1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/nhop.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <net/if_llatbl.h> 73 #include <netinet/if_ether.h> 74 #include <netinet6/in6_fib.h> 75 #include <netinet6/in6_var.h> 76 #include <netinet/ip6.h> 77 #include <netinet6/ip6_var.h> 78 #include <netinet6/scope6_var.h> 79 #include <netinet6/nd6.h> 80 #include <netinet6/in6_ifattach.h> 81 #include <netinet/icmp6.h> 82 #include <netinet6/send.h> 83 84 #include <sys/limits.h> 85 86 #include <security/mac/mac_framework.h> 87 88 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 89 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 90 91 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 92 93 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 94 95 /* timer values */ 96 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 97 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 98 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 99 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 100 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 101 * local traffic */ 102 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 103 * collection timer */ 104 105 /* preventing too many loops in ND option parsing */ 106 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 107 108 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 109 * layer hints */ 110 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 111 * ND entries */ 112 #define V_nd6_maxndopt VNET(nd6_maxndopt) 113 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 114 115 #ifdef ND6_DEBUG 116 VNET_DEFINE(int, nd6_debug) = 1; 117 #else 118 VNET_DEFINE(int, nd6_debug) = 0; 119 #endif 120 121 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 122 123 VNET_DEFINE(struct nd_prhead, nd_prefix); 124 VNET_DEFINE(struct rwlock, nd6_lock); 125 VNET_DEFINE(uint64_t, nd6_list_genid); 126 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 127 128 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 129 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 130 131 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 132 133 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 134 struct ifnet *); 135 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 136 static void nd6_slowtimo(void *); 137 static int regen_tmpaddr(struct in6_ifaddr *); 138 static void nd6_free(struct llentry **, int); 139 static void nd6_free_redirect(const struct llentry *); 140 static void nd6_llinfo_timer(void *); 141 static void nd6_llinfo_settimer_locked(struct llentry *, long); 142 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 if (ifp->if_afdata[AF_INET6] == NULL) 212 return; 213 214 lltable_update_ifaddr(LLTABLE6(ifp)); 215 } 216 217 void 218 nd6_init(void) 219 { 220 221 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 222 rw_init(&V_nd6_lock, "nd6 list"); 223 224 LIST_INIT(&V_nd_prefix); 225 nd6_defrouter_init(); 226 227 /* Start timers. */ 228 callout_init(&V_nd6_slowtimo_ch, 1); 229 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 230 nd6_slowtimo, curvnet); 231 232 callout_init(&V_nd6_timer_ch, 1); 233 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 234 235 nd6_dad_init(); 236 if (IS_DEFAULT_VNET(curvnet)) { 237 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 238 NULL, EVENTHANDLER_PRI_ANY); 239 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 240 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 241 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 242 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 243 } 244 } 245 246 #ifdef VIMAGE 247 void 248 nd6_destroy(void) 249 { 250 251 callout_drain(&V_nd6_slowtimo_ch); 252 callout_drain(&V_nd6_timer_ch); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 255 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 256 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 257 } 258 rw_destroy(&V_nd6_lock); 259 mtx_destroy(&V_nd6_onlink_mtx); 260 } 261 #endif 262 263 struct nd_ifinfo * 264 nd6_ifattach(struct ifnet *ifp) 265 { 266 struct nd_ifinfo *nd; 267 268 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 269 nd->initialized = 1; 270 271 nd->chlim = IPV6_DEFHLIM; 272 nd->basereachable = REACHABLE_TIME; 273 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 274 nd->retrans = RETRANS_TIMER; 275 276 nd->flags = ND6_IFF_PERFORMNUD; 277 278 /* Set IPv6 disabled on all interfaces but loopback by default. */ 279 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 280 nd->flags |= ND6_IFF_IFDISABLED; 281 282 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 283 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 284 * default regardless of the V_ip6_auto_linklocal configuration to 285 * give a reasonable default behavior. 286 */ 287 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 288 (ifp->if_flags & IFF_LOOPBACK)) 289 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 290 /* 291 * A loopback interface does not need to accept RTADV. 292 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 293 * default regardless of the V_ip6_accept_rtadv configuration to 294 * prevent the interface from accepting RA messages arrived 295 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 296 */ 297 if (V_ip6_accept_rtadv && 298 !(ifp->if_flags & IFF_LOOPBACK) && 299 (ifp->if_type != IFT_BRIDGE)) { 300 nd->flags |= ND6_IFF_ACCEPT_RTADV; 301 /* If we globally accept rtadv, assume IPv6 on. */ 302 nd->flags &= ~ND6_IFF_IFDISABLED; 303 } 304 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 305 nd->flags |= ND6_IFF_NO_RADR; 306 307 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 308 nd6_setmtu0(ifp, nd); 309 310 return nd; 311 } 312 313 void 314 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 315 { 316 struct epoch_tracker et; 317 struct ifaddr *ifa, *next; 318 319 NET_EPOCH_ENTER(et); 320 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 321 if (ifa->ifa_addr->sa_family != AF_INET6) 322 continue; 323 324 /* stop DAD processing */ 325 nd6_dad_stop(ifa); 326 } 327 NET_EPOCH_EXIT(et); 328 329 free(nd, M_IP6NDP); 330 } 331 332 /* 333 * Reset ND level link MTU. This function is called when the physical MTU 334 * changes, which means we might have to adjust the ND level MTU. 335 */ 336 void 337 nd6_setmtu(struct ifnet *ifp) 338 { 339 if (ifp->if_afdata[AF_INET6] == NULL) 340 return; 341 342 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 343 } 344 345 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 346 void 347 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 348 { 349 u_int32_t omaxmtu; 350 351 omaxmtu = ndi->maxmtu; 352 ndi->maxmtu = ifp->if_mtu; 353 354 /* 355 * Decreasing the interface MTU under IPV6 minimum MTU may cause 356 * undesirable situation. We thus notify the operator of the change 357 * explicitly. The check for omaxmtu is necessary to restrict the 358 * log to the case of changing the MTU, not initializing it. 359 */ 360 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 361 log(LOG_NOTICE, "nd6_setmtu0: " 362 "new link MTU on %s (%lu) is too small for IPv6\n", 363 if_name(ifp), (unsigned long)ndi->maxmtu); 364 } 365 366 if (ndi->maxmtu > V_in6_maxmtu) 367 in6_setmaxmtu(); /* check all interfaces just in case */ 368 369 } 370 371 void 372 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 373 { 374 375 bzero(ndopts, sizeof(*ndopts)); 376 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 377 ndopts->nd_opts_last 378 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 379 380 if (icmp6len == 0) { 381 ndopts->nd_opts_done = 1; 382 ndopts->nd_opts_search = NULL; 383 } 384 } 385 386 /* 387 * Take one ND option. 388 */ 389 struct nd_opt_hdr * 390 nd6_option(union nd_opts *ndopts) 391 { 392 struct nd_opt_hdr *nd_opt; 393 int olen; 394 395 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 396 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 397 __func__)); 398 if (ndopts->nd_opts_search == NULL) 399 return NULL; 400 if (ndopts->nd_opts_done) 401 return NULL; 402 403 nd_opt = ndopts->nd_opts_search; 404 405 /* make sure nd_opt_len is inside the buffer */ 406 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 407 bzero(ndopts, sizeof(*ndopts)); 408 return NULL; 409 } 410 411 olen = nd_opt->nd_opt_len << 3; 412 if (olen == 0) { 413 /* 414 * Message validation requires that all included 415 * options have a length that is greater than zero. 416 */ 417 bzero(ndopts, sizeof(*ndopts)); 418 return NULL; 419 } 420 421 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 422 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 423 /* option overruns the end of buffer, invalid */ 424 bzero(ndopts, sizeof(*ndopts)); 425 return NULL; 426 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 427 /* reached the end of options chain */ 428 ndopts->nd_opts_done = 1; 429 ndopts->nd_opts_search = NULL; 430 } 431 return nd_opt; 432 } 433 434 /* 435 * Parse multiple ND options. 