1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_mac.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/callout.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/time.h> 47 #include <sys/kernel.h> 48 #include <sys/protosw.h> 49 #include <sys/errno.h> 50 #include <sys/syslog.h> 51 #include <sys/lock.h> 52 #include <sys/rwlock.h> 53 #include <sys/queue.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_arc.h> 58 #include <net/if_dl.h> 59 #include <net/if_types.h> 60 #include <net/iso88025.h> 61 #include <net/fddi.h> 62 #include <net/route.h> 63 #include <net/vnet.h> 64 65 #include <netinet/in.h> 66 #include <net/if_llatbl.h> 67 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 68 #include <netinet/if_ether.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet6/vinet6.h> 76 77 #include <sys/limits.h> 78 #include <sys/vimage.h> 79 80 #include <security/mac/mac_framework.h> 81 82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 84 85 #define SIN6(s) ((struct sockaddr_in6 *)s) 86 87 #ifdef VIMAGE_GLOBALS 88 int nd6_prune; 89 int nd6_delay; 90 int nd6_umaxtries; 91 int nd6_mmaxtries; 92 int nd6_useloopback; 93 int nd6_gctimer; 94 95 /* preventing too many loops in ND option parsing */ 96 int nd6_maxndopt; 97 98 int nd6_maxnudhint; 99 int nd6_maxqueuelen; 100 101 int nd6_debug; 102 103 /* for debugging? */ 104 #if 0 105 static int nd6_inuse, nd6_allocated; 106 #endif 107 108 struct nd_drhead nd_defrouter; 109 struct nd_prhead nd_prefix; 110 111 int nd6_recalc_reachtm_interval; 112 #endif /* VIMAGE_GLOBALS */ 113 114 static struct sockaddr_in6 all1_sa; 115 116 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 117 struct ifnet *)); 118 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 119 static void nd6_slowtimo(void *); 120 static int regen_tmpaddr(struct in6_ifaddr *); 121 static struct llentry *nd6_free(struct llentry *, int); 122 static void nd6_llinfo_timer(void *); 123 static void clear_llinfo_pqueue(struct llentry *); 124 125 #ifdef VIMAGE_GLOBALS 126 struct callout nd6_slowtimo_ch; 127 struct callout nd6_timer_ch; 128 extern struct callout in6_tmpaddrtimer_ch; 129 extern int dad_ignore_ns; 130 extern int dad_maxtry; 131 #endif 132 133 void 134 nd6_init(void) 135 { 136 INIT_VNET_INET6(curvnet); 137 static int nd6_init_done = 0; 138 int i; 139 140 if (nd6_init_done) { 141 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 142 return; 143 } 144 145 V_nd6_prune = 1; /* walk list every 1 seconds */ 146 V_nd6_delay = 5; /* delay first probe time 5 second */ 147 V_nd6_umaxtries = 3; /* maximum unicast query */ 148 V_nd6_mmaxtries = 3; /* maximum multicast query */ 149 V_nd6_useloopback = 1; /* use loopback interface for local traffic */ 150 V_nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 151 152 /* preventing too many loops in ND option parsing */ 153 V_nd6_maxndopt = 10; /* max # of ND options allowed */ 154 155 V_nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 156 V_nd6_maxqueuelen = 1; /* max pkts cached in unresolved ND entries */ 157 158 #ifdef ND6_DEBUG 159 V_nd6_debug = 1; 160 #else 161 V_nd6_debug = 0; 162 #endif 163 164 V_nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 165 166 V_dad_ignore_ns = 0; /* ignore NS in DAD - specwise incorrect*/ 167 V_dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */ 168 169 /* 170 * XXX just to get this to compile KMM 171 */ 172 #ifdef notyet 173 V_llinfo_nd6.ln_next = &V_llinfo_nd6; 174 V_llinfo_nd6.ln_prev = &V_llinfo_nd6; 175 #endif 176 LIST_INIT(&V_nd_prefix); 177 178 V_ip6_use_tempaddr = 0; 179 V_ip6_temp_preferred_lifetime = DEF_TEMP_PREFERRED_LIFETIME; 180 V_ip6_temp_valid_lifetime = DEF_TEMP_VALID_LIFETIME; 181 V_ip6_temp_regen_advance = TEMPADDR_REGEN_ADVANCE; 182 183 all1_sa.sin6_family = AF_INET6; 184 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 185 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 186 all1_sa.sin6_addr.s6_addr[i] = 0xff; 187 188 /* initialization of the default router list */ 189 TAILQ_INIT(&V_nd_defrouter); 190 /* start timer */ 191 callout_init(&V_nd6_slowtimo_ch, 0); 192 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 193 nd6_slowtimo, NULL); 194 195 nd6_init_done = 1; 196 197 } 198 199 struct nd_ifinfo * 200 nd6_ifattach(struct ifnet *ifp) 201 { 202 struct nd_ifinfo *nd; 203 204 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 205 bzero(nd, sizeof(*nd)); 206 207 nd->initialized = 1; 208 209 nd->chlim = IPV6_DEFHLIM; 210 nd->basereachable = REACHABLE_TIME; 211 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 212 nd->retrans = RETRANS_TIMER; 213 /* 214 * Note that the default value of ip6_accept_rtadv is 0, which means 215 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 216 * here. 217 */ 218 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 219 220 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 221 nd6_setmtu0(ifp, nd); 222 223 return nd; 224 } 225 226 void 227 nd6_ifdetach(struct nd_ifinfo *nd) 228 { 229 230 free(nd, M_IP6NDP); 231 } 232 233 /* 234 * Reset ND level link MTU. This function is called when the physical MTU 235 * changes, which means we might have to adjust the ND level MTU. 236 */ 237 void 238 nd6_setmtu(struct ifnet *ifp) 239 { 240 241 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 242 } 243 244 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 245 void 246 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 247 { 248 INIT_VNET_INET6(ifp->if_vnet); 249 u_int32_t omaxmtu; 250 251 omaxmtu = ndi->maxmtu; 252 253 switch (ifp->if_type) { 254 case IFT_ARCNET: 255 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 256 break; 257 case IFT_FDDI: 258 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 259 break; 260 case IFT_ISO88025: 261 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 262 break; 263 default: 264 ndi->maxmtu = ifp->if_mtu; 265 break; 266 } 267 268 /* 269 * Decreasing the interface MTU under IPV6 minimum MTU may cause 270 * undesirable situation. We thus notify the operator of the change 271 * explicitly. The check for omaxmtu is necessary to restrict the 272 * log to the case of changing the MTU, not initializing it. 273 */ 274 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 275 log(LOG_NOTICE, "nd6_setmtu0: " 276 "new link MTU on %s (%lu) is too small for IPv6\n", 277 if_name(ifp), (unsigned long)ndi->maxmtu); 278 } 279 280 if (ndi->maxmtu > V_in6_maxmtu) 281 in6_setmaxmtu(); /* check all interfaces just in case */ 282 283 #undef MIN 284 } 285 286 void 287 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 288 { 289 290 bzero(ndopts, sizeof(*ndopts)); 291 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 292 ndopts->nd_opts_last 293 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 294 295 if (icmp6len == 0) { 296 ndopts->nd_opts_done = 1; 297 ndopts->nd_opts_search = NULL; 298 } 299 } 300 301 /* 302 * Take one ND option. 