1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 /* timer values */ 90 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 91 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 92 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 93 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 94 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 95 * local traffic */ 96 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 97 * collection timer */ 98 99 /* preventing too many loops in ND option parsing */ 100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 101 102 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 103 * layer hints */ 104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 105 * ND entries */ 106 #define V_nd6_maxndopt VNET(nd6_maxndopt) 107 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 108 109 #ifdef ND6_DEBUG 110 VNET_DEFINE(int, nd6_debug) = 1; 111 #else 112 VNET_DEFINE(int, nd6_debug) = 0; 113 #endif 114 115 /* for debugging? */ 116 #if 0 117 static int nd6_inuse, nd6_allocated; 118 #endif 119 120 VNET_DEFINE(struct nd_drhead, nd_defrouter); 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 124 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 125 126 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 127 128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 129 struct ifnet *); 130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 131 static void nd6_slowtimo(void *); 132 static int regen_tmpaddr(struct in6_ifaddr *); 133 static struct llentry *nd6_free(struct llentry *, int); 134 static void nd6_llinfo_timer(void *); 135 static void clear_llinfo_pqueue(struct llentry *); 136 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 137 static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *, 138 struct sockaddr_in6 *); 139 static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, 140 struct sockaddr_in6 *); 141 142 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 143 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 144 145 VNET_DEFINE(struct callout, nd6_timer_ch); 146 147 void 148 nd6_init(void) 149 { 150 151 LIST_INIT(&V_nd_prefix); 152 153 /* initialization of the default router list */ 154 TAILQ_INIT(&V_nd_defrouter); 155 156 /* start timer */ 157 callout_init(&V_nd6_slowtimo_ch, 0); 158 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 159 nd6_slowtimo, curvnet); 160 161 nd6_dad_init(); 162 } 163 164 #ifdef VIMAGE 165 void 166 nd6_destroy() 167 { 168 169 callout_drain(&V_nd6_slowtimo_ch); 170 callout_drain(&V_nd6_timer_ch); 171 } 172 #endif 173 174 struct nd_ifinfo * 175 nd6_ifattach(struct ifnet *ifp) 176 { 177 struct nd_ifinfo *nd; 178 179 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 180 nd->initialized = 1; 181 182 nd->chlim = IPV6_DEFHLIM; 183 nd->basereachable = REACHABLE_TIME; 184 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 185 nd->retrans = RETRANS_TIMER; 186 187 nd->flags = ND6_IFF_PERFORMNUD; 188 189 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 190 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 191 * default regardless of the V_ip6_auto_linklocal configuration to 192 * give a reasonable default behavior. 193 */ 194 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 195 (ifp->if_flags & IFF_LOOPBACK)) 196 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 197 /* 198 * A loopback interface does not need to accept RTADV. 199 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 200 * default regardless of the V_ip6_accept_rtadv configuration to 201 * prevent the interface from accepting RA messages arrived 202 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 203 */ 204 if (V_ip6_accept_rtadv && 205 !(ifp->if_flags & IFF_LOOPBACK) && 206 (ifp->if_type != IFT_BRIDGE)) 207 nd->flags |= ND6_IFF_ACCEPT_RTADV; 208 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 209 nd->flags |= ND6_IFF_NO_RADR; 210 211 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 212 nd6_setmtu0(ifp, nd); 213 214 return nd; 215 } 216 217 void 218 nd6_ifdetach(struct nd_ifinfo *nd) 219 { 220 221 free(nd, M_IP6NDP); 222 } 223 224 /* 225 * Reset ND level link MTU. This function is called when the physical MTU 226 * changes, which means we might have to adjust the ND level MTU. 227 */ 228 void 229 nd6_setmtu(struct ifnet *ifp) 230 { 231 232 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 233 } 234 235 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 236 void 237 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 238 { 239 u_int32_t omaxmtu; 240 241 omaxmtu = ndi->maxmtu; 242 243 switch (ifp->if_type) { 244 case IFT_ARCNET: 245 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 246 break; 247 case IFT_FDDI: 248 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 249 break; 250 case IFT_ISO88025: 251 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 252 break; 253 default: 254 ndi->maxmtu = ifp->if_mtu; 255 break; 256 } 257 258 /* 259 * Decreasing the interface MTU under IPV6 minimum MTU may cause 260 * undesirable situation. We thus notify the operator of the change 261 * explicitly. The check for omaxmtu is necessary to restrict the 262 * log to the case of changing the MTU, not initializing it. 263 */ 264 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 265 log(LOG_NOTICE, "nd6_setmtu0: " 266 "new link MTU on %s (%lu) is too small for IPv6\n", 267 if_name(ifp), (unsigned long)ndi->maxmtu); 268 } 269 270 if (ndi->maxmtu > V_in6_maxmtu) 271 in6_setmaxmtu(); /* check all interfaces just in case */ 272 273 } 274 275 void 276 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 277 { 278 279 bzero(ndopts, sizeof(*ndopts)); 280 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 281 ndopts->nd_opts_last 282 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 283 284 if (icmp6len == 0) { 285 ndopts->nd_opts_done = 1; 286 ndopts->nd_opts_search = NULL; 287 } 288 } 289 290 /* 291 * Take one ND option. 292 */ 293 struct nd_opt_hdr * 294 nd6_option(union nd_opts *ndopts) 295 { 296 struct nd_opt_hdr *nd_opt; 297 int olen; 298 299 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 300 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 301 __func__)); 302 if (ndopts->nd_opts_search == NULL) 303 return NULL; 304 if (ndopts->nd_opts_done) 305 return NULL; 306 307 nd_opt = ndopts->nd_opts_search; 308 309 /* make sure nd_opt_len is inside the buffer */ 310 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 311 bzero(ndopts, sizeof(*ndopts)); 312 return NULL; 313 } 314 315 olen = nd_opt->nd_opt_len << 3; 316 if (olen == 0) { 317 /* 318 * Message validation requires that all included 319 * options have a length that is greater than zero. 320 */ 321 bzero(ndopts, sizeof(*ndopts)); 322 return NULL; 323 } 324 325 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 326 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 327 /* option overruns the end of buffer, invalid */ 328 bzero(ndopts, sizeof(*ndopts)); 329 return NULL; 330 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 331 /* reached the end of options chain */ 332 ndopts->nd_opts_done = 1; 333 ndopts->nd_opts_search = NULL; 334 } 335 return nd_opt; 336 } 337 338 /* 339 * Parse multiple ND options. 340 * This function is much easier to use, for ND routines that do not need 341 * multiple options of the same type. 342 */ 343 int 344 nd6_options(union nd_opts *ndopts) 345 { 346 struct nd_opt_hdr *nd_opt; 347 int i = 0; 348 349 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 350 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 351 __func__)); 352 if (ndopts->nd_opts_search == NULL) 353 return 0; 354 355 while (1) { 356 nd_opt = nd6_option(ndopts); 357 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 358 /* 359 * Message validation requires that all included 360 * options have a length that is greater than zero. 361 */ 362 ICMP6STAT_INC(icp6s_nd_badopt); 363 bzero(ndopts, sizeof(*ndopts)); 364 return -1; 365 } 366 367 if (nd_opt == NULL) 368 goto skip1; 369 370 switch (nd_opt->nd_opt_type) { 371 case ND_OPT_SOURCE_LINKADDR: 372 case ND_OPT_TARGET_LINKADDR: 373 case ND_OPT_MTU: 374 case ND_OPT_REDIRECTED_HEADER: 375 case ND_OPT_NONCE: 376 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 377 nd6log((LOG_INFO, 378 "duplicated ND6 option found (type=%d)\n", 379 nd_opt->nd_opt_type)); 380 /* XXX bark? */ 381 } else { 382 ndopts->nd_opt_array[nd_opt->nd_opt_type] 383 = nd_opt; 384 } 385 break; 386 case ND_OPT_PREFIX_INFORMATION: 387 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 388 ndopts->nd_opt_array[nd_opt->nd_opt_type] 389 = nd_opt; 390 } 391 ndopts->nd_opts_pi_end = 392 (struct nd_opt_prefix_info *)nd_opt; 393 break; 394 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 395 case ND_OPT_RDNSS: /* RFC 6106 */ 396 case ND_OPT_DNSSL: /* RFC 6106 */ 397 /* 398 * Silently ignore options we know and do not care about 399 * in the kernel. 