436 * This function is much easier to use, for ND routines that do not need 437 * multiple options of the same type. 438 */ 439 int 440 nd6_options(union nd_opts *ndopts) 441 { 442 struct nd_opt_hdr *nd_opt; 443 int i = 0; 444 445 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 446 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 447 __func__)); 448 if (ndopts->nd_opts_search == NULL) 449 return 0; 450 451 while (1) { 452 nd_opt = nd6_option(ndopts); 453 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 454 /* 455 * Message validation requires that all included 456 * options have a length that is greater than zero. 457 */ 458 ICMP6STAT_INC(icp6s_nd_badopt); 459 bzero(ndopts, sizeof(*ndopts)); 460 return -1; 461 } 462 463 if (nd_opt == NULL) 464 goto skip1; 465 466 switch (nd_opt->nd_opt_type) { 467 case ND_OPT_SOURCE_LINKADDR: 468 case ND_OPT_TARGET_LINKADDR: 469 case ND_OPT_MTU: 470 case ND_OPT_REDIRECTED_HEADER: 471 case ND_OPT_NONCE: 472 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 473 nd6log((LOG_INFO, 474 "duplicated ND6 option found (type=%d)\n", 475 nd_opt->nd_opt_type)); 476 /* XXX bark? */ 477 } else { 478 ndopts->nd_opt_array[nd_opt->nd_opt_type] 479 = nd_opt; 480 } 481 break; 482 case ND_OPT_PREFIX_INFORMATION: 483 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 484 ndopts->nd_opt_array[nd_opt->nd_opt_type] 485 = nd_opt; 486 } 487 ndopts->nd_opts_pi_end = 488 (struct nd_opt_prefix_info *)nd_opt; 489 break; 490 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 491 case ND_OPT_RDNSS: /* RFC 6106 */ 492 case ND_OPT_DNSSL: /* RFC 6106 */ 493 /* 494 * Silently ignore options we know and do not care about 495 * in the kernel. 496 */ 497 break; 498 default: 499 /* 500 * Unknown options must be silently ignored, 501 * to accommodate future extension to the protocol. 502 */ 503 nd6log((LOG_DEBUG, 504 "nd6_options: unsupported option %d - " 505 "option ignored\n", nd_opt->nd_opt_type)); 506 } 507 508 skip1: 509 i++; 510 if (i > V_nd6_maxndopt) { 511 ICMP6STAT_INC(icp6s_nd_toomanyopt); 512 nd6log((LOG_INFO, "too many loop in nd opt\n")); 513 break; 514 } 515 516 if (ndopts->nd_opts_done) 517 break; 518 } 519 520 return 0; 521 } 522 523 /* 524 * ND6 timer routine to handle ND6 entries 525 */ 526 static void 527 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 528 { 529 int canceled; 530 531 LLE_WLOCK_ASSERT(ln); 532 533 /* Do not schedule timers for child LLEs. */ 534 if (ln->la_flags & LLE_CHILD) 535 return; 536 537 if (tick < 0) { 538 ln->la_expire = 0; 539 ln->ln_ntick = 0; 540 canceled = callout_stop(&ln->lle_timer); 541 } else { 542 ln->la_expire = time_uptime + tick / hz; 543 LLE_ADDREF(ln); 544 if (tick > INT_MAX) { 545 ln->ln_ntick = tick - INT_MAX; 546 canceled = callout_reset(&ln->lle_timer, INT_MAX, 547 nd6_llinfo_timer, ln); 548 } else { 549 ln->ln_ntick = 0; 550 canceled = callout_reset(&ln->lle_timer, tick, 551 nd6_llinfo_timer, ln); 552 } 553 } 554 if (canceled > 0) 555 LLE_REMREF(ln); 556 } 557 558 /* 559 * Gets source address of the first packet in hold queue 560 * and stores it in @src. 561 * Returns pointer to @src (if hold queue is not empty) or NULL. 562 * 563 * Set noinline to be dtrace-friendly 564 */ 565 static __noinline struct in6_addr * 566 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 567 { 568 struct ip6_hdr hdr; 569 struct mbuf *m; 570 571 if (ln->la_hold == NULL) 572 return (NULL); 573 574 /* 575 * assume every packet in la_hold has the same IP header 576 */ 577 m = ln->la_hold; 578 if (sizeof(hdr) > m->m_len) 579 return (NULL); 580 581 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 582 *src = hdr.ip6_src; 583 584 return (src); 585 } 586 587 /* 588 * Checks if we need to switch from STALE state. 589 * 590 * RFC 4861 requires switching from STALE to DELAY state 591 * on first packet matching entry, waiting V_nd6_delay and 592 * transition to PROBE state (if upper layer confirmation was 593 * not received). 594 * 595 * This code performs a bit differently: 596 * On packet hit we don't change state (but desired state 597 * can be guessed by control plane). However, after V_nd6_delay 598 * seconds code will transition to PROBE state (so DELAY state 599 * is kinda skipped in most situations). 600 * 601 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 602 * we perform the following upon entering STALE state: 603 * 604 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 605 * if packet was transmitted at the start of given interval, we 606 * would be able to switch to PROBE state in V_nd6_delay seconds 607 * as user expects. 608 * 609 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 610 * lle in STALE state (remaining timer value stored in lle_remtime). 611 * 612 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 613 * seconds ago. 614 * 615 * Returns non-zero value if the entry is still STALE (storing 616 * the next timer interval in @pdelay). 617 * 618 * Returns zero value if original timer expired or we need to switch to 619 * PROBE (store that in @do_switch variable). 620 */ 621 static int 622 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 623 { 624 int nd_delay, nd_gctimer; 625 time_t lle_hittime; 626 long delay; 627 628 *do_switch = 0; 629 nd_gctimer = V_nd6_gctimer; 630 nd_delay = V_nd6_delay; 631 632 lle_hittime = llentry_get_hittime(lle); 633 634 if (lle_hittime == 0) { 635 /* 636 * Datapath feedback has been requested upon entering 637 * STALE state. No packets has been passed using this lle. 638 * Ask for the timer reschedule and keep STALE state. 639 */ 640 delay = (long)(MIN(nd_gctimer, nd_delay)); 641 delay *= hz; 642 if (lle->lle_remtime > delay) 643 lle->lle_remtime -= delay; 644 else { 645 delay = lle->lle_remtime; 646 lle->lle_remtime = 0; 647 } 648 649 if (delay == 0) { 650 /* 651 * The original ng6_gctime timeout ended, 652 * no more rescheduling. 653 */ 654 return (0); 655 } 656 657 *pdelay = delay; 658 return (1); 659 } 660 661 /* 662 * Packet received. Verify timestamp 663 */ 664 delay = (long)(time_uptime - lle_hittime); 665 if (delay < nd_delay) { 666 /* 667 * V_nd6_delay still not passed since the first 668 * hit in STALE state. 669 * Reschedule timer and return. 670 */ 671 *pdelay = (long)(nd_delay - delay) * hz; 672 return (1); 673 } 674 675 /* Request switching to probe */ 676 *do_switch = 1; 677 return (0); 678 } 679 680 /* 681 * Switch @lle state to new state optionally arming timers. 682 * 683 * Set noinline to be dtrace-friendly 684 */ 685 __noinline void 686 nd6_llinfo_setstate(struct llentry *lle, int newstate) 687 { 688 struct ifnet *ifp; 689 int nd_gctimer, nd_delay; 690 long delay, remtime; 691 692 delay = 0; 693 remtime = 0; 694 695 switch (newstate) { 696 case ND6_LLINFO_INCOMPLETE: 697 ifp = lle->lle_tbl->llt_ifp; 698 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 699 break; 700 case ND6_LLINFO_REACHABLE: 701 if (!ND6_LLINFO_PERMANENT(lle)) { 702 ifp = lle->lle_tbl->llt_ifp; 703 delay = (long)ND_IFINFO(ifp)->reachable * hz; 704 } 705 break; 706 case ND6_LLINFO_STALE: 707 708 llentry_request_feedback(lle); 709 nd_delay = V_nd6_delay; 710 nd_gctimer = V_nd6_gctimer; 711 712 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 713 remtime = (long)nd_gctimer * hz - delay; 714 break; 715 case ND6_LLINFO_DELAY: 716 lle->la_asked = 0; 717 delay = (long)V_nd6_delay * hz; 718 break; 719 } 720 721 if (delay > 0) 722 nd6_llinfo_settimer_locked(lle, delay); 723 724 lle->lle_remtime = remtime; 725 lle->ln_state = newstate; 726 } 727 728 /* 729 * Timer-dependent part of nd state machine. 730 * 731 * Set noinline to be dtrace-friendly 732 */ 733 static __noinline void 734 nd6_llinfo_timer(void *arg) 735 { 736 struct epoch_tracker et; 737 struct llentry *ln; 738 struct in6_addr *dst, *pdst, *psrc, src; 739 struct ifnet *ifp; 740 struct nd_ifinfo *ndi; 741 int do_switch, send_ns; 742 long delay; 743 744 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 745 ln = (struct llentry *)arg; 746 ifp = lltable_get_ifp(ln->lle_tbl); 747 CURVNET_SET(ifp->if_vnet); 748 749 ND6_RLOCK(); 750 LLE_WLOCK(ln); 751 if (callout_pending(&ln->lle_timer)) { 752 /* 753 * Here we are a bit odd here in the treatment of 754 * active/pending. If the pending bit is set, it got 755 * rescheduled before I ran. The active 756 * bit we ignore, since if it was stopped 757 * in ll_tablefree() and was currently running 758 * it would have return 0 so the code would 759 * not have deleted it since the callout could 760 * not be stopped so we want to go through 761 * with the delete here now. If the callout 762 * was restarted, the pending bit will be back on and 763 * we just want to bail since the callout_reset would 764 * return 1 and our reference would have been removed 765 * by nd6_llinfo_settimer_locked above since canceled 766 * would have been 1. 