1 /* $FreeBSD$ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_dl.h> 61 #include <net/if_types.h> 62 #include <net/if_atm.h> 63 #include <net/fddi.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <netinet/if_ether.h> 68 #include <netinet6/in6_var.h> 69 #include <netinet/ip6.h> 70 #include <netinet6/ip6_var.h> 71 #include <netinet6/nd6.h> 72 #include <netinet6/in6_prefix.h> 73 #include <netinet/icmp6.h> 74 75 #include <net/net_osdep.h> 76 77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 79 80 #define SIN6(s) ((struct sockaddr_in6 *)s) 81 #define SDL(s) ((struct sockaddr_dl *)s) 82 83 /* timer values */ 84 int nd6_prune = 1; /* walk list every 1 seconds */ 85 int nd6_delay = 5; /* delay first probe time 5 second */ 86 int nd6_umaxtries = 3; /* maximum unicast query */ 87 int nd6_mmaxtries = 3; /* maximum multicast query */ 88 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 89 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 90 91 /* preventing too many loops in ND option parsing */ 92 int nd6_maxndopt = 10; /* max # of ND options allowed */ 93 94 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 95 96 #ifdef ND6_DEBUG 97 int nd6_debug = 1; 98 #else 99 int nd6_debug = 0; 100 #endif 101 102 /* for debugging? */ 103 static int nd6_inuse, nd6_allocated; 104 105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 106 static size_t nd_ifinfo_indexlim = 8; 107 struct nd_ifinfo *nd_ifinfo = NULL; 108 struct nd_drhead nd_defrouter; 109 struct nd_prhead nd_prefix = { 0 }; 110 111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 112 static struct sockaddr_in6 all1_sa; 113 114 static void nd6_slowtimo __P((void *)); 115 static int regen_tmpaddr __P((struct in6_ifaddr *)); 116 117 struct callout nd6_slowtimo_ch; 118 struct callout nd6_timer_ch; 119 extern struct callout in6_tmpaddrtimer_ch; 120 121 void 122 nd6_init() 123 { 124 static int nd6_init_done = 0; 125 int i; 126 127 if (nd6_init_done) { 128 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 129 return; 130 } 131 132 all1_sa.sin6_family = AF_INET6; 133 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 134 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 135 all1_sa.sin6_addr.s6_addr[i] = 0xff; 136 137 /* initialization of the default router list */ 138 TAILQ_INIT(&nd_defrouter); 139 140 nd6_init_done = 1; 141 142 /* start timer */ 143 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 144 nd6_slowtimo, NULL); 145 } 146 147 void 148 nd6_ifattach(ifp) 149 struct ifnet *ifp; 150 { 151 152 /* 153 * We have some arrays that should be indexed by if_index. 154 * since if_index will grow dynamically, they should grow too. 155 */ 156 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { 157 size_t n; 158 caddr_t q; 159 160 while (if_index >= nd_ifinfo_indexlim) 161 nd_ifinfo_indexlim <<= 1; 162 163 /* grow nd_ifinfo */ 164 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo); 165 q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK); 166 bzero(q, n); 167 if (nd_ifinfo) { 168 bcopy((caddr_t)nd_ifinfo, q, n/2); 169 free((caddr_t)nd_ifinfo, M_IP6NDP); 170 } 171 nd_ifinfo = (struct nd_ifinfo *)q; 172 } 173 174 #define ND nd_ifinfo[ifp->if_index] 175 176 /* 177 * Don't initialize if called twice. 178 * XXX: to detect this, we should choose a member that is never set 179 * before initialization of the ND structure itself. We formaly used 180 * the linkmtu member, which was not suitable because it could be 181 * initialized via "ifconfig mtu". 182 */ 183 if (ND.basereachable) 184 return; 185 186 ND.linkmtu = ifnet_byindex(ifp->if_index)->if_mtu; 187 ND.chlim = IPV6_DEFHLIM; 188 ND.basereachable = REACHABLE_TIME; 189 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); 190 ND.retrans = RETRANS_TIMER; 191 ND.receivedra = 0; 192 ND.flags = ND6_IFF_PERFORMNUD; 193 nd6_setmtu(ifp); 194 #undef ND 195 } 196 197 /* 198 * Reset ND level link MTU. This function is called when the physical MTU 199 * changes, which means we might have to adjust the ND level MTU. 200 */ 201 void 202 nd6_setmtu(ifp) 203 struct ifnet *ifp; 204 { 205 #define MIN(a,b) ((a) < (b) ? (a) : (b)) 206 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index]; 207 u_long oldmaxmtu = ndi->maxmtu; 208 u_long oldlinkmtu = ndi->linkmtu; 209 210 switch (ifp->if_type) { 211 case IFT_ARCNET: /* XXX MTU handling needs more work */ 212 ndi->maxmtu = MIN(60480, ifp->if_mtu); 213 break; 214 case IFT_ETHER: 215 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 216 break; 217 case IFT_FDDI: 218 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 219 break; 220 case IFT_ATM: 221 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 222 break; 223 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 224 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 225 break; 226 #ifdef IFT_IEEE80211 227 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 228 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 229 break; 230 #endif 231 default: 232 ndi->maxmtu = ifp->if_mtu; 233 break; 234 } 235 236 if (oldmaxmtu != ndi->maxmtu) { 237 /* 238 * If the ND level MTU is not set yet, or if the maxmtu 239 * is reset to a smaller value than the ND level MTU, 240 * also reset the ND level MTU. 241 */ 242 if (ndi->linkmtu == 0 || 243 ndi->maxmtu < ndi->linkmtu) { 244 ndi->linkmtu = ndi->maxmtu; 245 /* also adjust in6_maxmtu if necessary. */ 246 if (oldlinkmtu == 0) { 247 /* 248 * XXX: the case analysis is grotty, but 249 * it is not efficient to call in6_setmaxmtu() 250 * here when we are during the initialization 251 * procedure. 252 */ 253 if (in6_maxmtu < ndi->linkmtu) 254 in6_maxmtu = ndi->linkmtu; 255 } else 256 in6_setmaxmtu(); 257 } 258 } 259 #undef MIN 260 } 261 262 void 263 nd6_option_init(opt, icmp6len, ndopts) 264 void *opt; 265 int icmp6len; 266 union nd_opts *ndopts; 267 { 268 bzero(ndopts, sizeof(*ndopts)); 269 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 270 ndopts->nd_opts_last 271 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 272 273 if (icmp6len == 0) { 274 ndopts->nd_opts_done = 1; 275 ndopts->nd_opts_search = NULL; 276 } 277 } 278 279 /* 280 * Take one ND option. 281 */ 282 struct nd_opt_hdr * 283 nd6_option(ndopts) 284 union nd_opts *ndopts; 285 { 286 struct nd_opt_hdr *nd_opt; 287 int olen; 288 289 if (!ndopts) 290 panic("ndopts == NULL in nd6_option\n"); 291 if (!ndopts->nd_opts_last) 292 panic("uninitialized ndopts in nd6_option\n"); 293 if (!ndopts->nd_opts_search) 294 return NULL; 295 if (ndopts->nd_opts_done) 296 return NULL; 297 298 nd_opt = ndopts->nd_opts_search; 299 300 /* make sure nd_opt_len is inside the buffer */ 301 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 302 bzero(ndopts, sizeof(*ndopts)); 303 return NULL; 304 } 305 306 olen = nd_opt->nd_opt_len << 3; 307 if (olen == 0) { 308 /* 309 * Message validation requires that all included 310 * options have a length that is greater than zero. 311 */ 312 bzero(ndopts, sizeof(*ndopts)); 313 return NULL; 314 } 315 316 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 317 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 318 /* option overruns the end of buffer, invalid */ 319 bzero(ndopts, sizeof(*ndopts)); 320 return NULL; 321 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 322 /* reached the end of options chain */ 323 ndopts->nd_opts_done = 1; 324 ndopts->nd_opts_search = NULL; 325 } 326 return nd_opt; 327 } 328 329 /* 330 * Parse multiple ND options. 