1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sysctl.h> 54 55 #include <net/if.h> 56 #include <net/if_arc.h> 57 #include <net/if_dl.h> 58 #include <net/if_types.h> 59 #include <net/iso88025.h> 60 #include <net/fddi.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <net/if_llatbl.h> 66 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 67 #include <netinet/if_ether.h> 68 #include <netinet6/in6_var.h> 69 #include <netinet/ip6.h> 70 #include <netinet6/ip6_var.h> 71 #include <netinet6/scope6_var.h> 72 #include <netinet6/nd6.h> 73 #include <netinet6/in6_ifattach.h> 74 #include <netinet/icmp6.h> 75 76 #include <sys/limits.h> 77 78 #include <security/mac/mac_framework.h> 79 80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 82 83 #define SIN6(s) ((struct sockaddr_in6 *)s) 84 85 /* timer values */ 86 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 87 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 88 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 89 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 90 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 91 * local traffic */ 92 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 93 * collection timer */ 94 95 /* preventing too many loops in ND option parsing */ 96 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 97 98 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 99 * layer hints */ 100 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 101 * ND entries */ 102 #define V_nd6_maxndopt VNET(nd6_maxndopt) 103 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 104 105 #ifdef ND6_DEBUG 106 VNET_DEFINE(int, nd6_debug) = 1; 107 #else 108 VNET_DEFINE(int, nd6_debug) = 0; 109 #endif 110 111 /* for debugging? */ 112 #if 0 113 static int nd6_inuse, nd6_allocated; 114 #endif 115 116 VNET_DEFINE(struct nd_drhead, nd_defrouter); 117 VNET_DEFINE(struct nd_prhead, nd_prefix); 118 119 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 120 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 121 122 static struct sockaddr_in6 all1_sa; 123 124 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 125 struct ifnet *)); 126 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 127 static void nd6_slowtimo(void *); 128 static int regen_tmpaddr(struct in6_ifaddr *); 129 static struct llentry *nd6_free(struct llentry *, int); 130 static void nd6_llinfo_timer(void *); 131 static void clear_llinfo_pqueue(struct llentry *); 132 133 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 134 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 135 136 VNET_DEFINE(struct callout, nd6_timer_ch); 137 138 void 139 nd6_init(void) 140 { 141 int i; 142 143 LIST_INIT(&V_nd_prefix); 144 145 all1_sa.sin6_family = AF_INET6; 146 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 147 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 148 all1_sa.sin6_addr.s6_addr[i] = 0xff; 149 150 /* initialization of the default router list */ 151 TAILQ_INIT(&V_nd_defrouter); 152 153 /* start timer */ 154 callout_init(&V_nd6_slowtimo_ch, 0); 155 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 156 nd6_slowtimo, curvnet); 157 } 158 159 #ifdef VIMAGE 160 void 161 nd6_destroy() 162 { 163 164 callout_drain(&V_nd6_slowtimo_ch); 165 callout_drain(&V_nd6_timer_ch); 166 } 167 #endif 168 169 struct nd_ifinfo * 170 nd6_ifattach(struct ifnet *ifp) 171 { 172 struct nd_ifinfo *nd; 173 174 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 175 bzero(nd, sizeof(*nd)); 176 177 nd->initialized = 1; 178 179 nd->chlim = IPV6_DEFHLIM; 180 nd->basereachable = REACHABLE_TIME; 181 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 182 nd->retrans = RETRANS_TIMER; 183 184 nd->flags = ND6_IFF_PERFORMNUD; 185 186 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. */ 187 if (V_ip6_auto_linklocal || (ifp->if_flags & IFF_LOOPBACK)) 188 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 189 190 /* A loopback interface does not need to accept RTADV. */ 191 if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK)) 192 nd->flags |= ND6_IFF_ACCEPT_RTADV; 193 194 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 195 nd6_setmtu0(ifp, nd); 196 197 return nd; 198 } 199 200 void 201 nd6_ifdetach(struct nd_ifinfo *nd) 202 { 203 204 free(nd, M_IP6NDP); 205 } 206 207 /* 208 * Reset ND level link MTU. This function is called when the physical MTU 209 * changes, which means we might have to adjust the ND level MTU. 210 */ 211 void 212 nd6_setmtu(struct ifnet *ifp) 213 { 214 215 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 216 } 217 218 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 219 void 220 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 221 { 222 u_int32_t omaxmtu; 223 224 omaxmtu = ndi->maxmtu; 225 226 switch (ifp->if_type) { 227 case IFT_ARCNET: 228 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 229 break; 230 case IFT_FDDI: 231 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 232 break; 233 case IFT_ISO88025: 234 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 235 break; 236 default: 237 ndi->maxmtu = ifp->if_mtu; 238 break; 239 } 240 241 /* 242 * Decreasing the interface MTU under IPV6 minimum MTU may cause 243 * undesirable situation. We thus notify the operator of the change 244 * explicitly. The check for omaxmtu is necessary to restrict the 245 * log to the case of changing the MTU, not initializing it. 246 */ 247 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 248 log(LOG_NOTICE, "nd6_setmtu0: " 249 "new link MTU on %s (%lu) is too small for IPv6\n", 250 if_name(ifp), (unsigned long)ndi->maxmtu); 251 } 252 253 if (ndi->maxmtu > V_in6_maxmtu) 254 in6_setmaxmtu(); /* check all interfaces just in case */ 255 256 } 257 258 void 259 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 260 { 261 262 bzero(ndopts, sizeof(*ndopts)); 263 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 264 ndopts->nd_opts_last 265 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 266 267 if (icmp6len == 0) { 268 ndopts->nd_opts_done = 1; 269 ndopts->nd_opts_search = NULL; 270 } 271 } 272 273 /* 274 * Take one ND option. 275 */ 276 struct nd_opt_hdr * 277 nd6_option(union nd_opts *ndopts) 278 { 279 struct nd_opt_hdr *nd_opt; 280 int olen; 281 282 if (ndopts == NULL) 283 panic("ndopts == NULL in nd6_option"); 284 if (ndopts->nd_opts_last == NULL) 285 panic("uninitialized ndopts in nd6_option"); 286 if (ndopts->nd_opts_search == NULL) 287 return NULL; 288 if (ndopts->nd_opts_done) 289 return NULL; 290 291 nd_opt = ndopts->nd_opts_search; 292 293 /* make sure nd_opt_len is inside the buffer */ 294 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 295 bzero(ndopts, sizeof(*ndopts)); 296 return NULL; 297 } 298 299 olen = nd_opt->nd_opt_len << 3; 300 if (olen == 0) { 301 /* 302 * Message validation requires that all included 303 * options have a length that is greater than zero. 304 */ 305 bzero(ndopts, sizeof(*ndopts)); 306 return NULL; 307 } 308 309 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 310 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 311 /* option overruns the end of buffer, invalid */ 312 bzero(ndopts, sizeof(*ndopts)); 313 return NULL; 314 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 315 /* reached the end of options chain */ 316 ndopts->nd_opts_done = 1; 317 ndopts->nd_opts_search = NULL; 318 } 319 return nd_opt; 320 } 321 322 /* 323 * Parse multiple ND options. 