xref: /freebsd/sys/netinet6/nd6.c (revision 8f32e46db7e366761a0bcf6c60ca157805a02e19)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arc.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/iso88025.h>
62 #include <net/fddi.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 /* timer values */
89 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
90 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
91 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
92 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
93 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
94 					 * local traffic */
95 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
96 					 * collection timer */
97 
98 /* preventing too many loops in ND option parsing */
99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
100 
101 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
102 					 * layer hints */
103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
104 					 * ND entries */
105 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
106 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
107 
108 #ifdef ND6_DEBUG
109 VNET_DEFINE(int, nd6_debug) = 1;
110 #else
111 VNET_DEFINE(int, nd6_debug) = 0;
112 #endif
113 
114 static eventhandler_tag lle_event_eh;
115 
116 /* for debugging? */
117 #if 0
118 static int nd6_inuse, nd6_allocated;
119 #endif
120 
121 VNET_DEFINE(struct nd_drhead, nd_defrouter);
122 VNET_DEFINE(struct nd_prhead, nd_prefix);
123 
124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
125 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
126 
127 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
128 
129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
130 	struct ifnet *);
131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
132 static void nd6_slowtimo(void *);
133 static int regen_tmpaddr(struct in6_ifaddr *);
134 static void nd6_free(struct llentry *, int);
135 static void nd6_free_redirect(const struct llentry *);
136 static void nd6_llinfo_timer(void *);
137 static void nd6_llinfo_settimer_locked(struct llentry *, long);
138 static void clear_llinfo_pqueue(struct llentry *);
139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
140 static int nd6_resolve_slow(struct ifnet *, struct mbuf *,
141     const struct sockaddr_in6 *, u_char *, uint32_t *);
142 static int nd6_need_cache(struct ifnet *);
143 
144 
145 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
146 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
147 
148 VNET_DEFINE(struct callout, nd6_timer_ch);
149 
150 static void
151 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
152 {
153 	struct rt_addrinfo rtinfo;
154 	struct sockaddr_in6 dst;
155 	struct sockaddr_dl gw;
156 	struct ifnet *ifp;
157 	int type;
158 
159 	LLE_WLOCK_ASSERT(lle);
160 
161 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
162 		return;
163 
164 	switch (evt) {
165 	case LLENTRY_RESOLVED:
166 		type = RTM_ADD;
167 		KASSERT(lle->la_flags & LLE_VALID,
168 		    ("%s: %p resolved but not valid?", __func__, lle));
169 		break;
170 	case LLENTRY_EXPIRED:
171 		type = RTM_DELETE;
172 		break;
173 	default:
174 		return;
175 	}
176 
177 	ifp = lltable_get_ifp(lle->lle_tbl);
178 
179 	bzero(&dst, sizeof(dst));
180 	bzero(&gw, sizeof(gw));
181 	bzero(&rtinfo, sizeof(rtinfo));
182 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
183 	dst.sin6_scope_id = in6_getscopezone(ifp,
184 	    in6_addrscope(&dst.sin6_addr));
185 	gw.sdl_len = sizeof(struct sockaddr_dl);
186 	gw.sdl_family = AF_LINK;
187 	gw.sdl_alen = ifp->if_addrlen;
188 	gw.sdl_index = ifp->if_index;
189 	gw.sdl_type = ifp->if_type;
190 	if (evt == LLENTRY_RESOLVED)
191 		bcopy(&lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
192 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
193 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
194 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
195 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
196 	    type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB);
197 }
198 
199 void
200 nd6_init(void)
201 {
202 
203 	LIST_INIT(&V_nd_prefix);
204 
205 	/* initialization of the default router list */
206 	TAILQ_INIT(&V_nd_defrouter);
207 
208 	/* start timer */
209 	callout_init(&V_nd6_slowtimo_ch, 0);
210 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
211 	    nd6_slowtimo, curvnet);
212 
213 	nd6_dad_init();
214 	if (IS_DEFAULT_VNET(curvnet))
215 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
216 		    NULL, EVENTHANDLER_PRI_ANY);
217 }
218 
219 #ifdef VIMAGE
220 void
221 nd6_destroy()
222 {
223 
224 	callout_drain(&V_nd6_slowtimo_ch);
225 	callout_drain(&V_nd6_timer_ch);
226 	if (IS_DEFAULT_VNET(curvnet))
227 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
228 }
229 #endif
230 
231 struct nd_ifinfo *
232 nd6_ifattach(struct ifnet *ifp)
233 {
234 	struct nd_ifinfo *nd;
235 
236 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
237 	nd->initialized = 1;
238 
239 	nd->chlim = IPV6_DEFHLIM;
240 	nd->basereachable = REACHABLE_TIME;
241 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
242 	nd->retrans = RETRANS_TIMER;
243 
244 	nd->flags = ND6_IFF_PERFORMNUD;
245 
246 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
247 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
248 	 * default regardless of the V_ip6_auto_linklocal configuration to
249 	 * give a reasonable default behavior.
250 	 */
251 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
252 	    (ifp->if_flags & IFF_LOOPBACK))
253 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
254 	/*
255 	 * A loopback interface does not need to accept RTADV.
256 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
257 	 * default regardless of the V_ip6_accept_rtadv configuration to
258 	 * prevent the interface from accepting RA messages arrived
259 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
260 	 */
261 	if (V_ip6_accept_rtadv &&
262 	    !(ifp->if_flags & IFF_LOOPBACK) &&
263 	    (ifp->if_type != IFT_BRIDGE))
264 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
265 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
266 		nd->flags |= ND6_IFF_NO_RADR;
267 
268 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
269 	nd6_setmtu0(ifp, nd);
270 
271 	return nd;
272 }
273 
274 void
275 nd6_ifdetach(struct nd_ifinfo *nd)
276 {
277 
278 	free(nd, M_IP6NDP);
279 }
280 
281 /*
282  * Reset ND level link MTU. This function is called when the physical MTU
283  * changes, which means we might have to adjust the ND level MTU.
284  */
285 void
286 nd6_setmtu(struct ifnet *ifp)
287 {
288 
289 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
290 }
291 
292 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
293 void
294 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
295 {
296 	u_int32_t omaxmtu;
297 
298 	omaxmtu = ndi->maxmtu;
299 
300 	switch (ifp->if_type) {
301 	case IFT_ARCNET:
302 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
303 		break;
304 	case IFT_FDDI:
305 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
306 		break;
307 	case IFT_ISO88025:
308 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
309 		 break;
310 	default:
311 		ndi->maxmtu = ifp->if_mtu;
312 		break;
313 	}
314 
315 	/*
316 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
317 	 * undesirable situation.  We thus notify the operator of the change
318 	 * explicitly.  The check for omaxmtu is necessary to restrict the
319 	 * log to the case of changing the MTU, not initializing it.
320 	 */
321 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
322 		log(LOG_NOTICE, "nd6_setmtu0: "
323 		    "new link MTU on %s (%lu) is too small for IPv6\n",
324 		    if_name(ifp), (unsigned long)ndi->maxmtu);
325 	}
326 
327 	if (ndi->maxmtu > V_in6_maxmtu)
328 		in6_setmaxmtu(); /* check all interfaces just in case */
329 
330 }
331 
332 void
333 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
334 {
335 
336 	bzero(ndopts, sizeof(*ndopts));
337 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
338 	ndopts->nd_opts_last
339 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
340 
341 	if (icmp6len == 0) {
342 		ndopts->nd_opts_done = 1;
343 		ndopts->nd_opts_search = NULL;
344 	}
345 }
346 
347 /*
348  * Take one ND option.
349  */
350 struct nd_opt_hdr *
351 nd6_option(union nd_opts *ndopts)
352 {
353 	struct nd_opt_hdr *nd_opt;
354 	int olen;
355 
356 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
357 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
358 	    __func__));
359 	if (ndopts->nd_opts_search == NULL)
360 		return NULL;
361 	if (ndopts->nd_opts_done)
362 		return NULL;
363 
364 	nd_opt = ndopts->nd_opts_search;
365 
366 	/* make sure nd_opt_len is inside the buffer */
367 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
368 		bzero(ndopts, sizeof(*ndopts));
369 		return NULL;
370 	}
371 
372 	olen = nd_opt->nd_opt_len << 3;
373 	if (olen == 0) {
374 		/*
375 		 * Message validation requires that all included
376 		 * options have a length that is greater than zero.
377 		 */
378 		bzero(ndopts, sizeof(*ndopts));
379 		return NULL;
380 	}
381 
382 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
383 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
384 		/* option overruns the end of buffer, invalid */
385 		bzero(ndopts, sizeof(*ndopts));
386 		return NULL;
387 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
388 		/* reached the end of options chain */
389 		ndopts->nd_opts_done = 1;
390 		ndopts->nd_opts_search = NULL;
391 	}
392 	return nd_opt;
393 }
394 
395 /*
396  * Parse multiple ND options.
397  * This function is much easier to use, for ND routines that do not need
398  * multiple options of the same type.
399  */
400 int
401 nd6_options(union nd_opts *ndopts)
402 {
403 	struct nd_opt_hdr *nd_opt;
404 	int i = 0;
405 
406 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
407 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
408 	    __func__));
409 	if (ndopts->nd_opts_search == NULL)
410 		return 0;
411 
412 	while (1) {
413 		nd_opt = nd6_option(ndopts);
414 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
415 			/*
416 			 * Message validation requires that all included
417 			 * options have a length that is greater than zero.
