1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_route.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/eventhandler.h> 42 #include <sys/callout.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/protosw.h> 52 #include <sys/errno.h> 53 #include <sys/syslog.h> 54 #include <sys/rwlock.h> 55 #include <sys/queue.h> 56 #include <sys/sdt.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_private.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_fib.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_PREFIX_WITH_ROUTER(pr) !LIST_EMPTY(&(pr)->ndpr_advrtrs) 88 89 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 90 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 VNET_DEFINE_STATIC(int, nd6_prune) = 1; 95 #define V_nd6_prune VNET(nd6_prune) 96 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_PRUNE, nd6_prune, 97 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_prune), 0, 98 "Frequency in seconds of checks for expired prefixes and routers"); 99 100 VNET_DEFINE_STATIC(int, nd6_delay) = 5; 101 #define V_nd6_delay VNET(nd6_delay) 102 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DELAY, nd6_delay, 103 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_delay), 0, 104 "Delay in seconds before probing for reachability"); 105 106 VNET_DEFINE_STATIC(int, nd6_umaxtries) = 3; 107 #define V_nd6_umaxtries VNET(nd6_umaxtries) 108 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_UMAXTRIES, nd6_umaxtries, 109 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_umaxtries), 0, 110 "Number of ICMPv6 NS messages sent during reachability detection"); 111 112 VNET_DEFINE(int, nd6_mmaxtries) = 3; 113 #define V_nd6_mmaxtries VNET(nd6_mmaxtries) 114 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MMAXTRIES, nd6_mmaxtries, 115 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_mmaxtries), 0, 116 "Number of ICMPv6 NS messages sent during address resolution"); 117 118 VNET_DEFINE_STATIC(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 119 * collection timer */ 120 #define V_nd6_gctimer VNET(nd6_gctimer) 121 122 /* preventing too many loops in ND option parsing */ 123 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 124 125 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 126 * ND entries */ 127 #define V_nd6_maxndopt VNET(nd6_maxndopt) 128 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 129 130 #ifdef ND6_DEBUG 131 VNET_DEFINE(int, nd6_debug) = 1; 132 #else 133 VNET_DEFINE(int, nd6_debug) = 0; 134 #endif 135 #define V_nd6_debug VNET(nd6_debug) 136 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DEBUG, nd6_debug, 137 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_debug), 0, 138 "Log NDP debug messages"); 139 140 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 141 142 VNET_DEFINE(struct nd_prhead, nd_prefix); 143 VNET_DEFINE(struct rwlock, nd6_lock); 144 VNET_DEFINE(uint64_t, nd6_list_genid); 145 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 146 147 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 148 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 149 150 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 151 152 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 153 struct ifnet *); 154 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 155 static void nd6_slowtimo(void *); 156 static int regen_tmpaddr(struct in6_ifaddr *); 157 static void nd6_free(struct llentry **, int); 158 static void nd6_free_redirect(const struct llentry *); 159 static void nd6_llinfo_timer(void *); 160 static void nd6_llinfo_settimer_locked(struct llentry *, long); 161 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, 162 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 163 static int nd6_need_cache(struct ifnet *); 164 165 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 166 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 167 168 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 169 #define V_nd6_timer_ch VNET(nd6_timer_ch) 170 171 static void 172 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 173 { 174 struct rt_addrinfo rtinfo; 175 struct sockaddr_in6 dst; 176 struct sockaddr_dl gw; 177 struct ifnet *ifp; 178 int type; 179 int fibnum; 180 181 LLE_WLOCK_ASSERT(lle); 182 183 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 184 return; 185 186 switch (evt) { 187 case LLENTRY_RESOLVED: 188 type = RTM_ADD; 189 KASSERT(lle->la_flags & LLE_VALID, 190 ("%s: %p resolved but not valid?", __func__, lle)); 191 break; 192 case LLENTRY_EXPIRED: 193 type = RTM_DELETE; 194 break; 195 default: 196 return; 197 } 198 199 ifp = lltable_get_ifp(lle->lle_tbl); 200 201 bzero(&dst, sizeof(dst)); 202 bzero(&gw, sizeof(gw)); 203 bzero(&rtinfo, sizeof(rtinfo)); 204 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 205 dst.sin6_scope_id = in6_getscopezone(ifp, 206 in6_addrscope(&dst.sin6_addr)); 207 gw.sdl_len = sizeof(struct sockaddr_dl); 208 gw.sdl_family = AF_LINK; 209 gw.sdl_alen = ifp->if_addrlen; 210 gw.sdl_index = ifp->if_index; 211 gw.sdl_type = ifp->if_type; 212 if (evt == LLENTRY_RESOLVED) 213 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 214 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 215 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 216 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 217 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 218 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 219 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 220 } 221 222 /* 223 * A handler for interface link layer address change event. 224 */ 225 static void 226 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 227 { 228 if (ifp->if_afdata[AF_INET6] == NULL) 229 return; 230 231 lltable_update_ifaddr(LLTABLE6(ifp)); 232 } 233 234 void 235 nd6_init(void) 236 { 237 238 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 239 rw_init(&V_nd6_lock, "nd6 list"); 240 241 LIST_INIT(&V_nd_prefix); 242 nd6_defrouter_init(); 243 244 /* Start timers. */ 245 callout_init(&V_nd6_slowtimo_ch, 1); 246 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 247 nd6_slowtimo, curvnet); 248 249 callout_init(&V_nd6_timer_ch, 1); 250 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 251 252 nd6_dad_init(); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 255 NULL, EVENTHANDLER_PRI_ANY); 256 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 257 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 258 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 259 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 260 } 261 } 262 263 #ifdef VIMAGE 264 void 265 nd6_destroy(void) 266 { 267 268 callout_drain(&V_nd6_slowtimo_ch); 269 callout_drain(&V_nd6_timer_ch); 270 if (IS_DEFAULT_VNET(curvnet)) { 271 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 272 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 273 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 274 } 275 rw_destroy(&V_nd6_lock); 276 mtx_destroy(&V_nd6_onlink_mtx); 277 } 278 #endif 279 280 struct nd_ifinfo * 281 nd6_ifattach(struct ifnet *ifp) 282 { 283 struct nd_ifinfo *nd; 284 285 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 286 nd->initialized = 1; 287 288 nd->chlim = IPV6_DEFHLIM; 289 nd->basereachable = REACHABLE_TIME; 290 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 291 nd->retrans = RETRANS_TIMER; 292 293 nd->flags = ND6_IFF_PERFORMNUD; 294 295 /* Set IPv6 disabled on all interfaces but loopback by default. */ 296 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 297 nd->flags |= ND6_IFF_IFDISABLED; 298 299 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 300 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 301 * default regardless of the V_ip6_auto_linklocal configuration to 302 * give a reasonable default behavior. 303 */ 304 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE && 305 ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK)) 306 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 307 /* 308 * A loopback interface does not need to accept RTADV. 309 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 310 * default regardless of the V_ip6_accept_rtadv configuration to 311 * prevent the interface from accepting RA messages arrived 312 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 313 */ 314 if (V_ip6_accept_rtadv && 315 !