xref: /freebsd/sys/netinet6/nd6.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*	$FreeBSD$	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/time.h>
45 #include <sys/kernel.h>
46 #include <sys/protosw.h>
47 #include <sys/errno.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50 #include <sys/sysctl.h>
51 
52 #include <net/if.h>
53 #include <net/if_arc.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/iso88025.h>
57 #include <net/fddi.h>
58 #include <net/route.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/if_ether.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68 
69 #include <sys/limits.h>
70 
71 #include <security/mac/mac_framework.h>
72 
73 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
74 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75 
76 #define SIN6(s) ((struct sockaddr_in6 *)s)
77 #define SDL(s) ((struct sockaddr_dl *)s)
78 
79 /* timer values */
80 int	nd6_prune	= 1;	/* walk list every 1 seconds */
81 int	nd6_delay	= 5;	/* delay first probe time 5 second */
82 int	nd6_umaxtries	= 3;	/* maximum unicast query */
83 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
84 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
85 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
86 
87 /* preventing too many loops in ND option parsing */
88 int nd6_maxndopt = 10;	/* max # of ND options allowed */
89 
90 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
91 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92 
93 #ifdef ND6_DEBUG
94 int nd6_debug = 1;
95 #else
96 int nd6_debug = 0;
97 #endif
98 
99 /* for debugging? */
100 static int nd6_inuse, nd6_allocated;
101 
102 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
103 struct nd_drhead nd_defrouter;
104 struct nd_prhead nd_prefix = { 0 };
105 
106 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
107 static struct sockaddr_in6 all1_sa;
108 
109 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
110 	struct ifnet *));
111 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
112 static void nd6_slowtimo __P((void *));
113 static int regen_tmpaddr __P((struct in6_ifaddr *));
114 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115 static void nd6_llinfo_timer __P((void *));
116 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
117 
118 struct callout nd6_slowtimo_ch;
119 struct callout nd6_timer_ch;
120 extern struct callout in6_tmpaddrtimer_ch;
121 
122 void
123 nd6_init(void)
124 {
125 	static int nd6_init_done = 0;
126 	int i;
127 
128 	if (nd6_init_done) {
129 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130 		return;
131 	}
132 
133 	all1_sa.sin6_family = AF_INET6;
134 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
136 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
137 
138 	/* initialization of the default router list */
139 	TAILQ_INIT(&nd_defrouter);
140 
141 	nd6_init_done = 1;
142 
143 	/* start timer */
144 	callout_init(&nd6_slowtimo_ch, 0);
145 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 	    nd6_slowtimo, NULL);
147 }
148 
149 struct nd_ifinfo *
150 nd6_ifattach(struct ifnet *ifp)
151 {
152 	struct nd_ifinfo *nd;
153 
154 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
155 	bzero(nd, sizeof(*nd));
156 
157 	nd->initialized = 1;
158 
159 	nd->chlim = IPV6_DEFHLIM;
160 	nd->basereachable = REACHABLE_TIME;
161 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
162 	nd->retrans = RETRANS_TIMER;
163 	/*
164 	 * Note that the default value of ip6_accept_rtadv is 0, which means
165 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
166 	 * here.
167 	 */
168 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
169 
170 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
171 	nd6_setmtu0(ifp, nd);
172 
173 	return nd;
174 }
175 
176 void
177 nd6_ifdetach(struct nd_ifinfo *nd)
178 {
179 
180 	free(nd, M_IP6NDP);
181 }
182 
183 /*
184  * Reset ND level link MTU. This function is called when the physical MTU
185  * changes, which means we might have to adjust the ND level MTU.
186  */
187 void
188 nd6_setmtu(struct ifnet *ifp)
189 {
190 
191 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
192 }
193 
194 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
195 void
196 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
197 {
198 	u_int32_t omaxmtu;
199 
200 	omaxmtu = ndi->maxmtu;
201 
202 	switch (ifp->if_type) {
203 	case IFT_ARCNET:
204 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
205 		break;
206 	case IFT_FDDI:
207 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
208 		break;
209 	case IFT_ISO88025:
210 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
211 		 break;
212 	default:
213 		ndi->maxmtu = ifp->if_mtu;
214 		break;
215 	}
216 
217 	/*
218 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
219 	 * undesirable situation.  We thus notify the operator of the change
220 	 * explicitly.  The check for omaxmtu is necessary to restrict the
221 	 * log to the case of changing the MTU, not initializing it.
222 	 */
223 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
224 		log(LOG_NOTICE, "nd6_setmtu0: "
225 		    "new link MTU on %s (%lu) is too small for IPv6\n",
226 		    if_name(ifp), (unsigned long)ndi->maxmtu);
227 	}
228 
229 	if (ndi->maxmtu > in6_maxmtu)
230 		in6_setmaxmtu(); /* check all interfaces just in case */
231 
232 #undef MIN
233 }
234 
235 void
236 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
237 {
238 
239 	bzero(ndopts, sizeof(*ndopts));
240 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
241 	ndopts->nd_opts_last
242 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
243 
244 	if (icmp6len == 0) {
245 		ndopts->nd_opts_done = 1;
246 		ndopts->nd_opts_search = NULL;
247 	}
248 }
249 
250 /*
251  * Take one ND option.
252  */
253 struct nd_opt_hdr *
254 nd6_option(union nd_opts *ndopts)
255 {
256 	struct nd_opt_hdr *nd_opt;
257 	int olen;
258 
259 	if (ndopts == NULL)
260 		panic("ndopts == NULL in nd6_option");
261 	if (ndopts->nd_opts_last == NULL)
262 		panic("uninitialized ndopts in nd6_option");
263 	if (ndopts->nd_opts_search == NULL)
264 		return NULL;
265 	if (ndopts->nd_opts_done)
266 		return NULL;
267 
268 	nd_opt = ndopts->nd_opts_search;
269 
270 	/* make sure nd_opt_len is inside the buffer */
271 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
272 		bzero(ndopts, sizeof(*ndopts));
273 		return NULL;
274 	}
275 
276 	olen = nd_opt->nd_opt_len << 3;
277 	if (olen == 0) {
278 		/*
279 		 * Message validation requires that all included
280 		 * options have a length that is greater than zero.
281 		 */
282 		bzero(ndopts, sizeof(*ndopts));
283 		return NULL;
284 	}
285 
286 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
287 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
288 		/* option overruns the end of buffer, invalid */
289 		bzero(ndopts, sizeof(*ndopts));
290 		return NULL;
291 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
292 		/* reached the end of options chain */
293 		ndopts->nd_opts_done = 1;
294 		ndopts->nd_opts_search = NULL;
295 	}
296 	return nd_opt;
297 }
298 
299 /*
300  * Parse multiple ND options.
301  * This function is much easier to use, for ND routines that do not need
302  * multiple options of the same type.
303  */
304 int
305 nd6_options(union nd_opts *ndopts)
306 {
307 	struct nd_opt_hdr *nd_opt;
308 	int i = 0;
309 
310 	if (ndopts == NULL)
311 		panic("ndopts == NULL in nd6_options");
312 	if (ndopts->nd_opts_last == NULL)
313 		panic("uninitialized ndopts in nd6_options");
314 	if (ndopts->nd_opts_search == NULL)
315 		return 0;
316 
317 	while (1) {
318 		nd_opt = nd6_option(ndopts);
319 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
320 			/*
321 			 * Message validation requires that all included
322 			 * options have a length that is greater than zero.
323 			 */
324 			icmp6stat.icp6s_nd_badopt++;
325 			bzero(ndopts, sizeof(*ndopts));
326 			return -1;
327 		}
328 
329 		if (nd_opt == NULL)
330 			goto skip1;
331 
332 		switch (nd_opt->nd_opt_type) {
333 		case ND_OPT_SOURCE_LINKADDR:
334 		case ND_OPT_TARGET_LINKADDR:
335 		case ND_OPT_MTU:
336 		case ND_OPT_REDIRECTED_HEADER:
337 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
338 				nd6log((LOG_INFO,
339 				    "duplicated ND6 option found (type=%d)\n",
340 				    nd_opt->nd_opt_type));
341 				/* XXX bark? */
342 			} else {
343 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
344 					= nd_opt;
345 			}
346 			break;
347 		case ND_OPT_PREFIX_INFORMATION:
348 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
349 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
350 					= nd_opt;
351 			}
352 			ndopts->nd_opts_pi_end =
353 				(struct nd_opt_prefix_info *)nd_opt;
354 			break;
355 		default:
356 			/*
357 			 * Unknown options must be silently ignored,
358 			 * to accomodate future extension to the protocol.
