xref: /freebsd/sys/netinet6/nd6.c (revision a3d9bf49b57923118c339642594246ef73872ee8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/eventhandler.h>
43 #include <sys/callout.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <sys/protosw.h>
53 #include <sys/errno.h>
54 #include <sys/syslog.h>
55 #include <sys/rwlock.h>
56 #include <sys/queue.h>
57 #include <sys/sdt.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/route/route_ctl.h>
66 #include <net/route/nhop.h>
67 #include <net/vnet.h>
68 
69 #include <netinet/in.h>
70 #include <netinet/in_kdtrace.h>
71 #include <net/if_llatbl.h>
72 #include <netinet/if_ether.h>
73 #include <netinet6/in6_var.h>
74 #include <netinet/ip6.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/scope6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet6/in6_ifattach.h>
79 #include <netinet/icmp6.h>
80 #include <netinet6/send.h>
81 
82 #include <sys/limits.h>
83 
84 #include <security/mac/mac_framework.h>
85 
86 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
87 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
88 
89 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
90 
91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
92 
93 /* timer values */
94 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
95 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
96 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
97 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
98 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
99 					 * local traffic */
100 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
101 					 * collection timer */
102 
103 /* preventing too many loops in ND option parsing */
104 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
105 
106 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
107 					 * layer hints */
108 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
109 					 * ND entries */
110 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
111 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
112 
113 #ifdef ND6_DEBUG
114 VNET_DEFINE(int, nd6_debug) = 1;
115 #else
116 VNET_DEFINE(int, nd6_debug) = 0;
117 #endif
118 
119 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
120 
121 VNET_DEFINE(struct nd_prhead, nd_prefix);
122 VNET_DEFINE(struct rwlock, nd6_lock);
123 VNET_DEFINE(uint64_t, nd6_list_genid);
124 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
125 
126 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
127 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
128 
129 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
130 
131 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
132 	struct ifnet *);
133 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
134 static void nd6_slowtimo(void *);
135 static int regen_tmpaddr(struct in6_ifaddr *);
136 static void nd6_free(struct llentry **, int);
137 static void nd6_free_redirect(const struct llentry *);
138 static void nd6_llinfo_timer(void *);
139 static void nd6_llinfo_settimer_locked(struct llentry *, long);
140 static void clear_llinfo_pqueue(struct llentry *);
141 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *,
142     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
143 static int nd6_need_cache(struct ifnet *);
144 
145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
146 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
147 
148 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch);
149 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
150 
151 SYSCTL_DECL(_net_inet6_icmp6);
152 
153 static void
154 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
155 {
156 	struct rt_addrinfo rtinfo;
157 	struct sockaddr_in6 dst;
158 	struct sockaddr_dl gw;
159 	struct ifnet *ifp;
160 	int type;
161 	int fibnum;
162 
163 	LLE_WLOCK_ASSERT(lle);
164 
165 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
166 		return;
167 
168 	switch (evt) {
169 	case LLENTRY_RESOLVED:
170 		type = RTM_ADD;
171 		KASSERT(lle->la_flags & LLE_VALID,
172 		    ("%s: %p resolved but not valid?", __func__, lle));
173 		break;
174 	case LLENTRY_EXPIRED:
175 		type = RTM_DELETE;
176 		break;
177 	default:
178 		return;
179 	}
180 
181 	ifp = lltable_get_ifp(lle->lle_tbl);
182 
183 	bzero(&dst, sizeof(dst));
184 	bzero(&gw, sizeof(gw));
185 	bzero(&rtinfo, sizeof(rtinfo));
186 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
187 	dst.sin6_scope_id = in6_getscopezone(ifp,
188 	    in6_addrscope(&dst.sin6_addr));
189 	gw.sdl_len = sizeof(struct sockaddr_dl);
190 	gw.sdl_family = AF_LINK;
191 	gw.sdl_alen = ifp->if_addrlen;
192 	gw.sdl_index = ifp->if_index;
193 	gw.sdl_type = ifp->if_type;
194 	if (evt == LLENTRY_RESOLVED)
195 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
196 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
197 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
198 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
199 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
200 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
201 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
202 }
203 
204 /*
205  * A handler for interface link layer address change event.
206  */
207 static void
208 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
209 {
210 
211 	lltable_update_ifaddr(LLTABLE6(ifp));
212 }
213 
214 void
215 nd6_init(void)
216 {
217 
218 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
219 	rw_init(&V_nd6_lock, "nd6 list");
220 
221 	LIST_INIT(&V_nd_prefix);
222 	nd6_defrouter_init();
223 
224 	/* Start timers. */
225 	callout_init(&V_nd6_slowtimo_ch, 0);
226 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
227 	    nd6_slowtimo, curvnet);
228 
229 	callout_init(&V_nd6_timer_ch, 0);
230 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
231 
232 	nd6_dad_init();
233 	if (IS_DEFAULT_VNET(curvnet)) {
234 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
235 		    NULL, EVENTHANDLER_PRI_ANY);
236 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
237 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
238 		ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
239 		    nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
240 	}
241 }
242 
243 #ifdef VIMAGE
244 void
245 nd6_destroy()
246 {
247 
248 	callout_drain(&V_nd6_slowtimo_ch);
249 	callout_drain(&V_nd6_timer_ch);
250 	if (IS_DEFAULT_VNET(curvnet)) {
251 		EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
252 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
253 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
254 	}
255 	rw_destroy(&V_nd6_lock);
256 	mtx_destroy(&V_nd6_onlink_mtx);
257 }
258 #endif
259 
260 struct nd_ifinfo *
261 nd6_ifattach(struct ifnet *ifp)
262 {
263 	struct nd_ifinfo *nd;
264 
265 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
266 	nd->initialized = 1;
267 
268 	nd->chlim = IPV6_DEFHLIM;
269 	nd->basereachable = REACHABLE_TIME;
270 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
271 	nd->retrans = RETRANS_TIMER;
272 
273 	nd->flags = ND6_IFF_PERFORMNUD;
274 
275 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
276 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
277 	 * default regardless of the V_ip6_auto_linklocal configuration to
278 	 * give a reasonable default behavior.
279 	 */
280 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
281 	    (ifp->if_flags & IFF_LOOPBACK))
282 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
283 	/*
284 	 * A loopback interface does not need to accept RTADV.
285 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
286 	 * default regardless of the V_ip6_accept_rtadv configuration to
287 	 * prevent the interface from accepting RA messages arrived
288 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
289 	 */
290 	if (V_ip6_accept_rtadv &&
291 	    !(ifp->if_flags & IFF_LOOPBACK) &&
292 	    (ifp->if_type != IFT_BRIDGE))
293 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
294 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
295 		nd->flags |= ND6_IFF_NO_RADR;
296 
297 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
298 	nd6_setmtu0(ifp, nd);
299 
300 	return nd;
301 }
302 
303 void
304 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
305 {
306 	struct epoch_tracker et;
307 	struct ifaddr *ifa, *next;
308 
309 	NET_EPOCH_ENTER(et);
310 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
311 		if (ifa->ifa_addr->sa_family != AF_INET6)
312 			continue;
313 
314 		/* stop DAD processing */
315 		nd6_dad_stop(ifa);
316 	}
317 	NET_EPOCH_EXIT(et);
318 
319 	free(nd, M_IP6NDP);
320 }
321 
322 /*
323  * Reset ND level link MTU. This function is called when the physical MTU
324  * changes, which means we might have to adjust the ND level MTU.
325  */
326 void
327 nd6_setmtu(struct ifnet *ifp)
328 {
329 	if (ifp->if_afdata[AF_INET6] == NULL)
330 		return;
331 
332 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
333 }
334 
335 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
336 void
337 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
338 {
339 	u_int32_t omaxmtu;
340 
341 	omaxmtu = ndi->maxmtu;
342 	ndi->maxmtu = ifp->if_mtu;
343 
344 	/*
345 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
346 	 * undesirable situation.  We thus notify the operator of the change
347 	 * explicitly.  The check for omaxmtu is necessary to restrict the
348 	 * log to the case of changing the MTU, not initializing it.
349 	 */
350 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
351 		log(LOG_NOTICE, "nd6_setmtu0: "
352 		    "new link MTU on %s (%lu) is too small for IPv6\n",
353 		    if_name(ifp), (unsigned long)ndi->maxmtu);
354 	}
355 
356 	if (ndi->maxmtu > V_in6_maxmtu)
357 		in6_setmaxmtu(); /* check all interfaces just in case */
358 
359 }
360 
361 void
362 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
363 {
364 
365 	bzero(ndopts, sizeof(*ndopts));
366 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
367 	ndopts->nd_opts_last
368 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
369 
370 	if (icmp6len == 0) {
371 		ndopts->nd_opts_done = 1;
372 		ndopts->nd_opts_search = NULL;
373 	}
374 }
375 
376 /*
377  * Take one ND option.
378  */
379 struct nd_opt_hdr *
380 nd6_option(union nd_opts *ndopts)
381 {
382 	struct nd_opt_hdr *nd_opt;
383 	int olen;
384 
385 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
386 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
387 	    __func__));
388 	if (ndopts->nd_opts_search == NULL)
389 		return NULL;
390 	if (ndopts->nd_opts_done)
391 		return NULL;
392 
393 	nd_opt = ndopts->nd_opts_search;
394 
395 	/* make sure nd_opt_len is inside the buffer */
396 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
397 		bzero(ndopts, sizeof(*ndopts));
398 		return NULL;
399 	}
400 
401 	olen = nd_opt->nd_opt_len << 3;
402 	if (olen == 0) {
403 		/*
404 		 * Message validation requires that all included
405 		 * options have a length that is greater than zero.
406 		 */
407 		bzero(ndopts, sizeof(*ndopts));
408 		return NULL;
409 	}
410 
411 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
412 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
413 		/* option overruns the end of buffer, invalid */
414 		bzero(ndopts, sizeof(*ndopts));
415 		return NULL;
416 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
417 		/* reached the end of options chain */
418 		ndopts->nd_opts_done = 1;
419 		ndopts->nd_opts_search = NULL;
420 	}
421 	return nd_opt;
422 }
423 
424 /*
425  * Parse multiple ND options.