(ifp->if_flags & IFF_LOOPBACK) && 316 (ifp->if_type != IFT_BRIDGE)) { 317 nd->flags |= ND6_IFF_ACCEPT_RTADV; 318 /* If we globally accept rtadv, assume IPv6 on. */ 319 nd->flags &= ~ND6_IFF_IFDISABLED; 320 } 321 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 322 nd->flags |= ND6_IFF_NO_RADR; 323 324 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 325 nd6_setmtu0(ifp, nd); 326 327 return nd; 328 } 329 330 void 331 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 332 { 333 struct epoch_tracker et; 334 struct ifaddr *ifa, *next; 335 336 NET_EPOCH_ENTER(et); 337 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 338 if (ifa->ifa_addr->sa_family != AF_INET6) 339 continue; 340 341 /* stop DAD processing */ 342 nd6_dad_stop(ifa); 343 } 344 NET_EPOCH_EXIT(et); 345 346 free(nd, M_IP6NDP); 347 } 348 349 /* 350 * Reset ND level link MTU. This function is called when the physical MTU 351 * changes, which means we might have to adjust the ND level MTU. 352 */ 353 void 354 nd6_setmtu(struct ifnet *ifp) 355 { 356 if (ifp->if_afdata[AF_INET6] == NULL) 357 return; 358 359 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 360 } 361 362 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 363 void 364 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 365 { 366 u_int32_t omaxmtu; 367 368 omaxmtu = ndi->maxmtu; 369 ndi->maxmtu = ifp->if_mtu; 370 371 /* 372 * Decreasing the interface MTU under IPV6 minimum MTU may cause 373 * undesirable situation. We thus notify the operator of the change 374 * explicitly. The check for omaxmtu is necessary to restrict the 375 * log to the case of changing the MTU, not initializing it. 376 */ 377 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 378 log(LOG_NOTICE, "nd6_setmtu0: " 379 "new link MTU on %s (%lu) is too small for IPv6\n", 380 if_name(ifp), (unsigned long)ndi->maxmtu); 381 } 382 } 383 384 void 385 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 386 { 387 388 bzero(ndopts, sizeof(*ndopts)); 389 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 390 ndopts->nd_opts_last 391 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 392 393 if (icmp6len == 0) { 394 ndopts->nd_opts_done = 1; 395 ndopts->nd_opts_search = NULL; 396 } 397 } 398 399 /* 400 * Take one ND option. 401 */ 402 struct nd_opt_hdr * 403 nd6_option(union nd_opts *ndopts) 404 { 405 struct nd_opt_hdr *nd_opt; 406 int olen; 407 408 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 409 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 410 __func__)); 411 if (ndopts->nd_opts_search == NULL) 412 return NULL; 413 if (ndopts->nd_opts_done) 414 return NULL; 415 416 nd_opt = ndopts->nd_opts_search; 417 418 /* make sure nd_opt_len is inside the buffer */ 419 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 420 bzero(ndopts, sizeof(*ndopts)); 421 return NULL; 422 } 423 424 olen = nd_opt->nd_opt_len << 3; 425 if (olen == 0) { 426 /* 427 * Message validation requires that all included 428 * options have a length that is greater than zero. 429 */ 430 bzero(ndopts, sizeof(*ndopts)); 431 return NULL; 432 } 433 434 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 435 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 436 /* option overruns the end of buffer, invalid */ 437 bzero(ndopts, sizeof(*ndopts)); 438 return NULL; 439 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 440 /* reached the end of options chain */ 441 ndopts->nd_opts_done = 1; 442 ndopts->nd_opts_search = NULL; 443 } 444 return nd_opt; 445 } 446 447 /* 448 * Parse multiple ND options. 449 * This function is much easier to use, for ND routines that do not need 450 * multiple options of the same type. 451 */ 452 int 453 nd6_options(union nd_opts *ndopts) 454 { 455 struct nd_opt_hdr *nd_opt; 456 int i = 0; 457 458 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 459 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 460 __func__)); 461 if (ndopts->nd_opts_search == NULL) 462 return 0; 463 464 while (1) { 465 nd_opt = nd6_option(ndopts); 466 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 467 /* 468 * Message validation requires that all included 469 * options have a length that is greater than zero. 470 */ 471 ICMP6STAT_INC(icp6s_nd_badopt); 472 bzero(ndopts, sizeof(*ndopts)); 473 return -1; 474 } 475 476 if (nd_opt == NULL) 477 goto skip1; 478 479 switch (nd_opt->nd_opt_type) { 480 case ND_OPT_SOURCE_LINKADDR: 481 case ND_OPT_TARGET_LINKADDR: 482 case ND_OPT_MTU: 483 case ND_OPT_REDIRECTED_HEADER: 484 case ND_OPT_NONCE: 485 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 486 nd6log((LOG_INFO, 487 "duplicated ND6 option found (type=%d)\n", 488 nd_opt->nd_opt_type)); 489 /* XXX bark? */ 490 } else { 491 ndopts->nd_opt_array[nd_opt->nd_opt_type] 492 = nd_opt; 493 } 494 break; 495 case ND_OPT_PREFIX_INFORMATION: 496 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 497 ndopts->nd_opt_array[nd_opt->nd_opt_type] 498 = nd_opt; 499 } 500 ndopts->nd_opts_pi_end = 501 (struct nd_opt_prefix_info *)nd_opt; 502 break; 503 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 504 case ND_OPT_RDNSS: /* RFC 6106 */ 505 case ND_OPT_DNSSL: /* RFC 6106 */ 506 /* 507 * Silently ignore options we know and do not care about 508 * in the kernel. 509 */ 510 break; 511 default: 512 /* 513 * Unknown options must be silently ignored, 514 * to accommodate future extension to the protocol. 515 */ 516 nd6log((LOG_DEBUG, 517 "nd6_options: unsupported option %d - " 518 "option ignored\n", nd_opt->nd_opt_type)); 519 } 520 521 skip1: 522 i++; 523 if (i > V_nd6_maxndopt) { 524 ICMP6STAT_INC(icp6s_nd_toomanyopt); 525 nd6log((LOG_INFO, "too many loop in nd opt\n")); 526 break; 527 } 528 529 if (ndopts->nd_opts_done) 530 break; 531 } 532 533 return 0; 534 } 535 536 /* 537 * ND6 timer routine to handle ND6 entries 538 */ 539 static void 540 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 541 { 542 int canceled; 543 544 LLE_WLOCK_ASSERT(ln); 545 546 /* Do not schedule timers for child LLEs. */ 547 if (ln->la_flags & LLE_CHILD) 548 return; 549 550 if (tick < 0) { 551 ln->la_expire = 0; 552 ln->ln_ntick = 0; 553 canceled = callout_stop(&ln->lle_timer); 554 } else { 555 ln->la_expire = time_uptime + tick / hz; 556 LLE_ADDREF(ln); 557 if (tick > INT_MAX) { 558 ln->ln_ntick = tick - INT_MAX; 559 canceled = callout_reset(&ln->lle_timer, INT_MAX, 560 nd6_llinfo_timer, ln); 561 } else { 562 ln->ln_ntick = 0; 563 canceled = callout_reset(&ln->lle_timer, tick, 564 nd6_llinfo_timer, ln); 565 } 566 } 567 if (canceled > 0) 568 LLE_REMREF(ln); 569 } 570 571 /* 572 * Gets source address of the first packet in hold queue 573 * and stores it in @src. 574 * Returns pointer to @src (if hold queue is not empty) or NULL. 575 * 576 * Set noinline to be dtrace-friendly 577 */ 578 static __noinline struct in6_addr * 579 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 580 { 581 struct ip6_hdr hdr; 582 struct mbuf *m; 583 584 if (ln->la_hold == NULL) 585 return (NULL); 586 587 /* 588 * assume every packet in la_hold has the same IP header 589 */ 590 m = ln->la_hold; 591 if (sizeof(hdr) > m->m_len) 592 return (NULL); 593 594 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 595 *src = hdr.ip6_src; 596 597 return (src); 598 } 599 600 /* 601 * Checks if we need to switch from STALE state. 602 * 603 * RFC 4861 requires switching from STALE to DELAY state 604 * on first packet matching entry, waiting V_nd6_delay and 605 * transition to PROBE state (if upper layer confirmation was 606 * not received). 607 * 608 * This code performs a bit differently: 609 * On packet hit we don't change state (but desired state 610 * can be guessed by control plane). However, after V_nd6_delay 611 * seconds code will transition to PROBE state (so DELAY state 612 * is kinda skipped in most situations). 613 * 614 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 615 * we perform the following upon entering STALE state: 616 * 617 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 618 * if packet was transmitted at the start of given interval, we 619 * would be able to switch to PROBE state in V_nd6_delay seconds 620 * as user expects. 621 * 622 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 623 * lle in STALE state (remaining timer value stored in lle_remtime). 624 * 625 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 626 * seconds ago. 627 * 628 * Returns non-zero value if the entry is still STALE (storing 629 * the next timer interval in @pdelay). 630 * 631 * Returns zero value if original timer expired or we need to switch to 632 * PROBE (store that in @do_switch variable). 633 */ 634 static int 635 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 636 { 637 int nd_delay, nd_gctimer; 638 time_t lle_hittime; 639 long delay; 640 641 *do_switch = 0; 642 nd_gctimer = V_nd6_gctimer; 643 nd_delay = V_nd6_delay; 644 645 lle_hittime = llentry_get_hittime(lle); 646 647 if (lle_hittime == 0) { 648 /* 649 * Datapath feedback has been requested upon entering 650 * STALE state. No packets has been passed using this lle. 651 * Ask for the timer reschedule and keep STALE state. 652 */ 653 delay = (long)(MIN(nd_gctimer, nd_delay)); 654 delay *= hz; 655 if (lle->lle_remtime > delay) 656 lle->lle_remtime -= delay; 657 else { 658 delay = lle->lle_remtime; 659 lle->lle_remtime = 0; 660 } 661 662 if (delay == 0) { 663 /* 664 * The original ng6_gctime timeout ended, 665 * no more rescheduling. 666 */ 667 return (0); 668 } 669 670 *pdelay = delay; 671 return (1); 672 } 673 674 /* 675 * Packet received. Verify timestamp 676 */ 677 delay = (long)(time_uptime - lle_hittime); 678 if (delay < nd_delay) { 679 /* 680 * V_nd6_delay still not passed since the first 681 * hit in STALE state. 682 * Reschedule timer and return. 683 */ 684 *pdelay = (long)(nd_delay - delay) * hz; 685 return (1); 686 } 687 688 /* Request switching to probe */ 689 *do_switch = 1; 690 return (0); 691 } 692 693 /* 694 * Switch @lle state to new state optionally arming timers. 