1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #include <net/vnet.h> 67 68 #include <netinet/in.h> 69 #include <netinet/in_kdtrace.h> 70 #include <net/if_llatbl.h> 71 #include <netinet/if_ether.h> 72 #include <netinet6/in6_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet6/ip6_var.h> 75 #include <netinet6/scope6_var.h> 76 #include <netinet6/nd6.h> 77 #include <netinet6/in6_ifattach.h> 78 #include <netinet/icmp6.h> 79 #include <netinet6/send.h> 80 81 #include <sys/limits.h> 82 83 #include <security/mac/mac_framework.h> 84 85 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 86 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 87 88 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 89 90 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 91 92 /* timer values */ 93 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 94 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 95 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 96 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 97 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 98 * local traffic */ 99 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 100 * collection timer */ 101 102 /* preventing too many loops in ND option parsing */ 103 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 104 105 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 106 * layer hints */ 107 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 108 * ND entries */ 109 #define V_nd6_maxndopt VNET(nd6_maxndopt) 110 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 111 112 #ifdef ND6_DEBUG 113 VNET_DEFINE(int, nd6_debug) = 1; 114 #else 115 VNET_DEFINE(int, nd6_debug) = 0; 116 #endif 117 118 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 119 120 VNET_DEFINE(struct nd_prhead, nd_prefix); 121 VNET_DEFINE(struct rwlock, nd6_lock); 122 VNET_DEFINE(uint64_t, nd6_list_genid); 123 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 124 125 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 126 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 127 128 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 129 130 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 131 struct ifnet *); 132 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 133 static void nd6_slowtimo(void *); 134 static int regen_tmpaddr(struct in6_ifaddr *); 135 static void nd6_free(struct llentry **, int); 136 static void nd6_free_redirect(const struct llentry *); 137 static void nd6_llinfo_timer(void *); 138 static void nd6_llinfo_settimer_locked(struct llentry *, long); 139 static void clear_llinfo_pqueue(struct llentry *); 140 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 141 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 142 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 143 static int nd6_need_cache(struct ifnet *); 144 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 212 lltable_update_ifaddr(LLTABLE6(ifp)); 213 } 214 215 void 216 nd6_init(void) 217 { 218 219 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 220 rw_init(&V_nd6_lock, "nd6 list"); 221 222 LIST_INIT(&V_nd_prefix); 223 nd6_defrouter_init(); 224 225 /* Start timers. */ 226 callout_init(&V_nd6_slowtimo_ch, 0); 227 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 228 nd6_slowtimo, curvnet); 229 230 callout_init(&V_nd6_timer_ch, 0); 231 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 232 233 nd6_dad_init(); 234 if (IS_DEFAULT_VNET(curvnet)) { 235 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 236 NULL, EVENTHANDLER_PRI_ANY); 237 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 238 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 239 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 240 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 241 } 242 } 243 244 #ifdef VIMAGE 245 void 246 nd6_destroy() 247 { 248 249 callout_drain(&V_nd6_slowtimo_ch); 250 callout_drain(&V_nd6_timer_ch); 251 if (IS_DEFAULT_VNET(curvnet)) { 252 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 253 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 254 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 255 } 256 rw_destroy(&V_nd6_lock); 257 mtx_destroy(&V_nd6_onlink_mtx); 258 } 259 #endif 260 261 struct nd_ifinfo * 262 nd6_ifattach(struct ifnet *ifp) 263 { 264 struct nd_ifinfo *nd; 265 266 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 267 nd->initialized = 1; 268 269 nd->chlim = IPV6_DEFHLIM; 270 nd->basereachable = REACHABLE_TIME; 271 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 272 nd->retrans = RETRANS_TIMER; 273 274 nd->flags = ND6_IFF_PERFORMNUD; 275 276 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 277 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 278 * default regardless of the V_ip6_auto_linklocal configuration to 279 * give a reasonable default behavior. 280 */ 281 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 282 (ifp->if_flags & IFF_LOOPBACK)) 283 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 284 /* 285 * A loopback interface does not need to accept RTADV. 286 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 287 * default regardless of the V_ip6_accept_rtadv configuration to 288 * prevent the interface from accepting RA messages arrived 289 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 290 */ 291 if (V_ip6_accept_rtadv && 292 !(ifp->if_flags & IFF_LOOPBACK) && 293 (ifp->if_type != IFT_BRIDGE)) 294 nd->flags |= ND6_IFF_ACCEPT_RTADV; 295 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 296 nd->flags |= ND6_IFF_NO_RADR; 297 298 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 299 nd6_setmtu0(ifp, nd); 300 301 return nd; 302 } 303 304 void 305 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 306 { 307 struct epoch_tracker et; 308 struct ifaddr *ifa, *next; 309 310 NET_EPOCH_ENTER(et); 311 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 312 if (ifa->ifa_addr->sa_family != AF_INET6) 313 continue; 314 315 /* stop DAD processing */ 316 nd6_dad_stop(ifa); 317 } 318 NET_EPOCH_EXIT(et); 319 320 free(nd, M_IP6NDP); 321 } 322 323 /* 324 * Reset ND level link MTU. This function is called when the physical MTU 325 * changes, which means we might have to adjust the ND level MTU. 326 */ 327 void 328 nd6_setmtu(struct ifnet *ifp) 329 { 330 if (ifp->if_afdata[AF_INET6] == NULL) 331 return; 332 333 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 334 } 335 336 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 337 void 338 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 339 { 340 u_int32_t omaxmtu; 341 342 omaxmtu = ndi->maxmtu; 343 ndi->maxmtu = ifp->if_mtu; 344 345 /* 346 * Decreasing the interface MTU under IPV6 minimum MTU may cause 347 * undesirable situation. We thus notify the operator of the change 348 * explicitly. The check for omaxmtu is necessary to restrict the 349 * log to the case of changing the MTU, not initializing it. 350 */ 351 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 352 log(LOG_NOTICE, "nd6_setmtu0: " 353 "new link MTU on %s (%lu) is too small for IPv6\n", 354 if_name(ifp), (unsigned long)ndi->maxmtu); 355 } 356 357 if (ndi->maxmtu > V_in6_maxmtu) 358 in6_setmaxmtu(); /* check all interfaces just in case */ 359 360 } 361 362 void 363 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 364 { 365 366 bzero(ndopts, sizeof(*ndopts)); 367 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 368 ndopts->nd_opts_last 369 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 370 371 if (icmp6len == 0) { 372 ndopts->nd_opts_done = 1; 373 ndopts->nd_opts_search = NULL; 374 } 375 } 376 377 /* 378 * Take one ND option. 379 */ 380 struct nd_opt_hdr * 381 nd6_option(union nd_opts *ndopts) 382 { 383 struct nd_opt_hdr *nd_opt; 384 int olen; 385 386 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 387 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 388 __func__)); 389 if (ndopts->nd_opts_search == NULL) 390 return NULL; 391 if (ndopts->nd_opts_done) 392 return NULL; 393 394 nd_opt = ndopts->nd_opts_search; 395 396 /* make sure nd_opt_len is inside the buffer */ 397 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 398 bzero(ndopts, sizeof(*ndopts)); 399 return NULL; 400 } 401 402 olen = nd_opt->nd_opt_len << 3; 403 if (olen == 0) { 404 /* 405 * Message validation requires that all included 406 * options have a length that is greater than zero. 407 */ 408 bzero(ndopts, sizeof(*ndopts)); 409 return NULL; 410 } 411 412 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 413 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 414 /* option overruns the end of buffer, invalid */ 415 bzero(ndopts, sizeof(*ndopts)); 416 return NULL; 417 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 418 /* reached the end of options chain */ 419 ndopts->nd_opts_done = 1; 420 ndopts->nd_opts_search = NULL; 421 } 422 return nd_opt; 423 } 424 425 /* 426 * Parse multiple ND options. 