmp6len == 0) { 379 ndopts->nd_opts_done = 1; 380 ndopts->nd_opts_search = NULL; 381 } 382 } 383 384 /* 385 * Take one ND option. 386 */ 387 struct nd_opt_hdr * 388 nd6_option(union nd_opts *ndopts) 389 { 390 struct nd_opt_hdr *nd_opt; 391 int olen; 392 393 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 394 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 395 __func__)); 396 if (ndopts->nd_opts_search == NULL) 397 return NULL; 398 if (ndopts->nd_opts_done) 399 return NULL; 400 401 nd_opt = ndopts->nd_opts_search; 402 403 /* make sure nd_opt_len is inside the buffer */ 404 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 405 bzero(ndopts, sizeof(*ndopts)); 406 return NULL; 407 } 408 409 olen = nd_opt->nd_opt_len << 3; 410 if (olen == 0) { 411 /* 412 * Message validation requires that all included 413 * options have a length that is greater than zero. 414 */ 415 bzero(ndopts, sizeof(*ndopts)); 416 return NULL; 417 } 418 419 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 420 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 421 /* option overruns the end of buffer, invalid */ 422 bzero(ndopts, sizeof(*ndopts)); 423 return NULL; 424 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 425 /* reached the end of options chain */ 426 ndopts->nd_opts_done = 1; 427 ndopts->nd_opts_search = NULL; 428 } 429 return nd_opt; 430 } 431 432 /* 433 * Parse multiple ND options. 434 * This function is much easier to use, for ND routines that do not need 435 * multiple options of the same type. 436 */ 437 int 438 nd6_options(union nd_opts *ndopts) 439 { 440 struct nd_opt_hdr *nd_opt; 441 int i = 0; 442 443 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 444 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 445 __func__)); 446 if (ndopts->nd_opts_search == NULL) 447 return 0; 448 449 while (1) { 450 nd_opt = nd6_option(ndopts); 451 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 452 /* 453 * Message validation requires that all included 454 * options have a length that is greater than zero. 455 */ 456 ICMP6STAT_INC(icp6s_nd_badopt); 457 bzero(ndopts, sizeof(*ndopts)); 458 return -1; 459 } 460 461 if (nd_opt == NULL) 462 goto skip1; 463 464 switch (nd_opt->nd_opt_type) { 465 case ND_OPT_SOURCE_LINKADDR: 466 case ND_OPT_TARGET_LINKADDR: 467 case ND_OPT_MTU: 468 case ND_OPT_REDIRECTED_HEADER: 469 case ND_OPT_NONCE: 470 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 471 nd6log((LOG_INFO, 472 "duplicated ND6 option found (type=%d)\n", 473 nd_opt->nd_opt_type)); 474 /* XXX bark? */ 475 } else { 476 ndopts->nd_opt_array[nd_opt->nd_opt_type] 477 = nd_opt; 478 } 479 break; 480 case ND_OPT_PREFIX_INFORMATION: 481 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 482 ndopts->nd_opt_array[nd_opt->nd_opt_type] 483 = nd_opt; 484 } 485 ndopts->nd_opts_pi_end = 486 (struct nd_opt_prefix_info *)nd_opt; 487 break; 488 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 489 case ND_OPT_RDNSS: /* RFC 6106 */ 490 case ND_OPT_DNSSL: /* RFC 6106 */ 491 /* 492 * Silently ignore options we know and do not care about 493 * in the kernel. 494 */ 495 break; 496 default: 497 /* 498 * Unknown options must be silently ignored, 499 * to accommodate future extension to the protocol. 500 */ 501 nd6log((LOG_DEBUG, 502 "nd6_options: unsupported option %d - " 503 "option ignored\n", nd_opt->nd_opt_type)); 504 } 505 506 skip1: 507 i++; 508 if (i > V_nd6_maxndopt) { 509 ICMP6STAT_INC(icp6s_nd_toomanyopt); 510 nd6log((LOG_INFO, "too many loop in nd opt\n")); 511 break; 512 } 513 514 if (ndopts->nd_opts_done) 515 break; 516 } 517 518 return 0; 519 } 520 521 /* 522 * ND6 timer routine to handle ND6 entries 523 */ 524 static void 525 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 526 { 527 int canceled; 528 529 LLE_WLOCK_ASSERT(ln); 530 531 if (tick < 0) { 532 ln->la_expire = 0; 533 ln->ln_ntick = 0; 534 canceled = callout_stop(&ln->lle_timer); 535 } else { 536 ln->la_expire = time_uptime + tick / hz; 537 LLE_ADDREF(ln); 538 if (tick > INT_MAX) { 539 ln->ln_ntick = tick - INT_MAX; 540 canceled = callout_reset(&ln->lle_timer, INT_MAX, 541 nd6_llinfo_timer, ln); 542 } else { 543 ln->ln_ntick = 0; 544 canceled = callout_reset(&ln->lle_timer, tick, 545 nd6_llinfo_timer, ln); 546 } 547 } 548 if (canceled > 0) 549 LLE_REMREF(ln); 550 } 551 552 /* 553 * Gets source address of the first packet in hold queue 554 * and stores it in @src. 555 * Returns pointer to @src (if hold queue is not empty) or NULL. 556 * 557 * Set noinline to be dtrace-friendly 558 */ 559 static __noinline struct in6_addr * 560 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 561 { 562 struct ip6_hdr hdr; 563 struct mbuf *m; 564 565 if (ln->la_hold == NULL) 566 return (NULL); 567 568 /* 569 * assume every packet in la_hold has the same IP header 570 */ 571 m = ln->la_hold; 572 if (sizeof(hdr) > m->m_len) 573 return (NULL); 574 575 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 576 *src = hdr.ip6_src; 577 578 return (src); 579 } 580 581 /* 582 * Checks if we need to switch from STALE state. 583 * 584 * RFC 4861 requires switching from STALE to DELAY state 585 * on first packet matching entry, waiting V_nd6_delay and 586 * transition to PROBE state (if upper layer confirmation was 587 * not received). 588 * 589 * This code performs a bit differently: 590 * On packet hit we don't change state (but desired state 591 * can be guessed by control plane). However, after V_nd6_delay 592 * seconds code will transition to PROBE state (so DELAY state 593 * is kinda skipped in most situations). 594 * 595 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 596 * we perform the following upon entering STALE state: 597 * 598 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 599 * if packet was transmitted at the start of given interval, we 600 * would be able to switch to PROBE state in V_nd6_delay seconds 601 * as user expects. 602 * 603 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 604 * lle in STALE state (remaining timer value stored in lle_remtime). 605 * 606 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 607 * seconds ago. 608 * 609 * Returns non-zero value if the entry is still STALE (storing 610 * the next timer interval in @pdelay). 611 * 612 * Returns zero value if original timer expired or we need to switch to 613 * PROBE (store that in @do_switch variable). 614 */ 615 static int 616 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 617 { 618 int nd_delay, nd_gctimer, r_skip_req; 619 time_t lle_hittime; 620 long delay; 621 622 *do_switch = 0; 623 nd_gctimer = V_nd6_gctimer; 624 nd_delay = V_nd6_delay; 625 626 LLE_REQ_LOCK(lle); 627 r_skip_req = lle->r_skip_req; 628 lle_hittime = lle->lle_hittime; 629 LLE_REQ_UNLOCK(lle); 630 631 if (r_skip_req > 0) { 632 /* 633 * Nonzero r_skip_req value was set upon entering 634 * STALE state. Since value was not changed, no 635 * packets were passed using this lle. Ask for 636 * timer reschedule and keep STALE state. 637 */ 638 delay = (long)(MIN(nd_gctimer, nd_delay)); 639 delay *= hz; 640 if (lle->lle_remtime > delay) 641 lle->lle_remtime -= delay; 642 else { 643 delay = lle->lle_remtime; 644 lle->lle_remtime = 0; 645 } 646 647 if (delay == 0) { 648 /* 649 * The original ng6_gctime timeout ended, 650 * no more rescheduling. 651 */ 652 return (0); 653 } 654 655 *pdelay = delay; 656 return (1); 657 } 658 659 /* 660 * Packet received. Verify timestamp 661 */ 662 delay = (long)(time_uptime - lle_hittime); 663 if (delay < nd_delay) { 664 /* 665 * V_nd6_delay still not passed since the first 666 * hit in STALE state. 667 * Reshedule timer and return. 668 */ 669 *pdelay = (long)(nd_delay - delay) * hz; 670 return (1); 671 } 672 673 /* Request switching to probe */ 674 *do_switch = 1; 675 return (0); 676 } 677 678 /* 679 * Switch @lle state to new state optionally arming timers. 