1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_private.h> 65 #include <net/if_types.h> 66 #include <net/route.h> 67 #include <net/route/route_ctl.h> 68 #include <net/route/nhop.h> 69 #include <net/vnet.h> 70 71 #include <netinet/in.h> 72 #include <netinet/in_kdtrace.h> 73 #include <net/if_llatbl.h> 74 #include <netinet/if_ether.h> 75 #include <netinet6/in6_fib.h> 76 #include <netinet6/in6_var.h> 77 #include <netinet/ip6.h> 78 #include <netinet6/ip6_var.h> 79 #include <netinet6/scope6_var.h> 80 #include <netinet6/nd6.h> 81 #include <netinet6/in6_ifattach.h> 82 #include <netinet/icmp6.h> 83 #include <netinet6/send.h> 84 85 #include <sys/limits.h> 86 87 #include <security/mac/mac_framework.h> 88 89 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 90 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 91 92 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 93 94 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 95 96 /* timer values */ 97 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 98 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 99 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 100 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 101 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 102 * local traffic */ 103 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 104 * collection timer */ 105 106 /* preventing too many loops in ND option parsing */ 107 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 108 109 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 110 * layer hints */ 111 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 112 * ND entries */ 113 #define V_nd6_maxndopt VNET(nd6_maxndopt) 114 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 115 116 #ifdef ND6_DEBUG 117 VNET_DEFINE(int, nd6_debug) = 1; 118 #else 119 VNET_DEFINE(int, nd6_debug) = 0; 120 #endif 121 122 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 123 124 VNET_DEFINE(struct nd_prhead, nd_prefix); 125 VNET_DEFINE(struct rwlock, nd6_lock); 126 VNET_DEFINE(uint64_t, nd6_list_genid); 127 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 128 129 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 130 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 131 132 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 133 134 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 135 struct ifnet *); 136 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 137 static void nd6_slowtimo(void *); 138 static int regen_tmpaddr(struct in6_ifaddr *); 139 static void nd6_free(struct llentry **, int); 140 static void nd6_free_redirect(const struct llentry *); 141 static void nd6_llinfo_timer(void *); 142 static void nd6_llinfo_settimer_locked(struct llentry *, long); 143 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, 144 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 145 static int nd6_need_cache(struct ifnet *); 146 147 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 148 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 149 150 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 151 #define V_nd6_timer_ch VNET(nd6_timer_ch) 152 153 SYSCTL_DECL(_net_inet6_icmp6); 154 155 static void 156 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 157 { 158 struct rt_addrinfo rtinfo; 159 struct sockaddr_in6 dst; 160 struct sockaddr_dl gw; 161 struct ifnet *ifp; 162 int type; 163 int fibnum; 164 165 LLE_WLOCK_ASSERT(lle); 166 167 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 168 return; 169 170 switch (evt) { 171 case LLENTRY_RESOLVED: 172 type = RTM_ADD; 173 KASSERT(lle->la_flags & LLE_VALID, 174 ("%s: %p resolved but not valid?", __func__, lle)); 175 break; 176 case LLENTRY_EXPIRED: 177 type = RTM_DELETE; 178 break; 179 default: 180 return; 181 } 182 183 ifp = lltable_get_ifp(lle->lle_tbl); 184 185 bzero(&dst, sizeof(dst)); 186 bzero(&gw, sizeof(gw)); 187 bzero(&rtinfo, sizeof(rtinfo)); 188 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 189 dst.sin6_scope_id = in6_getscopezone(ifp, 190 in6_addrscope(&dst.sin6_addr)); 191 gw.sdl_len = sizeof(struct sockaddr_dl); 192 gw.sdl_family = AF_LINK; 193 gw.sdl_alen = ifp->if_addrlen; 194 gw.sdl_index = ifp->if_index; 195 gw.sdl_type = ifp->if_type; 196 if (evt == LLENTRY_RESOLVED) 197 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 198 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 199 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 200 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 201 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 202 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 203 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 204 } 205 206 /* 207 * A handler for interface link layer address change event. 208 */ 209 static void 210 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 211 { 212 if (ifp->if_afdata[AF_INET6] == NULL) 213 return; 214 215 lltable_update_ifaddr(LLTABLE6(ifp)); 216 } 217 218 void 219 nd6_init(void) 220 { 221 222 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 223 rw_init(&V_nd6_lock, "nd6 list"); 224 225 LIST_INIT(&V_nd_prefix); 226 nd6_defrouter_init(); 227 228 /* Start timers. */ 229 callout_init(&V_nd6_slowtimo_ch, 1); 230 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 231 nd6_slowtimo, curvnet); 232 233 callout_init(&V_nd6_timer_ch, 1); 234 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 235 236 nd6_dad_init(); 237 if (IS_DEFAULT_VNET(curvnet)) { 238 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 239 NULL, EVENTHANDLER_PRI_ANY); 240 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 241 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 242 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 243 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 244 } 245 } 246 247 #ifdef VIMAGE 248 void 249 nd6_destroy(void) 250 { 251 252 callout_drain(&V_nd6_slowtimo_ch); 253 callout_drain(&V_nd6_timer_ch); 254 if (IS_DEFAULT_VNET(curvnet)) { 255 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 256 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 257 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 258 } 259 rw_destroy(&V_nd6_lock); 260 mtx_destroy(&V_nd6_onlink_mtx); 261 } 262 #endif 263 264 struct nd_ifinfo * 265 nd6_ifattach(struct ifnet *ifp) 266 { 267 struct nd_ifinfo *nd; 268 269 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 270 nd->initialized = 1; 271 272 nd->chlim = IPV6_DEFHLIM; 273 nd->basereachable = REACHABLE_TIME; 274 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 275 nd->retrans = RETRANS_TIMER; 276 277 nd->flags = ND6_IFF_PERFORMNUD; 278 279 /* Set IPv6 disabled on all interfaces but loopback by default. */ 280 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 281 nd->flags |= ND6_IFF_IFDISABLED; 282 283 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 284 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 285 * default regardless of the V_ip6_auto_linklocal configuration to 286 * give a reasonable default behavior. 287 */ 288 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE && 289 ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK)) 290 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 291 /* 292 * A loopback interface does not need to accept RTADV. 293 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 294 * default regardless of the V_ip6_accept_rtadv configuration to 295 * prevent the interface from accepting RA messages arrived 296 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 297 */ 298 if (V_ip6_accept_rtadv && 299 !(ifp->if_flags & IFF_LOOPBACK) && 300 (ifp->if_type != IFT_BRIDGE)) { 301 nd->flags |= ND6_IFF_ACCEPT_RTADV; 302 /* If we globally accept rtadv, assume IPv6 on. */ 303 nd->flags &= ~ND6_IFF_IFDISABLED; 304 } 305 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 306 nd->flags |= ND6_IFF_NO_RADR; 307 308 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 309 nd6_setmtu0(ifp, nd); 310 311 return nd; 312 } 313 314 void 315 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 316 { 317 struct epoch_tracker et; 318 struct ifaddr *ifa, *next; 319 320 NET_EPOCH_ENTER(et); 321 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 322 if (ifa->ifa_addr->sa_family != AF_INET6) 323 continue; 324 325 /* stop DAD processing */ 326 nd6_dad_stop(ifa); 327 } 328 NET_EPOCH_EXIT(et); 329 330 free(nd, M_IP6NDP); 331 } 332 333 /* 334 * Reset ND level link MTU. This function is called when the physical MTU 335 * changes, which means we might have to adjust the ND level MTU. 336 */ 337 void 338 nd6_setmtu(struct ifnet *ifp) 339 { 340 if (ifp->if_afdata[AF_INET6] == NULL) 341 return; 342 343 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 344 } 345 346 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 347 void 348 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 349 { 350 u_int32_t omaxmtu; 351 352 omaxmtu = ndi->maxmtu; 353 ndi->maxmtu = ifp->if_mtu; 354 355 /* 356 * Decreasing the interface MTU under IPV6 minimum MTU may cause 357 * undesirable situation. We thus notify the operator of the change 358 * explicitly. The check for omaxmtu is necessary to restrict the 359 * log to the case of changing the MTU, not initializing it. 360 */ 361 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 362 log(LOG_NOTICE, "nd6_setmtu0: " 363 "new link MTU on %s (%lu) is too small for IPv6\n", 364 if_name(ifp), (unsigned long)ndi->maxmtu); 365 } 366 367 if (ndi->maxmtu > V_in6_maxmtu) 368 in6_setmaxmtu(); /* check all interfaces just in case */ 369 370 } 371 372 void 373 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 374 { 375 376 bzero(ndopts, sizeof(*ndopts)); 377 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 378 ndopts->nd_opts_last 379 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 380 381 if (icmp6len == 0) { 382 ndopts->nd_opts_done = 1; 383 ndopts->nd_opts_search = NULL; 384 } 385 } 386 387 /* 388 * Take one ND option. 