427 * This function is much easier to use, for ND routines that do not need 428 * multiple options of the same type. 429 */ 430 int 431 nd6_options(union nd_opts *ndopts) 432 { 433 struct nd_opt_hdr *nd_opt; 434 int i = 0; 435 436 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 437 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 438 __func__)); 439 if (ndopts->nd_opts_search == NULL) 440 return 0; 441 442 while (1) { 443 nd_opt = nd6_option(ndopts); 444 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 445 /* 446 * Message validation requires that all included 447 * options have a length that is greater than zero. 448 */ 449 ICMP6STAT_INC(icp6s_nd_badopt); 450 bzero(ndopts, sizeof(*ndopts)); 451 return -1; 452 } 453 454 if (nd_opt == NULL) 455 goto skip1; 456 457 switch (nd_opt->nd_opt_type) { 458 case ND_OPT_SOURCE_LINKADDR: 459 case ND_OPT_TARGET_LINKADDR: 460 case ND_OPT_MTU: 461 case ND_OPT_REDIRECTED_HEADER: 462 case ND_OPT_NONCE: 463 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 464 nd6log((LOG_INFO, 465 "duplicated ND6 option found (type=%d)\n", 466 nd_opt->nd_opt_type)); 467 /* XXX bark? */ 468 } else { 469 ndopts->nd_opt_array[nd_opt->nd_opt_type] 470 = nd_opt; 471 } 472 break; 473 case ND_OPT_PREFIX_INFORMATION: 474 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 475 ndopts->nd_opt_array[nd_opt->nd_opt_type] 476 = nd_opt; 477 } 478 ndopts->nd_opts_pi_end = 479 (struct nd_opt_prefix_info *)nd_opt; 480 break; 481 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 482 case ND_OPT_RDNSS: /* RFC 6106 */ 483 case ND_OPT_DNSSL: /* RFC 6106 */ 484 /* 485 * Silently ignore options we know and do not care about 486 * in the kernel. 487 */ 488 break; 489 default: 490 /* 491 * Unknown options must be silently ignored, 492 * to accommodate future extension to the protocol. 493 */ 494 nd6log((LOG_DEBUG, 495 "nd6_options: unsupported option %d - " 496 "option ignored\n", nd_opt->nd_opt_type)); 497 } 498 499 skip1: 500 i++; 501 if (i > V_nd6_maxndopt) { 502 ICMP6STAT_INC(icp6s_nd_toomanyopt); 503 nd6log((LOG_INFO, "too many loop in nd opt\n")); 504 break; 505 } 506 507 if (ndopts->nd_opts_done) 508 break; 509 } 510 511 return 0; 512 } 513 514 /* 515 * ND6 timer routine to handle ND6 entries 516 */ 517 static void 518 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 519 { 520 int canceled; 521 522 LLE_WLOCK_ASSERT(ln); 523 524 if (tick < 0) { 525 ln->la_expire = 0; 526 ln->ln_ntick = 0; 527 canceled = callout_stop(&ln->lle_timer); 528 } else { 529 ln->la_expire = time_uptime + tick / hz; 530 LLE_ADDREF(ln); 531 if (tick > INT_MAX) { 532 ln->ln_ntick = tick - INT_MAX; 533 canceled = callout_reset(&ln->lle_timer, INT_MAX, 534 nd6_llinfo_timer, ln); 535 } else { 536 ln->ln_ntick = 0; 537 canceled = callout_reset(&ln->lle_timer, tick, 538 nd6_llinfo_timer, ln); 539 } 540 } 541 if (canceled > 0) 542 LLE_REMREF(ln); 543 } 544 545 /* 546 * Gets source address of the first packet in hold queue 547 * and stores it in @src. 548 * Returns pointer to @src (if hold queue is not empty) or NULL. 549 * 550 * Set noinline to be dtrace-friendly 551 */ 552 static __noinline struct in6_addr * 553 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 554 { 555 struct ip6_hdr hdr; 556 struct mbuf *m; 557 558 if (ln->la_hold == NULL) 559 return (NULL); 560 561 /* 562 * assume every packet in la_hold has the same IP header 563 */ 564 m = ln->la_hold; 565 if (sizeof(hdr) > m->m_len) 566 return (NULL); 567 568 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 569 *src = hdr.ip6_src; 570 571 return (src); 572 } 573 574 /* 575 * Checks if we need to switch from STALE state. 576 * 577 * RFC 4861 requires switching from STALE to DELAY state 578 * on first packet matching entry, waiting V_nd6_delay and 579 * transition to PROBE state (if upper layer confirmation was 580 * not received). 581 * 582 * This code performs a bit differently: 583 * On packet hit we don't change state (but desired state 584 * can be guessed by control plane). However, after V_nd6_delay 585 * seconds code will transition to PROBE state (so DELAY state 586 * is kinda skipped in most situations). 587 * 588 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 589 * we perform the following upon entering STALE state: 590 * 591 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 592 * if packet was transmitted at the start of given interval, we 593 * would be able to switch to PROBE state in V_nd6_delay seconds 594 * as user expects. 595 * 596 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 597 * lle in STALE state (remaining timer value stored in lle_remtime). 598 * 599 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 600 * seconds ago. 601 * 602 * Returns non-zero value if the entry is still STALE (storing 603 * the next timer interval in @pdelay). 604 * 605 * Returns zero value if original timer expired or we need to switch to 606 * PROBE (store that in @do_switch variable). 607 */ 608 static int 609 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 610 { 611 int nd_delay, nd_gctimer, r_skip_req; 612 time_t lle_hittime; 613 long delay; 614 615 *do_switch = 0; 616 nd_gctimer = V_nd6_gctimer; 617 nd_delay = V_nd6_delay; 618 619 LLE_REQ_LOCK(lle); 620 r_skip_req = lle->r_skip_req; 621 lle_hittime = lle->lle_hittime; 622 LLE_REQ_UNLOCK(lle); 623 624 if (r_skip_req > 0) { 625 626 /* 627 * Nonzero r_skip_req value was set upon entering 628 * STALE state. Since value was not changed, no 629 * packets were passed using this lle. Ask for 630 * timer reschedule and keep STALE state. 631 */ 632 delay = (long)(MIN(nd_gctimer, nd_delay)); 633 delay *= hz; 634 if (lle->lle_remtime > delay) 635 lle->lle_remtime -= delay; 636 else { 637 delay = lle->lle_remtime; 638 lle->lle_remtime = 0; 639 } 640 641 if (delay == 0) { 642 643 /* 644 * The original ng6_gctime timeout ended, 645 * no more rescheduling. 646 */ 647 return (0); 648 } 649 650 *pdelay = delay; 651 return (1); 652 } 653 654 /* 655 * Packet received. Verify timestamp 656 */ 657 delay = (long)(time_uptime - lle_hittime); 658 if (delay < nd_delay) { 659 660 /* 661 * V_nd6_delay still not passed since the first 662 * hit in STALE state. 663 * Reshedule timer and return. 664 */ 665 *pdelay = (long)(nd_delay - delay) * hz; 666 return (1); 667 } 668 669 /* Request switching to probe */ 670 *do_switch = 1; 671 return (0); 672 } 673 674 675 /* 676 * Switch @lle state to new state optionally arming timers. 677 * 678 * Set noinline to be dtrace-friendly 679 */ 680 __noinline void 681 nd6_llinfo_setstate(struct llentry *lle, int newstate) 682 { 683 struct ifnet *ifp; 684 int nd_gctimer, nd_delay; 685 long delay, remtime; 686 687 delay = 0; 688 remtime = 0; 689 690 switch (newstate) { 691 case ND6_LLINFO_INCOMPLETE: 692 ifp = lle->lle_tbl->llt_ifp; 693 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 694 break; 695 case ND6_LLINFO_REACHABLE: 696 if (!ND6_LLINFO_PERMANENT(lle)) { 697 ifp = lle->lle_tbl->llt_ifp; 698 delay = (long)ND_IFINFO(ifp)->reachable * hz; 699 } 700 break; 701 case ND6_LLINFO_STALE: 702 703 /* 704 * Notify fast path that we want to know if any packet 705 * is transmitted by setting r_skip_req. 706 */ 707 LLE_REQ_LOCK(lle); 708 lle->r_skip_req = 1; 709 LLE_REQ_UNLOCK(lle); 710 nd_delay = V_nd6_delay; 711 nd_gctimer = V_nd6_gctimer; 712 713 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 714 remtime = (long)nd_gctimer * hz - delay; 715 break; 716 case ND6_LLINFO_DELAY: 717 lle->la_asked = 0; 718 delay = (long)V_nd6_delay * hz; 719 break; 720 } 721 722 if (delay > 0) 723 nd6_llinfo_settimer_locked(lle, delay); 724 725 lle->lle_remtime = remtime; 726 lle->ln_state = newstate; 727 } 728 729 /* 730 * Timer-dependent part of nd state machine. 731 * 732 * Set noinline to be dtrace-friendly 733 */ 734 static __noinline void 735 nd6_llinfo_timer(void *arg) 736 { 737 struct epoch_tracker et; 738 struct llentry *ln; 739 struct in6_addr *dst, *pdst, *psrc, src; 740 struct ifnet *ifp; 741 struct nd_ifinfo *ndi; 742 int do_switch, send_ns; 743 long delay; 744 745 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 746 ln = (struct llentry *)arg; 747 ifp = lltable_get_ifp(ln->lle_tbl); 748 CURVNET_SET(ifp->if_vnet); 749 750 ND6_RLOCK(); 751 LLE_WLOCK(ln); 752 if (callout_pending(&ln->lle_timer)) { 753 /* 754 * Here we are a bit odd here in the treatment of 755 * active/pending. If the pending bit is set, it got 756 * rescheduled before I ran. The active 757 * bit we ignore, since if it was stopped 758 * in ll_tablefree() and was currently running 759 * it would have return 0 so the code would 760 * not have deleted it since the callout could 761 * not be stopped so we want to go through 762 * with the delete here now. If the callout 763 * was restarted, the pending bit will be back on and 764 * we just want to bail since the callout_reset would 765 * return 1 and our reference would have been removed 766 * by nd6_llinfo_settimer_locked above since canceled 767 * would have been 1. 