331 * This function is much easier to use, for ND routines that do not need 332 * multiple options of the same type. 333 */ 334 int 335 nd6_options(ndopts) 336 union nd_opts *ndopts; 337 { 338 struct nd_opt_hdr *nd_opt; 339 int i = 0; 340 341 if (!ndopts) 342 panic("ndopts == NULL in nd6_options\n"); 343 if (!ndopts->nd_opts_last) 344 panic("uninitialized ndopts in nd6_options\n"); 345 if (!ndopts->nd_opts_search) 346 return 0; 347 348 while (1) { 349 nd_opt = nd6_option(ndopts); 350 if (!nd_opt && !ndopts->nd_opts_last) { 351 /* 352 * Message validation requires that all included 353 * options have a length that is greater than zero. 354 */ 355 icmp6stat.icp6s_nd_badopt++; 356 bzero(ndopts, sizeof(*ndopts)); 357 return -1; 358 } 359 360 if (!nd_opt) 361 goto skip1; 362 363 switch (nd_opt->nd_opt_type) { 364 case ND_OPT_SOURCE_LINKADDR: 365 case ND_OPT_TARGET_LINKADDR: 366 case ND_OPT_MTU: 367 case ND_OPT_REDIRECTED_HEADER: 368 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 369 nd6log((LOG_INFO, 370 "duplicated ND6 option found (type=%d)\n", 371 nd_opt->nd_opt_type)); 372 /* XXX bark? */ 373 } else { 374 ndopts->nd_opt_array[nd_opt->nd_opt_type] 375 = nd_opt; 376 } 377 break; 378 case ND_OPT_PREFIX_INFORMATION: 379 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 380 ndopts->nd_opt_array[nd_opt->nd_opt_type] 381 = nd_opt; 382 } 383 ndopts->nd_opts_pi_end = 384 (struct nd_opt_prefix_info *)nd_opt; 385 break; 386 default: 387 /* 388 * Unknown options must be silently ignored, 389 * to accomodate future extension to the protocol. 390 */ 391 nd6log((LOG_DEBUG, 392 "nd6_options: unsupported option %d - " 393 "option ignored\n", nd_opt->nd_opt_type)); 394 } 395 396 skip1: 397 i++; 398 if (i > nd6_maxndopt) { 399 icmp6stat.icp6s_nd_toomanyopt++; 400 nd6log((LOG_INFO, "too many loop in nd opt\n")); 401 break; 402 } 403 404 if (ndopts->nd_opts_done) 405 break; 406 } 407 408 return 0; 409 } 410 411 /* 412 * ND6 timer routine to expire default route list and prefix list 413 */ 414 void 415 nd6_timer(ignored_arg) 416 void *ignored_arg; 417 { 418 int s; 419 struct llinfo_nd6 *ln; 420 struct nd_defrouter *dr; 421 struct nd_prefix *pr; 422 struct ifnet *ifp; 423 struct in6_ifaddr *ia6, *nia6; 424 struct in6_addrlifetime *lt6; 425 426 s = splnet(); 427 callout_reset(&nd6_timer_ch, nd6_prune * hz, 428 nd6_timer, NULL); 429 430 ln = llinfo_nd6.ln_next; 431 while (ln && ln != &llinfo_nd6) { 432 struct rtentry *rt; 433 struct sockaddr_in6 *dst; 434 struct llinfo_nd6 *next = ln->ln_next; 435 /* XXX: used for the DELAY case only: */ 436 struct nd_ifinfo *ndi = NULL; 437 438 if ((rt = ln->ln_rt) == NULL) { 439 ln = next; 440 continue; 441 } 442 if ((ifp = rt->rt_ifp) == NULL) { 443 ln = next; 444 continue; 445 } 446 ndi = &nd_ifinfo[ifp->if_index]; 447 dst = (struct sockaddr_in6 *)rt_key(rt); 448 449 if (ln->ln_expire > time_second) { 450 ln = next; 451 continue; 452 } 453 454 /* sanity check */ 455 if (!rt) 456 panic("rt=0 in nd6_timer(ln=%p)\n", ln); 457 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 458 panic("rt_llinfo(%p) is not equal to ln(%p)\n", 459 rt->rt_llinfo, ln); 460 if (!dst) 461 panic("dst=0 in nd6_timer(ln=%p)\n", ln); 462 463 switch (ln->ln_state) { 464 case ND6_LLINFO_INCOMPLETE: 465 if (ln->ln_asked < nd6_mmaxtries) { 466 ln->ln_asked++; 467 ln->ln_expire = time_second + 468 nd_ifinfo[ifp->if_index].retrans / 1000; 469 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 470 ln, 0); 471 } else { 472 struct mbuf *m = ln->ln_hold; 473 if (m) { 474 if (rt->rt_ifp) { 475 /* 476 * Fake rcvif to make ICMP error 477 * more helpful in diagnosing 478 * for the receiver. 479 * XXX: should we consider 480 * older rcvif? 481 */ 482 m->m_pkthdr.rcvif = rt->rt_ifp; 483 } 484 icmp6_error(m, ICMP6_DST_UNREACH, 485 ICMP6_DST_UNREACH_ADDR, 0); 486 ln->ln_hold = NULL; 487 } 488 next = nd6_free(rt); 489 } 490 break; 491 case ND6_LLINFO_REACHABLE: 492 if (ln->ln_expire) { 493 ln->ln_state = ND6_LLINFO_STALE; 494 ln->ln_expire = time_second + nd6_gctimer; 495 } 496 break; 497 498 case ND6_LLINFO_STALE: 499 /* Garbage Collection(RFC 2461 5.3) */ 500 if (ln->ln_expire) 501 next = nd6_free(rt); 502 break; 503 504 case ND6_LLINFO_DELAY: 505 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 506 /* We need NUD */ 507 ln->ln_asked = 1; 508 ln->ln_state = ND6_LLINFO_PROBE; 509 ln->ln_expire = time_second + 510 ndi->retrans / 1000; 511 nd6_ns_output(ifp, &dst->sin6_addr, 512 &dst->sin6_addr, 513 ln, 0); 514 } else { 515 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 516 ln->ln_expire = time_second + nd6_gctimer; 517 } 518 break; 519 case ND6_LLINFO_PROBE: 520 if (ln->ln_asked < nd6_umaxtries) { 521 ln->ln_asked++; 522 ln->ln_expire = time_second + 523 nd_ifinfo[ifp->if_index].retrans / 1000; 524 nd6_ns_output(ifp, &dst->sin6_addr, 525 &dst->sin6_addr, ln, 0); 526 } else { 527 next = nd6_free(rt); 528 } 529 break; 530 } 531 ln = next; 532 } 533 534 /* expire default router list */ 535 dr = TAILQ_FIRST(&nd_defrouter); 536 while (dr) { 537 if (dr->expire && dr->expire < time_second) { 538 struct nd_defrouter *t; 539 t = TAILQ_NEXT(dr, dr_entry); 540 defrtrlist_del(dr); 541 dr = t; 542 } else { 543 dr = TAILQ_NEXT(dr, dr_entry); 544 } 545 } 546 547 /* 548 * expire interface addresses. 549 * in the past the loop was inside prefix expiry processing. 550 * However, from a stricter speci-confrmance standpoint, we should 551 * rather separate address lifetimes and prefix lifetimes. 552 */ 553 addrloop: 554 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 555 nia6 = ia6->ia_next; 556 /* check address lifetime */ 557 lt6 = &ia6->ia6_lifetime; 558 if (IFA6_IS_INVALID(ia6)) { 559 int regen = 0; 560 561 /* 562 * If the expiring address is temporary, try 563 * regenerating a new one. This would be useful when 564 * we suspended a laptop PC, then turned it on after a 565 * period that could invalidate all temporary 566 * addresses. Although we may have to restart the 567 * loop (see below), it must be after purging the 568 * address. Otherwise, we'd see an infinite loop of 569 * regeneration. 570 */ 571 if (ip6_use_tempaddr && 572 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 573 if (regen_tmpaddr(ia6) == 0) 574 regen = 1; 575 } 576 577 in6_purgeaddr(&ia6->ia_ifa); 578 579 if (regen) 580 goto addrloop; /* XXX: see below */ 581 } 582 if (IFA6_IS_DEPRECATED(ia6)) { 583 int oldflags = ia6->ia6_flags; 584 585 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 586 587 /* 588 * If a temporary address has just become deprecated, 589 * regenerate a new one if possible. 590 */ 591 if (ip6_use_tempaddr && 592 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 593 (oldflags & IN6_IFF_DEPRECATED) == 0) { 594 595 if (regen_tmpaddr(ia6) == 0) { 596 /* 597 * A new temporary address is 598 * generated. 599 * XXX: this means the address chain 600 * has changed while we are still in 601 * the loop. Although the change 602 * would not cause disaster (because 603 * it's not a deletion, but an 604 * addition,) we'd rather restart the 605 * loop just for safety. Or does this 606 * significantly reduce performance?? 607 */ 608 goto addrloop; 609 } 610 } 611 } else { 612 /* 613 * A new RA might have made a deprecated address 614 * preferred. 615 */ 616 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 617 } 618 } 619 620 /* expire prefix list */ 621 pr = nd_prefix.lh_first; 622 while (pr) { 623 /* 624 * check prefix lifetime. 625 * since pltime is just for autoconf, pltime processing for 626 * prefix is not necessary. 