695 * 696 * Set noinline to be dtrace-friendly 697 */ 698 __noinline void 699 nd6_llinfo_setstate(struct llentry *lle, int newstate) 700 { 701 struct ifnet *ifp; 702 int nd_gctimer, nd_delay; 703 long delay, remtime; 704 705 delay = 0; 706 remtime = 0; 707 708 switch (newstate) { 709 case ND6_LLINFO_INCOMPLETE: 710 ifp = lle->lle_tbl->llt_ifp; 711 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 712 break; 713 case ND6_LLINFO_REACHABLE: 714 if (!ND6_LLINFO_PERMANENT(lle)) { 715 ifp = lle->lle_tbl->llt_ifp; 716 delay = (long)ND_IFINFO(ifp)->reachable * hz; 717 } 718 break; 719 case ND6_LLINFO_STALE: 720 721 llentry_request_feedback(lle); 722 nd_delay = V_nd6_delay; 723 nd_gctimer = V_nd6_gctimer; 724 725 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 726 remtime = (long)nd_gctimer * hz - delay; 727 break; 728 case ND6_LLINFO_DELAY: 729 lle->la_asked = 0; 730 delay = (long)V_nd6_delay * hz; 731 break; 732 } 733 734 if (delay > 0) 735 nd6_llinfo_settimer_locked(lle, delay); 736 737 lle->lle_remtime = remtime; 738 lle->ln_state = newstate; 739 } 740 741 /* 742 * Timer-dependent part of nd state machine. 743 * 744 * Set noinline to be dtrace-friendly 745 */ 746 static __noinline void 747 nd6_llinfo_timer(void *arg) 748 { 749 struct epoch_tracker et; 750 struct llentry *ln; 751 struct in6_addr *dst, *pdst, *psrc, src; 752 struct ifnet *ifp; 753 struct nd_ifinfo *ndi; 754 int do_switch, send_ns; 755 long delay; 756 757 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 758 ln = (struct llentry *)arg; 759 ifp = lltable_get_ifp(ln->lle_tbl); 760 CURVNET_SET(ifp->if_vnet); 761 762 ND6_RLOCK(); 763 LLE_WLOCK(ln); 764 if (callout_pending(&ln->lle_timer)) { 765 /* 766 * Here we are a bit odd here in the treatment of 767 * active/pending. If the pending bit is set, it got 768 * rescheduled before I ran. The active 769 * bit we ignore, since if it was stopped 770 * in ll_tablefree() and was currently running 771 * it would have return 0 so the code would 772 * not have deleted it since the callout could 773 * not be stopped so we want to go through 774 * with the delete here now. If the callout 775 * was restarted, the pending bit will be back on and 776 * we just want to bail since the callout_reset would 777 * return 1 and our reference would have been removed 778 * by nd6_llinfo_settimer_locked above since canceled 779 * would have been 1. 780 */ 781 LLE_WUNLOCK(ln); 782 ND6_RUNLOCK(); 783 CURVNET_RESTORE(); 784 return; 785 } 786 NET_EPOCH_ENTER(et); 787 ndi = ND_IFINFO(ifp); 788 send_ns = 0; 789 dst = &ln->r_l3addr.addr6; 790 pdst = dst; 791 792 if (ln->ln_ntick > 0) { 793 if (ln->ln_ntick > INT_MAX) { 794 ln->ln_ntick -= INT_MAX; 795 nd6_llinfo_settimer_locked(ln, INT_MAX); 796 } else { 797 ln->ln_ntick = 0; 798 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 799 } 800 goto done; 801 } 802 803 if (ln->la_flags & LLE_STATIC) { 804 goto done; 805 } 806 807 if (ln->la_flags & LLE_DELETED) { 808 nd6_free(&ln, 0); 809 goto done; 810 } 811 812 switch (ln->ln_state) { 813 case ND6_LLINFO_INCOMPLETE: 814 if (ln->la_asked < V_nd6_mmaxtries) { 815 ln->la_asked++; 816 send_ns = 1; 817 /* Send NS to multicast address */ 818 pdst = NULL; 819 } else { 820 struct mbuf *m; 821 822 ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); 823 824 m = ln->la_hold; 825 if (m != NULL) { 826 /* 827 * assuming every packet in la_hold has the 828 * same IP header. Send error after unlock. 829 */ 830 ln->la_hold = m->m_nextpkt; 831 m->m_nextpkt = NULL; 832 ln->la_numheld--; 833 } 834 nd6_free(&ln, 0); 835 if (m != NULL) { 836 struct mbuf *n = m; 837 838 /* 839 * if there are any ummapped mbufs, we 840 * must free them, rather than using 841 * them for an ICMP, as they cannot be 842 * checksummed. 843 */ 844 while ((n = n->m_next) != NULL) { 845 if (n->m_flags & M_EXTPG) 846 break; 847 } 848 if (n != NULL) { 849 m_freem(m); 850 m = NULL; 851 } else { 852 icmp6_error2(m, ICMP6_DST_UNREACH, 853 ICMP6_DST_UNREACH_ADDR, 0, ifp); 854 } 855 } 856 } 857 break; 858 case ND6_LLINFO_REACHABLE: 859 if (!ND6_LLINFO_PERMANENT(ln)) 860 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 861 break; 862 863 case ND6_LLINFO_STALE: 864 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 865 /* 866 * No packet has used this entry and GC timeout 867 * has not been passed. Reschedule timer and 868 * return. 869 */ 870 nd6_llinfo_settimer_locked(ln, delay); 871 break; 872 } 873 874 if (do_switch == 0) { 875 /* 876 * GC timer has ended and entry hasn't been used. 877 * Run Garbage collector (RFC 4861, 5.3) 878 */ 879 if (!ND6_LLINFO_PERMANENT(ln)) 880 nd6_free(&ln, 1); 881 break; 882 } 883 884 /* Entry has been used AND delay timer has ended. */ 885 886 /* FALLTHROUGH */ 887 888 case ND6_LLINFO_DELAY: 889 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 890 /* We need NUD */ 891 ln->la_asked = 1; 892 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 893 send_ns = 1; 894 } else 895 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 896 break; 897 case ND6_LLINFO_PROBE: 898 if (ln->la_asked < V_nd6_umaxtries) { 899 ln->la_asked++; 900 send_ns = 1; 901 } else { 902 nd6_free(&ln, 0); 903 } 904 break; 905 default: 906 panic("%s: paths in a dark night can be confusing: %d", 907 __func__, ln->ln_state); 908 } 909 done: 910 if (ln != NULL) 911 ND6_RUNLOCK(); 912 if (send_ns != 0) { 913 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 914 psrc = nd6_llinfo_get_holdsrc(ln, &src); 915 LLE_FREE_LOCKED(ln); 916 ln = NULL; 917 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 918 } 919 920 if (ln != NULL) 921 LLE_FREE_LOCKED(ln); 922 NET_EPOCH_EXIT(et); 923 CURVNET_RESTORE(); 924 } 925 926 /* 927 * ND6 timer routine to expire default route list and prefix list 928 */ 929 void 930 nd6_timer(void *arg) 931 { 932 CURVNET_SET((struct vnet *) arg); 933 struct epoch_tracker et; 934 struct nd_prhead prl; 935 struct nd_prefix *pr, *npr; 936 struct ifnet *ifp; 937 struct in6_ifaddr *ia6, *nia6; 938 uint64_t genid; 939 940 LIST_INIT(&prl); 941 942 NET_EPOCH_ENTER(et); 943 nd6_defrouter_timer(); 944 945 /* 946 * expire interface addresses. 947 * in the past the loop was inside prefix expiry processing. 948 * However, from a stricter speci-confrmance standpoint, we should 949 * rather separate address lifetimes and prefix lifetimes. 950 * 951 * XXXRW: in6_ifaddrhead locking. 952 */ 953 addrloop: 954 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 955 /* check address lifetime */ 956 if (IFA6_IS_INVALID(ia6)) { 957 int regen = 0; 958 959 /* 960 * If the expiring address is temporary, try 961 * regenerating a new one. This would be useful when 962 * we suspended a laptop PC, then turned it on after a 963 * period that could invalidate all temporary 964 * addresses. Although we may have to restart the 965 * loop (see below), it must be after purging the 966 * address. Otherwise, we'd see an infinite loop of 967 * regeneration. 968 */ 969 if (V_ip6_use_tempaddr && 970 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 971 if (regen_tmpaddr(ia6) == 0) 972 regen = 1; 973 } 974 975 in6_purgeaddr(&ia6->ia_ifa); 976 977 if (regen) 978 goto addrloop; /* XXX: see below */ 979 } else if (IFA6_IS_DEPRECATED(ia6)) { 980 int oldflags = ia6->ia6_flags; 981 982 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 983 984 /* 985 * If a temporary address has just become deprecated, 986 * regenerate a new one if possible. 987 */ 988 if (V_ip6_use_tempaddr && 989 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 990 (oldflags & IN6_IFF_DEPRECATED) == 0) { 991 if (regen_tmpaddr(ia6) == 0) { 992 /* 993 * A new temporary address is 994 * generated. 995 * XXX: this means the address chain 996 * has changed while we are still in 997 * the loop. Although the change 998 * would not cause disaster (because 999 * it's not a deletion, but an 1000 * addition,) we'd rather restart the 1001 * loop just for safety. Or does this 1002 * significantly reduce performance?? 1003 */ 1004 goto addrloop; 1005 } 1006 } 1007 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 1008 /* 1009 * Schedule DAD for a tentative address. This happens 1010 * if the interface was down or not running 1011 * when the address was configured. 1012 */ 1013 int delay; 1014 1015 delay = arc4random() % 1016 (MAX_RTR_SOLICITATION_DELAY * hz); 1017 nd6_dad_start((struct ifaddr *)ia6, delay); 1018 } else { 1019 /* 1020 * Check status of the interface. If it is down, 1021 * mark the address as tentative for future DAD. 1022 */ 1023 ifp = ia6->ia_ifp; 1024 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1025 ((ifp->if_flags & IFF_UP) == 0 || 1026 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1027 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1028 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1029 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1030 } 1031 1032 /* 1033 * A new RA might have made a deprecated address 1034 * preferred. 1035 */ 1036 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1037 } 1038 } 1039 NET_EPOCH_EXIT(et); 1040 1041 ND6_WLOCK(); 1042 restart: 1043 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1044 /* 1045 * Expire prefixes. Since the pltime is only used for 1046 * autoconfigured addresses, pltime processing for prefixes is 1047 * not necessary. 1048 * 1049 * Only unlink after all derived addresses have expired. This 1050 * may not occur until two hours after the prefix has expired 1051 * per RFC 4862. If the prefix expires before its derived 1052 * addresses, mark it off-link. This will be done automatically 1053 * after unlinking if no address references remain. 