767 */ 768 LLE_WUNLOCK(ln); 769 ND6_RUNLOCK(); 770 CURVNET_RESTORE(); 771 return; 772 } 773 NET_EPOCH_ENTER(et); 774 ndi = ND_IFINFO(ifp); 775 send_ns = 0; 776 dst = &ln->r_l3addr.addr6; 777 pdst = dst; 778 779 if (ln->ln_ntick > 0) { 780 if (ln->ln_ntick > INT_MAX) { 781 ln->ln_ntick -= INT_MAX; 782 nd6_llinfo_settimer_locked(ln, INT_MAX); 783 } else { 784 ln->ln_ntick = 0; 785 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 786 } 787 goto done; 788 } 789 790 if (ln->la_flags & LLE_STATIC) { 791 goto done; 792 } 793 794 if (ln->la_flags & LLE_DELETED) { 795 nd6_free(&ln, 0); 796 goto done; 797 } 798 799 switch (ln->ln_state) { 800 case ND6_LLINFO_INCOMPLETE: 801 if (ln->la_asked < V_nd6_mmaxtries) { 802 ln->la_asked++; 803 send_ns = 1; 804 /* Send NS to multicast address */ 805 pdst = NULL; 806 } else { 807 struct mbuf *m; 808 809 ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); 810 811 m = ln->la_hold; 812 if (m != NULL) { 813 /* 814 * assuming every packet in la_hold has the 815 * same IP header. Send error after unlock. 816 */ 817 ln->la_hold = m->m_nextpkt; 818 m->m_nextpkt = NULL; 819 ln->la_numheld--; 820 } 821 nd6_free(&ln, 0); 822 if (m != NULL) { 823 struct mbuf *n = m; 824 825 /* 826 * if there are any ummapped mbufs, we 827 * must free them, rather than using 828 * them for an ICMP, as they cannot be 829 * checksummed. 830 */ 831 while ((n = n->m_next) != NULL) { 832 if (n->m_flags & M_EXTPG) 833 break; 834 } 835 if (n != NULL) { 836 m_freem(m); 837 m = NULL; 838 } else { 839 icmp6_error2(m, ICMP6_DST_UNREACH, 840 ICMP6_DST_UNREACH_ADDR, 0, ifp); 841 } 842 } 843 } 844 break; 845 case ND6_LLINFO_REACHABLE: 846 if (!ND6_LLINFO_PERMANENT(ln)) 847 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 848 break; 849 850 case ND6_LLINFO_STALE: 851 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 852 /* 853 * No packet has used this entry and GC timeout 854 * has not been passed. Reschedule timer and 855 * return. 856 */ 857 nd6_llinfo_settimer_locked(ln, delay); 858 break; 859 } 860 861 if (do_switch == 0) { 862 /* 863 * GC timer has ended and entry hasn't been used. 864 * Run Garbage collector (RFC 4861, 5.3) 865 */ 866 if (!ND6_LLINFO_PERMANENT(ln)) 867 nd6_free(&ln, 1); 868 break; 869 } 870 871 /* Entry has been used AND delay timer has ended. */ 872 873 /* FALLTHROUGH */ 874 875 case ND6_LLINFO_DELAY: 876 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 877 /* We need NUD */ 878 ln->la_asked = 1; 879 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 880 send_ns = 1; 881 } else 882 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 883 break; 884 case ND6_LLINFO_PROBE: 885 if (ln->la_asked < V_nd6_umaxtries) { 886 ln->la_asked++; 887 send_ns = 1; 888 } else { 889 nd6_free(&ln, 0); 890 } 891 break; 892 default: 893 panic("%s: paths in a dark night can be confusing: %d", 894 __func__, ln->ln_state); 895 } 896 done: 897 if (ln != NULL) 898 ND6_RUNLOCK(); 899 if (send_ns != 0) { 900 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 901 psrc = nd6_llinfo_get_holdsrc(ln, &src); 902 LLE_FREE_LOCKED(ln); 903 ln = NULL; 904 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 905 } 906 907 if (ln != NULL) 908 LLE_FREE_LOCKED(ln); 909 NET_EPOCH_EXIT(et); 910 CURVNET_RESTORE(); 911 } 912 913 /* 914 * ND6 timer routine to expire default route list and prefix list 915 */ 916 void 917 nd6_timer(void *arg) 918 { 919 CURVNET_SET((struct vnet *) arg); 920 struct epoch_tracker et; 921 struct nd_prhead prl; 922 struct nd_prefix *pr, *npr; 923 struct ifnet *ifp; 924 struct in6_ifaddr *ia6, *nia6; 925 uint64_t genid; 926 927 LIST_INIT(&prl); 928 929 NET_EPOCH_ENTER(et); 930 nd6_defrouter_timer(); 931 932 /* 933 * expire interface addresses. 934 * in the past the loop was inside prefix expiry processing. 935 * However, from a stricter speci-confrmance standpoint, we should 936 * rather separate address lifetimes and prefix lifetimes. 937 * 938 * XXXRW: in6_ifaddrhead locking. 939 */ 940 addrloop: 941 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 942 /* check address lifetime */ 943 if (IFA6_IS_INVALID(ia6)) { 944 int regen = 0; 945 946 /* 947 * If the expiring address is temporary, try 948 * regenerating a new one. This would be useful when 949 * we suspended a laptop PC, then turned it on after a 950 * period that could invalidate all temporary 951 * addresses. Although we may have to restart the 952 * loop (see below), it must be after purging the 953 * address. Otherwise, we'd see an infinite loop of 954 * regeneration. 955 */ 956 if (V_ip6_use_tempaddr && 957 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 958 if (regen_tmpaddr(ia6) == 0) 959 regen = 1; 960 } 961 962 in6_purgeaddr(&ia6->ia_ifa); 963 964 if (regen) 965 goto addrloop; /* XXX: see below */ 966 } else if (IFA6_IS_DEPRECATED(ia6)) { 967 int oldflags = ia6->ia6_flags; 968 969 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 970 971 /* 972 * If a temporary address has just become deprecated, 973 * regenerate a new one if possible. 974 */ 975 if (V_ip6_use_tempaddr && 976 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 977 (oldflags & IN6_IFF_DEPRECATED) == 0) { 978 if (regen_tmpaddr(ia6) == 0) { 979 /* 980 * A new temporary address is 981 * generated. 982 * XXX: this means the address chain 983 * has changed while we are still in 984 * the loop. Although the change 985 * would not cause disaster (because 986 * it's not a deletion, but an 987 * addition,) we'd rather restart the 988 * loop just for safety. Or does this 989 * significantly reduce performance?? 990 */ 991 goto addrloop; 992 } 993 } 994 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 995 /* 996 * Schedule DAD for a tentative address. This happens 997 * if the interface was down or not running 998 * when the address was configured. 999 */ 1000 int delay; 1001 1002 delay = arc4random() % 1003 (MAX_RTR_SOLICITATION_DELAY * hz); 1004 nd6_dad_start((struct ifaddr *)ia6, delay); 1005 } else { 1006 /* 1007 * Check status of the interface. If it is down, 1008 * mark the address as tentative for future DAD. 1009 */ 1010 ifp = ia6->ia_ifp; 1011 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1012 ((ifp->if_flags & IFF_UP) == 0 || 1013 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1014 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1015 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1016 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1017 } 1018 1019 /* 1020 * A new RA might have made a deprecated address 1021 * preferred. 1022 */ 1023 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1024 } 1025 } 1026 NET_EPOCH_EXIT(et); 1027 1028 ND6_WLOCK(); 1029 restart: 1030 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1031 /* 1032 * Expire prefixes. Since the pltime is only used for 1033 * autoconfigured addresses, pltime processing for prefixes is 1034 * not necessary. 1035 * 1036 * Only unlink after all derived addresses have expired. This 1037 * may not occur until two hours after the prefix has expired 1038 * per RFC 4862. If the prefix expires before its derived 1039 * addresses, mark it off-link. This will be done automatically 1040 * after unlinking if no address references remain. 1041 */ 1042 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1043 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1044 continue; 1045 1046 if (pr->ndpr_addrcnt == 0) { 1047 nd6_prefix_unlink(pr, &prl); 1048 continue; 1049 } 1050 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1051 genid = V_nd6_list_genid; 1052 nd6_prefix_ref(pr); 1053 ND6_WUNLOCK(); 1054 ND6_ONLINK_LOCK(); 1055 (void)nd6_prefix_offlink(pr); 1056 ND6_ONLINK_UNLOCK(); 1057 ND6_WLOCK(); 1058 nd6_prefix_rele(pr); 1059 if (genid != V_nd6_list_genid) 1060 goto restart; 1061 } 1062 } 1063 ND6_WUNLOCK(); 1064 1065 while ((pr = LIST_FIRST(&prl)) != NULL) { 1066 LIST_REMOVE(pr, ndpr_entry); 1067 nd6_prefix_del(pr); 1068 } 1069 1070 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1071 nd6_timer, curvnet); 1072 1073 CURVNET_RESTORE(); 1074 } 1075 1076 /* 1077 * ia6 - deprecated/invalidated temporary address 1078 */ 1079 static int 1080 regen_tmpaddr(struct in6_ifaddr *ia6) 1081 { 1082 struct ifaddr *ifa; 1083 struct ifnet *ifp; 1084 struct in6_ifaddr *public_ifa6 = NULL; 1085 1086 NET_EPOCH_ASSERT(); 1087 1088 ifp = ia6->ia_ifa.ifa_ifp; 1089 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1090 struct in6_ifaddr *it6; 1091 1092 if (ifa->ifa_addr->sa_family != AF_INET6) 1093 continue; 1094 1095 it6 = (struct in6_ifaddr *)ifa; 1096 1097 /* ignore no autoconf addresses. */ 1098 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1099 continue; 1100 1101 /* ignore autoconf addresses with different prefixes. */ 1102 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1103 continue; 1104 1105 /* 1106 * Now we are looking at an autoconf address with the same 1107 * prefix as ours. If the address is temporary and is still 1108 * preferred, do not create another one. It would be rare, but 1109 * could happen, for example, when we resume a laptop PC after 1110 * a long period. 1111 */ 1112 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1113 !IFA6_IS_DEPRECATED(it6)) { 1114 public_ifa6 = NULL; 1115 break; 1116 } 1117 1118 /* 1119 * This is a public autoconf address that has the same prefix 1120 * as ours. If it is preferred, keep it. We can't break the 1121 * loop here, because there may be a still-preferred temporary 1122 * address with the prefix. 