324 * This function is much easier to use, for ND routines that do not need 325 * multiple options of the same type. 326 */ 327 int 328 nd6_options(union nd_opts *ndopts) 329 { 330 struct nd_opt_hdr *nd_opt; 331 int i = 0; 332 333 if (ndopts == NULL) 334 panic("ndopts == NULL in nd6_options"); 335 if (ndopts->nd_opts_last == NULL) 336 panic("uninitialized ndopts in nd6_options"); 337 if (ndopts->nd_opts_search == NULL) 338 return 0; 339 340 while (1) { 341 nd_opt = nd6_option(ndopts); 342 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 343 /* 344 * Message validation requires that all included 345 * options have a length that is greater than zero. 346 */ 347 ICMP6STAT_INC(icp6s_nd_badopt); 348 bzero(ndopts, sizeof(*ndopts)); 349 return -1; 350 } 351 352 if (nd_opt == NULL) 353 goto skip1; 354 355 switch (nd_opt->nd_opt_type) { 356 case ND_OPT_SOURCE_LINKADDR: 357 case ND_OPT_TARGET_LINKADDR: 358 case ND_OPT_MTU: 359 case ND_OPT_REDIRECTED_HEADER: 360 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 361 nd6log((LOG_INFO, 362 "duplicated ND6 option found (type=%d)\n", 363 nd_opt->nd_opt_type)); 364 /* XXX bark? */ 365 } else { 366 ndopts->nd_opt_array[nd_opt->nd_opt_type] 367 = nd_opt; 368 } 369 break; 370 case ND_OPT_PREFIX_INFORMATION: 371 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 372 ndopts->nd_opt_array[nd_opt->nd_opt_type] 373 = nd_opt; 374 } 375 ndopts->nd_opts_pi_end = 376 (struct nd_opt_prefix_info *)nd_opt; 377 break; 378 default: 379 /* 380 * Unknown options must be silently ignored, 381 * to accomodate future extension to the protocol. 382 */ 383 nd6log((LOG_DEBUG, 384 "nd6_options: unsupported option %d - " 385 "option ignored\n", nd_opt->nd_opt_type)); 386 } 387 388 skip1: 389 i++; 390 if (i > V_nd6_maxndopt) { 391 ICMP6STAT_INC(icp6s_nd_toomanyopt); 392 nd6log((LOG_INFO, "too many loop in nd opt\n")); 393 break; 394 } 395 396 if (ndopts->nd_opts_done) 397 break; 398 } 399 400 return 0; 401 } 402 403 /* 404 * ND6 timer routine to handle ND6 entries 405 */ 406 void 407 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 408 { 409 int canceled; 410 411 if (tick < 0) { 412 ln->la_expire = 0; 413 ln->ln_ntick = 0; 414 canceled = callout_stop(&ln->ln_timer_ch); 415 } else { 416 ln->la_expire = time_second + tick / hz; 417 LLE_ADDREF(ln); 418 if (tick > INT_MAX) { 419 ln->ln_ntick = tick - INT_MAX; 420 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 421 nd6_llinfo_timer, ln); 422 } else { 423 ln->ln_ntick = 0; 424 canceled = callout_reset(&ln->ln_timer_ch, tick, 425 nd6_llinfo_timer, ln); 426 } 427 } 428 if (canceled) 429 LLE_REMREF(ln); 430 } 431 432 void 433 nd6_llinfo_settimer(struct llentry *ln, long tick) 434 { 435 436 LLE_WLOCK(ln); 437 nd6_llinfo_settimer_locked(ln, tick); 438 LLE_WUNLOCK(ln); 439 } 440 441 static void 442 nd6_llinfo_timer(void *arg) 443 { 444 struct llentry *ln; 445 struct in6_addr *dst; 446 struct ifnet *ifp; 447 struct nd_ifinfo *ndi = NULL; 448 449 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 450 ln = (struct llentry *)arg; 451 ifp = ln->lle_tbl->llt_ifp; 452 453 CURVNET_SET(ifp->if_vnet); 454 455 if (ln->ln_ntick > 0) { 456 if (ln->ln_ntick > INT_MAX) { 457 ln->ln_ntick -= INT_MAX; 458 nd6_llinfo_settimer(ln, INT_MAX); 459 } else { 460 ln->ln_ntick = 0; 461 nd6_llinfo_settimer(ln, ln->ln_ntick); 462 } 463 goto done; 464 } 465 466 ndi = ND_IFINFO(ifp); 467 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 468 if (ln->la_flags & LLE_STATIC) { 469 goto done; 470 } 471 472 if (ln->la_flags & LLE_DELETED) { 473 (void)nd6_free(ln, 0); 474 ln = NULL; 475 goto done; 476 } 477 478 switch (ln->ln_state) { 479 case ND6_LLINFO_INCOMPLETE: 480 if (ln->la_asked < V_nd6_mmaxtries) { 481 ln->la_asked++; 482 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 483 nd6_ns_output(ifp, NULL, dst, ln, 0); 484 } else { 485 struct mbuf *m = ln->la_hold; 486 if (m) { 487 struct mbuf *m0; 488 489 /* 490 * assuming every packet in la_hold has the 491 * same IP header 492 */ 493 m0 = m->m_nextpkt; 494 m->m_nextpkt = NULL; 495 icmp6_error2(m, ICMP6_DST_UNREACH, 496 ICMP6_DST_UNREACH_ADDR, 0, ifp); 497 498 ln->la_hold = m0; 499 clear_llinfo_pqueue(ln); 500 } 501 (void)nd6_free(ln, 0); 502 ln = NULL; 503 } 504 break; 505 case ND6_LLINFO_REACHABLE: 506 if (!ND6_LLINFO_PERMANENT(ln)) { 507 ln->ln_state = ND6_LLINFO_STALE; 508 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 509 } 510 break; 511 512 case ND6_LLINFO_STALE: 513 /* Garbage Collection(RFC 2461 5.3) */ 514 if (!ND6_LLINFO_PERMANENT(ln)) { 515 (void)nd6_free(ln, 1); 516 ln = NULL; 517 } 518 break; 519 520 case ND6_LLINFO_DELAY: 521 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 522 /* We need NUD */ 523 ln->la_asked = 1; 524 ln->ln_state = ND6_LLINFO_PROBE; 525 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 526 nd6_ns_output(ifp, dst, dst, ln, 0); 527 } else { 528 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 529 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 530 } 531 break; 532 case ND6_LLINFO_PROBE: 533 if (ln->la_asked < V_nd6_umaxtries) { 534 ln->la_asked++; 535 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 536 nd6_ns_output(ifp, dst, dst, ln, 0); 537 } else { 538 (void)nd6_free(ln, 0); 539 ln = NULL; 540 } 541 break; 542 } 543 done: 544 if (ln != NULL) 545 LLE_FREE(ln); 546 CURVNET_RESTORE(); 547 } 548 549 550 /* 551 * ND6 timer routine to expire default route list and prefix list 552 */ 553 void 554 nd6_timer(void *arg) 555 { 556 CURVNET_SET((struct vnet *) arg); 557 int s; 558 struct nd_defrouter *dr; 559 struct nd_prefix *pr; 560 struct in6_ifaddr *ia6, *nia6; 561 struct in6_addrlifetime *lt6; 562 563 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 564 nd6_timer, curvnet); 565 566 /* expire default router list */ 567 s = splnet(); 568 dr = TAILQ_FIRST(&V_nd_defrouter); 569 while (dr) { 570 if (dr->expire && dr->expire < time_second) { 571 struct nd_defrouter *t; 572 t = TAILQ_NEXT(dr, dr_entry); 573 defrtrlist_del(dr); 574 dr = t; 575 } else { 576 dr = TAILQ_NEXT(dr, dr_entry); 577 } 578 } 579 580 /* 581 * expire interface addresses. 582 * in the past the loop was inside prefix expiry processing. 583 * However, from a stricter speci-confrmance standpoint, we should 584 * rather separate address lifetimes and prefix lifetimes. 585 * 586 * XXXRW: in6_ifaddrhead locking. 587 */ 588 addrloop: 589 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 590 /* check address lifetime */ 591 lt6 = &ia6->ia6_lifetime; 592 if (IFA6_IS_INVALID(ia6)) { 593 int regen = 0; 594 595 /* 596 * If the expiring address is temporary, try 597 * regenerating a new one. This would be useful when 598 * we suspended a laptop PC, then turned it on after a 599 * period that could invalidate all temporary 600 * addresses. Although we may have to restart the 601 * loop (see below), it must be after purging the 602 * address. Otherwise, we'd see an infinite loop of 603 * regeneration. 604 */ 605 if (V_ip6_use_tempaddr && 606 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 607 if (regen_tmpaddr(ia6) == 0) 608 regen = 1; 609 } 610 611 in6_purgeaddr(&ia6->ia_ifa); 612 613 if (regen) 614 goto addrloop; /* XXX: see below */ 615 } else if (IFA6_IS_DEPRECATED(ia6)) { 616 int oldflags = ia6->ia6_flags; 617 618 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 619 620 /* 621 * If a temporary address has just become deprecated, 622 * regenerate a new one if possible. 623 */ 624 if (V_ip6_use_tempaddr && 625 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 626 (oldflags & IN6_IFF_DEPRECATED) == 0) { 627 628 if (regen_tmpaddr(ia6) == 0) { 629 /* 630 * A new temporary address is 631 * generated. 