418 			 */
419 			ICMP6STAT_INC(icp6s_nd_badopt);
420 			bzero(ndopts, sizeof(*ndopts));
421 			return -1;
422 		}
423 
424 		if (nd_opt == NULL)
425 			goto skip1;
426 
427 		switch (nd_opt->nd_opt_type) {
428 		case ND_OPT_SOURCE_LINKADDR:
429 		case ND_OPT_TARGET_LINKADDR:
430 		case ND_OPT_MTU:
431 		case ND_OPT_REDIRECTED_HEADER:
432 		case ND_OPT_NONCE:
433 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
434 				nd6log((LOG_INFO,
435 				    "duplicated ND6 option found (type=%d)\n",
436 				    nd_opt->nd_opt_type));
437 				/* XXX bark? */
438 			} else {
439 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
440 					= nd_opt;
441 			}
442 			break;
443 		case ND_OPT_PREFIX_INFORMATION:
444 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
445 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
446 					= nd_opt;
447 			}
448 			ndopts->nd_opts_pi_end =
449 				(struct nd_opt_prefix_info *)nd_opt;
450 			break;
451 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
452 		case ND_OPT_RDNSS:	/* RFC 6106 */
453 		case ND_OPT_DNSSL:	/* RFC 6106 */
454 			/*
455 			 * Silently ignore options we know and do not care about
456 			 * in the kernel.
457 			 */
458 			break;
459 		default:
460 			/*
461 			 * Unknown options must be silently ignored,
462 			 * to accomodate future extension to the protocol.
463 			 */
464 			nd6log((LOG_DEBUG,
465 			    "nd6_options: unsupported option %d - "
466 			    "option ignored\n", nd_opt->nd_opt_type));
467 		}
468 
469 skip1:
470 		i++;
471 		if (i > V_nd6_maxndopt) {
472 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
473 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
474 			break;
475 		}
476 
477 		if (ndopts->nd_opts_done)
478 			break;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * ND6 timer routine to handle ND6 entries
486  */
487 static void
488 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
489 {
490 	int canceled;
491 
492 	LLE_WLOCK_ASSERT(ln);
493 
494 	if (tick < 0) {
495 		ln->la_expire = 0;
496 		ln->ln_ntick = 0;
497 		canceled = callout_stop(&ln->lle_timer);
498 	} else {
499 		ln->la_expire = time_uptime + tick / hz;
500 		LLE_ADDREF(ln);
501 		if (tick > INT_MAX) {
502 			ln->ln_ntick = tick - INT_MAX;
503 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
504 			    nd6_llinfo_timer, ln);
505 		} else {
506 			ln->ln_ntick = 0;
507 			canceled = callout_reset(&ln->lle_timer, tick,
508 			    nd6_llinfo_timer, ln);
509 		}
510 	}
511 	if (canceled > 0)
512 		LLE_REMREF(ln);
513 }
514 
515 /*
516  * Gets source address of the first packet in hold queue
517  * and stores it in @src.
518  * Returns pointer to @src (if hold queue is not empty) or NULL.
519  *
520  * Set noinline to be dtrace-friendly
521  */
522 static __noinline struct in6_addr *
523 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
524 {
525 	struct ip6_hdr hdr;
526 	struct mbuf *m;
527 
528 	if (ln->la_hold == NULL)
529 		return (NULL);
530 
531 	/*
532 	 * assume every packet in la_hold has the same IP header
533 	 */
534 	m = ln->la_hold;
535 	if (sizeof(hdr) > m->m_len)
536 		return (NULL);
537 
538 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
539 	*src = hdr.ip6_src;
540 
541 	return (src);
542 }
543 
544 /*
545  * Checks if we need to switch from STALE state.
546  *
547  * RFC 4861 requires switching from STALE to DELAY state
548  * on first packet matching entry, waiting V_nd6_delay and
549  * transition to PROBE state (if upper layer confirmation was
550  * not received).
551  *
552  * This code performs a bit differently:
553  * On packet hit we don't change state (but desired state
554  * can be guessed by control plane). However, after V_nd6_delay
555  * seconds code will transition to PROBE state (so DELAY state
556  * is kinda skipped in most situations).
557  *
558  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
559  * we perform the following upon entering STALE state:
560  *
561  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
562  * if packet was transmitted at the start of given interval, we
563  * would be able to switch to PROBE state in V_nd6_delay seconds
564  * as user expects.
565  *
566  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
567  * lle in STALE state (remaining timer value stored in lle_remtime).
568  *
569  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
570  * seconds ago.
571  *
572  * Returns non-zero value if the entry is still STALE (storing
573  * the next timer interval in @pdelay).
574  *
575  * Returns zero value if original timer expired or we need to switch to
576  * PROBE (store that in @do_switch variable).
577  */
578 static int
579 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
580 {
581 	int nd_delay, nd_gctimer, r_skip_req;
582 	time_t lle_hittime;
583 	long delay;
584 
585 	*do_switch = 0;
586 	nd_gctimer = V_nd6_gctimer;
587 	nd_delay = V_nd6_delay;
588 
589 	LLE_REQ_LOCK(lle);
590 	r_skip_req = lle->r_skip_req;
591 	lle_hittime = lle->lle_hittime;
592 	LLE_REQ_UNLOCK(lle);
593 
594 	if (r_skip_req > 0) {
595 
596 		/*
597 		 * Nonzero r_skip_req value was set upon entering
598 		 * STALE state. Since value was not changed, no
599 		 * packets were passed using this lle. Ask for
600 		 * timer reschedule and keep STALE state.
601 		 */
602 		delay = (long)(MIN(nd_gctimer, nd_delay));
603 		delay *= hz;
604 		if (lle->lle_remtime > delay)
605 			lle->lle_remtime -= delay;
606 		else {
607 			delay = lle->lle_remtime;
608 			lle->lle_remtime = 0;
609 		}
610 
611 		if (delay == 0) {
612 
613 			/*
614 			 * The original ng6_gctime timeout ended,
615 			 * no more rescheduling.
616 			 */
617 			return (0);
618 		}
619 
620 		*pdelay = delay;
621 		return (1);
622 	}
623 
624 	/*
625 	 * Packet received. Verify timestamp
626 	 */
627 	delay = (long)(time_uptime - lle_hittime);
628 	if (delay < nd_delay) {
629 
630 		/*
631 		 * V_nd6_delay still not passed since the first
632 		 * hit in STALE state.
633 		 * Reshedule timer and return.
634 		 */
635 		*pdelay = (long)(nd_delay - delay) * hz;
636 		return (1);
637 	}
638 
639 	/* Request switching to probe */
640 	*do_switch = 1;
641 	return (0);
642 }
643 
644 
645 /*
646  * Switch @lle state to new state optionally arming timers.
647  *
648  * Set noinline to be dtrace-friendly
649  */
650 __noinline void
651 nd6_llinfo_setstate(struct llentry *lle, int newstate)
652 {
653 	struct ifnet *ifp;
654 	int nd_gctimer, nd_delay;
655 	long delay, remtime;
656 
657 	delay = 0;
658 	remtime = 0;
659 
660 	switch (newstate) {
661 	case ND6_LLINFO_INCOMPLETE:
662 		ifp = lle->lle_tbl->llt_ifp;
663 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
664 		break;
665 	case ND6_LLINFO_REACHABLE:
666 		if (!ND6_LLINFO_PERMANENT(lle)) {
667 			ifp = lle->lle_tbl->llt_ifp;
668 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
669 		}
670 		break;
671 	case ND6_LLINFO_STALE:
672 
673 		/*
674 		 * Notify fast path that we want to know if any packet
675 		 * is transmitted by setting r_skip_req.
676 		 */
677 		LLE_REQ_LOCK(lle);
678 		lle->r_skip_req = 1;
679 		LLE_REQ_UNLOCK(lle);
680 		nd_delay = V_nd6_delay;
681 		nd_gctimer = V_nd6_gctimer;
682 
683 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
684 		remtime = (long)nd_gctimer * hz - delay;
685 		break;
686 	case ND6_LLINFO_DELAY:
687 		lle->la_asked = 0;
688 		delay = (long)V_nd6_delay * hz;
689 		break;
690 	}
691 
692 	if (delay > 0)
693 		nd6_llinfo_settimer_locked(lle, delay);
694 
695 	lle->lle_remtime = remtime;
696 	lle->ln_state = newstate;
697 }
698 
699 /*
700  * Timer-dependent part of nd state machine.
701  *
702  * Set noinline to be dtrace-friendly
703  */
704 static __noinline void
705 nd6_llinfo_timer(void *arg)
706 {
707 	struct llentry *ln;
708 	struct in6_addr *dst, *pdst, *psrc, src;
709 	struct ifnet *ifp;
710 	struct nd_ifinfo *ndi = NULL;
711 	int do_switch, send_ns;
712 	long delay;
713 
714 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
715 	ln = (struct llentry *)arg;
716 	LLE_WLOCK(ln);
717 	if (callout_pending(&ln->lle_timer)) {
718 		/*
719 		 * Here we are a bit odd here in the treatment of
720 		 * active/pending. If the pending bit is set, it got
721 		 * rescheduled before I ran. The active
722 		 * bit we ignore, since if it was stopped
723 		 * in ll_tablefree() and was currently running
724 		 * it would have return 0 so the code would
725 		 * not have deleted it since the callout could
726 		 * not be stopped so we want to go through
727 		 * with the delete here now. If the callout
728 		 * was restarted, the pending bit will be back on and
729 		 * we just want to bail since the callout_reset would
730 		 * return 1 and our reference would have been removed
731 		 * by nd6_llinfo_settimer_locked above since canceled
732 		 * would have been 1.