768 */ 769 LLE_WUNLOCK(ln); 770 ND6_RUNLOCK(); 771 CURVNET_RESTORE(); 772 return; 773 } 774 NET_EPOCH_ENTER(et); 775 ndi = ND_IFINFO(ifp); 776 send_ns = 0; 777 dst = &ln->r_l3addr.addr6; 778 pdst = dst; 779 780 if (ln->ln_ntick > 0) { 781 if (ln->ln_ntick > INT_MAX) { 782 ln->ln_ntick -= INT_MAX; 783 nd6_llinfo_settimer_locked(ln, INT_MAX); 784 } else { 785 ln->ln_ntick = 0; 786 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 787 } 788 goto done; 789 } 790 791 if (ln->la_flags & LLE_STATIC) { 792 goto done; 793 } 794 795 if (ln->la_flags & LLE_DELETED) { 796 nd6_free(&ln, 0); 797 goto done; 798 } 799 800 switch (ln->ln_state) { 801 case ND6_LLINFO_INCOMPLETE: 802 if (ln->la_asked < V_nd6_mmaxtries) { 803 ln->la_asked++; 804 send_ns = 1; 805 /* Send NS to multicast address */ 806 pdst = NULL; 807 } else { 808 struct mbuf *m = ln->la_hold; 809 if (m) { 810 struct mbuf *m0; 811 812 /* 813 * assuming every packet in la_hold has the 814 * same IP header. Send error after unlock. 815 */ 816 m0 = m->m_nextpkt; 817 m->m_nextpkt = NULL; 818 ln->la_hold = m0; 819 clear_llinfo_pqueue(ln); 820 } 821 nd6_free(&ln, 0); 822 if (m != NULL) 823 icmp6_error2(m, ICMP6_DST_UNREACH, 824 ICMP6_DST_UNREACH_ADDR, 0, ifp); 825 } 826 break; 827 case ND6_LLINFO_REACHABLE: 828 if (!ND6_LLINFO_PERMANENT(ln)) 829 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 830 break; 831 832 case ND6_LLINFO_STALE: 833 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 834 835 /* 836 * No packet has used this entry and GC timeout 837 * has not been passed. Reshedule timer and 838 * return. 839 */ 840 nd6_llinfo_settimer_locked(ln, delay); 841 break; 842 } 843 844 if (do_switch == 0) { 845 846 /* 847 * GC timer has ended and entry hasn't been used. 848 * Run Garbage collector (RFC 4861, 5.3) 849 */ 850 if (!ND6_LLINFO_PERMANENT(ln)) 851 nd6_free(&ln, 1); 852 break; 853 } 854 855 /* Entry has been used AND delay timer has ended. */ 856 857 /* FALLTHROUGH */ 858 859 case ND6_LLINFO_DELAY: 860 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 861 /* We need NUD */ 862 ln->la_asked = 1; 863 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 864 send_ns = 1; 865 } else 866 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 867 break; 868 case ND6_LLINFO_PROBE: 869 if (ln->la_asked < V_nd6_umaxtries) { 870 ln->la_asked++; 871 send_ns = 1; 872 } else { 873 nd6_free(&ln, 0); 874 } 875 break; 876 default: 877 panic("%s: paths in a dark night can be confusing: %d", 878 __func__, ln->ln_state); 879 } 880 done: 881 if (ln != NULL) 882 ND6_RUNLOCK(); 883 if (send_ns != 0) { 884 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 885 psrc = nd6_llinfo_get_holdsrc(ln, &src); 886 LLE_FREE_LOCKED(ln); 887 ln = NULL; 888 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 889 } 890 891 if (ln != NULL) 892 LLE_FREE_LOCKED(ln); 893 NET_EPOCH_EXIT(et); 894 CURVNET_RESTORE(); 895 } 896 897 898 /* 899 * ND6 timer routine to expire default route list and prefix list 900 */ 901 void 902 nd6_timer(void *arg) 903 { 904 CURVNET_SET((struct vnet *) arg); 905 struct epoch_tracker et; 906 struct nd_prhead prl; 907 struct nd_prefix *pr, *npr; 908 struct ifnet *ifp; 909 struct in6_ifaddr *ia6, *nia6; 910 uint64_t genid; 911 912 LIST_INIT(&prl); 913 914 NET_EPOCH_ENTER(et); 915 nd6_defrouter_timer(); 916 917 /* 918 * expire interface addresses. 919 * in the past the loop was inside prefix expiry processing. 920 * However, from a stricter speci-confrmance standpoint, we should 921 * rather separate address lifetimes and prefix lifetimes. 922 * 923 * XXXRW: in6_ifaddrhead locking. 924 */ 925 addrloop: 926 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 927 /* check address lifetime */ 928 if (IFA6_IS_INVALID(ia6)) { 929 int regen = 0; 930 931 /* 932 * If the expiring address is temporary, try 933 * regenerating a new one. This would be useful when 934 * we suspended a laptop PC, then turned it on after a 935 * period that could invalidate all temporary 936 * addresses. Although we may have to restart the 937 * loop (see below), it must be after purging the 938 * address. Otherwise, we'd see an infinite loop of 939 * regeneration. 940 */ 941 if (V_ip6_use_tempaddr && 942 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 943 if (regen_tmpaddr(ia6) == 0) 944 regen = 1; 945 } 946 947 in6_purgeaddr(&ia6->ia_ifa); 948 949 if (regen) 950 goto addrloop; /* XXX: see below */ 951 } else if (IFA6_IS_DEPRECATED(ia6)) { 952 int oldflags = ia6->ia6_flags; 953 954 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 955 956 /* 957 * If a temporary address has just become deprecated, 958 * regenerate a new one if possible. 959 */ 960 if (V_ip6_use_tempaddr && 961 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 962 (oldflags & IN6_IFF_DEPRECATED) == 0) { 963 964 if (regen_tmpaddr(ia6) == 0) { 965 /* 966 * A new temporary address is 967 * generated. 968 * XXX: this means the address chain 969 * has changed while we are still in 970 * the loop. Although the change 971 * would not cause disaster (because 972 * it's not a deletion, but an 973 * addition,) we'd rather restart the 974 * loop just for safety. Or does this 975 * significantly reduce performance?? 976 */ 977 goto addrloop; 978 } 979 } 980 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 981 /* 982 * Schedule DAD for a tentative address. This happens 983 * if the interface was down or not running 984 * when the address was configured. 985 */ 986 int delay; 987 988 delay = arc4random() % 989 (MAX_RTR_SOLICITATION_DELAY * hz); 990 nd6_dad_start((struct ifaddr *)ia6, delay); 991 } else { 992 /* 993 * Check status of the interface. If it is down, 994 * mark the address as tentative for future DAD. 995 */ 996 ifp = ia6->ia_ifp; 997 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 998 ((ifp->if_flags & IFF_UP) == 0 || 999 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1000 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1001 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1002 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1003 } 1004 1005 /* 1006 * A new RA might have made a deprecated address 1007 * preferred. 1008 */ 1009 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1010 } 1011 } 1012 NET_EPOCH_EXIT(et); 1013 1014 ND6_WLOCK(); 1015 restart: 1016 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1017 /* 1018 * Expire prefixes. Since the pltime is only used for 1019 * autoconfigured addresses, pltime processing for prefixes is 1020 * not necessary. 1021 * 1022 * Only unlink after all derived addresses have expired. This 1023 * may not occur until two hours after the prefix has expired 1024 * per RFC 4862. If the prefix expires before its derived 1025 * addresses, mark it off-link. This will be done automatically 1026 * after unlinking if no address references remain. 1027 */ 1028 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1029 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1030 continue; 1031 1032 if (pr->ndpr_addrcnt == 0) { 1033 nd6_prefix_unlink(pr, &prl); 1034 continue; 1035 } 1036 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1037 genid = V_nd6_list_genid; 1038 nd6_prefix_ref(pr); 1039 ND6_WUNLOCK(); 1040 ND6_ONLINK_LOCK(); 1041 (void)nd6_prefix_offlink(pr); 1042 ND6_ONLINK_UNLOCK(); 1043 ND6_WLOCK(); 1044 nd6_prefix_rele(pr); 1045 if (genid != V_nd6_list_genid) 1046 goto restart; 1047 } 1048 } 1049 ND6_WUNLOCK(); 1050 1051 while ((pr = LIST_FIRST(&prl)) != NULL) { 1052 LIST_REMOVE(pr, ndpr_entry); 1053 nd6_prefix_del(pr); 1054 } 1055 1056 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1057 nd6_timer, curvnet); 1058 1059 CURVNET_RESTORE(); 1060 } 1061 1062 /* 1063 * ia6 - deprecated/invalidated temporary address 1064 */ 1065 static int 1066 regen_tmpaddr(struct in6_ifaddr *ia6) 1067 { 1068 struct ifaddr *ifa; 1069 struct ifnet *ifp; 1070 struct in6_ifaddr *public_ifa6 = NULL; 1071 1072 NET_EPOCH_ASSERT(); 1073 1074 ifp = ia6->ia_ifa.ifa_ifp; 1075 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1076 struct in6_ifaddr *it6; 1077 1078 if (ifa->ifa_addr->sa_family != AF_INET6) 1079 continue; 1080 1081 it6 = (struct in6_ifaddr *)ifa; 1082 1083 /* ignore no autoconf addresses. */ 1084 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1085 continue; 1086 1087 /* ignore autoconf addresses with different prefixes. */ 1088 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1089 continue; 1090 1091 /* 1092 * Now we are looking at an autoconf address with the same 1093 * prefix as ours. If the address is temporary and is still 1094 * preferred, do not create another one. It would be rare, but 1095 * could happen, for example, when we resume a laptop PC after 1096 * a long period. 