xref: /freebsd/sys/netinet6/nd6.c (revision 822923447e454b30d310cb46903c9ddeca9f0a7a)
1 /*	$FreeBSD$	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/queue.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/if.h>
54 #include <net/if_arc.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/iso88025.h>
58 #include <net/fddi.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/if_ether.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 
70 #include <net/net_osdep.h>
71 
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74 
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
77 
78 /* timer values */
79 int	nd6_prune	= 1;	/* walk list every 1 seconds */
80 int	nd6_delay	= 5;	/* delay first probe time 5 second */
81 int	nd6_umaxtries	= 3;	/* maximum unicast query */
82 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
83 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
84 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
85 
86 /* preventing too many loops in ND option parsing */
87 int nd6_maxndopt = 10;	/* max # of ND options allowed */
88 
89 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
90 
91 #ifdef ND6_DEBUG
92 int nd6_debug = 1;
93 #else
94 int nd6_debug = 0;
95 #endif
96 
97 /* for debugging? */
98 static int nd6_inuse, nd6_allocated;
99 
100 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
101 struct nd_drhead nd_defrouter;
102 struct nd_prhead nd_prefix = { 0 };
103 
104 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
105 static struct sockaddr_in6 all1_sa;
106 
107 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
108 	struct ifnet *));
109 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
110 static void nd6_slowtimo __P((void *));
111 static int regen_tmpaddr __P((struct in6_ifaddr *));
112 
113 struct callout nd6_slowtimo_ch;
114 struct callout nd6_timer_ch;
115 extern struct callout in6_tmpaddrtimer_ch;
116 
117 void
118 nd6_init()
119 {
120 	static int nd6_init_done = 0;
121 	int i;
122 
123 	if (nd6_init_done) {
124 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
125 		return;
126 	}
127 
128 	all1_sa.sin6_family = AF_INET6;
129 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
130 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
131 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
132 
133 	/* initialization of the default router list */
134 	TAILQ_INIT(&nd_defrouter);
135 
136 	nd6_init_done = 1;
137 
138 	/* start timer */
139 	callout_init(&nd6_slowtimo_ch, 0);
140 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
141 	    nd6_slowtimo, NULL);
142 }
143 
144 struct nd_ifinfo *
145 nd6_ifattach(ifp)
146 	struct ifnet *ifp;
147 {
148 	struct nd_ifinfo *nd;
149 
150 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
151 	bzero(nd, sizeof(*nd));
152 
153 	nd->initialized = 1;
154 
155 	nd->chlim = IPV6_DEFHLIM;
156 	nd->basereachable = REACHABLE_TIME;
157 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
158 	nd->retrans = RETRANS_TIMER;
159 	/*
160 	 * Note that the default value of ip6_accept_rtadv is 0, which means
161 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
162 	 * here.
163 	 */
164 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
165 
166 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
167 	nd6_setmtu0(ifp, nd);
168 
169 	return nd;
170 }
171 
172 void
173 nd6_ifdetach(nd)
174 	struct nd_ifinfo *nd;
175 {
176 
177 	free(nd, M_IP6NDP);
178 }
179 
180 /*
181  * Reset ND level link MTU. This function is called when the physical MTU
182  * changes, which means we might have to adjust the ND level MTU.
183  */
184 void
185 nd6_setmtu(ifp)
186 	struct ifnet *ifp;
187 {
188 
189 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
190 }
191 
192 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
193 void
194 nd6_setmtu0(ifp, ndi)
195 	struct ifnet *ifp;
196 	struct nd_ifinfo *ndi;
197 {
198 	u_int32_t omaxmtu;
199 
200 	omaxmtu = ndi->maxmtu;
201 
202 	switch (ifp->if_type) {
203 	case IFT_ARCNET:
204 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
205 		break;
206 	case IFT_FDDI:
207 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
208 		break;
209 	 case IFT_ISO88025:
210 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
211 		 break;
212 	default:
213 		ndi->maxmtu = ifp->if_mtu;
214 		break;
215 	}
216 
217 	/*
218 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
219 	 * undesirable situation.  We thus notify the operator of the change
220 	 * explicitly.  The check for omaxmtu is necessary to restrict the
221 	 * log to the case of changing the MTU, not initializing it.