1123 */ 1124 if (!IFA6_IS_DEPRECATED(it6)) 1125 public_ifa6 = it6; 1126 } 1127 if (public_ifa6 != NULL) 1128 ifa_ref(&public_ifa6->ia_ifa); 1129 1130 if (public_ifa6 != NULL) { 1131 int e; 1132 1133 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1134 ifa_free(&public_ifa6->ia_ifa); 1135 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1136 " tmp addr,errno=%d\n", e); 1137 return (-1); 1138 } 1139 ifa_free(&public_ifa6->ia_ifa); 1140 return (0); 1141 } 1142 1143 return (-1); 1144 } 1145 1146 /* 1147 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1148 * cache entries are freed in in6_domifdetach(). 1149 */ 1150 void 1151 nd6_purge(struct ifnet *ifp) 1152 { 1153 struct nd_prhead prl; 1154 struct nd_prefix *pr, *npr; 1155 1156 LIST_INIT(&prl); 1157 1158 /* Purge default router list entries toward ifp. */ 1159 nd6_defrouter_purge(ifp); 1160 1161 ND6_WLOCK(); 1162 /* 1163 * Remove prefixes on ifp. We should have already removed addresses on 1164 * this interface, so no addresses should be referencing these prefixes. 1165 */ 1166 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1167 if (pr->ndpr_ifp == ifp) 1168 nd6_prefix_unlink(pr, &prl); 1169 } 1170 ND6_WUNLOCK(); 1171 1172 /* Delete the unlinked prefix objects. */ 1173 while ((pr = LIST_FIRST(&prl)) != NULL) { 1174 LIST_REMOVE(pr, ndpr_entry); 1175 nd6_prefix_del(pr); 1176 } 1177 1178 /* cancel default outgoing interface setting */ 1179 if (V_nd6_defifindex == ifp->if_index) 1180 nd6_setdefaultiface(0); 1181 1182 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1183 /* Refresh default router list. */ 1184 defrouter_select_fib(ifp->if_fib); 1185 } 1186 } 1187 1188 /* 1189 * the caller acquires and releases the lock on the lltbls 1190 * Returns the llentry locked 1191 */ 1192 struct llentry * 1193 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1194 { 1195 struct sockaddr_in6 sin6; 1196 struct llentry *ln; 1197 1198 bzero(&sin6, sizeof(sin6)); 1199 sin6.sin6_len = sizeof(struct sockaddr_in6); 1200 sin6.sin6_family = AF_INET6; 1201 sin6.sin6_addr = *addr6; 1202 1203 IF_AFDATA_LOCK_ASSERT(ifp); 1204 1205 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1206 1207 return (ln); 1208 } 1209 1210 static struct llentry * 1211 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1212 { 1213 struct sockaddr_in6 sin6; 1214 struct llentry *ln; 1215 1216 bzero(&sin6, sizeof(sin6)); 1217 sin6.sin6_len = sizeof(struct sockaddr_in6); 1218 sin6.sin6_family = AF_INET6; 1219 sin6.sin6_addr = *addr6; 1220 1221 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1222 if (ln != NULL) 1223 ln->ln_state = ND6_LLINFO_NOSTATE; 1224 1225 return (ln); 1226 } 1227 1228 /* 1229 * Test whether a given IPv6 address can be a neighbor. 1230 */ 1231 static bool 1232 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1233 { 1234 1235 /* 1236 * A link-local address is always a neighbor. 1237 * XXX: a link does not necessarily specify a single interface. 1238 */ 1239 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1240 struct sockaddr_in6 sin6_copy; 1241 u_int32_t zone; 1242 1243 /* 1244 * We need sin6_copy since sa6_recoverscope() may modify the 1245 * content (XXX). 1246 */ 1247 sin6_copy = *addr; 1248 if (sa6_recoverscope(&sin6_copy)) 1249 return (0); /* XXX: should be impossible */ 1250 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1251 return (0); 1252 if (sin6_copy.sin6_scope_id == zone) 1253 return (1); 1254 else 1255 return (0); 1256 } 1257 /* Checking global unicast */ 1258 1259 /* If an address is directly reachable, it is a neigbor */ 1260 struct nhop_object *nh; 1261 nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); 1262 if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) 1263 return (true); 1264 1265 /* 1266 * Check prefixes with desired on-link state, as some may be not 1267 * installed in the routing table. 1268 */ 1269 bool matched = false; 1270 struct nd_prefix *pr; 1271 ND6_RLOCK(); 1272 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1273 if (pr->ndpr_ifp != ifp) 1274 continue; 1275 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) 1276 continue; 1277 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1278 &addr->sin6_addr, &pr->ndpr_mask)) { 1279 matched = true; 1280 break; 1281 } 1282 } 1283 ND6_RUNLOCK(); 1284 if (matched) 1285 return (true); 1286 1287 /* 1288 * If the address is assigned on the node of the other side of 1289 * a p2p interface, the address should be a neighbor. 1290 */ 1291 if (ifp->if_flags & IFF_POINTOPOINT) { 1292 struct ifaddr *ifa; 1293 1294 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1295 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1296 continue; 1297 if (ifa->ifa_dstaddr != NULL && 1298 sa_equal(addr, ifa->ifa_dstaddr)) { 1299 return (true); 1300 } 1301 } 1302 } 1303 1304 /* 1305 * If the default router list is empty, all addresses are regarded 1306 * as on-link, and thus, as a neighbor. 1307 */ 1308 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1309 nd6_defrouter_list_empty() && 1310 V_nd6_defifindex == ifp->if_index) { 1311 return (1); 1312 } 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * Detect if a given IPv6 address identifies a neighbor on a given link. 1319 * XXX: should take care of the destination of a p2p link? 1320 */ 1321 int 1322 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1323 { 1324 struct llentry *lle; 1325 int rc = 0; 1326 1327 NET_EPOCH_ASSERT(); 1328 IF_AFDATA_UNLOCK_ASSERT(ifp); 1329 if (nd6_is_new_addr_neighbor(addr, ifp)) 1330 return (1); 1331 1332 /* 1333 * Even if the address matches none of our addresses, it might be 1334 * in the neighbor cache. 1335 */ 1336 if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { 1337 LLE_RUNLOCK(lle); 1338 rc = 1; 1339 } 1340 return (rc); 1341 } 1342 1343 static __noinline void 1344 nd6_free_children(struct llentry *lle) 1345 { 1346 struct llentry *child_lle; 1347 1348 NET_EPOCH_ASSERT(); 1349 LLE_WLOCK_ASSERT(lle); 1350 1351 while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { 1352 LLE_WLOCK(child_lle); 1353 lltable_unlink_child_entry(child_lle); 1354 llentry_free(child_lle); 1355 } 1356 } 1357 1358 /* 1359 * Tries to update @lle address/prepend data with new @lladdr. 1360 * 1361 * Returns true on success. 1362 * In any case, @lle is returned wlocked. 1363 */ 1364 static __noinline bool 1365 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1366 { 1367 u_char buf[LLE_MAX_LINKHDR]; 1368 int fam, off; 1369 size_t sz; 1370 1371 sz = sizeof(buf); 1372 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) 1373 return (false); 1374 1375 /* Update data */ 1376 lltable_set_entry_addr(ifp, lle, buf, sz, off); 1377 1378 struct llentry *child_lle; 1379 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 1380 LLE_WLOCK(child_lle); 1381 fam = child_lle->r_family; 1382 sz = sizeof(buf); 1383 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { 1384 /* success */ 1385 lltable_set_entry_addr(ifp, child_lle, buf, sz, off); 1386 child_lle->ln_state = ND6_LLINFO_REACHABLE; 1387 } 1388 LLE_WUNLOCK(child_lle); 1389 } 1390 1391 return (true); 1392 } 1393 1394 bool 1395 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1396 { 1397 NET_EPOCH_ASSERT(); 1398 LLE_WLOCK_ASSERT(lle); 1399 1400 if (!lltable_acquire_wlock(ifp, lle)) 1401 return (false); 1402 bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); 1403 IF_AFDATA_WUNLOCK(ifp); 1404 1405 return (ret); 1406 } 1407 1408 /* 1409 * Free an nd6 llinfo entry. 1410 * Since the function would cause significant changes in the kernel, DO NOT 1411 * make it global, unless you have a strong reason for the change, and are sure 1412 * that the change is safe. 1413 * 1414 * Set noinline to be dtrace-friendly 1415 */ 1416 static __noinline void 1417 nd6_free(struct llentry **lnp, int gc) 1418 { 1419 struct ifnet *ifp; 1420 struct llentry *ln; 1421 struct nd_defrouter *dr; 1422 1423 ln = *lnp; 1424 *lnp = NULL; 1425 1426 LLE_WLOCK_ASSERT(ln); 1427 ND6_RLOCK_ASSERT(); 1428 1429 KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); 1430 1431 ifp = lltable_get_ifp(ln->lle_tbl); 1432 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1433 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1434 else 1435 dr = NULL; 1436 ND6_RUNLOCK(); 1437 1438 if ((ln->la_flags & LLE_DELETED) == 0) 1439 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1440 1441 /* 1442 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1443 * even though it is not harmful, it was not really necessary. 1444 */ 1445 1446 /* cancel timer */ 1447 nd6_llinfo_settimer_locked(ln, -1); 1448 1449 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1450 if (dr != NULL && dr->expire && 1451 ln->ln_state == ND6_LLINFO_STALE && gc) { 1452 /* 1453 * If the reason for the deletion is just garbage 1454 * collection, and the neighbor is an active default 1455 * router, do not delete it. Instead, reset the GC 1456 * timer using the router's lifetime. 