632 * XXX: this means the address chain 633 * has changed while we are still in 634 * the loop. Although the change 635 * would not cause disaster (because 636 * it's not a deletion, but an 637 * addition,) we'd rather restart the 638 * loop just for safety. Or does this 639 * significantly reduce performance?? 640 */ 641 goto addrloop; 642 } 643 } 644 } else { 645 /* 646 * A new RA might have made a deprecated address 647 * preferred. 648 */ 649 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 650 } 651 } 652 653 /* expire prefix list */ 654 pr = V_nd_prefix.lh_first; 655 while (pr) { 656 /* 657 * check prefix lifetime. 658 * since pltime is just for autoconf, pltime processing for 659 * prefix is not necessary. 660 */ 661 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 662 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 663 struct nd_prefix *t; 664 t = pr->ndpr_next; 665 666 /* 667 * address expiration and prefix expiration are 668 * separate. NEVER perform in6_purgeaddr here. 669 */ 670 671 prelist_remove(pr); 672 pr = t; 673 } else 674 pr = pr->ndpr_next; 675 } 676 splx(s); 677 CURVNET_RESTORE(); 678 } 679 680 /* 681 * ia6 - deprecated/invalidated temporary address 682 */ 683 static int 684 regen_tmpaddr(struct in6_ifaddr *ia6) 685 { 686 struct ifaddr *ifa; 687 struct ifnet *ifp; 688 struct in6_ifaddr *public_ifa6 = NULL; 689 690 ifp = ia6->ia_ifa.ifa_ifp; 691 IF_ADDR_LOCK(ifp); 692 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 693 struct in6_ifaddr *it6; 694 695 if (ifa->ifa_addr->sa_family != AF_INET6) 696 continue; 697 698 it6 = (struct in6_ifaddr *)ifa; 699 700 /* ignore no autoconf addresses. */ 701 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 702 continue; 703 704 /* ignore autoconf addresses with different prefixes. */ 705 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 706 continue; 707 708 /* 709 * Now we are looking at an autoconf address with the same 710 * prefix as ours. If the address is temporary and is still 711 * preferred, do not create another one. It would be rare, but 712 * could happen, for example, when we resume a laptop PC after 713 * a long period. 714 */ 715 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 716 !IFA6_IS_DEPRECATED(it6)) { 717 public_ifa6 = NULL; 718 break; 719 } 720 721 /* 722 * This is a public autoconf address that has the same prefix 723 * as ours. If it is preferred, keep it. We can't break the 724 * loop here, because there may be a still-preferred temporary 725 * address with the prefix. 726 */ 727 if (!IFA6_IS_DEPRECATED(it6)) 728 public_ifa6 = it6; 729 730 if (public_ifa6 != NULL) 731 ifa_ref(&public_ifa6->ia_ifa); 732 } 733 IF_ADDR_UNLOCK(ifp); 734 735 if (public_ifa6 != NULL) { 736 int e; 737 738 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 739 ifa_free(&public_ifa6->ia_ifa); 740 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 741 " tmp addr,errno=%d\n", e); 742 return (-1); 743 } 744 ifa_free(&public_ifa6->ia_ifa); 745 return (0); 746 } 747 748 return (-1); 749 } 750 751 /* 752 * Nuke neighbor cache/prefix/default router management table, right before 753 * ifp goes away. 754 */ 755 void 756 nd6_purge(struct ifnet *ifp) 757 { 758 struct nd_defrouter *dr, *ndr; 759 struct nd_prefix *pr, *npr; 760 761 /* 762 * Nuke default router list entries toward ifp. 763 * We defer removal of default router list entries that is installed 764 * in the routing table, in order to keep additional side effects as 765 * small as possible. 766 */ 767 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { 768 ndr = TAILQ_NEXT(dr, dr_entry); 769 if (dr->installed) 770 continue; 771 772 if (dr->ifp == ifp) 773 defrtrlist_del(dr); 774 } 775 776 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = ndr) { 777 ndr = TAILQ_NEXT(dr, dr_entry); 778 if (!dr->installed) 779 continue; 780 781 if (dr->ifp == ifp) 782 defrtrlist_del(dr); 783 } 784 785 /* Nuke prefix list entries toward ifp */ 786 for (pr = V_nd_prefix.lh_first; pr; pr = npr) { 787 npr = pr->ndpr_next; 788 if (pr->ndpr_ifp == ifp) { 789 /* 790 * Because if_detach() does *not* release prefixes 791 * while purging addresses the reference count will 792 * still be above zero. We therefore reset it to 793 * make sure that the prefix really gets purged. 794 */ 795 pr->ndpr_refcnt = 0; 796 797 /* 798 * Previously, pr->ndpr_addr is removed as well, 799 * but I strongly believe we don't have to do it. 800 * nd6_purge() is only called from in6_ifdetach(), 801 * which removes all the associated interface addresses 802 * by itself. 803 * (jinmei@kame.net 20010129) 804 */ 805 prelist_remove(pr); 806 } 807 } 808 809 /* cancel default outgoing interface setting */ 810 if (V_nd6_defifindex == ifp->if_index) 811 nd6_setdefaultiface(0); 812 813 if (!V_ip6_forwarding && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 814 /* Refresh default router list. */ 815 defrouter_select(); 816 } 817 818 /* XXXXX 819 * We do not nuke the neighbor cache entries here any more 820 * because the neighbor cache is kept in if_afdata[AF_INET6]. 821 * nd6_purge() is invoked by in6_ifdetach() which is called 822 * from if_detach() where everything gets purged. So let 823 * in6_domifdetach() do the actual L2 table purging work. 824 */ 825 } 826 827 /* 828 * the caller acquires and releases the lock on the lltbls 829 * Returns the llentry locked 830 */ 831 struct llentry * 832 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 833 { 834 struct sockaddr_in6 sin6; 835 struct llentry *ln; 836 int llflags = 0; 837 838 bzero(&sin6, sizeof(sin6)); 839 sin6.sin6_len = sizeof(struct sockaddr_in6); 840 sin6.sin6_family = AF_INET6; 841 sin6.sin6_addr = *addr6; 842 843 IF_AFDATA_LOCK_ASSERT(ifp); 844 845 if (flags & ND6_CREATE) 846 llflags |= LLE_CREATE; 847 if (flags & ND6_EXCLUSIVE) 848 llflags |= LLE_EXCLUSIVE; 849 850 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 851 if ((ln != NULL) && (flags & LLE_CREATE)) { 852 ln->ln_state = ND6_LLINFO_NOSTATE; 853 callout_init(&ln->ln_timer_ch, 0); 854 } 855 856 return (ln); 857 } 858 859 /* 860 * Test whether a given IPv6 address is a neighbor or not, ignoring 861 * the actual neighbor cache. The neighbor cache is ignored in order 862 * to not reenter the routing code from within itself. 863 */ 864 static int 865 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 866 { 867 struct nd_prefix *pr; 868 struct ifaddr *dstaddr; 869 870 /* 871 * A link-local address is always a neighbor. 872 * XXX: a link does not necessarily specify a single interface. 873 */ 874 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 875 struct sockaddr_in6 sin6_copy; 876 u_int32_t zone; 877 878 /* 879 * We need sin6_copy since sa6_recoverscope() may modify the 880 * content (XXX). 881 */ 882 sin6_copy = *addr; 883 if (sa6_recoverscope(&sin6_copy)) 884 return (0); /* XXX: should be impossible */ 885 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 886 return (0); 887 if (sin6_copy.sin6_scope_id == zone) 888 return (1); 889 else 890 return (0); 891 } 892 893 /* 894 * If the address matches one of our addresses, 895 * it should be a neighbor. 896 * If the address matches one of our on-link prefixes, it should be a 897 * neighbor. 898 */ 899 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 900 if (pr->ndpr_ifp != ifp) 901 continue; 902 903 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 904 struct rtentry *rt; 905 rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0, 0); 906 if (rt == NULL) 907 continue; 908 /* 909 * This is the case where multiple interfaces 910 * have the same prefix, but only one is installed 911 * into the routing table and that prefix entry 912 * is not the one being examined here. In the case 913 * where RADIX_MPATH is enabled, multiple route 914 * entries (of the same rt_key value) will be 915 * installed because the interface addresses all 916 * differ. 