1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/route_var.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #include <netinet6/nd6.h> 78 #include <netinet6/in6_ifattach.h> 79 #include <netinet/icmp6.h> 80 #include <netinet6/send.h> 81 82 #include <sys/limits.h> 83 84 #include <security/mac/mac_framework.h> 85 86 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 87 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 88 89 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 90 91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 92 93 /* timer values */ 94 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 95 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 96 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 97 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 98 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 99 * local traffic */ 100 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 101 * collection timer */ 102 103 /* preventing too many loops in ND option parsing */ 104 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 105 106 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 107 * layer hints */ 108 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 109 * ND entries */ 110 #define V_nd6_maxndopt VNET(nd6_maxndopt) 111 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 112 113 #ifdef ND6_DEBUG 114 VNET_DEFINE(int, nd6_debug) = 1; 115 #else 116 VNET_DEFINE(int, nd6_debug) = 0; 117 #endif 118 119 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 120 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 VNET_DEFINE(struct rwlock, nd6_lock); 123 VNET_DEFINE(uint64_t, nd6_list_genid); 124 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 125 126 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 127 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 128 129 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 130 131 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 132 struct ifnet *); 133 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 134 static void nd6_slowtimo(void *); 135 static int regen_tmpaddr(struct in6_ifaddr *); 136 static void nd6_free(struct llentry **, int); 137 static void nd6_free_redirect(const struct llentry *); 138 static void nd6_llinfo_timer(void *); 139 static void nd6_llinfo_settimer_locked(struct llentry *, long); 140 static void clear_llinfo_pqueue(struct llentry *); 141 static void nd6_rtrequest(int, struct rtentry *, struct nhop_object *, 142 struct rt_addrinfo *); 143 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 144 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 145 static int nd6_need_cache(struct ifnet *); 146 147 148 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 149 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 150 151 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 152 #define V_nd6_timer_ch VNET(nd6_timer_ch) 153 154 SYSCTL_DECL(_net_inet6_icmp6); 155 156 static void 157 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 158 { 159 struct rt_addrinfo rtinfo; 160 struct sockaddr_in6 dst; 161 struct sockaddr_dl gw; 162 struct ifnet *ifp; 163 int type; 164 int fibnum; 165 166 LLE_WLOCK_ASSERT(lle); 167 168 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 169 return; 170 171 switch (evt) { 172 case LLENTRY_RESOLVED: 173 type = RTM_ADD; 174 KASSERT(lle->la_flags & LLE_VALID, 175 ("%s: %p resolved but not valid?", __func__, lle)); 176 break; 177 case LLENTRY_EXPIRED: 178 type = RTM_DELETE; 179 break; 180 default: 181 return; 182 } 183 184 ifp = lltable_get_ifp(lle->lle_tbl); 185 186 bzero(&dst, sizeof(dst)); 187 bzero(&gw, sizeof(gw)); 188 bzero(&rtinfo, sizeof(rtinfo)); 189 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 190 dst.sin6_scope_id = in6_getscopezone(ifp, 191 in6_addrscope(&dst.sin6_addr)); 192 gw.sdl_len = sizeof(struct sockaddr_dl); 193 gw.sdl_family = AF_LINK; 194 gw.sdl_alen = ifp->if_addrlen; 195 gw.sdl_index = ifp->if_index; 196 gw.sdl_type = ifp->if_type; 197 if (evt == LLENTRY_RESOLVED) 198 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 199 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 200 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 201 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 202 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 203 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 204 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 205 } 206 207 /* 208 * A handler for interface link layer address change event. 209 */ 210 static void 211 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 212 { 213 214 lltable_update_ifaddr(LLTABLE6(ifp)); 215 } 216 217 void 218 nd6_init(void) 219 { 220 221 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 222 rw_init(&V_nd6_lock, "nd6 list"); 223 224 LIST_INIT(&V_nd_prefix); 225 nd6_defrouter_init(); 226 227 /* Start timers. */ 228 callout_init(&V_nd6_slowtimo_ch, 0); 229 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 230 nd6_slowtimo, curvnet); 231 232 callout_init(&V_nd6_timer_ch, 0); 233 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 234 235 nd6_dad_init(); 236 if (IS_DEFAULT_VNET(curvnet)) { 237 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 238 NULL, EVENTHANDLER_PRI_ANY); 239 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 240 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 241 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 242 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 243 } 244 } 245 246 #ifdef VIMAGE 247 void 248 nd6_destroy() 249 { 250 251 callout_drain(&V_nd6_slowtimo_ch); 252 callout_drain(&V_nd6_timer_ch); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 255 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 256 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 257 } 258 rw_destroy(&V_nd6_lock); 259 mtx_destroy(&V_nd6_onlink_mtx); 260 } 261 #endif 262 263 struct nd_ifinfo * 264 nd6_ifattach(struct ifnet *ifp) 265 { 266 struct nd_ifinfo *nd; 267 268 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 269 nd->initialized = 1; 270 271 nd->chlim = IPV6_DEFHLIM; 272 nd->basereachable = REACHABLE_TIME; 273 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 274 nd->retrans = RETRANS_TIMER; 275 276 nd->flags = ND6_IFF_PERFORMNUD; 277 278 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 279 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 280 * default regardless of the V_ip6_auto_linklocal configuration to 281 * give a reasonable default behavior. 282 */ 283 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 284 (ifp->if_flags & IFF_LOOPBACK)) 285 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 286 /* 287 * A loopback interface does not need to accept RTADV. 288 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 289 * default regardless of the V_ip6_accept_rtadv configuration to 290 * prevent the interface from accepting RA messages arrived 291 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 292 */ 293 if (V_ip6_accept_rtadv && 294 !(ifp->if_flags & IFF_LOOPBACK) && 295 (ifp->if_type != IFT_BRIDGE)) 296 nd->flags |= ND6_IFF_ACCEPT_RTADV; 297 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 298 nd->flags |= ND6_IFF_NO_RADR; 299 300 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 301 nd6_setmtu0(ifp, nd); 302 303 return nd; 304 } 305 306 void 307 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 308 { 309 struct epoch_tracker et; 310 struct ifaddr *ifa, *next; 311 312 NET_EPOCH_ENTER(et); 313 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 314 if (ifa->ifa_addr->sa_family != AF_INET6) 315 continue; 316 317 /* stop DAD processing */ 318 nd6_dad_stop(ifa); 319 } 320 NET_EPOCH_EXIT(et); 321 322 free(nd, M_IP6NDP); 323 } 324 325 /* 326 * Reset ND level link MTU. This function is called when the physical MTU 327 * changes, which means we might have to adjust the ND level MTU. 328 */ 329 void 330 nd6_setmtu(struct ifnet *ifp) 331 { 332 if (ifp->if_afdata[AF_INET6] == NULL) 333 return; 334 335 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 336 } 337 338 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 339 void 340 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 341 { 342 u_int32_t omaxmtu; 343 344 omaxmtu = ndi->maxmtu; 345 ndi->maxmtu = ifp->if_mtu; 346 347 /* 348 * Decreasing the interface MTU under IPV6 minimum MTU may cause 349 * undesirable situation. We thus notify the operator of the change 350 * explicitly. The check for omaxmtu is necessary to restrict the 351 * log to the case of changing the MTU, not initializing it. 352 */ 353 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 354 log(LOG_NOTICE, "nd6_setmtu0: " 355 "new link MTU on %s (%lu) is too small for IPv6\n", 356 if_name(ifp), (unsigned long)ndi->maxmtu); 357 } 358 359 if (ndi->maxmtu > V_in6_maxmtu) 360 in6_setmaxmtu(); /* check all interfaces just in case */ 361 362 } 363 364 void 365 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 366 { 367 368 bzero(ndopts, sizeof(*ndopts)); 369 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 370 ndopts->nd_opts_last 371 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 372 373 if (icmp6len == 0) { 374 ndopts->nd_opts_done = 1; 375 ndopts->nd_opts_search = NULL; 376 } 377 } 378 379 /* 380 * Take one ND option. 