1457 * Simply deleting the entry would affect default 1458 * router selection, which is not necessarily a good 1459 * thing, especially when we're using router preference 1460 * values. 1461 * XXX: the check for ln_state would be redundant, 1462 * but we intentionally keep it just in case. 1463 */ 1464 if (dr->expire > time_uptime) 1465 nd6_llinfo_settimer_locked(ln, 1466 (dr->expire - time_uptime) * hz); 1467 else 1468 nd6_llinfo_settimer_locked(ln, 1469 (long)V_nd6_gctimer * hz); 1470 1471 LLE_REMREF(ln); 1472 LLE_WUNLOCK(ln); 1473 defrouter_rele(dr); 1474 return; 1475 } 1476 1477 if (dr) { 1478 /* 1479 * Unreachability of a router might affect the default 1480 * router selection and on-link detection of advertised 1481 * prefixes. 1482 */ 1483 1484 /* 1485 * Temporarily fake the state to choose a new default 1486 * router and to perform on-link determination of 1487 * prefixes correctly. 1488 * Below the state will be set correctly, 1489 * or the entry itself will be deleted. 1490 */ 1491 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1492 } 1493 1494 if (ln->ln_router || dr) { 1495 /* 1496 * We need to unlock to avoid a LOR with rt6_flush() with the 1497 * rnh and for the calls to pfxlist_onlink_check() and 1498 * defrouter_select_fib() in the block further down for calls 1499 * into nd6_lookup(). We still hold a ref. 1500 */ 1501 LLE_WUNLOCK(ln); 1502 1503 /* 1504 * rt6_flush must be called whether or not the neighbor 1505 * is in the Default Router List. 1506 * See a corresponding comment in nd6_na_input(). 1507 */ 1508 rt6_flush(&ln->r_l3addr.addr6, ifp); 1509 } 1510 1511 if (dr) { 1512 /* 1513 * Since defrouter_select_fib() does not affect the 1514 * on-link determination and MIP6 needs the check 1515 * before the default router selection, we perform 1516 * the check now. 1517 */ 1518 pfxlist_onlink_check(); 1519 1520 /* 1521 * Refresh default router list. 1522 */ 1523 defrouter_select_fib(dr->ifp->if_fib); 1524 } 1525 1526 /* 1527 * If this entry was added by an on-link redirect, remove the 1528 * corresponding host route. 1529 */ 1530 if (ln->la_flags & LLE_REDIRECT) 1531 nd6_free_redirect(ln); 1532 1533 if (ln->ln_router || dr) 1534 LLE_WLOCK(ln); 1535 } 1536 1537 /* 1538 * Save to unlock. We still hold an extra reference and will not 1539 * free(9) in llentry_free() if someone else holds one as well. 1540 */ 1541 LLE_WUNLOCK(ln); 1542 IF_AFDATA_LOCK(ifp); 1543 LLE_WLOCK(ln); 1544 /* Guard against race with other llentry_free(). */ 1545 if (ln->la_flags & LLE_LINKED) { 1546 /* Remove callout reference */ 1547 LLE_REMREF(ln); 1548 lltable_unlink_entry(ln->lle_tbl, ln); 1549 } 1550 IF_AFDATA_UNLOCK(ifp); 1551 1552 nd6_free_children(ln); 1553 1554 llentry_free(ln); 1555 if (dr != NULL) 1556 defrouter_rele(dr); 1557 } 1558 1559 static int 1560 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1561 { 1562 1563 if (nh->nh_flags & NHF_REDIRECT) 1564 return (1); 1565 1566 return (0); 1567 } 1568 1569 /* 1570 * Remove the rtentry for the given llentry, 1571 * both of which were installed by a redirect. 1572 */ 1573 static void 1574 nd6_free_redirect(const struct llentry *ln) 1575 { 1576 int fibnum; 1577 struct sockaddr_in6 sin6; 1578 struct rt_addrinfo info; 1579 struct rib_cmd_info rc; 1580 struct epoch_tracker et; 1581 1582 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1583 memset(&info, 0, sizeof(info)); 1584 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1585 info.rti_filter = nd6_isdynrte; 1586 1587 NET_EPOCH_ENTER(et); 1588 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1589 rib_action(fibnum, RTM_DELETE, &info, &rc); 1590 NET_EPOCH_EXIT(et); 1591 } 1592 1593 /* 1594 * Updates status of the default router route. 1595 */ 1596 static void 1597 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) 1598 { 1599 struct nd_defrouter *dr; 1600 struct nhop_object *nh; 1601 1602 nh = rc->rc_nh_old; 1603 1604 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1605 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1606 if (dr != NULL) { 1607 dr->installed = 0; 1608 defrouter_rele(dr); 1609 } 1610 } 1611 } 1612 1613 void 1614 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1615 { 1616 1617 #ifdef ROUTE_MPATH 1618 rib_decompose_notification(rc, check_release_defrouter, NULL); 1619 #else 1620 check_release_defrouter(rc, NULL); 1621 #endif 1622 } 1623 1624 int 1625 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1626 { 1627 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1628 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1629 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1630 struct epoch_tracker et; 1631 int error = 0; 1632 1633 if (ifp->if_afdata[AF_INET6] == NULL) 1634 return (EPFNOSUPPORT); 1635 switch (cmd) { 1636 case OSIOCGIFINFO_IN6: 1637 #define ND ndi->ndi 1638 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1639 bzero(&ND, sizeof(ND)); 1640 ND.linkmtu = IN6_LINKMTU(ifp); 1641 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1642 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1643 ND.reachable = ND_IFINFO(ifp)->reachable; 1644 ND.retrans = ND_IFINFO(ifp)->retrans; 1645 ND.flags = ND_IFINFO(ifp)->flags; 1646 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1647 ND.chlim = ND_IFINFO(ifp)->chlim; 1648 break; 1649 case SIOCGIFINFO_IN6: 1650 ND = *ND_IFINFO(ifp); 1651 break; 1652 case SIOCSIFINFO_IN6: 1653 /* 1654 * used to change host variables from userland. 1655 * intended for a use on router to reflect RA configurations. 1656 */ 1657 /* 0 means 'unspecified' */ 1658 if (ND.linkmtu != 0) { 1659 if (ND.linkmtu < IPV6_MMTU || 1660 ND.linkmtu > IN6_LINKMTU(ifp)) { 1661 error = EINVAL; 1662 break; 1663 } 1664 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1665 } 1666 1667 if (ND.basereachable != 0) { 1668 int obasereachable = ND_IFINFO(ifp)->basereachable; 1669 1670 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1671 if (ND.basereachable != obasereachable) 1672 ND_IFINFO(ifp)->reachable = 1673 ND_COMPUTE_RTIME(ND.basereachable); 1674 } 1675 if (ND.retrans != 0) 1676 ND_IFINFO(ifp)->retrans = ND.retrans; 1677 if (ND.chlim != 0) 1678 ND_IFINFO(ifp)->chlim = ND.chlim; 1679 /* FALLTHROUGH */ 1680 case SIOCSIFINFO_FLAGS: 1681 { 1682 struct ifaddr *ifa; 1683 struct in6_ifaddr *ia; 1684 1685 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1686 !(ND.flags & ND6_IFF_IFDISABLED)) { 1687 /* ifdisabled 1->0 transision */ 1688 1689 /* 1690 * If the interface is marked as ND6_IFF_IFDISABLED and 1691 * has an link-local address with IN6_IFF_DUPLICATED, 1692 * do not clear ND6_IFF_IFDISABLED. 1693 * See RFC 4862, Section 5.4.5. 1694 */ 1695 NET_EPOCH_ENTER(et); 1696 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1697 if (ifa->ifa_addr->sa_family != AF_INET6) 1698 continue; 1699 ia = (struct in6_ifaddr *)ifa; 1700 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1701 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1702 break; 1703 } 1704 NET_EPOCH_EXIT(et); 1705 1706 if (ifa != NULL) { 1707 /* LLA is duplicated. */ 1708 ND.flags |= ND6_IFF_IFDISABLED; 1709 log(LOG_ERR, "Cannot enable an interface" 1710 " with a link-local address marked" 1711 " duplicate.\n"); 1712 } else { 1713 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1714 if (ifp->if_flags & IFF_UP) 1715 in6_if_up(ifp); 1716 } 1717 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1718 (ND.flags & ND6_IFF_IFDISABLED)) { 1719 /* ifdisabled 0->1 transision */ 1720 /* Mark all IPv6 address as tentative. */ 1721 1722 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1723 if (V_ip6_dad_count > 0 && 1724 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1725 NET_EPOCH_ENTER(et); 1726 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1727 ifa_link) { 1728 if (ifa->ifa_addr->sa_family != 1729 AF_INET6) 1730 continue; 1731 ia = (struct in6_ifaddr *)ifa; 1732 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1733 } 1734 NET_EPOCH_EXIT(et); 1735 } 1736 } 1737 1738 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1739 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1740 /* auto_linklocal 0->1 transision */ 1741 1742 /* If no link-local address on ifp, configure */ 1743 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1744 in6_ifattach(ifp, NULL); 1745 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1746 ifp->if_flags & IFF_UP) { 1747 /* 1748 * When the IF already has 1749 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1750 * address is assigned, and IFF_UP, try to 1751 * assign one. 1752 */ 1753 NET_EPOCH_ENTER(et); 1754 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1755 ifa_link) { 1756 if (ifa->ifa_addr->sa_family != 1757 AF_INET6) 1758 continue; 1759 ia = (struct in6_ifaddr *)ifa; 1760 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1761 break; 1762 } 1763 NET_EPOCH_EXIT(et); 1764 if (ifa != NULL) 1765 /* No LLA is configured. */ 1766 in6_ifattach(ifp, NULL); 1767 } 1768 } 1769 ND_IFINFO(ifp)->flags = ND.flags; 1770 break; 1771 } 1772 #undef ND 1773 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1774 /* sync kernel routing table with the default router list */ 1775 