389 */ 390 struct nd_opt_hdr * 391 nd6_option(union nd_opts *ndopts) 392 { 393 struct nd_opt_hdr *nd_opt; 394 int olen; 395 396 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 397 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 398 __func__)); 399 if (ndopts->nd_opts_search == NULL) 400 return NULL; 401 if (ndopts->nd_opts_done) 402 return NULL; 403 404 nd_opt = ndopts->nd_opts_search; 405 406 /* make sure nd_opt_len is inside the buffer */ 407 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 408 bzero(ndopts, sizeof(*ndopts)); 409 return NULL; 410 } 411 412 olen = nd_opt->nd_opt_len << 3; 413 if (olen == 0) { 414 /* 415 * Message validation requires that all included 416 * options have a length that is greater than zero. 417 */ 418 bzero(ndopts, sizeof(*ndopts)); 419 return NULL; 420 } 421 422 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 423 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 424 /* option overruns the end of buffer, invalid */ 425 bzero(ndopts, sizeof(*ndopts)); 426 return NULL; 427 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 428 /* reached the end of options chain */ 429 ndopts->nd_opts_done = 1; 430 ndopts->nd_opts_search = NULL; 431 } 432 return nd_opt; 433 } 434 435 /* 436 * Parse multiple ND options. 437 * This function is much easier to use, for ND routines that do not need 438 * multiple options of the same type. 439 */ 440 int 441 nd6_options(union nd_opts *ndopts) 442 { 443 struct nd_opt_hdr *nd_opt; 444 int i = 0; 445 446 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 447 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 448 __func__)); 449 if (ndopts->nd_opts_search == NULL) 450 return 0; 451 452 while (1) { 453 nd_opt = nd6_option(ndopts); 454 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 455 /* 456 * Message validation requires that all included 457 * options have a length that is greater than zero. 458 */ 459 ICMP6STAT_INC(icp6s_nd_badopt); 460 bzero(ndopts, sizeof(*ndopts)); 461 return -1; 462 } 463 464 if (nd_opt == NULL) 465 goto skip1; 466 467 switch (nd_opt->nd_opt_type) { 468 case ND_OPT_SOURCE_LINKADDR: 469 case ND_OPT_TARGET_LINKADDR: 470 case ND_OPT_MTU: 471 case ND_OPT_REDIRECTED_HEADER: 472 case ND_OPT_NONCE: 473 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 474 nd6log((LOG_INFO, 475 "duplicated ND6 option found (type=%d)\n", 476 nd_opt->nd_opt_type)); 477 /* XXX bark? */ 478 } else { 479 ndopts->nd_opt_array[nd_opt->nd_opt_type] 480 = nd_opt; 481 } 482 break; 483 case ND_OPT_PREFIX_INFORMATION: 484 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 485 ndopts->nd_opt_array[nd_opt->nd_opt_type] 486 = nd_opt; 487 } 488 ndopts->nd_opts_pi_end = 489 (struct nd_opt_prefix_info *)nd_opt; 490 break; 491 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 492 case ND_OPT_RDNSS: /* RFC 6106 */ 493 case ND_OPT_DNSSL: /* RFC 6106 */ 494 /* 495 * Silently ignore options we know and do not care about 496 * in the kernel. 497 */ 498 break; 499 default: 500 /* 501 * Unknown options must be silently ignored, 502 * to accommodate future extension to the protocol. 503 */ 504 nd6log((LOG_DEBUG, 505 "nd6_options: unsupported option %d - " 506 "option ignored\n", nd_opt->nd_opt_type)); 507 } 508 509 skip1: 510 i++; 511 if (i > V_nd6_maxndopt) { 512 ICMP6STAT_INC(icp6s_nd_toomanyopt); 513 nd6log((LOG_INFO, "too many loop in nd opt\n")); 514 break; 515 } 516 517 if (ndopts->nd_opts_done) 518 break; 519 } 520 521 return 0; 522 } 523 524 /* 525 * ND6 timer routine to handle ND6 entries 526 */ 527 static void 528 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 529 { 530 int canceled; 531 532 LLE_WLOCK_ASSERT(ln); 533 534 /* Do not schedule timers for child LLEs. */ 535 if (ln->la_flags & LLE_CHILD) 536 return; 537 538 if (tick < 0) { 539 ln->la_expire = 0; 540 ln->ln_ntick = 0; 541 canceled = callout_stop(&ln->lle_timer); 542 } else { 543 ln->la_expire = time_uptime + tick / hz; 544 LLE_ADDREF(ln); 545 if (tick > INT_MAX) { 546 ln->ln_ntick = tick - INT_MAX; 547 canceled = callout_reset(&ln->lle_timer, INT_MAX, 548 nd6_llinfo_timer, ln); 549 } else { 550 ln->ln_ntick = 0; 551 canceled = callout_reset(&ln->lle_timer, tick, 552 nd6_llinfo_timer, ln); 553 } 554 } 555 if (canceled > 0) 556 LLE_REMREF(ln); 557 } 558 559 /* 560 * Gets source address of the first packet in hold queue 561 * and stores it in @src. 562 * Returns pointer to @src (if hold queue is not empty) or NULL. 563 * 564 * Set noinline to be dtrace-friendly 565 */ 566 static __noinline struct in6_addr * 567 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 568 { 569 struct ip6_hdr hdr; 570 struct mbuf *m; 571 572 if (ln->la_hold == NULL) 573 return (NULL); 574 575 /* 576 * assume every packet in la_hold has the same IP header 577 */ 578 m = ln->la_hold; 579 if (sizeof(hdr) > m->m_len) 580 return (NULL); 581 582 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 583 *src = hdr.ip6_src; 584 585 return (src); 586 } 587 588 /* 589 * Checks if we need to switch from STALE state. 590 * 591 * RFC 4861 requires switching from STALE to DELAY state 592 * on first packet matching entry, waiting V_nd6_delay and 593 * transition to PROBE state (if upper layer confirmation was 594 * not received). 595 * 596 * This code performs a bit differently: 597 * On packet hit we don't change state (but desired state 598 * can be guessed by control plane). However, after V_nd6_delay 599 * seconds code will transition to PROBE state (so DELAY state 600 * is kinda skipped in most situations). 601 * 602 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 603 * we perform the following upon entering STALE state: 604 * 605 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 606 * if packet was transmitted at the start of given interval, we 607 * would be able to switch to PROBE state in V_nd6_delay seconds 608 * as user expects. 609 * 610 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 611 * lle in STALE state (remaining timer value stored in lle_remtime). 612 * 613 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 614 * seconds ago. 615 * 616 * Returns non-zero value if the entry is still STALE (storing 617 * the next timer interval in @pdelay). 618 * 619 * Returns zero value if original timer expired or we need to switch to 620 * PROBE (store that in @do_switch variable). 621 */ 622 static int 623 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 624 { 625 int nd_delay, nd_gctimer; 626 time_t lle_hittime; 627 long delay; 628 629 *do_switch = 0; 630 nd_gctimer = V_nd6_gctimer; 631 nd_delay = V_nd6_delay; 632 633 lle_hittime = llentry_get_hittime(lle); 634 635 if (lle_hittime == 0) { 636 /* 637 * Datapath feedback has been requested upon entering 638 * STALE state. No packets has been passed using this lle. 639 * Ask for the timer reschedule and keep STALE state. 640 */ 641 delay = (long)(MIN(nd_gctimer, nd_delay)); 642 delay *= hz; 643 if (lle->lle_remtime > delay) 644 lle->lle_remtime -= delay; 645 else { 646 delay = lle->lle_remtime; 647 lle->lle_remtime = 0; 648 } 649 650 if (delay == 0) { 651 /* 652 * The original ng6_gctime timeout ended, 653 * no more rescheduling. 654 */ 655 return (0); 656 } 657 658 *pdelay = delay; 659 return (1); 660 } 661 662 /* 663 * Packet received. Verify timestamp 664 */ 665 delay = (long)(time_uptime - lle_hittime); 666 if (delay < nd_delay) { 667 /* 668 * V_nd6_delay still not passed since the first 669 * hit in STALE state. 670 * Reschedule timer and return. 671 */ 672 *pdelay = (long)(nd_delay - delay) * hz; 673 return (1); 674 } 675 676 /* Request switching to probe */ 677 *do_switch = 1; 678 return (0); 679 } 680 681 /* 682 * Switch @lle state to new state optionally arming timers. 683 * 684 * Set noinline to be dtrace-friendly 685 */ 686 __noinline void 687 nd6_llinfo_setstate(struct llentry *lle, int newstate) 688 { 689 struct ifnet *ifp; 690 int nd_gctimer, nd_delay; 691 long delay, remtime; 692 693 delay = 0; 694 remtime = 0; 695 696 switch (newstate) { 697 case ND6_LLINFO_INCOMPLETE: 698 ifp = lle->lle_tbl->llt_ifp; 699 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 700 break; 701 case ND6_LLINFO_REACHABLE: 702 if (!ND6_LLINFO_PERMANENT(lle)) { 703 ifp = lle->lle_tbl->llt_ifp; 704 delay = (long)ND_IFINFO(ifp)->reachable * hz; 705 } 706 break; 707 case ND6_LLINFO_STALE: 708 709 llentry_request_feedback(lle); 710 nd_delay = V_nd6_delay; 711 nd_gctimer = V_nd6_gctimer; 712 713 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 714 remtime = (long)nd_gctimer * hz - delay; 715 break; 716 case ND6_LLINFO_DELAY: 717 lle->la_asked = 0; 718 delay = (long)V_nd6_delay * hz; 719 break; 720 } 721 722 if (delay > 0) 723 nd6_llinfo_settimer_locked(lle, delay); 724 725 lle->lle_remtime = remtime; 726 lle->ln_state = newstate; 727 } 728 729 /* 730 * Timer-dependent part of nd state machine. 