381 */ 382 struct nd_opt_hdr * 383 nd6_option(union nd_opts *ndopts) 384 { 385 struct nd_opt_hdr *nd_opt; 386 int olen; 387 388 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 389 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 390 __func__)); 391 if (ndopts->nd_opts_search == NULL) 392 return NULL; 393 if (ndopts->nd_opts_done) 394 return NULL; 395 396 nd_opt = ndopts->nd_opts_search; 397 398 /* make sure nd_opt_len is inside the buffer */ 399 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 400 bzero(ndopts, sizeof(*ndopts)); 401 return NULL; 402 } 403 404 olen = nd_opt->nd_opt_len << 3; 405 if (olen == 0) { 406 /* 407 * Message validation requires that all included 408 * options have a length that is greater than zero. 409 */ 410 bzero(ndopts, sizeof(*ndopts)); 411 return NULL; 412 } 413 414 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 415 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 416 /* option overruns the end of buffer, invalid */ 417 bzero(ndopts, sizeof(*ndopts)); 418 return NULL; 419 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 420 /* reached the end of options chain */ 421 ndopts->nd_opts_done = 1; 422 ndopts->nd_opts_search = NULL; 423 } 424 return nd_opt; 425 } 426 427 /* 428 * Parse multiple ND options. 429 * This function is much easier to use, for ND routines that do not need 430 * multiple options of the same type. 431 */ 432 int 433 nd6_options(union nd_opts *ndopts) 434 { 435 struct nd_opt_hdr *nd_opt; 436 int i = 0; 437 438 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 439 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 440 __func__)); 441 if (ndopts->nd_opts_search == NULL) 442 return 0; 443 444 while (1) { 445 nd_opt = nd6_option(ndopts); 446 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 447 /* 448 * Message validation requires that all included 449 * options have a length that is greater than zero. 450 */ 451 ICMP6STAT_INC(icp6s_nd_badopt); 452 bzero(ndopts, sizeof(*ndopts)); 453 return -1; 454 } 455 456 if (nd_opt == NULL) 457 goto skip1; 458 459 switch (nd_opt->nd_opt_type) { 460 case ND_OPT_SOURCE_LINKADDR: 461 case ND_OPT_TARGET_LINKADDR: 462 case ND_OPT_MTU: 463 case ND_OPT_REDIRECTED_HEADER: 464 case ND_OPT_NONCE: 465 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 466 nd6log((LOG_INFO, 467 "duplicated ND6 option found (type=%d)\n", 468 nd_opt->nd_opt_type)); 469 /* XXX bark? */ 470 } else { 471 ndopts->nd_opt_array[nd_opt->nd_opt_type] 472 = nd_opt; 473 } 474 break; 475 case ND_OPT_PREFIX_INFORMATION: 476 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 477 ndopts->nd_opt_array[nd_opt->nd_opt_type] 478 = nd_opt; 479 } 480 ndopts->nd_opts_pi_end = 481 (struct nd_opt_prefix_info *)nd_opt; 482 break; 483 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 484 case ND_OPT_RDNSS: /* RFC 6106 */ 485 case ND_OPT_DNSSL: /* RFC 6106 */ 486 /* 487 * Silently ignore options we know and do not care about 488 * in the kernel. 489 */ 490 break; 491 default: 492 /* 493 * Unknown options must be silently ignored, 494 * to accommodate future extension to the protocol. 495 */ 496 nd6log((LOG_DEBUG, 497 "nd6_options: unsupported option %d - " 498 "option ignored\n", nd_opt->nd_opt_type)); 499 } 500 501 skip1: 502 i++; 503 if (i > V_nd6_maxndopt) { 504 ICMP6STAT_INC(icp6s_nd_toomanyopt); 505 nd6log((LOG_INFO, "too many loop in nd opt\n")); 506 break; 507 } 508 509 if (ndopts->nd_opts_done) 510 break; 511 } 512 513 return 0; 514 } 515 516 /* 517 * ND6 timer routine to handle ND6 entries 518 */ 519 static void 520 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 521 { 522 int canceled; 523 524 LLE_WLOCK_ASSERT(ln); 525 526 if (tick < 0) { 527 ln->la_expire = 0; 528 ln->ln_ntick = 0; 529 canceled = callout_stop(&ln->lle_timer); 530 } else { 531 ln->la_expire = time_uptime + tick / hz; 532 LLE_ADDREF(ln); 533 if (tick > INT_MAX) { 534 ln->ln_ntick = tick - INT_MAX; 535 canceled = callout_reset(&ln->lle_timer, INT_MAX, 536 nd6_llinfo_timer, ln); 537 } else { 538 ln->ln_ntick = 0; 539 canceled = callout_reset(&ln->lle_timer, tick, 540 nd6_llinfo_timer, ln); 541 } 542 } 543 if (canceled > 0) 544 LLE_REMREF(ln); 545 } 546 547 /* 548 * Gets source address of the first packet in hold queue 549 * and stores it in @src. 550 * Returns pointer to @src (if hold queue is not empty) or NULL. 551 * 552 * Set noinline to be dtrace-friendly 553 */ 554 static __noinline struct in6_addr * 555 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 556 { 557 struct ip6_hdr hdr; 558 struct mbuf *m; 559 560 if (ln->la_hold == NULL) 561 return (NULL); 562 563 /* 564 * assume every packet in la_hold has the same IP header 565 */ 566 m = ln->la_hold; 567 if (sizeof(hdr) > m->m_len) 568 return (NULL); 569 570 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 571 *src = hdr.ip6_src; 572 573 return (src); 574 } 575 576 /* 577 * Checks if we need to switch from STALE state. 578 * 579 * RFC 4861 requires switching from STALE to DELAY state 580 * on first packet matching entry, waiting V_nd6_delay and 581 * transition to PROBE state (if upper layer confirmation was 582 * not received). 583 * 584 * This code performs a bit differently: 585 * On packet hit we don't change state (but desired state 586 * can be guessed by control plane). However, after V_nd6_delay 587 * seconds code will transition to PROBE state (so DELAY state 588 * is kinda skipped in most situations). 589 * 590 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 591 * we perform the following upon entering STALE state: 592 * 593 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 594 * if packet was transmitted at the start of given interval, we 595 * would be able to switch to PROBE state in V_nd6_delay seconds 596 * as user expects. 597 * 598 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 599 * lle in STALE state (remaining timer value stored in lle_remtime). 600 * 601 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 602 * seconds ago. 603 * 604 * Returns non-zero value if the entry is still STALE (storing 605 * the next timer interval in @pdelay). 606 * 607 * Returns zero value if original timer expired or we need to switch to 608 * PROBE (store that in @do_switch variable). 609 */ 610 static int 611 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 612 { 613 int nd_delay, nd_gctimer, r_skip_req; 614 time_t lle_hittime; 615 long delay; 616 617 *do_switch = 0; 618 nd_gctimer = V_nd6_gctimer; 619 nd_delay = V_nd6_delay; 620 621 LLE_REQ_LOCK(lle); 622 r_skip_req = lle->r_skip_req; 623 lle_hittime = lle->lle_hittime; 624 LLE_REQ_UNLOCK(lle); 625 626 if (r_skip_req > 0) { 627 628 /* 629 * Nonzero r_skip_req value was set upon entering 630 * STALE state. Since value was not changed, no 631 * packets were passed using this lle. Ask for 632 * timer reschedule and keep STALE state. 633 */ 634 delay = (long)(MIN(nd_gctimer, nd_delay)); 635 delay *= hz; 636 if (lle->lle_remtime > delay) 637 lle->lle_remtime -= delay; 638 else { 639 delay = lle->lle_remtime; 640 lle->lle_remtime = 0; 641 } 642 643 if (delay == 0) { 644 645 /* 646 * The original ng6_gctime timeout ended, 647 * no more rescheduling. 648 */ 649 return (0); 650 } 651 652 *pdelay = delay; 653 return (1); 654 } 655 656 /* 657 * Packet received. Verify timestamp 658 */ 659 delay = (long)(time_uptime - lle_hittime); 660 if (delay < nd_delay) { 661 662 /* 663 * V_nd6_delay still not passed since the first 664 * hit in STALE state. 665 * Reshedule timer and return. 666 */ 667 *pdelay = (long)(nd_delay - delay) * hz; 668 return (1); 669 } 670 671 /* Request switching to probe */ 672 *do_switch = 1; 673 return (0); 674 } 675 676 677 /* 678 * Switch @lle state to new state optionally arming timers. 679 * 680 * Set noinline to be dtrace-friendly 681 */ 682 __noinline void 683 nd6_llinfo_setstate(struct llentry *lle, int newstate) 684 { 685 struct ifnet *ifp; 686 int nd_gctimer, nd_delay; 687 long delay, remtime; 688 689 delay = 0; 690 remtime = 0; 691 692 switch (newstate) { 693 case ND6_LLINFO_INCOMPLETE: 694 ifp = lle->lle_tbl->llt_ifp; 695 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 696 break; 697 case ND6_LLINFO_REACHABLE: 698 if (!ND6_LLINFO_PERMANENT(lle)) { 699 ifp = lle->lle_tbl->llt_ifp; 700 delay = (long)ND_IFINFO(ifp)->reachable * hz; 701 } 702 break; 703 case ND6_LLINFO_STALE: 704 705 /* 706 * Notify fast path that we want to know if any packet 707 * is transmitted by setting r_skip_req. 708 */ 709 LLE_REQ_LOCK(lle); 710 lle->r_skip_req = 1; 711 LLE_REQ_UNLOCK(lle); 712 nd_delay = V_nd6_delay; 713 nd_gctimer = V_nd6_gctimer; 714 715 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 716 remtime = (long)nd_gctimer * hz - delay; 717 break; 718 case ND6_LLINFO_DELAY: 719 lle->la_asked = 0; 720 delay = (long)V_nd6_delay * hz; 721 break; 722 } 723 724 if (delay > 0) 725 nd6_llinfo_settimer_locked(lle, delay); 726 727 lle->lle_remtime = remtime; 728 lle->ln_state = newstate; 729 } 730 731 /* 732 * Timer-dependent part of nd state machine. 