359 			 */
360 			nd6log((LOG_DEBUG,
361 			    "nd6_options: unsupported option %d - "
362 			    "option ignored\n", nd_opt->nd_opt_type));
363 		}
364 
365 skip1:
366 		i++;
367 		if (i > nd6_maxndopt) {
368 			icmp6stat.icp6s_nd_toomanyopt++;
369 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
370 			break;
371 		}
372 
373 		if (ndopts->nd_opts_done)
374 			break;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * ND6 timer routine to handle ND6 entries
382  */
383 void
384 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
385 {
386 	if (tick < 0) {
387 		ln->ln_expire = 0;
388 		ln->ln_ntick = 0;
389 		callout_stop(&ln->ln_timer_ch);
390 	} else {
391 		ln->ln_expire = time_second + tick / hz;
392 		if (tick > INT_MAX) {
393 			ln->ln_ntick = tick - INT_MAX;
394 			callout_reset(&ln->ln_timer_ch, INT_MAX,
395 			    nd6_llinfo_timer, ln);
396 		} else {
397 			ln->ln_ntick = 0;
398 			callout_reset(&ln->ln_timer_ch, tick,
399 			    nd6_llinfo_timer, ln);
400 		}
401 	}
402 }
403 
404 static void
405 nd6_llinfo_timer(void *arg)
406 {
407 	struct llinfo_nd6 *ln;
408 	struct rtentry *rt;
409 	struct in6_addr *dst;
410 	struct ifnet *ifp;
411 	struct nd_ifinfo *ndi = NULL;
412 
413 	ln = (struct llinfo_nd6 *)arg;
414 
415 	if (ln->ln_ntick > 0) {
416 		if (ln->ln_ntick > INT_MAX) {
417 			ln->ln_ntick -= INT_MAX;
418 			nd6_llinfo_settimer(ln, INT_MAX);
419 		} else {
420 			ln->ln_ntick = 0;
421 			nd6_llinfo_settimer(ln, ln->ln_ntick);
422 		}
423 		return;
424 	}
425 
426 	if ((rt = ln->ln_rt) == NULL)
427 		panic("ln->ln_rt == NULL");
428 	if ((ifp = rt->rt_ifp) == NULL)
429 		panic("ln->ln_rt->rt_ifp == NULL");
430 	ndi = ND_IFINFO(ifp);
431 
432 	/* sanity check */
433 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
434 		panic("rt_llinfo(%p) is not equal to ln(%p)",
435 		      rt->rt_llinfo, ln);
436 	if (rt_key(rt) == NULL)
437 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
438 
439 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
440 
441 	switch (ln->ln_state) {
442 	case ND6_LLINFO_INCOMPLETE:
443 		if (ln->ln_asked < nd6_mmaxtries) {
444 			ln->ln_asked++;
445 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
446 			nd6_ns_output(ifp, NULL, dst, ln, 0);
447 		} else {
448 			struct mbuf *m = ln->ln_hold;
449 			if (m) {
450 				struct mbuf *m0;
451 
452 				/*
453 				 * assuming every packet in ln_hold has the
454 				 * same IP header
455 				 */
456 				m0 = m->m_nextpkt;
457 				m->m_nextpkt = NULL;
458 				icmp6_error2(m, ICMP6_DST_UNREACH,
459 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
460 
461 				ln->ln_hold = m0;
462 				clear_llinfo_pqueue(ln);
463 			}
464 			if (rt && rt->rt_llinfo)
465 				(void)nd6_free(rt, 0);
466 			ln = NULL;
467 		}
468 		break;
469 	case ND6_LLINFO_REACHABLE:
470 		if (!ND6_LLINFO_PERMANENT(ln)) {
471 			ln->ln_state = ND6_LLINFO_STALE;
472 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
473 		}
474 		break;
475 
476 	case ND6_LLINFO_STALE:
477 		/* Garbage Collection(RFC 2461 5.3) */
478 		if (!ND6_LLINFO_PERMANENT(ln)) {
479 			if (rt && rt->rt_llinfo)
480 				(void)nd6_free(rt, 1);
481 			ln = NULL;
482 		}
483 		break;
484 
485 	case ND6_LLINFO_DELAY:
486 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
487 			/* We need NUD */
488 			ln->ln_asked = 1;
489 			ln->ln_state = ND6_LLINFO_PROBE;
490 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
491 			nd6_ns_output(ifp, dst, dst, ln, 0);
492 		} else {
493 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
494 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
495 		}
496 		break;
497 	case ND6_LLINFO_PROBE:
498 		if (ln->ln_asked < nd6_umaxtries) {
499 			ln->ln_asked++;
500 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
501 			nd6_ns_output(ifp, dst, dst, ln, 0);
502 		} else if (rt->rt_ifa != NULL &&
503 		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
504 		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
505 			/*
506 			 * This is an unreachable neighbor whose address is
507 			 * specified as the destination of a p2p interface
508 			 * (see in6_ifinit()).  We should not free the entry
509 			 * since this is sort of a "static" entry generated
510 			 * via interface address configuration.
511 			 */
512 			ln->ln_asked = 0;
513 			ln->ln_expire = 0; /* make it permanent */
514 			ln->ln_state = ND6_LLINFO_STALE;
515 		} else {
516 			if (rt && rt->rt_llinfo)
517 				(void)nd6_free(rt, 0);
518 			ln = NULL;
519 		}
520 		break;
521 	}
522 }
523 
524 
525 /*
526  * ND6 timer routine to expire default route list and prefix list
527  */
528 void
529 nd6_timer(void *ignored_arg)
530 {
531 	int s;
532 	struct nd_defrouter *dr;
533 	struct nd_prefix *pr;
534 	struct in6_ifaddr *ia6, *nia6;
535 	struct in6_addrlifetime *lt6;
536 
537 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
538 	    nd6_timer, NULL);
539 
540 	/* expire default router list */
541 	s = splnet();
542 	dr = TAILQ_FIRST(&nd_defrouter);
543 	while (dr) {
544 		if (dr->expire && dr->expire < time_second) {
545 			struct nd_defrouter *t;
546 			t = TAILQ_NEXT(dr, dr_entry);
547 			defrtrlist_del(dr);
548 			dr = t;
549 		} else {
550 			dr = TAILQ_NEXT(dr, dr_entry);
551 		}
552 	}
553 
554 	/*
555 	 * expire interface addresses.
556 	 * in the past the loop was inside prefix expiry processing.
557 	 * However, from a stricter speci-confrmance standpoint, we should
558 	 * rather separate address lifetimes and prefix lifetimes.
559 	 */
560   addrloop:
561 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
562 		nia6 = ia6->ia_next;
563 		/* check address lifetime */
564 		lt6 = &ia6->ia6_lifetime;
565 		if (IFA6_IS_INVALID(ia6)) {
566 			int regen = 0;
567 
568 			/*
569 			 * If the expiring address is temporary, try
570 			 * regenerating a new one.  This would be useful when
571 			 * we suspended a laptop PC, then turned it on after a
572 			 * period that could invalidate all temporary
573 			 * addresses.  Although we may have to restart the
574 			 * loop (see below), it must be after purging the
575 			 * address.  Otherwise, we'd see an infinite loop of
576 			 * regeneration.
577 			 */
578 			if (ip6_use_tempaddr &&
579 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
580 				if (regen_tmpaddr(ia6) == 0)
581 					regen = 1;
582 			}
583 
584 			in6_purgeaddr(&ia6->ia_ifa);
585 
586 			if (regen)
587 				goto addrloop; /* XXX: see below */
588 		} else if (IFA6_IS_DEPRECATED(ia6)) {
589 			int oldflags = ia6->ia6_flags;
590 
591 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
592 
593 			/*
594 			 * If a temporary address has just become deprecated,
595 			 * regenerate a new one if possible.
596 			 */
597 			if (ip6_use_tempaddr &&
598 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
599 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
600 
601 				if (regen_tmpaddr(ia6) == 0) {
602 					/*
603 					 * A new temporary address is
604 					 * generated.
605 					 * XXX: this means the address chain
606 					 * has changed while we are still in
607 					 * the loop.  Although the change
608 					 * would not cause disaster (because
609 					 * it's not a deletion, but an
610 					 * addition,) we'd rather restart the
611 					 * loop just for safety.  Or does this
612 					 * significantly reduce performance??
613 					 */
614 					goto addrloop;
615 				}
616 			}
617 		} else {
618 			/*
619 			 * A new RA might have made a deprecated address
620 			 * preferred.
621 			 */
622 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
623 		}
624 	}
625 
626 	/* expire prefix list */
627 	pr = nd_prefix.lh_first;
628 	while (pr) {
629 		/*
630 		 * check prefix lifetime.
631 		 * since pltime is just for autoconf, pltime processing for
632 		 * prefix is not necessary.
633 		 */
634 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
635 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
636 			struct nd_prefix *t;
637 			t = pr->ndpr_next;
638 
639 			/*
640 			 * address expiration and prefix expiration are
641 			 * separate.  NEVER perform in6_purgeaddr here.
642 			 */
643 
644 			prelist_remove(pr);
645 			pr = t;
646 		} else
647 			pr = pr->ndpr_next;
648 	}
649 	splx(s);
650 }
651 
652 /*
653  * ia6 - deprecated/invalidated temporary address
654  */
655 static int
656 regen_tmpaddr(struct in6_ifaddr *ia6)
657 {
658 	struct ifaddr *ifa;
659 	struct ifnet *ifp;
660 	struct in6_ifaddr *public_ifa6 = NULL;
661 
662 	ifp = ia6->ia_ifa.ifa_ifp;
663 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
664 	     ifa = ifa->ifa_list.tqe_next) {
665 		struct in6_ifaddr *it6;
666 
667 		if (ifa->ifa_addr->sa_family != AF_INET6)
668 			continue;
669 
670 		it6 = (struct in6_ifaddr *)ifa;
671 
672 		/* ignore no autoconf addresses. */
673 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
674 			continue;
675 
676 		/* ignore autoconf addresses with different prefixes. */
677 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
678 			continue;
679 
680 		/*
681 		 * Now we are looking at an autoconf address with the same
682 		 * prefix as ours.  If the address is temporary and is still
683 		 * preferred, do not create another one.  It would be rare, but
684 		 * could happen, for example, when we resume a laptop PC after
685 		 * a long period.