731 * 732 * Set noinline to be dtrace-friendly 733 */ 734 static __noinline void 735 nd6_llinfo_timer(void *arg) 736 { 737 struct epoch_tracker et; 738 struct llentry *ln; 739 struct in6_addr *dst, *pdst, *psrc, src; 740 struct ifnet *ifp; 741 struct nd_ifinfo *ndi; 742 int do_switch, send_ns; 743 long delay; 744 745 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 746 ln = (struct llentry *)arg; 747 ifp = lltable_get_ifp(ln->lle_tbl); 748 CURVNET_SET(ifp->if_vnet); 749 750 ND6_RLOCK(); 751 LLE_WLOCK(ln); 752 if (callout_pending(&ln->lle_timer)) { 753 /* 754 * Here we are a bit odd here in the treatment of 755 * active/pending. If the pending bit is set, it got 756 * rescheduled before I ran. The active 757 * bit we ignore, since if it was stopped 758 * in ll_tablefree() and was currently running 759 * it would have return 0 so the code would 760 * not have deleted it since the callout could 761 * not be stopped so we want to go through 762 * with the delete here now. If the callout 763 * was restarted, the pending bit will be back on and 764 * we just want to bail since the callout_reset would 765 * return 1 and our reference would have been removed 766 * by nd6_llinfo_settimer_locked above since canceled 767 * would have been 1. 768 */ 769 LLE_WUNLOCK(ln); 770 ND6_RUNLOCK(); 771 CURVNET_RESTORE(); 772 return; 773 } 774 NET_EPOCH_ENTER(et); 775 ndi = ND_IFINFO(ifp); 776 send_ns = 0; 777 dst = &ln->r_l3addr.addr6; 778 pdst = dst; 779 780 if (ln->ln_ntick > 0) { 781 if (ln->ln_ntick > INT_MAX) { 782 ln->ln_ntick -= INT_MAX; 783 nd6_llinfo_settimer_locked(ln, INT_MAX); 784 } else { 785 ln->ln_ntick = 0; 786 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 787 } 788 goto done; 789 } 790 791 if (ln->la_flags & LLE_STATIC) { 792 goto done; 793 } 794 795 if (ln->la_flags & LLE_DELETED) { 796 nd6_free(&ln, 0); 797 goto done; 798 } 799 800 switch (ln->ln_state) { 801 case ND6_LLINFO_INCOMPLETE: 802 if (ln->la_asked < V_nd6_mmaxtries) { 803 ln->la_asked++; 804 send_ns = 1; 805 /* Send NS to multicast address */ 806 pdst = NULL; 807 } else { 808 struct mbuf *m; 809 810 ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); 811 812 m = ln->la_hold; 813 if (m != NULL) { 814 /* 815 * assuming every packet in la_hold has the 816 * same IP header. Send error after unlock. 817 */ 818 ln->la_hold = m->m_nextpkt; 819 m->m_nextpkt = NULL; 820 ln->la_numheld--; 821 } 822 nd6_free(&ln, 0); 823 if (m != NULL) { 824 struct mbuf *n = m; 825 826 /* 827 * if there are any ummapped mbufs, we 828 * must free them, rather than using 829 * them for an ICMP, as they cannot be 830 * checksummed. 831 */ 832 while ((n = n->m_next) != NULL) { 833 if (n->m_flags & M_EXTPG) 834 break; 835 } 836 if (n != NULL) { 837 m_freem(m); 838 m = NULL; 839 } else { 840 icmp6_error2(m, ICMP6_DST_UNREACH, 841 ICMP6_DST_UNREACH_ADDR, 0, ifp); 842 } 843 } 844 } 845 break; 846 case ND6_LLINFO_REACHABLE: 847 if (!ND6_LLINFO_PERMANENT(ln)) 848 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 849 break; 850 851 case ND6_LLINFO_STALE: 852 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 853 /* 854 * No packet has used this entry and GC timeout 855 * has not been passed. Reschedule timer and 856 * return. 857 */ 858 nd6_llinfo_settimer_locked(ln, delay); 859 break; 860 } 861 862 if (do_switch == 0) { 863 /* 864 * GC timer has ended and entry hasn't been used. 865 * Run Garbage collector (RFC 4861, 5.3) 866 */ 867 if (!ND6_LLINFO_PERMANENT(ln)) 868 nd6_free(&ln, 1); 869 break; 870 } 871 872 /* Entry has been used AND delay timer has ended. */ 873 874 /* FALLTHROUGH */ 875 876 case ND6_LLINFO_DELAY: 877 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 878 /* We need NUD */ 879 ln->la_asked = 1; 880 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 881 send_ns = 1; 882 } else 883 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 884 break; 885 case ND6_LLINFO_PROBE: 886 if (ln->la_asked < V_nd6_umaxtries) { 887 ln->la_asked++; 888 send_ns = 1; 889 } else { 890 nd6_free(&ln, 0); 891 } 892 break; 893 default: 894 panic("%s: paths in a dark night can be confusing: %d", 895 __func__, ln->ln_state); 896 } 897 done: 898 if (ln != NULL) 899 ND6_RUNLOCK(); 900 if (send_ns != 0) { 901 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 902 psrc = nd6_llinfo_get_holdsrc(ln, &src); 903 LLE_FREE_LOCKED(ln); 904 ln = NULL; 905 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 906 } 907 908 if (ln != NULL) 909 LLE_FREE_LOCKED(ln); 910 NET_EPOCH_EXIT(et); 911 CURVNET_RESTORE(); 912 } 913 914 /* 915 * ND6 timer routine to expire default route list and prefix list 916 */ 917 void 918 nd6_timer(void *arg) 919 { 920 CURVNET_SET((struct vnet *) arg); 921 struct epoch_tracker et; 922 struct nd_prhead prl; 923 struct nd_prefix *pr, *npr; 924 struct ifnet *ifp; 925 struct in6_ifaddr *ia6, *nia6; 926 uint64_t genid; 927 928 LIST_INIT(&prl); 929 930 NET_EPOCH_ENTER(et); 931 nd6_defrouter_timer(); 932 933 /* 934 * expire interface addresses. 935 * in the past the loop was inside prefix expiry processing. 936 * However, from a stricter speci-confrmance standpoint, we should 937 * rather separate address lifetimes and prefix lifetimes. 938 * 939 * XXXRW: in6_ifaddrhead locking. 940 */ 941 addrloop: 942 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 943 /* check address lifetime */ 944 if (IFA6_IS_INVALID(ia6)) { 945 int regen = 0; 946 947 /* 948 * If the expiring address is temporary, try 949 * regenerating a new one. This would be useful when 950 * we suspended a laptop PC, then turned it on after a 951 * period that could invalidate all temporary 952 * addresses. Although we may have to restart the 953 * loop (see below), it must be after purging the 954 * address. Otherwise, we'd see an infinite loop of 955 * regeneration. 956 */ 957 if (V_ip6_use_tempaddr && 958 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 959 if (regen_tmpaddr(ia6) == 0) 960 regen = 1; 961 } 962 963 in6_purgeaddr(&ia6->ia_ifa); 964 965 if (regen) 966 goto addrloop; /* XXX: see below */ 967 } else if (IFA6_IS_DEPRECATED(ia6)) { 968 int oldflags = ia6->ia6_flags; 969 970 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 971 972 /* 973 * If a temporary address has just become deprecated, 974 * regenerate a new one if possible. 975 */ 976 if (V_ip6_use_tempaddr && 977 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 978 (oldflags & IN6_IFF_DEPRECATED) == 0) { 979 if (regen_tmpaddr(ia6) == 0) { 980 /* 981 * A new temporary address is 982 * generated. 983 * XXX: this means the address chain 984 * has changed while we are still in 985 * the loop. Although the change 986 * would not cause disaster (because 987 * it's not a deletion, but an 988 * addition,) we'd rather restart the 989 * loop just for safety. Or does this 990 * significantly reduce performance?? 991 */ 992 goto addrloop; 993 } 994 } 995 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 996 /* 997 * Schedule DAD for a tentative address. This happens 998 * if the interface was down or not running 999 * when the address was configured. 1000 */ 1001 int delay; 1002 1003 delay = arc4random() % 1004 (MAX_RTR_SOLICITATION_DELAY * hz); 1005 nd6_dad_start((struct ifaddr *)ia6, delay); 1006 } else { 1007 /* 1008 * Check status of the interface. If it is down, 1009 * mark the address as tentative for future DAD. 1010 */ 1011 ifp = ia6->ia_ifp; 1012 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1013 ((ifp->if_flags & IFF_UP) == 0 || 1014 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1015 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1016 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1017 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1018 } 1019 1020 /* 1021 * A new RA might have made a deprecated address 1022 * preferred. 1023 */ 1024 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1025 } 1026 } 1027 NET_EPOCH_EXIT(et); 1028 1029 ND6_WLOCK(); 1030 restart: 1031 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1032 /* 1033 * Expire prefixes. Since the pltime is only used for 1034 * autoconfigured addresses, pltime processing for prefixes is 1035 * not necessary. 1036 * 1037 * Only unlink after all derived addresses have expired. This 1038 * may not occur until two hours after the prefix has expired 1039 * per RFC 4862. If the prefix expires before its derived 1040 * addresses, mark it off-link. This will be done automatically 1041 * after unlinking if no address references remain. 