1054 */ 1055 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1056 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1057 continue; 1058 1059 if (pr->ndpr_addrcnt == 0) { 1060 nd6_prefix_unlink(pr, &prl); 1061 continue; 1062 } 1063 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1064 genid = V_nd6_list_genid; 1065 nd6_prefix_ref(pr); 1066 ND6_WUNLOCK(); 1067 ND6_ONLINK_LOCK(); 1068 (void)nd6_prefix_offlink(pr); 1069 ND6_ONLINK_UNLOCK(); 1070 ND6_WLOCK(); 1071 nd6_prefix_rele(pr); 1072 if (genid != V_nd6_list_genid) 1073 goto restart; 1074 } 1075 } 1076 ND6_WUNLOCK(); 1077 1078 while ((pr = LIST_FIRST(&prl)) != NULL) { 1079 LIST_REMOVE(pr, ndpr_entry); 1080 nd6_prefix_del(pr); 1081 } 1082 1083 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1084 nd6_timer, curvnet); 1085 1086 CURVNET_RESTORE(); 1087 } 1088 1089 /* 1090 * ia6 - deprecated/invalidated temporary address 1091 */ 1092 static int 1093 regen_tmpaddr(struct in6_ifaddr *ia6) 1094 { 1095 struct ifaddr *ifa; 1096 struct ifnet *ifp; 1097 struct in6_ifaddr *public_ifa6 = NULL; 1098 1099 NET_EPOCH_ASSERT(); 1100 1101 ifp = ia6->ia_ifa.ifa_ifp; 1102 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1103 struct in6_ifaddr *it6; 1104 1105 if (ifa->ifa_addr->sa_family != AF_INET6) 1106 continue; 1107 1108 it6 = (struct in6_ifaddr *)ifa; 1109 1110 /* ignore no autoconf addresses. */ 1111 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1112 continue; 1113 1114 /* ignore autoconf addresses with different prefixes. */ 1115 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1116 continue; 1117 1118 /* 1119 * Now we are looking at an autoconf address with the same 1120 * prefix as ours. If the address is temporary and is still 1121 * preferred, do not create another one. It would be rare, but 1122 * could happen, for example, when we resume a laptop PC after 1123 * a long period. 1124 */ 1125 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1126 !IFA6_IS_DEPRECATED(it6)) { 1127 public_ifa6 = NULL; 1128 break; 1129 } 1130 1131 /* 1132 * This is a public autoconf address that has the same prefix 1133 * as ours. If it is preferred, keep it. We can't break the 1134 * loop here, because there may be a still-preferred temporary 1135 * address with the prefix. 1136 */ 1137 if (!IFA6_IS_DEPRECATED(it6)) 1138 public_ifa6 = it6; 1139 } 1140 if (public_ifa6 != NULL) 1141 ifa_ref(&public_ifa6->ia_ifa); 1142 1143 if (public_ifa6 != NULL) { 1144 int e; 1145 1146 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1147 ifa_free(&public_ifa6->ia_ifa); 1148 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1149 " tmp addr,errno=%d\n", e); 1150 return (-1); 1151 } 1152 ifa_free(&public_ifa6->ia_ifa); 1153 return (0); 1154 } 1155 1156 return (-1); 1157 } 1158 1159 /* 1160 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1161 * cache entries are freed in in6_domifdetach(). 1162 */ 1163 void 1164 nd6_purge(struct ifnet *ifp) 1165 { 1166 struct nd_prhead prl; 1167 struct nd_prefix *pr, *npr; 1168 1169 LIST_INIT(&prl); 1170 1171 /* Purge default router list entries toward ifp. */ 1172 nd6_defrouter_purge(ifp); 1173 1174 ND6_WLOCK(); 1175 /* 1176 * Remove prefixes on ifp. We should have already removed addresses on 1177 * this interface, so no addresses should be referencing these prefixes. 1178 */ 1179 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1180 if (pr->ndpr_ifp == ifp) 1181 nd6_prefix_unlink(pr, &prl); 1182 } 1183 ND6_WUNLOCK(); 1184 1185 /* Delete the unlinked prefix objects. */ 1186 while ((pr = LIST_FIRST(&prl)) != NULL) { 1187 LIST_REMOVE(pr, ndpr_entry); 1188 nd6_prefix_del(pr); 1189 } 1190 1191 /* cancel default outgoing interface setting */ 1192 if (V_nd6_defifindex == ifp->if_index) 1193 nd6_setdefaultiface(0); 1194 1195 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1196 /* Refresh default router list. */ 1197 defrouter_select_fib(ifp->if_fib); 1198 } 1199 } 1200 1201 /* 1202 * the caller acquires and releases the lock on the lltbls 1203 * Returns the llentry locked 1204 */ 1205 struct llentry * 1206 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1207 { 1208 struct sockaddr_in6 sin6; 1209 struct llentry *ln; 1210 1211 bzero(&sin6, sizeof(sin6)); 1212 sin6.sin6_len = sizeof(struct sockaddr_in6); 1213 sin6.sin6_family = AF_INET6; 1214 sin6.sin6_addr = *addr6; 1215 1216 IF_AFDATA_LOCK_ASSERT(ifp); 1217 1218 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1219 1220 return (ln); 1221 } 1222 1223 static struct llentry * 1224 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1225 { 1226 struct sockaddr_in6 sin6; 1227 struct llentry *ln; 1228 1229 bzero(&sin6, sizeof(sin6)); 1230 sin6.sin6_len = sizeof(struct sockaddr_in6); 1231 sin6.sin6_family = AF_INET6; 1232 sin6.sin6_addr = *addr6; 1233 1234 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1235 if (ln != NULL) 1236 ln->ln_state = ND6_LLINFO_NOSTATE; 1237 1238 return (ln); 1239 } 1240 1241 /* 1242 * Test whether a given IPv6 address can be a neighbor. 1243 */ 1244 static bool 1245 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1246 { 1247 1248 /* 1249 * A link-local address is always a neighbor. 1250 * XXX: a link does not necessarily specify a single interface. 1251 */ 1252 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1253 struct sockaddr_in6 sin6_copy; 1254 u_int32_t zone; 1255 1256 /* 1257 * We need sin6_copy since sa6_recoverscope() may modify the 1258 * content (XXX). 1259 */ 1260 sin6_copy = *addr; 1261 if (sa6_recoverscope(&sin6_copy)) 1262 return (0); /* XXX: should be impossible */ 1263 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1264 return (0); 1265 if (sin6_copy.sin6_scope_id == zone) 1266 return (1); 1267 else 1268 return (0); 1269 } 1270 /* Checking global unicast */ 1271 1272 /* If an address is directly reachable, it is a neigbor */ 1273 struct nhop_object *nh; 1274 nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); 1275 if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) 1276 return (true); 1277 1278 /* 1279 * Check prefixes with desired on-link state, as some may be not 1280 * installed in the routing table. 1281 */ 1282 bool matched = false; 1283 struct nd_prefix *pr; 1284 ND6_RLOCK(); 1285 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1286 if (pr->ndpr_ifp != ifp) 1287 continue; 1288 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) 1289 continue; 1290 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1291 &addr->sin6_addr, &pr->ndpr_mask)) { 1292 matched = true; 1293 break; 1294 } 1295 } 1296 ND6_RUNLOCK(); 1297 if (matched) 1298 return (true); 1299 1300 /* 1301 * If the address is assigned on the node of the other side of 1302 * a p2p interface, the address should be a neighbor. 1303 */ 1304 if (ifp->if_flags & IFF_POINTOPOINT) { 1305 struct ifaddr *ifa; 1306 1307 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1308 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1309 continue; 1310 if (ifa->ifa_dstaddr != NULL && 1311 sa_equal(addr, ifa->ifa_dstaddr)) { 1312 return (true); 1313 } 1314 } 1315 } 1316 1317 /* 1318 * If the default router list is empty, all addresses are regarded 1319 * as on-link, and thus, as a neighbor. 1320 */ 1321 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1322 nd6_defrouter_list_empty() && 1323 V_nd6_defifindex == ifp->if_index) { 1324 return (1); 1325 } 1326 1327 return (0); 1328 } 1329 1330 /* 1331 * Detect if a given IPv6 address identifies a neighbor on a given link. 1332 * XXX: should take care of the destination of a p2p link? 1333 */ 1334 int 1335 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1336 { 1337 struct llentry *lle; 1338 int rc = 0; 1339 1340 NET_EPOCH_ASSERT(); 1341 IF_AFDATA_UNLOCK_ASSERT(ifp); 1342 if (nd6_is_new_addr_neighbor(addr, ifp)) 1343 return (1); 1344 1345 /* 1346 * Even if the address matches none of our addresses, it might be 1347 * in the neighbor cache. 1348 */ 1349 if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { 1350 LLE_RUNLOCK(lle); 1351 rc = 1; 1352 } 1353 return (rc); 1354 } 1355 1356 static __noinline void 1357 nd6_free_children(struct llentry *lle) 1358 { 1359 struct llentry *child_lle; 1360 1361 NET_EPOCH_ASSERT(); 1362 LLE_WLOCK_ASSERT(lle); 1363 1364 while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { 1365 LLE_WLOCK(child_lle); 1366 lltable_unlink_child_entry(child_lle); 1367 llentry_free(child_lle); 1368 } 1369 } 1370 1371 /* 1372 * Tries to update @lle address/prepend data with new @lladdr. 1373 * 1374 * Returns true on success. 1375 * In any case, @lle is returned wlocked. 1376 */ 1377 static __noinline bool 1378 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1379 { 1380 u_char buf[LLE_MAX_LINKHDR]; 1381 int fam, off; 1382 size_t sz; 1383 1384 sz = sizeof(buf); 1385 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) 1386 return (false); 1387 1388 /* Update data */ 1389 lltable_set_entry_addr(ifp, lle, buf, sz, off); 1390 1391 struct llentry *child_lle; 1392 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 1393 LLE_WLOCK(child_lle); 1394 fam = child_lle->r_family; 1395 sz = sizeof(buf); 1396 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { 1397 /* success */ 1398 lltable_set_entry_addr(ifp, child_lle, buf, sz, off); 1399 child_lle->ln_state = ND6_LLINFO_REACHABLE; 1400 } 1401 LLE_WUNLOCK(child_lle); 1402 } 1403 1404 return (true); 1405 } 1406 1407 bool 1408 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1409 { 1410 NET_EPOCH_ASSERT(); 1411 LLE_WLOCK_ASSERT(lle); 1412 1413 if (!lltable_acquire_wlock(ifp, lle)) 1414 return (false); 1415 bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); 1416 IF_AFDATA_WUNLOCK(ifp); 1417 1418 return (ret); 1419 } 1420 1421 /* 1422 * Free an nd6 llinfo entry. 