917 */ 918 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 919 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 920 RTFREE_LOCKED(rt); 921 continue; 922 } 923 RTFREE_LOCKED(rt); 924 } 925 926 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 927 &addr->sin6_addr, &pr->ndpr_mask)) 928 return (1); 929 } 930 931 /* 932 * If the address is assigned on the node of the other side of 933 * a p2p interface, the address should be a neighbor. 934 */ 935 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 936 if (dstaddr != NULL) { 937 if (dstaddr->ifa_ifp == ifp) { 938 ifa_free(dstaddr); 939 return (1); 940 } 941 ifa_free(dstaddr); 942 } 943 944 /* 945 * If the default router list is empty, all addresses are regarded 946 * as on-link, and thus, as a neighbor. 947 * XXX: we restrict the condition to hosts, because routers usually do 948 * not have the "default router list". 949 */ 950 if (!V_ip6_forwarding && TAILQ_FIRST(&V_nd_defrouter) == NULL && 951 V_nd6_defifindex == ifp->if_index) { 952 return (1); 953 } 954 955 return (0); 956 } 957 958 959 /* 960 * Detect if a given IPv6 address identifies a neighbor on a given link. 961 * XXX: should take care of the destination of a p2p link? 962 */ 963 int 964 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 965 { 966 struct llentry *lle; 967 int rc = 0; 968 969 IF_AFDATA_UNLOCK_ASSERT(ifp); 970 if (nd6_is_new_addr_neighbor(addr, ifp)) 971 return (1); 972 973 /* 974 * Even if the address matches none of our addresses, it might be 975 * in the neighbor cache. 976 */ 977 IF_AFDATA_LOCK(ifp); 978 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 979 LLE_RUNLOCK(lle); 980 rc = 1; 981 } 982 IF_AFDATA_UNLOCK(ifp); 983 return (rc); 984 } 985 986 /* 987 * Free an nd6 llinfo entry. 988 * Since the function would cause significant changes in the kernel, DO NOT 989 * make it global, unless you have a strong reason for the change, and are sure 990 * that the change is safe. 991 */ 992 static struct llentry * 993 nd6_free(struct llentry *ln, int gc) 994 { 995 struct llentry *next; 996 struct nd_defrouter *dr; 997 struct ifnet *ifp=NULL; 998 999 /* 1000 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1001 * even though it is not harmful, it was not really necessary. 1002 */ 1003 1004 /* cancel timer */ 1005 nd6_llinfo_settimer(ln, -1); 1006 1007 if (!V_ip6_forwarding) { 1008 int s; 1009 s = splnet(); 1010 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp); 1011 1012 if (dr != NULL && dr->expire && 1013 ln->ln_state == ND6_LLINFO_STALE && gc) { 1014 /* 1015 * If the reason for the deletion is just garbage 1016 * collection, and the neighbor is an active default 1017 * router, do not delete it. Instead, reset the GC 1018 * timer using the router's lifetime. 1019 * Simply deleting the entry would affect default 1020 * router selection, which is not necessarily a good 1021 * thing, especially when we're using router preference 1022 * values. 1023 * XXX: the check for ln_state would be redundant, 1024 * but we intentionally keep it just in case. 1025 */ 1026 if (dr->expire > time_second) 1027 nd6_llinfo_settimer(ln, 1028 (dr->expire - time_second) * hz); 1029 else 1030 nd6_llinfo_settimer(ln, (long)V_nd6_gctimer * hz); 1031 splx(s); 1032 LLE_WLOCK(ln); 1033 LLE_REMREF(ln); 1034 LLE_WUNLOCK(ln); 1035 return (LIST_NEXT(ln, lle_next)); 1036 } 1037 1038 if (ln->ln_router || dr) { 1039 /* 1040 * rt6_flush must be called whether or not the neighbor 1041 * is in the Default Router List. 1042 * See a corresponding comment in nd6_na_input(). 1043 */ 1044 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ln->lle_tbl->llt_ifp); 1045 } 1046 1047 if (dr) { 1048 /* 1049 * Unreachablity of a router might affect the default 1050 * router selection and on-link detection of advertised 1051 * prefixes. 1052 */ 1053 1054 /* 1055 * Temporarily fake the state to choose a new default 1056 * router and to perform on-link determination of 1057 * prefixes correctly. 1058 * Below the state will be set correctly, 1059 * or the entry itself will be deleted. 1060 */ 1061 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1062 1063 /* 1064 * Since defrouter_select() does not affect the 1065 * on-link determination and MIP6 needs the check 1066 * before the default router selection, we perform 1067 * the check now. 1068 */ 1069 pfxlist_onlink_check(); 1070 1071 /* 1072 * refresh default router list 1073 */ 1074 defrouter_select(); 1075 } 1076 splx(s); 1077 } 1078 1079 /* 1080 * Before deleting the entry, remember the next entry as the 1081 * return value. We need this because pfxlist_onlink_check() above 1082 * might have freed other entries (particularly the old next entry) as 1083 * a side effect (XXX). 1084 */ 1085 next = LIST_NEXT(ln, lle_next); 1086 1087 ifp = ln->lle_tbl->llt_ifp; 1088 IF_AFDATA_LOCK(ifp); 1089 LLE_WLOCK(ln); 1090 LLE_REMREF(ln); 1091 llentry_free(ln); 1092 IF_AFDATA_UNLOCK(ifp); 1093 1094 return (next); 1095 } 1096 1097 /* 1098 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1099 * 1100 * XXX cost-effective methods? 1101 */ 1102 void 1103 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1104 { 1105 struct llentry *ln; 1106 struct ifnet *ifp; 1107 1108 if ((dst6 == NULL) || (rt == NULL)) 1109 return; 1110 1111 ifp = rt->rt_ifp; 1112 IF_AFDATA_LOCK(ifp); 1113 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1114 IF_AFDATA_UNLOCK(ifp); 1115 if (ln == NULL) 1116 return; 1117 1118 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1119 goto done; 1120 1121 /* 1122 * if we get upper-layer reachability confirmation many times, 1123 * it is possible we have false information. 1124 */ 1125 if (!force) { 1126 ln->ln_byhint++; 1127 if (ln->ln_byhint > V_nd6_maxnudhint) { 1128 goto done; 1129 } 1130 } 1131 1132 ln->ln_state = ND6_LLINFO_REACHABLE; 1133 if (!ND6_LLINFO_PERMANENT(ln)) { 1134 nd6_llinfo_settimer_locked(ln, 1135 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1136 } 1137 done: 1138 LLE_WUNLOCK(ln); 1139 } 1140 1141 1142 int 1143 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1144 { 1145 struct in6_drlist *drl = (struct in6_drlist *)data; 1146 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1147 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1148 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1149 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1150 struct nd_defrouter *dr; 1151 struct nd_prefix *pr; 1152 int i = 0, error = 0; 1153 int s; 1154 1155 switch (cmd) { 1156 case SIOCGDRLST_IN6: 1157 /* 1158 * obsolete API, use sysctl under net.inet6.icmp6 1159 */ 1160 bzero(drl, sizeof(*drl)); 1161 s = splnet(); 1162 dr = TAILQ_FIRST(&V_nd_defrouter); 1163 while (dr && i < DRLSTSIZ) { 1164 drl->defrouter[i].rtaddr = dr->rtaddr; 1165 in6_clearscope(&drl->defrouter[i].rtaddr); 1166 1167 drl->defrouter[i].flags = dr->flags; 1168 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1169 drl->defrouter[i].expire = dr->expire; 1170 drl->defrouter[i].if_index = dr->ifp->if_index; 1171 i++; 1172 dr = TAILQ_NEXT(dr, dr_entry); 1173 } 1174 splx(s); 1175 break; 1176 case SIOCGPRLST_IN6: 1177 /* 1178 * obsolete API, use sysctl under net.inet6.icmp6 1179 * 1180 * XXX the structure in6_prlist was changed in backward- 1181 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1182 