686 		 */
687 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
688 		    !IFA6_IS_DEPRECATED(it6)) {
689 			public_ifa6 = NULL;
690 			break;
691 		}
692 
693 		/*
694 		 * This is a public autoconf address that has the same prefix
695 		 * as ours.  If it is preferred, keep it.  We can't break the
696 		 * loop here, because there may be a still-preferred temporary
697 		 * address with the prefix.
698 		 */
699 		if (!IFA6_IS_DEPRECATED(it6))
700 		    public_ifa6 = it6;
701 	}
702 
703 	if (public_ifa6 != NULL) {
704 		int e;
705 
706 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
707 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
708 			    " tmp addr,errno=%d\n", e);
709 			return (-1);
710 		}
711 		return (0);
712 	}
713 
714 	return (-1);
715 }
716 
717 /*
718  * Nuke neighbor cache/prefix/default router management table, right before
719  * ifp goes away.
720  */
721 void
722 nd6_purge(struct ifnet *ifp)
723 {
724 	struct llinfo_nd6 *ln, *nln;
725 	struct nd_defrouter *dr, *ndr;
726 	struct nd_prefix *pr, *npr;
727 
728 	/*
729 	 * Nuke default router list entries toward ifp.
730 	 * We defer removal of default router list entries that is installed
731 	 * in the routing table, in order to keep additional side effects as
732 	 * small as possible.
733 	 */
734 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
735 		ndr = TAILQ_NEXT(dr, dr_entry);
736 		if (dr->installed)
737 			continue;
738 
739 		if (dr->ifp == ifp)
740 			defrtrlist_del(dr);
741 	}
742 
743 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
744 		ndr = TAILQ_NEXT(dr, dr_entry);
745 		if (!dr->installed)
746 			continue;
747 
748 		if (dr->ifp == ifp)
749 			defrtrlist_del(dr);
750 	}
751 
752 	/* Nuke prefix list entries toward ifp */
753 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
754 		npr = pr->ndpr_next;
755 		if (pr->ndpr_ifp == ifp) {
756 			/*
757 			 * Because if_detach() does *not* release prefixes
758 			 * while purging addresses the reference count will
759 			 * still be above zero. We therefore reset it to
760 			 * make sure that the prefix really gets purged.
761 			 */
762 			pr->ndpr_refcnt = 0;
763 
764 			/*
765 			 * Previously, pr->ndpr_addr is removed as well,
766 			 * but I strongly believe we don't have to do it.
767 			 * nd6_purge() is only called from in6_ifdetach(),
768 			 * which removes all the associated interface addresses
769 			 * by itself.
770 			 * (jinmei@kame.net 20010129)
771 			 */
772 			prelist_remove(pr);
773 		}
774 	}
775 
776 	/* cancel default outgoing interface setting */
777 	if (nd6_defifindex == ifp->if_index)
778 		nd6_setdefaultiface(0);
779 
780 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
781 		/* refresh default router list */
782 		defrouter_select();
783 	}
784 
785 	/*
786 	 * Nuke neighbor cache entries for the ifp.
787 	 * Note that rt->rt_ifp may not be the same as ifp,
788 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
789 	 * nd6_rtrequest(), and ip6_input().
790 	 */
791 	ln = llinfo_nd6.ln_next;
792 	while (ln && ln != &llinfo_nd6) {
793 		struct rtentry *rt;
794 		struct sockaddr_dl *sdl;
795 
796 		nln = ln->ln_next;
797 		rt = ln->ln_rt;
798 		if (rt && rt->rt_gateway &&
799 		    rt->rt_gateway->sa_family == AF_LINK) {
800 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
801 			if (sdl->sdl_index == ifp->if_index)
802 				nln = nd6_free(rt, 0);
803 		}
804 		ln = nln;
805 	}
806 }
807 
808 struct rtentry *
809 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
810 {
811 	struct rtentry *rt;
812 	struct sockaddr_in6 sin6;
813 	char ip6buf[INET6_ADDRSTRLEN];
814 
815 	bzero(&sin6, sizeof(sin6));
816 	sin6.sin6_len = sizeof(struct sockaddr_in6);
817 	sin6.sin6_family = AF_INET6;
818 	sin6.sin6_addr = *addr6;
819 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
820 	if (rt) {
821 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
822 			/*
823 			 * This is the case for the default route.
824 			 * If we want to create a neighbor cache for the
825 			 * address, we should free the route for the
826 			 * destination and allocate an interface route.
827 			 */
828 			RTFREE_LOCKED(rt);
829 			rt = NULL;
830 		}
831 	}
832 	if (rt == NULL) {
833 		if (create && ifp) {
834 			int e;
835 
836 			/*
837 			 * If no route is available and create is set,
838 			 * we allocate a host route for the destination
839 			 * and treat it like an interface route.
840 			 * This hack is necessary for a neighbor which can't
841 			 * be covered by our own prefix.
842 			 */
843 			struct ifaddr *ifa =
844 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
845 			if (ifa == NULL)
846 				return (NULL);
847 
848 			/*
849 			 * Create a new route.  RTF_LLINFO is necessary
850 			 * to create a Neighbor Cache entry for the
851 			 * destination in nd6_rtrequest which will be
852 			 * called in rtrequest via ifa->ifa_rtrequest.
853 			 */
854 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
855 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
856 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
857 			    ~RTF_CLONING, &rt)) != 0) {
858 				log(LOG_ERR,
859 				    "nd6_lookup: failed to add route for a "
860 				    "neighbor(%s), errno=%d\n",
861 				    ip6_sprintf(ip6buf, addr6), e);
862 			}
863 			if (rt == NULL)
864 				return (NULL);
865 			RT_LOCK(rt);
866 			if (rt->rt_llinfo) {
867 				struct llinfo_nd6 *ln =
868 				    (struct llinfo_nd6 *)rt->rt_llinfo;
869 				ln->ln_state = ND6_LLINFO_NOSTATE;
870 			}
871 		} else
872 			return (NULL);
873 	}
874 	RT_LOCK_ASSERT(rt);
875 	RT_REMREF(rt);
876 	/*
877 	 * Validation for the entry.
878 	 * Note that the check for rt_llinfo is necessary because a cloned
879 	 * route from a parent route that has the L flag (e.g. the default
880 	 * route to a p2p interface) may have the flag, too, while the
881 	 * destination is not actually a neighbor.
882 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
883 	 *      it might be the loopback interface if the entry is for our
884 	 *      own address on a non-loopback interface. Instead, we should
885 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
886 	 *	interface.
887 	 * Note also that ifa_ifp and ifp may differ when we connect two
888 	 * interfaces to a same link, install a link prefix to an interface,
889 	 * and try to install a neighbor cache on an interface that does not
890 	 * have a route to the prefix.
891 	 */
892 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
893 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
894 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
895 		if (create) {
896 			nd6log((LOG_DEBUG,
897 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
898 			    ip6_sprintf(ip6buf, addr6),
899 			    ifp ? if_name(ifp) : "unspec"));
900 		}
901 		RT_UNLOCK(rt);
902 		return (NULL);
903 	}
904 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
905 	return (rt);
906 }
907 
908 /*
909  * Test whether a given IPv6 address is a neighbor or not, ignoring
910  * the actual neighbor cache.  The neighbor cache is ignored in order
911  * to not reenter the routing code from within itself.
912  */
913 static int
914 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
915 {
916 	struct nd_prefix *pr;
917 	struct ifaddr *dstaddr;
918 
919 	/*
920 	 * A link-local address is always a neighbor.
921 	 * XXX: a link does not necessarily specify a single interface.
922 	 */
923 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
924 		struct sockaddr_in6 sin6_copy;
925 		u_int32_t zone;
926 
927 		/*
928 		 * We need sin6_copy since sa6_recoverscope() may modify the
929 		 * content (XXX).
930 		 */
931 		sin6_copy = *addr;
932 		if (sa6_recoverscope(&sin6_copy))
933 			return (0); /* XXX: should be impossible */
934 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
935 			return (0);
936 		if (sin6_copy.sin6_scope_id == zone)
937 			return (1);
938 		else
939 			return (0);
940 	}
941 
942 	/*
943 	 * If the address matches one of our addresses,
944 	 * it should be a neighbor.
945 	 * If the address matches one of our on-link prefixes, it should be a
946 	 * neighbor.
947 	 */
948 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
949 		if (pr->ndpr_ifp != ifp)
950 			continue;
951 
952 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
953 			continue;
954 
955 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
956 		    &addr->sin6_addr, &pr->ndpr_mask))
957 			return (1);
958 	}
959 
960 	/*
961 	 * If the address is assigned on the node of the other side of
962 	 * a p2p interface, the address should be a neighbor.
963 	 */
964 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
965 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
966 		return (1);
967 
968 	/*
969 	 * If the default router list is empty, all addresses are regarded
970 	 * as on-link, and thus, as a neighbor.
971 	 * XXX: we restrict the condition to hosts, because routers usually do
972 	 * not have the "default router list".
973 	 */
974 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
975 	    nd6_defifindex == ifp->if_index) {
976 		return (1);
977 	}
978 
979 	return (0);
980 }
981 
982 
983 /*
984  * Detect if a given IPv6 address identifies a neighbor on a given link.