303 */ 304 struct nd_opt_hdr * 305 nd6_option(union nd_opts *ndopts) 306 { 307 struct nd_opt_hdr *nd_opt; 308 int olen; 309 310 if (ndopts == NULL) 311 panic("ndopts == NULL in nd6_option"); 312 if (ndopts->nd_opts_last == NULL) 313 panic("uninitialized ndopts in nd6_option"); 314 if (ndopts->nd_opts_search == NULL) 315 return NULL; 316 if (ndopts->nd_opts_done) 317 return NULL; 318 319 nd_opt = ndopts->nd_opts_search; 320 321 /* make sure nd_opt_len is inside the buffer */ 322 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 323 bzero(ndopts, sizeof(*ndopts)); 324 return NULL; 325 } 326 327 olen = nd_opt->nd_opt_len << 3; 328 if (olen == 0) { 329 /* 330 * Message validation requires that all included 331 * options have a length that is greater than zero. 332 */ 333 bzero(ndopts, sizeof(*ndopts)); 334 return NULL; 335 } 336 337 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 338 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 339 /* option overruns the end of buffer, invalid */ 340 bzero(ndopts, sizeof(*ndopts)); 341 return NULL; 342 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 343 /* reached the end of options chain */ 344 ndopts->nd_opts_done = 1; 345 ndopts->nd_opts_search = NULL; 346 } 347 return nd_opt; 348 } 349 350 /* 351 * Parse multiple ND options. 352 * This function is much easier to use, for ND routines that do not need 353 * multiple options of the same type. 354 */ 355 int 356 nd6_options(union nd_opts *ndopts) 357 { 358 INIT_VNET_INET6(curvnet); 359 struct nd_opt_hdr *nd_opt; 360 int i = 0; 361 362 if (ndopts == NULL) 363 panic("ndopts == NULL in nd6_options"); 364 if (ndopts->nd_opts_last == NULL) 365 panic("uninitialized ndopts in nd6_options"); 366 if (ndopts->nd_opts_search == NULL) 367 return 0; 368 369 while (1) { 370 nd_opt = nd6_option(ndopts); 371 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 372 /* 373 * Message validation requires that all included 374 * options have a length that is greater than zero. 375 */ 376 V_icmp6stat.icp6s_nd_badopt++; 377 bzero(ndopts, sizeof(*ndopts)); 378 return -1; 379 } 380 381 if (nd_opt == NULL) 382 goto skip1; 383 384 switch (nd_opt->nd_opt_type) { 385 case ND_OPT_SOURCE_LINKADDR: 386 case ND_OPT_TARGET_LINKADDR: 387 case ND_OPT_MTU: 388 case ND_OPT_REDIRECTED_HEADER: 389 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 390 nd6log((LOG_INFO, 391 "duplicated ND6 option found (type=%d)\n", 392 nd_opt->nd_opt_type)); 393 /* XXX bark? */ 394 } else { 395 ndopts->nd_opt_array[nd_opt->nd_opt_type] 396 = nd_opt; 397 } 398 break; 399 case ND_OPT_PREFIX_INFORMATION: 400 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 401 ndopts->nd_opt_array[nd_opt->nd_opt_type] 402 = nd_opt; 403 } 404 ndopts->nd_opts_pi_end = 405 (struct nd_opt_prefix_info *)nd_opt; 406 break; 407 default: 408 /* 409 * Unknown options must be silently ignored, 410 * to accomodate future extension to the protocol. 411 */ 412 nd6log((LOG_DEBUG, 413 "nd6_options: unsupported option %d - " 414 "option ignored\n", nd_opt->nd_opt_type)); 415 } 416 417 skip1: 418 i++; 419 if (i > V_nd6_maxndopt) { 420 V_icmp6stat.icp6s_nd_toomanyopt++; 421 nd6log((LOG_INFO, "too many loop in nd opt\n")); 422 break; 423 } 424 425 if (ndopts->nd_opts_done) 426 break; 427 } 428 429 return 0; 430 } 431 432 /* 433 * ND6 timer routine to handle ND6 entries 434 */ 435 void 436 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 437 { 438 if (tick < 0) { 439 ln->la_expire = 0; 440 ln->ln_ntick = 0; 441 callout_stop(&ln->ln_timer_ch); 442 /* 443 * XXX - do we know that there is 444 * callout installed? i.e. are we 445 * guaranteed that we're not dropping 446 * a reference that we did not add? 447 * KMM 448 */ 449 LLE_REMREF(ln); 450 } else { 451 ln->la_expire = time_second + tick / hz; 452 LLE_ADDREF(ln); 453 if (tick > INT_MAX) { 454 ln->ln_ntick = tick - INT_MAX; 455 callout_reset(&ln->ln_timer_ch, INT_MAX, 456 nd6_llinfo_timer, ln); 457 } else { 458 ln->ln_ntick = 0; 459 callout_reset(&ln->ln_timer_ch, tick, 460 nd6_llinfo_timer, ln); 461 } 462 } 463 } 464 465 void 466 nd6_llinfo_settimer(struct llentry *ln, long tick) 467 { 468 469 LLE_WLOCK(ln); 470 nd6_llinfo_settimer_locked(ln, tick); 471 LLE_WUNLOCK(ln); 472 } 473 474 static void 475 nd6_llinfo_timer(void *arg) 476 { 477 struct llentry *ln; 478 struct in6_addr *dst; 479 struct ifnet *ifp; 480 struct nd_ifinfo *ndi = NULL; 481 482 ln = (struct llentry *)arg; 483 if (ln == NULL) { 484 panic("%s: NULL entry!\n", __func__); 485 return; 486 } 487 488 if ((ifp = ((ln->lle_tbl != NULL) ? ln->lle_tbl->llt_ifp : NULL)) == NULL) 489 panic("ln ifp == NULL"); 490 491 CURVNET_SET(ifp->if_vnet); 492 INIT_VNET_INET6(curvnet); 493 494 if (ln->ln_ntick > 0) { 495 if (ln->ln_ntick > INT_MAX) { 496 ln->ln_ntick -= INT_MAX; 497 nd6_llinfo_settimer(ln, INT_MAX); 498 } else { 499 ln->ln_ntick = 0; 500 nd6_llinfo_settimer(ln, ln->ln_ntick); 501 } 502 goto done; 503 } 504 505 ndi = ND_IFINFO(ifp); 506 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 507 if ((ln->la_flags & LLE_STATIC) || (ln->la_expire > time_second)) { 508 goto done; 509 } 510 511 if (ln->la_flags & LLE_DELETED) { 512 (void)nd6_free(ln, 0); 513 goto done; 514 } 515 516 switch (ln->ln_state) { 517 case ND6_LLINFO_INCOMPLETE: 518 if (ln->la_asked < V_nd6_mmaxtries) { 519 ln->la_asked++; 520 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 521 nd6_ns_output(ifp, NULL, dst, ln, 0); 522 } else { 523 struct mbuf *m = ln->la_hold; 524 if (m) { 525 struct mbuf *m0; 526 527 /* 528 * assuming every packet in la_hold has the 529 * same IP header 530 */ 531 m0 = m->m_nextpkt; 532 m->m_nextpkt = NULL; 533 icmp6_error2(m, ICMP6_DST_UNREACH, 534 ICMP6_DST_UNREACH_ADDR, 0, ifp); 535 536 ln->la_hold = m0; 537 clear_llinfo_pqueue(ln); 538 } 539 (void)nd6_free(ln, 0); 540 ln = NULL; 541 } 542 break; 543 case ND6_LLINFO_REACHABLE: 544 if (!ND6_LLINFO_PERMANENT(ln)) { 545 ln->ln_state = ND6_LLINFO_STALE; 546 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 547 } 548 break; 549 550 case ND6_LLINFO_STALE: 551 /* Garbage Collection(RFC 2461 5.3) */ 552 if (!ND6_LLINFO_PERMANENT(ln)) { 553 (void)nd6_free(ln, 1); 554 ln = NULL; 555 } 556 break; 557 558 case ND6_LLINFO_DELAY: 559 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 560 /* We need NUD */ 561 ln->la_asked = 1; 562 ln->ln_state = ND6_LLINFO_PROBE; 563 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 564 nd6_ns_output(ifp, dst, dst, ln, 0); 565 } else { 566 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 567 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 568 } 569 break; 570 case ND6_LLINFO_PROBE: 571 if (ln->la_asked < V_nd6_umaxtries) { 572 ln->la_asked++; 573 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 574 nd6_ns_output(ifp, dst, dst, ln, 0); 575 } else { 576 (void)nd6_free(ln, 0); 577 ln = NULL; 578 } 579 break; 580 } 581 CURVNET_RESTORE(); 582 done: 583 if (ln != NULL) 584 LLE_FREE(ln); 585 } 586 587 588 /* 589 * ND6 timer routine to expire default route list and prefix list 590 */ 591 void 592 nd6_timer(void *arg) 593 { 594 CURVNET_SET_QUIET((struct vnet *) arg); 595 INIT_VNET_INET6((struct vnet *) arg); 596 int s; 597 struct nd_defrouter *dr; 598 struct nd_prefix *pr; 599 struct in6_ifaddr *ia6, *nia6; 600 struct in6_addrlifetime *lt6; 601 602 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 603 nd6_timer, NULL); 604 605 /* expire default router list */ 606 s = splnet(); 607 dr = TAILQ_FIRST(&V_nd_defrouter); 608 while (dr) { 609 if (dr->expire && dr->expire < time_second) { 610 struct nd_defrouter *t; 611 t = TAILQ_NEXT(dr, dr_entry); 612 defrtrlist_del(dr); 613 dr = t; 614 } else { 615 dr = TAILQ_NEXT(dr, dr_entry); 616 } 617 } 618 619 /* 620 * expire interface addresses. 621 * in the past the loop was inside prefix expiry processing. 622 * However, from a stricter speci-confrmance standpoint, we should 623 * rather separate address lifetimes and prefix lifetimes. 