627 */ 628 if (pr->ndpr_expire && pr->ndpr_expire < time_second) { 629 struct nd_prefix *t; 630 t = pr->ndpr_next; 631 632 /* 633 * address expiration and prefix expiration are 634 * separate. NEVER perform in6_purgeaddr here. 635 */ 636 637 prelist_remove(pr); 638 pr = t; 639 } else 640 pr = pr->ndpr_next; 641 } 642 splx(s); 643 } 644 645 static int 646 regen_tmpaddr(ia6) 647 struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */ 648 { 649 struct ifaddr *ifa; 650 struct ifnet *ifp; 651 struct in6_ifaddr *public_ifa6 = NULL; 652 653 ifp = ia6->ia_ifa.ifa_ifp; 654 for (ifa = ifp->if_addrlist.tqh_first; ifa; 655 ifa = ifa->ifa_list.tqe_next) 656 { 657 struct in6_ifaddr *it6; 658 659 if (ifa->ifa_addr->sa_family != AF_INET6) 660 continue; 661 662 it6 = (struct in6_ifaddr *)ifa; 663 664 /* ignore no autoconf addresses. */ 665 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 666 continue; 667 668 /* ignore autoconf addresses with different prefixes. */ 669 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 670 continue; 671 672 /* 673 * Now we are looking at an autoconf address with the same 674 * prefix as ours. If the address is temporary and is still 675 * preferred, do not create another one. It would be rare, but 676 * could happen, for example, when we resume a laptop PC after 677 * a long period. 678 */ 679 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 680 !IFA6_IS_DEPRECATED(it6)) { 681 public_ifa6 = NULL; 682 break; 683 } 684 685 /* 686 * This is a public autoconf address that has the same prefix 687 * as ours. If it is preferred, keep it. We can't break the 688 * loop here, because there may be a still-preferred temporary 689 * address with the prefix. 690 */ 691 if (!IFA6_IS_DEPRECATED(it6)) 692 public_ifa6 = it6; 693 } 694 695 if (public_ifa6 != NULL) { 696 int e; 697 698 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 699 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 700 " tmp addr,errno=%d\n", e); 701 return(-1); 702 } 703 return(0); 704 } 705 706 return(-1); 707 } 708 709 /* 710 * Nuke neighbor cache/prefix/default router management table, right before 711 * ifp goes away. 712 */ 713 void 714 nd6_purge(ifp) 715 struct ifnet *ifp; 716 { 717 struct llinfo_nd6 *ln, *nln; 718 struct nd_defrouter *dr, *ndr, drany; 719 struct nd_prefix *pr, *npr; 720 721 /* Nuke default router list entries toward ifp */ 722 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 723 /* 724 * The first entry of the list may be stored in 725 * the routing table, so we'll delete it later. 726 */ 727 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 728 ndr = TAILQ_NEXT(dr, dr_entry); 729 if (dr->ifp == ifp) 730 defrtrlist_del(dr); 731 } 732 dr = TAILQ_FIRST(&nd_defrouter); 733 if (dr->ifp == ifp) 734 defrtrlist_del(dr); 735 } 736 737 /* Nuke prefix list entries toward ifp */ 738 for (pr = nd_prefix.lh_first; pr; pr = npr) { 739 npr = pr->ndpr_next; 740 if (pr->ndpr_ifp == ifp) { 741 /* 742 * Previously, pr->ndpr_addr is removed as well, 743 * but I strongly believe we don't have to do it. 744 * nd6_purge() is only called from in6_ifdetach(), 745 * which removes all the associated interface addresses 746 * by itself. 747 * (jinmei@kame.net 20010129) 748 */ 749 prelist_remove(pr); 750 } 751 } 752 753 /* cancel default outgoing interface setting */ 754 if (nd6_defifindex == ifp->if_index) 755 nd6_setdefaultiface(0); 756 757 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 758 /* refresh default router list */ 759 bzero(&drany, sizeof(drany)); 760 defrouter_delreq(&drany, 0); 761 defrouter_select(); 762 } 763 764 /* 765 * Nuke neighbor cache entries for the ifp. 766 * Note that rt->rt_ifp may not be the same as ifp, 767 * due to KAME goto ours hack. See RTM_RESOLVE case in 768 * nd6_rtrequest(), and ip6_input(). 769 */ 770 ln = llinfo_nd6.ln_next; 771 while (ln && ln != &llinfo_nd6) { 772 struct rtentry *rt; 773 struct sockaddr_dl *sdl; 774 775 nln = ln->ln_next; 776 rt = ln->ln_rt; 777 if (rt && rt->rt_gateway && 778 rt->rt_gateway->sa_family == AF_LINK) { 779 sdl = (struct sockaddr_dl *)rt->rt_gateway; 780 if (sdl->sdl_index == ifp->if_index) 781 nln = nd6_free(rt); 782 } 783 ln = nln; 784 } 785 } 786 787 struct rtentry * 788 nd6_lookup(addr6, create, ifp) 789 struct in6_addr *addr6; 790 int create; 791 struct ifnet *ifp; 792 { 793 struct rtentry *rt; 794 struct sockaddr_in6 sin6; 795 796 bzero(&sin6, sizeof(sin6)); 797 sin6.sin6_len = sizeof(struct sockaddr_in6); 798 sin6.sin6_family = AF_INET6; 799 sin6.sin6_addr = *addr6; 800 #ifdef SCOPEDROUTING 801 sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6); 802 #endif 803 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 804 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 805 /* 806 * This is the case for the default route. 807 * If we want to create a neighbor cache for the address, we 808 * should free the route for the destination and allocate an 809 * interface route. 810 */ 811 if (create) { 812 RTFREE(rt); 813 rt = 0; 814 } 815 } 816 if (!rt) { 817 if (create && ifp) { 818 int e; 819 820 /* 821 * If no route is available and create is set, 822 * we allocate a host route for the destination 823 * and treat it like an interface route. 824 * This hack is necessary for a neighbor which can't 825 * be covered by our own prefix. 826 */ 827 struct ifaddr *ifa = 828 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 829 if (ifa == NULL) 830 return(NULL); 831 832 /* 833 * Create a new route. RTF_LLINFO is necessary 834 * to create a Neighbor Cache entry for the 835 * destination in nd6_rtrequest which will be 836 * called in rtrequest via ifa->ifa_rtrequest. 837 */ 838 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 839 ifa->ifa_addr, 840 (struct sockaddr *)&all1_sa, 841 (ifa->ifa_flags | 842 RTF_HOST | RTF_LLINFO) & 843 ~RTF_CLONING, 844 &rt)) != 0) 845 log(LOG_ERR, 846 "nd6_lookup: failed to add route for a " 847 "neighbor(%s), errno=%d\n", 848 ip6_sprintf(addr6), e); 849 if (rt == NULL) 850 return(NULL); 851 if (rt->rt_llinfo) { 852 struct llinfo_nd6 *ln = 853 (struct llinfo_nd6 *)rt->rt_llinfo; 854 ln->ln_state = ND6_LLINFO_NOSTATE; 855 } 856 } else 857 return(NULL); 858 } 859 rt->rt_refcnt--; 860 /* 861 * Validation for the entry. 862 * Note that the check for rt_llinfo is necessary because a cloned 863 * route from a parent route that has the L flag (e.g. the default 864 * route to a p2p interface) may have the flag, too, while the 865 * destination is not actually a neighbor. 866 * XXX: we can't use rt->rt_ifp to check for the interface, since 867 * it might be the loopback interface if the entry is for our 868 * own address on a non-loopback interface. Instead, we should 869 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 870 * interface. 871 */ 872 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 873 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 874 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 875 if (create) { 876 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 877 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 878 /* xxx more logs... kazu */ 879 } 880 return(NULL); 881 } 882 return(rt); 883 } 884 885 /* 886 * Detect if a given IPv6 address identifies a neighbor on a given link. 887 * XXX: should take care of the destination of a p2p link? 888 */ 889 int 890 nd6_is_addr_neighbor(addr, ifp) 891 struct sockaddr_in6 *addr; 892 struct ifnet *ifp; 893 { 894 struct ifaddr *ifa; 895 int i; 896 897 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 898 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 899 900 /* 901 * A link-local address is always a neighbor. 902 * XXX: we should use the sin6_scope_id field rather than the embedded 903 * interface index. 904 */ 905 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 906 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 907 return(1); 908 909 /* 910 * If the address matches one of our addresses, 911 * it should be a neighbor. 