733 		 */
734 		LLE_WUNLOCK(ln);
735 		return;
736 	}
737 	ifp = ln->lle_tbl->llt_ifp;
738 	CURVNET_SET(ifp->if_vnet);
739 	ndi = ND_IFINFO(ifp);
740 	send_ns = 0;
741 	dst = &ln->r_l3addr.addr6;
742 	pdst = dst;
743 
744 	if (ln->ln_ntick > 0) {
745 		if (ln->ln_ntick > INT_MAX) {
746 			ln->ln_ntick -= INT_MAX;
747 			nd6_llinfo_settimer_locked(ln, INT_MAX);
748 		} else {
749 			ln->ln_ntick = 0;
750 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
751 		}
752 		goto done;
753 	}
754 
755 	if (ln->la_flags & LLE_STATIC) {
756 		goto done;
757 	}
758 
759 	if (ln->la_flags & LLE_DELETED) {
760 		nd6_free(ln, 0);
761 		ln = NULL;
762 		goto done;
763 	}
764 
765 	switch (ln->ln_state) {
766 	case ND6_LLINFO_INCOMPLETE:
767 		if (ln->la_asked < V_nd6_mmaxtries) {
768 			ln->la_asked++;
769 			send_ns = 1;
770 			/* Send NS to multicast address */
771 			pdst = NULL;
772 		} else {
773 			struct mbuf *m = ln->la_hold;
774 			if (m) {
775 				struct mbuf *m0;
776 
777 				/*
778 				 * assuming every packet in la_hold has the
779 				 * same IP header.  Send error after unlock.
780 				 */
781 				m0 = m->m_nextpkt;
782 				m->m_nextpkt = NULL;
783 				ln->la_hold = m0;
784 				clear_llinfo_pqueue(ln);
785 			}
786 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT);
787 			nd6_free(ln, 0);
788 			ln = NULL;
789 			if (m != NULL)
790 				icmp6_error2(m, ICMP6_DST_UNREACH,
791 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
792 		}
793 		break;
794 	case ND6_LLINFO_REACHABLE:
795 		if (!ND6_LLINFO_PERMANENT(ln))
796 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
797 		break;
798 
799 	case ND6_LLINFO_STALE:
800 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
801 
802 			/*
803 			 * No packet has used this entry and GC timeout
804 			 * has not been passed. Reshedule timer and
805 			 * return.
806 			 */
807 			nd6_llinfo_settimer_locked(ln, delay);
808 			break;
809 		}
810 
811 		if (do_switch == 0) {
812 
813 			/*
814 			 * GC timer has ended and entry hasn't been used.
815 			 * Run Garbage collector (RFC 4861, 5.3)
816 			 */
817 			if (!ND6_LLINFO_PERMANENT(ln)) {
818 				EVENTHANDLER_INVOKE(lle_event, ln,
819 				    LLENTRY_EXPIRED);
820 				nd6_free(ln, 1);
821 				ln = NULL;
822 			}
823 			break;
824 		}
825 
826 		/* Entry has been used AND delay timer has ended. */
827 
828 		/* FALLTHROUGH */
829 
830 	case ND6_LLINFO_DELAY:
831 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
832 			/* We need NUD */
833 			ln->la_asked = 1;
834 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
835 			send_ns = 1;
836 		} else
837 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
838 		break;
839 	case ND6_LLINFO_PROBE:
840 		if (ln->la_asked < V_nd6_umaxtries) {
841 			ln->la_asked++;
842 			send_ns = 1;
843 		} else {
844 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
845 			nd6_free(ln, 0);
846 			ln = NULL;
847 		}
848 		break;
849 	default:
850 		panic("%s: paths in a dark night can be confusing: %d",
851 		    __func__, ln->ln_state);
852 	}
853 done:
854 	if (send_ns != 0) {
855 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
856 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
857 		LLE_FREE_LOCKED(ln);
858 		ln = NULL;
859 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
860 	}
861 
862 	if (ln != NULL)
863 		LLE_FREE_LOCKED(ln);
864 	CURVNET_RESTORE();
865 }
866 
867 
868 /*
869  * ND6 timer routine to expire default route list and prefix list
870  */
871 void
872 nd6_timer(void *arg)
873 {
874 	CURVNET_SET((struct vnet *) arg);
875 	struct nd_defrouter *dr, *ndr;
876 	struct nd_prefix *pr, *npr;
877 	struct in6_ifaddr *ia6, *nia6;
878 
879 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
880 	    nd6_timer, curvnet);
881 
882 	/* expire default router list */
883 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
884 		if (dr->expire && dr->expire < time_uptime)
885 			defrtrlist_del(dr);
886 	}
887 
888 	/*
889 	 * expire interface addresses.
890 	 * in the past the loop was inside prefix expiry processing.
891 	 * However, from a stricter speci-confrmance standpoint, we should
892 	 * rather separate address lifetimes and prefix lifetimes.
893 	 *
894 	 * XXXRW: in6_ifaddrhead locking.
895 	 */
896   addrloop:
897 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
898 		/* check address lifetime */
899 		if (IFA6_IS_INVALID(ia6)) {
900 			int regen = 0;
901 
902 			/*
903 			 * If the expiring address is temporary, try
904 			 * regenerating a new one.  This would be useful when
905 			 * we suspended a laptop PC, then turned it on after a
906 			 * period that could invalidate all temporary
907 			 * addresses.  Although we may have to restart the
908 			 * loop (see below), it must be after purging the
909 			 * address.  Otherwise, we'd see an infinite loop of
910 			 * regeneration.
911 			 */
912 			if (V_ip6_use_tempaddr &&
913 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
914 				if (regen_tmpaddr(ia6) == 0)
915 					regen = 1;
916 			}
917 
918 			in6_purgeaddr(&ia6->ia_ifa);
919 
920 			if (regen)
921 				goto addrloop; /* XXX: see below */
922 		} else if (IFA6_IS_DEPRECATED(ia6)) {
923 			int oldflags = ia6->ia6_flags;
924 
925 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
926 
927 			/*
928 			 * If a temporary address has just become deprecated,
929 			 * regenerate a new one if possible.
930 			 */
931 			if (V_ip6_use_tempaddr &&
932 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
933 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
934 
935 				if (regen_tmpaddr(ia6) == 0) {
936 					/*
937 					 * A new temporary address is
938 					 * generated.
939 					 * XXX: this means the address chain
940 					 * has changed while we are still in
941 					 * the loop.  Although the change
942 					 * would not cause disaster (because
943 					 * it's not a deletion, but an
944 					 * addition,) we'd rather restart the
945 					 * loop just for safety.  Or does this
946 					 * significantly reduce performance??
947 					 */
948 					goto addrloop;
949 				}
950 			}
951 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
952 			/*
953 			 * Schedule DAD for a tentative address.  This happens
954 			 * if the interface was down or not running
955 			 * when the address was configured.
956 			 */
957 			int delay;
958 
959 			delay = arc4random() %
960 			    (MAX_RTR_SOLICITATION_DELAY * hz);
961 			nd6_dad_start((struct ifaddr *)ia6, delay);
962 		} else {
963 			/*
964 			 * Check status of the interface.  If it is down,
965 			 * mark the address as tentative for future DAD.
966 			 */
967 			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
968 			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
969 				== 0 ||
970 			    (ND_IFINFO(ia6->ia_ifp)->flags &
971 				ND6_IFF_IFDISABLED) != 0) {
972 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
973 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
974 			}
975 			/*
976 			 * A new RA might have made a deprecated address
977 			 * preferred.
978 			 */
979 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
980 		}
981 	}
982 
983 	/* expire prefix list */
984 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
985 		/*
986 		 * check prefix lifetime.
987 		 * since pltime is just for autoconf, pltime processing for
988 		 * prefix is not necessary.
989 		 */
990 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
991 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
992 
993 			/*
994 			 * address expiration and prefix expiration are
995 			 * separate.  NEVER perform in6_purgeaddr here.
996 			 */
997 			prelist_remove(pr);
998 		}
999 	}
1000 	CURVNET_RESTORE();
1001 }
1002 
1003 /*
1004  * ia6 - deprecated/invalidated temporary address
1005  */
1006 static int
1007 regen_tmpaddr(struct in6_ifaddr *ia6)
1008 {
1009 	struct ifaddr *ifa;
1010 	struct ifnet *ifp;
1011 	struct in6_ifaddr *public_ifa6 = NULL;
1012 
1013 	ifp = ia6->ia_ifa.ifa_ifp;
1014 	IF_ADDR_RLOCK(ifp);
1015 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1016 		struct in6_ifaddr *it6;
1017 
1018 		if (ifa->ifa_addr->sa_family != AF_INET6)
1019 			continue;
1020 
1021 		it6 = (struct in6_ifaddr *)ifa;
1022 
1023 		/* ignore no autoconf addresses. */
1024 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1025 			continue;
1026 
1027 		/* ignore autoconf addresses with different prefixes. */
1028 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1029 			continue;
1030 
1031 		/*
1032 		 * Now we are looking at an autoconf address with the same
1033 		 * prefix as ours.  If the address is temporary and is still
1034 		 * preferred, do not create another one.  It would be rare, but
1035 		 * could happen, for example, when we resume a laptop PC after
1036 		 * a long period.
1037 		 */
1038 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1039 		    !IFA6_IS_DEPRECATED(it6)) {
1040 			public_ifa6 = NULL;
1041 			break;
1042 		}
1043 
1044 		/*
1045 		 * This is a public autoconf address that has the same prefix
1046 		 * as ours.  If it is preferred, keep it.  We can't break the
1047 		 * loop here, because there may be a still-preferred temporary
1048 		 * address with the prefix.