985  * XXX: should take care of the destination of a p2p link?
986  */
987 int
988 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
989 {
990 
991 	if (nd6_is_new_addr_neighbor(addr, ifp))
992 		return (1);
993 
994 	/*
995 	 * Even if the address matches none of our addresses, it might be
996 	 * in the neighbor cache.
997 	 */
998 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
999 		return (1);
1000 
1001 	return (0);
1002 }
1003 
1004 /*
1005  * Free an nd6 llinfo entry.
1006  * Since the function would cause significant changes in the kernel, DO NOT
1007  * make it global, unless you have a strong reason for the change, and are sure
1008  * that the change is safe.
1009  */
1010 static struct llinfo_nd6 *
1011 nd6_free(struct rtentry *rt, int gc)
1012 {
1013 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1014 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1015 	struct nd_defrouter *dr;
1016 
1017 	/*
1018 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1019 	 * even though it is not harmful, it was not really necessary.
1020 	 */
1021 
1022 	/* cancel timer */
1023 	nd6_llinfo_settimer(ln, -1);
1024 
1025 	if (!ip6_forwarding) {
1026 		int s;
1027 		s = splnet();
1028 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1029 		    rt->rt_ifp);
1030 
1031 		if (dr != NULL && dr->expire &&
1032 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1033 			/*
1034 			 * If the reason for the deletion is just garbage
1035 			 * collection, and the neighbor is an active default
1036 			 * router, do not delete it.  Instead, reset the GC
1037 			 * timer using the router's lifetime.
1038 			 * Simply deleting the entry would affect default
1039 			 * router selection, which is not necessarily a good
1040 			 * thing, especially when we're using router preference
1041 			 * values.
1042 			 * XXX: the check for ln_state would be redundant,
1043 			 *      but we intentionally keep it just in case.
1044 			 */
1045 			if (dr->expire > time_second)
1046 				nd6_llinfo_settimer(ln,
1047 				    (dr->expire - time_second) * hz);
1048 			else
1049 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1050 			splx(s);
1051 			return (ln->ln_next);
1052 		}
1053 
1054 		if (ln->ln_router || dr) {
1055 			/*
1056 			 * rt6_flush must be called whether or not the neighbor
1057 			 * is in the Default Router List.
1058 			 * See a corresponding comment in nd6_na_input().
1059 			 */
1060 			rt6_flush(&in6, rt->rt_ifp);
1061 		}
1062 
1063 		if (dr) {
1064 			/*
1065 			 * Unreachablity of a router might affect the default
1066 			 * router selection and on-link detection of advertised
1067 			 * prefixes.
1068 			 */
1069 
1070 			/*
1071 			 * Temporarily fake the state to choose a new default
1072 			 * router and to perform on-link determination of
1073 			 * prefixes correctly.
1074 			 * Below the state will be set correctly,
1075 			 * or the entry itself will be deleted.
1076 			 */
1077 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1078 
1079 			/*
1080 			 * Since defrouter_select() does not affect the
1081 			 * on-link determination and MIP6 needs the check
1082 			 * before the default router selection, we perform
1083 			 * the check now.
1084 			 */
1085 			pfxlist_onlink_check();
1086 
1087 			/*
1088 			 * refresh default router list
1089 			 */
1090 			defrouter_select();
1091 		}
1092 		splx(s);
1093 	}
1094 
1095 	/*
1096 	 * Before deleting the entry, remember the next entry as the
1097 	 * return value.  We need this because pfxlist_onlink_check() above
1098 	 * might have freed other entries (particularly the old next entry) as
1099 	 * a side effect (XXX).
1100 	 */
1101 	next = ln->ln_next;
1102 
1103 	/*
1104 	 * Detach the route from the routing tree and the list of neighbor
1105 	 * caches, and disable the route entry not to be used in already
1106 	 * cached routes.
1107 	 */
1108 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1109 	    rt_mask(rt), 0, (struct rtentry **)0);
1110 
1111 	return (next);
1112 }
1113 
1114 /*
1115  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1116  *
1117  * XXX cost-effective methods?
1118  */
1119 void
1120 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1121 {
1122 	struct llinfo_nd6 *ln;
1123 
1124 	/*
1125 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1126 	 * routing table by supplied "dst6".
1127 	 */
1128 	if (rt == NULL) {
1129 		if (dst6 == NULL)
1130 			return;
1131 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1132 			return;
1133 	}
1134 
1135 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1136 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1137 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1138 	    rt->rt_gateway->sa_family != AF_LINK) {
1139 		/* This is not a host route. */
1140 		return;
1141 	}
1142 
1143 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1144 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1145 		return;
1146 
1147 	/*
1148 	 * if we get upper-layer reachability confirmation many times,
1149 	 * it is possible we have false information.
1150 	 */
1151 	if (!force) {
1152 		ln->ln_byhint++;
1153 		if (ln->ln_byhint > nd6_maxnudhint)
1154 			return;
1155 	}
1156 
1157 	ln->ln_state = ND6_LLINFO_REACHABLE;
1158 	if (!ND6_LLINFO_PERMANENT(ln)) {
1159 		nd6_llinfo_settimer(ln,
1160 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1161 	}
1162 }
1163 
1164 /*
1165  * info - XXX unused
1166  */
1167 void
1168 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1169 {
1170 	struct sockaddr *gate = rt->rt_gateway;
1171 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1172 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1173 	struct ifnet *ifp = rt->rt_ifp;
1174 	struct ifaddr *ifa;
1175 
1176 	RT_LOCK_ASSERT(rt);
1177 
1178 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1179 		return;
1180 
1181 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1182 		/*
1183 		 * This is probably an interface direct route for a link
1184 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1185 		 * We do not need special treatment below for such a route.
1186 		 * Moreover, the RTF_LLINFO flag which would be set below
1187 		 * would annoy the ndp(8) command.
1188 		 */
1189 		return;
1190 	}
1191 
1192 	if (req == RTM_RESOLVE &&
1193 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1194 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1195 	     ifp))) {
1196 		/*
1197 		 * FreeBSD and BSD/OS often make a cloned host route based
1198 		 * on a less-specific route (e.g. the default route).
1199 		 * If the less specific route does not have a "gateway"
1200 		 * (this is the case when the route just goes to a p2p or an
1201 		 * stf interface), we'll mistakenly make a neighbor cache for
1202 		 * the host route, and will see strange neighbor solicitation
1203 		 * for the corresponding destination.  In order to avoid the
1204 		 * confusion, we check if the destination of the route is
1205 		 * a neighbor in terms of neighbor discovery, and stop the
1206 		 * process if not.  Additionally, we remove the LLINFO flag
1207 		 * so that ndp(8) will not try to get the neighbor information
1208 		 * of the destination.
1209 		 */
1210 		rt->rt_flags &= ~RTF_LLINFO;
1211 		return;
1212 	}
1213 
1214 	switch (req) {
1215 	case RTM_ADD:
1216 		/*
1217 		 * There is no backward compatibility :)
1218 		 *
1219 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1220 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1221 		 *	   rt->rt_flags |= RTF_CLONING;
1222 		 */
1223 		if ((rt->rt_flags & RTF_CLONING) ||
1224 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1225 			/*
1226 			 * Case 1: This route should come from a route to
1227 			 * interface (RTF_CLONING case) or the route should be
1228 			 * treated as on-link but is currently not
1229 			 * (RTF_LLINFO && ln == NULL case).
1230 			 */
1231 			rt_setgate(rt, rt_key(rt),
1232 				   (struct sockaddr *)&null_sdl);
1233 			gate = rt->rt_gateway;
1234 			SDL(gate)->sdl_type = ifp->if_type;
1235 			SDL(gate)->sdl_index = ifp->if_index;
1236 			if (ln)
1237 				nd6_llinfo_settimer(ln, 0);
1238 			if ((rt->rt_flags & RTF_CLONING) != 0)
1239 				break;
1240 		}
1241 		/*
1242 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1243 		 * We don't do that here since llinfo is not ready yet.
1244 		 *
1245 		 * There are also couple of other things to be discussed:
1246 		 * - unsolicited NA code needs improvement beforehand
1247 		 * - RFC2461 says we MAY send multicast unsolicited NA
1248 		 *   (7.2.6 paragraph 4), however, it also says that we
1249 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1250 		 *   we don't have anything like it right now.
1251 		 *   note that the mechanism needs a mutual agreement
1252 		 *   between proxies, which means that we need to implement
1253 		 *   a new protocol, or a new kludge.
1254 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1255 		 *   we need to check ip6forwarding before sending it.
1256 		 *   (or should we allow proxy ND configuration only for
1257 		 *   routers?  there's no mention about proxy ND from hosts)
1258 		 */
1259 		/* FALLTHROUGH */
1260 	case RTM_RESOLVE:
1261 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1262 			/*
1263 			 * Address resolution isn't necessary for a point to
1264 			 * point link, so we can skip this test for a p2p link.
1265 			 */
1266 			if (gate->sa_family != AF_LINK ||
1267 			    gate->sa_len < sizeof(null_sdl)) {
1268 				log(LOG_DEBUG,
1269 				    "nd6_rtrequest: bad gateway value: %s\n",
1270 				    if_name(ifp));
1271 				break;
1272 			}
1273 			SDL(gate)->sdl_type = ifp->if_type;
1274 			SDL(gate)->sdl_index = ifp->if_index;
1275 		}
1276 		if (ln != NULL)
1277 			break;	/* This happens on a route change */
1278 		/*
1279 		 * Case 2: This route may come from cloning, or a manual route
1280 		 * add with a LL address.