426  * This function is much easier to use, for ND routines that do not need
427  * multiple options of the same type.
428  */
429 int
430 nd6_options(union nd_opts *ndopts)
431 {
432 	struct nd_opt_hdr *nd_opt;
433 	int i = 0;
434 
435 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
436 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
437 	    __func__));
438 	if (ndopts->nd_opts_search == NULL)
439 		return 0;
440 
441 	while (1) {
442 		nd_opt = nd6_option(ndopts);
443 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
444 			/*
445 			 * Message validation requires that all included
446 			 * options have a length that is greater than zero.
447 			 */
448 			ICMP6STAT_INC(icp6s_nd_badopt);
449 			bzero(ndopts, sizeof(*ndopts));
450 			return -1;
451 		}
452 
453 		if (nd_opt == NULL)
454 			goto skip1;
455 
456 		switch (nd_opt->nd_opt_type) {
457 		case ND_OPT_SOURCE_LINKADDR:
458 		case ND_OPT_TARGET_LINKADDR:
459 		case ND_OPT_MTU:
460 		case ND_OPT_REDIRECTED_HEADER:
461 		case ND_OPT_NONCE:
462 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
463 				nd6log((LOG_INFO,
464 				    "duplicated ND6 option found (type=%d)\n",
465 				    nd_opt->nd_opt_type));
466 				/* XXX bark? */
467 			} else {
468 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
469 					= nd_opt;
470 			}
471 			break;
472 		case ND_OPT_PREFIX_INFORMATION:
473 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
474 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
475 					= nd_opt;
476 			}
477 			ndopts->nd_opts_pi_end =
478 				(struct nd_opt_prefix_info *)nd_opt;
479 			break;
480 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
481 		case ND_OPT_RDNSS:	/* RFC 6106 */
482 		case ND_OPT_DNSSL:	/* RFC 6106 */
483 			/*
484 			 * Silently ignore options we know and do not care about
485 			 * in the kernel.
486 			 */
487 			break;
488 		default:
489 			/*
490 			 * Unknown options must be silently ignored,
491 			 * to accommodate future extension to the protocol.
492 			 */
493 			nd6log((LOG_DEBUG,
494 			    "nd6_options: unsupported option %d - "
495 			    "option ignored\n", nd_opt->nd_opt_type));
496 		}
497 
498 skip1:
499 		i++;
500 		if (i > V_nd6_maxndopt) {
501 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
502 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
503 			break;
504 		}
505 
506 		if (ndopts->nd_opts_done)
507 			break;
508 	}
509 
510 	return 0;
511 }
512 
513 /*
514  * ND6 timer routine to handle ND6 entries
515  */
516 static void
517 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
518 {
519 	int canceled;
520 
521 	LLE_WLOCK_ASSERT(ln);
522 
523 	if (tick < 0) {
524 		ln->la_expire = 0;
525 		ln->ln_ntick = 0;
526 		canceled = callout_stop(&ln->lle_timer);
527 	} else {
528 		ln->la_expire = time_uptime + tick / hz;
529 		LLE_ADDREF(ln);
530 		if (tick > INT_MAX) {
531 			ln->ln_ntick = tick - INT_MAX;
532 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
533 			    nd6_llinfo_timer, ln);
534 		} else {
535 			ln->ln_ntick = 0;
536 			canceled = callout_reset(&ln->lle_timer, tick,
537 			    nd6_llinfo_timer, ln);
538 		}
539 	}
540 	if (canceled > 0)
541 		LLE_REMREF(ln);
542 }
543 
544 /*
545  * Gets source address of the first packet in hold queue
546  * and stores it in @src.
547  * Returns pointer to @src (if hold queue is not empty) or NULL.
548  *
549  * Set noinline to be dtrace-friendly
550  */
551 static __noinline struct in6_addr *
552 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
553 {
554 	struct ip6_hdr hdr;
555 	struct mbuf *m;
556 
557 	if (ln->la_hold == NULL)
558 		return (NULL);
559 
560 	/*
561 	 * assume every packet in la_hold has the same IP header
562 	 */
563 	m = ln->la_hold;
564 	if (sizeof(hdr) > m->m_len)
565 		return (NULL);
566 
567 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
568 	*src = hdr.ip6_src;
569 
570 	return (src);
571 }
572 
573 /*
574  * Checks if we need to switch from STALE state.
575  *
576  * RFC 4861 requires switching from STALE to DELAY state
577  * on first packet matching entry, waiting V_nd6_delay and
578  * transition to PROBE state (if upper layer confirmation was
579  * not received).
580  *
581  * This code performs a bit differently:
582  * On packet hit we don't change state (but desired state
583  * can be guessed by control plane). However, after V_nd6_delay
584  * seconds code will transition to PROBE state (so DELAY state
585  * is kinda skipped in most situations).
586  *
587  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
588  * we perform the following upon entering STALE state:
589  *
590  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
591  * if packet was transmitted at the start of given interval, we
592  * would be able to switch to PROBE state in V_nd6_delay seconds
593  * as user expects.
594  *
595  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
596  * lle in STALE state (remaining timer value stored in lle_remtime).
597  *
598  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
599  * seconds ago.
600  *
601  * Returns non-zero value if the entry is still STALE (storing
602  * the next timer interval in @pdelay).
603  *
604  * Returns zero value if original timer expired or we need to switch to
605  * PROBE (store that in @do_switch variable).
606  */
607 static int
608 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
609 {
610 	int nd_delay, nd_gctimer, r_skip_req;
611 	time_t lle_hittime;
612 	long delay;
613 
614 	*do_switch = 0;
615 	nd_gctimer = V_nd6_gctimer;
616 	nd_delay = V_nd6_delay;
617 
618 	LLE_REQ_LOCK(lle);
619 	r_skip_req = lle->r_skip_req;
620 	lle_hittime = lle->lle_hittime;
621 	LLE_REQ_UNLOCK(lle);
622 
623 	if (r_skip_req > 0) {
624 		/*
625 		 * Nonzero r_skip_req value was set upon entering
626 		 * STALE state. Since value was not changed, no
627 		 * packets were passed using this lle. Ask for
628 		 * timer reschedule and keep STALE state.
629 		 */
630 		delay = (long)(MIN(nd_gctimer, nd_delay));
631 		delay *= hz;
632 		if (lle->lle_remtime > delay)
633 			lle->lle_remtime -= delay;
634 		else {
635 			delay = lle->lle_remtime;
636 			lle->lle_remtime = 0;
637 		}
638 
639 		if (delay == 0) {
640 			/*
641 			 * The original ng6_gctime timeout ended,
642 			 * no more rescheduling.
643 			 */
644 			return (0);
645 		}
646 
647 		*pdelay = delay;
648 		return (1);
649 	}
650 
651 	/*
652 	 * Packet received. Verify timestamp
653 	 */
654 	delay = (long)(time_uptime - lle_hittime);
655 	if (delay < nd_delay) {
656 		/*
657 		 * V_nd6_delay still not passed since the first
658 		 * hit in STALE state.
659 		 * Reshedule timer and return.
660 		 */
661 		*pdelay = (long)(nd_delay - delay) * hz;
662 		return (1);
663 	}
664 
665 	/* Request switching to probe */
666 	*do_switch = 1;
667 	return (0);
668 }
669 
670 /*
671  * Switch @lle state to new state optionally arming timers.
672  *
673  * Set noinline to be dtrace-friendly
674  */
675 __noinline void
676 nd6_llinfo_setstate(struct llentry *lle, int newstate)
677 {
678 	struct ifnet *ifp;
679 	int nd_gctimer, nd_delay;
680 	long delay, remtime;
681 
682 	delay = 0;
683 	remtime = 0;
684 
685 	switch (newstate) {
686 	case ND6_LLINFO_INCOMPLETE:
687 		ifp = lle->lle_tbl->llt_ifp;
688 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
689 		break;
690 	case ND6_LLINFO_REACHABLE:
691 		if (!ND6_LLINFO_PERMANENT(lle)) {
692 			ifp = lle->lle_tbl->llt_ifp;
693 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
694 		}
695 		break;
696 	case ND6_LLINFO_STALE:
697 
698 		/*
699 		 * Notify fast path that we want to know if any packet
700 		 * is transmitted by setting r_skip_req.
701 		 */
702 		LLE_REQ_LOCK(lle);
703 		lle->r_skip_req = 1;
704 		LLE_REQ_UNLOCK(lle);
705 		nd_delay = V_nd6_delay;
706 		nd_gctimer = V_nd6_gctimer;
707 
708 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
709 		remtime = (long)nd_gctimer * hz - delay;
710 		break;
711 	case ND6_LLINFO_DELAY:
712 		lle->la_asked = 0;
713 		delay = (long)V_nd6_delay * hz;
714 		break;
715 	}
716 
717 	if (delay > 0)
718 		nd6_llinfo_settimer_locked(lle, delay);
719 
720 	lle->lle_remtime = remtime;
721 	lle->ln_state = newstate;
722 }
723 
724 /*
725  * Timer-dependent part of nd state machine.
726  *
727  * Set noinline to be dtrace-friendly
728  */
729 static __noinline void
730 nd6_llinfo_timer(void *arg)
731 {
732 	struct epoch_tracker et;
733 	struct llentry *ln;
734 	struct in6_addr *dst, *pdst, *psrc, src;
735 	struct ifnet *ifp;
736 	struct nd_ifinfo *ndi;
737 	int do_switch, send_ns;
738 	long delay;
739 
740 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
741 	ln = (struct llentry *)arg;
742 	ifp = lltable_get_ifp(ln->lle_tbl);
743 	CURVNET_SET(ifp->if_vnet);
744 
745 	ND6_RLOCK();
746 	LLE_WLOCK(ln);
747 	if (callout_pending(&ln->lle_timer)) {
748 		/*
749 		 * Here we are a bit odd here in the treatment of
750 		 * active/pending. If the pending bit is set, it got
751 		 * rescheduled before I ran. The active
752 		 * bit we ignore, since if it was stopped
753 		 * in ll_tablefree() and was currently running
754 		 * it would have return 0 so the code would
755 		 * not have deleted it since the callout could
756 		 * not be stopped so we want to go through
757 		 * with the delete here now. If the callout
758 		 * was restarted, the pending bit will be back on and
759 		 * we just want to bail since the callout_reset would
760 		 * return 1 and our reference would have been removed
761 		 * by nd6_llinfo_settimer_locked above since canceled
762 		 * would have been 1.