912 */ 913 for (ifa = ifp->if_addrlist.tqh_first; 914 ifa; 915 ifa = ifa->ifa_list.tqe_next) 916 { 917 if (ifa->ifa_addr->sa_family != AF_INET6) 918 next: continue; 919 920 for (i = 0; i < 4; i++) { 921 if ((IFADDR6(ifa).s6_addr32[i] ^ 922 addr->sin6_addr.s6_addr32[i]) & 923 IFMASK6(ifa).s6_addr32[i]) 924 goto next; 925 } 926 return(1); 927 } 928 929 /* 930 * Even if the address matches none of our addresses, it might be 931 * in the neighbor cache. 932 */ 933 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 934 return(1); 935 936 return(0); 937 #undef IFADDR6 938 #undef IFMASK6 939 } 940 941 /* 942 * Free an nd6 llinfo entry. 943 */ 944 struct llinfo_nd6 * 945 nd6_free(rt) 946 struct rtentry *rt; 947 { 948 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 949 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 950 struct nd_defrouter *dr; 951 952 /* 953 * we used to have pfctlinput(PRC_HOSTDEAD) here. 954 * even though it is not harmful, it was not really necessary. 955 */ 956 957 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 958 int s; 959 s = splnet(); 960 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 961 rt->rt_ifp); 962 963 if (ln->ln_router || dr) { 964 /* 965 * rt6_flush must be called whether or not the neighbor 966 * is in the Default Router List. 967 * See a corresponding comment in nd6_na_input(). 968 */ 969 rt6_flush(&in6, rt->rt_ifp); 970 } 971 972 if (dr) { 973 /* 974 * Unreachablity of a router might affect the default 975 * router selection and on-link detection of advertised 976 * prefixes. 977 */ 978 979 /* 980 * Temporarily fake the state to choose a new default 981 * router and to perform on-link determination of 982 * prefixes correctly. 983 * Below the state will be set correctly, 984 * or the entry itself will be deleted. 985 */ 986 ln->ln_state = ND6_LLINFO_INCOMPLETE; 987 988 /* 989 * Since defrouter_select() does not affect the 990 * on-link determination and MIP6 needs the check 991 * before the default router selection, we perform 992 * the check now. 993 */ 994 pfxlist_onlink_check(); 995 996 if (dr == TAILQ_FIRST(&nd_defrouter)) { 997 /* 998 * It is used as the current default router, 999 * so we have to move it to the end of the 1000 * list and choose a new one. 1001 * XXX: it is not very efficient if this is 1002 * the only router. 1003 */ 1004 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 1005 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 1006 1007 defrouter_select(); 1008 } 1009 } 1010 splx(s); 1011 } 1012 1013 /* 1014 * Before deleting the entry, remember the next entry as the 1015 * return value. We need this because pfxlist_onlink_check() above 1016 * might have freed other entries (particularly the old next entry) as 1017 * a side effect (XXX). 1018 */ 1019 next = ln->ln_next; 1020 1021 /* 1022 * Detach the route from the routing tree and the list of neighbor 1023 * caches, and disable the route entry not to be used in already 1024 * cached routes. 1025 */ 1026 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1027 rt_mask(rt), 0, (struct rtentry **)0); 1028 1029 return(next); 1030 } 1031 1032 /* 1033 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1034 * 1035 * XXX cost-effective metods? 1036 */ 1037 void 1038 nd6_nud_hint(rt, dst6, force) 1039 struct rtentry *rt; 1040 struct in6_addr *dst6; 1041 int force; 1042 { 1043 struct llinfo_nd6 *ln; 1044 1045 /* 1046 * If the caller specified "rt", use that. Otherwise, resolve the 1047 * routing table by supplied "dst6". 1048 */ 1049 if (!rt) { 1050 if (!dst6) 1051 return; 1052 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1053 return; 1054 } 1055 1056 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1057 (rt->rt_flags & RTF_LLINFO) == 0 || 1058 !rt->rt_llinfo || !rt->rt_gateway || 1059 rt->rt_gateway->sa_family != AF_LINK) { 1060 /* This is not a host route. */ 1061 return; 1062 } 1063 1064 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1065 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1066 return; 1067 1068 /* 1069 * if we get upper-layer reachability confirmation many times, 1070 * it is possible we have false information. 1071 */ 1072 if (!force) { 1073 ln->ln_byhint++; 1074 if (ln->ln_byhint > nd6_maxnudhint) 1075 return; 1076 } 1077 1078 ln->ln_state = ND6_LLINFO_REACHABLE; 1079 if (ln->ln_expire) 1080 ln->ln_expire = time_second + 1081 nd_ifinfo[rt->rt_ifp->if_index].reachable; 1082 } 1083 1084 void 1085 nd6_rtrequest(req, rt, info) 1086 int req; 1087 struct rtentry *rt; 1088 struct rt_addrinfo *info; /* xxx unused */ 1089 { 1090 struct sockaddr *gate = rt->rt_gateway; 1091 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1092 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1093 struct ifnet *ifp = rt->rt_ifp; 1094 struct ifaddr *ifa; 1095 1096 if ((rt->rt_flags & RTF_GATEWAY)) 1097 return; 1098 1099 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1100 /* 1101 * This is probably an interface direct route for a link 1102 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1103 * We do not need special treatment below for such a route. 1104 * Moreover, the RTF_LLINFO flag which would be set below 1105 * would annoy the ndp(8) command. 1106 */ 1107 return; 1108 } 1109 1110 if (req == RTM_RESOLVE && 1111 (nd6_need_cache(ifp) == 0 || /* stf case */ 1112 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1113 /* 1114 * FreeBSD and BSD/OS often make a cloned host route based 1115 * on a less-specific route (e.g. the default route). 1116 * If the less specific route does not have a "gateway" 1117 * (this is the case when the route just goes to a p2p or an 1118 * stf interface), we'll mistakenly make a neighbor cache for 1119 * the host route, and will see strange neighbor solicitation 1120 * for the corresponding destination. In order to avoid the 1121 * confusion, we check if the destination of the route is 1122 * a neighbor in terms of neighbor discovery, and stop the 1123 * process if not. Additionally, we remove the LLINFO flag 1124 * so that ndp(8) will not try to get the neighbor information 1125 * of the destination. 1126 */ 1127 rt->rt_flags &= ~RTF_LLINFO; 1128 return; 1129 } 1130 1131 switch (req) { 1132 case RTM_ADD: 1133 /* 1134 * There is no backward compatibility :) 1135 * 1136 * if ((rt->rt_flags & RTF_HOST) == 0 && 1137 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1138 * rt->rt_flags |= RTF_CLONING; 1139 */ 1140 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1141 /* 1142 * Case 1: This route should come from 1143 * a route to interface. RTF_LLINFO flag is set 1144 * for a host route whose destination should be 1145 * treated as on-link. 1146 */ 1147 rt_setgate(rt, rt_key(rt), 1148 (struct sockaddr *)&null_sdl); 1149 gate = rt->rt_gateway; 1150 SDL(gate)->sdl_type = ifp->if_type; 1151 SDL(gate)->sdl_index = ifp->if_index; 1152 if (ln) 1153 ln->ln_expire = time_second; 1154 #if 1 1155 if (ln && ln->ln_expire == 0) { 1156 /* kludge for desktops */ 1157 #if 0 1158 printf("nd6_rtequest: time.tv_sec is zero; " 1159 "treat it as 1\n"); 1160 #endif 1161 ln->ln_expire = 1; 1162 } 1163 #endif 1164 if ((rt->rt_flags & RTF_CLONING)) 1165 break; 1166 } 1167 /* 1168 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1169 * We don't do that here since llinfo is not ready yet. 1170 * 1171 * There are also couple of other things to be discussed: 1172 * - unsolicited NA code needs improvement beforehand 1173 * - RFC2461 says we MAY send multicast unsolicited NA 1174 * (7.2.6 paragraph 4), however, it also says that we 1175 * SHOULD provide a mechanism to prevent multicast NA storm. 