1097 */ 1098 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1099 !IFA6_IS_DEPRECATED(it6)) { 1100 public_ifa6 = NULL; 1101 break; 1102 } 1103 1104 /* 1105 * This is a public autoconf address that has the same prefix 1106 * as ours. If it is preferred, keep it. We can't break the 1107 * loop here, because there may be a still-preferred temporary 1108 * address with the prefix. 1109 */ 1110 if (!IFA6_IS_DEPRECATED(it6)) 1111 public_ifa6 = it6; 1112 } 1113 if (public_ifa6 != NULL) 1114 ifa_ref(&public_ifa6->ia_ifa); 1115 1116 if (public_ifa6 != NULL) { 1117 int e; 1118 1119 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1120 ifa_free(&public_ifa6->ia_ifa); 1121 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1122 " tmp addr,errno=%d\n", e); 1123 return (-1); 1124 } 1125 ifa_free(&public_ifa6->ia_ifa); 1126 return (0); 1127 } 1128 1129 return (-1); 1130 } 1131 1132 /* 1133 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1134 * cache entries are freed in in6_domifdetach(). 1135 */ 1136 void 1137 nd6_purge(struct ifnet *ifp) 1138 { 1139 struct nd_prhead prl; 1140 struct nd_prefix *pr, *npr; 1141 1142 LIST_INIT(&prl); 1143 1144 /* Purge default router list entries toward ifp. */ 1145 nd6_defrouter_purge(ifp); 1146 1147 ND6_WLOCK(); 1148 /* 1149 * Remove prefixes on ifp. We should have already removed addresses on 1150 * this interface, so no addresses should be referencing these prefixes. 1151 */ 1152 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1153 if (pr->ndpr_ifp == ifp) 1154 nd6_prefix_unlink(pr, &prl); 1155 } 1156 ND6_WUNLOCK(); 1157 1158 /* Delete the unlinked prefix objects. */ 1159 while ((pr = LIST_FIRST(&prl)) != NULL) { 1160 LIST_REMOVE(pr, ndpr_entry); 1161 nd6_prefix_del(pr); 1162 } 1163 1164 /* cancel default outgoing interface setting */ 1165 if (V_nd6_defifindex == ifp->if_index) 1166 nd6_setdefaultiface(0); 1167 1168 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1169 /* Refresh default router list. */ 1170 defrouter_select_fib(ifp->if_fib); 1171 } 1172 } 1173 1174 /* 1175 * the caller acquires and releases the lock on the lltbls 1176 * Returns the llentry locked 1177 */ 1178 struct llentry * 1179 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1180 { 1181 struct sockaddr_in6 sin6; 1182 struct llentry *ln; 1183 1184 bzero(&sin6, sizeof(sin6)); 1185 sin6.sin6_len = sizeof(struct sockaddr_in6); 1186 sin6.sin6_family = AF_INET6; 1187 sin6.sin6_addr = *addr6; 1188 1189 IF_AFDATA_LOCK_ASSERT(ifp); 1190 1191 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1192 1193 return (ln); 1194 } 1195 1196 static struct llentry * 1197 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1198 { 1199 struct sockaddr_in6 sin6; 1200 struct llentry *ln; 1201 1202 bzero(&sin6, sizeof(sin6)); 1203 sin6.sin6_len = sizeof(struct sockaddr_in6); 1204 sin6.sin6_family = AF_INET6; 1205 sin6.sin6_addr = *addr6; 1206 1207 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1208 if (ln != NULL) 1209 ln->ln_state = ND6_LLINFO_NOSTATE; 1210 1211 return (ln); 1212 } 1213 1214 /* 1215 * Test whether a given IPv6 address is a neighbor or not, ignoring 1216 * the actual neighbor cache. The neighbor cache is ignored in order 1217 * to not reenter the routing code from within itself. 1218 */ 1219 static int 1220 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1221 { 1222 struct nd_prefix *pr; 1223 struct ifaddr *ifa; 1224 struct rt_addrinfo info; 1225 struct sockaddr_in6 rt_key; 1226 const struct sockaddr *dst6; 1227 uint64_t genid; 1228 int error, fibnum; 1229 1230 /* 1231 * A link-local address is always a neighbor. 1232 * XXX: a link does not necessarily specify a single interface. 1233 */ 1234 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1235 struct sockaddr_in6 sin6_copy; 1236 u_int32_t zone; 1237 1238 /* 1239 * We need sin6_copy since sa6_recoverscope() may modify the 1240 * content (XXX). 1241 */ 1242 sin6_copy = *addr; 1243 if (sa6_recoverscope(&sin6_copy)) 1244 return (0); /* XXX: should be impossible */ 1245 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1246 return (0); 1247 if (sin6_copy.sin6_scope_id == zone) 1248 return (1); 1249 else 1250 return (0); 1251 } 1252 1253 bzero(&rt_key, sizeof(rt_key)); 1254 bzero(&info, sizeof(info)); 1255 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1256 1257 /* 1258 * If the address matches one of our addresses, 1259 * it should be a neighbor. 1260 * If the address matches one of our on-link prefixes, it should be a 1261 * neighbor. 1262 */ 1263 ND6_RLOCK(); 1264 restart: 1265 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1266 if (pr->ndpr_ifp != ifp) 1267 continue; 1268 1269 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1270 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1271 1272 /* 1273 * We only need to check all FIBs if add_addr_allfibs 1274 * is unset. If set, checking any FIB will suffice. 1275 */ 1276 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1277 for (; fibnum < rt_numfibs; fibnum++) { 1278 genid = V_nd6_list_genid; 1279 ND6_RUNLOCK(); 1280 1281 /* 1282 * Restore length field before 1283 * retrying lookup 1284 */ 1285 rt_key.sin6_len = sizeof(rt_key); 1286 error = rib_lookup_info(fibnum, dst6, 0, 0, 1287 &info); 1288 1289 ND6_RLOCK(); 1290 if (genid != V_nd6_list_genid) 1291 goto restart; 1292 if (error == 0) 1293 break; 1294 } 1295 if (error != 0) 1296 continue; 1297 1298 /* 1299 * This is the case where multiple interfaces 1300 * have the same prefix, but only one is installed 1301 * into the routing table and that prefix entry 1302 * is not the one being examined here. In the case 1303 * where RADIX_MPATH is enabled, multiple route 1304 * entries (of the same rt_key value) will be 1305 * installed because the interface addresses all 1306 * differ. 1307 */ 1308 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1309 &rt_key.sin6_addr)) 1310 continue; 1311 } 1312 1313 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1314 &addr->sin6_addr, &pr->ndpr_mask)) { 1315 ND6_RUNLOCK(); 1316 return (1); 1317 } 1318 } 1319 ND6_RUNLOCK(); 1320 1321 /* 1322 * If the address is assigned on the node of the other side of 1323 * a p2p interface, the address should be a neighbor. 1324 */ 1325 if (ifp->if_flags & IFF_POINTOPOINT) { 1326 struct epoch_tracker et; 1327 1328 NET_EPOCH_ENTER(et); 1329 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1330 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1331 continue; 1332 if (ifa->ifa_dstaddr != NULL && 1333 sa_equal(addr, ifa->ifa_dstaddr)) { 1334 NET_EPOCH_EXIT(et); 1335 return 1; 1336 } 1337 } 1338 NET_EPOCH_EXIT(et); 1339 } 1340 1341 /* 1342 * If the default router list is empty, all addresses are regarded 1343 * as on-link, and thus, as a neighbor. 1344 */ 1345 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1346 nd6_defrouter_list_empty() && 1347 V_nd6_defifindex == ifp->if_index) { 1348 return (1); 1349 } 1350 1351 return (0); 1352 } 1353 1354 1355 /* 1356 * Detect if a given IPv6 address identifies a neighbor on a given link. 1357 * XXX: should take care of the destination of a p2p link? 1358 */ 1359 int 1360 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1361 { 1362 struct llentry *lle; 1363 int rc = 0; 1364 1365 NET_EPOCH_ASSERT(); 1366 IF_AFDATA_UNLOCK_ASSERT(ifp); 1367 if (nd6_is_new_addr_neighbor(addr, ifp)) 1368 return (1); 1369 1370 /* 1371 * Even if the address matches none of our addresses, it might be 1372 * in the neighbor cache. 1373 */ 1374 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1375 LLE_RUNLOCK(lle); 1376 rc = 1; 1377 } 1378 return (rc); 1379 } 1380 1381 /* 1382 * Free an nd6 llinfo entry. 1383 * Since the function would cause significant changes in the kernel, DO NOT 1384 * make it global, unless you have a strong reason for the change, and are sure 1385 * that the change is safe. 1386 * 1387 * Set noinline to be dtrace-friendly 1388 */ 1389 static __noinline void 1390 nd6_free(struct llentry **lnp, int gc) 1391 { 1392 struct ifnet *ifp; 1393 struct llentry *ln; 1394 struct nd_defrouter *dr; 1395 1396 ln = *lnp; 1397 *lnp = NULL; 1398 1399 LLE_WLOCK_ASSERT(ln); 1400 ND6_RLOCK_ASSERT(); 1401 1402 ifp = lltable_get_ifp(ln->lle_tbl); 1403 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1404 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1405 else 1406 dr = NULL; 1407 ND6_RUNLOCK(); 1408 1409 if ((ln->la_flags & LLE_DELETED) == 0) 1410 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1411 1412 /* 1413 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1414 * even though it is not harmful, it was not really necessary. 