1042 */ 1043 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1044 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1045 continue; 1046 1047 if (pr->ndpr_addrcnt == 0) { 1048 nd6_prefix_unlink(pr, &prl); 1049 continue; 1050 } 1051 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1052 genid = V_nd6_list_genid; 1053 nd6_prefix_ref(pr); 1054 ND6_WUNLOCK(); 1055 ND6_ONLINK_LOCK(); 1056 (void)nd6_prefix_offlink(pr); 1057 ND6_ONLINK_UNLOCK(); 1058 ND6_WLOCK(); 1059 nd6_prefix_rele(pr); 1060 if (genid != V_nd6_list_genid) 1061 goto restart; 1062 } 1063 } 1064 ND6_WUNLOCK(); 1065 1066 while ((pr = LIST_FIRST(&prl)) != NULL) { 1067 LIST_REMOVE(pr, ndpr_entry); 1068 nd6_prefix_del(pr); 1069 } 1070 1071 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1072 nd6_timer, curvnet); 1073 1074 CURVNET_RESTORE(); 1075 } 1076 1077 /* 1078 * ia6 - deprecated/invalidated temporary address 1079 */ 1080 static int 1081 regen_tmpaddr(struct in6_ifaddr *ia6) 1082 { 1083 struct ifaddr *ifa; 1084 struct ifnet *ifp; 1085 struct in6_ifaddr *public_ifa6 = NULL; 1086 1087 NET_EPOCH_ASSERT(); 1088 1089 ifp = ia6->ia_ifa.ifa_ifp; 1090 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1091 struct in6_ifaddr *it6; 1092 1093 if (ifa->ifa_addr->sa_family != AF_INET6) 1094 continue; 1095 1096 it6 = (struct in6_ifaddr *)ifa; 1097 1098 /* ignore no autoconf addresses. */ 1099 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1100 continue; 1101 1102 /* ignore autoconf addresses with different prefixes. */ 1103 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1104 continue; 1105 1106 /* 1107 * Now we are looking at an autoconf address with the same 1108 * prefix as ours. If the address is temporary and is still 1109 * preferred, do not create another one. It would be rare, but 1110 * could happen, for example, when we resume a laptop PC after 1111 * a long period. 1112 */ 1113 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1114 !IFA6_IS_DEPRECATED(it6)) { 1115 public_ifa6 = NULL; 1116 break; 1117 } 1118 1119 /* 1120 * This is a public autoconf address that has the same prefix 1121 * as ours. If it is preferred, keep it. We can't break the 1122 * loop here, because there may be a still-preferred temporary 1123 * address with the prefix. 1124 */ 1125 if (!IFA6_IS_DEPRECATED(it6)) 1126 public_ifa6 = it6; 1127 } 1128 if (public_ifa6 != NULL) 1129 ifa_ref(&public_ifa6->ia_ifa); 1130 1131 if (public_ifa6 != NULL) { 1132 int e; 1133 1134 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1135 ifa_free(&public_ifa6->ia_ifa); 1136 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1137 " tmp addr,errno=%d\n", e); 1138 return (-1); 1139 } 1140 ifa_free(&public_ifa6->ia_ifa); 1141 return (0); 1142 } 1143 1144 return (-1); 1145 } 1146 1147 /* 1148 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1149 * cache entries are freed in in6_domifdetach(). 1150 */ 1151 void 1152 nd6_purge(struct ifnet *ifp) 1153 { 1154 struct nd_prhead prl; 1155 struct nd_prefix *pr, *npr; 1156 1157 LIST_INIT(&prl); 1158 1159 /* Purge default router list entries toward ifp. */ 1160 nd6_defrouter_purge(ifp); 1161 1162 ND6_WLOCK(); 1163 /* 1164 * Remove prefixes on ifp. We should have already removed addresses on 1165 * this interface, so no addresses should be referencing these prefixes. 1166 */ 1167 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1168 if (pr->ndpr_ifp == ifp) 1169 nd6_prefix_unlink(pr, &prl); 1170 } 1171 ND6_WUNLOCK(); 1172 1173 /* Delete the unlinked prefix objects. */ 1174 while ((pr = LIST_FIRST(&prl)) != NULL) { 1175 LIST_REMOVE(pr, ndpr_entry); 1176 nd6_prefix_del(pr); 1177 } 1178 1179 /* cancel default outgoing interface setting */ 1180 if (V_nd6_defifindex == ifp->if_index) 1181 nd6_setdefaultiface(0); 1182 1183 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1184 /* Refresh default router list. */ 1185 defrouter_select_fib(ifp->if_fib); 1186 } 1187 } 1188 1189 /* 1190 * the caller acquires and releases the lock on the lltbls 1191 * Returns the llentry locked 1192 */ 1193 struct llentry * 1194 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1195 { 1196 struct sockaddr_in6 sin6; 1197 struct llentry *ln; 1198 1199 bzero(&sin6, sizeof(sin6)); 1200 sin6.sin6_len = sizeof(struct sockaddr_in6); 1201 sin6.sin6_family = AF_INET6; 1202 sin6.sin6_addr = *addr6; 1203 1204 IF_AFDATA_LOCK_ASSERT(ifp); 1205 1206 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1207 1208 return (ln); 1209 } 1210 1211 static struct llentry * 1212 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1213 { 1214 struct sockaddr_in6 sin6; 1215 struct llentry *ln; 1216 1217 bzero(&sin6, sizeof(sin6)); 1218 sin6.sin6_len = sizeof(struct sockaddr_in6); 1219 sin6.sin6_family = AF_INET6; 1220 sin6.sin6_addr = *addr6; 1221 1222 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1223 if (ln != NULL) 1224 ln->ln_state = ND6_LLINFO_NOSTATE; 1225 1226 return (ln); 1227 } 1228 1229 /* 1230 * Test whether a given IPv6 address can be a neighbor. 1231 */ 1232 static bool 1233 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1234 { 1235 1236 /* 1237 * A link-local address is always a neighbor. 1238 * XXX: a link does not necessarily specify a single interface. 1239 */ 1240 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1241 struct sockaddr_in6 sin6_copy; 1242 u_int32_t zone; 1243 1244 /* 1245 * We need sin6_copy since sa6_recoverscope() may modify the 1246 * content (XXX). 1247 */ 1248 sin6_copy = *addr; 1249 if (sa6_recoverscope(&sin6_copy)) 1250 return (0); /* XXX: should be impossible */ 1251 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1252 return (0); 1253 if (sin6_copy.sin6_scope_id == zone) 1254 return (1); 1255 else 1256 return (0); 1257 } 1258 /* Checking global unicast */ 1259 1260 /* If an address is directly reachable, it is a neigbor */ 1261 struct nhop_object *nh; 1262 nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); 1263 if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) 1264 return (true); 1265 1266 /* 1267 * Check prefixes with desired on-link state, as some may be not 1268 * installed in the routing table. 1269 */ 1270 bool matched = false; 1271 struct nd_prefix *pr; 1272 ND6_RLOCK(); 1273 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1274 if (pr->ndpr_ifp != ifp) 1275 continue; 1276 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) 1277 continue; 1278 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1279 &addr->sin6_addr, &pr->ndpr_mask)) { 1280 matched = true; 1281 break; 1282 } 1283 } 1284 ND6_RUNLOCK(); 1285 if (matched) 1286 return (true); 1287 1288 /* 1289 * If the address is assigned on the node of the other side of 1290 * a p2p interface, the address should be a neighbor. 1291 */ 1292 if (ifp->if_flags & IFF_POINTOPOINT) { 1293 struct ifaddr *ifa; 1294 1295 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1296 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1297 continue; 1298 if (ifa->ifa_dstaddr != NULL && 1299 sa_equal(addr, ifa->ifa_dstaddr)) { 1300 return (true); 1301 } 1302 } 1303 } 1304 1305 /* 1306 * If the default router list is empty, all addresses are regarded 1307 * as on-link, and thus, as a neighbor. 1308 */ 1309 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1310 nd6_defrouter_list_empty() && 1311 V_nd6_defifindex == ifp->if_index) { 1312 return (1); 1313 } 1314 1315 return (0); 1316 } 1317 1318 /* 1319 * Detect if a given IPv6 address identifies a neighbor on a given link. 1320 * XXX: should take care of the destination of a p2p link? 1321 */ 1322 int 1323 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1324 { 1325 struct llentry *lle; 1326 int rc = 0; 1327 1328 NET_EPOCH_ASSERT(); 1329 IF_AFDATA_UNLOCK_ASSERT(ifp); 1330 if (nd6_is_new_addr_neighbor(addr, ifp)) 1331 return (1); 1332 1333 /* 1334 * Even if the address matches none of our addresses, it might be 1335 * in the neighbor cache. 1336 */ 1337 if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { 1338 LLE_RUNLOCK(lle); 1339 rc = 1; 1340 } 1341 return (rc); 1342 } 1343 1344 static __noinline void 1345 nd6_free_children(struct llentry *lle) 1346 { 1347 struct llentry *child_lle; 1348 1349 NET_EPOCH_ASSERT(); 1350 LLE_WLOCK_ASSERT(lle); 1351 1352 while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { 1353 LLE_WLOCK(child_lle); 1354 lltable_unlink_child_entry(child_lle); 1355 llentry_free(child_lle); 1356 } 1357 } 1358 1359 /* 1360 * Tries to update @lle address/prepend data with new @lladdr. 1361 * 1362 * Returns true on success. 1363 * In any case, @lle is returned wlocked. 1364 */ 1365 static __noinline bool 1366 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1367 { 1368 u_char buf[LLE_MAX_LINKHDR]; 1369 int fam, off; 1370 size_t sz; 1371 1372 sz = sizeof(buf); 1373 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) 1374 return (false); 1375 1376 /* Update data */ 1377 lltable_set_entry_addr(ifp, lle, buf, sz, off); 1378 1379 struct llentry *child_lle; 1380 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 1381 LLE_WLOCK(child_lle); 1382 fam = child_lle->r_family; 1383 sz = sizeof(buf); 1384 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { 1385 /* success */ 1386 lltable_set_entry_addr(ifp, child_lle, buf, sz, off); 1387 child_lle->ln_state = ND6_LLINFO_REACHABLE; 1388 } 1389 LLE_WUNLOCK(child_lle); 1390 } 1391 1392 return (true); 1393 } 1394 1395 bool 1396 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1397 { 1398 NET_EPOCH_ASSERT(); 1399 LLE_WLOCK_ASSERT(lle); 1400 1401 if (!lltable_acquire_wlock(ifp, lle)) 1402 return (false); 1403 bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); 1404 IF_AFDATA_WUNLOCK(ifp); 1405 1406 return (ret); 1407 } 1408 1409 /* 1410 * Free an nd6 llinfo entry. 