624 */ 625 addrloop: 626 for (ia6 = V_in6_ifaddr; ia6; ia6 = nia6) { 627 nia6 = ia6->ia_next; 628 /* check address lifetime */ 629 lt6 = &ia6->ia6_lifetime; 630 if (IFA6_IS_INVALID(ia6)) { 631 int regen = 0; 632 633 /* 634 * If the expiring address is temporary, try 635 * regenerating a new one. This would be useful when 636 * we suspended a laptop PC, then turned it on after a 637 * period that could invalidate all temporary 638 * addresses. Although we may have to restart the 639 * loop (see below), it must be after purging the 640 * address. Otherwise, we'd see an infinite loop of 641 * regeneration. 642 */ 643 if (V_ip6_use_tempaddr && 644 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 645 if (regen_tmpaddr(ia6) == 0) 646 regen = 1; 647 } 648 649 in6_purgeaddr(&ia6->ia_ifa); 650 651 if (regen) 652 goto addrloop; /* XXX: see below */ 653 } else if (IFA6_IS_DEPRECATED(ia6)) { 654 int oldflags = ia6->ia6_flags; 655 656 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 657 658 /* 659 * If a temporary address has just become deprecated, 660 * regenerate a new one if possible. 661 */ 662 if (V_ip6_use_tempaddr && 663 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 664 (oldflags & IN6_IFF_DEPRECATED) == 0) { 665 666 if (regen_tmpaddr(ia6) == 0) { 667 /* 668 * A new temporary address is 669 * generated. 670 * XXX: this means the address chain 671 * has changed while we are still in 672 * the loop. Although the change 673 * would not cause disaster (because 674 * it's not a deletion, but an 675 * addition,) we'd rather restart the 676 * loop just for safety. Or does this 677 * significantly reduce performance?? 678 */ 679 goto addrloop; 680 } 681 } 682 } else { 683 /* 684 * A new RA might have made a deprecated address 685 * preferred. 686 */ 687 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 688 } 689 } 690 691 /* expire prefix list */ 692 pr = V_nd_prefix.lh_first; 693 while (pr) { 694 /* 695 * check prefix lifetime. 696 * since pltime is just for autoconf, pltime processing for 697 * prefix is not necessary. 698 */ 699 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 700 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 701 struct nd_prefix *t; 702 t = pr->ndpr_next; 703 704 /* 705 * address expiration and prefix expiration are 706 * separate. NEVER perform in6_purgeaddr here. 707 */ 708 709 prelist_remove(pr); 710 pr = t; 711 } else 712 pr = pr->ndpr_next; 713 } 714 splx(s); 715 CURVNET_RESTORE(); 716 } 717 718 /* 719 * ia6 - deprecated/invalidated temporary address 720 */ 721 static int 722 regen_tmpaddr(struct in6_ifaddr *ia6) 723 { 724 struct ifaddr *ifa; 725 struct ifnet *ifp; 726 struct in6_ifaddr *public_ifa6 = NULL; 727 728 ifp = ia6->ia_ifa.ifa_ifp; 729 for (ifa = ifp->if_addrlist.tqh_first; ifa; 730 ifa = ifa->ifa_list.tqe_next) { 731 struct in6_ifaddr *it6; 732 733 if (ifa->ifa_addr->sa_family != AF_INET6) 734 continue; 735 736 it6 = (struct in6_ifaddr *)ifa; 737 738 /* ignore no autoconf addresses. */ 739 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 740 continue; 741 742 /* ignore autoconf addresses with different prefixes. */ 743 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 744 continue; 745 746 /* 747 * Now we are looking at an autoconf address with the same 748 * prefix as ours. If the address is temporary and is still 749 * preferred, do not create another one. It would be rare, but 750 * could happen, for example, when we resume a laptop PC after 751 * a long period. 752 */ 753 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 754 !IFA6_IS_DEPRECATED(it6)) { 755 public_ifa6 = NULL; 756 break; 757 } 758 759 /* 760 * This is a public autoconf address that has the same prefix 761 * as ours. If it is preferred, keep it. We can't break the 762 * loop here, because there may be a still-preferred temporary 763 * address with the prefix. 764 */ 765 if (!IFA6_IS_DEPRECATED(it6)) 766 public_ifa6 = it6; 767 } 768 769 if (public_ifa6 != NULL) { 770 int e; 771 772 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 773 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 774 " tmp addr,errno=%d\n", e); 775 return (-1); 776 } 777 return (0); 778 } 779 780 return (-1); 781 } 782 783 /* 784 * Nuke neighbor cache/prefix/default router management table, right before 785 * ifp goes away. 786 */ 787 void 788 nd6_purge(struct ifnet *ifp) 789 { 790 INIT_VNET_INET6(ifp->if_vnet); 791 struct nd_defrouter *dr, *ndr; 792 struct nd_prefix *pr, *npr; 793 794 /* 795 * Nuke default router list entries toward ifp. 796 * We defer removal of default router list entries that is installed 797 * in the routing table, in order to keep additional side effects as 798 * small as possible. 799 */ 800 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { 801 ndr = TAILQ_NEXT(dr, dr_entry); 802 if (dr->installed) 803 continue; 804 805 if (dr->ifp == ifp) 806 defrtrlist_del(dr); 807 } 808 809 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { 810 ndr = TAILQ_NEXT(dr, dr_entry); 811 if (!dr->installed) 812 continue; 813 814 if (dr->ifp == ifp) 815 defrtrlist_del(dr); 816 } 817 818 /* Nuke prefix list entries toward ifp */ 819 for (pr = V_nd_prefix.lh_first; pr; pr = npr) { 820 npr = pr->ndpr_next; 821 if (pr->ndpr_ifp == ifp) { 822 /* 823 * Because if_detach() does *not* release prefixes 824 * while purging addresses the reference count will 825 * still be above zero. We therefore reset it to 826 * make sure that the prefix really gets purged. 827 */ 828 pr->ndpr_refcnt = 0; 829 830 /* 831 * Previously, pr->ndpr_addr is removed as well, 832 * but I strongly believe we don't have to do it. 833 * nd6_purge() is only called from in6_ifdetach(), 834 * which removes all the associated interface addresses 835 * by itself. 836 * (jinmei@kame.net 20010129) 837 */ 838 prelist_remove(pr); 839 } 840 } 841 842 /* cancel default outgoing interface setting */ 843 if (V_nd6_defifindex == ifp->if_index) 844 nd6_setdefaultiface(0); 845 846 if (!V_ip6_forwarding && V_ip6_accept_rtadv) { /* XXX: too restrictive? */ 847 /* refresh default router list 848 * 849 * 850 */ 851 defrouter_select(); 852 853 } 854 855 /* XXXXX 856 * We do not nuke the neighbor cache entries here any more 857 * because the neighbor cache is kept in if_afdata[AF_INET6]. 858 * nd6_purge() is invoked by in6_ifdetach() which is called 859 * from if_detach() where everything gets purged. So let 860 * in6_domifdetach() do the actual L2 table purging work. 861 */ 862 } 863 864 /* 865 * the caller acquires and releases the lock on the lltbls 866 * Returns the llentry locked 867 */ 868 struct llentry * 869 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 870 { 871 INIT_VNET_INET6(curvnet); 872 struct sockaddr_in6 sin6; 873 struct llentry *ln; 874 int llflags = 0; 875 876 bzero(&sin6, sizeof(sin6)); 877 sin6.sin6_len = sizeof(struct sockaddr_in6); 878 sin6.sin6_family = AF_INET6; 879 sin6.sin6_addr = *addr6; 880 881 IF_AFDATA_LOCK_ASSERT(ifp); 882 883 if (flags & ND6_CREATE) 884 llflags |= LLE_CREATE; 885 if (flags & ND6_EXCLUSIVE) 886 llflags |= LLE_EXCLUSIVE; 887 888 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 889 if ((ln != NULL) && (flags & LLE_CREATE)) { 890 ln->ln_state = ND6_LLINFO_NOSTATE; 891 callout_init(&ln->ln_timer_ch, 0); 892 } 893 894 return (ln); 895 } 896 897 /* 898 * Test whether a given IPv6 address is a neighbor or not, ignoring 899 * the actual neighbor cache. The neighbor cache is ignored in order 900 * to not reenter the routing code from within itself. 