1176 * we don't have anything like it right now. 1177 * note that the mechanism needs a mutual agreement 1178 * between proxies, which means that we need to implement 1179 * a new protocol, or a new kludge. 1180 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1181 * we need to check ip6forwarding before sending it. 1182 * (or should we allow proxy ND configuration only for 1183 * routers? there's no mention about proxy ND from hosts) 1184 */ 1185 #if 0 1186 /* XXX it does not work */ 1187 if (rt->rt_flags & RTF_ANNOUNCE) 1188 nd6_na_output(ifp, 1189 &SIN6(rt_key(rt))->sin6_addr, 1190 &SIN6(rt_key(rt))->sin6_addr, 1191 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1192 1, NULL); 1193 #endif 1194 /* FALLTHROUGH */ 1195 case RTM_RESOLVE: 1196 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1197 /* 1198 * Address resolution isn't necessary for a point to 1199 * point link, so we can skip this test for a p2p link. 1200 */ 1201 if (gate->sa_family != AF_LINK || 1202 gate->sa_len < sizeof(null_sdl)) { 1203 log(LOG_DEBUG, 1204 "nd6_rtrequest: bad gateway value: %s\n", 1205 if_name(ifp)); 1206 break; 1207 } 1208 SDL(gate)->sdl_type = ifp->if_type; 1209 SDL(gate)->sdl_index = ifp->if_index; 1210 } 1211 if (ln != NULL) 1212 break; /* This happens on a route change */ 1213 /* 1214 * Case 2: This route may come from cloning, or a manual route 1215 * add with a LL address. 1216 */ 1217 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1218 rt->rt_llinfo = (caddr_t)ln; 1219 if (!ln) { 1220 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1221 break; 1222 } 1223 nd6_inuse++; 1224 nd6_allocated++; 1225 Bzero(ln, sizeof(*ln)); 1226 ln->ln_rt = rt; 1227 /* this is required for "ndp" command. - shin */ 1228 if (req == RTM_ADD) { 1229 /* 1230 * gate should have some valid AF_LINK entry, 1231 * and ln->ln_expire should have some lifetime 1232 * which is specified by ndp command. 1233 */ 1234 ln->ln_state = ND6_LLINFO_REACHABLE; 1235 ln->ln_byhint = 0; 1236 } else { 1237 /* 1238 * When req == RTM_RESOLVE, rt is created and 1239 * initialized in rtrequest(), so rt_expire is 0. 1240 */ 1241 ln->ln_state = ND6_LLINFO_NOSTATE; 1242 ln->ln_expire = time_second; 1243 } 1244 rt->rt_flags |= RTF_LLINFO; 1245 ln->ln_next = llinfo_nd6.ln_next; 1246 llinfo_nd6.ln_next = ln; 1247 ln->ln_prev = &llinfo_nd6; 1248 ln->ln_next->ln_prev = ln; 1249 1250 /* 1251 * check if rt_key(rt) is one of my address assigned 1252 * to the interface. 1253 */ 1254 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1255 &SIN6(rt_key(rt))->sin6_addr); 1256 if (ifa) { 1257 caddr_t macp = nd6_ifptomac(ifp); 1258 ln->ln_expire = 0; 1259 ln->ln_state = ND6_LLINFO_REACHABLE; 1260 ln->ln_byhint = 0; 1261 if (macp) { 1262 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1263 SDL(gate)->sdl_alen = ifp->if_addrlen; 1264 } 1265 if (nd6_useloopback) { 1266 rt->rt_ifp = &loif[0]; /* XXX */ 1267 /* 1268 * Make sure rt_ifa be equal to the ifaddr 1269 * corresponding to the address. 1270 * We need this because when we refer 1271 * rt_ifa->ia6_flags in ip6_input, we assume 1272 * that the rt_ifa points to the address instead 1273 * of the loopback address. 1274 */ 1275 if (ifa != rt->rt_ifa) { 1276 IFAFREE(rt->rt_ifa); 1277 IFAREF(ifa); 1278 rt->rt_ifa = ifa; 1279 } 1280 } 1281 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1282 ln->ln_expire = 0; 1283 ln->ln_state = ND6_LLINFO_REACHABLE; 1284 ln->ln_byhint = 0; 1285 1286 /* join solicited node multicast for proxy ND */ 1287 if (ifp->if_flags & IFF_MULTICAST) { 1288 struct in6_addr llsol; 1289 int error; 1290 1291 llsol = SIN6(rt_key(rt))->sin6_addr; 1292 llsol.s6_addr16[0] = htons(0xff02); 1293 llsol.s6_addr16[1] = htons(ifp->if_index); 1294 llsol.s6_addr32[1] = 0; 1295 llsol.s6_addr32[2] = htonl(1); 1296 llsol.s6_addr8[12] = 0xff; 1297 1298 if (!in6_addmulti(&llsol, ifp, &error)) { 1299 nd6log((LOG_ERR, "%s: failed to join " 1300 "%s (errno=%d)\n", if_name(ifp), 1301 ip6_sprintf(&llsol), error)); 1302 } 1303 } 1304 } 1305 break; 1306 1307 case RTM_DELETE: 1308 if (!ln) 1309 break; 1310 /* leave from solicited node multicast for proxy ND */ 1311 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1312 (ifp->if_flags & IFF_MULTICAST) != 0) { 1313 struct in6_addr llsol; 1314 struct in6_multi *in6m; 1315 1316 llsol = SIN6(rt_key(rt))->sin6_addr; 1317 llsol.s6_addr16[0] = htons(0xff02); 1318 llsol.s6_addr16[1] = htons(ifp->if_index); 1319 llsol.s6_addr32[1] = 0; 1320 llsol.s6_addr32[2] = htonl(1); 1321 llsol.s6_addr8[12] = 0xff; 1322 1323 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1324 if (in6m) 1325 in6_delmulti(in6m); 1326 } 1327 nd6_inuse--; 1328 ln->ln_next->ln_prev = ln->ln_prev; 1329 ln->ln_prev->ln_next = ln->ln_next; 1330 ln->ln_prev = NULL; 1331 rt->rt_llinfo = 0; 1332 rt->rt_flags &= ~RTF_LLINFO; 1333 if (ln->ln_hold) 1334 m_freem(ln->ln_hold); 1335 Free((caddr_t)ln); 1336 } 1337 } 1338 1339 int 1340 nd6_ioctl(cmd, data, ifp) 1341 u_long cmd; 1342 caddr_t data; 1343 struct ifnet *ifp; 1344 { 1345 struct in6_drlist *drl = (struct in6_drlist *)data; 1346 struct in6_prlist *prl = (struct in6_prlist *)data; 1347 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1348 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1349 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1350 struct nd_defrouter *dr, any; 1351 struct nd_prefix *pr; 1352 struct rtentry *rt; 1353 int i = 0, error = 0; 1354 int s; 1355 1356 switch (cmd) { 1357 case SIOCGDRLST_IN6: 1358 /* 1359 * obsolete API, use sysctl under net.inet6.icmp6 1360 */ 1361 bzero(drl, sizeof(*drl)); 1362 s = splnet(); 1363 dr = TAILQ_FIRST(&nd_defrouter); 1364 while (dr && i < DRLSTSIZ) { 1365 drl->defrouter[i].rtaddr = dr->rtaddr; 1366 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1367 /* XXX: need to this hack for KAME stack */ 1368 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1369 } else 1370 log(LOG_ERR, 1371 "default router list contains a " 1372 "non-linklocal address(%s)\n", 1373 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1374 1375 drl->defrouter[i].flags = dr->flags; 1376 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1377 drl->defrouter[i].expire = dr->expire; 1378 drl->defrouter[i].if_index = dr->ifp->if_index; 1379 i++; 1380 dr = TAILQ_NEXT(dr, dr_entry); 1381 } 1382 splx(s); 1383 break; 1384 case SIOCGPRLST_IN6: 1385 /* 1386 * obsolete API, use sysctl under net.inet6.icmp6 1387 */ 1388 /* 1389 * XXX meaning of fields, especialy "raflags", is very 1390 * differnet between RA prefix list and RR/static prefix list. 1391 * how about separating ioctls into two? 1392 */ 1393 bzero(prl, sizeof(*prl)); 1394 s = splnet(); 1395 pr = nd_prefix.lh_first; 1396 while (pr && i < PRLSTSIZ) { 1397 struct nd_pfxrouter *pfr; 1398 int j; 1399 1400 (void)in6_embedscope(&prl->prefix[i].prefix, 1401 &pr->ndpr_prefix, NULL, NULL); 1402 prl->prefix[i].raflags = pr->ndpr_raf; 1403 prl->prefix[i].prefixlen = pr->ndpr_plen; 1404 prl->prefix[i].vltime = pr->ndpr_vltime; 1405 prl->prefix[i].pltime = pr->ndpr_pltime; 1406 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1407 prl->prefix[i].expire = pr->ndpr_expire; 1408 1409 pfr = pr->ndpr_advrtrs.lh_first; 1410 j = 0; 1411 while (pfr) { 1412 if (j < DRLSTSIZ) { 1413 #define RTRADDR prl->prefix[i].advrtr[j] 1414 RTRADDR = pfr->router->rtaddr; 1415 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1416 /* XXX: hack for KAME */ 1417 RTRADDR.s6_addr16[1] = 0; 1418 } else 1419 log(LOG_ERR, 1420 "a router(%s) advertises " 1421 "a prefix with " 1422 "non-link local address\n", 1423 ip6_sprintf(&RTRADDR)); 1424 #undef RTRADDR 1425 } 1426 j++; 1427 pfr = pfr->pfr_next; 1428 } 1429 prl->prefix[i].advrtrs = j; 1430 prl->prefix[i].origin = PR_ORIG_RA; 1431 1432 i++; 1433 pr = pr->ndpr_next; 1434 } 1435 { 1436 struct rr_prefix *rpp; 1437 1438 for (rpp = LIST_FIRST(&rr_prefix); rpp; 1439 rpp = LIST_NEXT(rpp, rp_entry)) { 1440 if (i >= PRLSTSIZ) 1441 break; 1442 (void)in6_embedscope(&prl->prefix[i].prefix, 1443 &pr->ndpr_prefix, NULL, NULL); 1444 prl->prefix[i].raflags = rpp->rp_raf; 1445 prl->prefix[i].prefixlen = rpp->rp_plen; 1446 prl->prefix[i].vltime = rpp->rp_vltime; 1447 prl->prefix[i].pltime = rpp->rp_pltime; 1448 prl->prefix[i].if_index = rpp->rp_ifp->if_index; 1449 prl->prefix[i].expire = rpp->rp_expire; 1450 prl->prefix[i].advrtrs = 0; 1451 prl->prefix[i].origin = rpp->rp_origin; 1452 i++; 1453 } 1454 } 1455 splx(s); 1456 1457 break; 1458 case OSIOCGIFINFO_IN6: 1459 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1460 error = EINVAL; 1461 break; 1462 } 1463 ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu; 1464 ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu; 1465 ndi->ndi.basereachable = 1466 nd_ifinfo[ifp->if_index].basereachable; 1467 ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable; 1468 ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans; 1469 ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags; 1470 ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm; 1471 ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim; 1472 ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra; 1473 break; 1474 case SIOCGIFINFO_IN6: 1475 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1476 error = EINVAL; 1477 break; 1478 } 1479 ndi->ndi = nd_ifinfo[ifp->if_index]; 1480 break; 1481 case SIOCSIFINFO_FLAGS: 1482 /* XXX: almost all other fields of ndi->ndi is unused */ 1483 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1484 error = EINVAL; 1485 break; 1486 } 1487 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags; 1488 break; 1489 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1490 /* flush default router list */ 1491 /* 1492 * xxx sumikawa: should not delete route if default 1493 * route equals to the top of default router list 1494 */ 1495 bzero(&any, sizeof(any)); 1496 defrouter_delreq(&any, 0); 1497 defrouter_select(); 1498 /* xxx sumikawa: flush prefix list */ 1499 break; 1500 case SIOCSPFXFLUSH_IN6: 1501 { 1502 /* flush all the prefix advertised by routers */ 1503 struct nd_prefix *pr, *next; 1504 1505 s = splnet(); 1506 for (pr = nd_prefix.lh_first; pr; pr = next) { 1507 struct in6_ifaddr *ia, *ia_next; 1508 1509 next = pr->ndpr_next; 1510 1511 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1512 continue; /* XXX */ 1513 1514 /* do we really have to remove addresses as well? */ 1515 for (ia = in6_ifaddr; ia; ia = ia_next) { 1516 /* ia might be removed. keep the next ptr. */ 1517 ia_next = ia->ia_next; 1518 1519 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1520 continue; 1521 1522 if (ia->ia6_ndpr == pr) 1523 in6_purgeaddr(&ia->ia_ifa); 1524 } 1525 prelist_remove(pr); 1526 } 1527 splx(s); 1528 break; 1529 } 1530 case SIOCSRTRFLUSH_IN6: 1531 { 1532 /* flush all the default routers */ 1533 struct nd_defrouter *dr, *next; 1534 1535 s = splnet(); 1536 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1537 /* 1538 * The first entry of the list may be stored in 1539 * the routing table, so we'll delete it later. 1540 */ 1541 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1542 next = TAILQ_NEXT(dr, dr_entry); 1543 defrtrlist_del(dr); 1544 } 1545 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1546 } 1547 splx(s); 1548 break; 1549 } 1550 case SIOCGNBRINFO_IN6: 1551 { 1552 struct llinfo_nd6 *ln; 1553 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1554 1555 /* 1556 * XXX: KAME specific hack for scoped addresses 1557 * XXXX: for other scopes than link-local? 1558 */ 1559 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1560 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1561 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1562 1563 if (*idp == 0) 1564 *idp = htons(ifp->if_index); 1565 } 1566 1567 s = splnet(); 1568 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1569 error = EINVAL; 1570 splx(s); 1571 break; 1572 } 1573 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1574 nbi->state = ln->ln_state; 1575 nbi->asked = ln->ln_asked; 1576 nbi->isrouter = ln->ln_router; 1577 nbi->expire = ln->ln_expire; 1578 splx(s); 1579 1580 break; 1581 } 1582 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1583 ndif->ifindex = nd6_defifindex; 1584 break; 1585 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1586 return(nd6_setdefaultiface(ndif->ifindex)); 1587 break; 1588 } 1589 return(error); 1590 } 1591 1592 /* 1593 * Create neighbor cache entry and cache link-layer address, 1594 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1595 */ 1596 struct rtentry * 1597 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1598 struct ifnet *ifp; 1599 struct in6_addr *from; 1600 char *lladdr; 1601 int lladdrlen; 1602 int type; /* ICMP6 type */ 1603 int code; /* type dependent information */ 1604 { 1605 struct rtentry *rt = NULL; 1606 struct llinfo_nd6 *ln = NULL; 1607 int is_newentry; 1608 struct sockaddr_dl *sdl = NULL; 1609 int do_update; 1610 int olladdr; 1611 int llchange; 1612 int newstate = 0; 1613 1614 if (!ifp) 1615 panic("ifp == NULL in nd6_cache_lladdr"); 1616 if (!from) 1617 panic("from == NULL in nd6_cache_lladdr"); 1618 1619 /* nothing must be updated for unspecified address */ 1620 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1621 return NULL; 1622 1623 /* 1624 * Validation about ifp->if_addrlen and lladdrlen must be done in 1625 * the caller. 1626 * 1627 * XXX If the link does not have link-layer adderss, what should 1628 * we do? (ifp->if_addrlen == 0) 1629 * Spec says nothing in sections for RA, RS and NA. There's small 1630 * description on it in NS section (RFC 2461 7.2.3). 1631 */ 1632 1633 rt = nd6_lookup(from, 0, ifp); 1634 if (!rt) { 1635 #if 0 1636 /* nothing must be done if there's no lladdr */ 1637 if (!lladdr || !lladdrlen) 1638 return NULL; 1639 #endif 1640 1641 rt = nd6_lookup(from, 1, ifp); 1642 is_newentry = 1; 1643 } else { 1644 /* do nothing if static ndp is set */ 1645 if (rt->rt_flags & RTF_STATIC) 1646 return NULL; 1647 is_newentry = 0; 1648 } 1649 1650 if (!rt) 1651 return NULL; 1652 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1653 fail: 1654 (void)nd6_free(rt); 1655 return NULL; 1656 } 1657 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1658 if (!ln) 1659 goto fail; 1660 if (!rt->rt_gateway) 1661 goto fail; 1662 if (rt->rt_gateway->sa_family != AF_LINK) 1663 goto fail; 1664 sdl = SDL(rt->rt_gateway); 1665 1666 olladdr = (sdl->sdl_alen) ? 1 : 0; 1667 if (olladdr && lladdr) { 1668 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1669 llchange = 1; 1670 else 1671 llchange = 0; 1672 } else 1673 llchange = 0; 1674 1675 /* 1676 * newentry olladdr lladdr llchange (*=record) 1677 * 0 n n -- (1) 1678 * 0 y n -- (2) 1679 * 0 n y -- (3) * STALE 1680 * 0 y y n (4) * 1681 * 0 y y y (5) * STALE 1682 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1683 * 1 -- y -- (7) * STALE 1684 */ 1685 1686 if (lladdr) { /* (3-5) and (7) */ 1687 /* 1688 * Record source link-layer address 1689 * XXX is it dependent to ifp->if_type? 1690 */ 1691 sdl->sdl_alen = ifp->if_addrlen; 1692 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1693 } 1694 1695 if (!is_newentry) { 1696 if ((!olladdr && lladdr) /* (3) */ 1697 || (olladdr && lladdr && llchange)) { /* (5) */ 1698 do_update = 1; 1699 newstate = ND6_LLINFO_STALE; 1700 } else /* (1-2,4) */ 1701 do_update = 0; 1702 } else { 1703 do_update = 1; 1704 if (!lladdr) /* (6) */ 1705 newstate = ND6_LLINFO_NOSTATE; 1706 else /* (7) */ 1707 newstate = ND6_LLINFO_STALE; 1708 } 1709 1710 if (do_update) { 1711 /* 1712 * Update the state of the neighbor cache. 