400 */ 401 break; 402 default: 403 /* 404 * Unknown options must be silently ignored, 405 * to accomodate future extension to the protocol. 406 */ 407 nd6log((LOG_DEBUG, 408 "nd6_options: unsupported option %d - " 409 "option ignored\n", nd_opt->nd_opt_type)); 410 } 411 412 skip1: 413 i++; 414 if (i > V_nd6_maxndopt) { 415 ICMP6STAT_INC(icp6s_nd_toomanyopt); 416 nd6log((LOG_INFO, "too many loop in nd opt\n")); 417 break; 418 } 419 420 if (ndopts->nd_opts_done) 421 break; 422 } 423 424 return 0; 425 } 426 427 /* 428 * ND6 timer routine to handle ND6 entries 429 */ 430 void 431 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 432 { 433 int canceled; 434 435 LLE_WLOCK_ASSERT(ln); 436 437 if (tick < 0) { 438 ln->la_expire = 0; 439 ln->ln_ntick = 0; 440 canceled = callout_stop(&ln->ln_timer_ch); 441 } else { 442 ln->la_expire = time_uptime + tick / hz; 443 LLE_ADDREF(ln); 444 if (tick > INT_MAX) { 445 ln->ln_ntick = tick - INT_MAX; 446 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 447 nd6_llinfo_timer, ln); 448 } else { 449 ln->ln_ntick = 0; 450 canceled = callout_reset(&ln->ln_timer_ch, tick, 451 nd6_llinfo_timer, ln); 452 } 453 } 454 if (canceled) 455 LLE_REMREF(ln); 456 } 457 458 void 459 nd6_llinfo_settimer(struct llentry *ln, long tick) 460 { 461 462 LLE_WLOCK(ln); 463 nd6_llinfo_settimer_locked(ln, tick); 464 LLE_WUNLOCK(ln); 465 } 466 467 static void 468 nd6_llinfo_timer(void *arg) 469 { 470 struct llentry *ln; 471 struct in6_addr *dst; 472 struct ifnet *ifp; 473 struct nd_ifinfo *ndi = NULL; 474 475 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 476 ln = (struct llentry *)arg; 477 LLE_WLOCK(ln); 478 if (callout_pending(&ln->la_timer)) { 479 /* 480 * Here we are a bit odd here in the treatment of 481 * active/pending. If the pending bit is set, it got 482 * rescheduled before I ran. The active 483 * bit we ignore, since if it was stopped 484 * in ll_tablefree() and was currently running 485 * it would have return 0 so the code would 486 * not have deleted it since the callout could 487 * not be stopped so we want to go through 488 * with the delete here now. If the callout 489 * was restarted, the pending bit will be back on and 490 * we just want to bail since the callout_reset would 491 * return 1 and our reference would have been removed 492 * by nd6_llinfo_settimer_locked above since canceled 493 * would have been 1. 494 */ 495 LLE_WUNLOCK(ln); 496 return; 497 } 498 ifp = ln->lle_tbl->llt_ifp; 499 CURVNET_SET(ifp->if_vnet); 500 501 if (ln->ln_ntick > 0) { 502 if (ln->ln_ntick > INT_MAX) { 503 ln->ln_ntick -= INT_MAX; 504 nd6_llinfo_settimer_locked(ln, INT_MAX); 505 } else { 506 ln->ln_ntick = 0; 507 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 508 } 509 goto done; 510 } 511 512 ndi = ND_IFINFO(ifp); 513 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 514 if (ln->la_flags & LLE_STATIC) { 515 goto done; 516 } 517 518 if (ln->la_flags & LLE_DELETED) { 519 (void)nd6_free(ln, 0); 520 ln = NULL; 521 goto done; 522 } 523 524 switch (ln->ln_state) { 525 case ND6_LLINFO_INCOMPLETE: 526 if (ln->la_asked < V_nd6_mmaxtries) { 527 ln->la_asked++; 528 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 529 LLE_WUNLOCK(ln); 530 nd6_ns_output(ifp, NULL, dst, ln, NULL); 531 LLE_WLOCK(ln); 532 } else { 533 struct mbuf *m = ln->la_hold; 534 if (m) { 535 struct mbuf *m0; 536 537 /* 538 * assuming every packet in la_hold has the 539 * same IP header. Send error after unlock. 540 */ 541 m0 = m->m_nextpkt; 542 m->m_nextpkt = NULL; 543 ln->la_hold = m0; 544 clear_llinfo_pqueue(ln); 545 } 546 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 547 (void)nd6_free(ln, 0); 548 ln = NULL; 549 if (m != NULL) 550 icmp6_error2(m, ICMP6_DST_UNREACH, 551 ICMP6_DST_UNREACH_ADDR, 0, ifp); 552 } 553 break; 554 case ND6_LLINFO_REACHABLE: 555 if (!ND6_LLINFO_PERMANENT(ln)) { 556 ln->ln_state = ND6_LLINFO_STALE; 557 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 558 } 559 break; 560 561 case ND6_LLINFO_STALE: 562 /* Garbage Collection(RFC 2461 5.3) */ 563 if (!ND6_LLINFO_PERMANENT(ln)) { 564 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 565 (void)nd6_free(ln, 1); 566 ln = NULL; 567 } 568 break; 569 570 case ND6_LLINFO_DELAY: 571 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 572 /* We need NUD */ 573 ln->la_asked = 1; 574 ln->ln_state = ND6_LLINFO_PROBE; 575 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 576 LLE_WUNLOCK(ln); 577 nd6_ns_output(ifp, dst, dst, ln, NULL); 578 LLE_WLOCK(ln); 579 } else { 580 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 581 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 582 } 583 break; 584 case ND6_LLINFO_PROBE: 585 if (ln->la_asked < V_nd6_umaxtries) { 586 ln->la_asked++; 587 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 588 LLE_WUNLOCK(ln); 589 nd6_ns_output(ifp, dst, dst, ln, NULL); 590 LLE_WLOCK(ln); 591 } else { 592 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 593 (void)nd6_free(ln, 0); 594 ln = NULL; 595 } 596 break; 597 default: 598 panic("%s: paths in a dark night can be confusing: %d", 599 __func__, ln->ln_state); 600 } 601 done: 602 if (ln != NULL) 603 LLE_FREE_LOCKED(ln); 604 CURVNET_RESTORE(); 605 } 606 607 608 /* 609 * ND6 timer routine to expire default route list and prefix list 610 */ 611 void 612 nd6_timer(void *arg) 613 { 614 CURVNET_SET((struct vnet *) arg); 615 struct nd_defrouter *dr, *ndr; 616 struct nd_prefix *pr, *npr; 617 struct in6_ifaddr *ia6, *nia6; 618 619 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 620 nd6_timer, curvnet); 621 622 /* expire default router list */ 623 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 624 if (dr->expire && dr->expire < time_uptime) 625 defrtrlist_del(dr); 626 } 627 628 /* 629 * expire interface addresses. 630 * in the past the loop was inside prefix expiry processing. 631 * However, from a stricter speci-confrmance standpoint, we should 632 * rather separate address lifetimes and prefix lifetimes. 633 * 634 * XXXRW: in6_ifaddrhead locking. 635 */ 636 addrloop: 637 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 638 /* check address lifetime */ 639 if (IFA6_IS_INVALID(ia6)) { 640 int regen = 0; 641 642 /* 643 * If the expiring address is temporary, try 644 * regenerating a new one. This would be useful when 645 * we suspended a laptop PC, then turned it on after a 646 * period that could invalidate all temporary 647 * addresses. Although we may have to restart the 648 * loop (see below), it must be after purging the 649 * address. Otherwise, we'd see an infinite loop of 650 * regeneration. 651 */ 652 if (V_ip6_use_tempaddr && 653 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 654 if (regen_tmpaddr(ia6) == 0) 655 regen = 1; 656 } 657 658 in6_purgeaddr(&ia6->ia_ifa); 659 660 if (regen) 661 goto addrloop; /* XXX: see below */ 662 } else if (IFA6_IS_DEPRECATED(ia6)) { 663 int oldflags = ia6->ia6_flags; 664 665 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 666 667 /* 668 * If a temporary address has just become deprecated, 669 * regenerate a new one if possible. 670 */ 671 if (V_ip6_use_tempaddr && 672 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 673 (oldflags & IN6_IFF_DEPRECATED) == 0) { 674 675 if (regen_tmpaddr(ia6) == 0) { 676 /* 677 * A new temporary address is 678 * generated. 