680 * 681 * Set noinline to be dtrace-friendly 682 */ 683 __noinline void 684 nd6_llinfo_setstate(struct llentry *lle, int newstate) 685 { 686 struct ifnet *ifp; 687 int nd_gctimer, nd_delay; 688 long delay, remtime; 689 690 delay = 0; 691 remtime = 0; 692 693 switch (newstate) { 694 case ND6_LLINFO_INCOMPLETE: 695 ifp = lle->lle_tbl->llt_ifp; 696 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 697 break; 698 case ND6_LLINFO_REACHABLE: 699 if (!ND6_LLINFO_PERMANENT(lle)) { 700 ifp = lle->lle_tbl->llt_ifp; 701 delay = (long)ND_IFINFO(ifp)->reachable * hz; 702 } 703 break; 704 case ND6_LLINFO_STALE: 705 706 /* 707 * Notify fast path that we want to know if any packet 708 * is transmitted by setting r_skip_req. 709 */ 710 LLE_REQ_LOCK(lle); 711 lle->r_skip_req = 1; 712 LLE_REQ_UNLOCK(lle); 713 nd_delay = V_nd6_delay; 714 nd_gctimer = V_nd6_gctimer; 715 716 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 717 remtime = (long)nd_gctimer * hz - delay; 718 break; 719 case ND6_LLINFO_DELAY: 720 lle->la_asked = 0; 721 delay = (long)V_nd6_delay * hz; 722 break; 723 } 724 725 if (delay > 0) 726 nd6_llinfo_settimer_locked(lle, delay); 727 728 lle->lle_remtime = remtime; 729 lle->ln_state = newstate; 730 } 731 732 /* 733 * Timer-dependent part of nd state machine. 734 * 735 * Set noinline to be dtrace-friendly 736 */ 737 static __noinline void 738 nd6_llinfo_timer(void *arg) 739 { 740 struct epoch_tracker et; 741 struct llentry *ln; 742 struct in6_addr *dst, *pdst, *psrc, src; 743 struct ifnet *ifp; 744 struct nd_ifinfo *ndi; 745 int do_switch, send_ns; 746 long delay; 747 748 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 749 ln = (struct llentry *)arg; 750 ifp = lltable_get_ifp(ln->lle_tbl); 751 CURVNET_SET(ifp->if_vnet); 752 753 ND6_RLOCK(); 754 LLE_WLOCK(ln); 755 if (callout_pending(&ln->lle_timer)) { 756 /* 757 * Here we are a bit odd here in the treatment of 758 * active/pending. If the pending bit is set, it got 759 * rescheduled before I ran. The active 760 * bit we ignore, since if it was stopped 761 * in ll_tablefree() and was currently running 762 * it would have return 0 so the code would 763 * not have deleted it since the callout could 764 * not be stopped so we want to go through 765 * with the delete here now. If the callout 766 * was restarted, the pending bit will be back on and 767 * we just want to bail since the callout_reset would 768 * return 1 and our reference would have been removed 769 * by nd6_llinfo_settimer_locked above since canceled 770 * would have been 1. 771 */ 772 LLE_WUNLOCK(ln); 773 ND6_RUNLOCK(); 774 CURVNET_RESTORE(); 775 return; 776 } 777 NET_EPOCH_ENTER(et); 778 ndi = ND_IFINFO(ifp); 779 send_ns = 0; 780 dst = &ln->r_l3addr.addr6; 781 pdst = dst; 782 783 if (ln->ln_ntick > 0) { 784 if (ln->ln_ntick > INT_MAX) { 785 ln->ln_ntick -= INT_MAX; 786 nd6_llinfo_settimer_locked(ln, INT_MAX); 787 } else { 788 ln->ln_ntick = 0; 789 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 790 } 791 goto done; 792 } 793 794 if (ln->la_flags & LLE_STATIC) { 795 goto done; 796 } 797 798 if (ln->la_flags & LLE_DELETED) { 799 nd6_free(&ln, 0); 800 goto done; 801 } 802 803 switch (ln->ln_state) { 804 case ND6_LLINFO_INCOMPLETE: 805 if (ln->la_asked < V_nd6_mmaxtries) { 806 ln->la_asked++; 807 send_ns = 1; 808 /* Send NS to multicast address */ 809 pdst = NULL; 810 } else { 811 struct mbuf *m = ln->la_hold; 812 if (m) { 813 struct mbuf *m0; 814 815 /* 816 * assuming every packet in la_hold has the 817 * same IP header. Send error after unlock. 818 */ 819 m0 = m->m_nextpkt; 820 m->m_nextpkt = NULL; 821 ln->la_hold = m0; 822 clear_llinfo_pqueue(ln); 823 } 824 nd6_free(&ln, 0); 825 if (m != NULL) { 826 struct mbuf *n = m; 827 828 /* 829 * if there are any ummapped mbufs, we 830 * must free them, rather than using 831 * them for an ICMP, as they cannot be 832 * checksummed. 833 */ 834 while ((n = n->m_next) != NULL) { 835 if (n->m_flags & M_EXTPG) 836 break; 837 } 838 if (n != NULL) { 839 m_freem(m); 840 m = NULL; 841 } else { 842 icmp6_error2(m, ICMP6_DST_UNREACH, 843 ICMP6_DST_UNREACH_ADDR, 0, ifp); 844 } 845 } 846 } 847 break; 848 case ND6_LLINFO_REACHABLE: 849 if (!ND6_LLINFO_PERMANENT(ln)) 850 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 851 break; 852 853 case ND6_LLINFO_STALE: 854 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 855 /* 856 * No packet has used this entry and GC timeout 857 * has not been passed. Reshedule timer and 858 * return. 859 */ 860 nd6_llinfo_settimer_locked(ln, delay); 861 break; 862 } 863 864 if (do_switch == 0) { 865 /* 866 * GC timer has ended and entry hasn't been used. 867 * Run Garbage collector (RFC 4861, 5.3) 868 */ 869 if (!ND6_LLINFO_PERMANENT(ln)) 870 nd6_free(&ln, 1); 871 break; 872 } 873 874 /* Entry has been used AND delay timer has ended. */ 875 876 /* FALLTHROUGH */ 877 878 case ND6_LLINFO_DELAY: 879 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 880 /* We need NUD */ 881 ln->la_asked = 1; 882 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 883 send_ns = 1; 884 } else 885 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 886 break; 887 case ND6_LLINFO_PROBE: 888 if (ln->la_asked < V_nd6_umaxtries) { 889 ln->la_asked++; 890 send_ns = 1; 891 } else { 892 nd6_free(&ln, 0); 893 } 894 break; 895 default: 896 panic("%s: paths in a dark night can be confusing: %d", 897 __func__, ln->ln_state); 898 } 899 done: 900 if (ln != NULL) 901 ND6_RUNLOCK(); 902 if (send_ns != 0) { 903 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 904 psrc = nd6_llinfo_get_holdsrc(ln, &src); 905 LLE_FREE_LOCKED(ln); 906 ln = NULL; 907 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 908 } 909 910 if (ln != NULL) 911 LLE_FREE_LOCKED(ln); 912 NET_EPOCH_EXIT(et); 913 CURVNET_RESTORE(); 914 } 915 916 /* 917 * ND6 timer routine to expire default route list and prefix list 918 */ 919 void 920 nd6_timer(void *arg) 921 { 922 CURVNET_SET((struct vnet *) arg); 923 struct epoch_tracker et; 924 struct nd_prhead prl; 925 struct nd_prefix *pr, *npr; 926 struct ifnet *ifp; 927 struct in6_ifaddr *ia6, *nia6; 928 uint64_t genid; 929 930 LIST_INIT(&prl); 931 932 NET_EPOCH_ENTER(et); 933 nd6_defrouter_timer(); 934 935 /* 936 * expire interface addresses. 937 * in the past the loop was inside prefix expiry processing. 938 * However, from a stricter speci-confrmance standpoint, we should 939 * rather separate address lifetimes and prefix lifetimes. 940 * 941 * XXXRW: in6_ifaddrhead locking. 942 */ 943 addrloop: 944 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 945 /* check address lifetime */ 946 if (IFA6_IS_INVALID(ia6)) { 947 int regen = 0; 948 949 /* 950 * If the expiring address is temporary, try 951 * regenerating a new one. This would be useful when 952 * we suspended a laptop PC, then turned it on after a 953 * period that could invalidate all temporary 954 * addresses. Although we may have to restart the 955 * loop (see below), it must be after purging the 956 * address. Otherwise, we'd see an infinite loop of 957 * regeneration. 958 */ 959 if (V_ip6_use_tempaddr && 960 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 961 if (regen_tmpaddr(ia6) == 0) 962 regen = 1; 963 } 964 965 in6_purgeaddr(&ia6->ia_ifa); 966 967 if (regen) 968 goto addrloop; /* XXX: see below */ 969 } else if (IFA6_IS_DEPRECATED(ia6)) { 970 int oldflags = ia6->ia6_flags; 971 972 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 973 974 /* 975 * If a temporary address has just become deprecated, 976 * regenerate a new one if possible. 977 */ 978 if (V_ip6_use_tempaddr && 979 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 980 (oldflags & IN6_IFF_DEPRECATED) == 0) { 981 if (regen_tmpaddr(ia6) == 0) { 982 /* 983 * A new temporary address is 984 * generated. 985 * XXX: this means the address chain 986 * has changed while we are still in 987 * the loop. Although the change 988 * would not cause disaster (because 989 * it's not a deletion, but an 990 * addition,) we'd rather restart the 991 * loop just for safety. Or does this 992 * significantly reduce performance?? 