1411 * Since the function would cause significant changes in the kernel, DO NOT 1412 * make it global, unless you have a strong reason for the change, and are sure 1413 * that the change is safe. 1414 * 1415 * Set noinline to be dtrace-friendly 1416 */ 1417 static __noinline void 1418 nd6_free(struct llentry **lnp, int gc) 1419 { 1420 struct ifnet *ifp; 1421 struct llentry *ln; 1422 struct nd_defrouter *dr; 1423 1424 ln = *lnp; 1425 *lnp = NULL; 1426 1427 LLE_WLOCK_ASSERT(ln); 1428 ND6_RLOCK_ASSERT(); 1429 1430 KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); 1431 1432 ifp = lltable_get_ifp(ln->lle_tbl); 1433 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1434 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1435 else 1436 dr = NULL; 1437 ND6_RUNLOCK(); 1438 1439 if ((ln->la_flags & LLE_DELETED) == 0) 1440 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1441 1442 /* 1443 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1444 * even though it is not harmful, it was not really necessary. 1445 */ 1446 1447 /* cancel timer */ 1448 nd6_llinfo_settimer_locked(ln, -1); 1449 1450 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1451 if (dr != NULL && dr->expire && 1452 ln->ln_state == ND6_LLINFO_STALE && gc) { 1453 /* 1454 * If the reason for the deletion is just garbage 1455 * collection, and the neighbor is an active default 1456 * router, do not delete it. Instead, reset the GC 1457 * timer using the router's lifetime. 1458 * Simply deleting the entry would affect default 1459 * router selection, which is not necessarily a good 1460 * thing, especially when we're using router preference 1461 * values. 1462 * XXX: the check for ln_state would be redundant, 1463 * but we intentionally keep it just in case. 1464 */ 1465 if (dr->expire > time_uptime) 1466 nd6_llinfo_settimer_locked(ln, 1467 (dr->expire - time_uptime) * hz); 1468 else 1469 nd6_llinfo_settimer_locked(ln, 1470 (long)V_nd6_gctimer * hz); 1471 1472 LLE_REMREF(ln); 1473 LLE_WUNLOCK(ln); 1474 defrouter_rele(dr); 1475 return; 1476 } 1477 1478 if (dr) { 1479 /* 1480 * Unreachability of a router might affect the default 1481 * router selection and on-link detection of advertised 1482 * prefixes. 1483 */ 1484 1485 /* 1486 * Temporarily fake the state to choose a new default 1487 * router and to perform on-link determination of 1488 * prefixes correctly. 1489 * Below the state will be set correctly, 1490 * or the entry itself will be deleted. 1491 */ 1492 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1493 } 1494 1495 if (ln->ln_router || dr) { 1496 /* 1497 * We need to unlock to avoid a LOR with rt6_flush() with the 1498 * rnh and for the calls to pfxlist_onlink_check() and 1499 * defrouter_select_fib() in the block further down for calls 1500 * into nd6_lookup(). We still hold a ref. 1501 */ 1502 LLE_WUNLOCK(ln); 1503 1504 /* 1505 * rt6_flush must be called whether or not the neighbor 1506 * is in the Default Router List. 1507 * See a corresponding comment in nd6_na_input(). 1508 */ 1509 rt6_flush(&ln->r_l3addr.addr6, ifp); 1510 } 1511 1512 if (dr) { 1513 /* 1514 * Since defrouter_select_fib() does not affect the 1515 * on-link determination and MIP6 needs the check 1516 * before the default router selection, we perform 1517 * the check now. 1518 */ 1519 pfxlist_onlink_check(); 1520 1521 /* 1522 * Refresh default router list. 1523 */ 1524 defrouter_select_fib(dr->ifp->if_fib); 1525 } 1526 1527 /* 1528 * If this entry was added by an on-link redirect, remove the 1529 * corresponding host route. 1530 */ 1531 if (ln->la_flags & LLE_REDIRECT) 1532 nd6_free_redirect(ln); 1533 1534 if (ln->ln_router || dr) 1535 LLE_WLOCK(ln); 1536 } 1537 1538 /* 1539 * Save to unlock. We still hold an extra reference and will not 1540 * free(9) in llentry_free() if someone else holds one as well. 1541 */ 1542 LLE_WUNLOCK(ln); 1543 IF_AFDATA_LOCK(ifp); 1544 LLE_WLOCK(ln); 1545 /* Guard against race with other llentry_free(). */ 1546 if (ln->la_flags & LLE_LINKED) { 1547 /* Remove callout reference */ 1548 LLE_REMREF(ln); 1549 lltable_unlink_entry(ln->lle_tbl, ln); 1550 } 1551 IF_AFDATA_UNLOCK(ifp); 1552 1553 nd6_free_children(ln); 1554 1555 llentry_free(ln); 1556 if (dr != NULL) 1557 defrouter_rele(dr); 1558 } 1559 1560 static int 1561 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1562 { 1563 1564 if (nh->nh_flags & NHF_REDIRECT) 1565 return (1); 1566 1567 return (0); 1568 } 1569 1570 /* 1571 * Remove the rtentry for the given llentry, 1572 * both of which were installed by a redirect. 1573 */ 1574 static void 1575 nd6_free_redirect(const struct llentry *ln) 1576 { 1577 int fibnum; 1578 struct sockaddr_in6 sin6; 1579 struct rib_cmd_info rc; 1580 struct epoch_tracker et; 1581 1582 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1583 1584 NET_EPOCH_ENTER(et); 1585 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1586 rib_del_route_px(fibnum, (struct sockaddr *)&sin6, 128, 1587 nd6_isdynrte, NULL, 0, &rc); 1588 NET_EPOCH_EXIT(et); 1589 } 1590 1591 /* 1592 * Updates status of the default router route. 1593 */ 1594 static void 1595 check_release_defrouter(const struct rib_cmd_info *rc, void *_cbdata) 1596 { 1597 struct nd_defrouter *dr; 1598 struct nhop_object *nh; 1599 1600 nh = rc->rc_nh_old; 1601 1602 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1603 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1604 if (dr != NULL) { 1605 dr->installed = 0; 1606 defrouter_rele(dr); 1607 } 1608 } 1609 } 1610 1611 void 1612 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1613 { 1614 1615 #ifdef ROUTE_MPATH 1616 rib_decompose_notification(rc, check_release_defrouter, NULL); 1617 #else 1618 check_release_defrouter(rc, NULL); 1619 #endif 1620 } 1621 1622 int 1623 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1624 { 1625 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1626 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1627 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1628 struct epoch_tracker et; 1629 int error = 0; 1630 1631 if (ifp->if_afdata[AF_INET6] == NULL) 1632 return (EPFNOSUPPORT); 1633 switch (cmd) { 1634 case OSIOCGIFINFO_IN6: 1635 #define ND ndi->ndi 1636 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1637 bzero(&ND, sizeof(ND)); 1638 ND.linkmtu = IN6_LINKMTU(ifp); 1639 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1640 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1641 ND.reachable = ND_IFINFO(ifp)->reachable; 1642 ND.retrans = ND_IFINFO(ifp)->retrans; 1643 ND.flags = ND_IFINFO(ifp)->flags; 1644 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1645 ND.chlim = ND_IFINFO(ifp)->chlim; 1646 break; 1647 case SIOCGIFINFO_IN6: 1648 ND = *ND_IFINFO(ifp); 1649 break; 1650 case SIOCSIFINFO_IN6: 1651 /* 1652 * used to change host variables from userland. 1653 * intended for a use on router to reflect RA configurations. 1654 */ 1655 /* 0 means 'unspecified' */ 1656 if (ND.linkmtu != 0) { 1657 if (ND.linkmtu < IPV6_MMTU || 1658 ND.linkmtu > IN6_LINKMTU(ifp)) { 1659 error = EINVAL; 1660 break; 1661 } 1662 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1663 } 1664 1665 if (ND.basereachable != 0) { 1666 int obasereachable = ND_IFINFO(ifp)->basereachable; 1667 1668 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1669 if (ND.basereachable != obasereachable) 1670 ND_IFINFO(ifp)->reachable = 1671 ND_COMPUTE_RTIME(ND.basereachable); 1672 } 1673 if (ND.retrans != 0) 1674 ND_IFINFO(ifp)->retrans = ND.retrans; 1675 if (ND.chlim != 0) 1676 ND_IFINFO(ifp)->chlim = ND.chlim; 1677 /* FALLTHROUGH */ 1678 case SIOCSIFINFO_FLAGS: 1679 { 1680 struct ifaddr *ifa; 1681 struct in6_ifaddr *ia; 1682 1683 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1684 !(ND.flags & ND6_IFF_IFDISABLED)) { 1685 /* ifdisabled 1->0 transision */ 1686 1687 /* 1688 * If the interface is marked as ND6_IFF_IFDISABLED and 1689 * has an link-local address with IN6_IFF_DUPLICATED, 1690 * do not clear ND6_IFF_IFDISABLED. 1691 * See RFC 4862, Section 5.4.5. 1692 */ 1693 NET_EPOCH_ENTER(et); 1694 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1695 if (ifa->ifa_addr->sa_family != AF_INET6) 1696 continue; 1697 ia = (struct in6_ifaddr *)ifa; 1698 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1699 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1700 break; 1701 } 1702 NET_EPOCH_EXIT(et); 1703 1704 if (ifa != NULL) { 1705 /* LLA is duplicated. */ 1706 ND.flags |= ND6_IFF_IFDISABLED; 1707 log(LOG_ERR, "Cannot enable an interface" 1708 " with a link-local address marked" 1709 " duplicate.