1281 		 */
1282 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1283 		rt->rt_llinfo = (caddr_t)ln;
1284 		if (ln == NULL) {
1285 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1286 			break;
1287 		}
1288 		nd6_inuse++;
1289 		nd6_allocated++;
1290 		bzero(ln, sizeof(*ln));
1291 		RT_ADDREF(rt);
1292 		ln->ln_rt = rt;
1293 		callout_init(&ln->ln_timer_ch, 0);
1294 
1295 		/* this is required for "ndp" command. - shin */
1296 		if (req == RTM_ADD) {
1297 		        /*
1298 			 * gate should have some valid AF_LINK entry,
1299 			 * and ln->ln_expire should have some lifetime
1300 			 * which is specified by ndp command.
1301 			 */
1302 			ln->ln_state = ND6_LLINFO_REACHABLE;
1303 			ln->ln_byhint = 0;
1304 		} else {
1305 		        /*
1306 			 * When req == RTM_RESOLVE, rt is created and
1307 			 * initialized in rtrequest(), so rt_expire is 0.
1308 			 */
1309 			ln->ln_state = ND6_LLINFO_NOSTATE;
1310 			nd6_llinfo_settimer(ln, 0);
1311 		}
1312 		rt->rt_flags |= RTF_LLINFO;
1313 		ln->ln_next = llinfo_nd6.ln_next;
1314 		llinfo_nd6.ln_next = ln;
1315 		ln->ln_prev = &llinfo_nd6;
1316 		ln->ln_next->ln_prev = ln;
1317 
1318 		/*
1319 		 * check if rt_key(rt) is one of my address assigned
1320 		 * to the interface.
1321 		 */
1322 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1323 		    &SIN6(rt_key(rt))->sin6_addr);
1324 		if (ifa) {
1325 			caddr_t macp = nd6_ifptomac(ifp);
1326 			nd6_llinfo_settimer(ln, -1);
1327 			ln->ln_state = ND6_LLINFO_REACHABLE;
1328 			ln->ln_byhint = 0;
1329 			if (macp) {
1330 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1331 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1332 			}
1333 			if (nd6_useloopback) {
1334 				rt->rt_ifp = &loif[0];	/* XXX */
1335 				/*
1336 				 * Make sure rt_ifa be equal to the ifaddr
1337 				 * corresponding to the address.
1338 				 * We need this because when we refer
1339 				 * rt_ifa->ia6_flags in ip6_input, we assume
1340 				 * that the rt_ifa points to the address instead
1341 				 * of the loopback address.
1342 				 */
1343 				if (ifa != rt->rt_ifa) {
1344 					IFAFREE(rt->rt_ifa);
1345 					IFAREF(ifa);
1346 					rt->rt_ifa = ifa;
1347 				}
1348 			}
1349 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1350 			nd6_llinfo_settimer(ln, -1);
1351 			ln->ln_state = ND6_LLINFO_REACHABLE;
1352 			ln->ln_byhint = 0;
1353 
1354 			/* join solicited node multicast for proxy ND */
1355 			if (ifp->if_flags & IFF_MULTICAST) {
1356 				struct in6_addr llsol;
1357 				int error;
1358 
1359 				llsol = SIN6(rt_key(rt))->sin6_addr;
1360 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1361 				llsol.s6_addr32[1] = 0;
1362 				llsol.s6_addr32[2] = htonl(1);
1363 				llsol.s6_addr8[12] = 0xff;
1364 				if (in6_setscope(&llsol, ifp, NULL))
1365 					break;
1366 				if (in6_addmulti(&llsol, ifp,
1367 				    &error, 0) == NULL) {
1368 					char ip6buf[INET6_ADDRSTRLEN];
1369 					nd6log((LOG_ERR, "%s: failed to join "
1370 					    "%s (errno=%d)\n", if_name(ifp),
1371 					    ip6_sprintf(ip6buf, &llsol),
1372 					    error));
1373 				}
1374 			}
1375 		}
1376 		break;
1377 
1378 	case RTM_DELETE:
1379 		if (ln == NULL)
1380 			break;
1381 		/* leave from solicited node multicast for proxy ND */
1382 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1383 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1384 			struct in6_addr llsol;
1385 			struct in6_multi *in6m;
1386 
1387 			llsol = SIN6(rt_key(rt))->sin6_addr;
1388 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1389 			llsol.s6_addr32[1] = 0;
1390 			llsol.s6_addr32[2] = htonl(1);
1391 			llsol.s6_addr8[12] = 0xff;
1392 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1393 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1394 				if (in6m)
1395 					in6_delmulti(in6m);
1396 			} else
1397 				; /* XXX: should not happen. bark here? */
1398 		}
1399 		nd6_inuse--;
1400 		ln->ln_next->ln_prev = ln->ln_prev;
1401 		ln->ln_prev->ln_next = ln->ln_next;
1402 		ln->ln_prev = NULL;
1403 		nd6_llinfo_settimer(ln, -1);
1404 		RT_REMREF(rt);
1405 		rt->rt_llinfo = 0;
1406 		rt->rt_flags &= ~RTF_LLINFO;
1407 		clear_llinfo_pqueue(ln);
1408 		Free((caddr_t)ln);
1409 	}
1410 }
1411 
1412 int
1413 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1414 {
1415 	struct in6_drlist *drl = (struct in6_drlist *)data;
1416 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1417 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1418 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1419 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1420 	struct nd_defrouter *dr;
1421 	struct nd_prefix *pr;
1422 	struct rtentry *rt;
1423 	int i = 0, error = 0;
1424 	int s;
1425 
1426 	switch (cmd) {
1427 	case SIOCGDRLST_IN6:
1428 		/*
1429 		 * obsolete API, use sysctl under net.inet6.icmp6
1430 		 */
1431 		bzero(drl, sizeof(*drl));
1432 		s = splnet();
1433 		dr = TAILQ_FIRST(&nd_defrouter);
1434 		while (dr && i < DRLSTSIZ) {
1435 			drl->defrouter[i].rtaddr = dr->rtaddr;
1436 			in6_clearscope(&drl->defrouter[i].rtaddr);
1437 
1438 			drl->defrouter[i].flags = dr->flags;
1439 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1440 			drl->defrouter[i].expire = dr->expire;
1441 			drl->defrouter[i].if_index = dr->ifp->if_index;
1442 			i++;
1443 			dr = TAILQ_NEXT(dr, dr_entry);
1444 		}
1445 		splx(s);
1446 		break;
1447 	case SIOCGPRLST_IN6:
1448 		/*
1449 		 * obsolete API, use sysctl under net.inet6.icmp6
1450 		 *
1451 		 * XXX the structure in6_prlist was changed in backward-
1452 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1453 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1454 		 */
1455 		/*
1456 		 * XXX meaning of fields, especialy "raflags", is very
1457 		 * differnet between RA prefix list and RR/static prefix list.
1458 		 * how about separating ioctls into two?
1459 		 */
1460 		bzero(oprl, sizeof(*oprl));
1461 		s = splnet();
1462 		pr = nd_prefix.lh_first;
1463 		while (pr && i < PRLSTSIZ) {
1464 			struct nd_pfxrouter *pfr;
1465 			int j;
1466 
1467 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1468 			oprl->prefix[i].raflags = pr->ndpr_raf;
1469 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1470 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1471 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1472 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1473 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1474 				oprl->prefix[i].expire = 0;
1475 			else {
1476 				time_t maxexpire;
1477 
1478 				/* XXX: we assume time_t is signed. */
1479 				maxexpire = (-1) &
1480 				    ~((time_t)1 <<
1481 				    ((sizeof(maxexpire) * 8) - 1));
1482 				if (pr->ndpr_vltime <
1483 				    maxexpire - pr->ndpr_lastupdate) {
1484 					oprl->prefix[i].expire =
1485 					    pr->ndpr_lastupdate +
1486 					    pr->ndpr_vltime;
1487 				} else
1488 					oprl->prefix[i].expire = maxexpire;
1489 			}
1490 
1491 			pfr = pr->ndpr_advrtrs.lh_first;
1492 			j = 0;
1493 			while (pfr) {
1494 				if (j < DRLSTSIZ) {
1495 #define RTRADDR oprl->prefix[i].advrtr[j]
1496 					RTRADDR = pfr->router->rtaddr;
1497 					in6_clearscope(&RTRADDR);
1498 #undef RTRADDR
1499 				}
1500 				j++;
1501 				pfr = pfr->pfr_next;
1502 			}
1503 			oprl->prefix[i].advrtrs = j;
1504 			oprl->prefix[i].origin = PR_ORIG_RA;
1505 
1506 			i++;
1507 			pr = pr->ndpr_next;
1508 		}
1509 		splx(s);
1510 
1511 		break;
1512 	case OSIOCGIFINFO_IN6:
1513 #define ND	ndi->ndi
1514 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1515 		bzero(&ND, sizeof(ND));
1516 		ND.linkmtu = IN6_LINKMTU(ifp);
1517 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1518 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1519 		ND.reachable = ND_IFINFO(ifp)->reachable;
1520 		ND.retrans = ND_IFINFO(ifp)->retrans;
1521 		ND.flags = ND_IFINFO(ifp)->flags;
1522 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1523 		ND.chlim = ND_IFINFO(ifp)->chlim;
1524 		break;
1525 	case SIOCGIFINFO_IN6:
1526 		ND = *ND_IFINFO(ifp);
1527 		break;
1528 	case SIOCSIFINFO_IN6:
1529 		/*
1530 		 * used to change host variables from userland.