1049 		 */
1050 		if (!IFA6_IS_DEPRECATED(it6))
1051 			public_ifa6 = it6;
1052 	}
1053 	if (public_ifa6 != NULL)
1054 		ifa_ref(&public_ifa6->ia_ifa);
1055 	IF_ADDR_RUNLOCK(ifp);
1056 
1057 	if (public_ifa6 != NULL) {
1058 		int e;
1059 
1060 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1061 			ifa_free(&public_ifa6->ia_ifa);
1062 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1063 			    " tmp addr,errno=%d\n", e);
1064 			return (-1);
1065 		}
1066 		ifa_free(&public_ifa6->ia_ifa);
1067 		return (0);
1068 	}
1069 
1070 	return (-1);
1071 }
1072 
1073 /*
1074  * Nuke neighbor cache/prefix/default router management table, right before
1075  * ifp goes away.
1076  */
1077 void
1078 nd6_purge(struct ifnet *ifp)
1079 {
1080 	struct nd_defrouter *dr, *ndr;
1081 	struct nd_prefix *pr, *npr;
1082 
1083 	/*
1084 	 * Nuke default router list entries toward ifp.
1085 	 * We defer removal of default router list entries that is installed
1086 	 * in the routing table, in order to keep additional side effects as
1087 	 * small as possible.
1088 	 */
1089 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1090 		if (dr->installed)
1091 			continue;
1092 
1093 		if (dr->ifp == ifp)
1094 			defrtrlist_del(dr);
1095 	}
1096 
1097 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
1098 		if (!dr->installed)
1099 			continue;
1100 
1101 		if (dr->ifp == ifp)
1102 			defrtrlist_del(dr);
1103 	}
1104 
1105 	/* Nuke prefix list entries toward ifp */
1106 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1107 		if (pr->ndpr_ifp == ifp) {
1108 			/*
1109 			 * Because if_detach() does *not* release prefixes
1110 			 * while purging addresses the reference count will
1111 			 * still be above zero. We therefore reset it to
1112 			 * make sure that the prefix really gets purged.
1113 			 */
1114 			pr->ndpr_refcnt = 0;
1115 
1116 			/*
1117 			 * Previously, pr->ndpr_addr is removed as well,
1118 			 * but I strongly believe we don't have to do it.
1119 			 * nd6_purge() is only called from in6_ifdetach(),
1120 			 * which removes all the associated interface addresses
1121 			 * by itself.
1122 			 * (jinmei@kame.net 20010129)
1123 			 */
1124 			prelist_remove(pr);
1125 		}
1126 	}
1127 
1128 	/* cancel default outgoing interface setting */
1129 	if (V_nd6_defifindex == ifp->if_index)
1130 		nd6_setdefaultiface(0);
1131 
1132 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1133 		/* Refresh default router list. */
1134 		defrouter_select();
1135 	}
1136 
1137 	/* XXXXX
1138 	 * We do not nuke the neighbor cache entries here any more
1139 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
1140 	 * nd6_purge() is invoked by in6_ifdetach() which is called
1141 	 * from if_detach() where everything gets purged. So let
1142 	 * in6_domifdetach() do the actual L2 table purging work.
1143 	 */
1144 }
1145 
1146 /*
1147  * the caller acquires and releases the lock on the lltbls
1148  * Returns the llentry locked
1149  */
1150 struct llentry *
1151 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1152 {
1153 	struct sockaddr_in6 sin6;
1154 	struct llentry *ln;
1155 
1156 	bzero(&sin6, sizeof(sin6));
1157 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1158 	sin6.sin6_family = AF_INET6;
1159 	sin6.sin6_addr = *addr6;
1160 
1161 	IF_AFDATA_LOCK_ASSERT(ifp);
1162 
1163 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1164 
1165 	return (ln);
1166 }
1167 
1168 struct llentry *
1169 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1170 {
1171 	struct sockaddr_in6 sin6;
1172 	struct llentry *ln;
1173 
1174 	bzero(&sin6, sizeof(sin6));
1175 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1176 	sin6.sin6_family = AF_INET6;
1177 	sin6.sin6_addr = *addr6;
1178 
1179 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1180 	if (ln != NULL)
1181 		ln->ln_state = ND6_LLINFO_NOSTATE;
1182 
1183 	return (ln);
1184 }
1185 
1186 /*
1187  * Test whether a given IPv6 address is a neighbor or not, ignoring
1188  * the actual neighbor cache.  The neighbor cache is ignored in order
1189  * to not reenter the routing code from within itself.
1190  */
1191 static int
1192 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1193 {
1194 	struct nd_prefix *pr;
1195 	struct ifaddr *dstaddr;
1196 
1197 	/*
1198 	 * A link-local address is always a neighbor.
1199 	 * XXX: a link does not necessarily specify a single interface.
1200 	 */
1201 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1202 		struct sockaddr_in6 sin6_copy;
1203 		u_int32_t zone;
1204 
1205 		/*
1206 		 * We need sin6_copy since sa6_recoverscope() may modify the
1207 		 * content (XXX).
1208 		 */
1209 		sin6_copy = *addr;
1210 		if (sa6_recoverscope(&sin6_copy))
1211 			return (0); /* XXX: should be impossible */
1212 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1213 			return (0);
1214 		if (sin6_copy.sin6_scope_id == zone)
1215 			return (1);
1216 		else
1217 			return (0);
1218 	}
1219 
1220 	/*
1221 	 * If the address matches one of our addresses,
1222 	 * it should be a neighbor.
1223 	 * If the address matches one of our on-link prefixes, it should be a
1224 	 * neighbor.
1225 	 */
1226 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1227 		if (pr->ndpr_ifp != ifp)
1228 			continue;
1229 
1230 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1231 			struct rtentry *rt;
1232 
1233 			/* Always use the default FIB here. */
1234 			rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix,
1235 			    0, 0, RT_DEFAULT_FIB);
1236 			if (rt == NULL)
1237 				continue;
1238 			/*
1239 			 * This is the case where multiple interfaces
1240 			 * have the same prefix, but only one is installed
1241 			 * into the routing table and that prefix entry
1242 			 * is not the one being examined here. In the case
1243 			 * where RADIX_MPATH is enabled, multiple route
1244 			 * entries (of the same rt_key value) will be
1245 			 * installed because the interface addresses all
1246 			 * differ.
1247 			 */
1248 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1249 			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
1250 				RTFREE_LOCKED(rt);
1251 				continue;
1252 			}
1253 			RTFREE_LOCKED(rt);
1254 		}
1255 
1256 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1257 		    &addr->sin6_addr, &pr->ndpr_mask))
1258 			return (1);
1259 	}
1260 
1261 	/*
1262 	 * If the address is assigned on the node of the other side of
1263 	 * a p2p interface, the address should be a neighbor.
1264 	 */
1265 	dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS);
1266 	if (dstaddr != NULL) {
1267 		if (dstaddr->ifa_ifp == ifp) {
1268 			ifa_free(dstaddr);
1269 			return (1);
1270 		}
1271 		ifa_free(dstaddr);
1272 	}
1273 
1274 	/*
1275 	 * If the default router list is empty, all addresses are regarded
1276 	 * as on-link, and thus, as a neighbor.
1277 	 */
1278 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1279 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1280 	    V_nd6_defifindex == ifp->if_index) {
1281 		return (1);
1282 	}
1283 
1284 	return (0);
1285 }
1286 
1287 
1288 /*
1289  * Detect if a given IPv6 address identifies a neighbor on a given link.
1290  * XXX: should take care of the destination of a p2p link?
1291  */
1292 int
1293 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1294 {
1295 	struct llentry *lle;
1296 	int rc = 0;
1297 
1298 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1299 	if (nd6_is_new_addr_neighbor(addr, ifp))
1300 		return (1);
1301 
1302 	/*
1303 	 * Even if the address matches none of our addresses, it might be
1304 	 * in the neighbor cache.
1305 	 */
1306 	IF_AFDATA_RLOCK(ifp);
1307 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1308 		LLE_RUNLOCK(lle);
1309 		rc = 1;
1310 	}
1311 	IF_AFDATA_RUNLOCK(ifp);
1312 	return (rc);
1313 }
1314 
1315 /*
1316  * Free an nd6 llinfo entry.
1317  * Since the function would cause significant changes in the kernel, DO NOT
1318  * make it global, unless you have a strong reason for the change, and are sure
1319  * that the change is safe.
1320  *
1321  * Set noinline to be dtrace-friendly
1322  */
1323 static __noinline void
1324 nd6_free(struct llentry *ln, int gc)
1325 {
1326 	struct nd_defrouter *dr;
1327 	struct ifnet *ifp;
1328 
1329 	LLE_WLOCK_ASSERT(ln);
1330 
1331 	/*
1332 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1333 	 * even though it is not harmful, it was not really necessary.
1334 	 */
1335 
1336 	/* cancel timer */
1337 	nd6_llinfo_settimer_locked(ln, -1);
1338 
1339 	ifp = ln->lle_tbl->llt_ifp;
1340 
1341 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1342 		dr = defrouter_lookup(&ln->r_l3addr.addr6, ifp);
1343 
1344 		if (dr != NULL && dr->expire &&
1345 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1346 			/*
1347 			 * If the reason for the deletion is just garbage
1348 			 * collection, and the neighbor is an active default
1349 			 * router, do not delete it.  Instead, reset the GC
1350 			 * timer using the router's lifetime.
1351 			 * Simply deleting the entry would affect default
1352 			 * router selection, which is not necessarily a good
1353 			 * thing, especially when we're using router preference
1354 			 * values.
1355 			 * XXX: the check for ln_state would be redundant,
1356 			 *      but we intentionally keep it just in case.