\n"); 1710 } else { 1711 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1712 if (ifp->if_flags & IFF_UP) 1713 in6_if_up(ifp); 1714 } 1715 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1716 (ND.flags & ND6_IFF_IFDISABLED)) { 1717 /* ifdisabled 0->1 transision */ 1718 /* Mark all IPv6 address as tentative. */ 1719 1720 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1721 if (V_ip6_dad_count > 0 && 1722 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1723 NET_EPOCH_ENTER(et); 1724 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1725 ifa_link) { 1726 if (ifa->ifa_addr->sa_family != 1727 AF_INET6) 1728 continue; 1729 ia = (struct in6_ifaddr *)ifa; 1730 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1731 } 1732 NET_EPOCH_EXIT(et); 1733 } 1734 } 1735 1736 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1737 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1738 /* auto_linklocal 0->1 transision */ 1739 1740 /* If no link-local address on ifp, configure */ 1741 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1742 in6_ifattach(ifp, NULL); 1743 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1744 ifp->if_flags & IFF_UP) { 1745 /* 1746 * When the IF already has 1747 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1748 * address is assigned, and IFF_UP, try to 1749 * assign one. 1750 */ 1751 NET_EPOCH_ENTER(et); 1752 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1753 ifa_link) { 1754 if (ifa->ifa_addr->sa_family != 1755 AF_INET6) 1756 continue; 1757 ia = (struct in6_ifaddr *)ifa; 1758 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1759 break; 1760 } 1761 NET_EPOCH_EXIT(et); 1762 if (ifa != NULL) 1763 /* No LLA is configured. */ 1764 in6_ifattach(ifp, NULL); 1765 } 1766 } 1767 ND_IFINFO(ifp)->flags = ND.flags; 1768 break; 1769 } 1770 #undef ND 1771 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1772 /* sync kernel routing table with the default router list */ 1773 defrouter_reset(); 1774 defrouter_select_fib(RT_ALL_FIBS); 1775 break; 1776 case SIOCSPFXFLUSH_IN6: 1777 { 1778 /* flush all the prefix advertised by routers */ 1779 struct in6_ifaddr *ia, *ia_next; 1780 struct nd_prefix *pr, *next; 1781 struct nd_prhead prl; 1782 1783 LIST_INIT(&prl); 1784 1785 ND6_WLOCK(); 1786 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1787 if (pr->ndpr_raf_ra_derived) 1788 nd6_prefix_unlink(pr, &prl); 1789 } 1790 ND6_WUNLOCK(); 1791 1792 while ((pr = LIST_FIRST(&prl)) != NULL) { 1793 LIST_REMOVE(pr, ndpr_entry); 1794 /* XXXRW: in6_ifaddrhead locking. */ 1795 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1796 ia_next) { 1797 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1798 continue; 1799 1800 if (ia->ia6_ndpr == pr) 1801 in6_purgeaddr(&ia->ia_ifa); 1802 } 1803 nd6_prefix_del(pr); 1804 } 1805 break; 1806 } 1807 case SIOCSRTRFLUSH_IN6: 1808 { 1809 /* flush all the default routers */ 1810 1811 defrouter_reset(); 1812 nd6_defrouter_flush_all(); 1813 defrouter_select_fib(RT_ALL_FIBS); 1814 break; 1815 } 1816 case SIOCGNBRINFO_IN6: 1817 { 1818 struct llentry *ln; 1819 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1820 1821 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1822 return (error); 1823 1824 NET_EPOCH_ENTER(et); 1825 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); 1826 NET_EPOCH_EXIT(et); 1827 1828 if (ln == NULL) { 1829 error = EINVAL; 1830 break; 1831 } 1832 nbi->state = ln->ln_state; 1833 nbi->asked = ln->la_asked; 1834 nbi->isrouter = ln->ln_router; 1835 if (ln->la_expire == 0) 1836 nbi->expire = 0; 1837 else 1838 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1839 (time_second - time_uptime); 1840 LLE_RUNLOCK(ln); 1841 break; 1842 } 1843 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1844 ndif->ifindex = V_nd6_defifindex; 1845 break; 1846 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1847 return (nd6_setdefaultiface(ndif->ifindex)); 1848 } 1849 return (error); 1850 } 1851 1852 /* 1853 * Calculates new isRouter value based on provided parameters and 1854 * returns it. 1855 */ 1856 static int 1857 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1858 int ln_router) 1859 { 1860 1861 /* 1862 * ICMP6 type dependent behavior. 1863 * 1864 * NS: clear IsRouter if new entry 1865 * RS: clear IsRouter 1866 * RA: set IsRouter if there's lladdr 1867 * redir: clear IsRouter if new entry 1868 * 1869 * RA case, (1): 1870 * The spec says that we must set IsRouter in the following cases: 1871 * - If lladdr exist, set IsRouter. This means (1-5). 1872 * - If it is old entry (!newentry), set IsRouter. This means (7). 1873 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1874 * A quetion arises for (1) case. (1) case has no lladdr in the 1875 * neighbor cache, this is similar to (6). 1876 * This case is rare but we figured that we MUST NOT set IsRouter. 1877 * 1878 * is_new old_addr new_addr NS RS RA redir 1879 * D R 1880 * 0 n n (1) c ? s 1881 * 0 y n (2) c s s 1882 * 0 n y (3) c s s 1883 * 0 y y (4) c s s 1884 * 0 y y (5) c s s 1885 * 1 -- n (6) c c c s 1886 * 1 -- y (7) c c s c s 1887 * 1888 * (c=clear s=set) 1889 */ 1890 switch (type & 0xff) { 1891 case ND_NEIGHBOR_SOLICIT: 1892 /* 1893 * New entry must have is_router flag cleared. 1894 */ 1895 if (is_new) /* (6-7) */ 1896 ln_router = 0; 1897 break; 1898 case ND_REDIRECT: 1899 /* 1900 * If the icmp is a redirect to a better router, always set the 1901 * is_router flag. Otherwise, if the entry is newly created, 1902 * clear the flag. [RFC 2461, sec 8.3] 1903 */ 1904 if (code == ND_REDIRECT_ROUTER) 1905 ln_router = 1; 1906 else { 1907 if (is_new) /* (6-7) */ 1908 ln_router = 0; 1909 } 1910 break; 1911 case ND_ROUTER_SOLICIT: 1912 /* 1913 * is_router flag must always be cleared. 1914 */ 1915 ln_router = 0; 1916 break; 1917 case ND_ROUTER_ADVERT: 1918 /* 1919 * Mark an entry with lladdr as a router. 1920 */ 1921 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1922 (is_new && new_addr)) { /* (7) */ 1923 ln_router = 1; 1924 } 1925 break; 1926 } 1927 1928 return (ln_router); 1929 } 1930 1931 /* 1932 * Create neighbor cache entry and cache link-layer address, 1933 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1934 * 1935 * type - ICMP6 type 1936 * code - type dependent information 1937 * 1938 */ 1939 void 1940 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1941 int lladdrlen, int type, int code) 1942 { 1943 struct llentry *ln = NULL, *ln_tmp; 1944 int is_newentry; 1945 int do_update; 1946 int olladdr; 1947 int llchange; 1948 int flags; 1949 uint16_t router = 0; 1950 struct mbuf *chain = NULL; 1951 u_char linkhdr[LLE_MAX_LINKHDR]; 1952 size_t linkhdrsize; 1953 int lladdr_off; 1954 1955 NET_EPOCH_ASSERT(); 1956 IF_AFDATA_UNLOCK_ASSERT(ifp); 1957 1958 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1959 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1960 1961 /* nothing must be updated for unspecified address */ 1962 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1963 return; 1964 1965 /* 1966 * Validation about ifp->if_addrlen and lladdrlen must be done in 1967 * the caller. 1968 * 1969 * XXX If the link does not have link-layer adderss, what should 1970 * we do? (ifp->if_addrlen == 0) 1971 * Spec says nothing in sections for RA, RS and NA. There's small 1972 * description on it in NS section (RFC 2461 7.2.3). 1973 */ 1974 flags = lladdr ? LLE_EXCLUSIVE : 0; 1975 ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); 1976 is_newentry = 0; 1977 if (ln == NULL) { 1978 flags |= LLE_EXCLUSIVE; 1979 ln = nd6_alloc(from, 0, ifp); 1980 if (ln == NULL) 1981 return; 1982 1983 /* 1984 * Since we already know all the data for the new entry, 1985 * fill it before insertion. 1986 */ 1987 if (lladdr != NULL) { 1988 linkhdrsize = sizeof(linkhdr); 1989 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1990 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 1991 lltable_free_entry(LLTABLE6(ifp), ln); 1992 return; 1993 } 1994 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1995 lladdr_off); 1996 } 1997 1998 IF_AFDATA_WLOCK(ifp); 1999 LLE_WLOCK(ln); 2000 /* Prefer any existing lle over newly-created one */ 2001 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2002 if (ln_tmp == NULL) 2003 lltable_link_entry(LLTABLE6(ifp), ln); 2004 IF_AFDATA_WUNLOCK(ifp); 2005 if (ln_tmp == NULL) { 2006 /* No existing lle, mark as new entry (6,7) */ 2007 is_newentry = 1; 2008 if (lladdr != NULL) { /* (7) */ 2009 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2010 EVENTHANDLER_INVOKE(lle_event, ln, 2011 LLENTRY_RESOLVED); 2012 } 2013 } else { 2014 lltable_free_entry(LLTABLE6(ifp), ln); 2015 ln = ln_tmp; 2016 ln_tmp = NULL; 2017 } 2018 } 2019 /* do nothing if static ndp is set */ 2020 if ((ln->la_flags & LLE_STATIC)) { 2021 if (flags & LLE_EXCLUSIVE) 2022 LLE_WUNLOCK(ln); 2023 else 2024 LLE_RUNLOCK(ln); 2025 return; 2026 } 2027 2028 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2029 if (olladdr && lladdr) { 2030 llchange = bcmp(lladdr, ln->ll_addr, 2031 ifp->if_addrlen); 2032 } else if (!olladdr && lladdr) 2033 llchange = 1; 2034 else 2035 llchange = 0; 2036 2037 /* 2038 * newentry olladdr lladdr llchange (*=record) 2039 * 0 n n -- (1) 2040 * 0 y n -- (2) 2041 * 0 n y y (3) * STALE 2042 * 0 y y n (4) * 2043 * 0 y y y (5) * STALE 2044 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2045 * 1 -- y -- (7) * STALE 2046 */ 2047 2048 do_update = 0; 2049 if (is_newentry == 0 && llchange != 0) { 2050 do_update = 1; /* (3,5) */ 2051 2052 /* 2053 * Record source link-layer address 2054 * XXX is it dependent to ifp->if_type? 2055 */ 2056 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { 2057 /* Entry was deleted */ 2058 LLE_WUNLOCK(ln); 2059 return; 2060 } 2061 2062 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2063 2064 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2065 2066 if (ln->la_hold != NULL) 2067 chain = nd6_grab_holdchain(ln); 2068 } 2069 2070 /* Calculates new router status */ 2071 router = nd6_is_router(type, code, is_newentry, olladdr, 2072 lladdr != NULL ? 1 : 0, ln->ln_router); 2073 2074 ln->ln_router = router; 2075 /* Mark non-router redirects with special flag */ 2076 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2077 ln->la_flags |= LLE_REDIRECT; 2078 2079 if (flags & LLE_EXCLUSIVE) 2080 LLE_WUNLOCK(ln); 2081 else 2082 LLE_RUNLOCK(ln); 2083 2084 if (chain != NULL) 2085 nd6_flush_holdchain(ifp, ln, chain); 2086 if (do_update) 2087 nd6_flush_children_holdchain(ifp, ln); 2088 2089 /* 2090 * When the link-layer address of a router changes, select the 2091 * best router again. In particular, when the neighbor entry is newly 2092 * created, it might affect the selection policy. 