763 		 */
764 		LLE_WUNLOCK(ln);
765 		ND6_RUNLOCK();
766 		CURVNET_RESTORE();
767 		return;
768 	}
769 	NET_EPOCH_ENTER(et);
770 	ndi = ND_IFINFO(ifp);
771 	send_ns = 0;
772 	dst = &ln->r_l3addr.addr6;
773 	pdst = dst;
774 
775 	if (ln->ln_ntick > 0) {
776 		if (ln->ln_ntick > INT_MAX) {
777 			ln->ln_ntick -= INT_MAX;
778 			nd6_llinfo_settimer_locked(ln, INT_MAX);
779 		} else {
780 			ln->ln_ntick = 0;
781 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
782 		}
783 		goto done;
784 	}
785 
786 	if (ln->la_flags & LLE_STATIC) {
787 		goto done;
788 	}
789 
790 	if (ln->la_flags & LLE_DELETED) {
791 		nd6_free(&ln, 0);
792 		goto done;
793 	}
794 
795 	switch (ln->ln_state) {
796 	case ND6_LLINFO_INCOMPLETE:
797 		if (ln->la_asked < V_nd6_mmaxtries) {
798 			ln->la_asked++;
799 			send_ns = 1;
800 			/* Send NS to multicast address */
801 			pdst = NULL;
802 		} else {
803 			struct mbuf *m = ln->la_hold;
804 			if (m) {
805 				struct mbuf *m0;
806 
807 				/*
808 				 * assuming every packet in la_hold has the
809 				 * same IP header.  Send error after unlock.
810 				 */
811 				m0 = m->m_nextpkt;
812 				m->m_nextpkt = NULL;
813 				ln->la_hold = m0;
814 				clear_llinfo_pqueue(ln);
815 			}
816 			nd6_free(&ln, 0);
817 			if (m != NULL) {
818 				struct mbuf *n = m;
819 
820 				/*
821 				 * if there are any ummapped mbufs, we
822 				 * must free them, rather than using
823 				 * them for an ICMP, as they cannot be
824 				 * checksummed.
825 				 */
826 				while ((n = n->m_next) != NULL) {
827 					if (n->m_flags & M_EXTPG)
828 						break;
829 				}
830 				if (n != NULL) {
831 					m_freem(m);
832 					m = NULL;
833 				} else {
834 					icmp6_error2(m, ICMP6_DST_UNREACH,
835 					    ICMP6_DST_UNREACH_ADDR, 0, ifp);
836 				}
837 			}
838 		}
839 		break;
840 	case ND6_LLINFO_REACHABLE:
841 		if (!ND6_LLINFO_PERMANENT(ln))
842 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
843 		break;
844 
845 	case ND6_LLINFO_STALE:
846 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
847 			/*
848 			 * No packet has used this entry and GC timeout
849 			 * has not been passed. Reshedule timer and
850 			 * return.
851 			 */
852 			nd6_llinfo_settimer_locked(ln, delay);
853 			break;
854 		}
855 
856 		if (do_switch == 0) {
857 			/*
858 			 * GC timer has ended and entry hasn't been used.
859 			 * Run Garbage collector (RFC 4861, 5.3)
860 			 */
861 			if (!ND6_LLINFO_PERMANENT(ln))
862 				nd6_free(&ln, 1);
863 			break;
864 		}
865 
866 		/* Entry has been used AND delay timer has ended. */
867 
868 		/* FALLTHROUGH */
869 
870 	case ND6_LLINFO_DELAY:
871 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
872 			/* We need NUD */
873 			ln->la_asked = 1;
874 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
875 			send_ns = 1;
876 		} else
877 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
878 		break;
879 	case ND6_LLINFO_PROBE:
880 		if (ln->la_asked < V_nd6_umaxtries) {
881 			ln->la_asked++;
882 			send_ns = 1;
883 		} else {
884 			nd6_free(&ln, 0);
885 		}
886 		break;
887 	default:
888 		panic("%s: paths in a dark night can be confusing: %d",
889 		    __func__, ln->ln_state);
890 	}
891 done:
892 	if (ln != NULL)
893 		ND6_RUNLOCK();
894 	if (send_ns != 0) {
895 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
896 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
897 		LLE_FREE_LOCKED(ln);
898 		ln = NULL;
899 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
900 	}
901 
902 	if (ln != NULL)
903 		LLE_FREE_LOCKED(ln);
904 	NET_EPOCH_EXIT(et);
905 	CURVNET_RESTORE();
906 }
907 
908 /*
909  * ND6 timer routine to expire default route list and prefix list
910  */
911 void
912 nd6_timer(void *arg)
913 {
914 	CURVNET_SET((struct vnet *) arg);
915 	struct epoch_tracker et;
916 	struct nd_prhead prl;
917 	struct nd_prefix *pr, *npr;
918 	struct ifnet *ifp;
919 	struct in6_ifaddr *ia6, *nia6;
920 	uint64_t genid;
921 
922 	LIST_INIT(&prl);
923 
924 	NET_EPOCH_ENTER(et);
925 	nd6_defrouter_timer();
926 
927 	/*
928 	 * expire interface addresses.
929 	 * in the past the loop was inside prefix expiry processing.
930 	 * However, from a stricter speci-confrmance standpoint, we should
931 	 * rather separate address lifetimes and prefix lifetimes.
932 	 *
933 	 * XXXRW: in6_ifaddrhead locking.
934 	 */
935   addrloop:
936 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
937 		/* check address lifetime */
938 		if (IFA6_IS_INVALID(ia6)) {
939 			int regen = 0;
940 
941 			/*
942 			 * If the expiring address is temporary, try
943 			 * regenerating a new one.  This would be useful when
944 			 * we suspended a laptop PC, then turned it on after a
945 			 * period that could invalidate all temporary
946 			 * addresses.  Although we may have to restart the
947 			 * loop (see below), it must be after purging the
948 			 * address.  Otherwise, we'd see an infinite loop of
949 			 * regeneration.
950 			 */
951 			if (V_ip6_use_tempaddr &&
952 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
953 				if (regen_tmpaddr(ia6) == 0)
954 					regen = 1;
955 			}
956 
957 			in6_purgeaddr(&ia6->ia_ifa);
958 
959 			if (regen)
960 				goto addrloop; /* XXX: see below */
961 		} else if (IFA6_IS_DEPRECATED(ia6)) {
962 			int oldflags = ia6->ia6_flags;
963 
964 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
965 
966 			/*
967 			 * If a temporary address has just become deprecated,
968 			 * regenerate a new one if possible.
969 			 */
970 			if (V_ip6_use_tempaddr &&
971 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
972 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
973 				if (regen_tmpaddr(ia6) == 0) {
974 					/*
975 					 * A new temporary address is
976 					 * generated.
977 					 * XXX: this means the address chain
978 					 * has changed while we are still in
979 					 * the loop.  Although the change
980 					 * would not cause disaster (because
981 					 * it's not a deletion, but an
982 					 * addition,) we'd rather restart the
983 					 * loop just for safety.  Or does this
984 					 * significantly reduce performance??
985 					 */
986 					goto addrloop;
987 				}
988 			}
989 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
990 			/*
991 			 * Schedule DAD for a tentative address.  This happens
992 			 * if the interface was down or not running
993 			 * when the address was configured.
994 			 */
995 			int delay;
996 
997 			delay = arc4random() %
998 			    (MAX_RTR_SOLICITATION_DELAY * hz);
999 			nd6_dad_start((struct ifaddr *)ia6, delay);
1000 		} else {
1001 			/*
1002 			 * Check status of the interface.  If it is down,
1003 			 * mark the address as tentative for future DAD.
1004 			 */
1005 			ifp = ia6->ia_ifp;
1006 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
1007 			    ((ifp->if_flags & IFF_UP) == 0 ||
1008 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1009 			    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
1010 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1011 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1012 			}
1013 
1014 			/*
1015 			 * A new RA might have made a deprecated address
1016 			 * preferred.
1017 			 */
1018 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1019 		}
1020 	}
1021 	NET_EPOCH_EXIT(et);
1022 
1023 	ND6_WLOCK();
1024 restart:
1025 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1026 		/*
1027 		 * Expire prefixes. Since the pltime is only used for
1028 		 * autoconfigured addresses, pltime processing for prefixes is
1029 		 * not necessary.
1030 		 *
1031 		 * Only unlink after all derived addresses have expired. This
1032 		 * may not occur until two hours after the prefix has expired
1033 		 * per RFC 4862. If the prefix expires before its derived
1034 		 * addresses, mark it off-link. This will be done automatically
1035 		 * after unlinking if no address references remain.