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1183 */ 1184 /* 1185 * XXX meaning of fields, especialy "raflags", is very 1186 * differnet between RA prefix list and RR/static prefix list. 1187 * how about separating ioctls into two? 1188 */ 1189 bzero(oprl, sizeof(*oprl)); 1190 s = splnet(); 1191 pr = V_nd_prefix.lh_first; 1192 while (pr && i < PRLSTSIZ) { 1193 struct nd_pfxrouter *pfr; 1194 int j; 1195 1196 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1197 oprl->prefix[i].raflags = pr->ndpr_raf; 1198 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1199 oprl->prefix[i].vltime = pr->ndpr_vltime; 1200 oprl->prefix[i].pltime = pr->ndpr_pltime; 1201 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1202 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1203 oprl->prefix[i].expire = 0; 1204 else { 1205 time_t maxexpire; 1206 1207 /* XXX: we assume time_t is signed. */ 1208 maxexpire = (-1) & 1209 ~((time_t)1 << 1210 ((sizeof(maxexpire) * 8) - 1)); 1211 if (pr->ndpr_vltime < 1212 maxexpire - pr->ndpr_lastupdate) { 1213 oprl->prefix[i].expire = 1214 pr->ndpr_lastupdate + 1215 pr->ndpr_vltime; 1216 } else 1217 oprl->prefix[i].expire = maxexpire; 1218 } 1219 1220 pfr = pr->ndpr_advrtrs.lh_first; 1221 j = 0; 1222 while (pfr) { 1223 if (j < DRLSTSIZ) { 1224 #define RTRADDR oprl->prefix[i].advrtr[j] 1225 RTRADDR = pfr->router->rtaddr; 1226 in6_clearscope(&RTRADDR); 1227 #undef RTRADDR 1228 } 1229 j++; 1230 pfr = pfr->pfr_next; 1231 } 1232 oprl->prefix[i].advrtrs = j; 1233 oprl->prefix[i].origin = PR_ORIG_RA; 1234 1235 i++; 1236 pr = pr->ndpr_next; 1237 } 1238 splx(s); 1239 1240 break; 1241 case OSIOCGIFINFO_IN6: 1242 #define ND ndi->ndi 1243 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1244 bzero(&ND, sizeof(ND)); 1245 ND.linkmtu = IN6_LINKMTU(ifp); 1246 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1247 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1248 ND.reachable = ND_IFINFO(ifp)->reachable; 1249 ND.retrans = ND_IFINFO(ifp)->retrans; 1250 ND.flags = ND_IFINFO(ifp)->flags; 1251 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1252 ND.chlim = ND_IFINFO(ifp)->chlim; 1253 break; 1254 case SIOCGIFINFO_IN6: 1255 ND = *ND_IFINFO(ifp); 1256 break; 1257 case SIOCSIFINFO_IN6: 1258 /* 1259 * used to change host variables from userland. 1260 * intented for a use on router to reflect RA configurations. 1261 */ 1262 /* 0 means 'unspecified' */ 1263 if (ND.linkmtu != 0) { 1264 if (ND.linkmtu < IPV6_MMTU || 1265 ND.linkmtu > IN6_LINKMTU(ifp)) { 1266 error = EINVAL; 1267 break; 1268 } 1269 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1270 } 1271 1272 if (ND.basereachable != 0) { 1273 int obasereachable = ND_IFINFO(ifp)->basereachable; 1274 1275 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1276 if (ND.basereachable != obasereachable) 1277 ND_IFINFO(ifp)->reachable = 1278 ND_COMPUTE_RTIME(ND.basereachable); 1279 } 1280 if (ND.retrans != 0) 1281 ND_IFINFO(ifp)->retrans = ND.retrans; 1282 if (ND.chlim != 0) 1283 ND_IFINFO(ifp)->chlim = ND.chlim; 1284 /* FALLTHROUGH */ 1285 case SIOCSIFINFO_FLAGS: 1286 { 1287 struct ifaddr *ifa; 1288 struct in6_ifaddr *ia; 1289 1290 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1291 !(ND.flags & ND6_IFF_IFDISABLED)) { 1292 /* ifdisabled 1->0 transision */ 1293 1294 /* 1295 * If the interface is marked as ND6_IFF_IFDISABLED and 1296 * has an link-local address with IN6_IFF_DUPLICATED, 1297 * do not clear ND6_IFF_IFDISABLED. 1298 * See RFC 4862, Section 5.4.5. 1299 */ 1300 int duplicated_linklocal = 0; 1301 1302 IF_ADDR_LOCK(ifp); 1303 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1304 if (ifa->ifa_addr->sa_family != AF_INET6) 1305 continue; 1306 ia = (struct in6_ifaddr *)ifa; 1307 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1308 IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) { 1309 duplicated_linklocal = 1; 1310 break; 1311 } 1312 } 1313 IF_ADDR_UNLOCK(ifp); 1314 1315 if (duplicated_linklocal) { 1316 ND.flags |= ND6_IFF_IFDISABLED; 1317 log(LOG_ERR, "Cannot enable an interface" 1318 " with a link-local address marked" 1319 " duplicate.\n"); 1320 } else { 1321 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1322 in6_if_up(ifp); 1323 } 1324 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1325 (ND.flags & ND6_IFF_IFDISABLED)) { 1326 /* ifdisabled 0->1 transision */ 1327 /* Mark all IPv6 address as tentative. */ 1328 1329 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1330 IF_ADDR_LOCK(ifp); 1331 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1332 if (ifa->ifa_addr->sa_family != AF_INET6) 1333 continue; 1334 ia = (struct in6_ifaddr *)ifa; 1335 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1336 } 1337 IF_ADDR_UNLOCK(ifp); 1338 } 1339 1340 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL) && 1341 (ND.flags & ND6_IFF_AUTO_LINKLOCAL)) { 1342 /* auto_linklocal 0->1 transision */ 1343 1344 /* If no link-local address on ifp, configure */ 1345 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1346 in6_ifattach(ifp, NULL); 1347 } 1348 } 1349 ND_IFINFO(ifp)->flags = ND.flags; 1350 break; 1351 #undef ND 1352 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1353 /* sync kernel routing table with the default router list */ 1354 defrouter_reset(); 1355 defrouter_select(); 1356 break; 1357 case SIOCSPFXFLUSH_IN6: 1358 { 1359 /* flush all the prefix advertised by routers */ 1360 struct nd_prefix *pr, *next; 1361 1362 s = splnet(); 1363 for (pr = V_nd_prefix.lh_first; pr; pr = next) { 1364 struct in6_ifaddr *ia, *ia_next; 1365 1366 next = pr->ndpr_next; 1367 1368 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1369 continue; /* XXX */ 1370 1371 /* do we really have to remove addresses as well? */ 1372 /* XXXRW: in6_ifaddrhead locking. */ 1373 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1374 ia_next) { 1375 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1376 continue; 1377 1378 if (ia->ia6_ndpr == pr) 1379 in6_purgeaddr(&ia->ia_ifa); 1380 } 1381 prelist_remove(pr); 1382 } 1383 splx(s); 1384 break; 1385 } 1386 case SIOCSRTRFLUSH_IN6: 1387 { 1388 /* flush all the default routers */ 1389 struct nd_defrouter *dr, *next; 1390 1391 s = splnet(); 1392 defrouter_reset(); 1393 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; dr = next) { 1394 next = TAILQ_NEXT(dr, dr_entry); 1395 defrtrlist_del(dr); 1396 } 1397 defrouter_select(); 1398 splx(s); 1399 break; 1400 } 1401 case SIOCGNBRINFO_IN6: 1402 { 1403 struct llentry *ln; 1404 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1405 1406 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1407 return (error); 1408 1409 IF_AFDATA_LOCK(ifp); 1410 ln = nd6_lookup(&nb_addr, 0, ifp); 1411 IF_AFDATA_UNLOCK(ifp); 1412 1413 if (ln == NULL) { 1414 error = EINVAL; 1415 break; 1416 } 1417 nbi->state = ln->ln_state; 1418 nbi->asked = ln->la_asked; 1419 nbi->isrouter = ln->ln_router; 1420 nbi->expire = ln->la_expire; 1421 LLE_RUNLOCK(ln); 1422 break; 1423 } 1424 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1425 ndif->ifindex = V_nd6_defifindex; 1426 break; 1427 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1428 return (nd6_setdefaultiface(ndif->ifindex)); 1429 } 1430 return (error); 1431 } 1432 1433 /* 1434 * Create neighbor cache entry and cache link-layer address, 1435 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1436 * 1437 * type - ICMP6 type 1438 * code - type dependent information 1439 * 1440 * XXXXX 1441 * The caller of this function already acquired the ndp 1442 * cache table lock because the cache entry is returned. 