2093 * Question: can we restrict the first condition to the "is_newentry" 2094 * case? 2095 * XXX: when we hear an RA from a new router with the link-layer 2096 * address option, defrouter_select_fib() is called twice, since 2097 * defrtrlist_update called the function as well. However, I believe 2098 * we can compromise the overhead, since it only happens the first 2099 * time. 2100 * XXX: although defrouter_select_fib() should not have a bad effect 2101 * for those are not autoconfigured hosts, we explicitly avoid such 2102 * cases for safety. 2103 */ 2104 if ((do_update || is_newentry) && router && 2105 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2106 /* 2107 * guaranteed recursion 2108 */ 2109 defrouter_select_fib(ifp->if_fib); 2110 } 2111 } 2112 2113 static void 2114 nd6_slowtimo(void *arg) 2115 { 2116 struct epoch_tracker et; 2117 CURVNET_SET((struct vnet *) arg); 2118 struct nd_ifinfo *nd6if; 2119 struct ifnet *ifp; 2120 2121 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2122 nd6_slowtimo, curvnet); 2123 NET_EPOCH_ENTER(et); 2124 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2125 if (ifp->if_afdata[AF_INET6] == NULL) 2126 continue; 2127 nd6if = ND_IFINFO(ifp); 2128 if (nd6if->basereachable && /* already initialized */ 2129 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2130 /* 2131 * Since reachable time rarely changes by router 2132 * advertisements, we SHOULD insure that a new random 2133 * value gets recomputed at least once every few hours. 2134 * (RFC 2461, 6.3.4) 2135 */ 2136 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2137 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2138 } 2139 } 2140 NET_EPOCH_EXIT(et); 2141 CURVNET_RESTORE(); 2142 } 2143 2144 struct mbuf * 2145 nd6_grab_holdchain(struct llentry *ln) 2146 { 2147 struct mbuf *chain; 2148 2149 LLE_WLOCK_ASSERT(ln); 2150 2151 chain = ln->la_hold; 2152 ln->la_hold = NULL; 2153 ln->la_numheld = 0; 2154 2155 if (ln->ln_state == ND6_LLINFO_STALE) { 2156 /* 2157 * The first time we send a packet to a 2158 * neighbor whose entry is STALE, we have 2159 * to change the state to DELAY and a sets 2160 * a timer to expire in DELAY_FIRST_PROBE_TIME 2161 * seconds to ensure do neighbor unreachability 2162 * detection on expiration. 2163 * (RFC 2461 7.3.3) 2164 */ 2165 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2166 } 2167 2168 return (chain); 2169 } 2170 2171 int 2172 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2173 struct sockaddr_in6 *dst, struct route *ro) 2174 { 2175 int error; 2176 int ip6len; 2177 struct ip6_hdr *ip6; 2178 struct m_tag *mtag; 2179 2180 #ifdef MAC 2181 mac_netinet6_nd6_send(ifp, m); 2182 #endif 2183 2184 /* 2185 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2186 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2187 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2188 * to be diverted to user space. When re-injected into the kernel, 2189 * send_output() will directly dispatch them to the outgoing interface. 2190 */ 2191 if (send_sendso_input_hook != NULL) { 2192 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2193 if (mtag != NULL) { 2194 ip6 = mtod(m, struct ip6_hdr *); 2195 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2196 /* Use the SEND socket */ 2197 error = send_sendso_input_hook(m, ifp, SND_OUT, 2198 ip6len); 2199 /* -1 == no app on SEND socket */ 2200 if (error == 0 || error != -1) 2201 return (error); 2202 } 2203 } 2204 2205 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2206 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2207 mtod(m, struct ip6_hdr *)); 2208 2209 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2210 origifp = ifp; 2211 2212 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2213 return (error); 2214 } 2215 2216 /* 2217 * Lookup link headerfor @sa_dst address. Stores found 2218 * data in @desten buffer. Copy of lle ln_flags can be also 2219 * saved in @pflags if @pflags is non-NULL. 2220 * 2221 * If destination LLE does not exists or lle state modification 2222 * is required, call "slow" version. 2223 * 2224 * Return values: 2225 * - 0 on success (address copied to buffer). 2226 * - EWOULDBLOCK (no local error, but address is still unresolved) 2227 * - other errors (alloc failure, etc) 2228 */ 2229 int 2230 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, 2231 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2232 struct llentry **plle) 2233 { 2234 struct llentry *ln = NULL; 2235 const struct sockaddr_in6 *dst6; 2236 2237 NET_EPOCH_ASSERT(); 2238 2239 if (pflags != NULL) 2240 *pflags = 0; 2241 2242 dst6 = (const struct sockaddr_in6 *)sa_dst; 2243 2244 /* discard the packet if IPv6 operation is disabled on the interface */ 2245 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2246 m_freem(m); 2247 return (ENETDOWN); /* better error? */ 2248 } 2249 2250 if (m != NULL && m->m_flags & M_MCAST) { 2251 switch (ifp->if_type) { 2252 case IFT_ETHER: 2253 case IFT_L2VLAN: 2254 case IFT_BRIDGE: 2255 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2256 desten); 2257 return (0); 2258 default: 2259 m_freem(m); 2260 return (EAFNOSUPPORT); 2261 } 2262 } 2263 2264 int family = gw_flags >> 16; 2265 int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; 2266 ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); 2267 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2268 /* Entry found, let's copy lle info */ 2269 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2270 if (pflags != NULL) 2271 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2272 llentry_provide_feedback(ln); 2273 if (plle) { 2274 LLE_ADDREF(ln); 2275 *plle = ln; 2276 LLE_WUNLOCK(ln); 2277 } 2278 return (0); 2279 } else if (plle && ln) 2280 LLE_WUNLOCK(ln); 2281 2282 return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); 2283 } 2284 2285 /* 2286 * Finds or creates a new llentry for @addr and @family. 2287 * Returns wlocked llentry or NULL. 2288 * 2289 * 2290 * Child LLEs. 2291 * 2292 * Do not have their own state machine (gets marked as static) 2293 * settimer bails out for child LLEs just in case. 2294 * 2295 * Locking order: parent lle gets locked first, chen goes the child. 2296 */ 2297 static __noinline struct llentry * 2298 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) 2299 { 2300 struct llentry *child_lle = NULL; 2301 struct llentry *lle, *lle_tmp; 2302 2303 lle = nd6_alloc(addr, 0, ifp); 2304 if (lle != NULL && family != AF_INET6) { 2305 child_lle = nd6_alloc(addr, 0, ifp); 2306 if (child_lle == NULL) { 2307 lltable_free_entry(LLTABLE6(ifp), lle); 2308 return (NULL); 2309 } 2310 child_lle->r_family = family; 2311 child_lle->la_flags |= LLE_CHILD | LLE_STATIC; 2312 child_lle->ln_state = ND6_LLINFO_INCOMPLETE; 2313 } 2314 2315 if (lle == NULL) { 2316 char ip6buf[INET6_ADDRSTRLEN]; 2317 log(LOG_DEBUG, 2318 "nd6_get_llentry: can't allocate llinfo for %s " 2319 "(ln=%p)\n", 2320 ip6_sprintf(ip6buf, addr), lle); 2321 return (NULL); 2322 } 2323 2324 IF_AFDATA_WLOCK(ifp); 2325 LLE_WLOCK(lle); 2326 /* Prefer any existing entry over newly-created one */ 2327 lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2328 if (lle_tmp == NULL) 2329 lltable_link_entry(LLTABLE6(ifp), lle); 2330 else { 2331 lltable_free_entry(LLTABLE6(ifp), lle); 2332 lle = lle_tmp; 2333 } 2334 if (child_lle != NULL) { 2335 /* Check if child lle for the same family exists */ 2336 lle_tmp = llentry_lookup_family(lle, child_lle->r_family); 2337 LLE_WLOCK(child_lle); 2338 if (lle_tmp == NULL) { 2339 /* Attach */ 2340 lltable_link_child_entry(lle, child_lle); 2341 } else { 2342 /* child lle already exists, free newly-created one */ 2343 lltable_free_entry(LLTABLE6(ifp), child_lle); 2344 child_lle = lle_tmp; 2345 } 2346 LLE_WUNLOCK(lle); 2347 lle = child_lle; 2348 } 2349 IF_AFDATA_WUNLOCK(ifp); 2350 return (lle); 2351 } 2352 2353 /* 2354 * Do L2 address resolution for @sa_dst address. Stores found 2355 * address in @desten buffer. Copy of lle ln_flags can be also 2356 * saved in @pflags if @pflags is non-NULL. 2357 * 2358 * Heavy version. 2359 * Function assume that destination LLE does not exist, 2360 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2361 * 2362 * Set noinline to be dtrace-friendly 2363 */ 2364 static __noinline int 2365 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, 2366 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2367 struct llentry **plle) 2368 { 2369 struct llentry *lle = NULL; 2370 struct in6_addr *psrc, src; 2371 int send_ns, ll_len; 2372 char *lladdr; 2373 2374 NET_EPOCH_ASSERT(); 2375 2376 /* 2377 * Address resolution or Neighbor Unreachability Detection 2378 * for the next hop. 2379 * At this point, the destination of the packet must be a unicast 2380 * or an anycast address(i.e. not a multicast). 2381 */ 2382 lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); 2383 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2384 /* 2385 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2386 * the condition below is not very efficient. But we believe 2387 * it is tolerable, because this should be a rare case. 2388 */ 2389 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); 2390 } 2391 2392 if (lle == NULL) { 2393 m_freem(m); 2394 return (ENOBUFS); 2395 } 2396 2397 LLE_WLOCK_ASSERT(lle); 2398 2399 /* 2400 * The first time we send a packet to a neighbor whose entry is 2401 * STALE, we have to change the state to DELAY and a sets a timer to 2402 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2403 * neighbor unreachability detection on expiration. 