defrouter_reset(); 1776 defrouter_select_fib(RT_ALL_FIBS); 1777 break; 1778 case SIOCSPFXFLUSH_IN6: 1779 { 1780 /* flush all the prefix advertised by routers */ 1781 struct in6_ifaddr *ia, *ia_next; 1782 struct nd_prefix *pr, *next; 1783 struct nd_prhead prl; 1784 1785 LIST_INIT(&prl); 1786 1787 ND6_WLOCK(); 1788 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1789 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1790 continue; /* XXX */ 1791 nd6_prefix_unlink(pr, &prl); 1792 } 1793 ND6_WUNLOCK(); 1794 1795 while ((pr = LIST_FIRST(&prl)) != NULL) { 1796 LIST_REMOVE(pr, ndpr_entry); 1797 /* XXXRW: in6_ifaddrhead locking. */ 1798 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1799 ia_next) { 1800 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1801 continue; 1802 1803 if (ia->ia6_ndpr == pr) 1804 in6_purgeaddr(&ia->ia_ifa); 1805 } 1806 nd6_prefix_del(pr); 1807 } 1808 break; 1809 } 1810 case SIOCSRTRFLUSH_IN6: 1811 { 1812 /* flush all the default routers */ 1813 1814 defrouter_reset(); 1815 nd6_defrouter_flush_all(); 1816 defrouter_select_fib(RT_ALL_FIBS); 1817 break; 1818 } 1819 case SIOCGNBRINFO_IN6: 1820 { 1821 struct llentry *ln; 1822 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1823 1824 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1825 return (error); 1826 1827 NET_EPOCH_ENTER(et); 1828 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); 1829 NET_EPOCH_EXIT(et); 1830 1831 if (ln == NULL) { 1832 error = EINVAL; 1833 break; 1834 } 1835 nbi->state = ln->ln_state; 1836 nbi->asked = ln->la_asked; 1837 nbi->isrouter = ln->ln_router; 1838 if (ln->la_expire == 0) 1839 nbi->expire = 0; 1840 else 1841 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1842 (time_second - time_uptime); 1843 LLE_RUNLOCK(ln); 1844 break; 1845 } 1846 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1847 ndif->ifindex = V_nd6_defifindex; 1848 break; 1849 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1850 return (nd6_setdefaultiface(ndif->ifindex)); 1851 } 1852 return (error); 1853 } 1854 1855 /* 1856 * Calculates new isRouter value based on provided parameters and 1857 * returns it. 1858 */ 1859 static int 1860 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1861 int ln_router) 1862 { 1863 1864 /* 1865 * ICMP6 type dependent behavior. 1866 * 1867 * NS: clear IsRouter if new entry 1868 * RS: clear IsRouter 1869 * RA: set IsRouter if there's lladdr 1870 * redir: clear IsRouter if new entry 1871 * 1872 * RA case, (1): 1873 * The spec says that we must set IsRouter in the following cases: 1874 * - If lladdr exist, set IsRouter. This means (1-5). 1875 * - If it is old entry (!newentry), set IsRouter. This means (7). 1876 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1877 * A quetion arises for (1) case. (1) case has no lladdr in the 1878 * neighbor cache, this is similar to (6). 1879 * This case is rare but we figured that we MUST NOT set IsRouter. 1880 * 1881 * is_new old_addr new_addr NS RS RA redir 1882 * D R 1883 * 0 n n (1) c ? s 1884 * 0 y n (2) c s s 1885 * 0 n y (3) c s s 1886 * 0 y y (4) c s s 1887 * 0 y y (5) c s s 1888 * 1 -- n (6) c c c s 1889 * 1 -- y (7) c c s c s 1890 * 1891 * (c=clear s=set) 1892 */ 1893 switch (type & 0xff) { 1894 case ND_NEIGHBOR_SOLICIT: 1895 /* 1896 * New entry must have is_router flag cleared. 1897 */ 1898 if (is_new) /* (6-7) */ 1899 ln_router = 0; 1900 break; 1901 case ND_REDIRECT: 1902 /* 1903 * If the icmp is a redirect to a better router, always set the 1904 * is_router flag. Otherwise, if the entry is newly created, 1905 * clear the flag. [RFC 2461, sec 8.3] 1906 */ 1907 if (code == ND_REDIRECT_ROUTER) 1908 ln_router = 1; 1909 else { 1910 if (is_new) /* (6-7) */ 1911 ln_router = 0; 1912 } 1913 break; 1914 case ND_ROUTER_SOLICIT: 1915 /* 1916 * is_router flag must always be cleared. 1917 */ 1918 ln_router = 0; 1919 break; 1920 case ND_ROUTER_ADVERT: 1921 /* 1922 * Mark an entry with lladdr as a router. 1923 */ 1924 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1925 (is_new && new_addr)) { /* (7) */ 1926 ln_router = 1; 1927 } 1928 break; 1929 } 1930 1931 return (ln_router); 1932 } 1933 1934 /* 1935 * Create neighbor cache entry and cache link-layer address, 1936 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1937 * 1938 * type - ICMP6 type 1939 * code - type dependent information 1940 * 1941 */ 1942 void 1943 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1944 int lladdrlen, int type, int code) 1945 { 1946 struct llentry *ln = NULL, *ln_tmp; 1947 int is_newentry; 1948 int do_update; 1949 int olladdr; 1950 int llchange; 1951 int flags; 1952 uint16_t router = 0; 1953 struct mbuf *chain = NULL; 1954 u_char linkhdr[LLE_MAX_LINKHDR]; 1955 size_t linkhdrsize; 1956 int lladdr_off; 1957 1958 NET_EPOCH_ASSERT(); 1959 IF_AFDATA_UNLOCK_ASSERT(ifp); 1960 1961 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1962 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1963 1964 /* nothing must be updated for unspecified address */ 1965 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1966 return; 1967 1968 /* 1969 * Validation about ifp->if_addrlen and lladdrlen must be done in 1970 * the caller. 1971 * 1972 * XXX If the link does not have link-layer adderss, what should 1973 * we do? (ifp->if_addrlen == 0) 1974 * Spec says nothing in sections for RA, RS and NA. There's small 1975 * description on it in NS section (RFC 2461 7.2.3). 1976 */ 1977 flags = lladdr ? LLE_EXCLUSIVE : 0; 1978 ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); 1979 is_newentry = 0; 1980 if (ln == NULL) { 1981 flags |= LLE_EXCLUSIVE; 1982 ln = nd6_alloc(from, 0, ifp); 1983 if (ln == NULL) 1984 return; 1985 1986 /* 1987 * Since we already know all the data for the new entry, 1988 * fill it before insertion. 1989 */ 1990 if (lladdr != NULL) { 1991 linkhdrsize = sizeof(linkhdr); 1992 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1993 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 1994 lltable_free_entry(LLTABLE6(ifp), ln); 1995 return; 1996 } 1997 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1998 lladdr_off); 1999 } 2000 2001 IF_AFDATA_WLOCK(ifp); 2002 LLE_WLOCK(ln); 2003 /* Prefer any existing lle over newly-created one */ 2004 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2005 if (ln_tmp == NULL) 2006 lltable_link_entry(LLTABLE6(ifp), ln); 2007 IF_AFDATA_WUNLOCK(ifp); 2008 if (ln_tmp == NULL) { 2009 /* No existing lle, mark as new entry (6,7) */ 2010 is_newentry = 1; 2011 if (lladdr != NULL) { /* (7) */ 2012 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2013 EVENTHANDLER_INVOKE(lle_event, ln, 2014 LLENTRY_RESOLVED); 2015 } 2016 } else { 2017 lltable_free_entry(LLTABLE6(ifp), ln); 2018 ln = ln_tmp; 2019 ln_tmp = NULL; 2020 } 2021 } 2022 /* do nothing if static ndp is set */ 2023 if ((ln->la_flags & LLE_STATIC)) { 2024 if (flags & LLE_EXCLUSIVE) 2025 LLE_WUNLOCK(ln); 2026 else 2027 LLE_RUNLOCK(ln); 2028 return; 2029 } 2030 2031 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2032 if (olladdr && lladdr) { 2033 llchange = bcmp(lladdr, ln->ll_addr, 2034 ifp->if_addrlen); 2035 } else if (!olladdr && lladdr) 2036 llchange = 1; 2037 else 2038 llchange = 0; 2039 2040 /* 2041 * newentry olladdr lladdr llchange (*=record) 2042 * 0 n n -- (1) 2043 * 0 y n -- (2) 2044 * 0 n y y (3) * STALE 2045 * 0 y y n (4) * 2046 * 0 y y y (5) * STALE 2047 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2048 * 1 -- y -- (7) * STALE 2049 */ 2050 2051 do_update = 0; 2052 if (is_newentry == 0 && llchange != 0) { 2053 do_update = 1; /* (3,5) */ 2054 2055 /* 2056 * Record source link-layer address 2057 * XXX is it dependent to ifp->if_type? 2058 */ 2059 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { 2060 /* Entry was deleted */ 2061 LLE_WUNLOCK(ln); 2062 return; 2063 } 2064 2065 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2066 2067 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2068 2069 if (ln->la_hold != NULL) 2070 chain = nd6_grab_holdchain(ln); 2071 } 2072 2073 /* Calculates new router status */ 2074 router = nd6_is_router(type, code, is_newentry, olladdr, 2075 lladdr != NULL ? 1 : 0, ln->ln_router); 2076 2077 ln->ln_router = router; 2078 /* Mark non-router redirects with special flag */ 2079 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2080 ln->la_flags |= LLE_REDIRECT; 2081 2082 if (flags & LLE_EXCLUSIVE) 2083 LLE_WUNLOCK(ln); 2084 else 2085 LLE_RUNLOCK(ln); 2086 2087 if (chain != NULL) 2088 nd6_flush_holdchain(ifp, ln, chain); 2089 if (do_update) 2090 nd6_flush_children_holdchain(ifp, ln); 2091 2092 /* 2093 * When the link-layer address of a router changes, select the 2094 * best router again. In particular, when the neighbor entry is newly 2095 * created, it might affect the selection policy. 2096 * Question: can we restrict the first condition to the "is_newentry" 2097 * case? 2098 * XXX: when we hear an RA from a new router with the link-layer 2099 * address option, defrouter_select_fib() is called twice, since 2100 * defrtrlist_update called the function as well. However, I believe 2101 * we can compromise the overhead, since it only happens the first 2102 * time. 2103 * XXX: although defrouter_select_fib() should not have a bad effect 2104 * for those are not autoconfigured hosts, we explicitly avoid such 2105 * cases for safety. 