679 * XXX: this means the address chain 680 * has changed while we are still in 681 * the loop. Although the change 682 * would not cause disaster (because 683 * it's not a deletion, but an 684 * addition,) we'd rather restart the 685 * loop just for safety. Or does this 686 * significantly reduce performance?? 687 */ 688 goto addrloop; 689 } 690 } 691 } else { 692 /* 693 * A new RA might have made a deprecated address 694 * preferred. 695 */ 696 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 697 } 698 } 699 700 /* expire prefix list */ 701 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 702 /* 703 * check prefix lifetime. 704 * since pltime is just for autoconf, pltime processing for 705 * prefix is not necessary. 706 */ 707 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 708 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 709 710 /* 711 * address expiration and prefix expiration are 712 * separate. NEVER perform in6_purgeaddr here. 713 */ 714 prelist_remove(pr); 715 } 716 } 717 CURVNET_RESTORE(); 718 } 719 720 /* 721 * ia6 - deprecated/invalidated temporary address 722 */ 723 static int 724 regen_tmpaddr(struct in6_ifaddr *ia6) 725 { 726 struct ifaddr *ifa; 727 struct ifnet *ifp; 728 struct in6_ifaddr *public_ifa6 = NULL; 729 730 ifp = ia6->ia_ifa.ifa_ifp; 731 IF_ADDR_RLOCK(ifp); 732 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 733 struct in6_ifaddr *it6; 734 735 if (ifa->ifa_addr->sa_family != AF_INET6) 736 continue; 737 738 it6 = (struct in6_ifaddr *)ifa; 739 740 /* ignore no autoconf addresses. */ 741 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 742 continue; 743 744 /* ignore autoconf addresses with different prefixes. */ 745 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 746 continue; 747 748 /* 749 * Now we are looking at an autoconf address with the same 750 * prefix as ours. If the address is temporary and is still 751 * preferred, do not create another one. It would be rare, but 752 * could happen, for example, when we resume a laptop PC after 753 * a long period. 754 */ 755 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 756 !IFA6_IS_DEPRECATED(it6)) { 757 public_ifa6 = NULL; 758 break; 759 } 760 761 /* 762 * This is a public autoconf address that has the same prefix 763 * as ours. If it is preferred, keep it. We can't break the 764 * loop here, because there may be a still-preferred temporary 765 * address with the prefix. 766 */ 767 if (!IFA6_IS_DEPRECATED(it6)) 768 public_ifa6 = it6; 769 } 770 if (public_ifa6 != NULL) 771 ifa_ref(&public_ifa6->ia_ifa); 772 IF_ADDR_RUNLOCK(ifp); 773 774 if (public_ifa6 != NULL) { 775 int e; 776 777 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 778 ifa_free(&public_ifa6->ia_ifa); 779 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 780 " tmp addr,errno=%d\n", e); 781 return (-1); 782 } 783 ifa_free(&public_ifa6->ia_ifa); 784 return (0); 785 } 786 787 return (-1); 788 } 789 790 /* 791 * Nuke neighbor cache/prefix/default router management table, right before 792 * ifp goes away. 793 */ 794 void 795 nd6_purge(struct ifnet *ifp) 796 { 797 struct nd_defrouter *dr, *ndr; 798 struct nd_prefix *pr, *npr; 799 800 /* 801 * Nuke default router list entries toward ifp. 802 * We defer removal of default router list entries that is installed 803 * in the routing table, in order to keep additional side effects as 804 * small as possible. 805 */ 806 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 807 if (dr->installed) 808 continue; 809 810 if (dr->ifp == ifp) 811 defrtrlist_del(dr); 812 } 813 814 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 815 if (!dr->installed) 816 continue; 817 818 if (dr->ifp == ifp) 819 defrtrlist_del(dr); 820 } 821 822 /* Nuke prefix list entries toward ifp */ 823 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 824 if (pr->ndpr_ifp == ifp) { 825 /* 826 * Because if_detach() does *not* release prefixes 827 * while purging addresses the reference count will 828 * still be above zero. We therefore reset it to 829 * make sure that the prefix really gets purged. 830 */ 831 pr->ndpr_refcnt = 0; 832 833 /* 834 * Previously, pr->ndpr_addr is removed as well, 835 * but I strongly believe we don't have to do it. 836 * nd6_purge() is only called from in6_ifdetach(), 837 * which removes all the associated interface addresses 838 * by itself. 839 * (jinmei@kame.net 20010129) 840 */ 841 prelist_remove(pr); 842 } 843 } 844 845 /* cancel default outgoing interface setting */ 846 if (V_nd6_defifindex == ifp->if_index) 847 nd6_setdefaultiface(0); 848 849 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 850 /* Refresh default router list. */ 851 defrouter_select(); 852 } 853 854 /* XXXXX 855 * We do not nuke the neighbor cache entries here any more 856 * because the neighbor cache is kept in if_afdata[AF_INET6]. 857 * nd6_purge() is invoked by in6_ifdetach() which is called 858 * from if_detach() where everything gets purged. So let 859 * in6_domifdetach() do the actual L2 table purging work. 860 */ 861 } 862 863 /* 864 * the caller acquires and releases the lock on the lltbls 865 * Returns the llentry locked 866 */ 867 struct llentry * 868 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 869 { 870 struct sockaddr_in6 sin6; 871 struct llentry *ln; 872 int llflags; 873 874 bzero(&sin6, sizeof(sin6)); 875 sin6.sin6_len = sizeof(struct sockaddr_in6); 876 sin6.sin6_family = AF_INET6; 877 sin6.sin6_addr = *addr6; 878 879 IF_AFDATA_LOCK_ASSERT(ifp); 880 881 llflags = 0; 882 if (flags & ND6_CREATE) 883 llflags |= LLE_CREATE; 884 if (flags & ND6_EXCLUSIVE) 885 llflags |= LLE_EXCLUSIVE; 886 887 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 888 if ((ln != NULL) && (llflags & LLE_CREATE)) 889 ln->ln_state = ND6_LLINFO_NOSTATE; 890 891 return (ln); 892 } 893 894 /* 895 * Test whether a given IPv6 address is a neighbor or not, ignoring 896 * the actual neighbor cache. The neighbor cache is ignored in order 897 * to not reenter the routing code from within itself. 898 */ 899 static int 900 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 901 { 902 struct nd_prefix *pr; 903 struct ifaddr *dstaddr; 904 905 /* 906 * A link-local address is always a neighbor. 907 * XXX: a link does not necessarily specify a single interface. 908 */ 909 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 910 struct sockaddr_in6 sin6_copy; 911 u_int32_t zone; 912 913 /* 914 * We need sin6_copy since sa6_recoverscope() may modify the 915 * content (XXX). 916 */ 917 sin6_copy = *addr; 918 if (sa6_recoverscope(&sin6_copy)) 919 return (0); /* XXX: should be impossible */ 920 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 921 return (0); 922 if (sin6_copy.sin6_scope_id == zone) 923 return (1); 924 else 925 return (0); 926 } 927 928 /* 929 * If the address matches one of our addresses, 930 * it should be a neighbor. 931 * If the address matches one of our on-link prefixes, it should be a 932 * neighbor. 933 */ 934 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 935 if (pr->ndpr_ifp != ifp) 936 continue; 937 938 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 939 struct rtentry *rt; 940 941 /* Always use the default FIB here. */ 942 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 943 0, 0, RT_DEFAULT_FIB); 944 if (rt == NULL) 945 continue; 946 /* 947 * This is the case where multiple interfaces 948 * have the same prefix, but only one is installed 949 * into the routing table and that prefix entry 950 * is not the one being examined here. In the case 951 * where RADIX_MPATH is enabled, multiple route 952 * entries (of the same rt_key value) will be 953 * installed because the interface addresses all 954 * differ. 955 */ 956 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 957 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 958 RTFREE_LOCKED(rt); 959 continue; 960 } 961 RTFREE_LOCKED(rt); 962 } 963 964 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 965 &addr->sin6_addr, &pr->ndpr_mask)) 966 return (1); 967 } 968 969 /* 970 * If the address is assigned on the node of the other side of 971 * a p2p interface, the address should be a neighbor. 