993 */ 994 goto addrloop; 995 } 996 } 997 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 998 /* 999 * Schedule DAD for a tentative address. This happens 1000 * if the interface was down or not running 1001 * when the address was configured. 1002 */ 1003 int delay; 1004 1005 delay = arc4random() % 1006 (MAX_RTR_SOLICITATION_DELAY * hz); 1007 nd6_dad_start((struct ifaddr *)ia6, delay); 1008 } else { 1009 /* 1010 * Check status of the interface. If it is down, 1011 * mark the address as tentative for future DAD. 1012 */ 1013 ifp = ia6->ia_ifp; 1014 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1015 ((ifp->if_flags & IFF_UP) == 0 || 1016 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1017 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1018 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1019 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1020 } 1021 1022 /* 1023 * A new RA might have made a deprecated address 1024 * preferred. 1025 */ 1026 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1027 } 1028 } 1029 NET_EPOCH_EXIT(et); 1030 1031 ND6_WLOCK(); 1032 restart: 1033 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1034 /* 1035 * Expire prefixes. Since the pltime is only used for 1036 * autoconfigured addresses, pltime processing for prefixes is 1037 * not necessary. 1038 * 1039 * Only unlink after all derived addresses have expired. This 1040 * may not occur until two hours after the prefix has expired 1041 * per RFC 4862. If the prefix expires before its derived 1042 * addresses, mark it off-link. This will be done automatically 1043 * after unlinking if no address references remain. 1044 */ 1045 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1046 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1047 continue; 1048 1049 if (pr->ndpr_addrcnt == 0) { 1050 nd6_prefix_unlink(pr, &prl); 1051 continue; 1052 } 1053 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1054 genid = V_nd6_list_genid; 1055 nd6_prefix_ref(pr); 1056 ND6_WUNLOCK(); 1057 ND6_ONLINK_LOCK(); 1058 (void)nd6_prefix_offlink(pr); 1059 ND6_ONLINK_UNLOCK(); 1060 ND6_WLOCK(); 1061 nd6_prefix_rele(pr); 1062 if (genid != V_nd6_list_genid) 1063 goto restart; 1064 } 1065 } 1066 ND6_WUNLOCK(); 1067 1068 while ((pr = LIST_FIRST(&prl)) != NULL) { 1069 LIST_REMOVE(pr, ndpr_entry); 1070 nd6_prefix_del(pr); 1071 } 1072 1073 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1074 nd6_timer, curvnet); 1075 1076 CURVNET_RESTORE(); 1077 } 1078 1079 /* 1080 * ia6 - deprecated/invalidated temporary address 1081 */ 1082 static int 1083 regen_tmpaddr(struct in6_ifaddr *ia6) 1084 { 1085 struct ifaddr *ifa; 1086 struct ifnet *ifp; 1087 struct in6_ifaddr *public_ifa6 = NULL; 1088 1089 NET_EPOCH_ASSERT(); 1090 1091 ifp = ia6->ia_ifa.ifa_ifp; 1092 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1093 struct in6_ifaddr *it6; 1094 1095 if (ifa->ifa_addr->sa_family != AF_INET6) 1096 continue; 1097 1098 it6 = (struct in6_ifaddr *)ifa; 1099 1100 /* ignore no autoconf addresses. */ 1101 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1102 continue; 1103 1104 /* ignore autoconf addresses with different prefixes. */ 1105 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1106 continue; 1107 1108 /* 1109 * Now we are looking at an autoconf address with the same 1110 * prefix as ours. If the address is temporary and is still 1111 * preferred, do not create another one. It would be rare, but 1112 * could happen, for example, when we resume a laptop PC after 1113 * a long period. 1114 */ 1115 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1116 !IFA6_IS_DEPRECATED(it6)) { 1117 public_ifa6 = NULL; 1118 break; 1119 } 1120 1121 /* 1122 * This is a public autoconf address that has the same prefix 1123 * as ours. If it is preferred, keep it. We can't break the 1124 * loop here, because there may be a still-preferred temporary 1125 * address with the prefix. 1126 */ 1127 if (!IFA6_IS_DEPRECATED(it6)) 1128 public_ifa6 = it6; 1129 } 1130 if (public_ifa6 != NULL) 1131 ifa_ref(&public_ifa6->ia_ifa); 1132 1133 if (public_ifa6 != NULL) { 1134 int e; 1135 1136 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1137 ifa_free(&public_ifa6->ia_ifa); 1138 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1139 " tmp addr,errno=%d\n", e); 1140 return (-1); 1141 } 1142 ifa_free(&public_ifa6->ia_ifa); 1143 return (0); 1144 } 1145 1146 return (-1); 1147 } 1148 1149 /* 1150 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1151 * cache entries are freed in in6_domifdetach(). 1152 */ 1153 void 1154 nd6_purge(struct ifnet *ifp) 1155 { 1156 struct nd_prhead prl; 1157 struct nd_prefix *pr, *npr; 1158 1159 LIST_INIT(&prl); 1160 1161 /* Purge default router list entries toward ifp. */ 1162 nd6_defrouter_purge(ifp); 1163 1164 ND6_WLOCK(); 1165 /* 1166 * Remove prefixes on ifp. We should have already removed addresses on 1167 * this interface, so no addresses should be referencing these prefixes. 1168 */ 1169 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1170 if (pr->ndpr_ifp == ifp) 1171 nd6_prefix_unlink(pr, &prl); 1172 } 1173 ND6_WUNLOCK(); 1174 1175 /* Delete the unlinked prefix objects. */ 1176 while ((pr = LIST_FIRST(&prl)) != NULL) { 1177 LIST_REMOVE(pr, ndpr_entry); 1178 nd6_prefix_del(pr); 1179 } 1180 1181 /* cancel default outgoing interface setting */ 1182 if (V_nd6_defifindex == ifp->if_index) 1183 nd6_setdefaultiface(0); 1184 1185 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1186 /* Refresh default router list. */ 1187 defrouter_select_fib(ifp->if_fib); 1188 } 1189 } 1190 1191 /* 1192 * the caller acquires and releases the lock on the lltbls 1193 * Returns the llentry locked 1194 */ 1195 struct llentry * 1196 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1197 { 1198 struct sockaddr_in6 sin6; 1199 struct llentry *ln; 1200 1201 bzero(&sin6, sizeof(sin6)); 1202 sin6.sin6_len = sizeof(struct sockaddr_in6); 1203 sin6.sin6_family = AF_INET6; 1204 sin6.sin6_addr = *addr6; 1205 1206 IF_AFDATA_LOCK_ASSERT(ifp); 1207 1208 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1209 1210 return (ln); 1211 } 1212 1213 static struct llentry * 1214 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1215 { 1216 struct sockaddr_in6 sin6; 1217 struct llentry *ln; 1218 1219 bzero(&sin6, sizeof(sin6)); 1220 sin6.sin6_len = sizeof(struct sockaddr_in6); 1221 sin6.sin6_family = AF_INET6; 1222 sin6.sin6_addr = *addr6; 1223 1224 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1225 if (ln != NULL) 1226 ln->ln_state = ND6_LLINFO_NOSTATE; 1227 1228 return (ln); 1229 } 1230 1231 /* 1232 * Test whether a given IPv6 address is a neighbor or not, ignoring 1233 * the actual neighbor cache. The neighbor cache is ignored in order 1234 * to not reenter the routing code from within itself. 1235 */ 1236 static int 1237 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1238 { 1239 struct nd_prefix *pr; 1240 struct ifaddr *ifa; 1241 struct rt_addrinfo info; 1242 struct sockaddr_in6 rt_key; 1243 const struct sockaddr *dst6; 1244 uint64_t genid; 1245 int error, fibnum; 1246 1247 /* 1248 * A link-local address is always a neighbor. 1249 * XXX: a link does not necessarily specify a single interface. 1250 */ 1251 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1252 struct sockaddr_in6 sin6_copy; 1253 u_int32_t zone; 1254 1255 /* 1256 * We need sin6_copy since sa6_recoverscope() may modify the 1257 * content (XXX). 1258 */ 1259 sin6_copy = *addr; 1260 if (sa6_recoverscope(&sin6_copy)) 1261 return (0); /* XXX: should be impossible */ 1262 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1263 return (0); 1264 if (sin6_copy.sin6_scope_id == zone) 1265 return (1); 1266 else 1267 return (0); 1268 } 1269 1270 bzero(&rt_key, sizeof(rt_key)); 1271 bzero(&info, sizeof(info)); 1272 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1273 1274 /* 1275 * If the address matches one of our addresses, 1276 * it should be a neighbor. 