1415 */ 1416 1417 /* cancel timer */ 1418 nd6_llinfo_settimer_locked(ln, -1); 1419 1420 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1421 if (dr != NULL && dr->expire && 1422 ln->ln_state == ND6_LLINFO_STALE && gc) { 1423 /* 1424 * If the reason for the deletion is just garbage 1425 * collection, and the neighbor is an active default 1426 * router, do not delete it. Instead, reset the GC 1427 * timer using the router's lifetime. 1428 * Simply deleting the entry would affect default 1429 * router selection, which is not necessarily a good 1430 * thing, especially when we're using router preference 1431 * values. 1432 * XXX: the check for ln_state would be redundant, 1433 * but we intentionally keep it just in case. 1434 */ 1435 if (dr->expire > time_uptime) 1436 nd6_llinfo_settimer_locked(ln, 1437 (dr->expire - time_uptime) * hz); 1438 else 1439 nd6_llinfo_settimer_locked(ln, 1440 (long)V_nd6_gctimer * hz); 1441 1442 LLE_REMREF(ln); 1443 LLE_WUNLOCK(ln); 1444 defrouter_rele(dr); 1445 return; 1446 } 1447 1448 if (dr) { 1449 /* 1450 * Unreachablity of a router might affect the default 1451 * router selection and on-link detection of advertised 1452 * prefixes. 1453 */ 1454 1455 /* 1456 * Temporarily fake the state to choose a new default 1457 * router and to perform on-link determination of 1458 * prefixes correctly. 1459 * Below the state will be set correctly, 1460 * or the entry itself will be deleted. 1461 */ 1462 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1463 } 1464 1465 if (ln->ln_router || dr) { 1466 1467 /* 1468 * We need to unlock to avoid a LOR with rt6_flush() with the 1469 * rnh and for the calls to pfxlist_onlink_check() and 1470 * defrouter_select_fib() in the block further down for calls 1471 * into nd6_lookup(). We still hold a ref. 1472 */ 1473 LLE_WUNLOCK(ln); 1474 1475 /* 1476 * rt6_flush must be called whether or not the neighbor 1477 * is in the Default Router List. 1478 * See a corresponding comment in nd6_na_input(). 1479 */ 1480 rt6_flush(&ln->r_l3addr.addr6, ifp); 1481 } 1482 1483 if (dr) { 1484 /* 1485 * Since defrouter_select_fib() does not affect the 1486 * on-link determination and MIP6 needs the check 1487 * before the default router selection, we perform 1488 * the check now. 1489 */ 1490 pfxlist_onlink_check(); 1491 1492 /* 1493 * Refresh default router list. 1494 */ 1495 defrouter_select_fib(dr->ifp->if_fib); 1496 } 1497 1498 /* 1499 * If this entry was added by an on-link redirect, remove the 1500 * corresponding host route. 1501 */ 1502 if (ln->la_flags & LLE_REDIRECT) 1503 nd6_free_redirect(ln); 1504 1505 if (ln->ln_router || dr) 1506 LLE_WLOCK(ln); 1507 } 1508 1509 /* 1510 * Save to unlock. We still hold an extra reference and will not 1511 * free(9) in llentry_free() if someone else holds one as well. 1512 */ 1513 LLE_WUNLOCK(ln); 1514 IF_AFDATA_LOCK(ifp); 1515 LLE_WLOCK(ln); 1516 /* Guard against race with other llentry_free(). */ 1517 if (ln->la_flags & LLE_LINKED) { 1518 /* Remove callout reference */ 1519 LLE_REMREF(ln); 1520 lltable_unlink_entry(ln->lle_tbl, ln); 1521 } 1522 IF_AFDATA_UNLOCK(ifp); 1523 1524 llentry_free(ln); 1525 if (dr != NULL) 1526 defrouter_rele(dr); 1527 } 1528 1529 static int 1530 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1531 { 1532 1533 if (nh->nh_flags & NHF_REDIRECT) 1534 return (1); 1535 1536 return (0); 1537 } 1538 1539 /* 1540 * Remove the rtentry for the given llentry, 1541 * both of which were installed by a redirect. 1542 */ 1543 static void 1544 nd6_free_redirect(const struct llentry *ln) 1545 { 1546 int fibnum; 1547 struct sockaddr_in6 sin6; 1548 struct rt_addrinfo info; 1549 1550 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1551 memset(&info, 0, sizeof(info)); 1552 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1553 info.rti_filter = nd6_isdynrte; 1554 1555 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1556 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1557 } 1558 1559 /* 1560 * Rejuvenate this function for routing operations related 1561 * processing. 1562 */ 1563 void 1564 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1565 { 1566 struct sockaddr_in6 *gateway; 1567 struct nd_defrouter *dr; 1568 struct ifnet *ifp; 1569 1570 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1571 ifp = rt->rt_ifp; 1572 1573 switch (req) { 1574 case RTM_ADD: 1575 break; 1576 1577 case RTM_DELETE: 1578 if (!ifp) 1579 return; 1580 /* 1581 * Only indirect routes are interesting. 1582 */ 1583 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1584 return; 1585 /* 1586 * check for default route 1587 */ 1588 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1589 &SIN6(rt_key(rt))->sin6_addr)) { 1590 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1591 if (dr != NULL) { 1592 dr->installed = 0; 1593 defrouter_rele(dr); 1594 } 1595 } 1596 break; 1597 } 1598 } 1599 1600 1601 int 1602 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1603 { 1604 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1605 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1606 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1607 struct epoch_tracker et; 1608 int error = 0; 1609 1610 if (ifp->if_afdata[AF_INET6] == NULL) 1611 return (EPFNOSUPPORT); 1612 switch (cmd) { 1613 case OSIOCGIFINFO_IN6: 1614 #define ND ndi->ndi 1615 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1616 bzero(&ND, sizeof(ND)); 1617 ND.linkmtu = IN6_LINKMTU(ifp); 1618 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1619 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1620 ND.reachable = ND_IFINFO(ifp)->reachable; 1621 ND.retrans = ND_IFINFO(ifp)->retrans; 1622 ND.flags = ND_IFINFO(ifp)->flags; 1623 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1624 ND.chlim = ND_IFINFO(ifp)->chlim; 1625 break; 1626 case SIOCGIFINFO_IN6: 1627 ND = *ND_IFINFO(ifp); 1628 break; 1629 case SIOCSIFINFO_IN6: 1630 /* 1631 * used to change host variables from userland. 1632 * intended for a use on router to reflect RA configurations. 1633 */ 1634 /* 0 means 'unspecified' */ 1635 if (ND.linkmtu != 0) { 1636 if (ND.linkmtu < IPV6_MMTU || 1637 ND.linkmtu > IN6_LINKMTU(ifp)) { 1638 error = EINVAL; 1639 break; 1640 } 1641 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1642 } 1643 1644 if (ND.basereachable != 0) { 1645 int obasereachable = ND_IFINFO(ifp)->basereachable; 1646 1647 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1648 if (ND.basereachable != obasereachable) 1649 ND_IFINFO(ifp)->reachable = 1650 ND_COMPUTE_RTIME(ND.basereachable); 1651 } 1652 if (ND.retrans != 0) 1653 ND_IFINFO(ifp)->retrans = ND.retrans; 1654 if (ND.chlim != 0) 1655 ND_IFINFO(ifp)->chlim = ND.chlim; 1656 /* FALLTHROUGH */ 1657 case SIOCSIFINFO_FLAGS: 1658 { 1659 struct ifaddr *ifa; 1660 struct in6_ifaddr *ia; 1661 1662 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1663 !(ND.flags & ND6_IFF_IFDISABLED)) { 1664 /* ifdisabled 1->0 transision */ 1665 1666 /* 1667 * If the interface is marked as ND6_IFF_IFDISABLED and 1668 * has an link-local address with IN6_IFF_DUPLICATED, 1669 * do not clear ND6_IFF_IFDISABLED. 1670 * See RFC 4862, Section 5.4.5. 1671 */ 1672 NET_EPOCH_ENTER(et); 1673 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1674 if (ifa->ifa_addr->sa_family != AF_INET6) 1675 continue; 1676 ia = (struct in6_ifaddr *)ifa; 1677 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1678 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1679 break; 1680 } 1681 NET_EPOCH_EXIT(et); 1682 1683 if (ifa != NULL) { 1684 /* LLA is duplicated. */ 1685 ND.flags |= ND6_IFF_IFDISABLED; 1686 log(LOG_ERR, "Cannot enable an interface" 1687 " with a link-local address marked" 1688 " duplicate.