972 */ 973 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS); 974 if (dstaddr != NULL) { 975 if (dstaddr->ifa_ifp == ifp) { 976 ifa_free(dstaddr); 977 return (1); 978 } 979 ifa_free(dstaddr); 980 } 981 982 /* 983 * If the default router list is empty, all addresses are regarded 984 * as on-link, and thus, as a neighbor. 985 */ 986 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 987 TAILQ_EMPTY(&V_nd_defrouter) && 988 V_nd6_defifindex == ifp->if_index) { 989 return (1); 990 } 991 992 return (0); 993 } 994 995 996 /* 997 * Detect if a given IPv6 address identifies a neighbor on a given link. 998 * XXX: should take care of the destination of a p2p link? 999 */ 1000 int 1001 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 1002 { 1003 struct llentry *lle; 1004 int rc = 0; 1005 1006 IF_AFDATA_UNLOCK_ASSERT(ifp); 1007 if (nd6_is_new_addr_neighbor(addr, ifp)) 1008 return (1); 1009 1010 /* 1011 * Even if the address matches none of our addresses, it might be 1012 * in the neighbor cache. 1013 */ 1014 IF_AFDATA_RLOCK(ifp); 1015 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1016 LLE_RUNLOCK(lle); 1017 rc = 1; 1018 } 1019 IF_AFDATA_RUNLOCK(ifp); 1020 return (rc); 1021 } 1022 1023 /* 1024 * Free an nd6 llinfo entry. 1025 * Since the function would cause significant changes in the kernel, DO NOT 1026 * make it global, unless you have a strong reason for the change, and are sure 1027 * that the change is safe. 1028 */ 1029 static struct llentry * 1030 nd6_free(struct llentry *ln, int gc) 1031 { 1032 struct llentry *next; 1033 struct nd_defrouter *dr; 1034 struct ifnet *ifp; 1035 1036 LLE_WLOCK_ASSERT(ln); 1037 1038 /* 1039 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1040 * even though it is not harmful, it was not really necessary. 1041 */ 1042 1043 /* cancel timer */ 1044 nd6_llinfo_settimer_locked(ln, -1); 1045 1046 ifp = ln->lle_tbl->llt_ifp; 1047 1048 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1049 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1050 1051 if (dr != NULL && dr->expire && 1052 ln->ln_state == ND6_LLINFO_STALE && gc) { 1053 /* 1054 * If the reason for the deletion is just garbage 1055 * collection, and the neighbor is an active default 1056 * router, do not delete it. Instead, reset the GC 1057 * timer using the router's lifetime. 1058 * Simply deleting the entry would affect default 1059 * router selection, which is not necessarily a good 1060 * thing, especially when we're using router preference 1061 * values. 1062 * XXX: the check for ln_state would be redundant, 1063 * but we intentionally keep it just in case. 1064 */ 1065 if (dr->expire > time_uptime) 1066 nd6_llinfo_settimer_locked(ln, 1067 (dr->expire - time_uptime) * hz); 1068 else 1069 nd6_llinfo_settimer_locked(ln, 1070 (long)V_nd6_gctimer * hz); 1071 1072 next = LIST_NEXT(ln, lle_next); 1073 LLE_REMREF(ln); 1074 LLE_WUNLOCK(ln); 1075 return (next); 1076 } 1077 1078 if (dr) { 1079 /* 1080 * Unreachablity of a router might affect the default 1081 * router selection and on-link detection of advertised 1082 * prefixes. 1083 */ 1084 1085 /* 1086 * Temporarily fake the state to choose a new default 1087 * router and to perform on-link determination of 1088 * prefixes correctly. 1089 * Below the state will be set correctly, 1090 * or the entry itself will be deleted. 1091 */ 1092 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1093 } 1094 1095 if (ln->ln_router || dr) { 1096 1097 /* 1098 * We need to unlock to avoid a LOR with rt6_flush() with the 1099 * rnh and for the calls to pfxlist_onlink_check() and 1100 * defrouter_select() in the block further down for calls 1101 * into nd6_lookup(). We still hold a ref. 1102 */ 1103 LLE_WUNLOCK(ln); 1104 1105 /* 1106 * rt6_flush must be called whether or not the neighbor 1107 * is in the Default Router List. 1108 * See a corresponding comment in nd6_na_input(). 1109 */ 1110 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1111 } 1112 1113 if (dr) { 1114 /* 1115 * Since defrouter_select() does not affect the 1116 * on-link determination and MIP6 needs the check 1117 * before the default router selection, we perform 1118 * the check now. 1119 */ 1120 pfxlist_onlink_check(); 1121 1122 /* 1123 * Refresh default router list. 1124 */ 1125 defrouter_select(); 1126 } 1127 1128 if (ln->ln_router || dr) 1129 LLE_WLOCK(ln); 1130 } 1131 1132 /* 1133 * Before deleting the entry, remember the next entry as the 1134 * return value. We need this because pfxlist_onlink_check() above 1135 * might have freed other entries (particularly the old next entry) as 1136 * a side effect (XXX). 1137 */ 1138 next = LIST_NEXT(ln, lle_next); 1139 1140 /* 1141 * Save to unlock. We still hold an extra reference and will not 1142 * free(9) in llentry_free() if someone else holds one as well. 1143 */ 1144 LLE_WUNLOCK(ln); 1145 IF_AFDATA_LOCK(ifp); 1146 LLE_WLOCK(ln); 1147 1148 /* Guard against race with other llentry_free(). */ 1149 if (ln->la_flags & LLE_LINKED) { 1150 LLE_REMREF(ln); 1151 llentry_free(ln); 1152 } else 1153 LLE_FREE_LOCKED(ln); 1154 1155 IF_AFDATA_UNLOCK(ifp); 1156 1157 return (next); 1158 } 1159 1160 /* 1161 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1162 * 1163 * XXX cost-effective methods? 1164 */ 1165 void 1166 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1167 { 1168 struct llentry *ln; 1169 struct ifnet *ifp; 1170 1171 if ((dst6 == NULL) || (rt == NULL)) 1172 return; 1173 1174 ifp = rt->rt_ifp; 1175 IF_AFDATA_RLOCK(ifp); 1176 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1177 IF_AFDATA_RUNLOCK(ifp); 1178 if (ln == NULL) 1179 return; 1180 1181 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1182 goto done; 1183 1184 /* 1185 * if we get upper-layer reachability confirmation many times, 1186 * it is possible we have false information. 1187 */ 1188 if (!force) { 1189 ln->ln_byhint++; 1190 if (ln->ln_byhint > V_nd6_maxnudhint) { 1191 goto done; 1192 } 1193 } 1194 1195 ln->ln_state = ND6_LLINFO_REACHABLE; 1196 if (!ND6_LLINFO_PERMANENT(ln)) { 1197 nd6_llinfo_settimer_locked(ln, 1198 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1199 } 1200 done: 1201 LLE_WUNLOCK(ln); 1202 } 1203 1204 1205 /* 1206 * Rejuvenate this function for routing operations related 1207 * processing. 1208 */ 1209 void 1210 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1211 { 1212 struct sockaddr_in6 *gateway; 1213 struct nd_defrouter *dr; 1214 struct ifnet *ifp; 1215 1216 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1217 ifp = rt->rt_ifp; 1218 1219 switch (req) { 1220 case RTM_ADD: 1221 break; 1222 1223 case RTM_DELETE: 1224 if (!ifp) 1225 return; 1226 /* 1227 * Only indirect routes are interesting. 1228 */ 1229 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1230 return; 1231 /* 1232 * check for default route 1233 */ 1234 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1235 &SIN6(rt_key(rt))->sin6_addr)) { 1236 1237 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1238 if (dr != NULL) 1239 dr->installed = 0; 1240 } 1241 break; 1242 } 1243 } 1244 1245 1246 int 1247 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1248 { 1249 struct in6_drlist *drl = (struct in6_drlist *)data; 1250 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1251 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1252 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1253 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1254 struct nd_defrouter *dr; 1255 struct nd_prefix *pr; 1256 int i = 0, error = 0; 1257 1258 if (ifp->if_afdata[AF_INET6] == NULL) 1259 return (EPFNOSUPPORT); 1260 switch (cmd) { 1261 case SIOCGDRLST_IN6: 1262 /* 1263 * obsolete API, use sysctl under net.inet6.icmp6 1264 */ 1265 bzero(drl, sizeof(*drl)); 1266 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1267 if (i >= DRLSTSIZ) 1268 break; 1269 drl->defrouter[i].rtaddr = dr->rtaddr; 1270 in6_clearscope(&drl->defrouter[i].rtaddr); 1271 1272 drl->defrouter[i].flags = dr->flags; 1273 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1274 drl->defrouter[i].expire = dr->expire + 1275 (time_second - time_uptime); 1276 drl->defrouter[i].if_index = dr->ifp->if_index; 1277 i++; 1278 } 1279 break; 1280 case SIOCGPRLST_IN6: 1281 /* 1282 * obsolete API, use sysctl under net.inet6.icmp6 1283 * 1284 * XXX the structure in6_prlist was changed in backward- 1285 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1286 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1287 */ 1288 /* 1289 * XXX meaning of fields, especialy "raflags", is very 1290 * differnet between RA prefix list and RR/static prefix list. 1291 * how about separating ioctls into two? 1292 */ 1293 bzero(oprl, sizeof(*oprl)); 1294 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1295 struct nd_pfxrouter *pfr; 1296 int j; 1297 1298 if (i >= PRLSTSIZ) 1299 break; 1300 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1301 oprl->prefix[i].raflags = pr->ndpr_raf; 1302 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1303 oprl->prefix[i].vltime = pr->ndpr_vltime; 1304 oprl->prefix[i].pltime = pr->ndpr_pltime; 1305 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1306 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1307 oprl->prefix[i].expire = 0; 1308 else { 1309 time_t maxexpire; 1310 1311 /* XXX: we assume time_t is signed. */ 1312 maxexpire = (-1) & 1313 ~((time_t)1 << 1314 ((sizeof(maxexpire) * 8) - 1)); 1315 if (pr->ndpr_vltime < 1316 maxexpire - pr->ndpr_lastupdate) { 1317 oprl->prefix[i].expire = 1318 pr->ndpr_lastupdate + 1319 pr->ndpr_vltime + 1320 (time_second - time_uptime); 1321 } else 1322 oprl->prefix[i].expire = maxexpire; 1323 } 1324 1325 j = 0; 1326 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1327 if (j < DRLSTSIZ) { 1328 #define RTRADDR oprl->prefix[i].advrtr[j] 1329 RTRADDR = pfr->router->rtaddr; 1330 in6_clearscope(&RTRADDR); 1331 #undef RTRADDR 1332 } 1333 j++; 1334 } 1335 oprl->prefix[i].advrtrs = j; 1336 oprl->prefix[i].origin = PR_ORIG_RA; 1337 1338 i++; 1339 } 1340 1341 break; 1342 case OSIOCGIFINFO_IN6: 1343 #define ND ndi->ndi 1344 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1345 bzero(&ND, sizeof(ND)); 1346 ND.linkmtu = IN6_LINKMTU(ifp); 1347 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1348 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1349 ND.reachable = ND_IFINFO(ifp)->reachable; 1350 ND.retrans = ND_IFINFO(ifp)->retrans; 1351 ND.flags = ND_IFINFO(ifp)->flags; 1352 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1353 ND.chlim = ND_IFINFO(ifp)->chlim; 1354 break; 1355 case SIOCGIFINFO_IN6: 1356 ND = *ND_IFINFO(ifp); 1357 break; 1358 case SIOCSIFINFO_IN6: 1359 /* 1360 * used to change host variables from userland. 1361 * intented for a use on router to reflect RA configurations. 1362 */ 1363 /* 0 means 'unspecified' */ 1364 if (ND.linkmtu != 0) { 1365 if (ND.linkmtu < IPV6_MMTU || 1366 ND.linkmtu > IN6_LINKMTU(ifp)) { 1367 error = EINVAL; 1368 break; 1369 } 1370 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1371 } 1372 1373 if (ND.basereachable != 0) { 1374 int obasereachable = ND_IFINFO(ifp)->basereachable; 1375 1376 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1377 if (ND.basereachable != obasereachable) 1378 ND_IFINFO(ifp)->reachable = 1379 ND_COMPUTE_RTIME(ND.basereachable); 1380 } 1381 if (ND.retrans != 0) 1382 ND_IFINFO(ifp)->retrans = ND.retrans; 1383 if (ND.chlim != 0) 1384 ND_IFINFO(ifp)->chlim = ND.chlim; 1385 /* FALLTHROUGH */ 1386 case SIOCSIFINFO_FLAGS: 1387 { 1388 struct ifaddr *ifa; 1389 struct in6_ifaddr *ia; 1390 1391 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1392 !(ND.flags & ND6_IFF_IFDISABLED)) { 1393 /* ifdisabled 1->0 transision */ 1394 1395 /* 1396 * If the interface is marked as ND6_IFF_IFDISABLED and 1397 * has an link-local address with IN6_IFF_DUPLICATED, 1398 * do not clear ND6_IFF_IFDISABLED. 1399 * See RFC 4862, Section 5.4.5. 1400 */ 1401 int duplicated_linklocal = 0; 1402 1403 IF_ADDR_RLOCK(ifp); 1404 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1405 if (ifa->ifa_addr->sa_family != AF_INET6) 1406 continue; 1407 ia = (struct in6_ifaddr *)ifa; 1408 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1409 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1410 duplicated_linklocal = 1; 1411 break; 1412 } 1413 } 1414 IF_ADDR_RUNLOCK(ifp); 1415 1416 if (duplicated_linklocal) { 1417 ND.flags |= ND6_IFF_IFDISABLED; 1418 log(LOG_ERR, "Cannot enable an interface" 1419 " with a link-local address marked" 1420 " duplicate.\n"); 1421 } else { 1422 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1423 if (ifp->if_flags & IFF_UP) 1424 in6_if_up(ifp); 1425 } 1426 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1427 (ND.flags & ND6_IFF_IFDISABLED)) { 1428 /* ifdisabled 0->1 transision */ 1429 /* Mark all IPv6 address as tentative. */ 1430 1431 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1432 IF_ADDR_RLOCK(ifp); 1433 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1434 if (ifa->ifa_addr->sa_family != AF_INET6) 1435 continue; 1436 ia = (struct in6_ifaddr *)ifa; 1437 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1438 } 1439 IF_ADDR_RUNLOCK(ifp); 1440 } 1441 1442 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1443 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1444 /* auto_linklocal 0->1 transision */ 1445 1446 /* If no link-local address on ifp, configure */ 1447 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1448 in6_ifattach(ifp, NULL); 1449 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1450 ifp->if_flags & IFF_UP) { 1451 /* 1452 * When the IF already has 1453 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1454 * address is assigned, and IFF_UP, try to 1455 * assign one. 1456 */ 1457 int haslinklocal = 0; 1458 1459 IF_ADDR_RLOCK(ifp); 1460 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1461 if (ifa->ifa_addr->sa_family != AF_INET6) 1462 continue; 1463 ia = (struct in6_ifaddr *)ifa; 1464 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1465 haslinklocal = 1; 1466 break; 1467 } 1468 } 1469 IF_ADDR_RUNLOCK(ifp); 1470 if (!haslinklocal) 1471 in6_ifattach(ifp, NULL); 1472 } 1473 } 1474 } 1475 ND_IFINFO(ifp)->flags = ND.flags; 1476 break; 1477 #undef ND 1478 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1479 /* sync kernel routing table with the default router list */ 1480 defrouter_reset(); 1481 defrouter_select(); 1482 break; 1483 case SIOCSPFXFLUSH_IN6: 1484 { 1485 /* flush all the prefix advertised by routers */ 1486 struct nd_prefix *pr, *next; 1487 1488 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1489 struct in6_ifaddr *ia, *ia_next; 1490 1491 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1492 continue; /* XXX */ 1493 1494 /* do we really have to remove addresses as well? */ 1495 /* XXXRW: in6_ifaddrhead locking. */ 1496 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1497 ia_next) { 1498 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1499 continue; 1500 1501 if (ia->ia6_ndpr == pr) 1502 in6_purgeaddr(&ia->ia_ifa); 1503 } 1504 prelist_remove(pr); 1505 } 1506 break; 1507 } 1508 case SIOCSRTRFLUSH_IN6: 1509 { 1510 /* flush all the default routers */ 1511 struct nd_defrouter *dr, *next; 1512 1513 defrouter_reset(); 1514 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1515 defrtrlist_del(dr); 1516 } 1517 defrouter_select(); 1518 break; 1519 } 1520 case SIOCGNBRINFO_IN6: 1521 { 1522 struct llentry *ln; 1523 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1524 1525 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1526 return (error); 1527 1528 IF_AFDATA_RLOCK(ifp); 1529 ln = nd6_lookup(&nb_addr, 0, ifp); 1530 IF_AFDATA_RUNLOCK(ifp); 1531 1532 if (ln == NULL) { 1533 error = EINVAL; 1534 break; 1535 } 1536 nbi->state = ln->ln_state; 1537 nbi->asked = ln->la_asked; 1538 nbi->isrouter = ln->ln_router; 1539 if (ln->la_expire == 0) 1540 nbi->expire = 0; 1541 else 1542 nbi->expire = ln->la_expire + 1543 (time_second - time_uptime); 1544 LLE_RUNLOCK(ln); 1545 break; 1546 } 1547 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1548 ndif->ifindex = V_nd6_defifindex; 1549 break; 1550 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1551 return (nd6_setdefaultiface(ndif->ifindex)); 1552 } 1553 return (error); 1554 } 1555 1556 /* 1557 * Create neighbor cache entry and cache link-layer address, 1558 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1559 * 1560 * type - ICMP6 type 1561 * code - type dependent information 1562 * 1563 * XXXXX 1564 * The caller of this function already acquired the ndp 1565 * cache table lock because the cache entry is returned. 