2106 */ 2107 if ((do_update || is_newentry) && router && 2108 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2109 /* 2110 * guaranteed recursion 2111 */ 2112 defrouter_select_fib(ifp->if_fib); 2113 } 2114 } 2115 2116 static void 2117 nd6_slowtimo(void *arg) 2118 { 2119 struct epoch_tracker et; 2120 CURVNET_SET((struct vnet *) arg); 2121 struct nd_ifinfo *nd6if; 2122 struct ifnet *ifp; 2123 2124 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2125 nd6_slowtimo, curvnet); 2126 NET_EPOCH_ENTER(et); 2127 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2128 if (ifp->if_afdata[AF_INET6] == NULL) 2129 continue; 2130 nd6if = ND_IFINFO(ifp); 2131 if (nd6if->basereachable && /* already initialized */ 2132 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2133 /* 2134 * Since reachable time rarely changes by router 2135 * advertisements, we SHOULD insure that a new random 2136 * value gets recomputed at least once every few hours. 2137 * (RFC 2461, 6.3.4) 2138 */ 2139 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2140 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2141 } 2142 } 2143 NET_EPOCH_EXIT(et); 2144 CURVNET_RESTORE(); 2145 } 2146 2147 struct mbuf * 2148 nd6_grab_holdchain(struct llentry *ln) 2149 { 2150 struct mbuf *chain; 2151 2152 LLE_WLOCK_ASSERT(ln); 2153 2154 chain = ln->la_hold; 2155 ln->la_hold = NULL; 2156 ln->la_numheld = 0; 2157 2158 if (ln->ln_state == ND6_LLINFO_STALE) { 2159 /* 2160 * The first time we send a packet to a 2161 * neighbor whose entry is STALE, we have 2162 * to change the state to DELAY and a sets 2163 * a timer to expire in DELAY_FIRST_PROBE_TIME 2164 * seconds to ensure do neighbor unreachability 2165 * detection on expiration. 2166 * (RFC 2461 7.3.3) 2167 */ 2168 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2169 } 2170 2171 return (chain); 2172 } 2173 2174 int 2175 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2176 struct sockaddr_in6 *dst, struct route *ro) 2177 { 2178 int error; 2179 int ip6len; 2180 struct ip6_hdr *ip6; 2181 struct m_tag *mtag; 2182 2183 #ifdef MAC 2184 mac_netinet6_nd6_send(ifp, m); 2185 #endif 2186 2187 /* 2188 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2189 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2190 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2191 * to be diverted to user space. When re-injected into the kernel, 2192 * send_output() will directly dispatch them to the outgoing interface. 2193 */ 2194 if (send_sendso_input_hook != NULL) { 2195 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2196 if (mtag != NULL) { 2197 ip6 = mtod(m, struct ip6_hdr *); 2198 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2199 /* Use the SEND socket */ 2200 error = send_sendso_input_hook(m, ifp, SND_OUT, 2201 ip6len); 2202 /* -1 == no app on SEND socket */ 2203 if (error == 0 || error != -1) 2204 return (error); 2205 } 2206 } 2207 2208 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2209 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2210 mtod(m, struct ip6_hdr *)); 2211 2212 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2213 origifp = ifp; 2214 2215 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2216 return (error); 2217 } 2218 2219 /* 2220 * Lookup link headerfor @sa_dst address. Stores found 2221 * data in @desten buffer. Copy of lle ln_flags can be also 2222 * saved in @pflags if @pflags is non-NULL. 2223 * 2224 * If destination LLE does not exists or lle state modification 2225 * is required, call "slow" version. 2226 * 2227 * Return values: 2228 * - 0 on success (address copied to buffer). 2229 * - EWOULDBLOCK (no local error, but address is still unresolved) 2230 * - other errors (alloc failure, etc) 2231 */ 2232 int 2233 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, 2234 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2235 struct llentry **plle) 2236 { 2237 struct llentry *ln = NULL; 2238 const struct sockaddr_in6 *dst6; 2239 2240 NET_EPOCH_ASSERT(); 2241 2242 if (pflags != NULL) 2243 *pflags = 0; 2244 2245 dst6 = (const struct sockaddr_in6 *)sa_dst; 2246 2247 /* discard the packet if IPv6 operation is disabled on the interface */ 2248 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2249 m_freem(m); 2250 return (ENETDOWN); /* better error? */ 2251 } 2252 2253 if (m != NULL && m->m_flags & M_MCAST) { 2254 switch (ifp->if_type) { 2255 case IFT_ETHER: 2256 case IFT_L2VLAN: 2257 case IFT_BRIDGE: 2258 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2259 desten); 2260 return (0); 2261 default: 2262 m_freem(m); 2263 return (EAFNOSUPPORT); 2264 } 2265 } 2266 2267 int family = gw_flags >> 16; 2268 int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; 2269 ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); 2270 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2271 /* Entry found, let's copy lle info */ 2272 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2273 if (pflags != NULL) 2274 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2275 llentry_provide_feedback(ln); 2276 if (plle) { 2277 LLE_ADDREF(ln); 2278 *plle = ln; 2279 LLE_WUNLOCK(ln); 2280 } 2281 return (0); 2282 } else if (plle && ln) 2283 LLE_WUNLOCK(ln); 2284 2285 return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); 2286 } 2287 2288 /* 2289 * Finds or creates a new llentry for @addr and @family. 2290 * Returns wlocked llentry or NULL. 2291 * 2292 * 2293 * Child LLEs. 2294 * 2295 * Do not have their own state machine (gets marked as static) 2296 * settimer bails out for child LLEs just in case. 2297 * 2298 * Locking order: parent lle gets locked first, chen goes the child. 2299 */ 2300 static __noinline struct llentry * 2301 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) 2302 { 2303 struct llentry *child_lle = NULL; 2304 struct llentry *lle, *lle_tmp; 2305 2306 lle = nd6_alloc(addr, 0, ifp); 2307 if (lle != NULL && family != AF_INET6) { 2308 child_lle = nd6_alloc(addr, 0, ifp); 2309 if (child_lle == NULL) { 2310 lltable_free_entry(LLTABLE6(ifp), lle); 2311 return (NULL); 2312 } 2313 child_lle->r_family = family; 2314 child_lle->la_flags |= LLE_CHILD | LLE_STATIC; 2315 child_lle->ln_state = ND6_LLINFO_INCOMPLETE; 2316 } 2317 2318 if (lle == NULL) { 2319 char ip6buf[INET6_ADDRSTRLEN]; 2320 log(LOG_DEBUG, 2321 "nd6_get_llentry: can't allocate llinfo for %s " 2322 "(ln=%p)\n", 2323 ip6_sprintf(ip6buf, addr), lle); 2324 return (NULL); 2325 } 2326 2327 IF_AFDATA_WLOCK(ifp); 2328 LLE_WLOCK(lle); 2329 /* Prefer any existing entry over newly-created one */ 2330 lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2331 if (lle_tmp == NULL) 2332 lltable_link_entry(LLTABLE6(ifp), lle); 2333 else { 2334 lltable_free_entry(LLTABLE6(ifp), lle); 2335 lle = lle_tmp; 2336 } 2337 if (child_lle != NULL) { 2338 /* Check if child lle for the same family exists */ 2339 lle_tmp = llentry_lookup_family(lle, child_lle->r_family); 2340 LLE_WLOCK(child_lle); 2341 if (lle_tmp == NULL) { 2342 /* Attach */ 2343 lltable_link_child_entry(lle, child_lle); 2344 } else { 2345 /* child lle already exists, free newly-created one */ 2346 lltable_free_entry(LLTABLE6(ifp), child_lle); 2347 child_lle = lle_tmp; 2348 } 2349 LLE_WUNLOCK(lle); 2350 lle = child_lle; 2351 } 2352 IF_AFDATA_WUNLOCK(ifp); 2353 return (lle); 2354 } 2355 2356 /* 2357 * Do L2 address resolution for @sa_dst address. Stores found 2358 * address in @desten buffer. Copy of lle ln_flags can be also 2359 * saved in @pflags if @pflags is non-NULL. 2360 * 2361 * Heavy version. 2362 * Function assume that destination LLE does not exist, 2363 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2364 * 2365 * Set noinline to be dtrace-friendly 2366 */ 2367 static __noinline int 2368 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, 2369 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2370 struct llentry **plle) 2371 { 2372 struct llentry *lle = NULL; 2373 struct in6_addr *psrc, src; 2374 int send_ns, ll_len; 2375 char *lladdr; 2376 size_t dropped; 2377 2378 NET_EPOCH_ASSERT(); 2379 2380 /* 2381 * Address resolution or Neighbor Unreachability Detection 2382 * for the next hop. 2383 * At this point, the destination of the packet must be a unicast 2384 * or an anycast address(i.e. not a multicast). 2385 */ 2386 lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); 2387 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2388 /* 2389 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2390 * the condition below is not very efficient. But we believe 2391 * it is tolerable, because this should be a rare case. 2392 */ 2393 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); 2394 } 2395 2396 if (lle == NULL) { 2397 m_freem(m); 2398 return (ENOBUFS); 2399 } 2400 2401 LLE_WLOCK_ASSERT(lle); 2402 2403 /* 2404 * The first time we send a packet to a neighbor whose entry is 2405 * STALE, we have to change the state to DELAY and a sets a timer to 2406 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2407 * neighbor unreachability detection on expiration. 