1423 * Since the function would cause significant changes in the kernel, DO NOT 1424 * make it global, unless you have a strong reason for the change, and are sure 1425 * that the change is safe. 1426 * 1427 * Set noinline to be dtrace-friendly 1428 */ 1429 static __noinline void 1430 nd6_free(struct llentry **lnp, int gc) 1431 { 1432 struct ifnet *ifp; 1433 struct llentry *ln; 1434 struct nd_defrouter *dr; 1435 1436 ln = *lnp; 1437 *lnp = NULL; 1438 1439 LLE_WLOCK_ASSERT(ln); 1440 ND6_RLOCK_ASSERT(); 1441 1442 KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); 1443 1444 ifp = lltable_get_ifp(ln->lle_tbl); 1445 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1446 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1447 else 1448 dr = NULL; 1449 ND6_RUNLOCK(); 1450 1451 if ((ln->la_flags & LLE_DELETED) == 0) 1452 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1453 1454 /* 1455 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1456 * even though it is not harmful, it was not really necessary. 1457 */ 1458 1459 /* cancel timer */ 1460 nd6_llinfo_settimer_locked(ln, -1); 1461 1462 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1463 if (dr != NULL && dr->expire && 1464 ln->ln_state == ND6_LLINFO_STALE && gc) { 1465 /* 1466 * If the reason for the deletion is just garbage 1467 * collection, and the neighbor is an active default 1468 * router, do not delete it. Instead, reset the GC 1469 * timer using the router's lifetime. 1470 * Simply deleting the entry would affect default 1471 * router selection, which is not necessarily a good 1472 * thing, especially when we're using router preference 1473 * values. 1474 * XXX: the check for ln_state would be redundant, 1475 * but we intentionally keep it just in case. 1476 */ 1477 if (dr->expire > time_uptime) 1478 nd6_llinfo_settimer_locked(ln, 1479 (dr->expire - time_uptime) * hz); 1480 else 1481 nd6_llinfo_settimer_locked(ln, 1482 (long)V_nd6_gctimer * hz); 1483 1484 LLE_REMREF(ln); 1485 LLE_WUNLOCK(ln); 1486 defrouter_rele(dr); 1487 return; 1488 } 1489 1490 if (dr) { 1491 /* 1492 * Unreachability of a router might affect the default 1493 * router selection and on-link detection of advertised 1494 * prefixes. 1495 */ 1496 1497 /* 1498 * Temporarily fake the state to choose a new default 1499 * router and to perform on-link determination of 1500 * prefixes correctly. 1501 * Below the state will be set correctly, 1502 * or the entry itself will be deleted. 1503 */ 1504 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1505 } 1506 1507 if (ln->ln_router || dr) { 1508 /* 1509 * We need to unlock to avoid a LOR with rt6_flush() with the 1510 * rnh and for the calls to pfxlist_onlink_check() and 1511 * defrouter_select_fib() in the block further down for calls 1512 * into nd6_lookup(). We still hold a ref. 1513 */ 1514 LLE_WUNLOCK(ln); 1515 1516 /* 1517 * rt6_flush must be called whether or not the neighbor 1518 * is in the Default Router List. 1519 * See a corresponding comment in nd6_na_input(). 1520 */ 1521 rt6_flush(&ln->r_l3addr.addr6, ifp); 1522 } 1523 1524 if (dr) { 1525 /* 1526 * Since defrouter_select_fib() does not affect the 1527 * on-link determination and MIP6 needs the check 1528 * before the default router selection, we perform 1529 * the check now. 1530 */ 1531 pfxlist_onlink_check(); 1532 1533 /* 1534 * Refresh default router list. 1535 */ 1536 defrouter_select_fib(dr->ifp->if_fib); 1537 } 1538 1539 /* 1540 * If this entry was added by an on-link redirect, remove the 1541 * corresponding host route. 1542 */ 1543 if (ln->la_flags & LLE_REDIRECT) 1544 nd6_free_redirect(ln); 1545 1546 if (ln->ln_router || dr) 1547 LLE_WLOCK(ln); 1548 } 1549 1550 /* 1551 * Save to unlock. We still hold an extra reference and will not 1552 * free(9) in llentry_free() if someone else holds one as well. 1553 */ 1554 LLE_WUNLOCK(ln); 1555 IF_AFDATA_LOCK(ifp); 1556 LLE_WLOCK(ln); 1557 /* Guard against race with other llentry_free(). */ 1558 if (ln->la_flags & LLE_LINKED) { 1559 /* Remove callout reference */ 1560 LLE_REMREF(ln); 1561 lltable_unlink_entry(ln->lle_tbl, ln); 1562 } 1563 IF_AFDATA_UNLOCK(ifp); 1564 1565 nd6_free_children(ln); 1566 1567 llentry_free(ln); 1568 if (dr != NULL) 1569 defrouter_rele(dr); 1570 } 1571 1572 static int 1573 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1574 { 1575 1576 if (nh->nh_flags & NHF_REDIRECT) 1577 return (1); 1578 1579 return (0); 1580 } 1581 1582 /* 1583 * Remove the rtentry for the given llentry, 1584 * both of which were installed by a redirect. 1585 */ 1586 static void 1587 nd6_free_redirect(const struct llentry *ln) 1588 { 1589 int fibnum; 1590 struct sockaddr_in6 sin6; 1591 struct rib_cmd_info rc; 1592 struct epoch_tracker et; 1593 1594 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1595 1596 NET_EPOCH_ENTER(et); 1597 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1598 rib_del_route_px(fibnum, (struct sockaddr *)&sin6, 128, 1599 nd6_isdynrte, NULL, 0, &rc); 1600 NET_EPOCH_EXIT(et); 1601 } 1602 1603 /* 1604 * Updates status of the default router route. 1605 */ 1606 static void 1607 check_release_defrouter(const struct rib_cmd_info *rc, void *_cbdata) 1608 { 1609 struct nd_defrouter *dr; 1610 struct nhop_object *nh; 1611 1612 nh = rc->rc_nh_old; 1613 if (rc->rc_cmd == RTM_DELETE && (nh->nh_flags & NHF_DEFAULT) != 0) { 1614 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1615 if (dr != NULL) { 1616 dr->installed = 0; 1617 defrouter_rele(dr); 1618 } 1619 } 1620 } 1621 1622 void 1623 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1624 { 1625 #ifdef ROUTE_MPATH 1626 rib_decompose_notification(rc, check_release_defrouter, NULL); 1627 if (rc->rc_cmd == RTM_DELETE && !NH_IS_NHGRP(rc->rc_nh_old)) 1628 check_release_defrouter(rc, NULL); 1629 #else 1630 check_release_defrouter(rc, NULL); 1631 #endif 1632 } 1633 1634 int 1635 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1636 { 1637 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1638 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1639 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1640 struct epoch_tracker et; 1641 int error = 0; 1642 1643 if (ifp->if_afdata[AF_INET6] == NULL) 1644 return (EPFNOSUPPORT); 1645 switch (cmd) { 1646 case OSIOCGIFINFO_IN6: 1647 #define ND ndi->ndi 1648 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1649 bzero(&ND, sizeof(ND)); 1650 ND.linkmtu = IN6_LINKMTU(ifp); 1651 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1652 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1653 ND.reachable = ND_IFINFO(ifp)->reachable; 1654 ND.retrans = ND_IFINFO(ifp)->retrans; 1655 ND.flags = ND_IFINFO(ifp)->flags; 1656 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1657 ND.chlim = ND_IFINFO(ifp)->chlim; 1658 break; 1659 case SIOCGIFINFO_IN6: 1660 ND = *ND_IFINFO(ifp); 1661 break; 1662 case SIOCSIFINFO_IN6: 1663 /* 1664 * used to change host variables from userland. 1665 * intended for a use on router to reflect RA configurations. 1666 */ 1667 /* 0 means 'unspecified' */ 1668 if (ND.linkmtu != 0) { 1669 if (ND.linkmtu < IPV6_MMTU || 1670 ND.linkmtu > IN6_LINKMTU(ifp)) { 1671 error = EINVAL; 1672 break; 1673 } 1674 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1675 } 1676 1677 if (ND.basereachable != 0) { 1678 int obasereachable = ND_IFINFO(ifp)->basereachable; 1679 1680 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1681 if (ND.basereachable != obasereachable) 1682 ND_IFINFO(ifp)->reachable = 1683 ND_COMPUTE_RTIME(ND.basereachable); 1684 } 1685 if (ND.retrans != 0) 1686 ND_IFINFO(ifp)->retrans = ND.retrans; 1687 if (ND.chlim != 0) 1688 ND_IFINFO(ifp)->chlim = ND.chlim; 1689 /* FALLTHROUGH */ 1690 case SIOCSIFINFO_FLAGS: 1691 { 1692 struct ifaddr *ifa; 1693 struct in6_ifaddr *ia; 1694 1695 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1696 !(ND.flags & ND6_IFF_IFDISABLED)) { 1697 /* ifdisabled 1->0 transision */ 1698 1699 /* 1700 * If the interface is marked as ND6_IFF_IFDISABLED and 1701 * has an link-local address with IN6_IFF_DUPLICATED, 1702 * do not clear ND6_IFF_IFDISABLED. 1703 * See RFC 4862, Section 5.4.5. 1704 */ 1705 NET_EPOCH_ENTER(et); 1706 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1707 if (ifa->ifa_addr->sa_family != AF_INET6) 1708 continue; 1709 ia = (struct in6_ifaddr *)ifa; 1710 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1711 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1712 break; 1713 } 1714 NET_EPOCH_EXIT(et); 1715 1716 if (ifa != NULL) { 1717 /* LLA is duplicated. */ 1718 ND.flags |= ND6_IFF_IFDISABLED; 1719 log(LOG_ERR, "Cannot enable an interface" 1720 " with a link-local address marked" 1721 " duplicate.