1566 */ 1567 struct llentry * 1568 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1569 int lladdrlen, int type, int code) 1570 { 1571 struct llentry *ln = NULL; 1572 int is_newentry; 1573 int do_update; 1574 int olladdr; 1575 int llchange; 1576 int flags; 1577 int newstate = 0; 1578 uint16_t router = 0; 1579 struct sockaddr_in6 sin6; 1580 struct mbuf *chain = NULL; 1581 int static_route = 0; 1582 1583 IF_AFDATA_UNLOCK_ASSERT(ifp); 1584 1585 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1586 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1587 1588 /* nothing must be updated for unspecified address */ 1589 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1590 return NULL; 1591 1592 /* 1593 * Validation about ifp->if_addrlen and lladdrlen must be done in 1594 * the caller. 1595 * 1596 * XXX If the link does not have link-layer adderss, what should 1597 * we do? (ifp->if_addrlen == 0) 1598 * Spec says nothing in sections for RA, RS and NA. There's small 1599 * description on it in NS section (RFC 2461 7.2.3). 1600 */ 1601 flags = lladdr ? ND6_EXCLUSIVE : 0; 1602 IF_AFDATA_RLOCK(ifp); 1603 ln = nd6_lookup(from, flags, ifp); 1604 IF_AFDATA_RUNLOCK(ifp); 1605 if (ln == NULL) { 1606 flags |= ND6_EXCLUSIVE; 1607 IF_AFDATA_LOCK(ifp); 1608 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1609 IF_AFDATA_UNLOCK(ifp); 1610 is_newentry = 1; 1611 } else { 1612 /* do nothing if static ndp is set */ 1613 if (ln->la_flags & LLE_STATIC) { 1614 static_route = 1; 1615 goto done; 1616 } 1617 is_newentry = 0; 1618 } 1619 if (ln == NULL) 1620 return (NULL); 1621 1622 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1623 if (olladdr && lladdr) { 1624 llchange = bcmp(lladdr, &ln->ll_addr, 1625 ifp->if_addrlen); 1626 } else 1627 llchange = 0; 1628 1629 /* 1630 * newentry olladdr lladdr llchange (*=record) 1631 * 0 n n -- (1) 1632 * 0 y n -- (2) 1633 * 0 n y -- (3) * STALE 1634 * 0 y y n (4) * 1635 * 0 y y y (5) * STALE 1636 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1637 * 1 -- y -- (7) * STALE 1638 */ 1639 1640 if (lladdr) { /* (3-5) and (7) */ 1641 /* 1642 * Record source link-layer address 1643 * XXX is it dependent to ifp->if_type? 1644 */ 1645 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1646 ln->la_flags |= LLE_VALID; 1647 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1648 } 1649 1650 if (!is_newentry) { 1651 if ((!olladdr && lladdr != NULL) || /* (3) */ 1652 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1653 do_update = 1; 1654 newstate = ND6_LLINFO_STALE; 1655 } else /* (1-2,4) */ 1656 do_update = 0; 1657 } else { 1658 do_update = 1; 1659 if (lladdr == NULL) /* (6) */ 1660 newstate = ND6_LLINFO_NOSTATE; 1661 else /* (7) */ 1662 newstate = ND6_LLINFO_STALE; 1663 } 1664 1665 if (do_update) { 1666 /* 1667 * Update the state of the neighbor cache. 1668 */ 1669 ln->ln_state = newstate; 1670 1671 if (ln->ln_state == ND6_LLINFO_STALE) { 1672 if (ln->la_hold != NULL) 1673 nd6_grab_holdchain(ln, &chain, &sin6); 1674 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1675 /* probe right away */ 1676 nd6_llinfo_settimer_locked((void *)ln, 0); 1677 } 1678 } 1679 1680 /* 1681 * ICMP6 type dependent behavior. 1682 * 1683 * NS: clear IsRouter if new entry 1684 * RS: clear IsRouter 1685 * RA: set IsRouter if there's lladdr 1686 * redir: clear IsRouter if new entry 1687 * 1688 * RA case, (1): 1689 * The spec says that we must set IsRouter in the following cases: 1690 * - If lladdr exist, set IsRouter. This means (1-5). 1691 * - If it is old entry (!newentry), set IsRouter. This means (7). 1692 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1693 * A quetion arises for (1) case. (1) case has no lladdr in the 1694 * neighbor cache, this is similar to (6). 1695 * This case is rare but we figured that we MUST NOT set IsRouter. 1696 * 1697 * newentry olladdr lladdr llchange NS RS RA redir 1698 * D R 1699 * 0 n n -- (1) c ? s 1700 * 0 y n -- (2) c s s 1701 * 0 n y -- (3) c s s 1702 * 0 y y n (4) c s s 1703 * 0 y y y (5) c s s 1704 * 1 -- n -- (6) c c c s 1705 * 1 -- y -- (7) c c s c s 1706 * 1707 * (c=clear s=set) 1708 */ 1709 switch (type & 0xff) { 1710 case ND_NEIGHBOR_SOLICIT: 1711 /* 1712 * New entry must have is_router flag cleared. 1713 */ 1714 if (is_newentry) /* (6-7) */ 1715 ln->ln_router = 0; 1716 break; 1717 case ND_REDIRECT: 1718 /* 1719 * If the icmp is a redirect to a better router, always set the 1720 * is_router flag. Otherwise, if the entry is newly created, 1721 * clear the flag. [RFC 2461, sec 8.3] 1722 */ 1723 if (code == ND_REDIRECT_ROUTER) 1724 ln->ln_router = 1; 1725 else if (is_newentry) /* (6-7) */ 1726 ln->ln_router = 0; 1727 break; 1728 case ND_ROUTER_SOLICIT: 1729 /* 1730 * is_router flag must always be cleared. 1731 */ 1732 ln->ln_router = 0; 1733 break; 1734 case ND_ROUTER_ADVERT: 1735 /* 1736 * Mark an entry with lladdr as a router. 1737 */ 1738 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1739 (is_newentry && lladdr)) { /* (7) */ 1740 ln->ln_router = 1; 1741 } 1742 break; 1743 } 1744 1745 if (ln != NULL) { 1746 static_route = (ln->la_flags & LLE_STATIC); 1747 router = ln->ln_router; 1748 1749 if (flags & ND6_EXCLUSIVE) 1750 LLE_WUNLOCK(ln); 1751 else 1752 LLE_RUNLOCK(ln); 1753 if (static_route) 1754 ln = NULL; 1755 } 1756 if (chain != NULL) 1757 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 1758 1759 /* 1760 * When the link-layer address of a router changes, select the 1761 * best router again. In particular, when the neighbor entry is newly 1762 * created, it might affect the selection policy. 1763 * Question: can we restrict the first condition to the "is_newentry" 1764 * case? 1765 * XXX: when we hear an RA from a new router with the link-layer 1766 * address option, defrouter_select() is called twice, since 1767 * defrtrlist_update called the function as well. However, I believe 1768 * we can compromise the overhead, since it only happens the first 1769 * time. 1770 * XXX: although defrouter_select() should not have a bad effect 1771 * for those are not autoconfigured hosts, we explicitly avoid such 1772 * cases for safety. 1773 */ 1774 if (do_update && router && 1775 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1776 /* 1777 * guaranteed recursion 1778 */ 1779 defrouter_select(); 1780 } 1781 1782 return (ln); 1783 done: 1784 if (ln != NULL) { 1785 if (flags & ND6_EXCLUSIVE) 1786 LLE_WUNLOCK(ln); 1787 else 1788 LLE_RUNLOCK(ln); 1789 if (static_route) 1790 ln = NULL; 1791 } 1792 return (ln); 1793 } 1794 1795 static void 1796 nd6_slowtimo(void *arg) 1797 { 1798 CURVNET_SET((struct vnet *) arg); 1799 struct nd_ifinfo *nd6if; 1800 struct ifnet *ifp; 1801 1802 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1803 nd6_slowtimo, curvnet); 1804 IFNET_RLOCK_NOSLEEP(); 1805 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1806 if (ifp->if_afdata[AF_INET6] == NULL) 1807 continue; 1808 nd6if = ND_IFINFO(ifp); 1809 if (nd6if->basereachable && /* already initialized */ 1810 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1811 /* 1812 * Since reachable time rarely changes by router 1813 * advertisements, we SHOULD insure that a new random 1814 * value gets recomputed at least once every few hours. 1815 * (RFC 2461, 6.3.4) 1816 */ 1817 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1818 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1819 } 1820 } 1821 IFNET_RUNLOCK_NOSLEEP(); 1822 CURVNET_RESTORE(); 1823 } 1824 1825 void 1826 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 1827 struct sockaddr_in6 *sin6) 1828 { 1829 1830 LLE_WLOCK_ASSERT(ln); 1831 1832 *chain = ln->la_hold; 1833 ln->la_hold = NULL; 1834 memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6)); 1835 1836 if (ln->ln_state == ND6_LLINFO_STALE) { 1837 1838 /* 1839 * The first time we send a packet to a 1840 * neighbor whose entry is STALE, we have 1841 * to change the state to DELAY and a sets 1842 * a timer to expire in DELAY_FIRST_PROBE_TIME 1843 * seconds to ensure do neighbor unreachability 1844 * detection on expiration. 