1357 			 */
1358 			if (dr->expire > time_uptime)
1359 				nd6_llinfo_settimer_locked(ln,
1360 				    (dr->expire - time_uptime) * hz);
1361 			else
1362 				nd6_llinfo_settimer_locked(ln,
1363 				    (long)V_nd6_gctimer * hz);
1364 
1365 			LLE_REMREF(ln);
1366 			LLE_WUNLOCK(ln);
1367 			return;
1368 		}
1369 
1370 		if (dr) {
1371 			/*
1372 			 * Unreachablity of a router might affect the default
1373 			 * router selection and on-link detection of advertised
1374 			 * prefixes.
1375 			 */
1376 
1377 			/*
1378 			 * Temporarily fake the state to choose a new default
1379 			 * router and to perform on-link determination of
1380 			 * prefixes correctly.
1381 			 * Below the state will be set correctly,
1382 			 * or the entry itself will be deleted.
1383 			 */
1384 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1385 		}
1386 
1387 		if (ln->ln_router || dr) {
1388 
1389 			/*
1390 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1391 			 * rnh and for the calls to pfxlist_onlink_check() and
1392 			 * defrouter_select() in the block further down for calls
1393 			 * into nd6_lookup().  We still hold a ref.
1394 			 */
1395 			LLE_WUNLOCK(ln);
1396 
1397 			/*
1398 			 * rt6_flush must be called whether or not the neighbor
1399 			 * is in the Default Router List.
1400 			 * See a corresponding comment in nd6_na_input().
1401 			 */
1402 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1403 		}
1404 
1405 		if (dr) {
1406 			/*
1407 			 * Since defrouter_select() does not affect the
1408 			 * on-link determination and MIP6 needs the check
1409 			 * before the default router selection, we perform
1410 			 * the check now.
1411 			 */
1412 			pfxlist_onlink_check();
1413 
1414 			/*
1415 			 * Refresh default router list.
1416 			 */
1417 			defrouter_select();
1418 		}
1419 
1420 		/*
1421 		 * If this entry was added by an on-link redirect, remove the
1422 		 * corresponding host route.
1423 		 */
1424 		if (ln->la_flags & LLE_REDIRECT)
1425 			nd6_free_redirect(ln);
1426 
1427 		if (ln->ln_router || dr)
1428 			LLE_WLOCK(ln);
1429 	}
1430 
1431 	/*
1432 	 * Save to unlock. We still hold an extra reference and will not
1433 	 * free(9) in llentry_free() if someone else holds one as well.
1434 	 */
1435 	LLE_WUNLOCK(ln);
1436 	IF_AFDATA_LOCK(ifp);
1437 	LLE_WLOCK(ln);
1438 	/* Guard against race with other llentry_free(). */
1439 	if (ln->la_flags & LLE_LINKED) {
1440 		/* Remove callout reference */
1441 		LLE_REMREF(ln);
1442 		lltable_unlink_entry(ln->lle_tbl, ln);
1443 	}
1444 	IF_AFDATA_UNLOCK(ifp);
1445 
1446 	llentry_free(ln);
1447 }
1448 
1449 static int
1450 nd6_isdynrte(const struct rtentry *rt, void *xap)
1451 {
1452 
1453 	if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1454 		return (1);
1455 
1456 	return (0);
1457 }
1458 /*
1459  * Remove the rtentry for the given llentry,
1460  * both of which were installed by a redirect.
1461  */
1462 static void
1463 nd6_free_redirect(const struct llentry *ln)
1464 {
1465 	int fibnum;
1466 	struct sockaddr_in6 sin6;
1467 	struct rt_addrinfo info;
1468 
1469 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1470 	memset(&info, 0, sizeof(info));
1471 	info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6;
1472 	info.rti_filter = nd6_isdynrte;
1473 
1474 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1475 		rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum);
1476 }
1477 
1478 /*
1479  * Rejuvenate this function for routing operations related
1480  * processing.
1481  */
1482 void
1483 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1484 {
1485 	struct sockaddr_in6 *gateway;
1486 	struct nd_defrouter *dr;
1487 	struct ifnet *ifp;
1488 
1489 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1490 	ifp = rt->rt_ifp;
1491 
1492 	switch (req) {
1493 	case RTM_ADD:
1494 		break;
1495 
1496 	case RTM_DELETE:
1497 		if (!ifp)
1498 			return;
1499 		/*
1500 		 * Only indirect routes are interesting.
1501 		 */
1502 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1503 			return;
1504 		/*
1505 		 * check for default route
1506 		 */
1507 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1508 				       &SIN6(rt_key(rt))->sin6_addr)) {
1509 
1510 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1511 			if (dr != NULL)
1512 				dr->installed = 0;
1513 		}
1514 		break;
1515 	}
1516 }
1517 
1518 
1519 int
1520 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1521 {
1522 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1523 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1524 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1525 	int error = 0;
1526 
1527 	if (ifp->if_afdata[AF_INET6] == NULL)
1528 		return (EPFNOSUPPORT);
1529 	switch (cmd) {
1530 	case OSIOCGIFINFO_IN6:
1531 #define ND	ndi->ndi
1532 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1533 		bzero(&ND, sizeof(ND));
1534 		ND.linkmtu = IN6_LINKMTU(ifp);
1535 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1536 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1537 		ND.reachable = ND_IFINFO(ifp)->reachable;
1538 		ND.retrans = ND_IFINFO(ifp)->retrans;
1539 		ND.flags = ND_IFINFO(ifp)->flags;
1540 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1541 		ND.chlim = ND_IFINFO(ifp)->chlim;
1542 		break;
1543 	case SIOCGIFINFO_IN6:
1544 		ND = *ND_IFINFO(ifp);
1545 		break;
1546 	case SIOCSIFINFO_IN6:
1547 		/*
1548 		 * used to change host variables from userland.
1549 		 * intented for a use on router to reflect RA configurations.
1550 		 */
1551 		/* 0 means 'unspecified' */
1552 		if (ND.linkmtu != 0) {
1553 			if (ND.linkmtu < IPV6_MMTU ||
1554 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1555 				error = EINVAL;
1556 				break;
1557 			}
1558 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1559 		}
1560 
1561 		if (ND.basereachable != 0) {
1562 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1563 
1564 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1565 			if (ND.basereachable != obasereachable)
1566 				ND_IFINFO(ifp)->reachable =
1567 				    ND_COMPUTE_RTIME(ND.basereachable);
1568 		}
1569 		if (ND.retrans != 0)
1570 			ND_IFINFO(ifp)->retrans = ND.retrans;
1571 		if (ND.chlim != 0)
1572 			ND_IFINFO(ifp)->chlim = ND.chlim;
1573 		/* FALLTHROUGH */
1574 	case SIOCSIFINFO_FLAGS:
1575 	{
1576 		struct ifaddr *ifa;
1577 		struct in6_ifaddr *ia;
1578 
1579 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1580 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1581 			/* ifdisabled 1->0 transision */
1582 
1583 			/*
1584 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1585 			 * has an link-local address with IN6_IFF_DUPLICATED,
1586 			 * do not clear ND6_IFF_IFDISABLED.
1587 			 * See RFC 4862, Section 5.4.5.
1588 			 */
1589 			IF_ADDR_RLOCK(ifp);
1590 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1591 				if (ifa->ifa_addr->sa_family != AF_INET6)
1592 					continue;
1593 				ia = (struct in6_ifaddr *)ifa;
1594 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1595 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1596 					break;
1597 			}
1598 			IF_ADDR_RUNLOCK(ifp);
1599 
1600 			if (ifa != NULL) {
1601 				/* LLA is duplicated. */
1602 				ND.flags |= ND6_IFF_IFDISABLED;
1603 				log(LOG_ERR, "Cannot enable an interface"
1604 				    " with a link-local address marked"
1605 				    " duplicate.\n");
1606 			} else {
1607 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1608 				if (ifp->if_flags & IFF_UP)
1609 					in6_if_up(ifp);
1610 			}
1611 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1612 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1613 			/* ifdisabled 0->1 transision */
1614 			/* Mark all IPv6 address as tentative. */
1615 
1616 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1617 			if (V_ip6_dad_count > 0 &&
1618 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1619 				IF_ADDR_RLOCK(ifp);
1620 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1621 				    ifa_link) {
1622 					if (ifa->ifa_addr->sa_family !=
1623 					    AF_INET6)
1624 						continue;
1625 					ia = (struct in6_ifaddr *)ifa;
1626 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1627 				}
1628 				IF_ADDR_RUNLOCK(ifp);
1629 			}
1630 		}
1631 
1632 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1633 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1634 				/* auto_linklocal 0->1 transision */
1635 
1636 				/* If no link-local address on ifp, configure */
1637 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1638 				in6_ifattach(ifp, NULL);
1639 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1640 			    ifp->if_flags & IFF_UP) {
1641 				/*
1642 				 * When the IF already has
1643 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1644 				 * address is assigned, and IFF_UP, try to
1645 				 * assign one.