2408 * (RFC 2461 7.3.3) 2409 */ 2410 if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) 2411 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2412 2413 /* 2414 * If the neighbor cache entry has a state other than INCOMPLETE 2415 * (i.e. its link-layer address is already resolved), just 2416 * send the packet. 2417 */ 2418 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2419 if (flags & LLE_ADDRONLY) { 2420 lladdr = lle->ll_addr; 2421 ll_len = ifp->if_addrlen; 2422 } else { 2423 lladdr = lle->r_linkdata; 2424 ll_len = lle->r_hdrlen; 2425 } 2426 bcopy(lladdr, desten, ll_len); 2427 if (pflags != NULL) 2428 *pflags = lle->la_flags; 2429 if (plle) { 2430 LLE_ADDREF(lle); 2431 *plle = lle; 2432 } 2433 LLE_WUNLOCK(lle); 2434 return (0); 2435 } 2436 2437 /* 2438 * There is a neighbor cache entry, but no ethernet address 2439 * response yet. Append this latest packet to the end of the 2440 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2441 * the oldest packet in the queue will be removed. 2442 */ 2443 dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); 2444 ICMP6STAT_ADD(icp6s_dropped, dropped); 2445 2446 /* 2447 * If there has been no NS for the neighbor after entering the 2448 * INCOMPLETE state, send the first solicitation. 2449 * Note that for newly-created lle la_asked will be 0, 2450 * so we will transition from ND6_LLINFO_NOSTATE to 2451 * ND6_LLINFO_INCOMPLETE state here. 2452 */ 2453 psrc = NULL; 2454 send_ns = 0; 2455 2456 /* If we have child lle, switch to the parent to send NS */ 2457 if (lle->la_flags & LLE_CHILD) { 2458 struct llentry *lle_parent = lle->lle_parent; 2459 LLE_WUNLOCK(lle); 2460 lle = lle_parent; 2461 LLE_WLOCK(lle); 2462 } 2463 if (lle->la_asked == 0) { 2464 lle->la_asked++; 2465 send_ns = 1; 2466 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2467 2468 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2469 } 2470 LLE_WUNLOCK(lle); 2471 if (send_ns != 0) 2472 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2473 2474 return (EWOULDBLOCK); 2475 } 2476 2477 /* 2478 * Do L2 address resolution for @sa_dst address. Stores found 2479 * address in @desten buffer. Copy of lle ln_flags can be also 2480 * saved in @pflags if @pflags is non-NULL. 2481 * 2482 * Return values: 2483 * - 0 on success (address copied to buffer). 2484 * - EWOULDBLOCK (no local error, but address is still unresolved) 2485 * - other errors (alloc failure, etc) 2486 */ 2487 int 2488 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2489 char *desten, uint32_t *pflags) 2490 { 2491 int error; 2492 2493 flags |= LLE_ADDRONLY; 2494 error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, 2495 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2496 return (error); 2497 } 2498 2499 int 2500 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) 2501 { 2502 struct mbuf *m, *m_head; 2503 struct sockaddr_in6 dst6; 2504 int error = 0; 2505 2506 NET_EPOCH_ASSERT(); 2507 2508 struct route_in6 ro = { 2509 .ro_prepend = lle->r_linkdata, 2510 .ro_plen = lle->r_hdrlen, 2511 }; 2512 2513 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); 2514 m_head = chain; 2515 2516 while (m_head) { 2517 m = m_head; 2518 m_head = m_head->m_nextpkt; 2519 m->m_nextpkt = NULL; 2520 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); 2521 } 2522 2523 /* 2524 * XXX 2525 * note that intermediate errors are blindly ignored 2526 */ 2527 return (error); 2528 } 2529 2530 __noinline void 2531 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) 2532 { 2533 struct llentry *child_lle; 2534 struct mbuf *chain; 2535 2536 NET_EPOCH_ASSERT(); 2537 2538 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 2539 LLE_WLOCK(child_lle); 2540 chain = nd6_grab_holdchain(child_lle); 2541 LLE_WUNLOCK(child_lle); 2542 nd6_flush_holdchain(ifp, child_lle, chain); 2543 } 2544 } 2545 2546 static int 2547 nd6_need_cache(struct ifnet *ifp) 2548 { 2549 /* 2550 * XXX: we currently do not make neighbor cache on any interface 2551 * other than Ethernet and GIF. 2552 * 2553 * RFC2893 says: 2554 * - unidirectional tunnels needs no ND 2555 */ 2556 switch (ifp->if_type) { 2557 case IFT_ETHER: 2558 case IFT_IEEE1394: 2559 case IFT_L2VLAN: 2560 case IFT_INFINIBAND: 2561 case IFT_BRIDGE: 2562 case IFT_PROPVIRTUAL: 2563 return (1); 2564 default: 2565 return (0); 2566 } 2567 } 2568 2569 /* 2570 * Add pernament ND6 link-layer record for given 2571 * interface address. 2572 * 2573 * Very similar to IPv4 arp_ifinit(), but: 2574 * 1) IPv6 DAD is performed in different place 2575 * 2) It is called by IPv6 protocol stack in contrast to 2576 * arp_ifinit() which is typically called in SIOCSIFADDR 2577 * driver ioctl handler. 2578 * 2579 */ 2580 int 2581 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2582 { 2583 struct ifnet *ifp; 2584 struct llentry *ln, *ln_tmp; 2585 struct sockaddr *dst; 2586 2587 ifp = ia->ia_ifa.ifa_ifp; 2588 if (nd6_need_cache(ifp) == 0) 2589 return (0); 2590 2591 dst = (struct sockaddr *)&ia->ia_addr; 2592 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2593 if (ln == NULL) 2594 return (ENOBUFS); 2595 2596 IF_AFDATA_WLOCK(ifp); 2597 LLE_WLOCK(ln); 2598 /* Unlink any entry if exists */ 2599 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); 2600 if (ln_tmp != NULL) 2601 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2602 lltable_link_entry(LLTABLE6(ifp), ln); 2603 IF_AFDATA_WUNLOCK(ifp); 2604 2605 if (ln_tmp != NULL) 2606 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2607 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2608 2609 LLE_WUNLOCK(ln); 2610 if (ln_tmp != NULL) 2611 llentry_free(ln_tmp); 2612 2613 return (0); 2614 } 2615 2616 /* 2617 * Removes either all lle entries for given @ia, or lle 2618 * corresponding to @ia address. 2619 */ 2620 void 2621 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2622 { 2623 struct sockaddr_in6 mask, addr; 2624 struct sockaddr *saddr, *smask; 2625 struct ifnet *ifp; 2626 2627 ifp = ia->ia_ifa.ifa_ifp; 2628 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2629 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2630 saddr = (struct sockaddr *)&addr; 2631 smask = (struct sockaddr *)&mask; 2632 2633 if (all != 0) 2634 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2635 else 2636 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2637 } 2638 2639 static int 2640 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2641 { 2642 struct in6_prefix p; 2643 struct sockaddr_in6 s6; 2644 struct nd_prefix *pr; 2645 struct nd_pfxrouter *pfr; 2646 time_t maxexpire; 2647 int error; 2648 char ip6buf[INET6_ADDRSTRLEN]; 2649 2650 if (req->newptr) 2651 return (EPERM); 2652 2653 error = sysctl_wire_old_buffer(req, 0); 2654 if (error != 0) 2655 return (error); 2656 2657 bzero(&p, sizeof(p)); 2658 p.origin = PR_ORIG_RA; 2659 bzero(&s6, sizeof(s6)); 2660 s6.sin6_family = AF_INET6; 2661 s6.sin6_len = sizeof(s6); 2662 2663 ND6_RLOCK(); 2664 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2665 p.prefix = pr->ndpr_prefix; 2666 if (sa6_recoverscope(&p.prefix)) { 2667 log(LOG_ERR, "scope error in prefix list (%s)\n", 2668 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2669 /* XXX: press on... */ 2670 } 2671 p.raflags = pr->ndpr_raf; 2672 p.prefixlen = pr->ndpr_plen; 2673 p.vltime = pr->ndpr_vltime; 2674 p.pltime = pr->ndpr_pltime; 2675 p.if_index = pr->ndpr_ifp->if_index; 2676 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2677 p.expire = 0; 2678 else { 2679 /* XXX: we assume time_t is signed. */ 2680 maxexpire = (-1) & 2681 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2682 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2683 p.expire = pr->ndpr_lastupdate + 2684 pr->ndpr_vltime + 2685 (time_second - time_uptime); 2686 else 2687 p.expire = maxexpire; 2688 } 2689 p.refcnt = pr->ndpr_addrcnt; 2690 p.flags = pr->ndpr_stateflags; 2691 p.advrtrs = 0; 2692 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2693 p.advrtrs++; 2694 error = SYSCTL_OUT(req, &p, sizeof(p)); 2695 if (error != 0) 2696 break; 2697 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2698 s6.sin6_addr = pfr->router->rtaddr; 2699 if (sa6_recoverscope(&s6)) 2700 log(LOG_ERR, 2701 "scope error in prefix list (%s)\n", 2702 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2703 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2704 if (error != 0) 2705 goto out; 2706 } 2707 } 2708 out: 2709 ND6_RUNLOCK(); 2710 return (error); 2711 } 2712 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2713 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2714 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2715 "NDP prefix list"); 2716 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2717 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2718 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2719 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2720