901 */ 902 static int 903 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 904 { 905 INIT_VNET_INET6(ifp->if_vnet); 906 struct nd_prefix *pr; 907 struct ifaddr *dstaddr; 908 909 /* 910 * A link-local address is always a neighbor. 911 * XXX: a link does not necessarily specify a single interface. 912 */ 913 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 914 struct sockaddr_in6 sin6_copy; 915 u_int32_t zone; 916 917 /* 918 * We need sin6_copy since sa6_recoverscope() may modify the 919 * content (XXX). 920 */ 921 sin6_copy = *addr; 922 if (sa6_recoverscope(&sin6_copy)) 923 return (0); /* XXX: should be impossible */ 924 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 925 return (0); 926 if (sin6_copy.sin6_scope_id == zone) 927 return (1); 928 else 929 return (0); 930 } 931 932 /* 933 * If the address matches one of our addresses, 934 * it should be a neighbor. 935 * If the address matches one of our on-link prefixes, it should be a 936 * neighbor. 937 */ 938 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 939 if (pr->ndpr_ifp != ifp) 940 continue; 941 942 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 943 continue; 944 945 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 946 &addr->sin6_addr, &pr->ndpr_mask)) 947 return (1); 948 } 949 950 /* 951 * If the address is assigned on the node of the other side of 952 * a p2p interface, the address should be a neighbor. 953 */ 954 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 955 if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp)) 956 return (1); 957 958 /* 959 * If the default router list is empty, all addresses are regarded 960 * as on-link, and thus, as a neighbor. 961 * XXX: we restrict the condition to hosts, because routers usually do 962 * not have the "default router list". 963 */ 964 if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL && 965 V_nd6_defifindex == ifp->if_index) { 966 return (1); 967 } 968 969 return (0); 970 } 971 972 973 /* 974 * Detect if a given IPv6 address identifies a neighbor on a given link. 975 * XXX: should take care of the destination of a p2p link? 976 */ 977 int 978 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 979 { 980 struct llentry *lle; 981 int rc = 0; 982 983 IF_AFDATA_UNLOCK_ASSERT(ifp); 984 if (nd6_is_new_addr_neighbor(addr, ifp)) 985 return (1); 986 987 /* 988 * Even if the address matches none of our addresses, it might be 989 * in the neighbor cache. 990 */ 991 IF_AFDATA_LOCK(ifp); 992 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 993 LLE_RUNLOCK(lle); 994 rc = 1; 995 } 996 IF_AFDATA_UNLOCK(ifp); 997 return (rc); 998 } 999 1000 /* 1001 * Free an nd6 llinfo entry. 1002 * Since the function would cause significant changes in the kernel, DO NOT 1003 * make it global, unless you have a strong reason for the change, and are sure 1004 * that the change is safe. 1005 */ 1006 static struct llentry * 1007 nd6_free(struct llentry *ln, int gc) 1008 { 1009 INIT_VNET_INET6(curvnet); 1010 struct llentry *next; 1011 struct nd_defrouter *dr; 1012 struct ifnet *ifp=NULL; 1013 1014 /* 1015 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1016 * even though it is not harmful, it was not really necessary. 1017 */ 1018 1019 /* cancel timer */ 1020 nd6_llinfo_settimer(ln, -1); 1021 1022 if (!V_ip6_forwarding) { 1023 int s; 1024 s = splnet(); 1025 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp); 1026 1027 if (dr != NULL && dr->expire && 1028 ln->ln_state == ND6_LLINFO_STALE && gc) { 1029 /* 1030 * If the reason for the deletion is just garbage 1031 * collection, and the neighbor is an active default 1032 * router, do not delete it. Instead, reset the GC 1033 * timer using the router's lifetime. 1034 * Simply deleting the entry would affect default 1035 * router selection, which is not necessarily a good 1036 * thing, especially when we're using router preference 1037 * values. 1038 * XXX: the check for ln_state would be redundant, 1039 * but we intentionally keep it just in case. 1040 */ 1041 if (dr->expire > time_second) 1042 nd6_llinfo_settimer(ln, 1043 (dr->expire - time_second) * hz); 1044 else 1045 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 1046 splx(s); 1047 return (LIST_NEXT(ln, lle_next)); 1048 } 1049 1050 if (ln->ln_router || dr) { 1051 /* 1052 * rt6_flush must be called whether or not the neighbor 1053 * is in the Default Router List. 1054 * See a corresponding comment in nd6_na_input(). 1055 */ 1056 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp); 1057 } 1058 1059 if (dr) { 1060 /* 1061 * Unreachablity of a router might affect the default 1062 * router selection and on-link detection of advertised 1063 * prefixes. 1064 */ 1065 1066 /* 1067 * Temporarily fake the state to choose a new default 1068 * router and to perform on-link determination of 1069 * prefixes correctly. 1070 * Below the state will be set correctly, 1071 * or the entry itself will be deleted. 1072 */ 1073 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1074 1075 /* 1076 * Since defrouter_select() does not affect the 1077 * on-link determination and MIP6 needs the check 1078 * before the default router selection, we perform 1079 * the check now. 1080 */ 1081 pfxlist_onlink_check(); 1082 1083 /* 1084 * refresh default router list 1085 */ 1086 defrouter_select(); 1087 } 1088 splx(s); 1089 } 1090 1091 /* 1092 * Before deleting the entry, remember the next entry as the 1093 * return value. We need this because pfxlist_onlink_check() above 1094 * might have freed other entries (particularly the old next entry) as 1095 * a side effect (XXX). 1096 */ 1097 next = LIST_NEXT(ln, lle_next); 1098 1099 ifp = ln->lle_tbl->llt_ifp; 1100 IF_AFDATA_LOCK(ifp); 1101 LLE_WLOCK(ln); 1102 llentry_free(ln); 1103 IF_AFDATA_UNLOCK(ifp); 1104 1105 return (next); 1106 } 1107 1108 /* 1109 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1110 * 1111 * XXX cost-effective methods? 1112 */ 1113 void 1114 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1115 { 1116 INIT_VNET_INET6(curvnet); 1117 struct llentry *ln; 1118 struct ifnet *ifp; 1119 1120 if ((dst6 == NULL) || (rt == NULL)) 1121 return; 1122 1123 ifp = rt->rt_ifp; 1124 IF_AFDATA_LOCK(ifp); 1125 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1126 IF_AFDATA_UNLOCK(ifp); 1127 if (ln == NULL) 1128 return; 1129 1130 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1131 goto done; 1132 1133 /* 1134 * if we get upper-layer reachability confirmation many times, 1135 * it is possible we have false information. 