1277 * If the address matches one of our on-link prefixes, it should be a 1278 * neighbor. 1279 */ 1280 ND6_RLOCK(); 1281 restart: 1282 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1283 if (pr->ndpr_ifp != ifp) 1284 continue; 1285 1286 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1287 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1288 1289 /* 1290 * We only need to check all FIBs if add_addr_allfibs 1291 * is unset. If set, checking any FIB will suffice. 1292 */ 1293 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1294 for (; fibnum < rt_numfibs; fibnum++) { 1295 genid = V_nd6_list_genid; 1296 ND6_RUNLOCK(); 1297 1298 /* 1299 * Restore length field before 1300 * retrying lookup 1301 */ 1302 rt_key.sin6_len = sizeof(rt_key); 1303 error = rib_lookup_info(fibnum, dst6, 0, 0, 1304 &info); 1305 1306 ND6_RLOCK(); 1307 if (genid != V_nd6_list_genid) 1308 goto restart; 1309 if (error == 0) 1310 break; 1311 } 1312 if (error != 0) 1313 continue; 1314 1315 /* 1316 * This is the case where multiple interfaces 1317 * have the same prefix, but only one is installed 1318 * into the routing table and that prefix entry 1319 * is not the one being examined here. In the case 1320 * where RADIX_MPATH is enabled, multiple route 1321 * entries (of the same rt_key value) will be 1322 * installed because the interface addresses all 1323 * differ. 1324 */ 1325 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1326 &rt_key.sin6_addr)) 1327 continue; 1328 } 1329 1330 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1331 &addr->sin6_addr, &pr->ndpr_mask)) { 1332 ND6_RUNLOCK(); 1333 return (1); 1334 } 1335 } 1336 ND6_RUNLOCK(); 1337 1338 /* 1339 * If the address is assigned on the node of the other side of 1340 * a p2p interface, the address should be a neighbor. 1341 */ 1342 if (ifp->if_flags & IFF_POINTOPOINT) { 1343 struct epoch_tracker et; 1344 1345 NET_EPOCH_ENTER(et); 1346 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1347 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1348 continue; 1349 if (ifa->ifa_dstaddr != NULL && 1350 sa_equal(addr, ifa->ifa_dstaddr)) { 1351 NET_EPOCH_EXIT(et); 1352 return 1; 1353 } 1354 } 1355 NET_EPOCH_EXIT(et); 1356 } 1357 1358 /* 1359 * If the default router list is empty, all addresses are regarded 1360 * as on-link, and thus, as a neighbor. 1361 */ 1362 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1363 nd6_defrouter_list_empty() && 1364 V_nd6_defifindex == ifp->if_index) { 1365 return (1); 1366 } 1367 1368 return (0); 1369 } 1370 1371 /* 1372 * Detect if a given IPv6 address identifies a neighbor on a given link. 1373 * XXX: should take care of the destination of a p2p link? 1374 */ 1375 int 1376 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1377 { 1378 struct llentry *lle; 1379 int rc = 0; 1380 1381 NET_EPOCH_ASSERT(); 1382 IF_AFDATA_UNLOCK_ASSERT(ifp); 1383 if (nd6_is_new_addr_neighbor(addr, ifp)) 1384 return (1); 1385 1386 /* 1387 * Even if the address matches none of our addresses, it might be 1388 * in the neighbor cache. 1389 */ 1390 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1391 LLE_RUNLOCK(lle); 1392 rc = 1; 1393 } 1394 return (rc); 1395 } 1396 1397 /* 1398 * Free an nd6 llinfo entry. 1399 * Since the function would cause significant changes in the kernel, DO NOT 1400 * make it global, unless you have a strong reason for the change, and are sure 1401 * that the change is safe. 1402 * 1403 * Set noinline to be dtrace-friendly 1404 */ 1405 static __noinline void 1406 nd6_free(struct llentry **lnp, int gc) 1407 { 1408 struct ifnet *ifp; 1409 struct llentry *ln; 1410 struct nd_defrouter *dr; 1411 1412 ln = *lnp; 1413 *lnp = NULL; 1414 1415 LLE_WLOCK_ASSERT(ln); 1416 ND6_RLOCK_ASSERT(); 1417 1418 ifp = lltable_get_ifp(ln->lle_tbl); 1419 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1420 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1421 else 1422 dr = NULL; 1423 ND6_RUNLOCK(); 1424 1425 if ((ln->la_flags & LLE_DELETED) == 0) 1426 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1427 1428 /* 1429 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1430 * even though it is not harmful, it was not really necessary. 1431 */ 1432 1433 /* cancel timer */ 1434 nd6_llinfo_settimer_locked(ln, -1); 1435 1436 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1437 if (dr != NULL && dr->expire && 1438 ln->ln_state == ND6_LLINFO_STALE && gc) { 1439 /* 1440 * If the reason for the deletion is just garbage 1441 * collection, and the neighbor is an active default 1442 * router, do not delete it. Instead, reset the GC 1443 * timer using the router's lifetime. 1444 * Simply deleting the entry would affect default 1445 * router selection, which is not necessarily a good 1446 * thing, especially when we're using router preference 1447 * values. 1448 * XXX: the check for ln_state would be redundant, 1449 * but we intentionally keep it just in case. 1450 */ 1451 if (dr->expire > time_uptime) 1452 nd6_llinfo_settimer_locked(ln, 1453 (dr->expire - time_uptime) * hz); 1454 else 1455 nd6_llinfo_settimer_locked(ln, 1456 (long)V_nd6_gctimer * hz); 1457 1458 LLE_REMREF(ln); 1459 LLE_WUNLOCK(ln); 1460 defrouter_rele(dr); 1461 return; 1462 } 1463 1464 if (dr) { 1465 /* 1466 * Unreachablity of a router might affect the default 1467 * router selection and on-link detection of advertised 1468 * prefixes. 1469 */ 1470 1471 /* 1472 * Temporarily fake the state to choose a new default 1473 * router and to perform on-link determination of 1474 * prefixes correctly. 1475 * Below the state will be set correctly, 1476 * or the entry itself will be deleted. 1477 */ 1478 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1479 } 1480 1481 if (ln->ln_router || dr) { 1482 /* 1483 * We need to unlock to avoid a LOR with rt6_flush() with the 1484 * rnh and for the calls to pfxlist_onlink_check() and 1485 * defrouter_select_fib() in the block further down for calls 1486 * into nd6_lookup(). We still hold a ref. 1487 */ 1488 LLE_WUNLOCK(ln); 1489 1490 /* 1491 * rt6_flush must be called whether or not the neighbor 1492 * is in the Default Router List. 1493 * See a corresponding comment in nd6_na_input(). 1494 */ 1495 rt6_flush(&ln->r_l3addr.addr6, ifp); 1496 } 1497 1498 if (dr) { 1499 /* 1500 * Since defrouter_select_fib() does not affect the 1501 * on-link determination and MIP6 needs the check 1502 * before the default router selection, we perform 1503 * the check now. 1504 */ 1505 pfxlist_onlink_check(); 1506 1507 /* 1508 * Refresh default router list. 1509 */ 1510 defrouter_select_fib(dr->ifp->if_fib); 1511 } 1512 1513 /* 1514 * If this entry was added by an on-link redirect, remove the 1515 * corresponding host route. 1516 */ 1517 if (ln->la_flags & LLE_REDIRECT) 1518 nd6_free_redirect(ln); 1519 1520 if (ln->ln_router || dr) 1521 LLE_WLOCK(ln); 1522 } 1523 1524 /* 1525 * Save to unlock. We still hold an extra reference and will not 1526 * free(9) in llentry_free() if someone else holds one as well. 1527 */ 1528 LLE_WUNLOCK(ln); 1529 IF_AFDATA_LOCK(ifp); 1530 LLE_WLOCK(ln); 1531 /* Guard against race with other llentry_free(). */ 1532 if (ln->la_flags & LLE_LINKED) { 1533 /* Remove callout reference */ 1534 LLE_REMREF(ln); 1535 lltable_unlink_entry(ln->lle_tbl, ln); 1536 } 1537 IF_AFDATA_UNLOCK(ifp); 1538 1539 llentry_free(ln); 1540 if (dr != NULL) 1541 defrouter_rele(dr); 1542 } 1543 1544 static int 1545 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1546 { 1547 1548 if (nh->nh_flags & NHF_REDIRECT) 1549 return (1); 1550 1551 return (0); 1552 } 1553 1554 /* 1555 * Remove the rtentry for the given llentry, 1556 * both of which were installed by a redirect. 