1646 				 */
1647 				IF_ADDR_RLOCK(ifp);
1648 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1649 				    ifa_link) {
1650 					if (ifa->ifa_addr->sa_family !=
1651 					    AF_INET6)
1652 						continue;
1653 					ia = (struct in6_ifaddr *)ifa;
1654 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1655 						break;
1656 				}
1657 				IF_ADDR_RUNLOCK(ifp);
1658 				if (ifa != NULL)
1659 					/* No LLA is configured. */
1660 					in6_ifattach(ifp, NULL);
1661 			}
1662 		}
1663 	}
1664 		ND_IFINFO(ifp)->flags = ND.flags;
1665 		break;
1666 #undef ND
1667 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1668 		/* sync kernel routing table with the default router list */
1669 		defrouter_reset();
1670 		defrouter_select();
1671 		break;
1672 	case SIOCSPFXFLUSH_IN6:
1673 	{
1674 		/* flush all the prefix advertised by routers */
1675 		struct nd_prefix *pr, *next;
1676 
1677 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1678 			struct in6_ifaddr *ia, *ia_next;
1679 
1680 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1681 				continue; /* XXX */
1682 
1683 			/* do we really have to remove addresses as well? */
1684 			/* XXXRW: in6_ifaddrhead locking. */
1685 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1686 			    ia_next) {
1687 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1688 					continue;
1689 
1690 				if (ia->ia6_ndpr == pr)
1691 					in6_purgeaddr(&ia->ia_ifa);
1692 			}
1693 			prelist_remove(pr);
1694 		}
1695 		break;
1696 	}
1697 	case SIOCSRTRFLUSH_IN6:
1698 	{
1699 		/* flush all the default routers */
1700 		struct nd_defrouter *dr, *next;
1701 
1702 		defrouter_reset();
1703 		TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) {
1704 			defrtrlist_del(dr);
1705 		}
1706 		defrouter_select();
1707 		break;
1708 	}
1709 	case SIOCGNBRINFO_IN6:
1710 	{
1711 		struct llentry *ln;
1712 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1713 
1714 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1715 			return (error);
1716 
1717 		IF_AFDATA_RLOCK(ifp);
1718 		ln = nd6_lookup(&nb_addr, 0, ifp);
1719 		IF_AFDATA_RUNLOCK(ifp);
1720 
1721 		if (ln == NULL) {
1722 			error = EINVAL;
1723 			break;
1724 		}
1725 		nbi->state = ln->ln_state;
1726 		nbi->asked = ln->la_asked;
1727 		nbi->isrouter = ln->ln_router;
1728 		if (ln->la_expire == 0)
1729 			nbi->expire = 0;
1730 		else
1731 			nbi->expire = ln->la_expire +
1732 			    (time_second - time_uptime);
1733 		LLE_RUNLOCK(ln);
1734 		break;
1735 	}
1736 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1737 		ndif->ifindex = V_nd6_defifindex;
1738 		break;
1739 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1740 		return (nd6_setdefaultiface(ndif->ifindex));
1741 	}
1742 	return (error);
1743 }
1744 
1745 /*
1746  * Calculates new isRouter value based on provided parameters and
1747  * returns it.
1748  */
1749 static int
1750 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1751     int ln_router)
1752 {
1753 
1754 	/*
1755 	 * ICMP6 type dependent behavior.
1756 	 *
1757 	 * NS: clear IsRouter if new entry
1758 	 * RS: clear IsRouter
1759 	 * RA: set IsRouter if there's lladdr
1760 	 * redir: clear IsRouter if new entry
1761 	 *
1762 	 * RA case, (1):
1763 	 * The spec says that we must set IsRouter in the following cases:
1764 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1765 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1766 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1767 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1768 	 * neighbor cache, this is similar to (6).
1769 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1770 	 *
1771 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1772 	 *							D R
1773 	 *	0	n	n	(1)	c   ?     s
1774 	 *	0	y	n	(2)	c   s     s
1775 	 *	0	n	y	(3)	c   s     s
1776 	 *	0	y	y	(4)	c   s     s
1777 	 *	0	y	y	(5)	c   s     s
1778 	 *	1	--	n	(6) c	c	c s
1779 	 *	1	--	y	(7) c	c   s	c s
1780 	 *
1781 	 *					(c=clear s=set)
1782 	 */
1783 	switch (type & 0xff) {
1784 	case ND_NEIGHBOR_SOLICIT:
1785 		/*
1786 		 * New entry must have is_router flag cleared.
1787 		 */
1788 		if (is_new)					/* (6-7) */
1789 			ln_router = 0;
1790 		break;
1791 	case ND_REDIRECT:
1792 		/*
1793 		 * If the icmp is a redirect to a better router, always set the
1794 		 * is_router flag.  Otherwise, if the entry is newly created,
1795 		 * clear the flag.  [RFC 2461, sec 8.3]
1796 		 */
1797 		if (code == ND_REDIRECT_ROUTER)
1798 			ln_router = 1;
1799 		else {
1800 			if (is_new)				/* (6-7) */
1801 				ln_router = 0;
1802 		}
1803 		break;
1804 	case ND_ROUTER_SOLICIT:
1805 		/*
1806 		 * is_router flag must always be cleared.
1807 		 */
1808 		ln_router = 0;
1809 		break;
1810 	case ND_ROUTER_ADVERT:
1811 		/*
1812 		 * Mark an entry with lladdr as a router.
1813 		 */
1814 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1815 		    (is_new && new_addr)) {			/* (7) */
1816 			ln_router = 1;
1817 		}
1818 		break;
1819 	}
1820 
1821 	return (ln_router);
1822 }
1823 
1824 /*
1825  * Create neighbor cache entry and cache link-layer address,
1826  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1827  *
1828  * type - ICMP6 type
1829  * code - type dependent information
1830  *
1831  */
1832 void
1833 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1834     int lladdrlen, int type, int code)
1835 {
1836 	struct llentry *ln = NULL, *ln_tmp;
1837 	int is_newentry;
1838 	int do_update;
1839 	int olladdr;
1840 	int llchange;
1841 	int flags;
1842 	uint16_t router = 0;
1843 	struct sockaddr_in6 sin6;
1844 	struct mbuf *chain = NULL;
1845 
1846 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1847 
1848 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1849 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1850 
1851 	/* nothing must be updated for unspecified address */
1852 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1853 		return;
1854 
1855 	/*
1856 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1857 	 * the caller.
1858 	 *
1859 	 * XXX If the link does not have link-layer adderss, what should
1860 	 * we do? (ifp->if_addrlen == 0)
1861 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1862 	 * description on it in NS section (RFC 2461 7.2.3).
1863 	 */
1864 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1865 	IF_AFDATA_RLOCK(ifp);
1866 	ln = nd6_lookup(from, flags, ifp);
1867 	IF_AFDATA_RUNLOCK(ifp);
1868 	is_newentry = 0;
1869 	if (ln == NULL) {
1870 		flags |= LLE_EXCLUSIVE;
1871 		ln = nd6_alloc(from, 0, ifp);
1872 		if (ln == NULL)
1873 			return;
1874 
1875 		/*
1876 		 * Since we already know all the data for the new entry,
1877 		 * fill it before insertion.
1878 		 */
1879 		if (lladdr != NULL)
1880 			lltable_set_entry_addr(ifp, ln, lladdr);
1881 		IF_AFDATA_WLOCK(ifp);
1882 		LLE_WLOCK(ln);
1883 		/* Prefer any existing lle over newly-created one */
1884 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
1885 		if (ln_tmp == NULL)
1886 			lltable_link_entry(LLTABLE6(ifp), ln);
1887 		IF_AFDATA_WUNLOCK(ifp);
1888 		if (ln_tmp == NULL) {
1889 			/* No existing lle, mark as new entry (6,7) */
1890 			is_newentry = 1;
1891 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1892 			if (lladdr != NULL)	/* (7) */
1893 				EVENTHANDLER_INVOKE(lle_event, ln,
1894 				    LLENTRY_RESOLVED);
1895 		} else {
1896 			lltable_free_entry(LLTABLE6(ifp), ln);
1897 			ln = ln_tmp;
1898 			ln_tmp = NULL;
1899 		}
1900 	}
1901 	/* do nothing if static ndp is set */
1902 	if ((ln->la_flags & LLE_STATIC)) {
1903 		if (flags & LLE_EXCLUSIVE)
1904 			LLE_WUNLOCK(ln);
1905 		else
1906 			LLE_RUNLOCK(ln);
1907 		return;
1908 	}
1909 
1910 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1911 	if (olladdr && lladdr) {
1912 		llchange = bcmp(lladdr, &ln->ll_addr,
1913 		    ifp->if_addrlen);
1914 	} else if (!olladdr && lladdr)
1915 		llchange = 1;
1916 	else
1917 		llchange = 0;
1918 
1919 	/*
1920 	 * newentry olladdr  lladdr  llchange	(*=record)
1921 	 *	0	n	n	--	(1)
1922 	 *	0	y	n	--	(2)
1923 	 *	0	n	y	y	(3) * STALE
1924 	 *	0	y	y	n	(4) *
1925 	 *	0	y	y	y	(5) * STALE
1926 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1927 	 *	1	--	y	--	(7) * STALE
1928 	 */
1929 
1930 	do_update = 0;
1931 	if (is_newentry == 0 && llchange != 0) {
1932 		do_update = 1;	/* (3,5) */
1933 
1934 		/*
1935 		 * Record source link-layer address
1936 		 * XXX is it dependent to ifp->if_type?
1937 		 */
1938 		if (lltable_try_set_entry_addr(ifp, ln, lladdr) == 0) {
1939 			/* Entry was deleted */
1940 			return;
1941 		}
1942 
1943 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1944 
1945 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
1946 
1947 		if (ln->la_hold != NULL)
1948 			nd6_grab_holdchain(ln, &chain, &sin6);
1949 	}
1950 
1951 	/* Calculates new router status */
1952 	router = nd6_is_router(type, code, is_newentry, olladdr,
1953 	    lladdr != NULL ? 1 : 0, ln->ln_router);
1954 
1955 	ln->ln_router = router;
1956 	/* Mark non-router redirects with special flag */
1957 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
1958 		ln->la_flags |= LLE_REDIRECT;
1959 
1960 	if (flags & LLE_EXCLUSIVE)
1961 		LLE_WUNLOCK(ln);
1962 	else
1963 		LLE_RUNLOCK(ln);
1964 
1965 	if (chain != NULL)
1966 		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
1967 
1968 	/*
1969 	 * When the link-layer address of a router changes, select the
1970 	 * best router again.  In particular, when the neighbor entry is newly
1971 	 * created, it might affect the selection policy.