1136 */ 1137 if (!force) { 1138 ln->ln_byhint++; 1139 if (ln->ln_byhint > V_nd6_maxnudhint) { 1140 goto done; 1141 } 1142 } 1143 1144 ln->ln_state = ND6_LLINFO_REACHABLE; 1145 if (!ND6_LLINFO_PERMANENT(ln)) { 1146 nd6_llinfo_settimer(ln, 1147 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1148 } 1149 done: 1150 LLE_WUNLOCK(ln); 1151 } 1152 1153 1154 int 1155 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1156 { 1157 INIT_VNET_INET6(ifp->if_vnet); 1158 struct in6_drlist *drl = (struct in6_drlist *)data; 1159 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1160 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1161 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1162 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1163 struct nd_defrouter *dr; 1164 struct nd_prefix *pr; 1165 int i = 0, error = 0; 1166 int s; 1167 1168 switch (cmd) { 1169 case SIOCGDRLST_IN6: 1170 /* 1171 * obsolete API, use sysctl under net.inet6.icmp6 1172 */ 1173 bzero(drl, sizeof(*drl)); 1174 s = splnet(); 1175 dr = TAILQ_FIRST(&V_nd_defrouter); 1176 while (dr && i < DRLSTSIZ) { 1177 drl->defrouter[i].rtaddr = dr->rtaddr; 1178 in6_clearscope(&drl->defrouter[i].rtaddr); 1179 1180 drl->defrouter[i].flags = dr->flags; 1181 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1182 drl->defrouter[i].expire = dr->expire; 1183 drl->defrouter[i].if_index = dr->ifp->if_index; 1184 i++; 1185 dr = TAILQ_NEXT(dr, dr_entry); 1186 } 1187 splx(s); 1188 break; 1189 case SIOCGPRLST_IN6: 1190 /* 1191 * obsolete API, use sysctl under net.inet6.icmp6 1192 * 1193 * XXX the structure in6_prlist was changed in backward- 1194 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1195 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1196 */ 1197 /* 1198 * XXX meaning of fields, especialy "raflags", is very 1199 * differnet between RA prefix list and RR/static prefix list. 1200 * how about separating ioctls into two? 1201 */ 1202 bzero(oprl, sizeof(*oprl)); 1203 s = splnet(); 1204 pr = V_nd_prefix.lh_first; 1205 while (pr && i < PRLSTSIZ) { 1206 struct nd_pfxrouter *pfr; 1207 int j; 1208 1209 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1210 oprl->prefix[i].raflags = pr->ndpr_raf; 1211 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1212 oprl->prefix[i].vltime = pr->ndpr_vltime; 1213 oprl->prefix[i].pltime = pr->ndpr_pltime; 1214 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1215 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1216 oprl->prefix[i].expire = 0; 1217 else { 1218 time_t maxexpire; 1219 1220 /* XXX: we assume time_t is signed. */ 1221 maxexpire = (-1) & 1222 ~((time_t)1 << 1223 ((sizeof(maxexpire) * 8) - 1)); 1224 if (pr->ndpr_vltime < 1225 maxexpire - pr->ndpr_lastupdate) { 1226 oprl->prefix[i].expire = 1227 pr->ndpr_lastupdate + 1228 pr->ndpr_vltime; 1229 } else 1230 oprl->prefix[i].expire = maxexpire; 1231 } 1232 1233 pfr = pr->ndpr_advrtrs.lh_first; 1234 j = 0; 1235 while (pfr) { 1236 if (j < DRLSTSIZ) { 1237 #define RTRADDR oprl->prefix[i].advrtr[j] 1238 RTRADDR = pfr->router->rtaddr; 1239 in6_clearscope(&RTRADDR); 1240 #undef RTRADDR 1241 } 1242 j++; 1243 pfr = pfr->pfr_next; 1244 } 1245 oprl->prefix[i].advrtrs = j; 1246 oprl->prefix[i].origin = PR_ORIG_RA; 1247 1248 i++; 1249 pr = pr->ndpr_next; 1250 } 1251 splx(s); 1252 1253 break; 1254 case OSIOCGIFINFO_IN6: 1255 #define ND ndi->ndi 1256 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1257 bzero(&ND, sizeof(ND)); 1258 ND.linkmtu = IN6_LINKMTU(ifp); 1259 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1260 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1261 ND.reachable = ND_IFINFO(ifp)->reachable; 1262 ND.retrans = ND_IFINFO(ifp)->retrans; 1263 ND.flags = ND_IFINFO(ifp)->flags; 1264 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1265 ND.chlim = ND_IFINFO(ifp)->chlim; 1266 break; 1267 case SIOCGIFINFO_IN6: 1268 ND = *ND_IFINFO(ifp); 1269 break; 1270 case SIOCSIFINFO_IN6: 1271 /* 1272 * used to change host variables from userland. 1273 * intented for a use on router to reflect RA configurations. 1274 */ 1275 /* 0 means 'unspecified' */ 1276 if (ND.linkmtu != 0) { 1277 if (ND.linkmtu < IPV6_MMTU || 1278 ND.linkmtu > IN6_LINKMTU(ifp)) { 1279 error = EINVAL; 1280 break; 1281 } 1282 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1283 } 1284 1285 if (ND.basereachable != 0) { 1286 int obasereachable = ND_IFINFO(ifp)->basereachable; 1287 1288 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1289 if (ND.basereachable != obasereachable) 1290 ND_IFINFO(ifp)->reachable = 1291 ND_COMPUTE_RTIME(ND.basereachable); 1292 } 1293 if (ND.retrans != 0) 1294 ND_IFINFO(ifp)->retrans = ND.retrans; 1295 if (ND.chlim != 0) 1296 ND_IFINFO(ifp)->chlim = ND.chlim; 1297 /* FALLTHROUGH */ 1298 case SIOCSIFINFO_FLAGS: 1299 ND_IFINFO(ifp)->flags = ND.flags; 1300 break; 1301 #undef ND 1302 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1303 /* sync kernel routing table with the default router list */ 1304 defrouter_reset(); 1305 defrouter_select(); 1306 break; 1307 case SIOCSPFXFLUSH_IN6: 1308 { 1309 /* flush all the prefix advertised by routers */ 1310 struct nd_prefix *pr, *next; 1311 1312 s = splnet(); 1313 for (pr = V_nd_prefix.lh_first; pr; pr = next) { 1314 struct in6_ifaddr *ia, *ia_next; 1315 1316 next = pr->ndpr_next; 1317 1318 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1319 continue; /* XXX */ 1320 1321 /* do we really have to remove addresses as well? */ 1322 for (ia = V_in6_ifaddr; ia; ia = ia_next) { 1323 /* ia might be removed. keep the next ptr. */ 1324 ia_next = ia->ia_next; 1325 1326 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1327 continue; 1328 1329 if (ia->ia6_ndpr == pr) 1330 in6_purgeaddr(&ia->ia_ifa); 1331 } 1332 prelist_remove(pr); 1333 } 1334 splx(s); 1335 break; 1336 } 1337 case SIOCSRTRFLUSH_IN6: 1338 { 1339 /* flush all the default routers */ 1340 struct nd_defrouter *dr, *next; 1341 1342 s = splnet(); 1343 defrouter_reset(); 1344 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) { 1345 next = TAILQ_NEXT(dr, dr_entry); 1346 defrtrlist_del(dr); 1347 } 1348 defrouter_select(); 1349 splx(s); 1350 break; 1351 } 1352 case SIOCGNBRINFO_IN6: 1353 { 1354 struct llentry *ln; 1355 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1356 1357 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1358 return (error); 1359 1360 IF_AFDATA_LOCK(ifp); 1361 ln = nd6_lookup(&nb_addr, 0, ifp); 1362 IF_AFDATA_UNLOCK(ifp); 1363 1364 if (ln == NULL) { 1365 error = EINVAL; 1366 break; 1367 } 1368 nbi->state = ln->ln_state; 1369 nbi->asked = ln->la_asked; 1370 nbi->isrouter = ln->ln_router; 1371 nbi->expire = ln->la_expire; 1372 LLE_RUNLOCK(ln); 1373 break; 1374 } 1375 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1376 ndif->ifindex = V_nd6_defifindex; 1377 break; 1378 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1379 return (nd6_setdefaultiface(ndif->ifindex)); 1380 } 1381 return (error); 1382 } 1383 1384 /* 1385 * Create neighbor cache entry and cache link-layer address, 1386 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1387 * 1388 * type - ICMP6 type 1389 * code - type dependent information 1390 * 1391 * XXXXX 1392 * The caller of this function already acquired the ndp 1393 * cache table lock because the cache entry is returned. 1394 */ 1395 struct llentry * 1396 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1397 int lladdrlen, int type, int code) 1398 { 1399 INIT_VNET_INET6(curvnet); 1400 struct llentry *ln = NULL; 1401 int is_newentry; 1402 int do_update; 1403 int olladdr; 1404 int llchange; 1405 int flags = 0; 1406 int newstate = 0; 1407 uint16_t router = 0; 1408 struct sockaddr_in6 sin6; 1409 struct mbuf *chain = NULL; 1410 int static_route = 0; 1411 1412 IF_AFDATA_UNLOCK_ASSERT(ifp); 1413 1414 if (ifp == NULL) 1415 panic("ifp == NULL in nd6_cache_lladdr"); 1416 if (from == NULL) 1417 panic("from == NULL in nd6_cache_lladdr"); 1418 1419 /* nothing must be updated for unspecified address */ 1420 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1421 return NULL; 1422 1423 /* 1424 * Validation about ifp->if_addrlen and lladdrlen must be done in 1425 * the caller. 