1443 */ 1444 struct llentry * 1445 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1446 int lladdrlen, int type, int code) 1447 { 1448 struct llentry *ln = NULL; 1449 int is_newentry; 1450 int do_update; 1451 int olladdr; 1452 int llchange; 1453 int flags = 0; 1454 int newstate = 0; 1455 uint16_t router = 0; 1456 struct sockaddr_in6 sin6; 1457 struct mbuf *chain = NULL; 1458 int static_route = 0; 1459 1460 IF_AFDATA_UNLOCK_ASSERT(ifp); 1461 1462 if (ifp == NULL) 1463 panic("ifp == NULL in nd6_cache_lladdr"); 1464 if (from == NULL) 1465 panic("from == NULL in nd6_cache_lladdr"); 1466 1467 /* nothing must be updated for unspecified address */ 1468 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1469 return NULL; 1470 1471 /* 1472 * Validation about ifp->if_addrlen and lladdrlen must be done in 1473 * the caller. 1474 * 1475 * XXX If the link does not have link-layer adderss, what should 1476 * we do? (ifp->if_addrlen == 0) 1477 * Spec says nothing in sections for RA, RS and NA. There's small 1478 * description on it in NS section (RFC 2461 7.2.3). 1479 */ 1480 flags |= lladdr ? ND6_EXCLUSIVE : 0; 1481 IF_AFDATA_LOCK(ifp); 1482 ln = nd6_lookup(from, flags, ifp); 1483 1484 if (ln == NULL) { 1485 flags |= LLE_EXCLUSIVE; 1486 ln = nd6_lookup(from, flags |ND6_CREATE, ifp); 1487 IF_AFDATA_UNLOCK(ifp); 1488 is_newentry = 1; 1489 } else { 1490 IF_AFDATA_UNLOCK(ifp); 1491 /* do nothing if static ndp is set */ 1492 if (ln->la_flags & LLE_STATIC) { 1493 static_route = 1; 1494 goto done; 1495 } 1496 is_newentry = 0; 1497 } 1498 if (ln == NULL) 1499 return (NULL); 1500 1501 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1502 if (olladdr && lladdr) { 1503 llchange = bcmp(lladdr, &ln->ll_addr, 1504 ifp->if_addrlen); 1505 } else 1506 llchange = 0; 1507 1508 /* 1509 * newentry olladdr lladdr llchange (*=record) 1510 * 0 n n -- (1) 1511 * 0 y n -- (2) 1512 * 0 n y -- (3) * STALE 1513 * 0 y y n (4) * 1514 * 0 y y y (5) * STALE 1515 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1516 * 1 -- y -- (7) * STALE 1517 */ 1518 1519 if (lladdr) { /* (3-5) and (7) */ 1520 /* 1521 * Record source link-layer address 1522 * XXX is it dependent to ifp->if_type? 1523 */ 1524 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1525 ln->la_flags |= LLE_VALID; 1526 } 1527 1528 if (!is_newentry) { 1529 if ((!olladdr && lladdr != NULL) || /* (3) */ 1530 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1531 do_update = 1; 1532 newstate = ND6_LLINFO_STALE; 1533 } else /* (1-2,4) */ 1534 do_update = 0; 1535 } else { 1536 do_update = 1; 1537 if (lladdr == NULL) /* (6) */ 1538 newstate = ND6_LLINFO_NOSTATE; 1539 else /* (7) */ 1540 newstate = ND6_LLINFO_STALE; 1541 } 1542 1543 if (do_update) { 1544 /* 1545 * Update the state of the neighbor cache. 1546 */ 1547 ln->ln_state = newstate; 1548 1549 if (ln->ln_state == ND6_LLINFO_STALE) { 1550 /* 1551 * XXX: since nd6_output() below will cause 1552 * state tansition to DELAY and reset the timer, 1553 * we must set the timer now, although it is actually 1554 * meaningless. 1555 */ 1556 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1557 1558 if (ln->la_hold) { 1559 struct mbuf *m_hold, *m_hold_next; 1560 1561 /* 1562 * reset the la_hold in advance, to explicitly 1563 * prevent a la_hold lookup in nd6_output() 1564 * (wouldn't happen, though...) 1565 */ 1566 for (m_hold = ln->la_hold, ln->la_hold = NULL; 1567 m_hold; m_hold = m_hold_next) { 1568 m_hold_next = m_hold->m_nextpkt; 1569 m_hold->m_nextpkt = NULL; 1570 1571 /* 1572 * we assume ifp is not a p2p here, so 1573 * just set the 2nd argument as the 1574 * 1st one. 1575 */ 1576 nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain); 1577 } 1578 /* 1579 * If we have mbufs in the chain we need to do 1580 * deferred transmit. Copy the address from the 1581 * llentry before dropping the lock down below. 1582 */ 1583 if (chain != NULL) 1584 memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6)); 1585 } 1586 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1587 /* probe right away */ 1588 nd6_llinfo_settimer_locked((void *)ln, 0); 1589 } 1590 } 1591 1592 /* 1593 * ICMP6 type dependent behavior. 1594 * 1595 * NS: clear IsRouter if new entry 1596 * RS: clear IsRouter 1597 * RA: set IsRouter if there's lladdr 1598 * redir: clear IsRouter if new entry 1599 * 1600 * RA case, (1): 1601 * The spec says that we must set IsRouter in the following cases: 1602 * - If lladdr exist, set IsRouter. This means (1-5). 1603 * - If it is old entry (!newentry), set IsRouter. This means (7). 1604 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1605 * A quetion arises for (1) case. (1) case has no lladdr in the 1606 * neighbor cache, this is similar to (6). 1607 * This case is rare but we figured that we MUST NOT set IsRouter. 1608 * 1609 * newentry olladdr lladdr llchange NS RS RA redir 1610 * D R 1611 * 0 n n -- (1) c ? s 1612 * 0 y n -- (2) c s s 1613 * 0 n y -- (3) c s s 1614 * 0 y y n (4) c s s 1615 * 0 y y y (5) c s s 1616 * 1 -- n -- (6) c c c s 1617 * 1 -- y -- (7) c c s c s 1618 * 1619 * (c=clear s=set) 1620 */ 1621 switch (type & 0xff) { 1622 case ND_NEIGHBOR_SOLICIT: 1623 /* 1624 * New entry must have is_router flag cleared. 1625 */ 1626 if (is_newentry) /* (6-7) */ 1627 ln->ln_router = 0; 1628 break; 1629 case ND_REDIRECT: 1630 /* 1631 * If the icmp is a redirect to a better router, always set the 1632 * is_router flag. Otherwise, if the entry is newly created, 1633 * clear the flag. [RFC 2461, sec 8.3] 1634 */ 1635 if (code == ND_REDIRECT_ROUTER) 1636 ln->ln_router = 1; 1637 else if (is_newentry) /* (6-7) */ 1638 ln->ln_router = 0; 1639 break; 1640 case ND_ROUTER_SOLICIT: 1641 /* 1642 * is_router flag must always be cleared. 1643 */ 1644 ln->ln_router = 0; 1645 break; 1646 case ND_ROUTER_ADVERT: 1647 /* 1648 * Mark an entry with lladdr as a router. 1649 */ 1650 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1651 (is_newentry && lladdr)) { /* (7) */ 1652 ln->ln_router = 1; 1653 } 1654 break; 1655 } 1656 1657 if (ln != NULL) { 1658 static_route = (ln->la_flags & LLE_STATIC); 1659 router = ln->ln_router; 1660 1661 if (flags & ND6_EXCLUSIVE) 1662 LLE_WUNLOCK(ln); 1663 else 1664 LLE_RUNLOCK(ln); 1665 if (static_route) 1666 ln = NULL; 1667 } 1668 if (chain) 1669 nd6_output_flush(ifp, ifp, chain, &sin6, NULL); 1670 1671 /* 1672 * When the link-layer address of a router changes, select the 1673 * best router again. In particular, when the neighbor entry is newly 1674 * created, it might affect the selection policy. 1675 * Question: can we restrict the first condition to the "is_newentry" 1676 * case? 1677 * XXX: when we hear an RA from a new router with the link-layer 1678 * address option, defrouter_select() is called twice, since 1679 * defrtrlist_update called the function as well. However, I believe 1680 * we can compromise the overhead, since it only happens the first 1681 * time. 1682 * XXX: although defrouter_select() should not have a bad effect 1683 * for those are not autoconfigured hosts, we explicitly avoid such 1684 * cases for safety. 