1531 		 * intented for a use on router to reflect RA configurations.
1532 		 */
1533 		/* 0 means 'unspecified' */
1534 		if (ND.linkmtu != 0) {
1535 			if (ND.linkmtu < IPV6_MMTU ||
1536 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1537 				error = EINVAL;
1538 				break;
1539 			}
1540 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1541 		}
1542 
1543 		if (ND.basereachable != 0) {
1544 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1545 
1546 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1547 			if (ND.basereachable != obasereachable)
1548 				ND_IFINFO(ifp)->reachable =
1549 				    ND_COMPUTE_RTIME(ND.basereachable);
1550 		}
1551 		if (ND.retrans != 0)
1552 			ND_IFINFO(ifp)->retrans = ND.retrans;
1553 		if (ND.chlim != 0)
1554 			ND_IFINFO(ifp)->chlim = ND.chlim;
1555 		/* FALLTHROUGH */
1556 	case SIOCSIFINFO_FLAGS:
1557 		ND_IFINFO(ifp)->flags = ND.flags;
1558 		break;
1559 #undef ND
1560 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1561 		/* sync kernel routing table with the default router list */
1562 		defrouter_reset();
1563 		defrouter_select();
1564 		break;
1565 	case SIOCSPFXFLUSH_IN6:
1566 	{
1567 		/* flush all the prefix advertised by routers */
1568 		struct nd_prefix *pr, *next;
1569 
1570 		s = splnet();
1571 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1572 			struct in6_ifaddr *ia, *ia_next;
1573 
1574 			next = pr->ndpr_next;
1575 
1576 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1577 				continue; /* XXX */
1578 
1579 			/* do we really have to remove addresses as well? */
1580 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1581 				/* ia might be removed.  keep the next ptr. */
1582 				ia_next = ia->ia_next;
1583 
1584 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1585 					continue;
1586 
1587 				if (ia->ia6_ndpr == pr)
1588 					in6_purgeaddr(&ia->ia_ifa);
1589 			}
1590 			prelist_remove(pr);
1591 		}
1592 		splx(s);
1593 		break;
1594 	}
1595 	case SIOCSRTRFLUSH_IN6:
1596 	{
1597 		/* flush all the default routers */
1598 		struct nd_defrouter *dr, *next;
1599 
1600 		s = splnet();
1601 		defrouter_reset();
1602 		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1603 			next = TAILQ_NEXT(dr, dr_entry);
1604 			defrtrlist_del(dr);
1605 		}
1606 		defrouter_select();
1607 		splx(s);
1608 		break;
1609 	}
1610 	case SIOCGNBRINFO_IN6:
1611 	{
1612 		struct llinfo_nd6 *ln;
1613 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1614 
1615 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1616 			return (error);
1617 
1618 		s = splnet();
1619 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1620 			error = EINVAL;
1621 			splx(s);
1622 			break;
1623 		}
1624 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1625 		nbi->state = ln->ln_state;
1626 		nbi->asked = ln->ln_asked;
1627 		nbi->isrouter = ln->ln_router;
1628 		nbi->expire = ln->ln_expire;
1629 		splx(s);
1630 
1631 		break;
1632 	}
1633 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1634 		ndif->ifindex = nd6_defifindex;
1635 		break;
1636 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1637 		return (nd6_setdefaultiface(ndif->ifindex));
1638 	}
1639 	return (error);
1640 }
1641 
1642 /*
1643  * Create neighbor cache entry and cache link-layer address,
1644  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1645  *
1646  * type - ICMP6 type
1647  * code - type dependent information
1648  */
1649 struct rtentry *
1650 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1651     int lladdrlen, int type, int code)
1652 {
1653 	struct rtentry *rt = NULL;
1654 	struct llinfo_nd6 *ln = NULL;
1655 	int is_newentry;
1656 	struct sockaddr_dl *sdl = NULL;
1657 	int do_update;
1658 	int olladdr;
1659 	int llchange;
1660 	int newstate = 0;
1661 
1662 	if (ifp == NULL)
1663 		panic("ifp == NULL in nd6_cache_lladdr");
1664 	if (from == NULL)
1665 		panic("from == NULL in nd6_cache_lladdr");
1666 
1667 	/* nothing must be updated for unspecified address */
1668 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1669 		return NULL;
1670 
1671 	/*
1672 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1673 	 * the caller.
1674 	 *
1675 	 * XXX If the link does not have link-layer adderss, what should
1676 	 * we do? (ifp->if_addrlen == 0)
1677 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1678 	 * description on it in NS section (RFC 2461 7.2.3).
1679 	 */
1680 
1681 	rt = nd6_lookup(from, 0, ifp);
1682 	if (rt == NULL) {
1683 		rt = nd6_lookup(from, 1, ifp);
1684 		is_newentry = 1;
1685 	} else {
1686 		/* do nothing if static ndp is set */
1687 		if (rt->rt_flags & RTF_STATIC)
1688 			return NULL;
1689 		is_newentry = 0;
1690 	}
1691 
1692 	if (rt == NULL)
1693 		return NULL;
1694 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1695 fail:
1696 		(void)nd6_free(rt, 0);
1697 		return NULL;
1698 	}
1699 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1700 	if (ln == NULL)
1701 		goto fail;
1702 	if (rt->rt_gateway == NULL)
1703 		goto fail;
1704 	if (rt->rt_gateway->sa_family != AF_LINK)
1705 		goto fail;
1706 	sdl = SDL(rt->rt_gateway);
1707 
1708 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1709 	if (olladdr && lladdr) {
1710 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1711 			llchange = 1;
1712 		else
1713 			llchange = 0;
1714 	} else
1715 		llchange = 0;
1716 
1717 	/*
1718 	 * newentry olladdr  lladdr  llchange	(*=record)
1719 	 *	0	n	n	--	(1)
1720 	 *	0	y	n	--	(2)
1721 	 *	0	n	y	--	(3) * STALE
1722 	 *	0	y	y	n	(4) *
1723 	 *	0	y	y	y	(5) * STALE
1724 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1725 	 *	1	--	y	--	(7) * STALE
1726 	 */
1727 
1728 	if (lladdr) {		/* (3-5) and (7) */
1729 		/*
1730 		 * Record source link-layer address
1731 		 * XXX is it dependent to ifp->if_type?
1732 		 */
1733 		sdl->sdl_alen = ifp->if_addrlen;
1734 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1735 	}
1736 
1737 	if (!is_newentry) {
1738 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1739 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1740 			do_update = 1;
1741 			newstate = ND6_LLINFO_STALE;
1742 		} else					/* (1-2,4) */
1743 			do_update = 0;
1744 	} else {
1745 		do_update = 1;
1746 		if (lladdr == NULL)			/* (6) */
1747 			newstate = ND6_LLINFO_NOSTATE;
1748 		else					/* (7) */
1749 			newstate = ND6_LLINFO_STALE;
1750 	}
1751 
1752 	if (do_update) {
1753 		/*
1754 		 * Update the state of the neighbor cache.
1755 		 */
1756 		ln->ln_state = newstate;
1757 
1758 		if (ln->ln_state == ND6_LLINFO_STALE) {
1759 			/*
1760 			 * XXX: since nd6_output() below will cause
1761 			 * state tansition to DELAY and reset the timer,
1762 			 * we must set the timer now, although it is actually
1763 			 * meaningless.
1764 			 */
1765 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1766 
1767 			if (ln->ln_hold) {
1768 				struct mbuf *m_hold, *m_hold_next;
1769 
1770 				/*
1771 				 * reset the ln_hold in advance, to explicitly
1772 				 * prevent a ln_hold lookup in nd6_output()
1773 				 * (wouldn't happen, though...)
1774 				 */
1775 				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1776 				    m_hold; m_hold = m_hold_next) {
1777 					m_hold_next = m_hold->m_nextpkt;
1778 					m_hold->m_nextpkt = NULL;
1779 
1780 					/*
1781 					 * we assume ifp is not a p2p here, so
1782 					 * just set the 2nd argument as the
1783 					 * 1st one.
1784 					 */
1785 					nd6_output(ifp, ifp, m_hold,
1786 					     (struct sockaddr_in6 *)rt_key(rt),
1787 					     rt);
1788 				}
1789 			}
1790 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1791 			/* probe right away */
1792 			nd6_llinfo_settimer((void *)ln, 0);
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * ICMP6 type dependent behavior.
1798 	 *
1799 	 * NS: clear IsRouter if new entry
1800 	 * RS: clear IsRouter
1801 	 * RA: set IsRouter if there's lladdr
1802 	 * redir: clear IsRouter if new entry
1803 	 *
1804 	 * RA case, (1):
1805 	 * The spec says that we must set IsRouter in the following cases:
1806 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1807 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1808 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1809 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1810 	 * neighbor cache, this is similar to (6).