733 * 734 * Set noinline to be dtrace-friendly 735 */ 736 static __noinline void 737 nd6_llinfo_timer(void *arg) 738 { 739 struct epoch_tracker et; 740 struct llentry *ln; 741 struct in6_addr *dst, *pdst, *psrc, src; 742 struct ifnet *ifp; 743 struct nd_ifinfo *ndi; 744 int do_switch, send_ns; 745 long delay; 746 747 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 748 ln = (struct llentry *)arg; 749 ifp = lltable_get_ifp(ln->lle_tbl); 750 CURVNET_SET(ifp->if_vnet); 751 752 ND6_RLOCK(); 753 LLE_WLOCK(ln); 754 if (callout_pending(&ln->lle_timer)) { 755 /* 756 * Here we are a bit odd here in the treatment of 757 * active/pending. If the pending bit is set, it got 758 * rescheduled before I ran. The active 759 * bit we ignore, since if it was stopped 760 * in ll_tablefree() and was currently running 761 * it would have return 0 so the code would 762 * not have deleted it since the callout could 763 * not be stopped so we want to go through 764 * with the delete here now. If the callout 765 * was restarted, the pending bit will be back on and 766 * we just want to bail since the callout_reset would 767 * return 1 and our reference would have been removed 768 * by nd6_llinfo_settimer_locked above since canceled 769 * would have been 1. 770 */ 771 LLE_WUNLOCK(ln); 772 ND6_RUNLOCK(); 773 CURVNET_RESTORE(); 774 return; 775 } 776 NET_EPOCH_ENTER(et); 777 ndi = ND_IFINFO(ifp); 778 send_ns = 0; 779 dst = &ln->r_l3addr.addr6; 780 pdst = dst; 781 782 if (ln->ln_ntick > 0) { 783 if (ln->ln_ntick > INT_MAX) { 784 ln->ln_ntick -= INT_MAX; 785 nd6_llinfo_settimer_locked(ln, INT_MAX); 786 } else { 787 ln->ln_ntick = 0; 788 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 789 } 790 goto done; 791 } 792 793 if (ln->la_flags & LLE_STATIC) { 794 goto done; 795 } 796 797 if (ln->la_flags & LLE_DELETED) { 798 nd6_free(&ln, 0); 799 goto done; 800 } 801 802 switch (ln->ln_state) { 803 case ND6_LLINFO_INCOMPLETE: 804 if (ln->la_asked < V_nd6_mmaxtries) { 805 ln->la_asked++; 806 send_ns = 1; 807 /* Send NS to multicast address */ 808 pdst = NULL; 809 } else { 810 struct mbuf *m = ln->la_hold; 811 if (m) { 812 struct mbuf *m0; 813 814 /* 815 * assuming every packet in la_hold has the 816 * same IP header. Send error after unlock. 817 */ 818 m0 = m->m_nextpkt; 819 m->m_nextpkt = NULL; 820 ln->la_hold = m0; 821 clear_llinfo_pqueue(ln); 822 } 823 nd6_free(&ln, 0); 824 if (m != NULL) 825 icmp6_error2(m, ICMP6_DST_UNREACH, 826 ICMP6_DST_UNREACH_ADDR, 0, ifp); 827 } 828 break; 829 case ND6_LLINFO_REACHABLE: 830 if (!ND6_LLINFO_PERMANENT(ln)) 831 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 832 break; 833 834 case ND6_LLINFO_STALE: 835 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 836 837 /* 838 * No packet has used this entry and GC timeout 839 * has not been passed. Reshedule timer and 840 * return. 841 */ 842 nd6_llinfo_settimer_locked(ln, delay); 843 break; 844 } 845 846 if (do_switch == 0) { 847 848 /* 849 * GC timer has ended and entry hasn't been used. 850 * Run Garbage collector (RFC 4861, 5.3) 851 */ 852 if (!ND6_LLINFO_PERMANENT(ln)) 853 nd6_free(&ln, 1); 854 break; 855 } 856 857 /* Entry has been used AND delay timer has ended. */ 858 859 /* FALLTHROUGH */ 860 861 case ND6_LLINFO_DELAY: 862 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 863 /* We need NUD */ 864 ln->la_asked = 1; 865 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 866 send_ns = 1; 867 } else 868 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 869 break; 870 case ND6_LLINFO_PROBE: 871 if (ln->la_asked < V_nd6_umaxtries) { 872 ln->la_asked++; 873 send_ns = 1; 874 } else { 875 nd6_free(&ln, 0); 876 } 877 break; 878 default: 879 panic("%s: paths in a dark night can be confusing: %d", 880 __func__, ln->ln_state); 881 } 882 done: 883 if (ln != NULL) 884 ND6_RUNLOCK(); 885 if (send_ns != 0) { 886 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 887 psrc = nd6_llinfo_get_holdsrc(ln, &src); 888 LLE_FREE_LOCKED(ln); 889 ln = NULL; 890 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 891 } 892 893 if (ln != NULL) 894 LLE_FREE_LOCKED(ln); 895 NET_EPOCH_EXIT(et); 896 CURVNET_RESTORE(); 897 } 898 899 900 /* 901 * ND6 timer routine to expire default route list and prefix list 902 */ 903 void 904 nd6_timer(void *arg) 905 { 906 CURVNET_SET((struct vnet *) arg); 907 struct epoch_tracker et; 908 struct nd_prhead prl; 909 struct nd_prefix *pr, *npr; 910 struct ifnet *ifp; 911 struct in6_ifaddr *ia6, *nia6; 912 uint64_t genid; 913 914 LIST_INIT(&prl); 915 916 NET_EPOCH_ENTER(et); 917 nd6_defrouter_timer(); 918 919 /* 920 * expire interface addresses. 921 * in the past the loop was inside prefix expiry processing. 922 * However, from a stricter speci-confrmance standpoint, we should 923 * rather separate address lifetimes and prefix lifetimes. 924 * 925 * XXXRW: in6_ifaddrhead locking. 926 */ 927 addrloop: 928 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 929 /* check address lifetime */ 930 if (IFA6_IS_INVALID(ia6)) { 931 int regen = 0; 932 933 /* 934 * If the expiring address is temporary, try 935 * regenerating a new one. This would be useful when 936 * we suspended a laptop PC, then turned it on after a 937 * period that could invalidate all temporary 938 * addresses. Although we may have to restart the 939 * loop (see below), it must be after purging the 940 * address. Otherwise, we'd see an infinite loop of 941 * regeneration. 942 */ 943 if (V_ip6_use_tempaddr && 944 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 945 if (regen_tmpaddr(ia6) == 0) 946 regen = 1; 947 } 948 949 in6_purgeaddr(&ia6->ia_ifa); 950 951 if (regen) 952 goto addrloop; /* XXX: see below */ 953 } else if (IFA6_IS_DEPRECATED(ia6)) { 954 int oldflags = ia6->ia6_flags; 955 956 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 957 958 /* 959 * If a temporary address has just become deprecated, 960 * regenerate a new one if possible. 961 */ 962 if (V_ip6_use_tempaddr && 963 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 964 (oldflags & IN6_IFF_DEPRECATED) == 0) { 965 966 if (regen_tmpaddr(ia6) == 0) { 967 /* 968 * A new temporary address is 969 * generated. 970 * XXX: this means the address chain 971 * has changed while we are still in 972 * the loop. Although the change 973 * would not cause disaster (because 974 * it's not a deletion, but an 975 * addition,) we'd rather restart the 976 * loop just for safety. Or does this 977 * significantly reduce performance?? 978 */ 979 goto addrloop; 980 } 981 } 982 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 983 /* 984 * Schedule DAD for a tentative address. This happens 985 * if the interface was down or not running 986 * when the address was configured. 987 */ 988 int delay; 989 990 delay = arc4random() % 991 (MAX_RTR_SOLICITATION_DELAY * hz); 992 nd6_dad_start((struct ifaddr *)ia6, delay); 993 } else { 994 /* 995 * Check status of the interface. If it is down, 996 * mark the address as tentative for future DAD. 997 */ 998 ifp = ia6->ia_ifp; 999 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1000 ((ifp->if_flags & IFF_UP) == 0 || 1001 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1002 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1003 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1004 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1005 } 1006 1007 /* 1008 * A new RA might have made a deprecated address 1009 * preferred. 1010 */ 1011 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1012 } 1013 } 1014 NET_EPOCH_EXIT(et); 1015 1016 ND6_WLOCK(); 1017 restart: 1018 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1019 /* 1020 * Expire prefixes. Since the pltime is only used for 1021 * autoconfigured addresses, pltime processing for prefixes is 1022 * not necessary. 1023 * 1024 * Only unlink after all derived addresses have expired. This 1025 * may not occur until two hours after the prefix has expired 1026 * per RFC 4862. If the prefix expires before its derived 1027 * addresses, mark it off-link. This will be done automatically 1028 * after unlinking if no address references remain. 