\n"); 1722 } else { 1723 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1724 if (ifp->if_flags & IFF_UP) 1725 in6_if_up(ifp); 1726 } 1727 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1728 (ND.flags & ND6_IFF_IFDISABLED)) { 1729 /* ifdisabled 0->1 transision */ 1730 /* Mark all IPv6 address as tentative. */ 1731 1732 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1733 if (V_ip6_dad_count > 0 && 1734 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1735 NET_EPOCH_ENTER(et); 1736 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1737 ifa_link) { 1738 if (ifa->ifa_addr->sa_family != 1739 AF_INET6) 1740 continue; 1741 ia = (struct in6_ifaddr *)ifa; 1742 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1743 } 1744 NET_EPOCH_EXIT(et); 1745 } 1746 } 1747 1748 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1749 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1750 /* auto_linklocal 0->1 transision */ 1751 1752 /* If no link-local address on ifp, configure */ 1753 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1754 in6_ifattach(ifp, NULL); 1755 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1756 ifp->if_flags & IFF_UP) { 1757 /* 1758 * When the IF already has 1759 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1760 * address is assigned, and IFF_UP, try to 1761 * assign one. 1762 */ 1763 NET_EPOCH_ENTER(et); 1764 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1765 ifa_link) { 1766 if (ifa->ifa_addr->sa_family != 1767 AF_INET6) 1768 continue; 1769 ia = (struct in6_ifaddr *)ifa; 1770 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1771 break; 1772 } 1773 NET_EPOCH_EXIT(et); 1774 if (ifa != NULL) 1775 /* No LLA is configured. */ 1776 in6_ifattach(ifp, NULL); 1777 } 1778 } 1779 ND_IFINFO(ifp)->flags = ND.flags; 1780 break; 1781 } 1782 #undef ND 1783 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1784 /* sync kernel routing table with the default router list */ 1785 defrouter_reset(); 1786 defrouter_select_fib(RT_ALL_FIBS); 1787 break; 1788 case SIOCSPFXFLUSH_IN6: 1789 { 1790 /* flush all the prefix advertised by routers */ 1791 struct in6_ifaddr *ia, *ia_next; 1792 struct nd_prefix *pr, *next; 1793 struct nd_prhead prl; 1794 1795 LIST_INIT(&prl); 1796 1797 ND6_WLOCK(); 1798 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1799 if (ND6_PREFIX_WITH_ROUTER(pr)) 1800 nd6_prefix_unlink(pr, &prl); 1801 } 1802 ND6_WUNLOCK(); 1803 1804 while ((pr = LIST_FIRST(&prl)) != NULL) { 1805 LIST_REMOVE(pr, ndpr_entry); 1806 /* XXXRW: in6_ifaddrhead locking. */ 1807 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1808 ia_next) { 1809 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1810 continue; 1811 1812 if (ia->ia6_ndpr == pr) 1813 in6_purgeaddr(&ia->ia_ifa); 1814 } 1815 nd6_prefix_del(pr); 1816 } 1817 break; 1818 } 1819 case SIOCSRTRFLUSH_IN6: 1820 { 1821 /* flush all the default routers */ 1822 1823 defrouter_reset(); 1824 nd6_defrouter_flush_all(); 1825 defrouter_select_fib(RT_ALL_FIBS); 1826 break; 1827 } 1828 case SIOCGNBRINFO_IN6: 1829 { 1830 struct llentry *ln; 1831 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1832 1833 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1834 return (error); 1835 1836 NET_EPOCH_ENTER(et); 1837 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); 1838 NET_EPOCH_EXIT(et); 1839 1840 if (ln == NULL) { 1841 error = EINVAL; 1842 break; 1843 } 1844 nbi->state = ln->ln_state; 1845 nbi->asked = ln->la_asked; 1846 nbi->isrouter = ln->ln_router; 1847 if (ln->la_expire == 0) 1848 nbi->expire = 0; 1849 else 1850 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1851 (time_second - time_uptime); 1852 LLE_RUNLOCK(ln); 1853 break; 1854 } 1855 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1856 ndif->ifindex = V_nd6_defifindex; 1857 break; 1858 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1859 return (nd6_setdefaultiface(ndif->ifindex)); 1860 } 1861 return (error); 1862 } 1863 1864 /* 1865 * Calculates new isRouter value based on provided parameters and 1866 * returns it. 1867 */ 1868 static int 1869 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1870 int ln_router) 1871 { 1872 1873 /* 1874 * ICMP6 type dependent behavior. 1875 * 1876 * NS: clear IsRouter if new entry 1877 * RS: clear IsRouter 1878 * RA: set IsRouter if there's lladdr 1879 * redir: clear IsRouter if new entry 1880 * 1881 * RA case, (1): 1882 * The spec says that we must set IsRouter in the following cases: 1883 * - If lladdr exist, set IsRouter. This means (1-5). 1884 * - If it is old entry (!newentry), set IsRouter. This means (7). 1885 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1886 * A quetion arises for (1) case. (1) case has no lladdr in the 1887 * neighbor cache, this is similar to (6). 1888 * This case is rare but we figured that we MUST NOT set IsRouter. 1889 * 1890 * is_new old_addr new_addr NS RS RA redir 1891 * D R 1892 * 0 n n (1) c ? s 1893 * 0 y n (2) c s s 1894 * 0 n y (3) c s s 1895 * 0 y y (4) c s s 1896 * 0 y y (5) c s s 1897 * 1 -- n (6) c c c s 1898 * 1 -- y (7) c c s c s 1899 * 1900 * (c=clear s=set) 1901 */ 1902 switch (type & 0xff) { 1903 case ND_NEIGHBOR_SOLICIT: 1904 /* 1905 * New entry must have is_router flag cleared. 1906 */ 1907 if (is_new) /* (6-7) */ 1908 ln_router = 0; 1909 break; 1910 case ND_REDIRECT: 1911 /* 1912 * If the icmp is a redirect to a better router, always set the 1913 * is_router flag. Otherwise, if the entry is newly created, 1914 * clear the flag. [RFC 2461, sec 8.3] 1915 */ 1916 if (code == ND_REDIRECT_ROUTER) 1917 ln_router = 1; 1918 else { 1919 if (is_new) /* (6-7) */ 1920 ln_router = 0; 1921 } 1922 break; 1923 case ND_ROUTER_SOLICIT: 1924 /* 1925 * is_router flag must always be cleared. 1926 */ 1927 ln_router = 0; 1928 break; 1929 case ND_ROUTER_ADVERT: 1930 /* 1931 * Mark an entry with lladdr as a router. 1932 */ 1933 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1934 (is_new && new_addr)) { /* (7) */ 1935 ln_router = 1; 1936 } 1937 break; 1938 } 1939 1940 return (ln_router); 1941 } 1942 1943 /* 1944 * Create neighbor cache entry and cache link-layer address, 1945 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1946 * 1947 * type - ICMP6 type 1948 * code - type dependent information 1949 * 1950 */ 1951 void 1952 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1953 int lladdrlen, int type, int code) 1954 { 1955 struct llentry *ln = NULL, *ln_tmp; 1956 int is_newentry; 1957 int do_update; 1958 int olladdr; 1959 int llchange; 1960 int flags; 1961 uint16_t router = 0; 1962 struct mbuf *chain = NULL; 1963 u_char linkhdr[LLE_MAX_LINKHDR]; 1964 size_t linkhdrsize; 1965 int lladdr_off; 1966 1967 NET_EPOCH_ASSERT(); 1968 IF_AFDATA_UNLOCK_ASSERT(ifp); 1969 1970 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1971 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1972 1973 /* nothing must be updated for unspecified address */ 1974 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1975 return; 1976 1977 /* 1978 * Validation about ifp->if_addrlen and lladdrlen must be done in 1979 * the caller. 1980 * 1981 * XXX If the link does not have link-layer adderss, what should 1982 * we do? (ifp->if_addrlen == 0) 1983 * Spec says nothing in sections for RA, RS and NA. There's small 1984 * description on it in NS section (RFC 2461 7.2.3). 1985 */ 1986 flags = lladdr ? LLE_EXCLUSIVE : 0; 1987 ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); 1988 is_newentry = 0; 1989 if (ln == NULL) { 1990 flags |= LLE_EXCLUSIVE; 1991 ln = nd6_alloc(from, 0, ifp); 1992 if (ln == NULL) 1993 return; 1994 1995 /* 1996 * Since we already know all the data for the new entry, 1997 * fill it before insertion. 1998 */ 1999 if (lladdr != NULL) { 2000 linkhdrsize = sizeof(linkhdr); 2001 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2002 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2003 lltable_free_entry(LLTABLE6(ifp), ln); 2004 return; 2005 } 2006 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2007 lladdr_off); 2008 } 2009 2010 IF_AFDATA_WLOCK(ifp); 2011 LLE_WLOCK(ln); 2012 /* Prefer any existing lle over newly-created one */ 2013 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2014 if (ln_tmp == NULL) 2015 lltable_link_entry(LLTABLE6(ifp), ln); 2016 IF_AFDATA_WUNLOCK(ifp); 2017 if (ln_tmp == NULL) { 2018 /* No existing lle, mark as new entry (6,7) */ 2019 is_newentry = 1; 2020 if (lladdr != NULL) { /* (7) */ 2021 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2022 EVENTHANDLER_INVOKE(lle_event, ln, 2023 LLENTRY_RESOLVED); 2024 } 2025 } else { 2026 lltable_free_entry(LLTABLE6(ifp), ln); 2027 ln = ln_tmp; 2028 ln_tmp = NULL; 2029 } 2030 } 2031 /* do nothing if static ndp is set */ 2032 if ((ln->la_flags & LLE_STATIC)) { 2033 if (flags & LLE_EXCLUSIVE) 2034 LLE_WUNLOCK(ln); 2035 else 2036 LLE_RUNLOCK(ln); 2037 return; 2038 } 2039 2040 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2041 if (olladdr && lladdr) { 2042 llchange = bcmp(lladdr, ln->ll_addr, 2043 ifp->if_addrlen); 2044 } else if (!olladdr && lladdr) 2045 llchange = 1; 2046 else 2047 llchange = 0; 2048 2049 /* 2050 * newentry olladdr lladdr llchange (*=record) 2051 * 0 n n -- (1) 2052 * 0 y n -- (2) 2053 * 0 n y y (3) * STALE 2054 * 0 y y n (4) * 2055 * 0 y y y (5) * STALE 2056 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2057 * 1 -- y -- (7) * STALE 2058 */ 2059 2060 do_update = 0; 2061 if (is_newentry == 0 && llchange != 0) { 2062 do_update = 1; /* (3,5) */ 2063 2064 /* 2065 * Record source link-layer address 2066 * XXX is it dependent to ifp->if_type? 2067 */ 2068 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { 2069 /* Entry was deleted */ 2070 LLE_WUNLOCK(ln); 2071 return; 2072 } 2073 2074 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2075 2076 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2077 2078 if (ln->la_hold != NULL) 2079 chain = nd6_grab_holdchain(ln); 2080 } 2081 2082 /* Calculates new router status */ 2083 router = nd6_is_router(type, code, is_newentry, olladdr, 2084 lladdr != NULL ? 