1685 */ 1686 if (do_update && router && !V_ip6_forwarding && 1687 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1688 /* 1689 * guaranteed recursion 1690 */ 1691 defrouter_select(); 1692 } 1693 1694 return (ln); 1695 done: 1696 if (ln != NULL) { 1697 if (flags & ND6_EXCLUSIVE) 1698 LLE_WUNLOCK(ln); 1699 else 1700 LLE_RUNLOCK(ln); 1701 if (static_route) 1702 ln = NULL; 1703 } 1704 return (ln); 1705 } 1706 1707 static void 1708 nd6_slowtimo(void *arg) 1709 { 1710 CURVNET_SET((struct vnet *) arg); 1711 struct nd_ifinfo *nd6if; 1712 struct ifnet *ifp; 1713 1714 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1715 nd6_slowtimo, curvnet); 1716 IFNET_RLOCK_NOSLEEP(); 1717 for (ifp = TAILQ_FIRST(&V_ifnet); ifp; 1718 ifp = TAILQ_NEXT(ifp, if_list)) { 1719 nd6if = ND_IFINFO(ifp); 1720 if (nd6if->basereachable && /* already initialized */ 1721 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1722 /* 1723 * Since reachable time rarely changes by router 1724 * advertisements, we SHOULD insure that a new random 1725 * value gets recomputed at least once every few hours. 1726 * (RFC 2461, 6.3.4) 1727 */ 1728 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1729 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1730 } 1731 } 1732 IFNET_RUNLOCK_NOSLEEP(); 1733 CURVNET_RESTORE(); 1734 } 1735 1736 int 1737 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1738 struct sockaddr_in6 *dst, struct rtentry *rt0) 1739 { 1740 1741 return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL)); 1742 } 1743 1744 1745 /* 1746 * Note that I'm not enforcing any global serialization 1747 * lle state or asked changes here as the logic is too 1748 * complicated to avoid having to always acquire an exclusive 1749 * lock 1750 * KMM 1751 * 1752 */ 1753 #define senderr(e) { error = (e); goto bad;} 1754 1755 int 1756 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1757 struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle, 1758 struct mbuf **chain) 1759 { 1760 struct mbuf *m = m0; 1761 struct llentry *ln = lle; 1762 int error = 0; 1763 int flags = 0; 1764 1765 #ifdef INVARIANTS 1766 if (lle != NULL) { 1767 1768 LLE_WLOCK_ASSERT(lle); 1769 1770 KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed")); 1771 } 1772 #endif 1773 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1774 goto sendpkt; 1775 1776 if (nd6_need_cache(ifp) == 0) 1777 goto sendpkt; 1778 1779 /* 1780 * next hop determination. This routine is derived from ether_output. 1781 */ 1782 1783 /* 1784 * Address resolution or Neighbor Unreachability Detection 1785 * for the next hop. 1786 * At this point, the destination of the packet must be a unicast 1787 * or an anycast address(i.e. not a multicast). 1788 */ 1789 1790 flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0; 1791 if (ln == NULL) { 1792 retry: 1793 IF_AFDATA_LOCK(ifp); 1794 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst); 1795 IF_AFDATA_UNLOCK(ifp); 1796 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1797 /* 1798 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1799 * the condition below is not very efficient. But we believe 1800 * it is tolerable, because this should be a rare case. 1801 */ 1802 flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0); 1803 IF_AFDATA_LOCK(ifp); 1804 ln = nd6_lookup(&dst->sin6_addr, flags, ifp); 1805 IF_AFDATA_UNLOCK(ifp); 1806 } 1807 } 1808 if (ln == NULL) { 1809 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1810 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1811 char ip6buf[INET6_ADDRSTRLEN]; 1812 log(LOG_DEBUG, 1813 "nd6_output: can't allocate llinfo for %s " 1814 "(ln=%p)\n", 1815 ip6_sprintf(ip6buf, &dst->sin6_addr), ln); 1816 senderr(EIO); /* XXX: good error? */ 1817 } 1818 goto sendpkt; /* send anyway */ 1819 } 1820 1821 /* We don't have to do link-layer address resolution on a p2p link. */ 1822 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1823 ln->ln_state < ND6_LLINFO_REACHABLE) { 1824 if ((flags & LLE_EXCLUSIVE) == 0) { 1825 flags |= LLE_EXCLUSIVE; 1826 goto retry; 1827 } 1828 ln->ln_state = ND6_LLINFO_STALE; 1829 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1830 } 1831 1832 /* 1833 * The first time we send a packet to a neighbor whose entry is 1834 * STALE, we have to change the state to DELAY and a sets a timer to 1835 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1836 * neighbor unreachability detection on expiration. 1837 * (RFC 2461 7.3.3) 1838 */ 1839 if (ln->ln_state == ND6_LLINFO_STALE) { 1840 if ((flags & LLE_EXCLUSIVE) == 0) { 1841 flags |= LLE_EXCLUSIVE; 1842 LLE_RUNLOCK(ln); 1843 goto retry; 1844 } 1845 ln->la_asked = 0; 1846 ln->ln_state = ND6_LLINFO_DELAY; 1847 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1848 } 1849 1850 /* 1851 * If the neighbor cache entry has a state other than INCOMPLETE 1852 * (i.e. its link-layer address is already resolved), just 1853 * send the packet. 1854 */ 1855 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1856 goto sendpkt; 1857 1858 /* 1859 * There is a neighbor cache entry, but no ethernet address 1860 * response yet. Append this latest packet to the end of the 1861 * packet queue in the mbuf, unless the number of the packet 1862 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 1863 * the oldest packet in the queue will be removed. 1864 */ 1865 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1866 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1867 1868 if ((flags & LLE_EXCLUSIVE) == 0) { 1869 flags |= LLE_EXCLUSIVE; 1870 LLE_RUNLOCK(ln); 1871 goto retry; 1872 } 1873 if (ln->la_hold) { 1874 struct mbuf *m_hold; 1875 int i; 1876 1877 i = 0; 1878 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) { 1879 i++; 1880 if (m_hold->m_nextpkt == NULL) { 1881 m_hold->m_nextpkt = m; 1882 break; 1883 } 1884 } 1885 while (i >= V_nd6_maxqueuelen) { 1886 m_hold = ln->la_hold; 1887 ln->la_hold = ln->la_hold->m_nextpkt; 1888 m_freem(m_hold); 1889 i--; 1890 } 1891 } else { 1892 ln->la_hold = m; 1893 } 1894 /* 1895 * We did the lookup (no lle arg) so we 1896 * need to do the unlock here 1897 */ 1898 if (lle == NULL) { 1899 if (flags & LLE_EXCLUSIVE) 1900 LLE_WUNLOCK(ln); 1901 else 1902 LLE_RUNLOCK(ln); 1903 } 1904 1905 /* 1906 * If there has been no NS for the neighbor after entering the 1907 * INCOMPLETE state, send the first solicitation. 1908 */ 1909 if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) { 1910 ln->la_asked++; 1911 1912 nd6_llinfo_settimer(ln, 1913 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1914 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1915 } 1916 return (0); 1917 1918 sendpkt: 1919 /* discard the packet if IPv6 operation is disabled on the interface */ 1920 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1921 error = ENETDOWN; /* better error? */ 1922 goto bad; 1923 } 1924 /* 1925 * ln is valid and the caller did not pass in 1926 * an llentry 1927 */ 1928 if ((ln != NULL) && (lle == NULL)) { 1929 if (flags & LLE_EXCLUSIVE) 1930 LLE_WUNLOCK(ln); 1931 else 1932 LLE_RUNLOCK(ln); 1933 } 1934 1935 #ifdef MAC 1936 mac_netinet6_nd6_send(ifp, m); 1937 #endif 1938 /* 1939 * We were passed in a pointer to an lle with the lock held 1940 * this means that we can't call if_output as we will 1941 * recurse on the lle lock - so what we do is we create 1942 * a list of mbufs to send and transmit them in the caller 1943 * after the lock is dropped 1944 */ 1945 if (lle != NULL) { 1946 if (*chain == NULL) 1947 *chain = m; 1948 else { 1949 struct mbuf *m = *chain; 1950 1951 /* 1952 * append mbuf to end of deferred chain 1953 */ 1954 while (m->m_nextpkt != NULL) 1955 m = m->m_nextpkt; 1956 m->m_nextpkt = m; 1957 } 1958 return (error); 1959 } 1960 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1961 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1962 NULL)); 1963 } 1964 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL); 1965 return (error); 1966 1967 bad: 1968 /* 1969 * ln is valid and the caller did not pass in 1970 * an llentry 1971 */ 1972 if ((ln != NULL) && (lle == NULL)) { 1973 if (flags & LLE_EXCLUSIVE) 