1029 */ 1030 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1031 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1032 continue; 1033 1034 if (pr->ndpr_addrcnt == 0) { 1035 nd6_prefix_unlink(pr, &prl); 1036 continue; 1037 } 1038 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1039 genid = V_nd6_list_genid; 1040 nd6_prefix_ref(pr); 1041 ND6_WUNLOCK(); 1042 ND6_ONLINK_LOCK(); 1043 (void)nd6_prefix_offlink(pr); 1044 ND6_ONLINK_UNLOCK(); 1045 ND6_WLOCK(); 1046 nd6_prefix_rele(pr); 1047 if (genid != V_nd6_list_genid) 1048 goto restart; 1049 } 1050 } 1051 ND6_WUNLOCK(); 1052 1053 while ((pr = LIST_FIRST(&prl)) != NULL) { 1054 LIST_REMOVE(pr, ndpr_entry); 1055 nd6_prefix_del(pr); 1056 } 1057 1058 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1059 nd6_timer, curvnet); 1060 1061 CURVNET_RESTORE(); 1062 } 1063 1064 /* 1065 * ia6 - deprecated/invalidated temporary address 1066 */ 1067 static int 1068 regen_tmpaddr(struct in6_ifaddr *ia6) 1069 { 1070 struct ifaddr *ifa; 1071 struct ifnet *ifp; 1072 struct in6_ifaddr *public_ifa6 = NULL; 1073 1074 NET_EPOCH_ASSERT(); 1075 1076 ifp = ia6->ia_ifa.ifa_ifp; 1077 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1078 struct in6_ifaddr *it6; 1079 1080 if (ifa->ifa_addr->sa_family != AF_INET6) 1081 continue; 1082 1083 it6 = (struct in6_ifaddr *)ifa; 1084 1085 /* ignore no autoconf addresses. */ 1086 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1087 continue; 1088 1089 /* ignore autoconf addresses with different prefixes. */ 1090 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1091 continue; 1092 1093 /* 1094 * Now we are looking at an autoconf address with the same 1095 * prefix as ours. If the address is temporary and is still 1096 * preferred, do not create another one. It would be rare, but 1097 * could happen, for example, when we resume a laptop PC after 1098 * a long period. 1099 */ 1100 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1101 !IFA6_IS_DEPRECATED(it6)) { 1102 public_ifa6 = NULL; 1103 break; 1104 } 1105 1106 /* 1107 * This is a public autoconf address that has the same prefix 1108 * as ours. If it is preferred, keep it. We can't break the 1109 * loop here, because there may be a still-preferred temporary 1110 * address with the prefix. 1111 */ 1112 if (!IFA6_IS_DEPRECATED(it6)) 1113 public_ifa6 = it6; 1114 } 1115 if (public_ifa6 != NULL) 1116 ifa_ref(&public_ifa6->ia_ifa); 1117 1118 if (public_ifa6 != NULL) { 1119 int e; 1120 1121 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1122 ifa_free(&public_ifa6->ia_ifa); 1123 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1124 " tmp addr,errno=%d\n", e); 1125 return (-1); 1126 } 1127 ifa_free(&public_ifa6->ia_ifa); 1128 return (0); 1129 } 1130 1131 return (-1); 1132 } 1133 1134 /* 1135 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1136 * cache entries are freed in in6_domifdetach(). 1137 */ 1138 void 1139 nd6_purge(struct ifnet *ifp) 1140 { 1141 struct nd_prhead prl; 1142 struct nd_prefix *pr, *npr; 1143 1144 LIST_INIT(&prl); 1145 1146 /* Purge default router list entries toward ifp. */ 1147 nd6_defrouter_purge(ifp); 1148 1149 ND6_WLOCK(); 1150 /* 1151 * Remove prefixes on ifp. We should have already removed addresses on 1152 * this interface, so no addresses should be referencing these prefixes. 1153 */ 1154 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1155 if (pr->ndpr_ifp == ifp) 1156 nd6_prefix_unlink(pr, &prl); 1157 } 1158 ND6_WUNLOCK(); 1159 1160 /* Delete the unlinked prefix objects. */ 1161 while ((pr = LIST_FIRST(&prl)) != NULL) { 1162 LIST_REMOVE(pr, ndpr_entry); 1163 nd6_prefix_del(pr); 1164 } 1165 1166 /* cancel default outgoing interface setting */ 1167 if (V_nd6_defifindex == ifp->if_index) 1168 nd6_setdefaultiface(0); 1169 1170 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1171 /* Refresh default router list. */ 1172 defrouter_select_fib(ifp->if_fib); 1173 } 1174 } 1175 1176 /* 1177 * the caller acquires and releases the lock on the lltbls 1178 * Returns the llentry locked 1179 */ 1180 struct llentry * 1181 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1182 { 1183 struct sockaddr_in6 sin6; 1184 struct llentry *ln; 1185 1186 bzero(&sin6, sizeof(sin6)); 1187 sin6.sin6_len = sizeof(struct sockaddr_in6); 1188 sin6.sin6_family = AF_INET6; 1189 sin6.sin6_addr = *addr6; 1190 1191 IF_AFDATA_LOCK_ASSERT(ifp); 1192 1193 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1194 1195 return (ln); 1196 } 1197 1198 static struct llentry * 1199 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1200 { 1201 struct sockaddr_in6 sin6; 1202 struct llentry *ln; 1203 1204 bzero(&sin6, sizeof(sin6)); 1205 sin6.sin6_len = sizeof(struct sockaddr_in6); 1206 sin6.sin6_family = AF_INET6; 1207 sin6.sin6_addr = *addr6; 1208 1209 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1210 if (ln != NULL) 1211 ln->ln_state = ND6_LLINFO_NOSTATE; 1212 1213 return (ln); 1214 } 1215 1216 /* 1217 * Test whether a given IPv6 address is a neighbor or not, ignoring 1218 * the actual neighbor cache. The neighbor cache is ignored in order 1219 * to not reenter the routing code from within itself. 1220 */ 1221 static int 1222 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1223 { 1224 struct nd_prefix *pr; 1225 struct ifaddr *ifa; 1226 struct rt_addrinfo info; 1227 struct sockaddr_in6 rt_key; 1228 const struct sockaddr *dst6; 1229 uint64_t genid; 1230 int error, fibnum; 1231 1232 /* 1233 * A link-local address is always a neighbor. 1234 * XXX: a link does not necessarily specify a single interface. 1235 */ 1236 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1237 struct sockaddr_in6 sin6_copy; 1238 u_int32_t zone; 1239 1240 /* 1241 * We need sin6_copy since sa6_recoverscope() may modify the 1242 * content (XXX). 1243 */ 1244 sin6_copy = *addr; 1245 if (sa6_recoverscope(&sin6_copy)) 1246 return (0); /* XXX: should be impossible */ 1247 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1248 return (0); 1249 if (sin6_copy.sin6_scope_id == zone) 1250 return (1); 1251 else 1252 return (0); 1253 } 1254 1255 bzero(&rt_key, sizeof(rt_key)); 1256 bzero(&info, sizeof(info)); 1257 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1258 1259 /* 1260 * If the address matches one of our addresses, 1261 * it should be a neighbor. 1262 * If the address matches one of our on-link prefixes, it should be a 1263 * neighbor. 1264 */ 1265 ND6_RLOCK(); 1266 restart: 1267 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1268 if (pr->ndpr_ifp != ifp) 1269 continue; 1270 1271 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1272 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1273 1274 /* 1275 * We only need to check all FIBs if add_addr_allfibs 1276 * is unset. If set, checking any FIB will suffice. 1277 */ 1278 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1279 for (; fibnum < rt_numfibs; fibnum++) { 1280 genid = V_nd6_list_genid; 1281 ND6_RUNLOCK(); 1282 1283 /* 1284 * Restore length field before 1285 * retrying lookup 1286 */ 1287 rt_key.sin6_len = sizeof(rt_key); 1288 error = rib_lookup_info(fibnum, dst6, 0, 0, 1289 &info); 1290 1291 ND6_RLOCK(); 1292 if (genid != V_nd6_list_genid) 1293 goto restart; 1294 if (error == 0) 1295 break; 1296 } 1297 if (error != 0) 1298 continue; 1299 1300 /* 1301 * This is the case where multiple interfaces 1302 * have the same prefix, but only one is installed 1303 * into the routing table and that prefix entry 1304 * is not the one being examined here. In the case 1305 * where RADIX_MPATH is enabled, multiple route 1306 * entries (of the same rt_key value) will be 1307 * installed because the interface addresses all 1308 * differ. 1309 */ 1310 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1311 &rt_key.sin6_addr)) 1312 continue; 1313 } 1314 1315 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1316 &addr->sin6_addr, &pr->ndpr_mask)) { 1317 ND6_RUNLOCK(); 1318 return (1); 1319 } 1320 } 1321 ND6_RUNLOCK(); 1322 1323 /* 1324 * If the address is assigned on the node of the other side of 1325 * a p2p interface, the address should be a neighbor. 1326 */ 1327 if (ifp->if_flags & IFF_POINTOPOINT) { 1328 struct epoch_tracker et; 1329 1330 NET_EPOCH_ENTER(et); 1331 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1332 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1333 continue; 1334 if (ifa->ifa_dstaddr != NULL && 1335 sa_equal(addr, ifa->ifa_dstaddr)) { 1336 NET_EPOCH_EXIT(et); 1337 return 1; 1338 } 1339 } 1340 NET_EPOCH_EXIT(et); 1341 } 1342 1343 /* 1344 * If the default router list is empty, all addresses are regarded 1345 * as on-link, and thus, as a neighbor. 1346 */ 1347 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1348 nd6_defrouter_list_empty() && 1349 V_nd6_defifindex == ifp->if_index) { 1350 return (1); 1351 } 1352 1353 return (0); 1354 } 1355 1356 1357 /* 1358 * Detect if a given IPv6 address identifies a neighbor on a given link. 1359 * XXX: should take care of the destination of a p2p link? 1360 */ 1361 int 1362 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1363 { 1364 struct llentry *lle; 1365 int rc = 0; 1366 1367 NET_EPOCH_ASSERT(); 1368 IF_AFDATA_UNLOCK_ASSERT(ifp); 1369 if (nd6_is_new_addr_neighbor(addr, ifp)) 1370 return (1); 1371 1372 /* 1373 * Even if the address matches none of our addresses, it might be 1374 * in the neighbor cache. 1375 */ 1376 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1377 LLE_RUNLOCK(lle); 1378 rc = 1; 1379 } 1380 return (rc); 1381 } 1382 1383 /* 1384 * Free an nd6 llinfo entry. 