1811 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1812 	 *
1813 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1814 	 *							D R
1815 	 *	0	n	n	--	(1)	c   ?     s
1816 	 *	0	y	n	--	(2)	c   s     s
1817 	 *	0	n	y	--	(3)	c   s     s
1818 	 *	0	y	y	n	(4)	c   s     s
1819 	 *	0	y	y	y	(5)	c   s     s
1820 	 *	1	--	n	--	(6) c	c	c s
1821 	 *	1	--	y	--	(7) c	c   s	c s
1822 	 *
1823 	 *					(c=clear s=set)
1824 	 */
1825 	switch (type & 0xff) {
1826 	case ND_NEIGHBOR_SOLICIT:
1827 		/*
1828 		 * New entry must have is_router flag cleared.
1829 		 */
1830 		if (is_newentry)	/* (6-7) */
1831 			ln->ln_router = 0;
1832 		break;
1833 	case ND_REDIRECT:
1834 		/*
1835 		 * If the icmp is a redirect to a better router, always set the
1836 		 * is_router flag.  Otherwise, if the entry is newly created,
1837 		 * clear the flag.  [RFC 2461, sec 8.3]
1838 		 */
1839 		if (code == ND_REDIRECT_ROUTER)
1840 			ln->ln_router = 1;
1841 		else if (is_newentry) /* (6-7) */
1842 			ln->ln_router = 0;
1843 		break;
1844 	case ND_ROUTER_SOLICIT:
1845 		/*
1846 		 * is_router flag must always be cleared.
1847 		 */
1848 		ln->ln_router = 0;
1849 		break;
1850 	case ND_ROUTER_ADVERT:
1851 		/*
1852 		 * Mark an entry with lladdr as a router.
1853 		 */
1854 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1855 		    (is_newentry && lladdr)) {			/* (7) */
1856 			ln->ln_router = 1;
1857 		}
1858 		break;
1859 	}
1860 
1861 	/*
1862 	 * When the link-layer address of a router changes, select the
1863 	 * best router again.  In particular, when the neighbor entry is newly
1864 	 * created, it might affect the selection policy.
1865 	 * Question: can we restrict the first condition to the "is_newentry"
1866 	 * case?
1867 	 * XXX: when we hear an RA from a new router with the link-layer
1868 	 * address option, defrouter_select() is called twice, since
1869 	 * defrtrlist_update called the function as well.  However, I believe
1870 	 * we can compromise the overhead, since it only happens the first
1871 	 * time.
1872 	 * XXX: although defrouter_select() should not have a bad effect
1873 	 * for those are not autoconfigured hosts, we explicitly avoid such
1874 	 * cases for safety.
1875 	 */
1876 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1877 		defrouter_select();
1878 
1879 	return rt;
1880 }
1881 
1882 static void
1883 nd6_slowtimo(void *ignored_arg)
1884 {
1885 	struct nd_ifinfo *nd6if;
1886 	struct ifnet *ifp;
1887 
1888 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1889 	    nd6_slowtimo, NULL);
1890 	IFNET_RLOCK();
1891 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1892 		nd6if = ND_IFINFO(ifp);
1893 		if (nd6if->basereachable && /* already initialized */
1894 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1895 			/*
1896 			 * Since reachable time rarely changes by router
1897 			 * advertisements, we SHOULD insure that a new random
1898 			 * value gets recomputed at least once every few hours.
1899 			 * (RFC 2461, 6.3.4)
1900 			 */
1901 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1902 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1903 		}
1904 	}
1905 	IFNET_RUNLOCK();
1906 }
1907 
1908 #define senderr(e) { error = (e); goto bad;}
1909 int
1910 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1911     struct sockaddr_in6 *dst, struct rtentry *rt0)
1912 {
1913 	struct mbuf *m = m0;
1914 	struct rtentry *rt = rt0;
1915 	struct sockaddr_in6 *gw6 = NULL;
1916 	struct llinfo_nd6 *ln = NULL;
1917 	int error = 0;
1918 
1919 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1920 		goto sendpkt;
1921 
1922 	if (nd6_need_cache(ifp) == 0)
1923 		goto sendpkt;
1924 
1925 	/*
1926 	 * next hop determination.  This routine is derived from ether_output.
1927 	 */
1928 	/* NB: the locking here is tortuous... */
1929 	if (rt != NULL)
1930 		RT_LOCK(rt);
1931 again:
1932 	if (rt != NULL) {
1933 		if ((rt->rt_flags & RTF_UP) == 0) {
1934 			RT_UNLOCK(rt);
1935 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1936 			if (rt != NULL) {
1937 				RT_REMREF(rt);
1938 				if (rt->rt_ifp != ifp)
1939 					/*
1940 					 * XXX maybe we should update ifp too,
1941 					 * but the original code didn't and I
1942 					 * don't know what is correct here.
1943 					 */
1944 					goto again;
1945 			} else
1946 				senderr(EHOSTUNREACH);
1947 		}
1948 
1949 		if (rt->rt_flags & RTF_GATEWAY) {
1950 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1951 
1952 			/*
1953 			 * We skip link-layer address resolution and NUD
1954 			 * if the gateway is not a neighbor from ND point
1955 			 * of view, regardless of the value of nd_ifinfo.flags.
1956 			 * The second condition is a bit tricky; we skip
1957 			 * if the gateway is our own address, which is
1958 			 * sometimes used to install a route to a p2p link.
1959 			 */
1960 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1961 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1962 				RT_UNLOCK(rt);
1963 				/*
1964 				 * We allow this kind of tricky route only
1965 				 * when the outgoing interface is p2p.
1966 				 * XXX: we may need a more generic rule here.
1967 				 */
1968 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1969 					senderr(EHOSTUNREACH);
1970 
1971 				goto sendpkt;
1972 			}
1973 
1974 			if (rt->rt_gwroute == NULL)
1975 				goto lookup;
1976 			rt = rt->rt_gwroute;
1977 			RT_LOCK(rt);		/* NB: gwroute */
1978 			if ((rt->rt_flags & RTF_UP) == 0) {
1979 				RTFREE_LOCKED(rt);	/* unlock gwroute */
1980 				rt = rt0;
1981 			lookup:
1982 				RT_UNLOCK(rt0);
1983 				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
1984 				if (rt == rt0) {
1985 					rt0->rt_gwroute = NULL;
1986 					RT_REMREF(rt0);
1987 					RT_UNLOCK(rt0);
1988 					senderr(EHOSTUNREACH);
1989 				}
1990 				RT_LOCK(rt0);
1991 				rt0->rt_gwroute = rt;
1992 				if (rt == NULL) {
1993 					RT_UNLOCK(rt0);
1994 					senderr(EHOSTUNREACH);
1995 				}
1996 			}
1997 			RT_UNLOCK(rt0);
1998 		}
1999 		RT_UNLOCK(rt);
2000 	}
2001 
2002 	/*
2003 	 * Address resolution or Neighbor Unreachability Detection
2004 	 * for the next hop.
2005 	 * At this point, the destination of the packet must be a unicast
2006 	 * or an anycast address(i.e. not a multicast).
2007 	 */
2008 
2009 	/* Look up the neighbor cache for the nexthop */
2010 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2011 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2012 	else {
2013 		/*
2014 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2015 		 * the condition below is not very efficient.  But we believe
2016 		 * it is tolerable, because this should be a rare case.
2017 		 */
2018 		if (nd6_is_addr_neighbor(dst, ifp) &&
2019 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2020 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2021 	}
2022 	if (ln == NULL || rt == NULL) {
2023 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2024 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2025 			char ip6buf[INET6_ADDRSTRLEN];
2026 			log(LOG_DEBUG,
2027 			    "nd6_output: can't allocate llinfo for %s "
2028 			    "(ln=%p, rt=%p)\n",
2029 			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2030 			senderr(EIO);	/* XXX: good error? */
2031 		}
2032 
2033 		goto sendpkt;	/* send anyway */
2034 	}
2035 
2036 	/* We don't have to do link-layer address resolution on a p2p link. */
2037 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2038 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2039 		ln->ln_state = ND6_LLINFO_STALE;
2040 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2041 	}
2042 
2043 	/*
2044 	 * The first time we send a packet to a neighbor whose entry is
2045 	 * STALE, we have to change the state to DELAY and a sets a timer to
2046 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2047 	 * neighbor unreachability detection on expiration.
2048 	 * (RFC 2461 7.3.3)
2049 	 */
2050 	if (ln->ln_state == ND6_LLINFO_STALE) {
2051 		ln->ln_asked = 0;
2052 		ln->ln_state = ND6_LLINFO_DELAY;
2053 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2054 	}
2055 
2056 	/*
2057 	 * If the neighbor cache entry has a state other than INCOMPLETE
2058 	 * (i.e. its link-layer address is already resolved), just
2059 	 * send the packet.
2060 	 */
2061 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2062 		goto sendpkt;
2063 
2064 	/*
2065 	 * There is a neighbor cache entry, but no ethernet address
2066 	 * response yet.  Append this latest packet to the end of the
2067 	 * packet queue in the mbuf, unless the number of the packet
2068 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2069 	 * the oldest packet in the queue will be removed.
2070 	 */
2071 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2072 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2073 	if (ln->ln_hold) {
2074 		struct mbuf *m_hold;
2075 		int i;
2076 
2077 		i = 0;
2078 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2079 			i++;
2080 			if (m_hold->m_nextpkt == NULL) {
2081 				m_hold->m_nextpkt = m;
2082 				break;
2083 			}
2084 		}
2085 		while (i >= nd6_maxqueuelen) {
2086 			m_hold = ln->ln_hold;
2087 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2088 			m_freem(m_hold);
2089 			i--;
2090 		}
2091 	} else {
2092 		ln->ln_hold = m;
2093 	}
2094 
2095 	/*
2096 	 * If there has been no NS for the neighbor after entering the
2097 	 * INCOMPLETE state, send the first solicitation.