1972 	 * Question: can we restrict the first condition to the "is_newentry"
1973 	 * case?
1974 	 * XXX: when we hear an RA from a new router with the link-layer
1975 	 * address option, defrouter_select() is called twice, since
1976 	 * defrtrlist_update called the function as well.  However, I believe
1977 	 * we can compromise the overhead, since it only happens the first
1978 	 * time.
1979 	 * XXX: although defrouter_select() should not have a bad effect
1980 	 * for those are not autoconfigured hosts, we explicitly avoid such
1981 	 * cases for safety.
1982 	 */
1983 	if ((do_update || is_newentry) && router &&
1984 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1985 		/*
1986 		 * guaranteed recursion
1987 		 */
1988 		defrouter_select();
1989 	}
1990 }
1991 
1992 static void
1993 nd6_slowtimo(void *arg)
1994 {
1995 	CURVNET_SET((struct vnet *) arg);
1996 	struct nd_ifinfo *nd6if;
1997 	struct ifnet *ifp;
1998 
1999 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2000 	    nd6_slowtimo, curvnet);
2001 	IFNET_RLOCK_NOSLEEP();
2002 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2003 		if (ifp->if_afdata[AF_INET6] == NULL)
2004 			continue;
2005 		nd6if = ND_IFINFO(ifp);
2006 		if (nd6if->basereachable && /* already initialized */
2007 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2008 			/*
2009 			 * Since reachable time rarely changes by router
2010 			 * advertisements, we SHOULD insure that a new random
2011 			 * value gets recomputed at least once every few hours.
2012 			 * (RFC 2461, 6.3.4)
2013 			 */
2014 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2015 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2016 		}
2017 	}
2018 	IFNET_RUNLOCK_NOSLEEP();
2019 	CURVNET_RESTORE();
2020 }
2021 
2022 void
2023 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
2024     struct sockaddr_in6 *sin6)
2025 {
2026 
2027 	LLE_WLOCK_ASSERT(ln);
2028 
2029 	*chain = ln->la_hold;
2030 	ln->la_hold = NULL;
2031 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
2032 
2033 	if (ln->ln_state == ND6_LLINFO_STALE) {
2034 
2035 		/*
2036 		 * The first time we send a packet to a
2037 		 * neighbor whose entry is STALE, we have
2038 		 * to change the state to DELAY and a sets
2039 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2040 		 * seconds to ensure do neighbor unreachability
2041 		 * detection on expiration.
2042 		 * (RFC 2461 7.3.3)
2043 		 */
2044 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2045 	}
2046 }
2047 
2048 int
2049 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2050     struct sockaddr_in6 *dst, struct route *ro)
2051 {
2052 	int error;
2053 	int ip6len;
2054 	struct ip6_hdr *ip6;
2055 	struct m_tag *mtag;
2056 
2057 #ifdef MAC
2058 	mac_netinet6_nd6_send(ifp, m);
2059 #endif
2060 
2061 	/*
2062 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2063 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2064 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2065 	 * to be diverted to user space.  When re-injected into the kernel,
2066 	 * send_output() will directly dispatch them to the outgoing interface.
2067 	 */
2068 	if (send_sendso_input_hook != NULL) {
2069 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2070 		if (mtag != NULL) {
2071 			ip6 = mtod(m, struct ip6_hdr *);
2072 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2073 			/* Use the SEND socket */
2074 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2075 			    ip6len);
2076 			/* -1 == no app on SEND socket */
2077 			if (error == 0 || error != -1)
2078 			    return (error);
2079 		}
2080 	}
2081 
2082 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2083 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2084 	    mtod(m, struct ip6_hdr *));
2085 
2086 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2087 		origifp = ifp;
2088 
2089 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2090 	return (error);
2091 }
2092 
2093 /*
2094  * Do L2 address resolution for @sa_dst address. Stores found
2095  * address in @desten buffer. Copy of lle ln_flags can be also
2096  * saved in @pflags if @pflags is non-NULL.
2097  *
2098  * If destination LLE does not exists or lle state modification
2099  * is required, call "slow" version.
2100  *
2101  * Return values:
2102  * - 0 on success (address copied to buffer).
2103  * - EWOULDBLOCK (no local error, but address is still unresolved)
2104  * - other errors (alloc failure, etc)
2105  */
2106 int
2107 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
2108     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags)
2109 {
2110 	struct llentry *ln = NULL;
2111 	const struct sockaddr_in6 *dst6;
2112 
2113 	if (pflags != NULL)
2114 		*pflags = 0;
2115 
2116 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2117 
2118 	/* discard the packet if IPv6 operation is disabled on the interface */
2119 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2120 		m_freem(m);
2121 		return (ENETDOWN); /* better error? */
2122 	}
2123 
2124 	if (m != NULL && m->m_flags & M_MCAST) {
2125 		switch (ifp->if_type) {
2126 		case IFT_ETHER:
2127 		case IFT_FDDI:
2128 		case IFT_L2VLAN:
2129 		case IFT_IEEE80211:
2130 		case IFT_BRIDGE:
2131 		case IFT_ISO88025:
2132 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2133 						 desten);
2134 			return (0);
2135 		default:
2136 			m_freem(m);
2137 			return (EAFNOSUPPORT);
2138 		}
2139 	}
2140 
2141 	IF_AFDATA_RLOCK(ifp);
2142 	ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp);
2143 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2144 		/* Entry found, let's copy lle info */
2145 		bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2146 		if (pflags != NULL)
2147 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2148 		/* Check if we have feedback request from nd6 timer */
2149 		if (ln->r_skip_req != 0) {
2150 			LLE_REQ_LOCK(ln);
2151 			ln->r_skip_req = 0; /* Notify that entry was used */
2152 			ln->lle_hittime = time_uptime;
2153 			LLE_REQ_UNLOCK(ln);
2154 		}
2155 		IF_AFDATA_RUNLOCK(ifp);
2156 		return (0);
2157 	}
2158 	IF_AFDATA_RUNLOCK(ifp);
2159 
2160 	return (nd6_resolve_slow(ifp, m, dst6, desten, pflags));
2161 }
2162 
2163 
2164 /*
2165  * Do L2 address resolution for @sa_dst address. Stores found
2166  * address in @desten buffer. Copy of lle ln_flags can be also
2167  * saved in @pflags if @pflags is non-NULL.
2168  *
2169  * Heavy version.
2170  * Function assume that destination LLE does not exist,
2171  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2172  *
2173  * Set noinline to be dtrace-friendly
2174  */
2175 static __noinline int
2176 nd6_resolve_slow(struct ifnet *ifp, struct mbuf *m,
2177     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags)
2178 {
2179 	struct llentry *lle = NULL, *lle_tmp;
2180 	struct in6_addr *psrc, src;
2181 	int send_ns;
2182 
2183 	/*
2184 	 * Address resolution or Neighbor Unreachability Detection
2185 	 * for the next hop.
2186 	 * At this point, the destination of the packet must be a unicast
2187 	 * or an anycast address(i.e. not a multicast).
2188 	 */
2189 	if (lle == NULL) {
2190 		IF_AFDATA_RLOCK(ifp);
2191 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2192 		IF_AFDATA_RUNLOCK(ifp);
2193 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2194 			/*
2195 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2196 			 * the condition below is not very efficient.  But we believe
2197 			 * it is tolerable, because this should be a rare case.
2198 			 */
2199 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2200 			if (lle == NULL) {
2201 				char ip6buf[INET6_ADDRSTRLEN];
2202 				log(LOG_DEBUG,
2203 				    "nd6_output: can't allocate llinfo for %s "
2204 				    "(ln=%p)\n",
2205 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2206 				m_freem(m);
2207 				return (ENOBUFS);
2208 			}
2209 
2210 			IF_AFDATA_WLOCK(ifp);
2211 			LLE_WLOCK(lle);
2212 			/* Prefer any existing entry over newly-created one */
2213 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2214 			if (lle_tmp == NULL)
2215 				lltable_link_entry(LLTABLE6(ifp), lle);
2216 			IF_AFDATA_WUNLOCK(ifp);
2217 			if (lle_tmp != NULL) {
2218 				lltable_free_entry(LLTABLE6(ifp), lle);
2219 				lle = lle_tmp;
2220 				lle_tmp = NULL;
2221 			}
2222 		}
2223 	}
2224 	if (lle == NULL) {
2225 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2226 			m_freem(m);
2227 			return (ENOBUFS);
2228 		}
2229 
2230 		if (m != NULL)
2231 			m_freem(m);
2232 		return (ENOBUFS);
2233 	}
2234 
2235 	LLE_WLOCK_ASSERT(lle);
2236 
2237 	/*
2238 	 * The first time we send a packet to a neighbor whose entry is
2239 	 * STALE, we have to change the state to DELAY and a sets a timer to
2240 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2241 	 * neighbor unreachability detection on expiration.
2242 	 * (RFC 2461 7.3.3)
2243 	 */
2244 	if (lle->ln_state == ND6_LLINFO_STALE)
2245 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2246 
2247 	/*
2248 	 * If the neighbor cache entry has a state other than INCOMPLETE
2249 	 * (i.e. its link-layer address is already resolved), just
2250 	 * send the packet.