1385 * Since the function would cause significant changes in the kernel, DO NOT 1386 * make it global, unless you have a strong reason for the change, and are sure 1387 * that the change is safe. 1388 * 1389 * Set noinline to be dtrace-friendly 1390 */ 1391 static __noinline void 1392 nd6_free(struct llentry **lnp, int gc) 1393 { 1394 struct ifnet *ifp; 1395 struct llentry *ln; 1396 struct nd_defrouter *dr; 1397 1398 ln = *lnp; 1399 *lnp = NULL; 1400 1401 LLE_WLOCK_ASSERT(ln); 1402 ND6_RLOCK_ASSERT(); 1403 1404 ifp = lltable_get_ifp(ln->lle_tbl); 1405 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1406 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1407 else 1408 dr = NULL; 1409 ND6_RUNLOCK(); 1410 1411 if ((ln->la_flags & LLE_DELETED) == 0) 1412 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1413 1414 /* 1415 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1416 * even though it is not harmful, it was not really necessary. 1417 */ 1418 1419 /* cancel timer */ 1420 nd6_llinfo_settimer_locked(ln, -1); 1421 1422 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1423 if (dr != NULL && dr->expire && 1424 ln->ln_state == ND6_LLINFO_STALE && gc) { 1425 /* 1426 * If the reason for the deletion is just garbage 1427 * collection, and the neighbor is an active default 1428 * router, do not delete it. Instead, reset the GC 1429 * timer using the router's lifetime. 1430 * Simply deleting the entry would affect default 1431 * router selection, which is not necessarily a good 1432 * thing, especially when we're using router preference 1433 * values. 1434 * XXX: the check for ln_state would be redundant, 1435 * but we intentionally keep it just in case. 1436 */ 1437 if (dr->expire > time_uptime) 1438 nd6_llinfo_settimer_locked(ln, 1439 (dr->expire - time_uptime) * hz); 1440 else 1441 nd6_llinfo_settimer_locked(ln, 1442 (long)V_nd6_gctimer * hz); 1443 1444 LLE_REMREF(ln); 1445 LLE_WUNLOCK(ln); 1446 defrouter_rele(dr); 1447 return; 1448 } 1449 1450 if (dr) { 1451 /* 1452 * Unreachablity of a router might affect the default 1453 * router selection and on-link detection of advertised 1454 * prefixes. 1455 */ 1456 1457 /* 1458 * Temporarily fake the state to choose a new default 1459 * router and to perform on-link determination of 1460 * prefixes correctly. 1461 * Below the state will be set correctly, 1462 * or the entry itself will be deleted. 1463 */ 1464 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1465 } 1466 1467 if (ln->ln_router || dr) { 1468 1469 /* 1470 * We need to unlock to avoid a LOR with rt6_flush() with the 1471 * rnh and for the calls to pfxlist_onlink_check() and 1472 * defrouter_select_fib() in the block further down for calls 1473 * into nd6_lookup(). We still hold a ref. 1474 */ 1475 LLE_WUNLOCK(ln); 1476 1477 /* 1478 * rt6_flush must be called whether or not the neighbor 1479 * is in the Default Router List. 1480 * See a corresponding comment in nd6_na_input(). 1481 */ 1482 rt6_flush(&ln->r_l3addr.addr6, ifp); 1483 } 1484 1485 if (dr) { 1486 /* 1487 * Since defrouter_select_fib() does not affect the 1488 * on-link determination and MIP6 needs the check 1489 * before the default router selection, we perform 1490 * the check now. 1491 */ 1492 pfxlist_onlink_check(); 1493 1494 /* 1495 * Refresh default router list. 1496 */ 1497 defrouter_select_fib(dr->ifp->if_fib); 1498 } 1499 1500 /* 1501 * If this entry was added by an on-link redirect, remove the 1502 * corresponding host route. 1503 */ 1504 if (ln->la_flags & LLE_REDIRECT) 1505 nd6_free_redirect(ln); 1506 1507 if (ln->ln_router || dr) 1508 LLE_WLOCK(ln); 1509 } 1510 1511 /* 1512 * Save to unlock. We still hold an extra reference and will not 1513 * free(9) in llentry_free() if someone else holds one as well. 1514 */ 1515 LLE_WUNLOCK(ln); 1516 IF_AFDATA_LOCK(ifp); 1517 LLE_WLOCK(ln); 1518 /* Guard against race with other llentry_free(). */ 1519 if (ln->la_flags & LLE_LINKED) { 1520 /* Remove callout reference */ 1521 LLE_REMREF(ln); 1522 lltable_unlink_entry(ln->lle_tbl, ln); 1523 } 1524 IF_AFDATA_UNLOCK(ifp); 1525 1526 llentry_free(ln); 1527 if (dr != NULL) 1528 defrouter_rele(dr); 1529 } 1530 1531 static int 1532 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1533 { 1534 1535 if (nh->nh_flags & NHF_REDIRECT) 1536 return (1); 1537 1538 return (0); 1539 } 1540 1541 /* 1542 * Remove the rtentry for the given llentry, 1543 * both of which were installed by a redirect. 1544 */ 1545 static void 1546 nd6_free_redirect(const struct llentry *ln) 1547 { 1548 int fibnum; 1549 struct sockaddr_in6 sin6; 1550 struct rt_addrinfo info; 1551 1552 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1553 memset(&info, 0, sizeof(info)); 1554 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1555 info.rti_filter = nd6_isdynrte; 1556 1557 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1558 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1559 } 1560 1561 /* 1562 * Rejuvenate this function for routing operations related 1563 * processing. 1564 */ 1565 void 1566 nd6_rtrequest(int req, struct rtentry *rt, struct nhop_object *nh, 1567 struct rt_addrinfo *info) 1568 { 1569 struct sockaddr_in6 *gateway; 1570 struct nd_defrouter *dr; 1571 1572 gateway = &nh->gw6_sa; 1573 1574 switch (req) { 1575 case RTM_ADD: 1576 break; 1577 1578 case RTM_DELETE: 1579 /* 1580 * Only indirect routes are interesting. 1581 */ 1582 if ((nh->nh_flags & NHF_GATEWAY) == 0) 1583 return; 1584 /* 1585 * check for default route 1586 */ 1587 if (nh->nh_flags & NHF_DEFAULT) { 1588 dr = defrouter_lookup(&gateway->sin6_addr, nh->nh_ifp); 1589 if (dr != NULL) { 1590 dr->installed = 0; 1591 defrouter_rele(dr); 1592 } 1593 } 1594 break; 1595 } 1596 } 1597 1598 1599 int 1600 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1601 { 1602 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1603 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1604 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1605 struct epoch_tracker et; 1606 int error = 0; 1607 1608 if (ifp->if_afdata[AF_INET6] == NULL) 1609 return (EPFNOSUPPORT); 1610 switch (cmd) { 1611 case OSIOCGIFINFO_IN6: 1612 #define ND ndi->ndi 1613 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1614 bzero(&ND, sizeof(ND)); 1615 ND.linkmtu = IN6_LINKMTU(ifp); 1616 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1617 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1618 ND.reachable = ND_IFINFO(ifp)->reachable; 1619 ND.retrans = ND_IFINFO(ifp)->retrans; 1620 ND.flags = ND_IFINFO(ifp)->flags; 1621 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1622 ND.chlim = ND_IFINFO(ifp)->chlim; 1623 break; 1624 case SIOCGIFINFO_IN6: 1625 ND = *ND_IFINFO(ifp); 1626 break; 1627 case SIOCSIFINFO_IN6: 1628 /* 1629 * used to change host variables from userland. 1630 * intended for a use on router to reflect RA configurations. 1631 */ 1632 /* 0 means 'unspecified' */ 1633 if (ND.linkmtu != 0) { 1634 if (ND.linkmtu < IPV6_MMTU || 1635 ND.linkmtu > IN6_LINKMTU(ifp)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1640 } 1641 1642 if (ND.basereachable != 0) { 1643 int obasereachable = ND_IFINFO(ifp)->basereachable; 1644 1645 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1646 if (ND.basereachable != obasereachable) 1647 ND_IFINFO(ifp)->reachable = 1648 ND_COMPUTE_RTIME(ND.basereachable); 1649 } 1650 if (ND.retrans != 0) 1651 ND_IFINFO(ifp)->retrans = ND.retrans; 1652 if (ND.chlim != 0) 1653 ND_IFINFO(ifp)->chlim = ND.chlim; 1654 /* FALLTHROUGH */ 1655 case SIOCSIFINFO_FLAGS: 1656 { 1657 struct ifaddr *ifa; 1658 struct in6_ifaddr *ia; 1659 1660 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1661 !(ND.flags & ND6_IFF_IFDISABLED)) { 1662 /* ifdisabled 1->0 transision */ 1663 1664 /* 1665 * If the interface is marked as ND6_IFF_IFDISABLED and 1666 * has an link-local address with IN6_IFF_DUPLICATED, 1667 * do not clear ND6_IFF_IFDISABLED. 1668 * See RFC 4862, Section 5.4.5. 1669 */ 1670 NET_EPOCH_ENTER(et); 1671 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1672 if (ifa->ifa_addr->sa_family != AF_INET6) 1673 continue; 1674 ia = (struct in6_ifaddr *)ifa; 1675 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1676 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1677 break; 1678 } 1679 NET_EPOCH_EXIT(et); 1680 1681 if (ifa != NULL) { 1682 /* LLA is duplicated. */ 1683 ND.flags |= ND6_IFF_IFDISABLED; 1684 log(LOG_ERR, "Cannot enable an interface" 1685 " with a link-local address marked" 1686 " duplicate.