1557 */ 1558 static void 1559 nd6_free_redirect(const struct llentry *ln) 1560 { 1561 int fibnum; 1562 struct sockaddr_in6 sin6; 1563 struct rt_addrinfo info; 1564 struct rib_cmd_info rc; 1565 struct epoch_tracker et; 1566 1567 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1568 memset(&info, 0, sizeof(info)); 1569 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1570 info.rti_filter = nd6_isdynrte; 1571 1572 NET_EPOCH_ENTER(et); 1573 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1574 rib_action(fibnum, RTM_DELETE, &info, &rc); 1575 NET_EPOCH_EXIT(et); 1576 } 1577 1578 /* 1579 * Updates status of the default router route. 1580 */ 1581 static void 1582 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) 1583 { 1584 struct nd_defrouter *dr; 1585 struct nhop_object *nh; 1586 1587 nh = rc->rc_nh_old; 1588 1589 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1590 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1591 if (dr != NULL) { 1592 dr->installed = 0; 1593 defrouter_rele(dr); 1594 } 1595 } 1596 } 1597 1598 void 1599 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1600 { 1601 1602 #ifdef ROUTE_MPATH 1603 rib_decompose_notification(rc, check_release_defrouter, NULL); 1604 #else 1605 check_release_defrouter(rc, NULL); 1606 #endif 1607 } 1608 1609 int 1610 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1611 { 1612 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1613 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1614 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1615 struct epoch_tracker et; 1616 int error = 0; 1617 1618 if (ifp->if_afdata[AF_INET6] == NULL) 1619 return (EPFNOSUPPORT); 1620 switch (cmd) { 1621 case OSIOCGIFINFO_IN6: 1622 #define ND ndi->ndi 1623 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1624 bzero(&ND, sizeof(ND)); 1625 ND.linkmtu = IN6_LINKMTU(ifp); 1626 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1627 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1628 ND.reachable = ND_IFINFO(ifp)->reachable; 1629 ND.retrans = ND_IFINFO(ifp)->retrans; 1630 ND.flags = ND_IFINFO(ifp)->flags; 1631 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1632 ND.chlim = ND_IFINFO(ifp)->chlim; 1633 break; 1634 case SIOCGIFINFO_IN6: 1635 ND = *ND_IFINFO(ifp); 1636 break; 1637 case SIOCSIFINFO_IN6: 1638 /* 1639 * used to change host variables from userland. 1640 * intended for a use on router to reflect RA configurations. 1641 */ 1642 /* 0 means 'unspecified' */ 1643 if (ND.linkmtu != 0) { 1644 if (ND.linkmtu < IPV6_MMTU || 1645 ND.linkmtu > IN6_LINKMTU(ifp)) { 1646 error = EINVAL; 1647 break; 1648 } 1649 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1650 } 1651 1652 if (ND.basereachable != 0) { 1653 int obasereachable = ND_IFINFO(ifp)->basereachable; 1654 1655 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1656 if (ND.basereachable != obasereachable) 1657 ND_IFINFO(ifp)->reachable = 1658 ND_COMPUTE_RTIME(ND.basereachable); 1659 } 1660 if (ND.retrans != 0) 1661 ND_IFINFO(ifp)->retrans = ND.retrans; 1662 if (ND.chlim != 0) 1663 ND_IFINFO(ifp)->chlim = ND.chlim; 1664 /* FALLTHROUGH */ 1665 case SIOCSIFINFO_FLAGS: 1666 { 1667 struct ifaddr *ifa; 1668 struct in6_ifaddr *ia; 1669 1670 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1671 !(ND.flags & ND6_IFF_IFDISABLED)) { 1672 /* ifdisabled 1->0 transision */ 1673 1674 /* 1675 * If the interface is marked as ND6_IFF_IFDISABLED and 1676 * has an link-local address with IN6_IFF_DUPLICATED, 1677 * do not clear ND6_IFF_IFDISABLED. 1678 * See RFC 4862, Section 5.4.5. 1679 */ 1680 NET_EPOCH_ENTER(et); 1681 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1682 if (ifa->ifa_addr->sa_family != AF_INET6) 1683 continue; 1684 ia = (struct in6_ifaddr *)ifa; 1685 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1686 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1687 break; 1688 } 1689 NET_EPOCH_EXIT(et); 1690 1691 if (ifa != NULL) { 1692 /* LLA is duplicated. */ 1693 ND.flags |= ND6_IFF_IFDISABLED; 1694 log(LOG_ERR, "Cannot enable an interface" 1695 " with a link-local address marked" 1696 " duplicate.\n"); 1697 } else { 1698 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1699 if (ifp->if_flags & IFF_UP) 1700 in6_if_up(ifp); 1701 } 1702 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1703 (ND.flags & ND6_IFF_IFDISABLED)) { 1704 /* ifdisabled 0->1 transision */ 1705 /* Mark all IPv6 address as tentative. */ 1706 1707 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1708 if (V_ip6_dad_count > 0 && 1709 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1710 NET_EPOCH_ENTER(et); 1711 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1712 ifa_link) { 1713 if (ifa->ifa_addr->sa_family != 1714 AF_INET6) 1715 continue; 1716 ia = (struct in6_ifaddr *)ifa; 1717 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1718 } 1719 NET_EPOCH_EXIT(et); 1720 } 1721 } 1722 1723 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1724 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1725 /* auto_linklocal 0->1 transision */ 1726 1727 /* If no link-local address on ifp, configure */ 1728 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1729 in6_ifattach(ifp, NULL); 1730 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1731 ifp->if_flags & IFF_UP) { 1732 /* 1733 * When the IF already has 1734 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1735 * address is assigned, and IFF_UP, try to 1736 * assign one. 1737 */ 1738 NET_EPOCH_ENTER(et); 1739 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1740 ifa_link) { 1741 if (ifa->ifa_addr->sa_family != 1742 AF_INET6) 1743 continue; 1744 ia = (struct in6_ifaddr *)ifa; 1745 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1746 break; 1747 } 1748 NET_EPOCH_EXIT(et); 1749 if (ifa != NULL) 1750 /* No LLA is configured. */ 1751 in6_ifattach(ifp, NULL); 1752 } 1753 } 1754 ND_IFINFO(ifp)->flags = ND.flags; 1755 break; 1756 } 1757 #undef ND 1758 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1759 /* sync kernel routing table with the default router list */ 1760 defrouter_reset(); 1761 defrouter_select_fib(RT_ALL_FIBS); 1762 break; 1763 case SIOCSPFXFLUSH_IN6: 1764 { 1765 /* flush all the prefix advertised by routers */ 1766 struct in6_ifaddr *ia, *ia_next; 1767 struct nd_prefix *pr, *next; 1768 struct nd_prhead prl; 1769 1770 LIST_INIT(&prl); 1771 1772 ND6_WLOCK(); 1773 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1774 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1775 continue; /* XXX */ 1776 nd6_prefix_unlink(pr, &prl); 1777 } 1778 ND6_WUNLOCK(); 1779 1780 while ((pr = LIST_FIRST(&prl)) != NULL) { 1781 LIST_REMOVE(pr, ndpr_entry); 1782 /* XXXRW: in6_ifaddrhead locking. */ 1783 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1784 ia_next) { 1785 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1786 continue; 1787 1788 if (ia->ia6_ndpr == pr) 1789 in6_purgeaddr(&ia->ia_ifa); 1790 } 1791 nd6_prefix_del(pr); 1792 } 1793 break; 1794 } 1795 case SIOCSRTRFLUSH_IN6: 1796 { 1797 /* flush all the default routers */ 1798 1799 defrouter_reset(); 1800 nd6_defrouter_flush_all(); 1801 defrouter_select_fib(RT_ALL_FIBS); 1802 break; 1803 } 1804 case SIOCGNBRINFO_IN6: 1805 { 1806 struct llentry *ln; 1807 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1808 1809 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1810 return (error); 1811 1812 NET_EPOCH_ENTER(et); 1813 ln = nd6_lookup(&nb_addr, 0, ifp); 1814 NET_EPOCH_EXIT(et); 1815 1816 if (ln == NULL) { 1817 error = EINVAL; 1818 break; 1819 } 1820 nbi->state = ln->ln_state; 1821 nbi->asked = ln->la_asked; 1822 nbi->isrouter = ln->ln_router; 1823 if (ln->la_expire == 0) 1824 nbi->expire = 0; 1825 else 1826 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1827 (time_second - time_uptime); 1828 LLE_RUNLOCK(ln); 1829 break; 1830 } 1831 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1832 ndif->ifindex = V_nd6_defifindex; 1833 break; 1834 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1835 return (nd6_setdefaultiface(ndif->ifindex)); 1836 } 1837 return (error); 1838 } 1839 1840 /* 1841 * Calculates new isRouter value based on provided parameters and 1842 * returns it. 1843 */ 1844 static int 1845 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1846 int ln_router) 1847 { 1848 1849 /* 1850 * ICMP6 type dependent behavior. 