222 	 */
223 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
224 		log(LOG_NOTICE, "nd6_setmtu0: "
225 		    "new link MTU on %s (%lu) is too small for IPv6\n",
226 		    if_name(ifp), (unsigned long)ndi->maxmtu);
227 	}
228 
229 	if (ndi->maxmtu > in6_maxmtu)
230 		in6_setmaxmtu(); /* check all interfaces just in case */
231 
232 #undef MIN
233 }
234 
235 void
236 nd6_option_init(opt, icmp6len, ndopts)
237 	void *opt;
238 	int icmp6len;
239 	union nd_opts *ndopts;
240 {
241 
242 	bzero(ndopts, sizeof(*ndopts));
243 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
244 	ndopts->nd_opts_last
245 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
246 
247 	if (icmp6len == 0) {
248 		ndopts->nd_opts_done = 1;
249 		ndopts->nd_opts_search = NULL;
250 	}
251 }
252 
253 /*
254  * Take one ND option.
255  */
256 struct nd_opt_hdr *
257 nd6_option(ndopts)
258 	union nd_opts *ndopts;
259 {
260 	struct nd_opt_hdr *nd_opt;
261 	int olen;
262 
263 	if (!ndopts)
264 		panic("ndopts == NULL in nd6_option");
265 	if (!ndopts->nd_opts_last)
266 		panic("uninitialized ndopts in nd6_option");
267 	if (!ndopts->nd_opts_search)
268 		return NULL;
269 	if (ndopts->nd_opts_done)
270 		return NULL;
271 
272 	nd_opt = ndopts->nd_opts_search;
273 
274 	/* make sure nd_opt_len is inside the buffer */
275 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
276 		bzero(ndopts, sizeof(*ndopts));
277 		return NULL;
278 	}
279 
280 	olen = nd_opt->nd_opt_len << 3;
281 	if (olen == 0) {
282 		/*
283 		 * Message validation requires that all included
284 		 * options have a length that is greater than zero.
285 		 */
286 		bzero(ndopts, sizeof(*ndopts));
287 		return NULL;
288 	}
289 
290 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
291 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
292 		/* option overruns the end of buffer, invalid */
293 		bzero(ndopts, sizeof(*ndopts));
294 		return NULL;
295 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
296 		/* reached the end of options chain */
297 		ndopts->nd_opts_done = 1;
298 		ndopts->nd_opts_search = NULL;
299 	}
300 	return nd_opt;
301 }
302 
303 /*
304  * Parse multiple ND options.
305  * This function is much easier to use, for ND routines that do not need
306  * multiple options of the same type.
307  */
308 int
309 nd6_options(ndopts)
310 	union nd_opts *ndopts;
311 {
312 	struct nd_opt_hdr *nd_opt;
313 	int i = 0;
314 
315 	if (!ndopts)
316 		panic("ndopts == NULL in nd6_options");
317 	if (!ndopts->nd_opts_last)
318 		panic("uninitialized ndopts in nd6_options");
319 	if (!ndopts->nd_opts_search)
320 		return 0;
321 
322 	while (1) {
323 		nd_opt = nd6_option(ndopts);
324 		if (!nd_opt && !ndopts->nd_opts_last) {
325 			/*
326 			 * Message validation requires that all included
327 			 * options have a length that is greater than zero.
328 			 */
329 			icmp6stat.icp6s_nd_badopt++;
330 			bzero(ndopts, sizeof(*ndopts));
331 			return -1;
332 		}
333 
334 		if (!nd_opt)
335 			goto skip1;
336 
337 		switch (nd_opt->nd_opt_type) {
338 		case ND_OPT_SOURCE_LINKADDR:
339 		case ND_OPT_TARGET_LINKADDR:
340 		case ND_OPT_MTU:
341 		case ND_OPT_REDIRECTED_HEADER:
342 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
343 				nd6log((LOG_INFO,
344 				    "duplicated ND6 option found (type=%d)\n",
345 				    nd_opt->nd_opt_type));
346 				/* XXX bark? */
347 			} else {
348 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
349 					= nd_opt;
350 			}
351 			break;
352 		case ND_OPT_PREFIX_INFORMATION:
353 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
354 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
355 					= nd_opt;
356 			}
357 			ndopts->nd_opts_pi_end =
358 				(struct nd_opt_prefix_info *)nd_opt;
359 			break;
360 		default:
361 			/*
362 			 * Unknown options must be silently ignored,
363 			 * to accomodate future extension to the protocol.