1974 LLE_WUNLOCK(ln); 1975 else 1976 LLE_RUNLOCK(ln); 1977 } 1978 if (m) 1979 m_freem(m); 1980 return (error); 1981 } 1982 #undef senderr 1983 1984 1985 int 1986 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 1987 struct sockaddr_in6 *dst, struct route *ro) 1988 { 1989 struct mbuf *m, *m_head; 1990 struct ifnet *outifp; 1991 int error = 0; 1992 1993 m_head = chain; 1994 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 1995 outifp = origifp; 1996 else 1997 outifp = ifp; 1998 1999 while (m_head) { 2000 m = m_head; 2001 m_head = m_head->m_nextpkt; 2002 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro); 2003 } 2004 2005 /* 2006 * XXX 2007 * note that intermediate errors are blindly ignored - but this is 2008 * the same convention as used with nd6_output when called by 2009 * nd6_cache_lladdr 2010 */ 2011 return (error); 2012 } 2013 2014 2015 int 2016 nd6_need_cache(struct ifnet *ifp) 2017 { 2018 /* 2019 * XXX: we currently do not make neighbor cache on any interface 2020 * other than ARCnet, Ethernet, FDDI and GIF. 2021 * 2022 * RFC2893 says: 2023 * - unidirectional tunnels needs no ND 2024 */ 2025 switch (ifp->if_type) { 2026 case IFT_ARCNET: 2027 case IFT_ETHER: 2028 case IFT_FDDI: 2029 case IFT_IEEE1394: 2030 #ifdef IFT_L2VLAN 2031 case IFT_L2VLAN: 2032 #endif 2033 #ifdef IFT_IEEE80211 2034 case IFT_IEEE80211: 2035 #endif 2036 #ifdef IFT_CARP 2037 case IFT_CARP: 2038 #endif 2039 case IFT_GIF: /* XXX need more cases? */ 2040 case IFT_PPP: 2041 case IFT_TUNNEL: 2042 case IFT_BRIDGE: 2043 case IFT_PROPVIRTUAL: 2044 return (1); 2045 default: 2046 return (0); 2047 } 2048 } 2049 2050 /* 2051 * the callers of this function need to be re-worked to drop 2052 * the lle lock, drop here for now 2053 */ 2054 int 2055 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2056 struct sockaddr *dst, u_char *desten, struct llentry **lle) 2057 { 2058 struct llentry *ln; 2059 2060 *lle = NULL; 2061 IF_AFDATA_UNLOCK_ASSERT(ifp); 2062 if (m->m_flags & M_MCAST) { 2063 int i; 2064 2065 switch (ifp->if_type) { 2066 case IFT_ETHER: 2067 case IFT_FDDI: 2068 #ifdef IFT_L2VLAN 2069 case IFT_L2VLAN: 2070 #endif 2071 #ifdef IFT_IEEE80211 2072 case IFT_IEEE80211: 2073 #endif 2074 case IFT_BRIDGE: 2075 case IFT_ISO88025: 2076 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2077 desten); 2078 return (0); 2079 case IFT_IEEE1394: 2080 /* 2081 * netbsd can use if_broadcastaddr, but we don't do so 2082 * to reduce # of ifdef. 2083 */ 2084 for (i = 0; i < ifp->if_addrlen; i++) 2085 desten[i] = ~0; 2086 return (0); 2087 case IFT_ARCNET: 2088 *desten = 0; 2089 return (0); 2090 default: 2091 m_freem(m); 2092 return (EAFNOSUPPORT); 2093 } 2094 } 2095 2096 2097 /* 2098 * the entry should have been created in nd6_store_lladdr 2099 */ 2100 IF_AFDATA_LOCK(ifp); 2101 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2102 IF_AFDATA_UNLOCK(ifp); 2103 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2104 if (ln != NULL) 2105 LLE_RUNLOCK(ln); 2106 /* this could happen, if we could not allocate memory */ 2107 m_freem(m); 2108 return (1); 2109 } 2110 2111 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2112 *lle = ln; 2113 LLE_RUNLOCK(ln); 2114 /* 2115 * A *small* use after free race exists here 2116 */ 2117 return (0); 2118 } 2119 2120 static void 2121 clear_llinfo_pqueue(struct llentry *ln) 2122 { 2123 struct mbuf *m_hold, *m_hold_next; 2124 2125 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2126 m_hold_next = m_hold->m_nextpkt; 2127 m_hold->m_nextpkt = NULL; 2128 m_freem(m_hold); 2129 } 2130 2131 ln->la_hold = NULL; 2132 return; 2133 } 2134 2135 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2136 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2137 #ifdef SYSCTL_DECL 2138 SYSCTL_DECL(_net_inet6_icmp6); 2139 #endif 2140 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2141 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2142 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2143 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2144 SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2145 CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2146 2147 static int 2148 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2149 { 2150 int error; 2151 char buf[1024] __aligned(4); 2152 struct in6_defrouter *d, *de; 2153 struct nd_defrouter *dr; 2154 2155 if (req->newptr) 2156 return EPERM; 2157 error = 0; 2158 2159 for (dr = TAILQ_FIRST(&V_nd_defrouter); dr; 2160 dr = TAILQ_NEXT(dr, dr_entry)) { 2161 d = (struct in6_defrouter *)buf; 2162 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2163 2164 if (d + 1 <= de) { 2165 bzero(d, sizeof(*d)); 2166 d->rtaddr.sin6_family = AF_INET6; 2167 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2168 d->rtaddr.sin6_addr = dr->rtaddr; 2169 error = sa6_recoverscope(&d->rtaddr); 2170 if (error != 0) 2171 return (error); 2172 d->flags = dr->flags; 2173 d->rtlifetime = dr->rtlifetime; 2174 d->expire = dr->expire; 2175 d->if_index = dr->ifp->if_index; 2176 } else 2177 panic("buffer too short"); 2178 2179 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2180 if (error) 2181 break; 2182 } 2183 2184 return (error); 2185 } 2186 2187 static int 2188 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2189 { 2190 int error; 2191 char buf[1024] __aligned(4); 2192 struct in6_prefix *p, *pe; 2193 struct nd_prefix *pr; 2194 char ip6buf[INET6_ADDRSTRLEN]; 2195 2196 if (req->newptr) 2197 return EPERM; 2198 error = 0; 2199 2200 for (pr = V_nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2201 u_short advrtrs; 2202 size_t advance; 2203 struct sockaddr_in6 *sin6, *s6; 2204 struct nd_pfxrouter *pfr; 2205 2206 p = (struct in6_prefix *)buf; 2207 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2208 2209 if (p + 1 <= pe) { 2210 bzero(p, sizeof(*p)); 2211 sin6 = (struct sockaddr_in6 *)(p + 1); 2212 2213 p->prefix = pr->ndpr_prefix; 2214 if (sa6_recoverscope(&p->prefix)) { 2215 log(LOG_ERR, 2216 "scope error in prefix list (%s)\n", 2217 ip6_sprintf(ip6buf, &p->prefix.sin6_addr)); 2218 /* XXX: press on... */ 2219 } 2220 p->raflags = pr->ndpr_raf; 2221 p->prefixlen = pr->ndpr_plen; 2222 p->vltime = pr->ndpr_vltime; 2223 p->pltime = pr->ndpr_pltime; 2224 p->if_index = pr->ndpr_ifp->if_index; 2225 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2226 p->expire = 0; 2227 else { 2228 time_t maxexpire; 2229 2230 /* XXX: we assume time_t is signed. */ 2231 maxexpire = (-1) & 2232 ~((time_t)1 << 2233 ((sizeof(maxexpire) * 8) - 1)); 2234 if (pr->ndpr_vltime < 2235 maxexpire - pr->ndpr_lastupdate) { 2236 p->expire = pr->ndpr_lastupdate + 2237 pr->ndpr_vltime; 2238 } else 2239 p->expire = maxexpire; 2240 } 2241 p->refcnt = pr->ndpr_refcnt; 2242 p->flags = pr->ndpr_stateflags; 2243 p->origin = PR_ORIG_RA; 2244 advrtrs = 0; 2245 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2246 pfr = pfr->pfr_next) { 2247 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2248 advrtrs++; 2249 continue; 2250 } 2251 s6 = &sin6[advrtrs]; 2252 bzero(s6, sizeof(*s6)); 2253 s6->sin6_family = AF_INET6; 2254 s6->sin6_len = sizeof(*sin6); 2255 s6->sin6_addr = pfr->router->rtaddr; 2256 if (sa6_recoverscope(s6)) { 2257 log(LOG_ERR, 2258 "scope error in " 2259 "prefix list (%s)\n", 2260 ip6_sprintf(ip6buf, 2261 &pfr->router->rtaddr)); 2262 } 2263 advrtrs++; 2264 } 2265 p->advrtrs = advrtrs; 2266 } else 2267 panic("buffer too short"); 2268 2269 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2270 error = SYSCTL_OUT(req, buf, advance); 2271 if (error) 2272 break; 2273 } 2274 2275 return (error); 2276 } 2277