1851 * 1852 * NS: clear IsRouter if new entry 1853 * RS: clear IsRouter 1854 * RA: set IsRouter if there's lladdr 1855 * redir: clear IsRouter if new entry 1856 * 1857 * RA case, (1): 1858 * The spec says that we must set IsRouter in the following cases: 1859 * - If lladdr exist, set IsRouter. This means (1-5). 1860 * - If it is old entry (!newentry), set IsRouter. This means (7). 1861 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1862 * A quetion arises for (1) case. (1) case has no lladdr in the 1863 * neighbor cache, this is similar to (6). 1864 * This case is rare but we figured that we MUST NOT set IsRouter. 1865 * 1866 * is_new old_addr new_addr NS RS RA redir 1867 * D R 1868 * 0 n n (1) c ? s 1869 * 0 y n (2) c s s 1870 * 0 n y (3) c s s 1871 * 0 y y (4) c s s 1872 * 0 y y (5) c s s 1873 * 1 -- n (6) c c c s 1874 * 1 -- y (7) c c s c s 1875 * 1876 * (c=clear s=set) 1877 */ 1878 switch (type & 0xff) { 1879 case ND_NEIGHBOR_SOLICIT: 1880 /* 1881 * New entry must have is_router flag cleared. 1882 */ 1883 if (is_new) /* (6-7) */ 1884 ln_router = 0; 1885 break; 1886 case ND_REDIRECT: 1887 /* 1888 * If the icmp is a redirect to a better router, always set the 1889 * is_router flag. Otherwise, if the entry is newly created, 1890 * clear the flag. [RFC 2461, sec 8.3] 1891 */ 1892 if (code == ND_REDIRECT_ROUTER) 1893 ln_router = 1; 1894 else { 1895 if (is_new) /* (6-7) */ 1896 ln_router = 0; 1897 } 1898 break; 1899 case ND_ROUTER_SOLICIT: 1900 /* 1901 * is_router flag must always be cleared. 1902 */ 1903 ln_router = 0; 1904 break; 1905 case ND_ROUTER_ADVERT: 1906 /* 1907 * Mark an entry with lladdr as a router. 1908 */ 1909 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1910 (is_new && new_addr)) { /* (7) */ 1911 ln_router = 1; 1912 } 1913 break; 1914 } 1915 1916 return (ln_router); 1917 } 1918 1919 /* 1920 * Create neighbor cache entry and cache link-layer address, 1921 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1922 * 1923 * type - ICMP6 type 1924 * code - type dependent information 1925 * 1926 */ 1927 void 1928 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1929 int lladdrlen, int type, int code) 1930 { 1931 struct llentry *ln = NULL, *ln_tmp; 1932 int is_newentry; 1933 int do_update; 1934 int olladdr; 1935 int llchange; 1936 int flags; 1937 uint16_t router = 0; 1938 struct sockaddr_in6 sin6; 1939 struct mbuf *chain = NULL; 1940 u_char linkhdr[LLE_MAX_LINKHDR]; 1941 size_t linkhdrsize; 1942 int lladdr_off; 1943 1944 NET_EPOCH_ASSERT(); 1945 IF_AFDATA_UNLOCK_ASSERT(ifp); 1946 1947 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1948 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1949 1950 /* nothing must be updated for unspecified address */ 1951 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1952 return; 1953 1954 /* 1955 * Validation about ifp->if_addrlen and lladdrlen must be done in 1956 * the caller. 1957 * 1958 * XXX If the link does not have link-layer adderss, what should 1959 * we do? (ifp->if_addrlen == 0) 1960 * Spec says nothing in sections for RA, RS and NA. There's small 1961 * description on it in NS section (RFC 2461 7.2.3). 1962 */ 1963 flags = lladdr ? LLE_EXCLUSIVE : 0; 1964 ln = nd6_lookup(from, flags, ifp); 1965 is_newentry = 0; 1966 if (ln == NULL) { 1967 flags |= LLE_EXCLUSIVE; 1968 ln = nd6_alloc(from, 0, ifp); 1969 if (ln == NULL) 1970 return; 1971 1972 /* 1973 * Since we already know all the data for the new entry, 1974 * fill it before insertion. 1975 */ 1976 if (lladdr != NULL) { 1977 linkhdrsize = sizeof(linkhdr); 1978 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1979 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1980 return; 1981 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1982 lladdr_off); 1983 } 1984 1985 IF_AFDATA_WLOCK(ifp); 1986 LLE_WLOCK(ln); 1987 /* Prefer any existing lle over newly-created one */ 1988 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1989 if (ln_tmp == NULL) 1990 lltable_link_entry(LLTABLE6(ifp), ln); 1991 IF_AFDATA_WUNLOCK(ifp); 1992 if (ln_tmp == NULL) { 1993 /* No existing lle, mark as new entry (6,7) */ 1994 is_newentry = 1; 1995 if (lladdr != NULL) { /* (7) */ 1996 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1997 EVENTHANDLER_INVOKE(lle_event, ln, 1998 LLENTRY_RESOLVED); 1999 } 2000 } else { 2001 lltable_free_entry(LLTABLE6(ifp), ln); 2002 ln = ln_tmp; 2003 ln_tmp = NULL; 2004 } 2005 } 2006 /* do nothing if static ndp is set */ 2007 if ((ln->la_flags & LLE_STATIC)) { 2008 if (flags & LLE_EXCLUSIVE) 2009 LLE_WUNLOCK(ln); 2010 else 2011 LLE_RUNLOCK(ln); 2012 return; 2013 } 2014 2015 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2016 if (olladdr && lladdr) { 2017 llchange = bcmp(lladdr, ln->ll_addr, 2018 ifp->if_addrlen); 2019 } else if (!olladdr && lladdr) 2020 llchange = 1; 2021 else 2022 llchange = 0; 2023 2024 /* 2025 * newentry olladdr lladdr llchange (*=record) 2026 * 0 n n -- (1) 2027 * 0 y n -- (2) 2028 * 0 n y y (3) * STALE 2029 * 0 y y n (4) * 2030 * 0 y y y (5) * STALE 2031 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2032 * 1 -- y -- (7) * STALE 2033 */ 2034 2035 do_update = 0; 2036 if (is_newentry == 0 && llchange != 0) { 2037 do_update = 1; /* (3,5) */ 2038 2039 /* 2040 * Record source link-layer address 2041 * XXX is it dependent to ifp->if_type? 2042 */ 2043 linkhdrsize = sizeof(linkhdr); 2044 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2045 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2046 return; 2047 2048 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2049 lladdr_off) == 0) { 2050 /* Entry was deleted */ 2051 return; 2052 } 2053 2054 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2055 2056 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2057 2058 if (ln->la_hold != NULL) 2059 nd6_grab_holdchain(ln, &chain, &sin6); 2060 } 2061 2062 /* Calculates new router status */ 2063 router = nd6_is_router(type, code, is_newentry, olladdr, 2064 lladdr != NULL ? 1 : 0, ln->ln_router); 2065 2066 ln->ln_router = router; 2067 /* Mark non-router redirects with special flag */ 2068 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2069 ln->la_flags |= LLE_REDIRECT; 2070 2071 if (flags & LLE_EXCLUSIVE) 2072 LLE_WUNLOCK(ln); 2073 else 2074 LLE_RUNLOCK(ln); 2075 2076 if (chain != NULL) 2077 nd6_flush_holdchain(ifp, chain, &sin6); 2078 2079 /* 2080 * When the link-layer address of a router changes, select the 2081 * best router again. In particular, when the neighbor entry is newly 2082 * created, it might affect the selection policy. 2083 * Question: can we restrict the first condition to the "is_newentry" 2084 * case? 2085 * XXX: when we hear an RA from a new router with the link-layer 2086 * address option, defrouter_select_fib() is called twice, since 2087 * defrtrlist_update called the function as well. However, I believe 2088 * we can compromise the overhead, since it only happens the first 2089 * time. 2090 * XXX: although defrouter_select_fib() should not have a bad effect 2091 * for those are not autoconfigured hosts, we explicitly avoid such 2092 * cases for safety. 2093 */ 2094 if ((do_update || is_newentry) && router && 2095 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2096 /* 2097 * guaranteed recursion 2098 */ 2099 defrouter_select_fib(ifp->if_fib); 2100 } 2101 } 2102 2103 static void 2104 nd6_slowtimo(void *arg) 2105 { 2106 struct epoch_tracker et; 2107 CURVNET_SET((struct vnet *) arg); 2108 struct nd_ifinfo *nd6if; 2109 struct ifnet *ifp; 2110 2111 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2112 nd6_slowtimo, curvnet); 2113 NET_EPOCH_ENTER(et); 2114 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2115 if (ifp->if_afdata[AF_INET6] == NULL) 2116 continue; 2117 nd6if = ND_IFINFO(ifp); 2118 if (nd6if->basereachable && /* already initialized */ 2119 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2120 /* 2121 * Since reachable time rarely changes by router 2122 * advertisements, we SHOULD insure that a new random 2123 * value gets recomputed at least once every few hours. 