364 			 */
365 			nd6log((LOG_DEBUG,
366 			    "nd6_options: unsupported option %d - "
367 			    "option ignored\n", nd_opt->nd_opt_type));
368 		}
369 
370 skip1:
371 		i++;
372 		if (i > nd6_maxndopt) {
373 			icmp6stat.icp6s_nd_toomanyopt++;
374 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
375 			break;
376 		}
377 
378 		if (ndopts->nd_opts_done)
379 			break;
380 	}
381 
382 	return 0;
383 }
384 
385 /*
386  * ND6 timer routine to expire default route list and prefix list
387  */
388 void
389 nd6_timer(ignored_arg)
390 	void	*ignored_arg;
391 {
392 	int s;
393 	struct llinfo_nd6 *ln;
394 	struct nd_defrouter *dr;
395 	struct nd_prefix *pr;
396 	struct ifnet *ifp;
397 	struct in6_ifaddr *ia6, *nia6;
398 	struct in6_addrlifetime *lt6;
399 
400 	s = splnet();
401 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
402 	    nd6_timer, NULL);
403 
404 	ln = llinfo_nd6.ln_next;
405 	while (ln && ln != &llinfo_nd6) {
406 		struct rtentry *rt;
407 		struct sockaddr_in6 *dst;
408 		struct llinfo_nd6 *next = ln->ln_next;
409 		/* XXX: used for the DELAY case only: */
410 		struct nd_ifinfo *ndi = NULL;
411 
412 		if ((rt = ln->ln_rt) == NULL) {
413 			ln = next;
414 			continue;
415 		}
416 		if ((ifp = rt->rt_ifp) == NULL) {
417 			ln = next;
418 			continue;
419 		}
420 		ndi = ND_IFINFO(ifp);
421 		dst = (struct sockaddr_in6 *)rt_key(rt);
422 
423 		if (ln->ln_expire > time_second) {
424 			ln = next;
425 			continue;
426 		}
427 
428 		/* sanity check */
429 		if (!rt)
430 			panic("rt=0 in nd6_timer(ln=%p)", ln);
431 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
432 			panic("rt_llinfo(%p) is not equal to ln(%p)",
433 			      rt->rt_llinfo, ln);
434 		if (!dst)
435 			panic("dst=0 in nd6_timer(ln=%p)", ln);
436 
437 		switch (ln->ln_state) {
438 		case ND6_LLINFO_INCOMPLETE:
439 			if (ln->ln_asked < nd6_mmaxtries) {
440 				ln->ln_asked++;
441 				ln->ln_expire = time_second +
442 					ND_IFINFO(ifp)->retrans / 1000;
443 				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
444 					ln, 0);
445 			} else {
446 				struct mbuf *m = ln->ln_hold;
447 				if (m) {
448 					/*
449 					 * assuming every packet in ln_hold has
450 					 * the same IP header
451 					 */
452 					ln->ln_hold = NULL;
453 					icmp6_error2(m, ICMP6_DST_UNREACH,
454 						     ICMP6_DST_UNREACH_ADDR, 0,
455 						     rt->rt_ifp);
456 				}
457 				next = nd6_free(rt);
458 			}
459 			break;
460 		case ND6_LLINFO_REACHABLE:
461 			if (ln->ln_expire) {
462 				ln->ln_state = ND6_LLINFO_STALE;
463 				ln->ln_expire = time_second + nd6_gctimer;
464 			}
465 			break;
466 
467 		case ND6_LLINFO_STALE:
468 			/* Garbage Collection(RFC 2461 5.3) */
469 			if (ln->ln_expire)
470 				next = nd6_free(rt);
471 			break;
472 
473 		case ND6_LLINFO_DELAY:
474 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
475 				/* We need NUD */
476 				ln->ln_asked = 1;
477 				ln->ln_state = ND6_LLINFO_PROBE;
478 				ln->ln_expire = time_second +
479 					ndi->retrans / 1000;
480 				nd6_ns_output(ifp, &dst->sin6_addr,
481 					      &dst->sin6_addr,
482 					      ln, 0);
483 			} else {
484 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
485 				ln->ln_expire = time_second + nd6_gctimer;
486 			}
487 			break;
488 		case ND6_LLINFO_PROBE:
489 			if (ln->ln_asked < nd6_umaxtries) {
490 				ln->ln_asked++;
491 				ln->ln_expire = time_second +
492 					ND_IFINFO(ifp)->retrans / 1000;
493 				nd6_ns_output(ifp, &dst->sin6_addr,
494 					       &dst->sin6_addr, ln, 0);
495 			} else {
496 				next = nd6_free(rt);
497 			}
498 			break;
499 		}
500 		ln = next;
501 	}
502 
503 	/* expire default router list */
504 	dr = TAILQ_FIRST(&nd_defrouter);
505 	while (dr) {
506 		if (dr->expire && dr->expire < time_second) {
507 			struct nd_defrouter *t;
508 			t = TAILQ_NEXT(dr, dr_entry);
509 			defrtrlist_del(dr);
510 			dr = t;
511 		} else {
512 			dr = TAILQ_NEXT(dr, dr_entry);
513 		}
514 	}
515 
516 	/*
517 	 * expire interface addresses.