\n"); 1687 } else { 1688 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1689 if (ifp->if_flags & IFF_UP) 1690 in6_if_up(ifp); 1691 } 1692 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1693 (ND.flags & ND6_IFF_IFDISABLED)) { 1694 /* ifdisabled 0->1 transision */ 1695 /* Mark all IPv6 address as tentative. */ 1696 1697 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1698 if (V_ip6_dad_count > 0 && 1699 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1700 NET_EPOCH_ENTER(et); 1701 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1702 ifa_link) { 1703 if (ifa->ifa_addr->sa_family != 1704 AF_INET6) 1705 continue; 1706 ia = (struct in6_ifaddr *)ifa; 1707 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1708 } 1709 NET_EPOCH_EXIT(et); 1710 } 1711 } 1712 1713 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1714 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1715 /* auto_linklocal 0->1 transision */ 1716 1717 /* If no link-local address on ifp, configure */ 1718 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1719 in6_ifattach(ifp, NULL); 1720 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1721 ifp->if_flags & IFF_UP) { 1722 /* 1723 * When the IF already has 1724 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1725 * address is assigned, and IFF_UP, try to 1726 * assign one. 1727 */ 1728 NET_EPOCH_ENTER(et); 1729 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1730 ifa_link) { 1731 if (ifa->ifa_addr->sa_family != 1732 AF_INET6) 1733 continue; 1734 ia = (struct in6_ifaddr *)ifa; 1735 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1736 break; 1737 } 1738 NET_EPOCH_EXIT(et); 1739 if (ifa != NULL) 1740 /* No LLA is configured. */ 1741 in6_ifattach(ifp, NULL); 1742 } 1743 } 1744 ND_IFINFO(ifp)->flags = ND.flags; 1745 break; 1746 } 1747 #undef ND 1748 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1749 /* sync kernel routing table with the default router list */ 1750 defrouter_reset(); 1751 defrouter_select_fib(RT_ALL_FIBS); 1752 break; 1753 case SIOCSPFXFLUSH_IN6: 1754 { 1755 /* flush all the prefix advertised by routers */ 1756 struct in6_ifaddr *ia, *ia_next; 1757 struct nd_prefix *pr, *next; 1758 struct nd_prhead prl; 1759 1760 LIST_INIT(&prl); 1761 1762 ND6_WLOCK(); 1763 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1764 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1765 continue; /* XXX */ 1766 nd6_prefix_unlink(pr, &prl); 1767 } 1768 ND6_WUNLOCK(); 1769 1770 while ((pr = LIST_FIRST(&prl)) != NULL) { 1771 LIST_REMOVE(pr, ndpr_entry); 1772 /* XXXRW: in6_ifaddrhead locking. */ 1773 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1774 ia_next) { 1775 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1776 continue; 1777 1778 if (ia->ia6_ndpr == pr) 1779 in6_purgeaddr(&ia->ia_ifa); 1780 } 1781 nd6_prefix_del(pr); 1782 } 1783 break; 1784 } 1785 case SIOCSRTRFLUSH_IN6: 1786 { 1787 /* flush all the default routers */ 1788 1789 defrouter_reset(); 1790 nd6_defrouter_flush_all(); 1791 defrouter_select_fib(RT_ALL_FIBS); 1792 break; 1793 } 1794 case SIOCGNBRINFO_IN6: 1795 { 1796 struct llentry *ln; 1797 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1798 1799 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1800 return (error); 1801 1802 NET_EPOCH_ENTER(et); 1803 ln = nd6_lookup(&nb_addr, 0, ifp); 1804 NET_EPOCH_EXIT(et); 1805 1806 if (ln == NULL) { 1807 error = EINVAL; 1808 break; 1809 } 1810 nbi->state = ln->ln_state; 1811 nbi->asked = ln->la_asked; 1812 nbi->isrouter = ln->ln_router; 1813 if (ln->la_expire == 0) 1814 nbi->expire = 0; 1815 else 1816 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1817 (time_second - time_uptime); 1818 LLE_RUNLOCK(ln); 1819 break; 1820 } 1821 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1822 ndif->ifindex = V_nd6_defifindex; 1823 break; 1824 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1825 return (nd6_setdefaultiface(ndif->ifindex)); 1826 } 1827 return (error); 1828 } 1829 1830 /* 1831 * Calculates new isRouter value based on provided parameters and 1832 * returns it. 1833 */ 1834 static int 1835 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1836 int ln_router) 1837 { 1838 1839 /* 1840 * ICMP6 type dependent behavior. 1841 * 1842 * NS: clear IsRouter if new entry 1843 * RS: clear IsRouter 1844 * RA: set IsRouter if there's lladdr 1845 * redir: clear IsRouter if new entry 1846 * 1847 * RA case, (1): 1848 * The spec says that we must set IsRouter in the following cases: 1849 * - If lladdr exist, set IsRouter. This means (1-5). 1850 * - If it is old entry (!newentry), set IsRouter. This means (7). 1851 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1852 * A quetion arises for (1) case. (1) case has no lladdr in the 1853 * neighbor cache, this is similar to (6). 1854 * This case is rare but we figured that we MUST NOT set IsRouter. 1855 * 1856 * is_new old_addr new_addr NS RS RA redir 1857 * D R 1858 * 0 n n (1) c ? s 1859 * 0 y n (2) c s s 1860 * 0 n y (3) c s s 1861 * 0 y y (4) c s s 1862 * 0 y y (5) c s s 1863 * 1 -- n (6) c c c s 1864 * 1 -- y (7) c c s c s 1865 * 1866 * (c=clear s=set) 1867 */ 1868 switch (type & 0xff) { 1869 case ND_NEIGHBOR_SOLICIT: 1870 /* 1871 * New entry must have is_router flag cleared. 1872 */ 1873 if (is_new) /* (6-7) */ 1874 ln_router = 0; 1875 break; 1876 case ND_REDIRECT: 1877 /* 1878 * If the icmp is a redirect to a better router, always set the 1879 * is_router flag. Otherwise, if the entry is newly created, 1880 * clear the flag. [RFC 2461, sec 8.3] 1881 */ 1882 if (code == ND_REDIRECT_ROUTER) 1883 ln_router = 1; 1884 else { 1885 if (is_new) /* (6-7) */ 1886 ln_router = 0; 1887 } 1888 break; 1889 case ND_ROUTER_SOLICIT: 1890 /* 1891 * is_router flag must always be cleared. 1892 */ 1893 ln_router = 0; 1894 break; 1895 case ND_ROUTER_ADVERT: 1896 /* 1897 * Mark an entry with lladdr as a router. 1898 */ 1899 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1900 (is_new && new_addr)) { /* (7) */ 1901 ln_router = 1; 1902 } 1903 break; 1904 } 1905 1906 return (ln_router); 1907 } 1908 1909 /* 1910 * Create neighbor cache entry and cache link-layer address, 1911 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1912 * 1913 * type - ICMP6 type 1914 * code - type dependent information 1915 * 1916 */ 1917 void 1918 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1919 int lladdrlen, int type, int code) 1920 { 1921 struct llentry *ln = NULL, *ln_tmp; 1922 int is_newentry; 1923 int do_update; 1924 int olladdr; 1925 int llchange; 1926 int flags; 1927 uint16_t router = 0; 1928 struct sockaddr_in6 sin6; 1929 struct mbuf *chain = NULL; 1930 u_char linkhdr[LLE_MAX_LINKHDR]; 1931 size_t linkhdrsize; 1932 int lladdr_off; 1933 1934 NET_EPOCH_ASSERT(); 1935 IF_AFDATA_UNLOCK_ASSERT(ifp); 1936 1937 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1938 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1939 1940 /* nothing must be updated for unspecified address */ 1941 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1942 return; 1943 1944 /* 1945 * Validation about ifp->if_addrlen and lladdrlen must be done in 1946 * the caller. 1947 * 1948 * XXX If the link does not have link-layer adderss, what should 1949 * we do? (ifp->if_addrlen == 0) 1950 * Spec says nothing in sections for RA, RS and NA. There's small 1951 * description on it in NS section (RFC 2461 7.2.3). 1952 */ 1953 flags = lladdr ? LLE_EXCLUSIVE : 0; 1954 ln = nd6_lookup(from, flags, ifp); 1955 is_newentry = 0; 1956 if (ln == NULL) { 1957 flags |= LLE_EXCLUSIVE; 1958 ln = nd6_alloc(from, 0, ifp); 1959 if (ln == NULL) 1960 return; 1961 1962 /* 1963 * Since we already know all the data for the new entry, 1964 * fill it before insertion. 1965 */ 1966 if (lladdr != NULL) { 1967 linkhdrsize = sizeof(linkhdr); 1968 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1969 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1970 return; 1971 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1972 lladdr_off); 1973 } 1974 1975 IF_AFDATA_WLOCK(ifp); 1976 LLE_WLOCK(ln); 1977 /* Prefer any existing lle over newly-created one */ 1978 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1979 if (ln_tmp == NULL) 1980 lltable_link_entry(LLTABLE6(ifp), ln); 1981 IF_AFDATA_WUNLOCK(ifp); 1982 if (ln_tmp == NULL) { 1983 /* No existing lle, mark as new entry (6,7) */ 1984 is_newentry = 1; 1985 if (lladdr != NULL) { /* (7) */ 1986 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1987 EVENTHANDLER_INVOKE(lle_event, ln, 1988 LLENTRY_RESOLVED); 1989 } 1990 } else { 1991 lltable_free_entry(LLTABLE6(ifp), ln); 1992 ln = ln_tmp; 1993 ln_tmp = NULL; 1994 } 1995 } 1996 /* do nothing if static ndp is set */ 1997 if ((ln->la_flags & LLE_STATIC)) { 1998 if (flags & LLE_EXCLUSIVE) 1999 LLE_WUNLOCK(ln); 2000 else 2001 LLE_RUNLOCK(ln); 2002 return; 2003 } 2004 2005 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2006 if (olladdr && lladdr) { 2007 llchange = bcmp(lladdr, ln->ll_addr, 2008 ifp->if_addrlen); 2009 } else if (!olladdr && lladdr) 2010 llchange = 1; 2011 else 2012 llchange = 0; 2013 2014 /* 2015 * newentry olladdr lladdr llchange (*=record) 2016 * 0 n n -- (1) 2017 * 0 y n -- (2) 2018 * 0 n y y (3) * STALE 2019 * 0 y y n (4) * 2020 * 0 y y y (5) * STALE 2021 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2022 * 1 -- y -- (7) * STALE 2023 */ 2024 2025 do_update = 0; 2026 if (is_newentry == 0 && llchange != 0) { 2027 do_update = 1; /* (3,5) */ 2028 2029 /* 2030 * Record source link-layer address 2031 * XXX is it dependent to ifp->if_type? 2032 */ 2033 linkhdrsize = sizeof(linkhdr); 2034 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2035 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2036 return; 2037 2038 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2039 lladdr_off) == 0) { 2040 /* Entry was deleted */ 2041 return; 2042 } 2043 2044 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2045 2046 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2047 2048 if (ln->la_hold != NULL) 2049 nd6_grab_holdchain(ln, &chain, &sin6); 2050 } 2051 2052 /* Calculates new router status */ 2053 router = nd6_is_router(type, code, is_newentry, olladdr, 2054 lladdr != NULL ? 