1845 * (RFC 2461 7.3.3) 1846 */ 1847 ln->la_asked = 0; 1848 ln->ln_state = ND6_LLINFO_DELAY; 1849 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1850 } 1851 } 1852 1853 static int 1854 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1855 struct sockaddr_in6 *dst) 1856 { 1857 int error; 1858 int ip6len; 1859 struct ip6_hdr *ip6; 1860 struct m_tag *mtag; 1861 1862 #ifdef MAC 1863 mac_netinet6_nd6_send(ifp, m); 1864 #endif 1865 1866 /* 1867 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 1868 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 1869 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 1870 * to be diverted to user space. When re-injected into the kernel, 1871 * send_output() will directly dispatch them to the outgoing interface. 1872 */ 1873 if (send_sendso_input_hook != NULL) { 1874 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 1875 if (mtag != NULL) { 1876 ip6 = mtod(m, struct ip6_hdr *); 1877 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 1878 /* Use the SEND socket */ 1879 error = send_sendso_input_hook(m, ifp, SND_OUT, 1880 ip6len); 1881 /* -1 == no app on SEND socket */ 1882 if (error == 0 || error != -1) 1883 return (error); 1884 } 1885 } 1886 1887 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 1888 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 1889 mtod(m, struct ip6_hdr *)); 1890 1891 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 1892 origifp = ifp; 1893 1894 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL); 1895 return (error); 1896 } 1897 1898 /* 1899 * IPv6 packet output - light version. 1900 * Checks if destination LLE exists and is in proper state 1901 * (e.g no modification required). If not true, fall back to 1902 * "heavy" version. 1903 */ 1904 int 1905 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1906 struct sockaddr_in6 *dst, struct rtentry *rt0) 1907 { 1908 struct llentry *ln = NULL; 1909 1910 /* discard the packet if IPv6 operation is disabled on the interface */ 1911 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1912 m_freem(m); 1913 return (ENETDOWN); /* better error? */ 1914 } 1915 1916 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1917 goto sendpkt; 1918 1919 if (nd6_need_cache(ifp) == 0) 1920 goto sendpkt; 1921 1922 IF_AFDATA_RLOCK(ifp); 1923 ln = nd6_lookup(&dst->sin6_addr, 0, ifp); 1924 IF_AFDATA_RUNLOCK(ifp); 1925 1926 /* 1927 * Perform fast path for the following cases: 1928 * 1) lle state is REACHABLE 1929 * 2) lle state is DELAY (NS message sentNS message sent) 1930 * 1931 * Every other case involves lle modification, so we handle 1932 * them separately. 1933 */ 1934 if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE && 1935 ln->ln_state != ND6_LLINFO_DELAY)) { 1936 /* Fall back to slow processing path */ 1937 if (ln != NULL) 1938 LLE_RUNLOCK(ln); 1939 return (nd6_output_lle(ifp, origifp, m, dst)); 1940 } 1941 1942 sendpkt: 1943 if (ln != NULL) 1944 LLE_RUNLOCK(ln); 1945 1946 return (nd6_output_ifp(ifp, origifp, m, dst)); 1947 } 1948 1949 1950 /* 1951 * Output IPv6 packet - heavy version. 1952 * Function assume that either 1953 * 1) destination LLE does not exist, is invalid or stale, so 1954 * ND6_EXCLUSIVE lock needs to be acquired 1955 * 2) destination lle is provided (with ND6_EXCLUSIVE lock), 1956 * in that case packets are queued in &chain. 1957 * 1958 */ 1959 static int 1960 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1961 struct sockaddr_in6 *dst) 1962 { 1963 struct llentry *lle = NULL; 1964 int flags = 0; 1965 1966 KASSERT(m != NULL, ("NULL mbuf, nothing to send")); 1967 /* discard the packet if IPv6 operation is disabled on the interface */ 1968 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1969 m_freem(m); 1970 return (ENETDOWN); /* better error? */ 1971 } 1972 1973 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1974 goto sendpkt; 1975 1976 if (nd6_need_cache(ifp) == 0) 1977 goto sendpkt; 1978 1979 /* 1980 * Address resolution or Neighbor Unreachability Detection 1981 * for the next hop. 1982 * At this point, the destination of the packet must be a unicast 1983 * or an anycast address(i.e. not a multicast). 1984 */ 1985 if (lle == NULL) { 1986 IF_AFDATA_RLOCK(ifp); 1987 lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp); 1988 IF_AFDATA_RUNLOCK(ifp); 1989 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1990 /* 1991 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1992 * the condition below is not very efficient. But we believe 1993 * it is tolerable, because this should be a rare case. 1994 */ 1995 flags = ND6_CREATE | ND6_EXCLUSIVE; 1996 IF_AFDATA_LOCK(ifp); 1997 lle = nd6_lookup(&dst->sin6_addr, flags, ifp); 1998 IF_AFDATA_UNLOCK(ifp); 1999 } 2000 } 2001 if (lle == NULL) { 2002 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2003 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2004 char ip6buf[INET6_ADDRSTRLEN]; 2005 log(LOG_DEBUG, 2006 "nd6_output: can't allocate llinfo for %s " 2007 "(ln=%p)\n", 2008 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2009 m_freem(m); 2010 return (ENOBUFS); 2011 } 2012 goto sendpkt; /* send anyway */ 2013 } 2014 2015 LLE_WLOCK_ASSERT(lle); 2016 2017 /* We don't have to do link-layer address resolution on a p2p link. */ 2018 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2019 lle->ln_state < ND6_LLINFO_REACHABLE) { 2020 lle->ln_state = ND6_LLINFO_STALE; 2021 nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz); 2022 } 2023 2024 /* 2025 * The first time we send a packet to a neighbor whose entry is 2026 * STALE, we have to change the state to DELAY and a sets a timer to 2027 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2028 * neighbor unreachability detection on expiration. 2029 * (RFC 2461 7.3.3) 2030 */ 2031 if (lle->ln_state == ND6_LLINFO_STALE) { 2032 lle->la_asked = 0; 2033 lle->ln_state = ND6_LLINFO_DELAY; 2034 nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz); 2035 } 2036 2037 /* 2038 * If the neighbor cache entry has a state other than INCOMPLETE 2039 * (i.e. its link-layer address is already resolved), just 2040 * send the packet. 2041 */ 2042 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) 2043 goto sendpkt; 2044 2045 /* 2046 * There is a neighbor cache entry, but no ethernet address 2047 * response yet. Append this latest packet to the end of the 2048 * packet queue in the mbuf, unless the number of the packet 2049 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2050 * the oldest packet in the queue will be removed. 2051 */ 2052 if (lle->ln_state == ND6_LLINFO_NOSTATE) 2053 lle->ln_state = ND6_LLINFO_INCOMPLETE; 2054 2055 if (lle->la_hold != NULL) { 2056 struct mbuf *m_hold; 2057 int i; 2058 2059 i = 0; 2060 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2061 i++; 2062 if (m_hold->m_nextpkt == NULL) { 2063 m_hold->m_nextpkt = m; 2064 break; 2065 } 2066 } 2067 while (i >= V_nd6_maxqueuelen) { 2068 m_hold = lle->la_hold; 2069 lle->la_hold = lle->la_hold->m_nextpkt; 2070 m_freem(m_hold); 2071 i--; 2072 } 2073 } else { 2074 lle->la_hold = m; 2075 } 2076 2077 /* 2078 * If there has been no NS for the neighbor after entering the 2079 * INCOMPLETE state, send the first solicitation. 