2124 * (RFC 2461, 6.3.4) 2125 */ 2126 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2127 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2128 } 2129 } 2130 NET_EPOCH_EXIT(et); 2131 CURVNET_RESTORE(); 2132 } 2133 2134 void 2135 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2136 struct sockaddr_in6 *sin6) 2137 { 2138 2139 LLE_WLOCK_ASSERT(ln); 2140 2141 *chain = ln->la_hold; 2142 ln->la_hold = NULL; 2143 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2144 2145 if (ln->ln_state == ND6_LLINFO_STALE) { 2146 /* 2147 * The first time we send a packet to a 2148 * neighbor whose entry is STALE, we have 2149 * to change the state to DELAY and a sets 2150 * a timer to expire in DELAY_FIRST_PROBE_TIME 2151 * seconds to ensure do neighbor unreachability 2152 * detection on expiration. 2153 * (RFC 2461 7.3.3) 2154 */ 2155 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2156 } 2157 } 2158 2159 int 2160 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2161 struct sockaddr_in6 *dst, struct route *ro) 2162 { 2163 int error; 2164 int ip6len; 2165 struct ip6_hdr *ip6; 2166 struct m_tag *mtag; 2167 2168 #ifdef MAC 2169 mac_netinet6_nd6_send(ifp, m); 2170 #endif 2171 2172 /* 2173 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2174 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2175 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2176 * to be diverted to user space. When re-injected into the kernel, 2177 * send_output() will directly dispatch them to the outgoing interface. 2178 */ 2179 if (send_sendso_input_hook != NULL) { 2180 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2181 if (mtag != NULL) { 2182 ip6 = mtod(m, struct ip6_hdr *); 2183 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2184 /* Use the SEND socket */ 2185 error = send_sendso_input_hook(m, ifp, SND_OUT, 2186 ip6len); 2187 /* -1 == no app on SEND socket */ 2188 if (error == 0 || error != -1) 2189 return (error); 2190 } 2191 } 2192 2193 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2194 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2195 mtod(m, struct ip6_hdr *)); 2196 2197 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2198 origifp = ifp; 2199 2200 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2201 return (error); 2202 } 2203 2204 /* 2205 * Lookup link headerfor @sa_dst address. Stores found 2206 * data in @desten buffer. Copy of lle ln_flags can be also 2207 * saved in @pflags if @pflags is non-NULL. 2208 * 2209 * If destination LLE does not exists or lle state modification 2210 * is required, call "slow" version. 2211 * 2212 * Return values: 2213 * - 0 on success (address copied to buffer). 2214 * - EWOULDBLOCK (no local error, but address is still unresolved) 2215 * - other errors (alloc failure, etc) 2216 */ 2217 int 2218 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2219 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2220 struct llentry **plle) 2221 { 2222 struct llentry *ln = NULL; 2223 const struct sockaddr_in6 *dst6; 2224 2225 NET_EPOCH_ASSERT(); 2226 2227 if (pflags != NULL) 2228 *pflags = 0; 2229 2230 dst6 = (const struct sockaddr_in6 *)sa_dst; 2231 2232 /* discard the packet if IPv6 operation is disabled on the interface */ 2233 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2234 m_freem(m); 2235 return (ENETDOWN); /* better error? */ 2236 } 2237 2238 if (m != NULL && m->m_flags & M_MCAST) { 2239 switch (ifp->if_type) { 2240 case IFT_ETHER: 2241 case IFT_L2VLAN: 2242 case IFT_BRIDGE: 2243 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2244 desten); 2245 return (0); 2246 default: 2247 m_freem(m); 2248 return (EAFNOSUPPORT); 2249 } 2250 } 2251 2252 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2253 ifp); 2254 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2255 /* Entry found, let's copy lle info */ 2256 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2257 if (pflags != NULL) 2258 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2259 /* Check if we have feedback request from nd6 timer */ 2260 if (ln->r_skip_req != 0) { 2261 LLE_REQ_LOCK(ln); 2262 ln->r_skip_req = 0; /* Notify that entry was used */ 2263 ln->lle_hittime = time_uptime; 2264 LLE_REQ_UNLOCK(ln); 2265 } 2266 if (plle) { 2267 LLE_ADDREF(ln); 2268 *plle = ln; 2269 LLE_WUNLOCK(ln); 2270 } 2271 return (0); 2272 } else if (plle && ln) 2273 LLE_WUNLOCK(ln); 2274 2275 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2276 } 2277 2278 /* 2279 * Do L2 address resolution for @sa_dst address. Stores found 2280 * address in @desten buffer. Copy of lle ln_flags can be also 2281 * saved in @pflags if @pflags is non-NULL. 2282 * 2283 * Heavy version. 2284 * Function assume that destination LLE does not exist, 2285 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2286 * 2287 * Set noinline to be dtrace-friendly 2288 */ 2289 static __noinline int 2290 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2291 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2292 struct llentry **plle) 2293 { 2294 struct llentry *lle = NULL, *lle_tmp; 2295 struct in6_addr *psrc, src; 2296 int send_ns, ll_len; 2297 char *lladdr; 2298 2299 NET_EPOCH_ASSERT(); 2300 2301 /* 2302 * Address resolution or Neighbor Unreachability Detection 2303 * for the next hop. 2304 * At this point, the destination of the packet must be a unicast 2305 * or an anycast address(i.e. not a multicast). 2306 */ 2307 if (lle == NULL) { 2308 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2309 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2310 /* 2311 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2312 * the condition below is not very efficient. But we believe 2313 * it is tolerable, because this should be a rare case. 2314 */ 2315 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2316 if (lle == NULL) { 2317 char ip6buf[INET6_ADDRSTRLEN]; 2318 log(LOG_DEBUG, 2319 "nd6_output: can't allocate llinfo for %s " 2320 "(ln=%p)\n", 2321 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2322 m_freem(m); 2323 return (ENOBUFS); 2324 } 2325 2326 IF_AFDATA_WLOCK(ifp); 2327 LLE_WLOCK(lle); 2328 /* Prefer any existing entry over newly-created one */ 2329 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2330 if (lle_tmp == NULL) 2331 lltable_link_entry(LLTABLE6(ifp), lle); 2332 IF_AFDATA_WUNLOCK(ifp); 2333 if (lle_tmp != NULL) { 2334 lltable_free_entry(LLTABLE6(ifp), lle); 2335 lle = lle_tmp; 2336 lle_tmp = NULL; 2337 } 2338 } 2339 } 2340 if (lle == NULL) { 2341 m_freem(m); 2342 return (ENOBUFS); 2343 } 2344 2345 LLE_WLOCK_ASSERT(lle); 2346 2347 /* 2348 * The first time we send a packet to a neighbor whose entry is 2349 * STALE, we have to change the state to DELAY and a sets a timer to 2350 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2351 * neighbor unreachability detection on expiration. 2352 * (RFC 2461 7.3.3) 2353 */ 2354 if (lle->ln_state == ND6_LLINFO_STALE) 2355 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2356 2357 /* 2358 * If the neighbor cache entry has a state other than INCOMPLETE 2359 * (i.e. its link-layer address is already resolved), just 2360 * send the packet. 2361 */ 2362 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2363 if (flags & LLE_ADDRONLY) { 2364 lladdr = lle->ll_addr; 2365 ll_len = ifp->if_addrlen; 2366 } else { 2367 lladdr = lle->r_linkdata; 2368 ll_len = lle->r_hdrlen; 2369 } 2370 bcopy(lladdr, desten, ll_len); 2371 if (pflags != NULL) 2372 *pflags = lle->la_flags; 2373 if (plle) { 2374 LLE_ADDREF(lle); 2375 *plle = lle; 2376 } 2377 LLE_WUNLOCK(lle); 2378 return (0); 2379 } 2380 2381 /* 2382 * There is a neighbor cache entry, but no ethernet address 2383 * response yet. Append this latest packet to the end of the 2384 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2385 * the oldest packet in the queue will be removed. 