1713 */ 1714 ln->ln_state = newstate; 1715 1716 if (ln->ln_state == ND6_LLINFO_STALE) { 1717 /* 1718 * XXX: since nd6_output() below will cause 1719 * state tansition to DELAY and reset the timer, 1720 * we must set the timer now, although it is actually 1721 * meaningless. 1722 */ 1723 ln->ln_expire = time_second + nd6_gctimer; 1724 1725 if (ln->ln_hold) { 1726 /* 1727 * we assume ifp is not a p2p here, so just 1728 * set the 2nd argument as the 1st one. 1729 */ 1730 nd6_output(ifp, ifp, ln->ln_hold, 1731 (struct sockaddr_in6 *)rt_key(rt), 1732 rt); 1733 ln->ln_hold = NULL; 1734 } 1735 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1736 /* probe right away */ 1737 ln->ln_expire = time_second; 1738 } 1739 } 1740 1741 /* 1742 * ICMP6 type dependent behavior. 1743 * 1744 * NS: clear IsRouter if new entry 1745 * RS: clear IsRouter 1746 * RA: set IsRouter if there's lladdr 1747 * redir: clear IsRouter if new entry 1748 * 1749 * RA case, (1): 1750 * The spec says that we must set IsRouter in the following cases: 1751 * - If lladdr exist, set IsRouter. This means (1-5). 1752 * - If it is old entry (!newentry), set IsRouter. This means (7). 1753 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1754 * A quetion arises for (1) case. (1) case has no lladdr in the 1755 * neighbor cache, this is similar to (6). 1756 * This case is rare but we figured that we MUST NOT set IsRouter. 1757 * 1758 * newentry olladdr lladdr llchange NS RS RA redir 1759 * D R 1760 * 0 n n -- (1) c ? s 1761 * 0 y n -- (2) c s s 1762 * 0 n y -- (3) c s s 1763 * 0 y y n (4) c s s 1764 * 0 y y y (5) c s s 1765 * 1 -- n -- (6) c c c s 1766 * 1 -- y -- (7) c c s c s 1767 * 1768 * (c=clear s=set) 1769 */ 1770 switch (type & 0xff) { 1771 case ND_NEIGHBOR_SOLICIT: 1772 /* 1773 * New entry must have is_router flag cleared. 1774 */ 1775 if (is_newentry) /* (6-7) */ 1776 ln->ln_router = 0; 1777 break; 1778 case ND_REDIRECT: 1779 /* 1780 * If the icmp is a redirect to a better router, always set the 1781 * is_router flag. Otherwise, if the entry is newly created, 1782 * clear the flag. [RFC 2461, sec 8.3] 1783 */ 1784 if (code == ND_REDIRECT_ROUTER) 1785 ln->ln_router = 1; 1786 else if (is_newentry) /* (6-7) */ 1787 ln->ln_router = 0; 1788 break; 1789 case ND_ROUTER_SOLICIT: 1790 /* 1791 * is_router flag must always be cleared. 1792 */ 1793 ln->ln_router = 0; 1794 break; 1795 case ND_ROUTER_ADVERT: 1796 /* 1797 * Mark an entry with lladdr as a router. 1798 */ 1799 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1800 || (is_newentry && lladdr)) { /* (7) */ 1801 ln->ln_router = 1; 1802 } 1803 break; 1804 } 1805 1806 /* 1807 * When the link-layer address of a router changes, select the 1808 * best router again. In particular, when the neighbor entry is newly 1809 * created, it might affect the selection policy. 1810 * Question: can we restrict the first condition to the "is_newentry" 1811 * case? 1812 * XXX: when we hear an RA from a new router with the link-layer 1813 * address option, defrouter_select() is called twice, since 1814 * defrtrlist_update called the function as well. However, I believe 1815 * we can compromise the overhead, since it only happens the first 1816 * time. 1817 * XXX: although defrouter_select() should not have a bad effect 1818 * for those are not autoconfigured hosts, we explicitly avoid such 1819 * cases for safety. 1820 */ 1821 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1822 defrouter_select(); 1823 1824 return rt; 1825 } 1826 1827 static void 1828 nd6_slowtimo(ignored_arg) 1829 void *ignored_arg; 1830 { 1831 int s = splnet(); 1832 int i; 1833 struct nd_ifinfo *nd6if; 1834 1835 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1836 nd6_slowtimo, NULL); 1837 for (i = 1; i < if_index + 1; i++) { 1838 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) 1839 continue; 1840 nd6if = &nd_ifinfo[i]; 1841 if (nd6if->basereachable && /* already initialized */ 1842 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1843 /* 1844 * Since reachable time rarely changes by router 1845 * advertisements, we SHOULD insure that a new random 1846 * value gets recomputed at least once every few hours. 1847 * (RFC 2461, 6.3.4) 1848 */ 1849 nd6if->recalctm = nd6_recalc_reachtm_interval; 1850 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1851 } 1852 } 1853 splx(s); 1854 } 1855 1856 #define senderr(e) { error = (e); goto bad;} 1857 int 1858 nd6_output(ifp, origifp, m0, dst, rt0) 1859 struct ifnet *ifp; 1860 struct ifnet *origifp; 1861 struct mbuf *m0; 1862 struct sockaddr_in6 *dst; 1863 struct rtentry *rt0; 1864 { 1865 struct mbuf *m = m0; 1866 struct rtentry *rt = rt0; 1867 struct sockaddr_in6 *gw6 = NULL; 1868 struct llinfo_nd6 *ln = NULL; 1869 int error = 0; 1870 1871 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1872 goto sendpkt; 1873 1874 if (nd6_need_cache(ifp) == 0) 1875 goto sendpkt; 1876 1877 /* 1878 * next hop determination. This routine is derived from ether_outpout. 1879 */ 1880 if (rt) { 1881 if ((rt->rt_flags & RTF_UP) == 0) { 1882 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL)) != 1883 NULL) 1884 { 1885 rt->rt_refcnt--; 1886 if (rt->rt_ifp != ifp) { 1887 /* XXX: loop care? */ 1888 return nd6_output(ifp, origifp, m0, 1889 dst, rt); 1890 } 1891 } else 1892 senderr(EHOSTUNREACH); 1893 } 1894 1895 if (rt->rt_flags & RTF_GATEWAY) { 1896 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1897 1898 /* 1899 * We skip link-layer address resolution and NUD 1900 * if the gateway is not a neighbor from ND point 1901 * of view, regardless of the value of nd_ifinfo.flags. 1902 * The second condition is a bit tricky; we skip 1903 * if the gateway is our own address, which is 1904 * sometimes used to install a route to a p2p link. 1905 */ 1906 if (!nd6_is_addr_neighbor(gw6, ifp) || 1907 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1908 /* 1909 * We allow this kind of tricky route only 1910 * when the outgoing interface is p2p. 1911 * XXX: we may need a more generic rule here. 1912 */ 1913 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1914 senderr(EHOSTUNREACH); 1915 1916 goto sendpkt; 1917 } 1918 1919 if (rt->rt_gwroute == 0) 1920 goto lookup; 1921 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1922 rtfree(rt); rt = rt0; 1923 lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); 1924 if ((rt = rt->rt_gwroute) == 0) 1925 senderr(EHOSTUNREACH); 1926 } 1927 } 1928 } 1929 1930 /* 1931 * Address resolution or Neighbor Unreachability Detection 1932 * for the next hop. 1933 * At this point, the destination of the packet must be a unicast 1934 * or an anycast address(i.e. not a multicast). 1935 */ 1936 1937 /* Look up the neighbor cache for the nexthop */ 1938 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1939 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1940 else { 1941 /* 1942 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1943 * the condition below is not very efficient. But we believe 1944 * it is tolerable, because this should be a rare case. 1945 */ 1946 if (nd6_is_addr_neighbor(dst, ifp) && 1947 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1948 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1949 } 1950 if (!ln || !rt) { 1951 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1952 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) { 1953 log(LOG_DEBUG, 1954 "nd6_output: can't allocate llinfo for %s " 1955 "(ln=%p, rt=%p)\n", 1956 ip6_sprintf(&dst->sin6_addr), ln, rt); 1957 senderr(EIO); /* XXX: good error? */ 1958 } 1959 1960 goto sendpkt; /* send anyway */ 1961 } 1962 1963 /* We don't have to do link-layer address resolution on a p2p link. */ 1964 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1965 ln->ln_state < ND6_LLINFO_REACHABLE) { 1966 ln->ln_state = ND6_LLINFO_STALE; 1967 ln->ln_expire = time_second + nd6_gctimer; 1968 } 1969 1970 /* 1971 * The first time we send a packet to a neighbor whose entry is 1972 * STALE, we have to change the state to DELAY and a sets a timer to 1973 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1974 * neighbor unreachability detection on expiration. 