1 : 0, ln->ln_router); 2085 2086 ln->ln_router = router; 2087 /* Mark non-router redirects with special flag */ 2088 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2089 ln->la_flags |= LLE_REDIRECT; 2090 2091 if (flags & LLE_EXCLUSIVE) 2092 LLE_WUNLOCK(ln); 2093 else 2094 LLE_RUNLOCK(ln); 2095 2096 if (chain != NULL) 2097 nd6_flush_holdchain(ifp, ln, chain); 2098 if (do_update) 2099 nd6_flush_children_holdchain(ifp, ln); 2100 2101 /* 2102 * When the link-layer address of a router changes, select the 2103 * best router again. In particular, when the neighbor entry is newly 2104 * created, it might affect the selection policy. 2105 * Question: can we restrict the first condition to the "is_newentry" 2106 * case? 2107 * XXX: when we hear an RA from a new router with the link-layer 2108 * address option, defrouter_select_fib() is called twice, since 2109 * defrtrlist_update called the function as well. However, I believe 2110 * we can compromise the overhead, since it only happens the first 2111 * time. 2112 * XXX: although defrouter_select_fib() should not have a bad effect 2113 * for those are not autoconfigured hosts, we explicitly avoid such 2114 * cases for safety. 2115 */ 2116 if ((do_update || is_newentry) && router && 2117 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2118 /* 2119 * guaranteed recursion 2120 */ 2121 defrouter_select_fib(ifp->if_fib); 2122 } 2123 } 2124 2125 static void 2126 nd6_slowtimo(void *arg) 2127 { 2128 struct epoch_tracker et; 2129 CURVNET_SET((struct vnet *) arg); 2130 struct nd_ifinfo *nd6if; 2131 struct ifnet *ifp; 2132 2133 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2134 nd6_slowtimo, curvnet); 2135 NET_EPOCH_ENTER(et); 2136 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2137 if (ifp->if_afdata[AF_INET6] == NULL) 2138 continue; 2139 nd6if = ND_IFINFO(ifp); 2140 if (nd6if->basereachable && /* already initialized */ 2141 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2142 /* 2143 * Since reachable time rarely changes by router 2144 * advertisements, we SHOULD insure that a new random 2145 * value gets recomputed at least once every few hours. 2146 * (RFC 2461, 6.3.4) 2147 */ 2148 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2149 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2150 } 2151 } 2152 NET_EPOCH_EXIT(et); 2153 CURVNET_RESTORE(); 2154 } 2155 2156 struct mbuf * 2157 nd6_grab_holdchain(struct llentry *ln) 2158 { 2159 struct mbuf *chain; 2160 2161 LLE_WLOCK_ASSERT(ln); 2162 2163 chain = ln->la_hold; 2164 ln->la_hold = NULL; 2165 ln->la_numheld = 0; 2166 2167 if (ln->ln_state == ND6_LLINFO_STALE) { 2168 /* 2169 * The first time we send a packet to a 2170 * neighbor whose entry is STALE, we have 2171 * to change the state to DELAY and a sets 2172 * a timer to expire in DELAY_FIRST_PROBE_TIME 2173 * seconds to ensure do neighbor unreachability 2174 * detection on expiration. 2175 * (RFC 2461 7.3.3) 2176 */ 2177 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2178 } 2179 2180 return (chain); 2181 } 2182 2183 int 2184 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2185 struct sockaddr_in6 *dst, struct route *ro) 2186 { 2187 int error; 2188 int ip6len; 2189 struct ip6_hdr *ip6; 2190 struct m_tag *mtag; 2191 2192 #ifdef MAC 2193 mac_netinet6_nd6_send(ifp, m); 2194 #endif 2195 2196 /* 2197 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2198 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2199 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2200 * to be diverted to user space. When re-injected into the kernel, 2201 * send_output() will directly dispatch them to the outgoing interface. 2202 */ 2203 if (send_sendso_input_hook != NULL) { 2204 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2205 if (mtag != NULL) { 2206 ip6 = mtod(m, struct ip6_hdr *); 2207 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2208 /* Use the SEND socket */ 2209 error = send_sendso_input_hook(m, ifp, SND_OUT, 2210 ip6len); 2211 /* -1 == no app on SEND socket */ 2212 if (error == 0 || error != -1) 2213 return (error); 2214 } 2215 } 2216 2217 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2218 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2219 mtod(m, struct ip6_hdr *)); 2220 2221 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2222 origifp = ifp; 2223 2224 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2225 return (error); 2226 } 2227 2228 /* 2229 * Lookup link headerfor @sa_dst address. Stores found 2230 * data in @desten buffer. Copy of lle ln_flags can be also 2231 * saved in @pflags if @pflags is non-NULL. 2232 * 2233 * If destination LLE does not exists or lle state modification 2234 * is required, call "slow" version. 2235 * 2236 * Return values: 2237 * - 0 on success (address copied to buffer). 2238 * - EWOULDBLOCK (no local error, but address is still unresolved) 2239 * - other errors (alloc failure, etc) 2240 */ 2241 int 2242 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, 2243 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2244 struct llentry **plle) 2245 { 2246 struct llentry *ln = NULL; 2247 const struct sockaddr_in6 *dst6; 2248 2249 NET_EPOCH_ASSERT(); 2250 2251 if (pflags != NULL) 2252 *pflags = 0; 2253 2254 dst6 = (const struct sockaddr_in6 *)sa_dst; 2255 2256 /* discard the packet if IPv6 operation is disabled on the interface */ 2257 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2258 m_freem(m); 2259 return (ENETDOWN); /* better error? */ 2260 } 2261 2262 if (m != NULL && m->m_flags & M_MCAST) { 2263 switch (ifp->if_type) { 2264 case IFT_ETHER: 2265 case IFT_L2VLAN: 2266 case IFT_BRIDGE: 2267 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2268 desten); 2269 return (0); 2270 default: 2271 m_freem(m); 2272 return (EAFNOSUPPORT); 2273 } 2274 } 2275 2276 int family = gw_flags >> 16; 2277 int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; 2278 ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); 2279 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2280 /* Entry found, let's copy lle info */ 2281 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2282 if (pflags != NULL) 2283 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2284 llentry_provide_feedback(ln); 2285 if (plle) { 2286 LLE_ADDREF(ln); 2287 *plle = ln; 2288 LLE_WUNLOCK(ln); 2289 } 2290 return (0); 2291 } else if (plle && ln) 2292 LLE_WUNLOCK(ln); 2293 2294 return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); 2295 } 2296 2297 /* 2298 * Finds or creates a new llentry for @addr and @family. 2299 * Returns wlocked llentry or NULL. 2300 * 2301 * 2302 * Child LLEs. 2303 * 2304 * Do not have their own state machine (gets marked as static) 2305 * settimer bails out for child LLEs just in case. 2306 * 2307 * Locking order: parent lle gets locked first, chen goes the child. 2308 */ 2309 static __noinline struct llentry * 2310 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) 2311 { 2312 struct llentry *child_lle = NULL; 2313 struct llentry *lle, *lle_tmp; 2314 2315 lle = nd6_alloc(addr, 0, ifp); 2316 if (lle != NULL && family != AF_INET6) { 2317 child_lle = nd6_alloc(addr, 0, ifp); 2318 if (child_lle == NULL) { 2319 lltable_free_entry(LLTABLE6(ifp), lle); 2320 return (NULL); 2321 } 2322 child_lle->r_family = family; 2323 child_lle->la_flags |= LLE_CHILD | LLE_STATIC; 2324 child_lle->ln_state = ND6_LLINFO_INCOMPLETE; 2325 } 2326 2327 if (lle == NULL) { 2328 char ip6buf[INET6_ADDRSTRLEN]; 2329 log(LOG_DEBUG, 2330 "nd6_get_llentry: can't allocate llinfo for %s " 2331 "(ln=%p)\n", 2332 ip6_sprintf(ip6buf, addr), lle); 2333 return (NULL); 2334 } 2335 2336 IF_AFDATA_WLOCK(ifp); 2337 LLE_WLOCK(lle); 2338 /* Prefer any existing entry over newly-created one */ 2339 lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2340 if (lle_tmp == NULL) 2341 lltable_link_entry(LLTABLE6(ifp), lle); 2342 else { 2343 lltable_free_entry(LLTABLE6(ifp), lle); 2344 lle = lle_tmp; 2345 } 2346 if (child_lle != NULL) { 2347 /* Check if child lle for the same family exists */ 2348 lle_tmp = llentry_lookup_family(lle, child_lle->r_family); 2349 LLE_WLOCK(child_lle); 2350 if (lle_tmp == NULL) { 2351 /* Attach */ 2352 lltable_link_child_entry(lle, child_lle); 2353 } else { 2354 /* child lle already exists, free newly-created one */ 2355 lltable_free_entry(LLTABLE6(ifp), child_lle); 2356 LLE_WLOCK(lle_tmp); 2357 child_lle = lle_tmp; 2358 } 2359 LLE_WUNLOCK(lle); 2360 lle = child_lle; 2361 } 2362 IF_AFDATA_WUNLOCK(ifp); 2363 return (lle); 2364 } 2365 2366 /* 2367 * Do L2 address resolution for @sa_dst address. Stores found 2368 * address in @desten buffer. Copy of lle ln_flags can be also 2369 * saved in @pflags if @pflags is non-NULL. 2370 * 2371 * Heavy version. 2372 * Function assume that destination LLE does not exist, 2373 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2374 * 2375 * Set noinline to be dtrace-friendly 2376 */ 2377 static __noinline int 2378 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, 2379 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2380 struct llentry **plle) 2381 { 2382 struct llentry *lle = NULL; 2383 struct in6_addr *psrc, src; 2384 int send_ns, ll_len; 2385 char *lladdr; 2386 2387 NET_EPOCH_ASSERT(); 2388 2389 /* 2390 * Address resolution or Neighbor Unreachability Detection 2391 * for the next hop. 2392 * At this point, the destination of the packet must be a unicast 2393 * or an anycast address(i.e. not a multicast). 