2404 * (RFC 2461 7.3.3) 2405 */ 2406 if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) 2407 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2408 2409 /* 2410 * If the neighbor cache entry has a state other than INCOMPLETE 2411 * (i.e. its link-layer address is already resolved), just 2412 * send the packet. 2413 */ 2414 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2415 if (flags & LLE_ADDRONLY) { 2416 lladdr = lle->ll_addr; 2417 ll_len = ifp->if_addrlen; 2418 } else { 2419 lladdr = lle->r_linkdata; 2420 ll_len = lle->r_hdrlen; 2421 } 2422 bcopy(lladdr, desten, ll_len); 2423 if (pflags != NULL) 2424 *pflags = lle->la_flags; 2425 if (plle) { 2426 LLE_ADDREF(lle); 2427 *plle = lle; 2428 } 2429 LLE_WUNLOCK(lle); 2430 return (0); 2431 } 2432 2433 /* 2434 * There is a neighbor cache entry, but no ethernet address 2435 * response yet. Append this latest packet to the end of the 2436 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2437 * the oldest packet in the queue will be removed. 2438 */ 2439 if (m != NULL) { 2440 size_t dropped; 2441 2442 dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); 2443 ICMP6STAT_ADD(icp6s_dropped, dropped); 2444 } 2445 2446 /* 2447 * If there has been no NS for the neighbor after entering the 2448 * INCOMPLETE state, send the first solicitation. 2449 * Note that for newly-created lle la_asked will be 0, 2450 * so we will transition from ND6_LLINFO_NOSTATE to 2451 * ND6_LLINFO_INCOMPLETE state here. 2452 */ 2453 psrc = NULL; 2454 send_ns = 0; 2455 2456 /* If we have child lle, switch to the parent to send NS */ 2457 if (lle->la_flags & LLE_CHILD) { 2458 struct llentry *lle_parent = lle->lle_parent; 2459 LLE_WUNLOCK(lle); 2460 lle = lle_parent; 2461 LLE_WLOCK(lle); 2462 } 2463 if (lle->la_asked == 0) { 2464 lle->la_asked++; 2465 send_ns = 1; 2466 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2467 2468 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2469 } 2470 LLE_WUNLOCK(lle); 2471 if (send_ns != 0) 2472 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2473 2474 return (EWOULDBLOCK); 2475 } 2476 2477 /* 2478 * Do L2 address resolution for @sa_dst address. Stores found 2479 * address in @desten buffer. Copy of lle ln_flags can be also 2480 * saved in @pflags if @pflags is non-NULL. 2481 * 2482 * Return values: 2483 * - 0 on success (address copied to buffer). 2484 * - EWOULDBLOCK (no local error, but address is still unresolved) 2485 * - other errors (alloc failure, etc) 2486 */ 2487 int 2488 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2489 char *desten, uint32_t *pflags) 2490 { 2491 int error; 2492 2493 flags |= LLE_ADDRONLY; 2494 error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, 2495 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2496 return (error); 2497 } 2498 2499 int 2500 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) 2501 { 2502 struct mbuf *m, *m_head; 2503 struct sockaddr_in6 dst6; 2504 int error = 0; 2505 2506 NET_EPOCH_ASSERT(); 2507 2508 struct route_in6 ro = { 2509 .ro_prepend = lle->r_linkdata, 2510 .ro_plen = lle->r_hdrlen, 2511 }; 2512 2513 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); 2514 m_head = chain; 2515 2516 while (m_head) { 2517 m = m_head; 2518 m_head = m_head->m_nextpkt; 2519 m->m_nextpkt = NULL; 2520 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); 2521 } 2522 2523 /* 2524 * XXX 2525 * note that intermediate errors are blindly ignored 2526 */ 2527 return (error); 2528 } 2529 2530 __noinline void 2531 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) 2532 { 2533 struct llentry *child_lle; 2534 struct mbuf *chain; 2535 2536 NET_EPOCH_ASSERT(); 2537 2538 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 2539 LLE_WLOCK(child_lle); 2540 chain = nd6_grab_holdchain(child_lle); 2541 LLE_WUNLOCK(child_lle); 2542 nd6_flush_holdchain(ifp, child_lle, chain); 2543 } 2544 } 2545 2546 static int 2547 nd6_need_cache(struct ifnet *ifp) 2548 { 2549 /* 2550 * XXX: we currently do not make neighbor cache on any interface 2551 * other than Ethernet and GIF. 2552 * 2553 * RFC2893 says: 2554 * - unidirectional tunnels needs no ND 2555 */ 2556 switch (ifp->if_type) { 2557 case IFT_ETHER: 2558 case IFT_IEEE1394: 2559 case IFT_L2VLAN: 2560 case IFT_INFINIBAND: 2561 case IFT_BRIDGE: 2562 case IFT_PROPVIRTUAL: 2563 return (1); 2564 default: 2565 return (0); 2566 } 2567 } 2568 2569 /* 2570 * Add pernament ND6 link-layer record for given 2571 * interface address. 2572 * 2573 * Very similar to IPv4 arp_ifinit(), but: 2574 * 1) IPv6 DAD is performed in different place 2575 * 2) It is called by IPv6 protocol stack in contrast to 2576 * arp_ifinit() which is typically called in SIOCSIFADDR 2577 * driver ioctl handler. 2578 * 2579 */ 2580 int 2581 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2582 { 2583 struct ifnet *ifp; 2584 struct llentry *ln, *ln_tmp; 2585 struct sockaddr *dst; 2586 2587 ifp = ia->ia_ifa.ifa_ifp; 2588 if (nd6_need_cache(ifp) == 0) 2589 return (0); 2590 2591 dst = (struct sockaddr *)&ia->ia_addr; 2592 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2593 if (ln == NULL) 2594 return (ENOBUFS); 2595 2596 IF_AFDATA_WLOCK(ifp); 2597 LLE_WLOCK(ln); 2598 /* Unlink any entry if exists */ 2599 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); 2600 if (ln_tmp != NULL) 2601 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2602 lltable_link_entry(LLTABLE6(ifp), ln); 2603 IF_AFDATA_WUNLOCK(ifp); 2604 2605 if (ln_tmp != NULL) 2606 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2607 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2608 2609 LLE_WUNLOCK(ln); 2610 if (ln_tmp != NULL) 2611 llentry_free(ln_tmp); 2612 2613 return (0); 2614 } 2615 2616 /* 2617 * Removes either all lle entries for given @ia, or lle 2618 * corresponding to @ia address. 2619 */ 2620 void 2621 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2622 { 2623 struct sockaddr_in6 mask, addr; 2624 struct sockaddr *saddr, *smask; 2625 struct ifnet *ifp; 2626 2627 ifp = ia->ia_ifa.ifa_ifp; 2628 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2629 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2630 saddr = (struct sockaddr *)&addr; 2631 smask = (struct sockaddr *)&mask; 2632 2633 if (all != 0) 2634 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2635 else 2636 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2637 } 2638 2639 static int 2640 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2641 { 2642 struct in6_prefix p; 2643 struct sockaddr_in6 s6; 2644 struct nd_prefix *pr; 2645 struct nd_pfxrouter *pfr; 2646 time_t maxexpire; 2647 int error; 2648 char ip6buf[INET6_ADDRSTRLEN]; 2649 2650 if (req->newptr) 2651 return (EPERM); 2652 2653 error = sysctl_wire_old_buffer(req, 0); 2654 if (error != 0) 2655 return (error); 2656 2657 bzero(&p, sizeof(p)); 2658 p.origin = PR_ORIG_RA; 2659 bzero(&s6, sizeof(s6)); 2660 s6.sin6_family = AF_INET6; 2661 s6.sin6_len = sizeof(s6); 2662 2663 ND6_RLOCK(); 2664 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2665 if (!pr->ndpr_raf_ra_derived) 2666 continue; 2667 p.prefix = pr->ndpr_prefix; 2668 if (sa6_recoverscope(&p.prefix)) { 2669 log(LOG_ERR, "scope error in prefix list (%s)\n", 2670 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2671 /* XXX: press on... */ 2672 } 2673 p.raflags = pr->ndpr_raf; 2674 p.prefixlen = pr->ndpr_plen; 2675 p.vltime = pr->ndpr_vltime; 2676 p.pltime = pr->ndpr_pltime; 2677 p.if_index = pr->ndpr_ifp->if_index; 2678 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2679 p.expire = 0; 2680 else { 2681 /* XXX: we assume time_t is signed. */ 2682 maxexpire = (-1) & 2683 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2684 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2685 p.expire = pr->ndpr_lastupdate + 2686 pr->ndpr_vltime + 2687 (time_second - time_uptime); 2688 else 2689 p.expire = maxexpire; 2690 } 2691 p.refcnt = pr->ndpr_addrcnt; 2692 p.flags = pr->ndpr_stateflags; 2693 p.advrtrs = 0; 2694 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2695 p.advrtrs++; 2696 error = SYSCTL_OUT(req, &p, sizeof(p)); 2697 if (error != 0) 2698 break; 2699 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2700 s6.sin6_addr = pfr->router->rtaddr; 2701 if (sa6_recoverscope(&s6)) 2702 log(LOG_ERR, 2703 "scope error in prefix list (%s)\n", 2704 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2705 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2706 if (error != 0) 2707 goto out; 2708 } 2709 } 2710 out: 2711 ND6_RUNLOCK(); 2712 return (error); 2713 } 2714 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2715 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2716 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2717 "NDP prefix list"); 2718 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2719 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2720 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2721 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2722