2251 	 */
2252 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2253 		bcopy(&lle->ll_addr, desten, ifp->if_addrlen);
2254 		if (pflags != NULL)
2255 			*pflags = lle->la_flags;
2256 		LLE_WUNLOCK(lle);
2257 		return (0);
2258 	}
2259 
2260 	/*
2261 	 * There is a neighbor cache entry, but no ethernet address
2262 	 * response yet.  Append this latest packet to the end of the
2263 	 * packet queue in the mbuf, unless the number of the packet
2264 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2265 	 * the oldest packet in the queue will be removed.
2266 	 */
2267 
2268 	if (lle->la_hold != NULL) {
2269 		struct mbuf *m_hold;
2270 		int i;
2271 
2272 		i = 0;
2273 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2274 			i++;
2275 			if (m_hold->m_nextpkt == NULL) {
2276 				m_hold->m_nextpkt = m;
2277 				break;
2278 			}
2279 		}
2280 		while (i >= V_nd6_maxqueuelen) {
2281 			m_hold = lle->la_hold;
2282 			lle->la_hold = lle->la_hold->m_nextpkt;
2283 			m_freem(m_hold);
2284 			i--;
2285 		}
2286 	} else {
2287 		lle->la_hold = m;
2288 	}
2289 
2290 	/*
2291 	 * If there has been no NS for the neighbor after entering the
2292 	 * INCOMPLETE state, send the first solicitation.
2293 	 * Note that for newly-created lle la_asked will be 0,
2294 	 * so we will transition from ND6_LLINFO_NOSTATE to
2295 	 * ND6_LLINFO_INCOMPLETE state here.
2296 	 */
2297 	psrc = NULL;
2298 	send_ns = 0;
2299 	if (lle->la_asked == 0) {
2300 		lle->la_asked++;
2301 		send_ns = 1;
2302 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2303 
2304 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2305 	}
2306 	LLE_WUNLOCK(lle);
2307 	if (send_ns != 0)
2308 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2309 
2310 	return (EWOULDBLOCK);
2311 }
2312 
2313 
2314 int
2315 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2316     struct sockaddr_in6 *dst)
2317 {
2318 	struct mbuf *m, *m_head;
2319 	struct ifnet *outifp;
2320 	int error = 0;
2321 
2322 	m_head = chain;
2323 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2324 		outifp = origifp;
2325 	else
2326 		outifp = ifp;
2327 
2328 	while (m_head) {
2329 		m = m_head;
2330 		m_head = m_head->m_nextpkt;
2331 		error = nd6_output_ifp(ifp, origifp, m, dst, NULL);
2332 	}
2333 
2334 	/*
2335 	 * XXX
2336 	 * note that intermediate errors are blindly ignored
2337 	 */
2338 	return (error);
2339 }
2340 
2341 static int
2342 nd6_need_cache(struct ifnet *ifp)
2343 {
2344 	/*
2345 	 * XXX: we currently do not make neighbor cache on any interface
2346 	 * other than ARCnet, Ethernet, FDDI and GIF.
2347 	 *
2348 	 * RFC2893 says:
2349 	 * - unidirectional tunnels needs no ND
2350 	 */
2351 	switch (ifp->if_type) {
2352 	case IFT_ARCNET:
2353 	case IFT_ETHER:
2354 	case IFT_FDDI:
2355 	case IFT_IEEE1394:
2356 	case IFT_L2VLAN:
2357 	case IFT_IEEE80211:
2358 	case IFT_INFINIBAND:
2359 	case IFT_BRIDGE:
2360 	case IFT_PROPVIRTUAL:
2361 		return (1);
2362 	default:
2363 		return (0);
2364 	}
2365 }
2366 
2367 /*
2368  * Add pernament ND6 link-layer record for given
2369  * interface address.
2370  *
2371  * Very similar to IPv4 arp_ifinit(), but:
2372  * 1) IPv6 DAD is performed in different place
2373  * 2) It is called by IPv6 protocol stack in contrast to
2374  * arp_ifinit() which is typically called in SIOCSIFADDR
2375  * driver ioctl handler.
2376  *
2377  */
2378 int
2379 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2380 {
2381 	struct ifnet *ifp;
2382 	struct llentry *ln, *ln_tmp;
2383 	struct sockaddr *dst;
2384 
2385 	ifp = ia->ia_ifa.ifa_ifp;
2386 	if (nd6_need_cache(ifp) == 0)
2387 		return (0);
2388 
2389 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2390 	dst = (struct sockaddr *)&ia->ia_addr;
2391 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2392 	if (ln == NULL)
2393 		return (ENOBUFS);
2394 
2395 	IF_AFDATA_WLOCK(ifp);
2396 	LLE_WLOCK(ln);
2397 	/* Unlink any entry if exists */
2398 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2399 	if (ln_tmp != NULL)
2400 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2401 	lltable_link_entry(LLTABLE6(ifp), ln);
2402 	IF_AFDATA_WUNLOCK(ifp);
2403 
2404 	if (ln_tmp != NULL)
2405 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2406 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2407 
2408 	LLE_WUNLOCK(ln);
2409 	if (ln_tmp != NULL)
2410 		llentry_free(ln_tmp);
2411 
2412 	return (0);
2413 }
2414 
2415 /*
2416  * Removes either all lle entries for given @ia, or lle
2417  * corresponding to @ia address.
2418  */
2419 void
2420 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2421 {
2422 	struct sockaddr_in6 mask, addr;
2423 	struct sockaddr *saddr, *smask;
2424 	struct ifnet *ifp;
2425 
2426 	ifp = ia->ia_ifa.ifa_ifp;
2427 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2428 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2429 	saddr = (struct sockaddr *)&addr;
2430 	smask = (struct sockaddr *)&mask;
2431 
2432 	if (all != 0)
2433 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2434 	else
2435 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2436 }
2437 
2438 static void
2439 clear_llinfo_pqueue(struct llentry *ln)
2440 {
2441 	struct mbuf *m_hold, *m_hold_next;
2442 
2443 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2444 		m_hold_next = m_hold->m_nextpkt;
2445 		m_freem(m_hold);
2446 	}
2447 
2448 	ln->la_hold = NULL;
2449 	return;
2450 }
2451 
2452 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2453 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2454 #ifdef SYSCTL_DECL
2455 SYSCTL_DECL(_net_inet6_icmp6);
2456 #endif
2457 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2458 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2459 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2460 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2461 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2462 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2463 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2464 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2465 
2466 static int
2467 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2468 {
2469 	struct in6_defrouter d;
2470 	struct nd_defrouter *dr;
2471 	int error;
2472 
2473 	if (req->newptr)
2474 		return (EPERM);
2475 
2476 	bzero(&d, sizeof(d));
2477 	d.rtaddr.sin6_family = AF_INET6;
2478 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2479 
2480 	/*
2481 	 * XXX locking
2482 	 */
2483 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2484 		d.rtaddr.sin6_addr = dr->rtaddr;
2485 		error = sa6_recoverscope(&d.rtaddr);
2486 		if (error != 0)
2487 			return (error);
2488 		d.flags = dr->flags;
2489 		d.rtlifetime = dr->rtlifetime;
2490 		d.expire = dr->expire + (time_second - time_uptime);
2491 		d.if_index = dr->ifp->if_index;
2492 		error = SYSCTL_OUT(req, &d, sizeof(d));
2493 		if (error != 0)
2494 			return (error);
2495 	}
2496 	return (0);
2497 }
2498 
2499 static int
2500 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2501 {
2502 	struct in6_prefix p;
2503 	struct sockaddr_in6 s6;
2504 	struct nd_prefix *pr;
2505 	struct nd_pfxrouter *pfr;
2506 	time_t maxexpire;
2507 	int error;
2508 	char ip6buf[INET6_ADDRSTRLEN];
2509 
2510 	if (req->newptr)
2511 		return (EPERM);
2512 
2513 	bzero(&p, sizeof(p));
2514 	p.origin = PR_ORIG_RA;
2515 	bzero(&s6, sizeof(s6));
2516 	s6.sin6_family = AF_INET6;
2517 	s6.sin6_len = sizeof(s6);
2518 
2519 	/*
2520 	 * XXX locking
2521 	 */
2522 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2523 		p.prefix = pr->ndpr_prefix;
2524 		if (sa6_recoverscope(&p.prefix)) {
2525 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2526 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2527 			/* XXX: press on... */
2528 		}
2529 		p.raflags = pr->ndpr_raf;
2530 		p.prefixlen = pr->ndpr_plen;
2531 		p.vltime = pr->ndpr_vltime;
2532 		p.pltime = pr->ndpr_pltime;
2533 		p.if_index = pr->ndpr_ifp->if_index;
2534 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2535 			p.expire = 0;
2536 		else {
2537 			/* XXX: we assume time_t is signed. */
2538 			maxexpire = (-1) &
2539 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2540 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2541 				p.expire = pr->ndpr_lastupdate +
2542 				    pr->ndpr_vltime +
2543 				    (time_second - time_uptime);
2544 			else
2545 				p.expire = maxexpire;
2546 		}
2547 		p.refcnt = pr->ndpr_refcnt;
2548 		p.flags = pr->ndpr_stateflags;
2549 		p.advrtrs = 0;
2550 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2551 			p.advrtrs++;
2552 		error = SYSCTL_OUT(req, &p, sizeof(p));
2553 		if (error != 0)
2554 			return (error);
2555 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2556 			s6.sin6_addr = pfr->router->rtaddr;
2557 			if (sa6_recoverscope(&s6))
2558 				log(LOG_ERR,
2559 				    "scope error in prefix list (%s)\n",
2560 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2561 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2562 			if (error != 0)
2563 				return (error);
2564 		}
2565 	}
2566 	return (0);
2567 }
2568