2394 */ 2395 lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); 2396 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2397 /* 2398 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2399 * the condition below is not very efficient. But we believe 2400 * it is tolerable, because this should be a rare case. 2401 */ 2402 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); 2403 } 2404 2405 if (lle == NULL) { 2406 m_freem(m); 2407 return (ENOBUFS); 2408 } 2409 2410 LLE_WLOCK_ASSERT(lle); 2411 2412 /* 2413 * The first time we send a packet to a neighbor whose entry is 2414 * STALE, we have to change the state to DELAY and a sets a timer to 2415 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2416 * neighbor unreachability detection on expiration. 2417 * (RFC 2461 7.3.3) 2418 */ 2419 if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) 2420 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2421 2422 /* 2423 * If the neighbor cache entry has a state other than INCOMPLETE 2424 * (i.e. its link-layer address is already resolved), just 2425 * send the packet. 2426 */ 2427 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2428 if (flags & LLE_ADDRONLY) { 2429 lladdr = lle->ll_addr; 2430 ll_len = ifp->if_addrlen; 2431 } else { 2432 lladdr = lle->r_linkdata; 2433 ll_len = lle->r_hdrlen; 2434 } 2435 bcopy(lladdr, desten, ll_len); 2436 if (pflags != NULL) 2437 *pflags = lle->la_flags; 2438 if (plle) { 2439 LLE_ADDREF(lle); 2440 *plle = lle; 2441 } 2442 LLE_WUNLOCK(lle); 2443 return (0); 2444 } 2445 2446 /* 2447 * There is a neighbor cache entry, but no ethernet address 2448 * response yet. Append this latest packet to the end of the 2449 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2450 * the oldest packet in the queue will be removed. 2451 */ 2452 if (m != NULL) { 2453 size_t dropped; 2454 2455 dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); 2456 ICMP6STAT_ADD(icp6s_dropped, dropped); 2457 } 2458 2459 /* 2460 * If there has been no NS for the neighbor after entering the 2461 * INCOMPLETE state, send the first solicitation. 2462 * Note that for newly-created lle la_asked will be 0, 2463 * so we will transition from ND6_LLINFO_NOSTATE to 2464 * ND6_LLINFO_INCOMPLETE state here. 2465 */ 2466 psrc = NULL; 2467 send_ns = 0; 2468 2469 /* If we have child lle, switch to the parent to send NS */ 2470 if (lle->la_flags & LLE_CHILD) { 2471 struct llentry *lle_parent = lle->lle_parent; 2472 LLE_WUNLOCK(lle); 2473 lle = lle_parent; 2474 LLE_WLOCK(lle); 2475 } 2476 if (lle->la_asked == 0) { 2477 lle->la_asked++; 2478 send_ns = 1; 2479 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2480 2481 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2482 } 2483 LLE_WUNLOCK(lle); 2484 if (send_ns != 0) 2485 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2486 2487 return (EWOULDBLOCK); 2488 } 2489 2490 /* 2491 * Do L2 address resolution for @sa_dst address. Stores found 2492 * address in @desten buffer. Copy of lle ln_flags can be also 2493 * saved in @pflags if @pflags is non-NULL. 2494 * 2495 * Return values: 2496 * - 0 on success (address copied to buffer). 2497 * - EWOULDBLOCK (no local error, but address is still unresolved) 2498 * - other errors (alloc failure, etc) 2499 */ 2500 int 2501 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2502 char *desten, uint32_t *pflags) 2503 { 2504 int error; 2505 2506 flags |= LLE_ADDRONLY; 2507 error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, 2508 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2509 return (error); 2510 } 2511 2512 int 2513 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) 2514 { 2515 struct mbuf *m, *m_head; 2516 struct sockaddr_in6 dst6; 2517 int error = 0; 2518 2519 NET_EPOCH_ASSERT(); 2520 2521 struct route_in6 ro = { 2522 .ro_prepend = lle->r_linkdata, 2523 .ro_plen = lle->r_hdrlen, 2524 }; 2525 2526 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); 2527 m_head = chain; 2528 2529 while (m_head) { 2530 m = m_head; 2531 m_head = m_head->m_nextpkt; 2532 m->m_nextpkt = NULL; 2533 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); 2534 } 2535 2536 /* 2537 * XXX 2538 * note that intermediate errors are blindly ignored 2539 */ 2540 return (error); 2541 } 2542 2543 __noinline void 2544 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) 2545 { 2546 struct llentry *child_lle; 2547 struct mbuf *chain; 2548 2549 NET_EPOCH_ASSERT(); 2550 2551 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 2552 LLE_WLOCK(child_lle); 2553 chain = nd6_grab_holdchain(child_lle); 2554 LLE_WUNLOCK(child_lle); 2555 nd6_flush_holdchain(ifp, child_lle, chain); 2556 } 2557 } 2558 2559 static int 2560 nd6_need_cache(struct ifnet *ifp) 2561 { 2562 /* 2563 * XXX: we currently do not make neighbor cache on any interface 2564 * other than Ethernet and GIF. 2565 * 2566 * RFC2893 says: 2567 * - unidirectional tunnels needs no ND 2568 */ 2569 switch (ifp->if_type) { 2570 case IFT_ETHER: 2571 case IFT_IEEE1394: 2572 case IFT_L2VLAN: 2573 case IFT_INFINIBAND: 2574 case IFT_BRIDGE: 2575 case IFT_PROPVIRTUAL: 2576 return (1); 2577 default: 2578 return (0); 2579 } 2580 } 2581 2582 /* 2583 * Add pernament ND6 link-layer record for given 2584 * interface address. 2585 * 2586 * Very similar to IPv4 arp_ifinit(), but: 2587 * 1) IPv6 DAD is performed in different place 2588 * 2) It is called by IPv6 protocol stack in contrast to 2589 * arp_ifinit() which is typically called in SIOCSIFADDR 2590 * driver ioctl handler. 2591 * 2592 */ 2593 int 2594 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2595 { 2596 struct ifnet *ifp; 2597 struct llentry *ln, *ln_tmp; 2598 struct sockaddr *dst; 2599 2600 ifp = ia->ia_ifa.ifa_ifp; 2601 if (nd6_need_cache(ifp) == 0) 2602 return (0); 2603 2604 dst = (struct sockaddr *)&ia->ia_addr; 2605 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2606 if (ln == NULL) 2607 return (ENOBUFS); 2608 2609 IF_AFDATA_WLOCK(ifp); 2610 LLE_WLOCK(ln); 2611 /* Unlink any entry if exists */ 2612 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); 2613 if (ln_tmp != NULL) 2614 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2615 lltable_link_entry(LLTABLE6(ifp), ln); 2616 IF_AFDATA_WUNLOCK(ifp); 2617 2618 if (ln_tmp != NULL) 2619 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2620 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2621 2622 LLE_WUNLOCK(ln); 2623 if (ln_tmp != NULL) 2624 llentry_free(ln_tmp); 2625 2626 return (0); 2627 } 2628 2629 /* 2630 * Removes either all lle entries for given @ia, or lle 2631 * corresponding to @ia address. 2632 */ 2633 void 2634 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2635 { 2636 struct sockaddr_in6 mask, addr; 2637 struct sockaddr *saddr, *smask; 2638 struct ifnet *ifp; 2639 2640 ifp = ia->ia_ifa.ifa_ifp; 2641 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2642 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2643 saddr = (struct sockaddr *)&addr; 2644 smask = (struct sockaddr *)&mask; 2645 2646 if (all != 0) 2647 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2648 else 2649 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2650 } 2651 2652 static int 2653 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2654 { 2655 struct in6_prefix p; 2656 struct sockaddr_in6 s6; 2657 struct nd_prefix *pr; 2658 struct nd_pfxrouter *pfr; 2659 time_t maxexpire; 2660 int error; 2661 char ip6buf[INET6_ADDRSTRLEN]; 2662 2663 if (req->newptr) 2664 return (EPERM); 2665 2666 error = sysctl_wire_old_buffer(req, 0); 2667 if (error != 0) 2668 return (error); 2669 2670 bzero(&p, sizeof(p)); 2671 p.origin = PR_ORIG_RA; 2672 bzero(&s6, sizeof(s6)); 2673 s6.sin6_family = AF_INET6; 2674 s6.sin6_len = sizeof(s6); 2675 2676 ND6_RLOCK(); 2677 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2678 p.prefix = pr->ndpr_prefix; 2679 if (sa6_recoverscope(&p.prefix)) { 2680 log(LOG_ERR, "scope error in prefix list (%s)\n", 2681 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2682 /* XXX: press on... */ 2683 } 2684 p.raflags = pr->ndpr_raf; 2685 p.prefixlen = pr->ndpr_plen; 2686 p.vltime = pr->ndpr_vltime; 2687 p.pltime = pr->ndpr_pltime; 2688 p.if_index = pr->ndpr_ifp->if_index; 2689 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2690 p.expire = 0; 2691 else { 2692 /* XXX: we assume time_t is signed. */ 2693 maxexpire = (-1) & 2694 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2695 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2696 p.expire = pr->ndpr_lastupdate + 2697 pr->ndpr_vltime + 2698 (time_second - time_uptime); 2699 else 2700 p.expire = maxexpire; 2701 } 2702 p.refcnt = pr->ndpr_addrcnt; 2703 p.flags = pr->ndpr_stateflags; 2704 p.advrtrs = 0; 2705 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2706 p.advrtrs++; 2707 error = SYSCTL_OUT(req, &p, sizeof(p)); 2708 if (error != 0) 2709 break; 2710 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2711 s6.sin6_addr = pfr->router->rtaddr; 2712 if (sa6_recoverscope(&s6)) 2713 log(LOG_ERR, 2714 "scope error in prefix list (%s)\n", 2715 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2716 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2717 if (error != 0) 2718 goto out; 2719 } 2720 } 2721 out: 2722 ND6_RUNLOCK(); 2723 return (error); 2724 } 2725 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2726 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2727 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2728 "NDP prefix list"); 2729 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2730 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2731 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2732 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2733