\n"); 1689 } else { 1690 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1691 if (ifp->if_flags & IFF_UP) 1692 in6_if_up(ifp); 1693 } 1694 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1695 (ND.flags & ND6_IFF_IFDISABLED)) { 1696 /* ifdisabled 0->1 transision */ 1697 /* Mark all IPv6 address as tentative. */ 1698 1699 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1700 if (V_ip6_dad_count > 0 && 1701 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1702 NET_EPOCH_ENTER(et); 1703 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1704 ifa_link) { 1705 if (ifa->ifa_addr->sa_family != 1706 AF_INET6) 1707 continue; 1708 ia = (struct in6_ifaddr *)ifa; 1709 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1710 } 1711 NET_EPOCH_EXIT(et); 1712 } 1713 } 1714 1715 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1716 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1717 /* auto_linklocal 0->1 transision */ 1718 1719 /* If no link-local address on ifp, configure */ 1720 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1721 in6_ifattach(ifp, NULL); 1722 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1723 ifp->if_flags & IFF_UP) { 1724 /* 1725 * When the IF already has 1726 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1727 * address is assigned, and IFF_UP, try to 1728 * assign one. 1729 */ 1730 NET_EPOCH_ENTER(et); 1731 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1732 ifa_link) { 1733 if (ifa->ifa_addr->sa_family != 1734 AF_INET6) 1735 continue; 1736 ia = (struct in6_ifaddr *)ifa; 1737 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1738 break; 1739 } 1740 NET_EPOCH_EXIT(et); 1741 if (ifa != NULL) 1742 /* No LLA is configured. */ 1743 in6_ifattach(ifp, NULL); 1744 } 1745 } 1746 ND_IFINFO(ifp)->flags = ND.flags; 1747 break; 1748 } 1749 #undef ND 1750 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1751 /* sync kernel routing table with the default router list */ 1752 defrouter_reset(); 1753 defrouter_select_fib(RT_ALL_FIBS); 1754 break; 1755 case SIOCSPFXFLUSH_IN6: 1756 { 1757 /* flush all the prefix advertised by routers */ 1758 struct in6_ifaddr *ia, *ia_next; 1759 struct nd_prefix *pr, *next; 1760 struct nd_prhead prl; 1761 1762 LIST_INIT(&prl); 1763 1764 ND6_WLOCK(); 1765 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1766 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1767 continue; /* XXX */ 1768 nd6_prefix_unlink(pr, &prl); 1769 } 1770 ND6_WUNLOCK(); 1771 1772 while ((pr = LIST_FIRST(&prl)) != NULL) { 1773 LIST_REMOVE(pr, ndpr_entry); 1774 /* XXXRW: in6_ifaddrhead locking. */ 1775 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1776 ia_next) { 1777 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1778 continue; 1779 1780 if (ia->ia6_ndpr == pr) 1781 in6_purgeaddr(&ia->ia_ifa); 1782 } 1783 nd6_prefix_del(pr); 1784 } 1785 break; 1786 } 1787 case SIOCSRTRFLUSH_IN6: 1788 { 1789 /* flush all the default routers */ 1790 1791 defrouter_reset(); 1792 nd6_defrouter_flush_all(); 1793 defrouter_select_fib(RT_ALL_FIBS); 1794 break; 1795 } 1796 case SIOCGNBRINFO_IN6: 1797 { 1798 struct llentry *ln; 1799 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1800 1801 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1802 return (error); 1803 1804 NET_EPOCH_ENTER(et); 1805 ln = nd6_lookup(&nb_addr, 0, ifp); 1806 NET_EPOCH_EXIT(et); 1807 1808 if (ln == NULL) { 1809 error = EINVAL; 1810 break; 1811 } 1812 nbi->state = ln->ln_state; 1813 nbi->asked = ln->la_asked; 1814 nbi->isrouter = ln->ln_router; 1815 if (ln->la_expire == 0) 1816 nbi->expire = 0; 1817 else 1818 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1819 (time_second - time_uptime); 1820 LLE_RUNLOCK(ln); 1821 break; 1822 } 1823 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1824 ndif->ifindex = V_nd6_defifindex; 1825 break; 1826 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1827 return (nd6_setdefaultiface(ndif->ifindex)); 1828 } 1829 return (error); 1830 } 1831 1832 /* 1833 * Calculates new isRouter value based on provided parameters and 1834 * returns it. 1835 */ 1836 static int 1837 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1838 int ln_router) 1839 { 1840 1841 /* 1842 * ICMP6 type dependent behavior. 1843 * 1844 * NS: clear IsRouter if new entry 1845 * RS: clear IsRouter 1846 * RA: set IsRouter if there's lladdr 1847 * redir: clear IsRouter if new entry 1848 * 1849 * RA case, (1): 1850 * The spec says that we must set IsRouter in the following cases: 1851 * - If lladdr exist, set IsRouter. This means (1-5). 1852 * - If it is old entry (!newentry), set IsRouter. This means (7). 1853 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1854 * A quetion arises for (1) case. (1) case has no lladdr in the 1855 * neighbor cache, this is similar to (6). 1856 * This case is rare but we figured that we MUST NOT set IsRouter. 1857 * 1858 * is_new old_addr new_addr NS RS RA redir 1859 * D R 1860 * 0 n n (1) c ? s 1861 * 0 y n (2) c s s 1862 * 0 n y (3) c s s 1863 * 0 y y (4) c s s 1864 * 0 y y (5) c s s 1865 * 1 -- n (6) c c c s 1866 * 1 -- y (7) c c s c s 1867 * 1868 * (c=clear s=set) 1869 */ 1870 switch (type & 0xff) { 1871 case ND_NEIGHBOR_SOLICIT: 1872 /* 1873 * New entry must have is_router flag cleared. 1874 */ 1875 if (is_new) /* (6-7) */ 1876 ln_router = 0; 1877 break; 1878 case ND_REDIRECT: 1879 /* 1880 * If the icmp is a redirect to a better router, always set the 1881 * is_router flag. Otherwise, if the entry is newly created, 1882 * clear the flag. [RFC 2461, sec 8.3] 1883 */ 1884 if (code == ND_REDIRECT_ROUTER) 1885 ln_router = 1; 1886 else { 1887 if (is_new) /* (6-7) */ 1888 ln_router = 0; 1889 } 1890 break; 1891 case ND_ROUTER_SOLICIT: 1892 /* 1893 * is_router flag must always be cleared. 1894 */ 1895 ln_router = 0; 1896 break; 1897 case ND_ROUTER_ADVERT: 1898 /* 1899 * Mark an entry with lladdr as a router. 1900 */ 1901 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1902 (is_new && new_addr)) { /* (7) */ 1903 ln_router = 1; 1904 } 1905 break; 1906 } 1907 1908 return (ln_router); 1909 } 1910 1911 /* 1912 * Create neighbor cache entry and cache link-layer address, 1913 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1914 * 1915 * type - ICMP6 type 1916 * code - type dependent information 1917 * 1918 */ 1919 void 1920 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1921 int lladdrlen, int type, int code) 1922 { 1923 struct llentry *ln = NULL, *ln_tmp; 1924 int is_newentry; 1925 int do_update; 1926 int olladdr; 1927 int llchange; 1928 int flags; 1929 uint16_t router = 0; 1930 struct sockaddr_in6 sin6; 1931 struct mbuf *chain = NULL; 1932 u_char linkhdr[LLE_MAX_LINKHDR]; 1933 size_t linkhdrsize; 1934 int lladdr_off; 1935 1936 NET_EPOCH_ASSERT(); 1937 IF_AFDATA_UNLOCK_ASSERT(ifp); 1938 1939 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1940 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1941 1942 /* nothing must be updated for unspecified address */ 1943 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1944 return; 1945 1946 /* 1947 * Validation about ifp->if_addrlen and lladdrlen must be done in 1948 * the caller. 1949 * 1950 * XXX If the link does not have link-layer adderss, what should 1951 * we do? (ifp->if_addrlen == 0) 1952 * Spec says nothing in sections for RA, RS and NA. There's small 1953 * description on it in NS section (RFC 2461 7.2.3). 1954 */ 1955 flags = lladdr ? LLE_EXCLUSIVE : 0; 1956 ln = nd6_lookup(from, flags, ifp); 1957 is_newentry = 0; 1958 if (ln == NULL) { 1959 flags |= LLE_EXCLUSIVE; 1960 ln = nd6_alloc(from, 0, ifp); 1961 if (ln == NULL) 1962 return; 1963 1964 /* 1965 * Since we already know all the data for the new entry, 1966 * fill it before insertion. 1967 */ 1968 if (lladdr != NULL) { 1969 linkhdrsize = sizeof(linkhdr); 1970 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1971 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1972 return; 1973 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1974 lladdr_off); 1975 } 1976 1977 IF_AFDATA_WLOCK(ifp); 1978 LLE_WLOCK(ln); 1979 /* Prefer any existing lle over newly-created one */ 1980 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1981 if (ln_tmp == NULL) 1982 lltable_link_entry(LLTABLE6(ifp), ln); 1983 IF_AFDATA_WUNLOCK(ifp); 1984 if (ln_tmp == NULL) { 1985 /* No existing lle, mark as new entry (6,7) */ 1986 is_newentry = 1; 1987 if (lladdr != NULL) { /* (7) */ 1988 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1989 EVENTHANDLER_INVOKE(lle_event, ln, 1990 LLENTRY_RESOLVED); 1991 } 1992 } else { 1993 lltable_free_entry(LLTABLE6(ifp), ln); 1994 ln = ln_tmp; 1995 ln_tmp = NULL; 1996 } 1997 } 1998 /* do nothing if static ndp is set */ 1999 if ((ln->la_flags & LLE_STATIC)) { 2000 if (flags & LLE_EXCLUSIVE) 2001 LLE_WUNLOCK(ln); 2002 else 2003 LLE_RUNLOCK(ln); 2004 return; 2005 } 2006 2007 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2008 if (olladdr && lladdr) { 2009 llchange = bcmp(lladdr, ln->ll_addr, 2010 ifp->if_addrlen); 2011 } else if (!olladdr && lladdr) 2012 llchange = 1; 2013 else 2014 llchange = 0; 2015 2016 /* 2017 * newentry olladdr lladdr llchange (*=record) 2018 * 0 n n -- (1) 2019 * 0 y n -- (2) 2020 * 0 n y y (3) * STALE 2021 * 0 y y n (4) * 2022 * 0 y y y (5) * STALE 2023 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2024 * 1 -- y -- (7) * STALE 2025 */ 2026 2027 do_update = 0; 2028 if (is_newentry == 0 && llchange != 0) { 2029 do_update = 1; /* (3,5) */ 2030 2031 /* 2032 * Record source link-layer address 2033 * XXX is it dependent to ifp->if_type? 2034 */ 2035 linkhdrsize = sizeof(linkhdr); 2036 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2037 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2038 return; 2039 2040 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2041 lladdr_off) == 0) { 2042 /* Entry was deleted */ 2043 return; 2044 } 2045 2046 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2047 2048 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2049 2050 if (ln->la_hold != NULL) 2051 nd6_grab_holdchain(ln, &chain, &sin6); 2052 } 2053 2054 /* Calculates new router status */ 2055 router = nd6_is_router(type, code, is_newentry, olladdr, 2056 lladdr != NULL ? 