1975 * (RFC 2461 7.3.3) 1976 */ 1977 if (ln->ln_state == ND6_LLINFO_STALE) { 1978 ln->ln_asked = 0; 1979 ln->ln_state = ND6_LLINFO_DELAY; 1980 ln->ln_expire = time_second + nd6_delay; 1981 } 1982 1983 /* 1984 * If the neighbor cache entry has a state other than INCOMPLETE 1985 * (i.e. its link-layer address is already resolved), just 1986 * send the packet. 1987 */ 1988 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1989 goto sendpkt; 1990 1991 /* 1992 * There is a neighbor cache entry, but no ethernet address 1993 * response yet. Replace the held mbuf (if any) with this 1994 * latest one. 1995 * 1996 * This code conforms to the rate-limiting rule described in Section 1997 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1998 * an NS below. 1999 */ 2000 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2001 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2002 if (ln->ln_hold) 2003 m_freem(ln->ln_hold); 2004 ln->ln_hold = m; 2005 if (ln->ln_expire) { 2006 if (ln->ln_asked < nd6_mmaxtries && 2007 ln->ln_expire < time_second) { 2008 ln->ln_asked++; 2009 ln->ln_expire = time_second + 2010 nd_ifinfo[ifp->if_index].retrans / 1000; 2011 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2012 } 2013 } 2014 return(0); 2015 2016 sendpkt: 2017 2018 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2019 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2020 rt)); 2021 } 2022 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 2023 2024 bad: 2025 if (m) 2026 m_freem(m); 2027 return (error); 2028 } 2029 #undef senderr 2030 2031 int 2032 nd6_need_cache(ifp) 2033 struct ifnet *ifp; 2034 { 2035 /* 2036 * XXX: we currently do not make neighbor cache on any interface 2037 * other than ARCnet, Ethernet, FDDI and GIF. 2038 * 2039 * RFC2893 says: 2040 * - unidirectional tunnels needs no ND 2041 */ 2042 switch (ifp->if_type) { 2043 case IFT_ARCNET: 2044 case IFT_ETHER: 2045 case IFT_FDDI: 2046 case IFT_IEEE1394: 2047 #ifdef IFT_L2VLAN 2048 case IFT_L2VLAN: 2049 #endif 2050 #ifdef IFT_IEEE80211 2051 case IFT_IEEE80211: 2052 #endif 2053 case IFT_GIF: /* XXX need more cases? */ 2054 return(1); 2055 default: 2056 return(0); 2057 } 2058 } 2059 2060 int 2061 nd6_storelladdr(ifp, rt, m, dst, desten) 2062 struct ifnet *ifp; 2063 struct rtentry *rt; 2064 struct mbuf *m; 2065 struct sockaddr *dst; 2066 u_char *desten; 2067 { 2068 int i; 2069 struct sockaddr_dl *sdl; 2070 2071 if (m->m_flags & M_MCAST) { 2072 switch (ifp->if_type) { 2073 case IFT_ETHER: 2074 case IFT_FDDI: 2075 #ifdef IFT_L2VLAN 2076 case IFT_L2VLAN: 2077 #endif 2078 #ifdef IFT_IEEE80211 2079 case IFT_IEEE80211: 2080 #endif 2081 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2082 desten); 2083 return(1); 2084 case IFT_IEEE1394: 2085 /* 2086 * netbsd can use if_broadcastaddr, but we don't do so 2087 * to reduce # of ifdef. 2088 */ 2089 for (i = 0; i < ifp->if_addrlen; i++) 2090 desten[i] = ~0; 2091 return(1); 2092 case IFT_ARCNET: 2093 *desten = 0; 2094 return(1); 2095 default: 2096 m_freem(m); 2097 return(0); 2098 } 2099 } 2100 2101 if (rt == NULL) { 2102 /* this could happen, if we could not allocate memory */ 2103 m_freem(m); 2104 return(0); 2105 } 2106 if (rt->rt_gateway->sa_family != AF_LINK) { 2107 printf("nd6_storelladdr: something odd happens\n"); 2108 m_freem(m); 2109 return(0); 2110 } 2111 sdl = SDL(rt->rt_gateway); 2112 if (sdl->sdl_alen == 0) { 2113 /* this should be impossible, but we bark here for debugging */ 2114 printf("nd6_storelladdr: sdl_alen == 0\n"); 2115 m_freem(m); 2116 return(0); 2117 } 2118 2119 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2120 return(1); 2121 } 2122 2123 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2124 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2125 #ifdef SYSCTL_DECL 2126 SYSCTL_DECL(_net_inet6_icmp6); 2127 #endif 2128 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2129 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2130 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2131 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2132 2133 static int 2134 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2135 { 2136 int error; 2137 char buf[1024]; 2138 struct in6_defrouter *d, *de; 2139 struct nd_defrouter *dr; 2140 2141 if (req->newptr) 2142 return EPERM; 2143 error = 0; 2144 2145 for (dr = TAILQ_FIRST(&nd_defrouter); 2146 dr; 2147 dr = TAILQ_NEXT(dr, dr_entry)) { 2148 d = (struct in6_defrouter *)buf; 2149 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2150 2151 if (d + 1 <= de) { 2152 bzero(d, sizeof(*d)); 2153 d->rtaddr.sin6_family = AF_INET6; 2154 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2155 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2156 dr->ifp) != 0) 2157 log(LOG_ERR, 2158 "scope error in " 2159 "default router list (%s)\n", 2160 ip6_sprintf(&dr->rtaddr)); 2161 d->flags = dr->flags; 2162 d->rtlifetime = dr->rtlifetime; 2163 d->expire = dr->expire; 2164 d->if_index = dr->ifp->if_index; 2165 } else 2166 panic("buffer too short"); 2167 2168 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2169 if (error) 2170 break; 2171 } 2172 return error; 2173 } 2174 2175 static int 2176 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2177 { 2178 int error; 2179 char buf[1024]; 2180 struct in6_prefix *p, *pe; 2181 struct nd_prefix *pr; 2182 2183 if (req->newptr) 2184 return EPERM; 2185 error = 0; 2186 2187 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2188 u_short advrtrs; 2189 size_t advance; 2190 struct sockaddr_in6 *sin6, *s6; 2191 struct nd_pfxrouter *pfr; 2192 2193 p = (struct in6_prefix *)buf; 2194 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2195 2196 if (p + 1 <= pe) { 2197 bzero(p, sizeof(*p)); 2198 sin6 = (struct sockaddr_in6 *)(p + 1); 2199 2200 p->prefix = pr->ndpr_prefix; 2201 if (in6_recoverscope(&p->prefix, 2202 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2203 log(LOG_ERR, 2204 "scope error in prefix list (%s)\n", 2205 ip6_sprintf(&p->prefix.sin6_addr)); 2206 p->raflags = pr->ndpr_raf; 2207 p->prefixlen = pr->ndpr_plen; 2208 p->vltime = pr->ndpr_vltime; 2209 p->pltime = pr->ndpr_pltime; 2210 p->if_index = pr->ndpr_ifp->if_index; 2211 p->expire = pr->ndpr_expire; 2212 p->refcnt = pr->ndpr_refcnt; 2213 p->flags = pr->ndpr_stateflags; 2214 p->origin = PR_ORIG_RA; 2215 advrtrs = 0; 2216 for (pfr = pr->ndpr_advrtrs.lh_first; 2217 pfr; 2218 pfr = pfr->pfr_next) { 2219 if ((void *)&sin6[advrtrs + 1] > 2220 (void *)pe) { 2221 advrtrs++; 2222 continue; 2223 } 2224 s6 = &sin6[advrtrs]; 2225 bzero(s6, sizeof(*s6)); 2226 s6->sin6_family = AF_INET6; 2227 s6->sin6_len = sizeof(*sin6); 2228 if (in6_recoverscope(s6, 2229 &pfr->router->rtaddr, 2230 pfr->router->ifp) != 0) 2231 log(LOG_ERR, 2232 "scope error in " 2233 "prefix list (%s)\n", 2234 ip6_sprintf(&pfr->router->rtaddr)); 2235 advrtrs++; 2236 } 2237 p->advrtrs = advrtrs; 2238 } else 2239 panic("buffer too short"); 2240 2241 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2242 error = SYSCTL_OUT(req, buf, advance); 2243 if (error) 2244 break; 2245 } 2246 return error; 2247 } 2248