1 : 0, ln->ln_router); 2055 2056 ln->ln_router = router; 2057 /* Mark non-router redirects with special flag */ 2058 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2059 ln->la_flags |= LLE_REDIRECT; 2060 2061 if (flags & LLE_EXCLUSIVE) 2062 LLE_WUNLOCK(ln); 2063 else 2064 LLE_RUNLOCK(ln); 2065 2066 if (chain != NULL) 2067 nd6_flush_holdchain(ifp, chain, &sin6); 2068 2069 /* 2070 * When the link-layer address of a router changes, select the 2071 * best router again. In particular, when the neighbor entry is newly 2072 * created, it might affect the selection policy. 2073 * Question: can we restrict the first condition to the "is_newentry" 2074 * case? 2075 * XXX: when we hear an RA from a new router with the link-layer 2076 * address option, defrouter_select_fib() is called twice, since 2077 * defrtrlist_update called the function as well. However, I believe 2078 * we can compromise the overhead, since it only happens the first 2079 * time. 2080 * XXX: although defrouter_select_fib() should not have a bad effect 2081 * for those are not autoconfigured hosts, we explicitly avoid such 2082 * cases for safety. 2083 */ 2084 if ((do_update || is_newentry) && router && 2085 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2086 /* 2087 * guaranteed recursion 2088 */ 2089 defrouter_select_fib(ifp->if_fib); 2090 } 2091 } 2092 2093 static void 2094 nd6_slowtimo(void *arg) 2095 { 2096 struct epoch_tracker et; 2097 CURVNET_SET((struct vnet *) arg); 2098 struct nd_ifinfo *nd6if; 2099 struct ifnet *ifp; 2100 2101 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2102 nd6_slowtimo, curvnet); 2103 NET_EPOCH_ENTER(et); 2104 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2105 if (ifp->if_afdata[AF_INET6] == NULL) 2106 continue; 2107 nd6if = ND_IFINFO(ifp); 2108 if (nd6if->basereachable && /* already initialized */ 2109 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2110 /* 2111 * Since reachable time rarely changes by router 2112 * advertisements, we SHOULD insure that a new random 2113 * value gets recomputed at least once every few hours. 2114 * (RFC 2461, 6.3.4) 2115 */ 2116 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2117 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2118 } 2119 } 2120 NET_EPOCH_EXIT(et); 2121 CURVNET_RESTORE(); 2122 } 2123 2124 void 2125 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2126 struct sockaddr_in6 *sin6) 2127 { 2128 2129 LLE_WLOCK_ASSERT(ln); 2130 2131 *chain = ln->la_hold; 2132 ln->la_hold = NULL; 2133 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2134 2135 if (ln->ln_state == ND6_LLINFO_STALE) { 2136 2137 /* 2138 * The first time we send a packet to a 2139 * neighbor whose entry is STALE, we have 2140 * to change the state to DELAY and a sets 2141 * a timer to expire in DELAY_FIRST_PROBE_TIME 2142 * seconds to ensure do neighbor unreachability 2143 * detection on expiration. 2144 * (RFC 2461 7.3.3) 2145 */ 2146 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2147 } 2148 } 2149 2150 int 2151 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2152 struct sockaddr_in6 *dst, struct route *ro) 2153 { 2154 int error; 2155 int ip6len; 2156 struct ip6_hdr *ip6; 2157 struct m_tag *mtag; 2158 2159 #ifdef MAC 2160 mac_netinet6_nd6_send(ifp, m); 2161 #endif 2162 2163 /* 2164 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2165 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2166 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2167 * to be diverted to user space. When re-injected into the kernel, 2168 * send_output() will directly dispatch them to the outgoing interface. 2169 */ 2170 if (send_sendso_input_hook != NULL) { 2171 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2172 if (mtag != NULL) { 2173 ip6 = mtod(m, struct ip6_hdr *); 2174 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2175 /* Use the SEND socket */ 2176 error = send_sendso_input_hook(m, ifp, SND_OUT, 2177 ip6len); 2178 /* -1 == no app on SEND socket */ 2179 if (error == 0 || error != -1) 2180 return (error); 2181 } 2182 } 2183 2184 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2185 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2186 mtod(m, struct ip6_hdr *)); 2187 2188 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2189 origifp = ifp; 2190 2191 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2192 return (error); 2193 } 2194 2195 /* 2196 * Lookup link headerfor @sa_dst address. Stores found 2197 * data in @desten buffer. Copy of lle ln_flags can be also 2198 * saved in @pflags if @pflags is non-NULL. 2199 * 2200 * If destination LLE does not exists or lle state modification 2201 * is required, call "slow" version. 2202 * 2203 * Return values: 2204 * - 0 on success (address copied to buffer). 2205 * - EWOULDBLOCK (no local error, but address is still unresolved) 2206 * - other errors (alloc failure, etc) 2207 */ 2208 int 2209 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2210 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2211 struct llentry **plle) 2212 { 2213 struct llentry *ln = NULL; 2214 const struct sockaddr_in6 *dst6; 2215 2216 NET_EPOCH_ASSERT(); 2217 2218 if (pflags != NULL) 2219 *pflags = 0; 2220 2221 dst6 = (const struct sockaddr_in6 *)sa_dst; 2222 2223 /* discard the packet if IPv6 operation is disabled on the interface */ 2224 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2225 m_freem(m); 2226 return (ENETDOWN); /* better error? */ 2227 } 2228 2229 if (m != NULL && m->m_flags & M_MCAST) { 2230 switch (ifp->if_type) { 2231 case IFT_ETHER: 2232 case IFT_L2VLAN: 2233 case IFT_BRIDGE: 2234 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2235 desten); 2236 return (0); 2237 default: 2238 m_freem(m); 2239 return (EAFNOSUPPORT); 2240 } 2241 } 2242 2243 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2244 ifp); 2245 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2246 /* Entry found, let's copy lle info */ 2247 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2248 if (pflags != NULL) 2249 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2250 /* Check if we have feedback request from nd6 timer */ 2251 if (ln->r_skip_req != 0) { 2252 LLE_REQ_LOCK(ln); 2253 ln->r_skip_req = 0; /* Notify that entry was used */ 2254 ln->lle_hittime = time_uptime; 2255 LLE_REQ_UNLOCK(ln); 2256 } 2257 if (plle) { 2258 LLE_ADDREF(ln); 2259 *plle = ln; 2260 LLE_WUNLOCK(ln); 2261 } 2262 return (0); 2263 } else if (plle && ln) 2264 LLE_WUNLOCK(ln); 2265 2266 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2267 } 2268 2269 2270 /* 2271 * Do L2 address resolution for @sa_dst address. Stores found 2272 * address in @desten buffer. Copy of lle ln_flags can be also 2273 * saved in @pflags if @pflags is non-NULL. 2274 * 2275 * Heavy version. 2276 * Function assume that destination LLE does not exist, 2277 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2278 * 2279 * Set noinline to be dtrace-friendly 2280 */ 2281 static __noinline int 2282 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2283 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2284 struct llentry **plle) 2285 { 2286 struct llentry *lle = NULL, *lle_tmp; 2287 struct in6_addr *psrc, src; 2288 int send_ns, ll_len; 2289 char *lladdr; 2290 2291 NET_EPOCH_ASSERT(); 2292 2293 /* 2294 * Address resolution or Neighbor Unreachability Detection 2295 * for the next hop. 2296 * At this point, the destination of the packet must be a unicast 2297 * or an anycast address(i.e. not a multicast). 2298 */ 2299 if (lle == NULL) { 2300 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2301 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2302 /* 2303 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2304 * the condition below is not very efficient. But we believe 2305 * it is tolerable, because this should be a rare case. 2306 */ 2307 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2308 if (lle == NULL) { 2309 char ip6buf[INET6_ADDRSTRLEN]; 2310 log(LOG_DEBUG, 2311 "nd6_output: can't allocate llinfo for %s " 2312 "(ln=%p)\n", 2313 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2314 m_freem(m); 2315 return (ENOBUFS); 2316 } 2317 2318 IF_AFDATA_WLOCK(ifp); 2319 LLE_WLOCK(lle); 2320 /* Prefer any existing entry over newly-created one */ 2321 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2322 if (lle_tmp == NULL) 2323 lltable_link_entry(LLTABLE6(ifp), lle); 2324 IF_AFDATA_WUNLOCK(ifp); 2325 if (lle_tmp != NULL) { 2326 lltable_free_entry(LLTABLE6(ifp), lle); 2327 lle = lle_tmp; 2328 lle_tmp = NULL; 2329 } 2330 } 2331 } 2332 if (lle == NULL) { 2333 m_freem(m); 2334 return (ENOBUFS); 2335 } 2336 2337 LLE_WLOCK_ASSERT(lle); 2338 2339 /* 2340 * The first time we send a packet to a neighbor whose entry is 2341 * STALE, we have to change the state to DELAY and a sets a timer to 2342 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2343 * neighbor unreachability detection on expiration. 