1 : 0, ln->ln_router); 2057 2058 ln->ln_router = router; 2059 /* Mark non-router redirects with special flag */ 2060 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2061 ln->la_flags |= LLE_REDIRECT; 2062 2063 if (flags & LLE_EXCLUSIVE) 2064 LLE_WUNLOCK(ln); 2065 else 2066 LLE_RUNLOCK(ln); 2067 2068 if (chain != NULL) 2069 nd6_flush_holdchain(ifp, chain, &sin6); 2070 2071 /* 2072 * When the link-layer address of a router changes, select the 2073 * best router again. In particular, when the neighbor entry is newly 2074 * created, it might affect the selection policy. 2075 * Question: can we restrict the first condition to the "is_newentry" 2076 * case? 2077 * XXX: when we hear an RA from a new router with the link-layer 2078 * address option, defrouter_select_fib() is called twice, since 2079 * defrtrlist_update called the function as well. However, I believe 2080 * we can compromise the overhead, since it only happens the first 2081 * time. 2082 * XXX: although defrouter_select_fib() should not have a bad effect 2083 * for those are not autoconfigured hosts, we explicitly avoid such 2084 * cases for safety. 2085 */ 2086 if ((do_update || is_newentry) && router && 2087 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2088 /* 2089 * guaranteed recursion 2090 */ 2091 defrouter_select_fib(ifp->if_fib); 2092 } 2093 } 2094 2095 static void 2096 nd6_slowtimo(void *arg) 2097 { 2098 struct epoch_tracker et; 2099 CURVNET_SET((struct vnet *) arg); 2100 struct nd_ifinfo *nd6if; 2101 struct ifnet *ifp; 2102 2103 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2104 nd6_slowtimo, curvnet); 2105 NET_EPOCH_ENTER(et); 2106 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2107 if (ifp->if_afdata[AF_INET6] == NULL) 2108 continue; 2109 nd6if = ND_IFINFO(ifp); 2110 if (nd6if->basereachable && /* already initialized */ 2111 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2112 /* 2113 * Since reachable time rarely changes by router 2114 * advertisements, we SHOULD insure that a new random 2115 * value gets recomputed at least once every few hours. 2116 * (RFC 2461, 6.3.4) 2117 */ 2118 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2119 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2120 } 2121 } 2122 NET_EPOCH_EXIT(et); 2123 CURVNET_RESTORE(); 2124 } 2125 2126 void 2127 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2128 struct sockaddr_in6 *sin6) 2129 { 2130 2131 LLE_WLOCK_ASSERT(ln); 2132 2133 *chain = ln->la_hold; 2134 ln->la_hold = NULL; 2135 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2136 2137 if (ln->ln_state == ND6_LLINFO_STALE) { 2138 2139 /* 2140 * The first time we send a packet to a 2141 * neighbor whose entry is STALE, we have 2142 * to change the state to DELAY and a sets 2143 * a timer to expire in DELAY_FIRST_PROBE_TIME 2144 * seconds to ensure do neighbor unreachability 2145 * detection on expiration. 2146 * (RFC 2461 7.3.3) 2147 */ 2148 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2149 } 2150 } 2151 2152 int 2153 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2154 struct sockaddr_in6 *dst, struct route *ro) 2155 { 2156 int error; 2157 int ip6len; 2158 struct ip6_hdr *ip6; 2159 struct m_tag *mtag; 2160 2161 #ifdef MAC 2162 mac_netinet6_nd6_send(ifp, m); 2163 #endif 2164 2165 /* 2166 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2167 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2168 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2169 * to be diverted to user space. When re-injected into the kernel, 2170 * send_output() will directly dispatch them to the outgoing interface. 2171 */ 2172 if (send_sendso_input_hook != NULL) { 2173 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2174 if (mtag != NULL) { 2175 ip6 = mtod(m, struct ip6_hdr *); 2176 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2177 /* Use the SEND socket */ 2178 error = send_sendso_input_hook(m, ifp, SND_OUT, 2179 ip6len); 2180 /* -1 == no app on SEND socket */ 2181 if (error == 0 || error != -1) 2182 return (error); 2183 } 2184 } 2185 2186 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2187 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2188 mtod(m, struct ip6_hdr *)); 2189 2190 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2191 origifp = ifp; 2192 2193 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2194 return (error); 2195 } 2196 2197 /* 2198 * Lookup link headerfor @sa_dst address. Stores found 2199 * data in @desten buffer. Copy of lle ln_flags can be also 2200 * saved in @pflags if @pflags is non-NULL. 2201 * 2202 * If destination LLE does not exists or lle state modification 2203 * is required, call "slow" version. 2204 * 2205 * Return values: 2206 * - 0 on success (address copied to buffer). 2207 * - EWOULDBLOCK (no local error, but address is still unresolved) 2208 * - other errors (alloc failure, etc) 2209 */ 2210 int 2211 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2212 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2213 struct llentry **plle) 2214 { 2215 struct llentry *ln = NULL; 2216 const struct sockaddr_in6 *dst6; 2217 2218 NET_EPOCH_ASSERT(); 2219 2220 if (pflags != NULL) 2221 *pflags = 0; 2222 2223 dst6 = (const struct sockaddr_in6 *)sa_dst; 2224 2225 /* discard the packet if IPv6 operation is disabled on the interface */ 2226 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2227 m_freem(m); 2228 return (ENETDOWN); /* better error? */ 2229 } 2230 2231 if (m != NULL && m->m_flags & M_MCAST) { 2232 switch (ifp->if_type) { 2233 case IFT_ETHER: 2234 case IFT_L2VLAN: 2235 case IFT_BRIDGE: 2236 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2237 desten); 2238 return (0); 2239 default: 2240 m_freem(m); 2241 return (EAFNOSUPPORT); 2242 } 2243 } 2244 2245 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2246 ifp); 2247 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2248 /* Entry found, let's copy lle info */ 2249 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2250 if (pflags != NULL) 2251 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2252 /* Check if we have feedback request from nd6 timer */ 2253 if (ln->r_skip_req != 0) { 2254 LLE_REQ_LOCK(ln); 2255 ln->r_skip_req = 0; /* Notify that entry was used */ 2256 ln->lle_hittime = time_uptime; 2257 LLE_REQ_UNLOCK(ln); 2258 } 2259 if (plle) { 2260 LLE_ADDREF(ln); 2261 *plle = ln; 2262 LLE_WUNLOCK(ln); 2263 } 2264 return (0); 2265 } else if (plle && ln) 2266 LLE_WUNLOCK(ln); 2267 2268 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2269 } 2270 2271 2272 /* 2273 * Do L2 address resolution for @sa_dst address. Stores found 2274 * address in @desten buffer. Copy of lle ln_flags can be also 2275 * saved in @pflags if @pflags is non-NULL. 2276 * 2277 * Heavy version. 2278 * Function assume that destination LLE does not exist, 2279 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2280 * 2281 * Set noinline to be dtrace-friendly 2282 */ 2283 static __noinline int 2284 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2285 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2286 struct llentry **plle) 2287 { 2288 struct llentry *lle = NULL, *lle_tmp; 2289 struct in6_addr *psrc, src; 2290 int send_ns, ll_len; 2291 char *lladdr; 2292 2293 NET_EPOCH_ASSERT(); 2294 2295 /* 2296 * Address resolution or Neighbor Unreachability Detection 2297 * for the next hop. 2298 * At this point, the destination of the packet must be a unicast 2299 * or an anycast address(i.e. not a multicast). 2300 */ 2301 if (lle == NULL) { 2302 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2303 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2304 /* 2305 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2306 * the condition below is not very efficient. But we believe 2307 * it is tolerable, because this should be a rare case. 2308 */ 2309 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2310 if (lle == NULL) { 2311 char ip6buf[INET6_ADDRSTRLEN]; 2312 log(LOG_DEBUG, 2313 "nd6_output: can't allocate llinfo for %s " 2314 "(ln=%p)\n", 2315 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2316 m_freem(m); 2317 return (ENOBUFS); 2318 } 2319 2320 IF_AFDATA_WLOCK(ifp); 2321 LLE_WLOCK(lle); 2322 /* Prefer any existing entry over newly-created one */ 2323 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2324 if (lle_tmp == NULL) 2325 lltable_link_entry(LLTABLE6(ifp), lle); 2326 IF_AFDATA_WUNLOCK(ifp); 2327 if (lle_tmp != NULL) { 2328 lltable_free_entry(LLTABLE6(ifp), lle); 2329 lle = lle_tmp; 2330 lle_tmp = NULL; 2331 } 2332 } 2333 } 2334 if (lle == NULL) { 2335 m_freem(m); 2336 return (ENOBUFS); 2337 } 2338 2339 LLE_WLOCK_ASSERT(lle); 2340 2341 /* 2342 * The first time we send a packet to a neighbor whose entry is 2343 * STALE, we have to change the state to DELAY and a sets a timer to 2344 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2345 * neighbor unreachability detection on expiration. 