2098 	 */
2099 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2100 		ln->ln_asked++;
2101 		nd6_llinfo_settimer(ln,
2102 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2103 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2104 	}
2105 	return (0);
2106 
2107   sendpkt:
2108 	/* discard the packet if IPv6 operation is disabled on the interface */
2109 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2110 		error = ENETDOWN; /* better error? */
2111 		goto bad;
2112 	}
2113 
2114 #ifdef MAC
2115 	mac_create_mbuf_linklayer(ifp, m);
2116 #endif
2117 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2118 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2119 		    rt));
2120 	}
2121 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2122 
2123   bad:
2124 	if (m)
2125 		m_freem(m);
2126 	return (error);
2127 }
2128 #undef senderr
2129 
2130 int
2131 nd6_need_cache(struct ifnet *ifp)
2132 {
2133 	/*
2134 	 * XXX: we currently do not make neighbor cache on any interface
2135 	 * other than ARCnet, Ethernet, FDDI and GIF.
2136 	 *
2137 	 * RFC2893 says:
2138 	 * - unidirectional tunnels needs no ND
2139 	 */
2140 	switch (ifp->if_type) {
2141 	case IFT_ARCNET:
2142 	case IFT_ETHER:
2143 	case IFT_FDDI:
2144 	case IFT_IEEE1394:
2145 #ifdef IFT_L2VLAN
2146 	case IFT_L2VLAN:
2147 #endif
2148 #ifdef IFT_IEEE80211
2149 	case IFT_IEEE80211:
2150 #endif
2151 #ifdef IFT_CARP
2152 	case IFT_CARP:
2153 #endif
2154 	case IFT_GIF:		/* XXX need more cases? */
2155 	case IFT_PPP:
2156 	case IFT_TUNNEL:
2157 	case IFT_BRIDGE:
2158 	case IFT_PROPVIRTUAL:
2159 		return (1);
2160 	default:
2161 		return (0);
2162 	}
2163 }
2164 
2165 int
2166 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2167     struct sockaddr *dst, u_char *desten)
2168 {
2169 	struct sockaddr_dl *sdl;
2170 	struct rtentry *rt;
2171 	int error;
2172 
2173 	if (m->m_flags & M_MCAST) {
2174 		int i;
2175 
2176 		switch (ifp->if_type) {
2177 		case IFT_ETHER:
2178 		case IFT_FDDI:
2179 #ifdef IFT_L2VLAN
2180 		case IFT_L2VLAN:
2181 #endif
2182 #ifdef IFT_IEEE80211
2183 		case IFT_IEEE80211:
2184 #endif
2185 		case IFT_BRIDGE:
2186 		case IFT_ISO88025:
2187 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2188 						 desten);
2189 			return (0);
2190 		case IFT_IEEE1394:
2191 			/*
2192 			 * netbsd can use if_broadcastaddr, but we don't do so
2193 			 * to reduce # of ifdef.
2194 			 */
2195 			for (i = 0; i < ifp->if_addrlen; i++)
2196 				desten[i] = ~0;
2197 			return (0);
2198 		case IFT_ARCNET:
2199 			*desten = 0;
2200 			return (0);
2201 		default:
2202 			m_freem(m);
2203 			return (EAFNOSUPPORT);
2204 		}
2205 	}
2206 
2207 	if (rt0 == NULL) {
2208 		/* this could happen, if we could not allocate memory */
2209 		m_freem(m);
2210 		return (ENOMEM);
2211 	}
2212 
2213 	error = rt_check(&rt, &rt0, dst);
2214 	if (error) {
2215 		m_freem(m);
2216 		return (error);
2217 	}
2218 	RT_UNLOCK(rt);
2219 
2220 	if (rt->rt_gateway->sa_family != AF_LINK) {
2221 		printf("nd6_storelladdr: something odd happens\n");
2222 		m_freem(m);
2223 		return (EINVAL);
2224 	}
2225 	sdl = SDL(rt->rt_gateway);
2226 	if (sdl->sdl_alen == 0) {
2227 		/* this should be impossible, but we bark here for debugging */
2228 		printf("nd6_storelladdr: sdl_alen == 0\n");
2229 		m_freem(m);
2230 		return (EINVAL);
2231 	}
2232 
2233 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2234 	return (0);
2235 }
2236 
2237 static void
2238 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2239 {
2240 	struct mbuf *m_hold, *m_hold_next;
2241 
2242 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2243 		m_hold_next = m_hold->m_nextpkt;
2244 		m_hold->m_nextpkt = NULL;
2245 		m_freem(m_hold);
2246 	}
2247 
2248 	ln->ln_hold = NULL;
2249 	return;
2250 }
2251 
2252 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2253 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2254 #ifdef SYSCTL_DECL
2255 SYSCTL_DECL(_net_inet6_icmp6);
2256 #endif
2257 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2258 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2259 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2260 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2261 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2262 	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2263 
2264 static int
2265 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2266 {
2267 	int error;
2268 	char buf[1024] __aligned(4);
2269 	struct in6_defrouter *d, *de;
2270 	struct nd_defrouter *dr;
2271 
2272 	if (req->newptr)
2273 		return EPERM;
2274 	error = 0;
2275 
2276 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2277 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2278 		d = (struct in6_defrouter *)buf;
2279 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2280 
2281 		if (d + 1 <= de) {
2282 			bzero(d, sizeof(*d));
2283 			d->rtaddr.sin6_family = AF_INET6;
2284 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2285 			d->rtaddr.sin6_addr = dr->rtaddr;
2286 			error = sa6_recoverscope(&d->rtaddr);
2287 			if (error != 0)
2288 				return (error);
2289 			d->flags = dr->flags;
2290 			d->rtlifetime = dr->rtlifetime;
2291 			d->expire = dr->expire;
2292 			d->if_index = dr->ifp->if_index;
2293 		} else
2294 			panic("buffer too short");
2295 
2296 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2297 		if (error)
2298 			break;
2299 	}
2300 
2301 	return (error);
2302 }
2303 
2304 static int
2305 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2306 {
2307 	int error;
2308 	char buf[1024] __aligned(4);
2309 	struct in6_prefix *p, *pe;
2310 	struct nd_prefix *pr;
2311 	char ip6buf[INET6_ADDRSTRLEN];
2312 
2313 	if (req->newptr)
2314 		return EPERM;
2315 	error = 0;
2316 
2317 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2318 		u_short advrtrs;
2319 		size_t advance;
2320 		struct sockaddr_in6 *sin6, *s6;
2321 		struct nd_pfxrouter *pfr;
2322 
2323 		p = (struct in6_prefix *)buf;
2324 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2325 
2326 		if (p + 1 <= pe) {
2327 			bzero(p, sizeof(*p));
2328 			sin6 = (struct sockaddr_in6 *)(p + 1);
2329 
2330 			p->prefix = pr->ndpr_prefix;
2331 			if (sa6_recoverscope(&p->prefix)) {
2332 				log(LOG_ERR,
2333 				    "scope error in prefix list (%s)\n",
2334 				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2335 				/* XXX: press on... */
2336 			}
2337 			p->raflags = pr->ndpr_raf;
2338 			p->prefixlen = pr->ndpr_plen;
2339 			p->vltime = pr->ndpr_vltime;
2340 			p->pltime = pr->ndpr_pltime;
2341 			p->if_index = pr->ndpr_ifp->if_index;
2342 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2343 				p->expire = 0;
2344 			else {
2345 				time_t maxexpire;
2346 
2347 				/* XXX: we assume time_t is signed. */
2348 				maxexpire = (-1) &
2349 				    ~((time_t)1 <<
2350 				    ((sizeof(maxexpire) * 8) - 1));
2351 				if (pr->ndpr_vltime <
2352 				    maxexpire - pr->ndpr_lastupdate) {
2353 				    p->expire = pr->ndpr_lastupdate +
2354 				        pr->ndpr_vltime;
2355 				} else
2356 					p->expire = maxexpire;
2357 			}
2358 			p->refcnt = pr->ndpr_refcnt;
2359 			p->flags = pr->ndpr_stateflags;
2360 			p->origin = PR_ORIG_RA;
2361 			advrtrs = 0;
2362 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2363 			     pfr = pfr->pfr_next) {
2364 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2365 					advrtrs++;
2366 					continue;
2367 				}
2368 				s6 = &sin6[advrtrs];
2369 				bzero(s6, sizeof(*s6));
2370 				s6->sin6_family = AF_INET6;
2371 				s6->sin6_len = sizeof(*sin6);
2372 				s6->sin6_addr = pfr->router->rtaddr;
2373 				if (sa6_recoverscope(s6)) {
2374 					log(LOG_ERR,
2375 					    "scope error in "
2376 					    "prefix list (%s)\n",
2377 					    ip6_sprintf(ip6buf,
2378 						    &pfr->router->rtaddr));
2379 				}
2380 				advrtrs++;
2381 			}
2382 			p->advrtrs = advrtrs;
2383 		} else
2384 			panic("buffer too short");
2385 
2386 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2387 		error = SYSCTL_OUT(req, buf, advance);
2388 		if (error)
2389 			break;
2390 	}
2391 
2392 	return (error);
2393 }
2394