1036 		 */
1037 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1038 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1039 			continue;
1040 
1041 		if (pr->ndpr_addrcnt == 0) {
1042 			nd6_prefix_unlink(pr, &prl);
1043 			continue;
1044 		}
1045 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1046 			genid = V_nd6_list_genid;
1047 			nd6_prefix_ref(pr);
1048 			ND6_WUNLOCK();
1049 			ND6_ONLINK_LOCK();
1050 			(void)nd6_prefix_offlink(pr);
1051 			ND6_ONLINK_UNLOCK();
1052 			ND6_WLOCK();
1053 			nd6_prefix_rele(pr);
1054 			if (genid != V_nd6_list_genid)
1055 				goto restart;
1056 		}
1057 	}
1058 	ND6_WUNLOCK();
1059 
1060 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1061 		LIST_REMOVE(pr, ndpr_entry);
1062 		nd6_prefix_del(pr);
1063 	}
1064 
1065 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1066 	    nd6_timer, curvnet);
1067 
1068 	CURVNET_RESTORE();
1069 }
1070 
1071 /*
1072  * ia6 - deprecated/invalidated temporary address
1073  */
1074 static int
1075 regen_tmpaddr(struct in6_ifaddr *ia6)
1076 {
1077 	struct ifaddr *ifa;
1078 	struct ifnet *ifp;
1079 	struct in6_ifaddr *public_ifa6 = NULL;
1080 
1081 	NET_EPOCH_ASSERT();
1082 
1083 	ifp = ia6->ia_ifa.ifa_ifp;
1084 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1085 		struct in6_ifaddr *it6;
1086 
1087 		if (ifa->ifa_addr->sa_family != AF_INET6)
1088 			continue;
1089 
1090 		it6 = (struct in6_ifaddr *)ifa;
1091 
1092 		/* ignore no autoconf addresses. */
1093 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1094 			continue;
1095 
1096 		/* ignore autoconf addresses with different prefixes. */
1097 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1098 			continue;
1099 
1100 		/*
1101 		 * Now we are looking at an autoconf address with the same
1102 		 * prefix as ours.  If the address is temporary and is still
1103 		 * preferred, do not create another one.  It would be rare, but
1104 		 * could happen, for example, when we resume a laptop PC after
1105 		 * a long period.
1106 		 */
1107 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1108 		    !IFA6_IS_DEPRECATED(it6)) {
1109 			public_ifa6 = NULL;
1110 			break;
1111 		}
1112 
1113 		/*
1114 		 * This is a public autoconf address that has the same prefix
1115 		 * as ours.  If it is preferred, keep it.  We can't break the
1116 		 * loop here, because there may be a still-preferred temporary
1117 		 * address with the prefix.
1118 		 */
1119 		if (!IFA6_IS_DEPRECATED(it6))
1120 			public_ifa6 = it6;
1121 	}
1122 	if (public_ifa6 != NULL)
1123 		ifa_ref(&public_ifa6->ia_ifa);
1124 
1125 	if (public_ifa6 != NULL) {
1126 		int e;
1127 
1128 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1129 			ifa_free(&public_ifa6->ia_ifa);
1130 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1131 			    " tmp addr,errno=%d\n", e);
1132 			return (-1);
1133 		}
1134 		ifa_free(&public_ifa6->ia_ifa);
1135 		return (0);
1136 	}
1137 
1138 	return (-1);
1139 }
1140 
1141 /*
1142  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1143  * cache entries are freed in in6_domifdetach().
1144  */
1145 void
1146 nd6_purge(struct ifnet *ifp)
1147 {
1148 	struct nd_prhead prl;
1149 	struct nd_prefix *pr, *npr;
1150 
1151 	LIST_INIT(&prl);
1152 
1153 	/* Purge default router list entries toward ifp. */
1154 	nd6_defrouter_purge(ifp);
1155 
1156 	ND6_WLOCK();
1157 	/*
1158 	 * Remove prefixes on ifp. We should have already removed addresses on
1159 	 * this interface, so no addresses should be referencing these prefixes.
1160 	 */
1161 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1162 		if (pr->ndpr_ifp == ifp)
1163 			nd6_prefix_unlink(pr, &prl);
1164 	}
1165 	ND6_WUNLOCK();
1166 
1167 	/* Delete the unlinked prefix objects. */
1168 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1169 		LIST_REMOVE(pr, ndpr_entry);
1170 		nd6_prefix_del(pr);
1171 	}
1172 
1173 	/* cancel default outgoing interface setting */
1174 	if (V_nd6_defifindex == ifp->if_index)
1175 		nd6_setdefaultiface(0);
1176 
1177 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1178 		/* Refresh default router list. */
1179 		defrouter_select_fib(ifp->if_fib);
1180 	}
1181 }
1182 
1183 /*
1184  * the caller acquires and releases the lock on the lltbls
1185  * Returns the llentry locked
1186  */
1187 struct llentry *
1188 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1189 {
1190 	struct sockaddr_in6 sin6;
1191 	struct llentry *ln;
1192 
1193 	bzero(&sin6, sizeof(sin6));
1194 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1195 	sin6.sin6_family = AF_INET6;
1196 	sin6.sin6_addr = *addr6;
1197 
1198 	IF_AFDATA_LOCK_ASSERT(ifp);
1199 
1200 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1201 
1202 	return (ln);
1203 }
1204 
1205 static struct llentry *
1206 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1207 {
1208 	struct sockaddr_in6 sin6;
1209 	struct llentry *ln;
1210 
1211 	bzero(&sin6, sizeof(sin6));
1212 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1213 	sin6.sin6_family = AF_INET6;
1214 	sin6.sin6_addr = *addr6;
1215 
1216 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1217 	if (ln != NULL)
1218 		ln->ln_state = ND6_LLINFO_NOSTATE;
1219 
1220 	return (ln);
1221 }
1222 
1223 /*
1224  * Test whether a given IPv6 address is a neighbor or not, ignoring
1225  * the actual neighbor cache.  The neighbor cache is ignored in order
1226  * to not reenter the routing code from within itself.
1227  */
1228 static int
1229 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1230 {
1231 	struct nd_prefix *pr;
1232 	struct ifaddr *ifa;
1233 	struct rt_addrinfo info;
1234 	struct sockaddr_in6 rt_key;
1235 	const struct sockaddr *dst6;
1236 	uint64_t genid;
1237 	int error, fibnum;
1238 
1239 	/*
1240 	 * A link-local address is always a neighbor.
1241 	 * XXX: a link does not necessarily specify a single interface.
1242 	 */
1243 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1244 		struct sockaddr_in6 sin6_copy;
1245 		u_int32_t zone;
1246 
1247 		/*
1248 		 * We need sin6_copy since sa6_recoverscope() may modify the
1249 		 * content (XXX).
1250 		 */
1251 		sin6_copy = *addr;
1252 		if (sa6_recoverscope(&sin6_copy))
1253 			return (0); /* XXX: should be impossible */
1254 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1255 			return (0);
1256 		if (sin6_copy.sin6_scope_id == zone)
1257 			return (1);
1258 		else
1259 			return (0);
1260 	}
1261 
1262 	bzero(&rt_key, sizeof(rt_key));
1263 	bzero(&info, sizeof(info));
1264 	info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key;
1265 
1266 	/*
1267 	 * If the address matches one of our addresses,
1268 	 * it should be a neighbor.
1269 	 * If the address matches one of our on-link prefixes, it should be a
1270 	 * neighbor.
1271 	 */
1272 	ND6_RLOCK();
1273 restart:
1274 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1275 		if (pr->ndpr_ifp != ifp)
1276 			continue;
1277 
1278 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) {
1279 			dst6 = (const struct sockaddr *)&pr->ndpr_prefix;
1280 
1281 			/*
1282 			 * We only need to check all FIBs if add_addr_allfibs
1283 			 * is unset. If set, checking any FIB will suffice.
1284 			 */
1285 			fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0;
1286 			for (; fibnum < rt_numfibs; fibnum++) {
1287 				genid = V_nd6_list_genid;
1288 				ND6_RUNLOCK();
1289 
1290 				/*
1291 				 * Restore length field before
1292 				 * retrying lookup
1293 				 */
1294 				rt_key.sin6_len = sizeof(rt_key);
1295 				error = rib_lookup_info(fibnum, dst6, 0, 0,
1296 						        &info);
1297 
1298 				ND6_RLOCK();
1299 				if (genid != V_nd6_list_genid)
1300 					goto restart;
1301 				if (error == 0)
1302 					break;
1303 			}
1304 			if (error != 0)
1305 				continue;
1306 
1307 			/*
1308 			 * This is the case where multiple interfaces
1309 			 * have the same prefix, but only one is installed
1310 			 * into the routing table and that prefix entry
1311 			 * is not the one being examined here. In the case
1312 			 * where RADIX_MPATH is enabled, multiple route
1313 			 * entries (of the same rt_key value) will be
1314 			 * installed because the interface addresses all
1315 			 * differ.
1316 			 */
1317 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1318 			    &rt_key.sin6_addr))
1319 				continue;
1320 		}
1321 
1322 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1323 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1324 			ND6_RUNLOCK();
1325 			return (1);
1326 		}
1327 	}
1328 	ND6_RUNLOCK();
1329 
1330 	/*
1331 	 * If the address is assigned on the node of the other side of
1332 	 * a p2p interface, the address should be a neighbor.
1333 	 */
1334 	if (ifp->if_flags & IFF_POINTOPOINT) {
1335 		struct epoch_tracker et;
1336 
1337 		NET_EPOCH_ENTER(et);
1338 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1339 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1340 				continue;
1341 			if (ifa->ifa_dstaddr != NULL &&
1342 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1343 				NET_EPOCH_EXIT(et);
1344 				return 1;
1345 			}
1346 		}
1347 		NET_EPOCH_EXIT(et);
1348 	}
1349 
1350 	/*
1351 	 * If the default router list is empty, all addresses are regarded
1352 	 * as on-link, and thus, as a neighbor.
1353 	 */
1354 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1355 	    nd6_defrouter_list_empty() &&
1356 	    V_nd6_defifindex == ifp->if_index) {
1357 		return (1);
1358 	}
1359 
1360 	return (0);
1361 }
1362 
1363 /*
1364  * Detect if a given IPv6 address identifies a neighbor on a given link.
1365  * XXX: should take care of the destination of a p2p link?
1366  */
1367 int
1368 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1369 {
1370 	struct llentry *lle;
1371 	int rc = 0;
1372 
1373 	NET_EPOCH_ASSERT();
1374 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1375 	if (nd6_is_new_addr_neighbor(addr, ifp))
1376 		return (1);
1377 
1378 	/*
1379 	 * Even if the address matches none of our addresses, it might be
1380 	 * in the neighbor cache.
1381 	 */
1382 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1383 		LLE_RUNLOCK(lle);
1384 		rc = 1;
1385 	}
1386 	return (rc);
1387 }
1388 
1389 /*
1390  * Free an nd6 llinfo entry.
1391  * Since the function would cause significant changes in the kernel, DO NOT
1392  * make it global, unless you have a strong reason for the change, and are sure
1393  * that the change is safe.