1426 * 1427 * XXX If the link does not have link-layer adderss, what should 1428 * we do? (ifp->if_addrlen == 0) 1429 * Spec says nothing in sections for RA, RS and NA. There's small 1430 * description on it in NS section (RFC 2461 7.2.3). 1431 */ 1432 flags |= lladdr ? ND6_EXCLUSIVE : 0; 1433 IF_AFDATA_LOCK(ifp); 1434 ln = nd6_lookup(from, flags, ifp); 1435 1436 if (ln == NULL) { 1437 flags |= LLE_EXCLUSIVE; 1438 ln = nd6_lookup(from, flags |ND6_CREATE, ifp); 1439 IF_AFDATA_UNLOCK(ifp); 1440 is_newentry = 1; 1441 } else { 1442 IF_AFDATA_UNLOCK(ifp); 1443 /* do nothing if static ndp is set */ 1444 if (ln->la_flags & LLE_STATIC) { 1445 static_route = 1; 1446 goto done; 1447 } 1448 is_newentry = 0; 1449 } 1450 if (ln == NULL) 1451 return (NULL); 1452 1453 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1454 if (olladdr && lladdr) { 1455 llchange = bcmp(lladdr, &ln->ll_addr, 1456 ifp->if_addrlen); 1457 } else 1458 llchange = 0; 1459 1460 /* 1461 * newentry olladdr lladdr llchange (*=record) 1462 * 0 n n -- (1) 1463 * 0 y n -- (2) 1464 * 0 n y -- (3) * STALE 1465 * 0 y y n (4) * 1466 * 0 y y y (5) * STALE 1467 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1468 * 1 -- y -- (7) * STALE 1469 */ 1470 1471 if (lladdr) { /* (3-5) and (7) */ 1472 /* 1473 * Record source link-layer address 1474 * XXX is it dependent to ifp->if_type? 1475 */ 1476 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1477 ln->la_flags |= LLE_VALID; 1478 } 1479 1480 if (!is_newentry) { 1481 if ((!olladdr && lladdr != NULL) || /* (3) */ 1482 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1483 do_update = 1; 1484 newstate = ND6_LLINFO_STALE; 1485 } else /* (1-2,4) */ 1486 do_update = 0; 1487 } else { 1488 do_update = 1; 1489 if (lladdr == NULL) /* (6) */ 1490 newstate = ND6_LLINFO_NOSTATE; 1491 else /* (7) */ 1492 newstate = ND6_LLINFO_STALE; 1493 } 1494 1495 if (do_update) { 1496 /* 1497 * Update the state of the neighbor cache. 1498 */ 1499 ln->ln_state = newstate; 1500 1501 if (ln->ln_state == ND6_LLINFO_STALE) { 1502 /* 1503 * XXX: since nd6_output() below will cause 1504 * state tansition to DELAY and reset the timer, 1505 * we must set the timer now, although it is actually 1506 * meaningless. 1507 */ 1508 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1509 1510 if (ln->la_hold) { 1511 struct mbuf *m_hold, *m_hold_next; 1512 1513 /* 1514 * reset the la_hold in advance, to explicitly 1515 * prevent a la_hold lookup in nd6_output() 1516 * (wouldn't happen, though...) 1517 */ 1518 for (m_hold = ln->la_hold, ln->la_hold = NULL; 1519 m_hold; m_hold = m_hold_next) { 1520 m_hold_next = m_hold->m_nextpkt; 1521 m_hold->m_nextpkt = NULL; 1522 1523 /* 1524 * we assume ifp is not a p2p here, so 1525 * just set the 2nd argument as the 1526 * 1st one. 1527 */ 1528 nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain); 1529 } 1530 /* 1531 * If we have mbufs in the chain we need to do 1532 * deferred transmit. Copy the address from the 1533 * llentry before dropping the lock down below. 1534 */ 1535 if (chain != NULL) 1536 memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6)); 1537 } 1538 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1539 /* probe right away */ 1540 nd6_llinfo_settimer_locked((void *)ln, 0); 1541 } 1542 } 1543 1544 /* 1545 * ICMP6 type dependent behavior. 1546 * 1547 * NS: clear IsRouter if new entry 1548 * RS: clear IsRouter 1549 * RA: set IsRouter if there's lladdr 1550 * redir: clear IsRouter if new entry 1551 * 1552 * RA case, (1): 1553 * The spec says that we must set IsRouter in the following cases: 1554 * - If lladdr exist, set IsRouter. This means (1-5). 1555 * - If it is old entry (!newentry), set IsRouter. This means (7). 1556 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1557 * A quetion arises for (1) case. (1) case has no lladdr in the 1558 * neighbor cache, this is similar to (6). 1559 * This case is rare but we figured that we MUST NOT set IsRouter. 1560 * 1561 * newentry olladdr lladdr llchange NS RS RA redir 1562 * D R 1563 * 0 n n -- (1) c ? s 1564 * 0 y n -- (2) c s s 1565 * 0 n y -- (3) c s s 1566 * 0 y y n (4) c s s 1567 * 0 y y y (5) c s s 1568 * 1 -- n -- (6) c c c s 1569 * 1 -- y -- (7) c c s c s 1570 * 1571 * (c=clear s=set) 1572 */ 1573 switch (type & 0xff) { 1574 case ND_NEIGHBOR_SOLICIT: 1575 /* 1576 * New entry must have is_router flag cleared. 1577 */ 1578 if (is_newentry) /* (6-7) */ 1579 ln->ln_router = 0; 1580 break; 1581 case ND_REDIRECT: 1582 /* 1583 * If the icmp is a redirect to a better router, always set the 1584 * is_router flag. Otherwise, if the entry is newly created, 1585 * clear the flag. [RFC 2461, sec 8.3] 1586 */ 1587 if (code == ND_REDIRECT_ROUTER) 1588 ln->ln_router = 1; 1589 else if (is_newentry) /* (6-7) */ 1590 ln->ln_router = 0; 1591 break; 1592 case ND_ROUTER_SOLICIT: 1593 /* 1594 * is_router flag must always be cleared. 1595 */ 1596 ln->ln_router = 0; 1597 break; 1598 case ND_ROUTER_ADVERT: 1599 /* 1600 * Mark an entry with lladdr as a router. 1601 */ 1602 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1603 (is_newentry && lladdr)) { /* (7) */ 1604 ln->ln_router = 1; 1605 } 1606 break; 1607 } 1608 1609 if (ln != NULL) { 1610 static_route = (ln->la_flags & LLE_STATIC); 1611 router = ln->ln_router; 1612 1613 if (flags & ND6_EXCLUSIVE) 1614 LLE_WUNLOCK(ln); 1615 else 1616 LLE_RUNLOCK(ln); 1617 if (static_route) 1618 ln = NULL; 1619 } 1620 if (chain) 1621 nd6_output_flush(ifp, ifp, chain, &sin6, NULL); 1622 1623 /* 1624 * When the link-layer address of a router changes, select the 1625 * best router again. In particular, when the neighbor entry is newly 1626 * created, it might affect the selection policy. 1627 * Question: can we restrict the first condition to the "is_newentry" 1628 * case? 1629 * XXX: when we hear an RA from a new router with the link-layer 1630 * address option, defrouter_select() is called twice, since 1631 * defrtrlist_update called the function as well. However, I believe 1632 * we can compromise the overhead, since it only happens the first 1633 * time. 1634 * XXX: although defrouter_select() should not have a bad effect 1635 * for those are not autoconfigured hosts, we explicitly avoid such 1636 * cases for safety. 1637 */ 1638 if (do_update && router && !V_ip6_forwarding && V_ip6_accept_rtadv) { 1639 /* 1640 * guaranteed recursion 1641 */ 1642 defrouter_select(); 1643 } 1644 1645 return (ln); 1646 done: 1647 if (ln != NULL) { 1648 if (flags & ND6_EXCLUSIVE) 1649 LLE_WUNLOCK(ln); 1650 else 1651 LLE_RUNLOCK(ln); 1652 if (static_route) 1653 ln = NULL; 1654 } 1655 return (ln); 1656 } 1657 1658 static void 1659 nd6_slowtimo(void *arg) 1660 { 1661 CURVNET_SET((struct vnet *) arg); 1662 INIT_VNET_NET((struct vnet *) arg); 1663 INIT_VNET_INET6((struct vnet *) arg); 1664 struct nd_ifinfo *nd6if; 1665 struct ifnet *ifp; 1666 1667 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1668 nd6_slowtimo, NULL); 1669 IFNET_RLOCK(); 1670 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 1671 ifp = TAILQ_NEXT(ifp, if_list)) { 1672 nd6if = ND_IFINFO(ifp); 1673 if (nd6if->basereachable && /* already initialized */ 1674 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1675 /* 1676 * Since reachable time rarely changes by router 1677 * advertisements, we SHOULD insure that a new random 1678 * value gets recomputed at least once every few hours. 