2386 */ 2387 2388 if (lle->la_hold != NULL) { 2389 struct mbuf *m_hold; 2390 int i; 2391 2392 i = 0; 2393 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2394 i++; 2395 if (m_hold->m_nextpkt == NULL) { 2396 m_hold->m_nextpkt = m; 2397 break; 2398 } 2399 } 2400 while (i >= V_nd6_maxqueuelen) { 2401 m_hold = lle->la_hold; 2402 lle->la_hold = lle->la_hold->m_nextpkt; 2403 m_freem(m_hold); 2404 i--; 2405 } 2406 } else { 2407 lle->la_hold = m; 2408 } 2409 2410 /* 2411 * If there has been no NS for the neighbor after entering the 2412 * INCOMPLETE state, send the first solicitation. 2413 * Note that for newly-created lle la_asked will be 0, 2414 * so we will transition from ND6_LLINFO_NOSTATE to 2415 * ND6_LLINFO_INCOMPLETE state here. 2416 */ 2417 psrc = NULL; 2418 send_ns = 0; 2419 if (lle->la_asked == 0) { 2420 lle->la_asked++; 2421 send_ns = 1; 2422 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2423 2424 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2425 } 2426 LLE_WUNLOCK(lle); 2427 if (send_ns != 0) 2428 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2429 2430 return (EWOULDBLOCK); 2431 } 2432 2433 /* 2434 * Do L2 address resolution for @sa_dst address. Stores found 2435 * address in @desten buffer. Copy of lle ln_flags can be also 2436 * saved in @pflags if @pflags is non-NULL. 2437 * 2438 * Return values: 2439 * - 0 on success (address copied to buffer). 2440 * - EWOULDBLOCK (no local error, but address is still unresolved) 2441 * - other errors (alloc failure, etc) 2442 */ 2443 int 2444 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2445 char *desten, uint32_t *pflags) 2446 { 2447 int error; 2448 2449 flags |= LLE_ADDRONLY; 2450 error = nd6_resolve_slow(ifp, flags, NULL, 2451 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2452 return (error); 2453 } 2454 2455 int 2456 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2457 struct sockaddr_in6 *dst) 2458 { 2459 struct mbuf *m, *m_head; 2460 int error = 0; 2461 2462 m_head = chain; 2463 2464 while (m_head) { 2465 m = m_head; 2466 m_head = m_head->m_nextpkt; 2467 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2468 } 2469 2470 /* 2471 * XXX 2472 * note that intermediate errors are blindly ignored 2473 */ 2474 return (error); 2475 } 2476 2477 static int 2478 nd6_need_cache(struct ifnet *ifp) 2479 { 2480 /* 2481 * XXX: we currently do not make neighbor cache on any interface 2482 * other than Ethernet and GIF. 2483 * 2484 * RFC2893 says: 2485 * - unidirectional tunnels needs no ND 2486 */ 2487 switch (ifp->if_type) { 2488 case IFT_ETHER: 2489 case IFT_IEEE1394: 2490 case IFT_L2VLAN: 2491 case IFT_INFINIBAND: 2492 case IFT_BRIDGE: 2493 case IFT_PROPVIRTUAL: 2494 return (1); 2495 default: 2496 return (0); 2497 } 2498 } 2499 2500 /* 2501 * Add pernament ND6 link-layer record for given 2502 * interface address. 2503 * 2504 * Very similar to IPv4 arp_ifinit(), but: 2505 * 1) IPv6 DAD is performed in different place 2506 * 2) It is called by IPv6 protocol stack in contrast to 2507 * arp_ifinit() which is typically called in SIOCSIFADDR 2508 * driver ioctl handler. 2509 * 2510 */ 2511 int 2512 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2513 { 2514 struct ifnet *ifp; 2515 struct llentry *ln, *ln_tmp; 2516 struct sockaddr *dst; 2517 2518 ifp = ia->ia_ifa.ifa_ifp; 2519 if (nd6_need_cache(ifp) == 0) 2520 return (0); 2521 2522 dst = (struct sockaddr *)&ia->ia_addr; 2523 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2524 if (ln == NULL) 2525 return (ENOBUFS); 2526 2527 IF_AFDATA_WLOCK(ifp); 2528 LLE_WLOCK(ln); 2529 /* Unlink any entry if exists */ 2530 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2531 if (ln_tmp != NULL) 2532 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2533 lltable_link_entry(LLTABLE6(ifp), ln); 2534 IF_AFDATA_WUNLOCK(ifp); 2535 2536 if (ln_tmp != NULL) 2537 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2538 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2539 2540 LLE_WUNLOCK(ln); 2541 if (ln_tmp != NULL) 2542 llentry_free(ln_tmp); 2543 2544 return (0); 2545 } 2546 2547 /* 2548 * Removes either all lle entries for given @ia, or lle 2549 * corresponding to @ia address. 2550 */ 2551 void 2552 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2553 { 2554 struct sockaddr_in6 mask, addr; 2555 struct sockaddr *saddr, *smask; 2556 struct ifnet *ifp; 2557 2558 ifp = ia->ia_ifa.ifa_ifp; 2559 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2560 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2561 saddr = (struct sockaddr *)&addr; 2562 smask = (struct sockaddr *)&mask; 2563 2564 if (all != 0) 2565 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2566 else 2567 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2568 } 2569 2570 static void 2571 clear_llinfo_pqueue(struct llentry *ln) 2572 { 2573 struct mbuf *m_hold, *m_hold_next; 2574 2575 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2576 m_hold_next = m_hold->m_nextpkt; 2577 m_freem(m_hold); 2578 } 2579 2580 ln->la_hold = NULL; 2581 } 2582 2583 static int 2584 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2585 { 2586 struct in6_prefix p; 2587 struct sockaddr_in6 s6; 2588 struct nd_prefix *pr; 2589 struct nd_pfxrouter *pfr; 2590 time_t maxexpire; 2591 int error; 2592 char ip6buf[INET6_ADDRSTRLEN]; 2593 2594 if (req->newptr) 2595 return (EPERM); 2596 2597 error = sysctl_wire_old_buffer(req, 0); 2598 if (error != 0) 2599 return (error); 2600 2601 bzero(&p, sizeof(p)); 2602 p.origin = PR_ORIG_RA; 2603 bzero(&s6, sizeof(s6)); 2604 s6.sin6_family = AF_INET6; 2605 s6.sin6_len = sizeof(s6); 2606 2607 ND6_RLOCK(); 2608 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2609 p.prefix = pr->ndpr_prefix; 2610 if (sa6_recoverscope(&p.prefix)) { 2611 log(LOG_ERR, "scope error in prefix list (%s)\n", 2612 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2613 /* XXX: press on... */ 2614 } 2615 p.raflags = pr->ndpr_raf; 2616 p.prefixlen = pr->ndpr_plen; 2617 p.vltime = pr->ndpr_vltime; 2618 p.pltime = pr->ndpr_pltime; 2619 p.if_index = pr->ndpr_ifp->if_index; 2620 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2621 p.expire = 0; 2622 else { 2623 /* XXX: we assume time_t is signed. */ 2624 maxexpire = (-1) & 2625 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2626 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2627 p.expire = pr->ndpr_lastupdate + 2628 pr->ndpr_vltime + 2629 (time_second - time_uptime); 2630 else 2631 p.expire = maxexpire; 2632 } 2633 p.refcnt = pr->ndpr_addrcnt; 2634 p.flags = pr->ndpr_stateflags; 2635 p.advrtrs = 0; 2636 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2637 p.advrtrs++; 2638 error = SYSCTL_OUT(req, &p, sizeof(p)); 2639 if (error != 0) 2640 break; 2641 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2642 s6.sin6_addr = pfr->router->rtaddr; 2643 if (sa6_recoverscope(&s6)) 2644 log(LOG_ERR, 2645 "scope error in prefix list (%s)\n", 2646 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2647 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2648 if (error != 0) 2649 goto out; 2650 } 2651 } 2652 out: 2653 ND6_RUNLOCK(); 2654 return (error); 2655 } 2656 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2657 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2658 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2659 "NDP prefix list"); 2660 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2661 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2662 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2663 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2664