1394  *
1395  * Set noinline to be dtrace-friendly
1396  */
1397 static __noinline void
1398 nd6_free(struct llentry **lnp, int gc)
1399 {
1400 	struct ifnet *ifp;
1401 	struct llentry *ln;
1402 	struct nd_defrouter *dr;
1403 
1404 	ln = *lnp;
1405 	*lnp = NULL;
1406 
1407 	LLE_WLOCK_ASSERT(ln);
1408 	ND6_RLOCK_ASSERT();
1409 
1410 	ifp = lltable_get_ifp(ln->lle_tbl);
1411 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1412 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1413 	else
1414 		dr = NULL;
1415 	ND6_RUNLOCK();
1416 
1417 	if ((ln->la_flags & LLE_DELETED) == 0)
1418 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1419 
1420 	/*
1421 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1422 	 * even though it is not harmful, it was not really necessary.
1423 	 */
1424 
1425 	/* cancel timer */
1426 	nd6_llinfo_settimer_locked(ln, -1);
1427 
1428 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1429 		if (dr != NULL && dr->expire &&
1430 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1431 			/*
1432 			 * If the reason for the deletion is just garbage
1433 			 * collection, and the neighbor is an active default
1434 			 * router, do not delete it.  Instead, reset the GC
1435 			 * timer using the router's lifetime.
1436 			 * Simply deleting the entry would affect default
1437 			 * router selection, which is not necessarily a good
1438 			 * thing, especially when we're using router preference
1439 			 * values.
1440 			 * XXX: the check for ln_state would be redundant,
1441 			 *      but we intentionally keep it just in case.
1442 			 */
1443 			if (dr->expire > time_uptime)
1444 				nd6_llinfo_settimer_locked(ln,
1445 				    (dr->expire - time_uptime) * hz);
1446 			else
1447 				nd6_llinfo_settimer_locked(ln,
1448 				    (long)V_nd6_gctimer * hz);
1449 
1450 			LLE_REMREF(ln);
1451 			LLE_WUNLOCK(ln);
1452 			defrouter_rele(dr);
1453 			return;
1454 		}
1455 
1456 		if (dr) {
1457 			/*
1458 			 * Unreachablity of a router might affect the default
1459 			 * router selection and on-link detection of advertised
1460 			 * prefixes.
1461 			 */
1462 
1463 			/*
1464 			 * Temporarily fake the state to choose a new default
1465 			 * router and to perform on-link determination of
1466 			 * prefixes correctly.
1467 			 * Below the state will be set correctly,
1468 			 * or the entry itself will be deleted.
1469 			 */
1470 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1471 		}
1472 
1473 		if (ln->ln_router || dr) {
1474 			/*
1475 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1476 			 * rnh and for the calls to pfxlist_onlink_check() and
1477 			 * defrouter_select_fib() in the block further down for calls
1478 			 * into nd6_lookup().  We still hold a ref.
1479 			 */
1480 			LLE_WUNLOCK(ln);
1481 
1482 			/*
1483 			 * rt6_flush must be called whether or not the neighbor
1484 			 * is in the Default Router List.
1485 			 * See a corresponding comment in nd6_na_input().
1486 			 */
1487 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1488 		}
1489 
1490 		if (dr) {
1491 			/*
1492 			 * Since defrouter_select_fib() does not affect the
1493 			 * on-link determination and MIP6 needs the check
1494 			 * before the default router selection, we perform
1495 			 * the check now.
1496 			 */
1497 			pfxlist_onlink_check();
1498 
1499 			/*
1500 			 * Refresh default router list.
1501 			 */
1502 			defrouter_select_fib(dr->ifp->if_fib);
1503 		}
1504 
1505 		/*
1506 		 * If this entry was added by an on-link redirect, remove the
1507 		 * corresponding host route.
1508 		 */
1509 		if (ln->la_flags & LLE_REDIRECT)
1510 			nd6_free_redirect(ln);
1511 
1512 		if (ln->ln_router || dr)
1513 			LLE_WLOCK(ln);
1514 	}
1515 
1516 	/*
1517 	 * Save to unlock. We still hold an extra reference and will not
1518 	 * free(9) in llentry_free() if someone else holds one as well.
1519 	 */
1520 	LLE_WUNLOCK(ln);
1521 	IF_AFDATA_LOCK(ifp);
1522 	LLE_WLOCK(ln);
1523 	/* Guard against race with other llentry_free(). */
1524 	if (ln->la_flags & LLE_LINKED) {
1525 		/* Remove callout reference */
1526 		LLE_REMREF(ln);
1527 		lltable_unlink_entry(ln->lle_tbl, ln);
1528 	}
1529 	IF_AFDATA_UNLOCK(ifp);
1530 
1531 	llentry_free(ln);
1532 	if (dr != NULL)
1533 		defrouter_rele(dr);
1534 }
1535 
1536 static int
1537 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap)
1538 {
1539 
1540 	if (nh->nh_flags & NHF_REDIRECT)
1541 		return (1);
1542 
1543 	return (0);
1544 }
1545 
1546 /*
1547  * Remove the rtentry for the given llentry,
1548  * both of which were installed by a redirect.
1549  */
1550 static void
1551 nd6_free_redirect(const struct llentry *ln)
1552 {
1553 	int fibnum;
1554 	struct sockaddr_in6 sin6;
1555 	struct rt_addrinfo info;
1556 	struct rib_cmd_info rc;
1557 	struct epoch_tracker et;
1558 
1559 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1560 	memset(&info, 0, sizeof(info));
1561 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1562 	info.rti_filter = nd6_isdynrte;
1563 
1564 	NET_EPOCH_ENTER(et);
1565 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1566 		rib_action(fibnum, RTM_DELETE, &info, &rc);
1567 	NET_EPOCH_EXIT(et);
1568 }
1569 
1570 /*
1571  * Updates status of the default router route.
1572  */
1573 static void
1574 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata)
1575 {
1576 	struct nd_defrouter *dr;
1577 	struct nhop_object *nh;
1578 
1579 	nh = rc->rc_nh_old;
1580 
1581 	if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) {
1582 		dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp);
1583 		if (dr != NULL) {
1584 			dr->installed = 0;
1585 			defrouter_rele(dr);
1586 		}
1587 	}
1588 }
1589 
1590 void
1591 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg)
1592 {
1593 
1594 	check_release_defrouter(rc, NULL);
1595 }
1596 
1597 int
1598 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1599 {
1600 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1601 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1602 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1603 	struct epoch_tracker et;
1604 	int error = 0;
1605 
1606 	if (ifp->if_afdata[AF_INET6] == NULL)
1607 		return (EPFNOSUPPORT);
1608 	switch (cmd) {
1609 	case OSIOCGIFINFO_IN6:
1610 #define ND	ndi->ndi
1611 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1612 		bzero(&ND, sizeof(ND));
1613 		ND.linkmtu = IN6_LINKMTU(ifp);
1614 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1615 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1616 		ND.reachable = ND_IFINFO(ifp)->reachable;
1617 		ND.retrans = ND_IFINFO(ifp)->retrans;
1618 		ND.flags = ND_IFINFO(ifp)->flags;
1619 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1620 		ND.chlim = ND_IFINFO(ifp)->chlim;
1621 		break;
1622 	case SIOCGIFINFO_IN6:
1623 		ND = *ND_IFINFO(ifp);
1624 		break;
1625 	case SIOCSIFINFO_IN6:
1626 		/*
1627 		 * used to change host variables from userland.
1628 		 * intended for a use on router to reflect RA configurations.
1629 		 */
1630 		/* 0 means 'unspecified' */
1631 		if (ND.linkmtu != 0) {
1632 			if (ND.linkmtu < IPV6_MMTU ||
1633 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1634 				error = EINVAL;
1635 				break;
1636 			}
1637 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1638 		}
1639 
1640 		if (ND.basereachable != 0) {
1641 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1642 
1643 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1644 			if (ND.basereachable != obasereachable)
1645 				ND_IFINFO(ifp)->reachable =
1646 				    ND_COMPUTE_RTIME(ND.basereachable);
1647 		}
1648 		if (ND.retrans != 0)
1649 			ND_IFINFO(ifp)->retrans = ND.retrans;
1650 		if (ND.chlim != 0)
1651 			ND_IFINFO(ifp)->chlim = ND.chlim;
1652 		/* FALLTHROUGH */
1653 	case SIOCSIFINFO_FLAGS:
1654 	{
1655 		struct ifaddr *ifa;
1656 		struct in6_ifaddr *ia;
1657 
1658 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1659 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1660 			/* ifdisabled 1->0 transision */
1661 
1662 			/*
1663 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1664 			 * has an link-local address with IN6_IFF_DUPLICATED,
1665 			 * do not clear ND6_IFF_IFDISABLED.
1666 			 * See RFC 4862, Section 5.4.5.
1667 			 */
1668 			NET_EPOCH_ENTER(et);
1669 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1670 				if (ifa->ifa_addr->sa_family != AF_INET6)
1671 					continue;
1672 				ia = (struct in6_ifaddr *)ifa;
1673 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1674 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1675 					break;
1676 			}
1677 			NET_EPOCH_EXIT(et);
1678 
1679 			if (ifa != NULL) {
1680 				/* LLA is duplicated. */
1681 				ND.flags |= ND6_IFF_IFDISABLED;
1682 				log(LOG_ERR, "Cannot enable an interface"
1683 				    " with a link-local address marked"
1684 				    " duplicate.\n");
1685 			} else {
1686 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1687 				if (ifp->if_flags & IFF_UP)
1688 					in6_if_up(ifp);
1689 			}
1690 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1691 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1692 			/* ifdisabled 0->1 transision */
1693 			/* Mark all IPv6 address as tentative. */
1694 
1695 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1696 			if (V_ip6_dad_count > 0 &&
1697 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1698 				NET_EPOCH_ENTER(et);
1699 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1700 				    ifa_link) {
1701 					if (ifa->ifa_addr->sa_family !=
1702 					    AF_INET6)
1703 						continue;
1704 					ia = (struct in6_ifaddr *)ifa;
1705 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1706 				}
1707 				NET_EPOCH_EXIT(et);
1708 			}
1709 		}
1710 
1711 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1712 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1713 				/* auto_linklocal 0->1 transision */
1714 
1715 				/* If no link-local address on ifp, configure */
1716 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1717 				in6_ifattach(ifp, NULL);
1718 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1719 			    ifp->if_flags & IFF_UP) {
1720 				/*
1721 				 * When the IF already has
1722 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1723 				 * address is assigned, and IFF_UP, try to
1724 				 * assign one.