1679 * (RFC 2461, 6.3.4) 1680 */ 1681 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1682 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1683 } 1684 } 1685 IFNET_RUNLOCK(); 1686 CURVNET_RESTORE(); 1687 } 1688 1689 int 1690 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1691 struct sockaddr_in6 *dst, struct rtentry *rt0) 1692 { 1693 1694 return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL)); 1695 } 1696 1697 1698 /* 1699 * Note that I'm not enforcing any global serialization 1700 * lle state or asked changes here as the logic is too 1701 * complicated to avoid having to always acquire an exclusive 1702 * lock 1703 * KMM 1704 * 1705 */ 1706 #define senderr(e) { error = (e); goto bad;} 1707 1708 int 1709 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1710 struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle, 1711 struct mbuf **chain) 1712 { 1713 INIT_VNET_INET6(curvnet); 1714 struct mbuf *m = m0; 1715 struct llentry *ln = lle; 1716 int error = 0; 1717 int flags = 0; 1718 1719 #ifdef INVARIANTS 1720 if (lle != NULL) { 1721 1722 LLE_WLOCK_ASSERT(lle); 1723 1724 KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed")); 1725 } 1726 #endif 1727 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1728 goto sendpkt; 1729 1730 if (nd6_need_cache(ifp) == 0) 1731 goto sendpkt; 1732 1733 /* 1734 * next hop determination. This routine is derived from ether_output. 1735 */ 1736 1737 /* 1738 * Address resolution or Neighbor Unreachability Detection 1739 * for the next hop. 1740 * At this point, the destination of the packet must be a unicast 1741 * or an anycast address(i.e. not a multicast). 1742 */ 1743 1744 flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0; 1745 if (ln == NULL) { 1746 retry: 1747 IF_AFDATA_LOCK(ifp); 1748 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst); 1749 IF_AFDATA_UNLOCK(ifp); 1750 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1751 /* 1752 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1753 * the condition below is not very efficient. But we believe 1754 * it is tolerable, because this should be a rare case. 1755 */ 1756 flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0); 1757 IF_AFDATA_LOCK(ifp); 1758 ln = nd6_lookup(&dst->sin6_addr, flags, ifp); 1759 IF_AFDATA_UNLOCK(ifp); 1760 } 1761 } 1762 if (ln == NULL) { 1763 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1764 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1765 char ip6buf[INET6_ADDRSTRLEN]; 1766 log(LOG_DEBUG, 1767 "nd6_output: can't allocate llinfo for %s " 1768 "(ln=%p)\n", 1769 ip6_sprintf(ip6buf, &dst->sin6_addr), ln); 1770 senderr(EIO); /* XXX: good error? */ 1771 } 1772 goto sendpkt; /* send anyway */ 1773 } 1774 1775 /* We don't have to do link-layer address resolution on a p2p link. */ 1776 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1777 ln->ln_state < ND6_LLINFO_REACHABLE) { 1778 if ((flags & LLE_EXCLUSIVE) == 0) { 1779 flags |= LLE_EXCLUSIVE; 1780 goto retry; 1781 } 1782 ln->ln_state = ND6_LLINFO_STALE; 1783 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1784 } 1785 1786 /* 1787 * The first time we send a packet to a neighbor whose entry is 1788 * STALE, we have to change the state to DELAY and a sets a timer to 1789 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1790 * neighbor unreachability detection on expiration. 1791 * (RFC 2461 7.3.3) 1792 */ 1793 if (ln->ln_state == ND6_LLINFO_STALE) { 1794 if ((flags & LLE_EXCLUSIVE) == 0) { 1795 flags |= LLE_EXCLUSIVE; 1796 LLE_RUNLOCK(ln); 1797 goto retry; 1798 } 1799 ln->la_asked = 0; 1800 ln->ln_state = ND6_LLINFO_DELAY; 1801 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1802 } 1803 1804 /* 1805 * If the neighbor cache entry has a state other than INCOMPLETE 1806 * (i.e. its link-layer address is already resolved), just 1807 * send the packet. 1808 */ 1809 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1810 goto sendpkt; 1811 1812 /* 1813 * There is a neighbor cache entry, but no ethernet address 1814 * response yet. Append this latest packet to the end of the 1815 * packet queue in the mbuf, unless the number of the packet 1816 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 1817 * the oldest packet in the queue will be removed. 1818 */ 1819 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1820 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1821 1822 if ((flags & LLE_EXCLUSIVE) == 0) { 1823 flags |= LLE_EXCLUSIVE; 1824 LLE_RUNLOCK(ln); 1825 goto retry; 1826 } 1827 if (ln->la_hold) { 1828 struct mbuf *m_hold; 1829 int i; 1830 1831 i = 0; 1832 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) { 1833 i++; 1834 if (m_hold->m_nextpkt == NULL) { 1835 m_hold->m_nextpkt = m; 1836 break; 1837 } 1838 } 1839 while (i >= V_nd6_maxqueuelen) { 1840 m_hold = ln->la_hold; 1841 ln->la_hold = ln->la_hold->m_nextpkt; 1842 m_freem(m_hold); 1843 i--; 1844 } 1845 } else { 1846 ln->la_hold = m; 1847 } 1848 /* 1849 * We did the lookup (no lle arg) so we 1850 * need to do the unlock here 1851 */ 1852 if (lle == NULL) { 1853 if (flags & LLE_EXCLUSIVE) 1854 LLE_WUNLOCK(ln); 1855 else 1856 LLE_RUNLOCK(ln); 1857 } 1858 1859 /* 1860 * If there has been no NS for the neighbor after entering the 1861 * INCOMPLETE state, send the first solicitation. 1862 */ 1863 if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) { 1864 ln->la_asked++; 1865 1866 nd6_llinfo_settimer(ln, 1867 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1868 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1869 } 1870 return (0); 1871 1872 sendpkt: 1873 /* discard the packet if IPv6 operation is disabled on the interface */ 1874 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1875 error = ENETDOWN; /* better error? */ 1876 goto bad; 1877 } 1878 /* 1879 * ln is valid and the caller did not pass in 1880 * an llentry 1881 */ 1882 if ((ln != NULL) && (lle == NULL)) { 1883 if (flags & LLE_EXCLUSIVE) 1884 LLE_WUNLOCK(ln); 1885 else 1886 LLE_RUNLOCK(ln); 1887 } 1888 1889 #ifdef MAC 1890 mac_netinet6_nd6_send(ifp, m); 1891 #endif 1892 /* 1893 * We were passed in a pointer to an lle with the lock held 1894 * this means that we can't call if_output as we will 1895 * recurse on the lle lock - so what we do is we create 1896 * a list of mbufs to send and transmit them in the caller 1897 * after the lock is dropped 1898 */ 1899 if (lle != NULL) { 1900 if (*chain == NULL) 1901 *chain = m; 1902 else { 1903 struct mbuf *m = *chain; 1904 1905 /* 1906 * append mbuf to end of deferred chain 1907 */ 1908 while (m->m_nextpkt != NULL) 1909 m = m->m_nextpkt; 1910 m->m_nextpkt = m; 1911 } 1912 return (error); 1913 } 1914 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1915 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1916 NULL)); 1917 } 1918 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL); 1919 return (error); 1920 1921 bad: 1922 /* 1923 * ln is valid and the caller did not pass in 1924 * an llentry 1925 */ 1926 if ((ln != NULL) && (lle == NULL)) { 1927 if (flags & LLE_EXCLUSIVE) 1928 LLE_WUNLOCK(ln); 1929 else 1930 LLE_RUNLOCK(ln); 1931 } 1932 if (m) 1933 m_freem(m); 1934 return (error); 1935 } 1936 #undef senderr 1937 1938 1939 int 1940 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 1941 struct sockaddr_in6 *dst, struct rtentry *rt) 1942 { 1943 