2344 * (RFC 2461 7.3.3) 2345 */ 2346 if (lle->ln_state == ND6_LLINFO_STALE) 2347 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2348 2349 /* 2350 * If the neighbor cache entry has a state other than INCOMPLETE 2351 * (i.e. its link-layer address is already resolved), just 2352 * send the packet. 2353 */ 2354 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2355 if (flags & LLE_ADDRONLY) { 2356 lladdr = lle->ll_addr; 2357 ll_len = ifp->if_addrlen; 2358 } else { 2359 lladdr = lle->r_linkdata; 2360 ll_len = lle->r_hdrlen; 2361 } 2362 bcopy(lladdr, desten, ll_len); 2363 if (pflags != NULL) 2364 *pflags = lle->la_flags; 2365 if (plle) { 2366 LLE_ADDREF(lle); 2367 *plle = lle; 2368 } 2369 LLE_WUNLOCK(lle); 2370 return (0); 2371 } 2372 2373 /* 2374 * There is a neighbor cache entry, but no ethernet address 2375 * response yet. Append this latest packet to the end of the 2376 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2377 * the oldest packet in the queue will be removed. 2378 */ 2379 2380 if (lle->la_hold != NULL) { 2381 struct mbuf *m_hold; 2382 int i; 2383 2384 i = 0; 2385 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2386 i++; 2387 if (m_hold->m_nextpkt == NULL) { 2388 m_hold->m_nextpkt = m; 2389 break; 2390 } 2391 } 2392 while (i >= V_nd6_maxqueuelen) { 2393 m_hold = lle->la_hold; 2394 lle->la_hold = lle->la_hold->m_nextpkt; 2395 m_freem(m_hold); 2396 i--; 2397 } 2398 } else { 2399 lle->la_hold = m; 2400 } 2401 2402 /* 2403 * If there has been no NS for the neighbor after entering the 2404 * INCOMPLETE state, send the first solicitation. 2405 * Note that for newly-created lle la_asked will be 0, 2406 * so we will transition from ND6_LLINFO_NOSTATE to 2407 * ND6_LLINFO_INCOMPLETE state here. 2408 */ 2409 psrc = NULL; 2410 send_ns = 0; 2411 if (lle->la_asked == 0) { 2412 lle->la_asked++; 2413 send_ns = 1; 2414 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2415 2416 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2417 } 2418 LLE_WUNLOCK(lle); 2419 if (send_ns != 0) 2420 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2421 2422 return (EWOULDBLOCK); 2423 } 2424 2425 /* 2426 * Do L2 address resolution for @sa_dst address. Stores found 2427 * address in @desten buffer. Copy of lle ln_flags can be also 2428 * saved in @pflags if @pflags is non-NULL. 2429 * 2430 * Return values: 2431 * - 0 on success (address copied to buffer). 2432 * - EWOULDBLOCK (no local error, but address is still unresolved) 2433 * - other errors (alloc failure, etc) 2434 */ 2435 int 2436 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2437 char *desten, uint32_t *pflags) 2438 { 2439 int error; 2440 2441 flags |= LLE_ADDRONLY; 2442 error = nd6_resolve_slow(ifp, flags, NULL, 2443 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2444 return (error); 2445 } 2446 2447 int 2448 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2449 struct sockaddr_in6 *dst) 2450 { 2451 struct mbuf *m, *m_head; 2452 int error = 0; 2453 2454 m_head = chain; 2455 2456 while (m_head) { 2457 m = m_head; 2458 m_head = m_head->m_nextpkt; 2459 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2460 } 2461 2462 /* 2463 * XXX 2464 * note that intermediate errors are blindly ignored 2465 */ 2466 return (error); 2467 } 2468 2469 static int 2470 nd6_need_cache(struct ifnet *ifp) 2471 { 2472 /* 2473 * XXX: we currently do not make neighbor cache on any interface 2474 * other than Ethernet and GIF. 2475 * 2476 * RFC2893 says: 2477 * - unidirectional tunnels needs no ND 2478 */ 2479 switch (ifp->if_type) { 2480 case IFT_ETHER: 2481 case IFT_IEEE1394: 2482 case IFT_L2VLAN: 2483 case IFT_INFINIBAND: 2484 case IFT_BRIDGE: 2485 case IFT_PROPVIRTUAL: 2486 return (1); 2487 default: 2488 return (0); 2489 } 2490 } 2491 2492 /* 2493 * Add pernament ND6 link-layer record for given 2494 * interface address. 2495 * 2496 * Very similar to IPv4 arp_ifinit(), but: 2497 * 1) IPv6 DAD is performed in different place 2498 * 2) It is called by IPv6 protocol stack in contrast to 2499 * arp_ifinit() which is typically called in SIOCSIFADDR 2500 * driver ioctl handler. 2501 * 2502 */ 2503 int 2504 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2505 { 2506 struct ifnet *ifp; 2507 struct llentry *ln, *ln_tmp; 2508 struct sockaddr *dst; 2509 2510 ifp = ia->ia_ifa.ifa_ifp; 2511 if (nd6_need_cache(ifp) == 0) 2512 return (0); 2513 2514 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2515 dst = (struct sockaddr *)&ia->ia_addr; 2516 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2517 if (ln == NULL) 2518 return (ENOBUFS); 2519 2520 IF_AFDATA_WLOCK(ifp); 2521 LLE_WLOCK(ln); 2522 /* Unlink any entry if exists */ 2523 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2524 if (ln_tmp != NULL) 2525 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2526 lltable_link_entry(LLTABLE6(ifp), ln); 2527 IF_AFDATA_WUNLOCK(ifp); 2528 2529 if (ln_tmp != NULL) 2530 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2531 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2532 2533 LLE_WUNLOCK(ln); 2534 if (ln_tmp != NULL) 2535 llentry_free(ln_tmp); 2536 2537 return (0); 2538 } 2539 2540 /* 2541 * Removes either all lle entries for given @ia, or lle 2542 * corresponding to @ia address. 2543 */ 2544 void 2545 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2546 { 2547 struct sockaddr_in6 mask, addr; 2548 struct sockaddr *saddr, *smask; 2549 struct ifnet *ifp; 2550 2551 ifp = ia->ia_ifa.ifa_ifp; 2552 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2553 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2554 saddr = (struct sockaddr *)&addr; 2555 smask = (struct sockaddr *)&mask; 2556 2557 if (all != 0) 2558 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2559 else 2560 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2561 } 2562 2563 static void 2564 clear_llinfo_pqueue(struct llentry *ln) 2565 { 2566 struct mbuf *m_hold, *m_hold_next; 2567 2568 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2569 m_hold_next = m_hold->m_nextpkt; 2570 m_freem(m_hold); 2571 } 2572 2573 ln->la_hold = NULL; 2574 } 2575 2576 static int 2577 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2578 { 2579 struct in6_prefix p; 2580 struct sockaddr_in6 s6; 2581 struct nd_prefix *pr; 2582 struct nd_pfxrouter *pfr; 2583 time_t maxexpire; 2584 int error; 2585 char ip6buf[INET6_ADDRSTRLEN]; 2586 2587 if (req->newptr) 2588 return (EPERM); 2589 2590 error = sysctl_wire_old_buffer(req, 0); 2591 if (error != 0) 2592 return (error); 2593 2594 bzero(&p, sizeof(p)); 2595 p.origin = PR_ORIG_RA; 2596 bzero(&s6, sizeof(s6)); 2597 s6.sin6_family = AF_INET6; 2598 s6.sin6_len = sizeof(s6); 2599 2600 ND6_RLOCK(); 2601 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2602 p.prefix = pr->ndpr_prefix; 2603 if (sa6_recoverscope(&p.prefix)) { 2604 log(LOG_ERR, "scope error in prefix list (%s)\n", 2605 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2606 /* XXX: press on... */ 2607 } 2608 p.raflags = pr->ndpr_raf; 2609 p.prefixlen = pr->ndpr_plen; 2610 p.vltime = pr->ndpr_vltime; 2611 p.pltime = pr->ndpr_pltime; 2612 p.if_index = pr->ndpr_ifp->if_index; 2613 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2614 p.expire = 0; 2615 else { 2616 /* XXX: we assume time_t is signed. */ 2617 maxexpire = (-1) & 2618 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2619 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2620 p.expire = pr->ndpr_lastupdate + 2621 pr->ndpr_vltime + 2622 (time_second - time_uptime); 2623 else 2624 p.expire = maxexpire; 2625 } 2626 p.refcnt = pr->ndpr_addrcnt; 2627 p.flags = pr->ndpr_stateflags; 2628 p.advrtrs = 0; 2629 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2630 p.advrtrs++; 2631 error = SYSCTL_OUT(req, &p, sizeof(p)); 2632 if (error != 0) 2633 break; 2634 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2635 s6.sin6_addr = pfr->router->rtaddr; 2636 if (sa6_recoverscope(&s6)) 2637 log(LOG_ERR, 2638 "scope error in prefix list (%s)\n", 2639 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2640 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2641 if (error != 0) 2642 goto out; 2643 } 2644 } 2645 out: 2646 ND6_RUNLOCK(); 2647 return (error); 2648 } 2649 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2650 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2651 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2652 "NDP prefix list"); 2653 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2654 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2655 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2656 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2657