1725 				 */
1726 				NET_EPOCH_ENTER(et);
1727 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1728 				    ifa_link) {
1729 					if (ifa->ifa_addr->sa_family !=
1730 					    AF_INET6)
1731 						continue;
1732 					ia = (struct in6_ifaddr *)ifa;
1733 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1734 						break;
1735 				}
1736 				NET_EPOCH_EXIT(et);
1737 				if (ifa != NULL)
1738 					/* No LLA is configured. */
1739 					in6_ifattach(ifp, NULL);
1740 			}
1741 		}
1742 		ND_IFINFO(ifp)->flags = ND.flags;
1743 		break;
1744 	}
1745 #undef ND
1746 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1747 		/* sync kernel routing table with the default router list */
1748 		defrouter_reset();
1749 		defrouter_select_fib(RT_ALL_FIBS);
1750 		break;
1751 	case SIOCSPFXFLUSH_IN6:
1752 	{
1753 		/* flush all the prefix advertised by routers */
1754 		struct in6_ifaddr *ia, *ia_next;
1755 		struct nd_prefix *pr, *next;
1756 		struct nd_prhead prl;
1757 
1758 		LIST_INIT(&prl);
1759 
1760 		ND6_WLOCK();
1761 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1762 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1763 				continue; /* XXX */
1764 			nd6_prefix_unlink(pr, &prl);
1765 		}
1766 		ND6_WUNLOCK();
1767 
1768 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1769 			LIST_REMOVE(pr, ndpr_entry);
1770 			/* XXXRW: in6_ifaddrhead locking. */
1771 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1772 			    ia_next) {
1773 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1774 					continue;
1775 
1776 				if (ia->ia6_ndpr == pr)
1777 					in6_purgeaddr(&ia->ia_ifa);
1778 			}
1779 			nd6_prefix_del(pr);
1780 		}
1781 		break;
1782 	}
1783 	case SIOCSRTRFLUSH_IN6:
1784 	{
1785 		/* flush all the default routers */
1786 
1787 		defrouter_reset();
1788 		nd6_defrouter_flush_all();
1789 		defrouter_select_fib(RT_ALL_FIBS);
1790 		break;
1791 	}
1792 	case SIOCGNBRINFO_IN6:
1793 	{
1794 		struct llentry *ln;
1795 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1796 
1797 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1798 			return (error);
1799 
1800 		NET_EPOCH_ENTER(et);
1801 		ln = nd6_lookup(&nb_addr, 0, ifp);
1802 		NET_EPOCH_EXIT(et);
1803 
1804 		if (ln == NULL) {
1805 			error = EINVAL;
1806 			break;
1807 		}
1808 		nbi->state = ln->ln_state;
1809 		nbi->asked = ln->la_asked;
1810 		nbi->isrouter = ln->ln_router;
1811 		if (ln->la_expire == 0)
1812 			nbi->expire = 0;
1813 		else
1814 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1815 			    (time_second - time_uptime);
1816 		LLE_RUNLOCK(ln);
1817 		break;
1818 	}
1819 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1820 		ndif->ifindex = V_nd6_defifindex;
1821 		break;
1822 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1823 		return (nd6_setdefaultiface(ndif->ifindex));
1824 	}
1825 	return (error);
1826 }
1827 
1828 /*
1829  * Calculates new isRouter value based on provided parameters and
1830  * returns it.
1831  */
1832 static int
1833 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1834     int ln_router)
1835 {
1836 
1837 	/*
1838 	 * ICMP6 type dependent behavior.
1839 	 *
1840 	 * NS: clear IsRouter if new entry
1841 	 * RS: clear IsRouter
1842 	 * RA: set IsRouter if there's lladdr
1843 	 * redir: clear IsRouter if new entry
1844 	 *
1845 	 * RA case, (1):
1846 	 * The spec says that we must set IsRouter in the following cases:
1847 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1848 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1849 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1850 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1851 	 * neighbor cache, this is similar to (6).
1852 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1853 	 *
1854 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1855 	 *							D R
1856 	 *	0	n	n	(1)	c   ?     s
1857 	 *	0	y	n	(2)	c   s     s
1858 	 *	0	n	y	(3)	c   s     s
1859 	 *	0	y	y	(4)	c   s     s
1860 	 *	0	y	y	(5)	c   s     s
1861 	 *	1	--	n	(6) c	c	c s
1862 	 *	1	--	y	(7) c	c   s	c s
1863 	 *
1864 	 *					(c=clear s=set)
1865 	 */
1866 	switch (type & 0xff) {
1867 	case ND_NEIGHBOR_SOLICIT:
1868 		/*
1869 		 * New entry must have is_router flag cleared.
1870 		 */
1871 		if (is_new)					/* (6-7) */
1872 			ln_router = 0;
1873 		break;
1874 	case ND_REDIRECT:
1875 		/*
1876 		 * If the icmp is a redirect to a better router, always set the
1877 		 * is_router flag.  Otherwise, if the entry is newly created,
1878 		 * clear the flag.  [RFC 2461, sec 8.3]
1879 		 */
1880 		if (code == ND_REDIRECT_ROUTER)
1881 			ln_router = 1;
1882 		else {
1883 			if (is_new)				/* (6-7) */
1884 				ln_router = 0;
1885 		}
1886 		break;
1887 	case ND_ROUTER_SOLICIT:
1888 		/*
1889 		 * is_router flag must always be cleared.
1890 		 */
1891 		ln_router = 0;
1892 		break;
1893 	case ND_ROUTER_ADVERT:
1894 		/*
1895 		 * Mark an entry with lladdr as a router.
1896 		 */
1897 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1898 		    (is_new && new_addr)) {			/* (7) */
1899 			ln_router = 1;
1900 		}
1901 		break;
1902 	}
1903 
1904 	return (ln_router);
1905 }
1906 
1907 /*
1908  * Create neighbor cache entry and cache link-layer address,
1909  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1910  *
1911  * type - ICMP6 type
1912  * code - type dependent information
1913  *
1914  */
1915 void
1916 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1917     int lladdrlen, int type, int code)
1918 {
1919 	struct llentry *ln = NULL, *ln_tmp;
1920 	int is_newentry;
1921 	int do_update;
1922 	int olladdr;
1923 	int llchange;
1924 	int flags;
1925 	uint16_t router = 0;
1926 	struct sockaddr_in6 sin6;
1927 	struct mbuf *chain = NULL;
1928 	u_char linkhdr[LLE_MAX_LINKHDR];
1929 	size_t linkhdrsize;
1930 	int lladdr_off;
1931 
1932 	NET_EPOCH_ASSERT();
1933 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1934 
1935 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1936 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1937 
1938 	/* nothing must be updated for unspecified address */
1939 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1940 		return;
1941 
1942 	/*
1943 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1944 	 * the caller.
1945 	 *
1946 	 * XXX If the link does not have link-layer adderss, what should
1947 	 * we do? (ifp->if_addrlen == 0)
1948 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1949 	 * description on it in NS section (RFC 2461 7.2.3).
1950 	 */
1951 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1952 	ln = nd6_lookup(from, flags, ifp);
1953 	is_newentry = 0;
1954 	if (ln == NULL) {
1955 		flags |= LLE_EXCLUSIVE;
1956 		ln = nd6_alloc(from, 0, ifp);
1957 		if (ln == NULL)
1958 			return;
1959 
1960 		/*
1961 		 * Since we already know all the data for the new entry,
1962 		 * fill it before insertion.
1963 		 */
1964 		if (lladdr != NULL) {
1965 			linkhdrsize = sizeof(linkhdr);
1966 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
1967 			    linkhdr, &linkhdrsize, &lladdr_off) != 0)
1968 				return;
1969 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
1970 			    lladdr_off);
1971 		}
1972 
1973 		IF_AFDATA_WLOCK(ifp);
1974 		LLE_WLOCK(ln);
1975 		/* Prefer any existing lle over newly-created one */
1976 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
1977 		if (ln_tmp == NULL)
1978 			lltable_link_entry(LLTABLE6(ifp), ln);
1979 		IF_AFDATA_WUNLOCK(ifp);
1980 		if (ln_tmp == NULL) {
1981 			/* No existing lle, mark as new entry (6,7) */
1982 			is_newentry = 1;
1983 			if (lladdr != NULL) {	/* (7) */
1984 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1985 				EVENTHANDLER_INVOKE(lle_event, ln,
1986 				    LLENTRY_RESOLVED);
1987 			}
1988 		} else {
1989 			lltable_free_entry(LLTABLE6(ifp), ln);
1990 			ln = ln_tmp;
1991 			ln_tmp = NULL;
1992 		}
1993 	}
1994 	/* do nothing if static ndp is set */
1995 	if ((ln->la_flags & LLE_STATIC)) {
1996 		if (flags & LLE_EXCLUSIVE)
1997 			LLE_WUNLOCK(ln);
1998 		else
1999 			LLE_RUNLOCK(ln);
2000 		return;
2001 	}
2002 
2003 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2004 	if (olladdr && lladdr) {
2005 		llchange = bcmp(lladdr, ln->ll_addr,
2006 		    ifp->if_addrlen);
2007 	} else if (!olladdr && lladdr)
2008 		llchange = 1;
2009 	else
2010 		llchange = 0;
2011 
2012 	/*
2013 	 * newentry olladdr  lladdr  llchange	(*=record)
2014 	 *	0	n	n	--	(1)
2015 	 *	0	y	n	--	(2)
2016 	 *	0	n	y	y	(3) * STALE
2017 	 *	0	y	y	n	(4) *
2018 	 *	0	y	y	y	(5) * STALE
2019 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2020 	 *	1	--	y	--	(7) * STALE
2021 	 */
2022 
2023 	do_update = 0;
2024 	if (is_newentry == 0 && llchange != 0) {
2025 		do_update = 1;	/* (3,5) */
2026 
2027 		/*
2028 		 * Record source link-layer address
2029 		 * XXX is it dependent to ifp->if_type?