struct mbuf *m, *m_head; 1944 struct ifnet *outifp; 1945 int error = 0; 1946 1947 m_head = chain; 1948 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1949 outifp = origifp; 1950 else 1951 outifp = ifp; 1952 1953 while (m_head) { 1954 m = m_head; 1955 m_head = m_head->m_nextpkt; 1956 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt); 1957 } 1958 1959 /* 1960 * XXX 1961 * note that intermediate errors are blindly ignored - but this is 1962 * the same convention as used with nd6_output when called by 1963 * nd6_cache_lladdr 1964 */ 1965 return (error); 1966 } 1967 1968 1969 int 1970 nd6_need_cache(struct ifnet *ifp) 1971 { 1972 /* 1973 * XXX: we currently do not make neighbor cache on any interface 1974 * other than ARCnet, Ethernet, FDDI and GIF. 1975 * 1976 * RFC2893 says: 1977 * - unidirectional tunnels needs no ND 1978 */ 1979 switch (ifp->if_type) { 1980 case IFT_ARCNET: 1981 case IFT_ETHER: 1982 case IFT_FDDI: 1983 case IFT_IEEE1394: 1984 #ifdef IFT_L2VLAN 1985 case IFT_L2VLAN: 1986 #endif 1987 #ifdef IFT_IEEE80211 1988 case IFT_IEEE80211: 1989 #endif 1990 #ifdef IFT_CARP 1991 case IFT_CARP: 1992 #endif 1993 case IFT_GIF: /* XXX need more cases? */ 1994 case IFT_PPP: 1995 case IFT_TUNNEL: 1996 case IFT_BRIDGE: 1997 case IFT_PROPVIRTUAL: 1998 return (1); 1999 default: 2000 return (0); 2001 } 2002 } 2003 2004 /* 2005 * the callers of this function need to be re-worked to drop 2006 * the lle lock, drop here for now 2007 */ 2008 int 2009 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2010 struct sockaddr *dst, u_char *desten, struct llentry **lle) 2011 { 2012 struct llentry *ln; 2013 2014 *lle = NULL; 2015 IF_AFDATA_UNLOCK_ASSERT(ifp); 2016 if (m->m_flags & M_MCAST) { 2017 int i; 2018 2019 switch (ifp->if_type) { 2020 case IFT_ETHER: 2021 case IFT_FDDI: 2022 #ifdef IFT_L2VLAN 2023 case IFT_L2VLAN: 2024 #endif 2025 #ifdef IFT_IEEE80211 2026 case IFT_IEEE80211: 2027 #endif 2028 case IFT_BRIDGE: 2029 case IFT_ISO88025: 2030 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2031 desten); 2032 return (0); 2033 case IFT_IEEE1394: 2034 /* 2035 * netbsd can use if_broadcastaddr, but we don't do so 2036 * to reduce # of ifdef. 2037 */ 2038 for (i = 0; i < ifp->if_addrlen; i++) 2039 desten[i] = ~0; 2040 return (0); 2041 case IFT_ARCNET: 2042 *desten = 0; 2043 return (0); 2044 default: 2045 m_freem(m); 2046 return (EAFNOSUPPORT); 2047 } 2048 } 2049 2050 2051 /* 2052 * the entry should have been created in nd6_store_lladdr 2053 */ 2054 IF_AFDATA_LOCK(ifp); 2055 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2056 IF_AFDATA_UNLOCK(ifp); 2057 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2058 if (ln != NULL) 2059 LLE_RUNLOCK(ln); 2060 /* this could happen, if we could not allocate memory */ 2061 m_freem(m); 2062 return (1); 2063 } 2064 2065 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2066 *lle = ln; 2067 LLE_RUNLOCK(ln); 2068 /* 2069 * A *small* use after free race exists here 2070 */ 2071 return (0); 2072 } 2073 2074 static void 2075 clear_llinfo_pqueue(struct llentry *ln) 2076 { 2077 struct mbuf *m_hold, *m_hold_next; 2078 2079 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2080 m_hold_next = m_hold->m_nextpkt; 2081 m_hold->m_nextpkt = NULL; 2082 m_freem(m_hold); 2083 } 2084 2085 ln->la_hold = NULL; 2086 return; 2087 } 2088 2089 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2090 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2091 #ifdef SYSCTL_DECL 2092 SYSCTL_DECL(_net_inet6_icmp6); 2093 #endif 2094 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2095 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2096 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2097 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2098 SYSCTL_V_INT(V_NET, vnet_inet6, _net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, 2099 nd6_maxqueuelen, CTLFLAG_RW, nd6_maxqueuelen, 1, ""); 2100 2101 static int 2102 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2103 { 2104 INIT_VNET_INET6(curvnet); 2105 int error; 2106 char buf[1024] __aligned(4); 2107 struct in6_defrouter *d, *de; 2108 struct nd_defrouter *dr; 2109 2110 if (req->newptr) 2111 return EPERM; 2112 error = 0; 2113 2114 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; 2115 dr = TAILQ_NEXT(dr, dr_entry)) { 2116 d = (struct in6_defrouter *)buf; 2117 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2118 2119 if (d + 1 <= de) { 2120 bzero(d, sizeof(*d)); 2121 d->rtaddr.sin6_family = AF_INET6; 2122 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2123 d->rtaddr.sin6_addr = dr->rtaddr; 2124 error = sa6_recoverscope(&d->rtaddr); 2125 if (error != 0) 2126 return (error); 2127 d->flags = dr->flags; 2128 d->rtlifetime = dr->rtlifetime; 2129 d->expire = dr->expire; 2130 d->if_index = dr->ifp->if_index; 2131 } else 2132 panic("buffer too short"); 2133 2134 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2135 if (error) 2136 break; 2137 } 2138 2139 return (error); 2140 } 2141 2142 static int 2143 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2144 { 2145 INIT_VNET_INET6(curvnet); 2146 int error; 2147 char buf[1024] __aligned(4); 2148 struct in6_prefix *p, *pe; 2149 struct nd_prefix *pr; 2150 char ip6buf[INET6_ADDRSTRLEN]; 2151 2152 if (req->newptr) 2153 return EPERM; 2154 error = 0; 2155 2156 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2157 u_short advrtrs; 2158 size_t advance; 2159 struct sockaddr_in6 *sin6, *s6; 2160 struct nd_pfxrouter *pfr; 2161 2162 p = (struct in6_prefix *)buf; 2163 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2164 2165 if (p + 1 <= pe) { 2166 bzero(p, sizeof(*p)); 2167 sin6 = (struct sockaddr_in6 *)(p + 1); 2168 2169 p->prefix = pr->ndpr_prefix; 2170 if (sa6_recoverscope(&p->prefix)) { 2171 log(LOG_ERR, 2172 "scope error in prefix list (%s)\n", 2173 ip6_sprintf(ip6buf, &p->prefix.sin6_addr)); 2174 /* XXX: press on... */ 2175 } 2176 p->raflags = pr->ndpr_raf; 2177 p->prefixlen = pr->ndpr_plen; 2178 p->vltime = pr->ndpr_vltime; 2179 p->pltime = pr->ndpr_pltime; 2180 p->if_index = pr->ndpr_ifp->if_index; 2181 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2182 p->expire = 0; 2183 else { 2184 time_t maxexpire; 2185 2186 /* XXX: we assume time_t is signed. */ 2187 maxexpire = (-1) & 2188 ~((time_t)1 << 2189 ((sizeof(maxexpire) * 8) - 1)); 2190 if (pr->ndpr_vltime < 2191 maxexpire - pr->ndpr_lastupdate) { 2192 p->expire = pr->ndpr_lastupdate + 2193 pr->ndpr_vltime; 2194 } else 2195 p->expire = maxexpire; 2196 } 2197 p->refcnt = pr->ndpr_refcnt; 2198 p->flags = pr->ndpr_stateflags; 2199 p->origin = PR_ORIG_RA; 2200 advrtrs = 0; 2201 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2202 pfr = pfr->pfr_next) { 2203 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2204 advrtrs++; 2205 continue; 2206 } 2207 s6 = &sin6[advrtrs]; 2208 bzero(s6, sizeof(*s6)); 2209 s6->sin6_family = AF_INET6; 2210 s6->sin6_len = sizeof(*sin6); 2211 s6->sin6_addr = pfr->router->rtaddr; 2212 if (sa6_recoverscope(s6)) { 2213 log(LOG_ERR, 2214 "scope error in " 2215 "prefix list (%s)\n", 2216 ip6_sprintf(ip6buf, 2217 &pfr->router->rtaddr)); 2218 } 2219 advrtrs++; 2220 } 2221 p->advrtrs = advrtrs; 2222 } else 2223 panic("buffer too short"); 2224 2225 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2226 error = SYSCTL_OUT(req, buf, advance); 2227 if (error) 2228 break; 2229 } 2230 2231 return (error); 2232 } 2233