2346 * (RFC 2461 7.3.3) 2347 */ 2348 if (lle->ln_state == ND6_LLINFO_STALE) 2349 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2350 2351 /* 2352 * If the neighbor cache entry has a state other than INCOMPLETE 2353 * (i.e. its link-layer address is already resolved), just 2354 * send the packet. 2355 */ 2356 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2357 if (flags & LLE_ADDRONLY) { 2358 lladdr = lle->ll_addr; 2359 ll_len = ifp->if_addrlen; 2360 } else { 2361 lladdr = lle->r_linkdata; 2362 ll_len = lle->r_hdrlen; 2363 } 2364 bcopy(lladdr, desten, ll_len); 2365 if (pflags != NULL) 2366 *pflags = lle->la_flags; 2367 if (plle) { 2368 LLE_ADDREF(lle); 2369 *plle = lle; 2370 } 2371 LLE_WUNLOCK(lle); 2372 return (0); 2373 } 2374 2375 /* 2376 * There is a neighbor cache entry, but no ethernet address 2377 * response yet. Append this latest packet to the end of the 2378 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2379 * the oldest packet in the queue will be removed. 2380 */ 2381 2382 if (lle->la_hold != NULL) { 2383 struct mbuf *m_hold; 2384 int i; 2385 2386 i = 0; 2387 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2388 i++; 2389 if (m_hold->m_nextpkt == NULL) { 2390 m_hold->m_nextpkt = m; 2391 break; 2392 } 2393 } 2394 while (i >= V_nd6_maxqueuelen) { 2395 m_hold = lle->la_hold; 2396 lle->la_hold = lle->la_hold->m_nextpkt; 2397 m_freem(m_hold); 2398 i--; 2399 } 2400 } else { 2401 lle->la_hold = m; 2402 } 2403 2404 /* 2405 * If there has been no NS for the neighbor after entering the 2406 * INCOMPLETE state, send the first solicitation. 2407 * Note that for newly-created lle la_asked will be 0, 2408 * so we will transition from ND6_LLINFO_NOSTATE to 2409 * ND6_LLINFO_INCOMPLETE state here. 2410 */ 2411 psrc = NULL; 2412 send_ns = 0; 2413 if (lle->la_asked == 0) { 2414 lle->la_asked++; 2415 send_ns = 1; 2416 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2417 2418 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2419 } 2420 LLE_WUNLOCK(lle); 2421 if (send_ns != 0) 2422 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2423 2424 return (EWOULDBLOCK); 2425 } 2426 2427 /* 2428 * Do L2 address resolution for @sa_dst address. Stores found 2429 * address in @desten buffer. Copy of lle ln_flags can be also 2430 * saved in @pflags if @pflags is non-NULL. 2431 * 2432 * Return values: 2433 * - 0 on success (address copied to buffer). 2434 * - EWOULDBLOCK (no local error, but address is still unresolved) 2435 * - other errors (alloc failure, etc) 2436 */ 2437 int 2438 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2439 char *desten, uint32_t *pflags) 2440 { 2441 int error; 2442 2443 flags |= LLE_ADDRONLY; 2444 error = nd6_resolve_slow(ifp, flags, NULL, 2445 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2446 return (error); 2447 } 2448 2449 int 2450 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2451 struct sockaddr_in6 *dst) 2452 { 2453 struct mbuf *m, *m_head; 2454 int error = 0; 2455 2456 m_head = chain; 2457 2458 while (m_head) { 2459 m = m_head; 2460 m_head = m_head->m_nextpkt; 2461 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2462 } 2463 2464 /* 2465 * XXX 2466 * note that intermediate errors are blindly ignored 2467 */ 2468 return (error); 2469 } 2470 2471 static int 2472 nd6_need_cache(struct ifnet *ifp) 2473 { 2474 /* 2475 * XXX: we currently do not make neighbor cache on any interface 2476 * other than Ethernet and GIF. 2477 * 2478 * RFC2893 says: 2479 * - unidirectional tunnels needs no ND 2480 */ 2481 switch (ifp->if_type) { 2482 case IFT_ETHER: 2483 case IFT_IEEE1394: 2484 case IFT_L2VLAN: 2485 case IFT_INFINIBAND: 2486 case IFT_BRIDGE: 2487 case IFT_PROPVIRTUAL: 2488 return (1); 2489 default: 2490 return (0); 2491 } 2492 } 2493 2494 /* 2495 * Add pernament ND6 link-layer record for given 2496 * interface address. 2497 * 2498 * Very similar to IPv4 arp_ifinit(), but: 2499 * 1) IPv6 DAD is performed in different place 2500 * 2) It is called by IPv6 protocol stack in contrast to 2501 * arp_ifinit() which is typically called in SIOCSIFADDR 2502 * driver ioctl handler. 2503 * 2504 */ 2505 int 2506 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2507 { 2508 struct ifnet *ifp; 2509 struct llentry *ln, *ln_tmp; 2510 struct sockaddr *dst; 2511 2512 ifp = ia->ia_ifa.ifa_ifp; 2513 if (nd6_need_cache(ifp) == 0) 2514 return (0); 2515 2516 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2517 dst = (struct sockaddr *)&ia->ia_addr; 2518 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2519 if (ln == NULL) 2520 return (ENOBUFS); 2521 2522 IF_AFDATA_WLOCK(ifp); 2523 LLE_WLOCK(ln); 2524 /* Unlink any entry if exists */ 2525 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2526 if (ln_tmp != NULL) 2527 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2528 lltable_link_entry(LLTABLE6(ifp), ln); 2529 IF_AFDATA_WUNLOCK(ifp); 2530 2531 if (ln_tmp != NULL) 2532 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2533 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2534 2535 LLE_WUNLOCK(ln); 2536 if (ln_tmp != NULL) 2537 llentry_free(ln_tmp); 2538 2539 return (0); 2540 } 2541 2542 /* 2543 * Removes either all lle entries for given @ia, or lle 2544 * corresponding to @ia address. 2545 */ 2546 void 2547 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2548 { 2549 struct sockaddr_in6 mask, addr; 2550 struct sockaddr *saddr, *smask; 2551 struct ifnet *ifp; 2552 2553 ifp = ia->ia_ifa.ifa_ifp; 2554 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2555 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2556 saddr = (struct sockaddr *)&addr; 2557 smask = (struct sockaddr *)&mask; 2558 2559 if (all != 0) 2560 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2561 else 2562 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2563 } 2564 2565 static void 2566 clear_llinfo_pqueue(struct llentry *ln) 2567 { 2568 struct mbuf *m_hold, *m_hold_next; 2569 2570 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2571 m_hold_next = m_hold->m_nextpkt; 2572 m_freem(m_hold); 2573 } 2574 2575 ln->la_hold = NULL; 2576 } 2577 2578 static int 2579 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2580 { 2581 struct in6_prefix p; 2582 struct sockaddr_in6 s6; 2583 struct nd_prefix *pr; 2584 struct nd_pfxrouter *pfr; 2585 time_t maxexpire; 2586 int error; 2587 char ip6buf[INET6_ADDRSTRLEN]; 2588 2589 if (req->newptr) 2590 return (EPERM); 2591 2592 error = sysctl_wire_old_buffer(req, 0); 2593 if (error != 0) 2594 return (error); 2595 2596 bzero(&p, sizeof(p)); 2597 p.origin = PR_ORIG_RA; 2598 bzero(&s6, sizeof(s6)); 2599 s6.sin6_family = AF_INET6; 2600 s6.sin6_len = sizeof(s6); 2601 2602 ND6_RLOCK(); 2603 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2604 p.prefix = pr->ndpr_prefix; 2605 if (sa6_recoverscope(&p.prefix)) { 2606 log(LOG_ERR, "scope error in prefix list (%s)\n", 2607 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2608 /* XXX: press on... */ 2609 } 2610 p.raflags = pr->ndpr_raf; 2611 p.prefixlen = pr->ndpr_plen; 2612 p.vltime = pr->ndpr_vltime; 2613 p.pltime = pr->ndpr_pltime; 2614 p.if_index = pr->ndpr_ifp->if_index; 2615 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2616 p.expire = 0; 2617 else { 2618 /* XXX: we assume time_t is signed. */ 2619 maxexpire = (-1) & 2620 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2621 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2622 p.expire = pr->ndpr_lastupdate + 2623 pr->ndpr_vltime + 2624 (time_second - time_uptime); 2625 else 2626 p.expire = maxexpire; 2627 } 2628 p.refcnt = pr->ndpr_addrcnt; 2629 p.flags = pr->ndpr_stateflags; 2630 p.advrtrs = 0; 2631 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2632 p.advrtrs++; 2633 error = SYSCTL_OUT(req, &p, sizeof(p)); 2634 if (error != 0) 2635 break; 2636 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2637 s6.sin6_addr = pfr->router->rtaddr; 2638 if (sa6_recoverscope(&s6)) 2639 log(LOG_ERR, 2640 "scope error in prefix list (%s)\n", 2641 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2642 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2643 if (error != 0) 2644 goto out; 2645 } 2646 } 2647 out: 2648 ND6_RUNLOCK(); 2649 return (error); 2650 } 2651 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2652 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2653 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2654 "NDP prefix list"); 2655 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2656 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2657 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2658 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2659