2030 		 */
2031 		linkhdrsize = sizeof(linkhdr);
2032 		if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2033 		    linkhdr, &linkhdrsize, &lladdr_off) != 0)
2034 			return;
2035 
2036 		if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2037 		    lladdr_off) == 0) {
2038 			/* Entry was deleted */
2039 			return;
2040 		}
2041 
2042 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2043 
2044 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2045 
2046 		if (ln->la_hold != NULL)
2047 			nd6_grab_holdchain(ln, &chain, &sin6);
2048 	}
2049 
2050 	/* Calculates new router status */
2051 	router = nd6_is_router(type, code, is_newentry, olladdr,
2052 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2053 
2054 	ln->ln_router = router;
2055 	/* Mark non-router redirects with special flag */
2056 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2057 		ln->la_flags |= LLE_REDIRECT;
2058 
2059 	if (flags & LLE_EXCLUSIVE)
2060 		LLE_WUNLOCK(ln);
2061 	else
2062 		LLE_RUNLOCK(ln);
2063 
2064 	if (chain != NULL)
2065 		nd6_flush_holdchain(ifp, chain, &sin6);
2066 
2067 	/*
2068 	 * When the link-layer address of a router changes, select the
2069 	 * best router again.  In particular, when the neighbor entry is newly
2070 	 * created, it might affect the selection policy.
2071 	 * Question: can we restrict the first condition to the "is_newentry"
2072 	 * case?
2073 	 * XXX: when we hear an RA from a new router with the link-layer
2074 	 * address option, defrouter_select_fib() is called twice, since
2075 	 * defrtrlist_update called the function as well.  However, I believe
2076 	 * we can compromise the overhead, since it only happens the first
2077 	 * time.
2078 	 * XXX: although defrouter_select_fib() should not have a bad effect
2079 	 * for those are not autoconfigured hosts, we explicitly avoid such
2080 	 * cases for safety.
2081 	 */
2082 	if ((do_update || is_newentry) && router &&
2083 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2084 		/*
2085 		 * guaranteed recursion
2086 		 */
2087 		defrouter_select_fib(ifp->if_fib);
2088 	}
2089 }
2090 
2091 static void
2092 nd6_slowtimo(void *arg)
2093 {
2094 	struct epoch_tracker et;
2095 	CURVNET_SET((struct vnet *) arg);
2096 	struct nd_ifinfo *nd6if;
2097 	struct ifnet *ifp;
2098 
2099 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2100 	    nd6_slowtimo, curvnet);
2101 	NET_EPOCH_ENTER(et);
2102 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2103 		if (ifp->if_afdata[AF_INET6] == NULL)
2104 			continue;
2105 		nd6if = ND_IFINFO(ifp);
2106 		if (nd6if->basereachable && /* already initialized */
2107 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2108 			/*
2109 			 * Since reachable time rarely changes by router
2110 			 * advertisements, we SHOULD insure that a new random
2111 			 * value gets recomputed at least once every few hours.
2112 			 * (RFC 2461, 6.3.4)
2113 			 */
2114 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2115 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2116 		}
2117 	}
2118 	NET_EPOCH_EXIT(et);
2119 	CURVNET_RESTORE();
2120 }
2121 
2122 void
2123 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2124     struct sockaddr_in6 *sin6)
2125 {
2126 
2127 	LLE_WLOCK_ASSERT(ln);
2128 
2129 	*chain = ln->la_hold;
2130 	ln->la_hold = NULL;
2131 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2132 
2133 	if (ln->ln_state == ND6_LLINFO_STALE) {
2134 		/*
2135 		 * The first time we send a packet to a
2136 		 * neighbor whose entry is STALE, we have
2137 		 * to change the state to DELAY and a sets
2138 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2139 		 * seconds to ensure do neighbor unreachability
2140 		 * detection on expiration.
2141 		 * (RFC 2461 7.3.3)
2142 		 */
2143 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2144 	}
2145 }
2146 
2147 int
2148 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2149     struct sockaddr_in6 *dst, struct route *ro)
2150 {
2151 	int error;
2152 	int ip6len;
2153 	struct ip6_hdr *ip6;
2154 	struct m_tag *mtag;
2155 
2156 #ifdef MAC
2157 	mac_netinet6_nd6_send(ifp, m);
2158 #endif
2159 
2160 	/*
2161 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2162 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2163 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2164 	 * to be diverted to user space.  When re-injected into the kernel,
2165 	 * send_output() will directly dispatch them to the outgoing interface.
2166 	 */
2167 	if (send_sendso_input_hook != NULL) {
2168 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2169 		if (mtag != NULL) {
2170 			ip6 = mtod(m, struct ip6_hdr *);
2171 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2172 			/* Use the SEND socket */
2173 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2174 			    ip6len);
2175 			/* -1 == no app on SEND socket */
2176 			if (error == 0 || error != -1)
2177 			    return (error);
2178 		}
2179 	}
2180 
2181 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2182 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2183 	    mtod(m, struct ip6_hdr *));
2184 
2185 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2186 		origifp = ifp;
2187 
2188 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2189 	return (error);
2190 }
2191 
2192 /*
2193  * Lookup link headerfor @sa_dst address. Stores found
2194  * data in @desten buffer. Copy of lle ln_flags can be also
2195  * saved in @pflags if @pflags is non-NULL.
2196  *
2197  * If destination LLE does not exists or lle state modification
2198  * is required, call "slow" version.
2199  *
2200  * Return values:
2201  * - 0 on success (address copied to buffer).
2202  * - EWOULDBLOCK (no local error, but address is still unresolved)
2203  * - other errors (alloc failure, etc)
2204  */
2205 int
2206 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2207     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2208     struct llentry **plle)
2209 {
2210 	struct llentry *ln = NULL;
2211 	const struct sockaddr_in6 *dst6;
2212 
2213 	NET_EPOCH_ASSERT();
2214 
2215 	if (pflags != NULL)
2216 		*pflags = 0;
2217 
2218 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2219 
2220 	/* discard the packet if IPv6 operation is disabled on the interface */
2221 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2222 		m_freem(m);
2223 		return (ENETDOWN); /* better error? */
2224 	}
2225 
2226 	if (m != NULL && m->m_flags & M_MCAST) {
2227 		switch (ifp->if_type) {
2228 		case IFT_ETHER:
2229 		case IFT_L2VLAN:
2230 		case IFT_BRIDGE:
2231 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2232 						 desten);
2233 			return (0);
2234 		default:
2235 			m_freem(m);
2236 			return (EAFNOSUPPORT);
2237 		}
2238 	}
2239 
2240 	ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED,
2241 	    ifp);
2242 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2243 		/* Entry found, let's copy lle info */
2244 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2245 		if (pflags != NULL)
2246 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2247 		/* Check if we have feedback request from nd6 timer */
2248 		if (ln->r_skip_req != 0) {
2249 			LLE_REQ_LOCK(ln);
2250 			ln->r_skip_req = 0; /* Notify that entry was used */
2251 			ln->lle_hittime = time_uptime;
2252 			LLE_REQ_UNLOCK(ln);
2253 		}
2254 		if (plle) {
2255 			LLE_ADDREF(ln);
2256 			*plle = ln;
2257 			LLE_WUNLOCK(ln);
2258 		}
2259 		return (0);
2260 	} else if (plle && ln)
2261 		LLE_WUNLOCK(ln);
2262 
2263 	return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle));
2264 }
2265 
2266 /*
2267  * Do L2 address resolution for @sa_dst address. Stores found
2268  * address in @desten buffer. Copy of lle ln_flags can be also
2269  * saved in @pflags if @pflags is non-NULL.
2270  *
2271  * Heavy version.
2272  * Function assume that destination LLE does not exist,
2273  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2274  *
2275  * Set noinline to be dtrace-friendly
2276  */
2277 static __noinline int
2278 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m,
2279     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2280     struct llentry **plle)
2281 {
2282 	struct llentry *lle = NULL, *lle_tmp;
2283 	struct in6_addr *psrc, src;
2284 	int send_ns, ll_len;
2285 	char *lladdr;
2286 
2287 	NET_EPOCH_ASSERT();
2288 
2289 	/*
2290 	 * Address resolution or Neighbor Unreachability Detection
2291 	 * for the next hop.
2292 	 * At this point, the destination of the packet must be a unicast
2293 	 * or an anycast address(i.e. not a multicast).
2294 	 */
2295 	if (lle == NULL) {
2296 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2297 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2298 			/*
2299 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2300 			 * the condition below is not very efficient.  But we believe
2301 			 * it is tolerable, because this should be a rare case.
2302 			 */
2303 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2304 			if (lle == NULL) {
2305 				char ip6buf[INET6_ADDRSTRLEN];
2306 				log(LOG_DEBUG,
2307 				    "nd6_output: can't allocate llinfo for %s "
2308 				    "(ln=%p)\n",
2309 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2310 				m_freem(m);
2311 				return (ENOBUFS);
2312 			}
2313 
2314 			IF_AFDATA_WLOCK(ifp);
2315 			LLE_WLOCK(lle);
2316 			/* Prefer any existing entry over newly-created one */
2317 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2318 			if (lle_tmp == NULL)
2319 				lltable_link_entry(LLTABLE6(ifp), lle);
2320 			IF_AFDATA_WUNLOCK(ifp);
2321 			if (lle_tmp != NULL) {
2322 				lltable_free_entry(LLTABLE6(ifp), lle);
2323 				lle = lle_tmp;
2324 				lle_tmp = NULL;
2325 			}
2326 		}
2327 	}
2328 	if (lle == NULL) {
2329 		m_freem(m);
2330 		return (ENOBUFS);
2331 	}
2332 
2333 	LLE_WLOCK_ASSERT(lle);
2334 
2335 	/*
2336 	 * The first time we send a packet to a neighbor whose entry is
2337 	 * STALE, we have to change the state to DELAY and a sets a timer to
2338 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2339 	 * neighbor unreachability detection on expiration.