2080 */ 2081 if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) { 2082 lle->la_asked++; 2083 2084 nd6_llinfo_settimer_locked(lle, 2085 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2086 LLE_WUNLOCK(lle); 2087 nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, NULL); 2088 } else { 2089 /* We did the lookup so we need to do the unlock here. */ 2090 LLE_WUNLOCK(lle); 2091 } 2092 2093 return (0); 2094 2095 sendpkt: 2096 if (lle != NULL) 2097 LLE_WUNLOCK(lle); 2098 2099 return (nd6_output_ifp(ifp, origifp, m, dst)); 2100 } 2101 2102 2103 int 2104 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2105 struct sockaddr_in6 *dst) 2106 { 2107 struct mbuf *m, *m_head; 2108 struct ifnet *outifp; 2109 int error = 0; 2110 2111 m_head = chain; 2112 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2113 outifp = origifp; 2114 else 2115 outifp = ifp; 2116 2117 while (m_head) { 2118 m = m_head; 2119 m_head = m_head->m_nextpkt; 2120 error = nd6_output_ifp(ifp, origifp, m, dst); 2121 } 2122 2123 /* 2124 * XXX 2125 * note that intermediate errors are blindly ignored - but this is 2126 * the same convention as used with nd6_output when called by 2127 * nd6_cache_lladdr 2128 */ 2129 return (error); 2130 } 2131 2132 2133 int 2134 nd6_need_cache(struct ifnet *ifp) 2135 { 2136 /* 2137 * XXX: we currently do not make neighbor cache on any interface 2138 * other than ARCnet, Ethernet, FDDI and GIF. 2139 * 2140 * RFC2893 says: 2141 * - unidirectional tunnels needs no ND 2142 */ 2143 switch (ifp->if_type) { 2144 case IFT_ARCNET: 2145 case IFT_ETHER: 2146 case IFT_FDDI: 2147 case IFT_IEEE1394: 2148 case IFT_L2VLAN: 2149 case IFT_IEEE80211: 2150 case IFT_INFINIBAND: 2151 case IFT_BRIDGE: 2152 case IFT_PROPVIRTUAL: 2153 return (1); 2154 default: 2155 return (0); 2156 } 2157 } 2158 2159 /* 2160 * Add pernament ND6 link-layer record for given 2161 * interface address. 2162 * 2163 * Very similar to IPv4 arp_ifinit(), but: 2164 * 1) IPv6 DAD is performed in different place 2165 * 2) It is called by IPv6 protocol stack in contrast to 2166 * arp_ifinit() which is typically called in SIOCSIFADDR 2167 * driver ioctl handler. 2168 * 2169 */ 2170 int 2171 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2172 { 2173 struct ifnet *ifp; 2174 struct llentry *ln; 2175 2176 ifp = ia->ia_ifa.ifa_ifp; 2177 if (nd6_need_cache(ifp) == 0) 2178 return (0); 2179 IF_AFDATA_LOCK(ifp); 2180 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2181 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 2182 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 2183 IF_AFDATA_UNLOCK(ifp); 2184 if (ln != NULL) { 2185 ln->la_expire = 0; /* for IPv6 this means permanent */ 2186 ln->ln_state = ND6_LLINFO_REACHABLE; 2187 LLE_WUNLOCK(ln); 2188 return (0); 2189 } 2190 2191 return (ENOBUFS); 2192 } 2193 2194 /* 2195 * Removes ALL lle records for interface address prefix. 2196 * XXXME: That's probably not we really want to do, we need 2197 * to remove address record only and keep other records 2198 * until we determine if given prefix is really going 2199 * to be removed. 2200 */ 2201 void 2202 nd6_rem_ifa_lle(struct in6_ifaddr *ia) 2203 { 2204 struct sockaddr_in6 mask, addr; 2205 struct ifnet *ifp; 2206 2207 ifp = ia->ia_ifa.ifa_ifp; 2208 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2209 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2210 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 2211 (struct sockaddr *)&mask, LLE_STATIC); 2212 } 2213 2214 /* 2215 * the callers of this function need to be re-worked to drop 2216 * the lle lock, drop here for now 2217 */ 2218 int 2219 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2220 const struct sockaddr *dst, u_char *desten, uint32_t *pflags) 2221 { 2222 struct llentry *ln; 2223 2224 if (pflags != NULL) 2225 *pflags = 0; 2226 IF_AFDATA_UNLOCK_ASSERT(ifp); 2227 if (m != NULL && m->m_flags & M_MCAST) { 2228 switch (ifp->if_type) { 2229 case IFT_ETHER: 2230 case IFT_FDDI: 2231 case IFT_L2VLAN: 2232 case IFT_IEEE80211: 2233 case IFT_BRIDGE: 2234 case IFT_ISO88025: 2235 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2236 desten); 2237 return (0); 2238 default: 2239 m_freem(m); 2240 return (EAFNOSUPPORT); 2241 } 2242 } 2243 2244 2245 /* 2246 * the entry should have been created in nd6_store_lladdr 2247 */ 2248 IF_AFDATA_RLOCK(ifp); 2249 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2250 IF_AFDATA_RUNLOCK(ifp); 2251 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2252 if (ln != NULL) 2253 LLE_RUNLOCK(ln); 2254 /* this could happen, if we could not allocate memory */ 2255 m_freem(m); 2256 return (1); 2257 } 2258 2259 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2260 if (pflags != NULL) 2261 *pflags = ln->la_flags; 2262 LLE_RUNLOCK(ln); 2263 /* 2264 * A *small* use after free race exists here 2265 */ 2266 return (0); 2267 } 2268 2269 static void 2270 clear_llinfo_pqueue(struct llentry *ln) 2271 { 2272 struct mbuf *m_hold, *m_hold_next; 2273 2274 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2275 m_hold_next = m_hold->m_nextpkt; 2276 m_freem(m_hold); 2277 } 2278 2279 ln->la_hold = NULL; 2280 return; 2281 } 2282 2283 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2284 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2285 #ifdef SYSCTL_DECL 2286 SYSCTL_DECL(_net_inet6_icmp6); 2287 #endif 2288 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2289 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2290 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2291 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2292 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2293 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2294 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2295 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2296 2297 static int 2298 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2299 { 2300 struct in6_defrouter d; 2301 struct nd_defrouter *dr; 2302 int error; 2303 2304 if (req->newptr) 2305 return (EPERM); 2306 2307 bzero(&d, sizeof(d)); 2308 d.rtaddr.sin6_family = AF_INET6; 2309 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2310 2311 /* 2312 * XXX locking 2313 */ 2314 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2315 d.rtaddr.sin6_addr = dr->rtaddr; 2316 error = sa6_recoverscope(&d.rtaddr); 2317 if (error != 0) 2318 return (error); 2319 d.flags = dr->flags; 2320 d.rtlifetime = dr->rtlifetime; 2321 d.expire = dr->expire + (time_second - time_uptime); 2322 d.if_index = dr->ifp->if_index; 2323 error = SYSCTL_OUT(req, &d, sizeof(d)); 2324 if (error != 0) 2325 return (error); 2326 } 2327 return (0); 2328 } 2329 2330 static int 2331 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2332 { 2333 struct in6_prefix p; 2334 struct sockaddr_in6 s6; 2335 struct nd_prefix *pr; 2336 struct nd_pfxrouter *pfr; 2337 time_t maxexpire; 2338 int error; 2339 char ip6buf[INET6_ADDRSTRLEN]; 2340 2341 if (req->newptr) 2342 return (EPERM); 2343 2344 bzero(&p, sizeof(p)); 2345 p.origin = PR_ORIG_RA; 2346 bzero(&s6, sizeof(s6)); 2347 s6.sin6_family = AF_INET6; 2348 s6.sin6_len = sizeof(s6); 2349 2350 /* 2351 * XXX locking 2352 */ 2353 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2354 p.prefix = pr->ndpr_prefix; 2355 if (sa6_recoverscope(&p.prefix)) { 2356 log(LOG_ERR, "scope error in prefix list (%s)\n", 2357 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2358 /* XXX: press on... */ 2359 } 2360 p.raflags = pr->ndpr_raf; 2361 p.prefixlen = pr->ndpr_plen; 2362 p.vltime = pr->ndpr_vltime; 2363 p.pltime = pr->ndpr_pltime; 2364 p.if_index = pr->ndpr_ifp->if_index; 2365 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2366 p.expire = 0; 2367 else { 2368 /* XXX: we assume time_t is signed. */ 2369 maxexpire = (-1) & 2370 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2371 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2372 p.expire = pr->ndpr_lastupdate + 2373 pr->ndpr_vltime + 2374 (time_second - time_uptime); 2375 else 2376 p.expire = maxexpire; 2377 } 2378 p.refcnt = pr->ndpr_refcnt; 2379 p.flags = pr->ndpr_stateflags; 2380 p.advrtrs = 0; 2381 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2382 p.advrtrs++; 2383 error = SYSCTL_OUT(req, &p, sizeof(p)); 2384 if (error != 0) 2385 return (error); 2386 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2387 s6.sin6_addr = pfr->router->rtaddr; 2388 if (sa6_recoverscope(&s6)) 2389 log(LOG_ERR, 2390 "scope error in prefix list (%s)\n", 2391 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2392 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2393 if (error != 0) 2394 return (error); 2395 } 2396 } 2397 return (0); 2398 } 2399