2340 	 * (RFC 2461 7.3.3)
2341 	 */
2342 	if (lle->ln_state == ND6_LLINFO_STALE)
2343 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2344 
2345 	/*
2346 	 * If the neighbor cache entry has a state other than INCOMPLETE
2347 	 * (i.e. its link-layer address is already resolved), just
2348 	 * send the packet.
2349 	 */
2350 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2351 		if (flags & LLE_ADDRONLY) {
2352 			lladdr = lle->ll_addr;
2353 			ll_len = ifp->if_addrlen;
2354 		} else {
2355 			lladdr = lle->r_linkdata;
2356 			ll_len = lle->r_hdrlen;
2357 		}
2358 		bcopy(lladdr, desten, ll_len);
2359 		if (pflags != NULL)
2360 			*pflags = lle->la_flags;
2361 		if (plle) {
2362 			LLE_ADDREF(lle);
2363 			*plle = lle;
2364 		}
2365 		LLE_WUNLOCK(lle);
2366 		return (0);
2367 	}
2368 
2369 	/*
2370 	 * There is a neighbor cache entry, but no ethernet address
2371 	 * response yet.  Append this latest packet to the end of the
2372 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2373 	 * the oldest packet in the queue will be removed.
2374 	 */
2375 
2376 	if (lle->la_hold != NULL) {
2377 		struct mbuf *m_hold;
2378 		int i;
2379 
2380 		i = 0;
2381 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2382 			i++;
2383 			if (m_hold->m_nextpkt == NULL) {
2384 				m_hold->m_nextpkt = m;
2385 				break;
2386 			}
2387 		}
2388 		while (i >= V_nd6_maxqueuelen) {
2389 			m_hold = lle->la_hold;
2390 			lle->la_hold = lle->la_hold->m_nextpkt;
2391 			m_freem(m_hold);
2392 			i--;
2393 		}
2394 	} else {
2395 		lle->la_hold = m;
2396 	}
2397 
2398 	/*
2399 	 * If there has been no NS for the neighbor after entering the
2400 	 * INCOMPLETE state, send the first solicitation.
2401 	 * Note that for newly-created lle la_asked will be 0,
2402 	 * so we will transition from ND6_LLINFO_NOSTATE to
2403 	 * ND6_LLINFO_INCOMPLETE state here.
2404 	 */
2405 	psrc = NULL;
2406 	send_ns = 0;
2407 	if (lle->la_asked == 0) {
2408 		lle->la_asked++;
2409 		send_ns = 1;
2410 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2411 
2412 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2413 	}
2414 	LLE_WUNLOCK(lle);
2415 	if (send_ns != 0)
2416 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2417 
2418 	return (EWOULDBLOCK);
2419 }
2420 
2421 /*
2422  * Do L2 address resolution for @sa_dst address. Stores found
2423  * address in @desten buffer. Copy of lle ln_flags can be also
2424  * saved in @pflags if @pflags is non-NULL.
2425  *
2426  * Return values:
2427  * - 0 on success (address copied to buffer).
2428  * - EWOULDBLOCK (no local error, but address is still unresolved)
2429  * - other errors (alloc failure, etc)
2430  */
2431 int
2432 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2433     char *desten, uint32_t *pflags)
2434 {
2435 	int error;
2436 
2437 	flags |= LLE_ADDRONLY;
2438 	error = nd6_resolve_slow(ifp, flags, NULL,
2439 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2440 	return (error);
2441 }
2442 
2443 int
2444 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain,
2445     struct sockaddr_in6 *dst)
2446 {
2447 	struct mbuf *m, *m_head;
2448 	int error = 0;
2449 
2450 	m_head = chain;
2451 
2452 	while (m_head) {
2453 		m = m_head;
2454 		m_head = m_head->m_nextpkt;
2455 		error = nd6_output_ifp(ifp, ifp, m, dst, NULL);
2456 	}
2457 
2458 	/*
2459 	 * XXX
2460 	 * note that intermediate errors are blindly ignored
2461 	 */
2462 	return (error);
2463 }
2464 
2465 static int
2466 nd6_need_cache(struct ifnet *ifp)
2467 {
2468 	/*
2469 	 * XXX: we currently do not make neighbor cache on any interface
2470 	 * other than Ethernet and GIF.
2471 	 *
2472 	 * RFC2893 says:
2473 	 * - unidirectional tunnels needs no ND
2474 	 */
2475 	switch (ifp->if_type) {
2476 	case IFT_ETHER:
2477 	case IFT_IEEE1394:
2478 	case IFT_L2VLAN:
2479 	case IFT_INFINIBAND:
2480 	case IFT_BRIDGE:
2481 	case IFT_PROPVIRTUAL:
2482 		return (1);
2483 	default:
2484 		return (0);
2485 	}
2486 }
2487 
2488 /*
2489  * Add pernament ND6 link-layer record for given
2490  * interface address.
2491  *
2492  * Very similar to IPv4 arp_ifinit(), but:
2493  * 1) IPv6 DAD is performed in different place
2494  * 2) It is called by IPv6 protocol stack in contrast to
2495  * arp_ifinit() which is typically called in SIOCSIFADDR
2496  * driver ioctl handler.
2497  *
2498  */
2499 int
2500 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2501 {
2502 	struct ifnet *ifp;
2503 	struct llentry *ln, *ln_tmp;
2504 	struct sockaddr *dst;
2505 
2506 	ifp = ia->ia_ifa.ifa_ifp;
2507 	if (nd6_need_cache(ifp) == 0)
2508 		return (0);
2509 
2510 	dst = (struct sockaddr *)&ia->ia_addr;
2511 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2512 	if (ln == NULL)
2513 		return (ENOBUFS);
2514 
2515 	IF_AFDATA_WLOCK(ifp);
2516 	LLE_WLOCK(ln);
2517 	/* Unlink any entry if exists */
2518 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2519 	if (ln_tmp != NULL)
2520 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2521 	lltable_link_entry(LLTABLE6(ifp), ln);
2522 	IF_AFDATA_WUNLOCK(ifp);
2523 
2524 	if (ln_tmp != NULL)
2525 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2526 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2527 
2528 	LLE_WUNLOCK(ln);
2529 	if (ln_tmp != NULL)
2530 		llentry_free(ln_tmp);
2531 
2532 	return (0);
2533 }
2534 
2535 /*
2536  * Removes either all lle entries for given @ia, or lle
2537  * corresponding to @ia address.
2538  */
2539 void
2540 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2541 {
2542 	struct sockaddr_in6 mask, addr;
2543 	struct sockaddr *saddr, *smask;
2544 	struct ifnet *ifp;
2545 
2546 	ifp = ia->ia_ifa.ifa_ifp;
2547 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2548 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2549 	saddr = (struct sockaddr *)&addr;
2550 	smask = (struct sockaddr *)&mask;
2551 
2552 	if (all != 0)
2553 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2554 	else
2555 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2556 }
2557 
2558 static void
2559 clear_llinfo_pqueue(struct llentry *ln)
2560 {
2561 	struct mbuf *m_hold, *m_hold_next;
2562 
2563 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2564 		m_hold_next = m_hold->m_nextpkt;
2565 		m_freem(m_hold);
2566 	}
2567 
2568 	ln->la_hold = NULL;
2569 }
2570 
2571 static int
2572 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2573 {
2574 	struct in6_prefix p;
2575 	struct sockaddr_in6 s6;
2576 	struct nd_prefix *pr;
2577 	struct nd_pfxrouter *pfr;
2578 	time_t maxexpire;
2579 	int error;
2580 	char ip6buf[INET6_ADDRSTRLEN];
2581 
2582 	if (req->newptr)
2583 		return (EPERM);
2584 
2585 	error = sysctl_wire_old_buffer(req, 0);
2586 	if (error != 0)
2587 		return (error);
2588 
2589 	bzero(&p, sizeof(p));
2590 	p.origin = PR_ORIG_RA;
2591 	bzero(&s6, sizeof(s6));
2592 	s6.sin6_family = AF_INET6;
2593 	s6.sin6_len = sizeof(s6);
2594 
2595 	ND6_RLOCK();
2596 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2597 		p.prefix = pr->ndpr_prefix;
2598 		if (sa6_recoverscope(&p.prefix)) {
2599 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2600 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2601 			/* XXX: press on... */
2602 		}
2603 		p.raflags = pr->ndpr_raf;
2604 		p.prefixlen = pr->ndpr_plen;
2605 		p.vltime = pr->ndpr_vltime;
2606 		p.pltime = pr->ndpr_pltime;
2607 		p.if_index = pr->ndpr_ifp->if_index;
2608 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2609 			p.expire = 0;
2610 		else {
2611 			/* XXX: we assume time_t is signed. */
2612 			maxexpire = (-1) &
2613 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2614 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2615 				p.expire = pr->ndpr_lastupdate +
2616 				    pr->ndpr_vltime +
2617 				    (time_second - time_uptime);
2618 			else
2619 				p.expire = maxexpire;
2620 		}
2621 		p.refcnt = pr->ndpr_addrcnt;
2622 		p.flags = pr->ndpr_stateflags;
2623 		p.advrtrs = 0;
2624 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2625 			p.advrtrs++;
2626 		error = SYSCTL_OUT(req, &p, sizeof(p));
2627 		if (error != 0)
2628 			break;
2629 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2630 			s6.sin6_addr = pfr->router->rtaddr;
2631 			if (sa6_recoverscope(&s6))
2632 				log(LOG_ERR,
2633 				    "scope error in prefix list (%s)\n",
2634 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2635 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2636 			if (error != 0)
2637 				goto out;
2638 		}
2639 	}
2640 out:
2641 	ND6_RUNLOCK();
2642 	return (error);
2643 }
2644 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2645 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2646 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2647 	"NDP prefix list");
2648 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2649 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2650 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2651 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2652