518 	 * in the past the loop was inside prefix expiry processing.
519 	 * However, from a stricter speci-confrmance standpoint, we should
520 	 * rather separate address lifetimes and prefix lifetimes.
521 	 */
522   addrloop:
523 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
524 		nia6 = ia6->ia_next;
525 		/* check address lifetime */
526 		lt6 = &ia6->ia6_lifetime;
527 		if (IFA6_IS_INVALID(ia6)) {
528 			int regen = 0;
529 
530 			/*
531 			 * If the expiring address is temporary, try
532 			 * regenerating a new one.  This would be useful when
533 			 * we suspended a laptop PC, then turned it on after a
534 			 * period that could invalidate all temporary
535 			 * addresses.  Although we may have to restart the
536 			 * loop (see below), it must be after purging the
537 			 * address.  Otherwise, we'd see an infinite loop of
538 			 * regeneration.
539 			 */
540 			if (ip6_use_tempaddr &&
541 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
542 				if (regen_tmpaddr(ia6) == 0)
543 					regen = 1;
544 			}
545 
546 			in6_purgeaddr(&ia6->ia_ifa);
547 
548 			if (regen)
549 				goto addrloop; /* XXX: see below */
550 		}
551 		if (IFA6_IS_DEPRECATED(ia6)) {
552 			int oldflags = ia6->ia6_flags;
553 
554 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
555 
556 			/*
557 			 * If a temporary address has just become deprecated,
558 			 * regenerate a new one if possible.
559 			 */
560 			if (ip6_use_tempaddr &&
561 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
562 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
563 
564 				if (regen_tmpaddr(ia6) == 0) {
565 					/*
566 					 * A new temporary address is
567 					 * generated.
568 					 * XXX: this means the address chain
569 					 * has changed while we are still in
570 					 * the loop.  Although the change
571 					 * would not cause disaster (because
572 					 * it's not a deletion, but an
573 					 * addition,) we'd rather restart the
574 					 * loop just for safety.  Or does this
575 					 * significantly reduce performance??
576 					 */
577 					goto addrloop;
578 				}
579 			}
580 		} else {
581 			/*
582 			 * A new RA might have made a deprecated address
583 			 * preferred.
584 			 */
585 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
586 		}
587 	}
588 
589 	/* expire prefix list */
590 	pr = nd_prefix.lh_first;
591 	while (pr) {
592 		/*
593 		 * check prefix lifetime.
594 		 * since pltime is just for autoconf, pltime processing for
595 		 * prefix is not necessary.
596 		 */
597 		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
598 			struct nd_prefix *t;
599 			t = pr->ndpr_next;
600 
601 			/*
602 			 * address expiration and prefix expiration are
603 			 * separate.  NEVER perform in6_purgeaddr here.
604 			 */
605 
606 			prelist_remove(pr);
607 			pr = t;
608 		} else
609 			pr = pr->ndpr_next;
610 	}
611 	splx(s);
612 }
613 
614 static int
615 regen_tmpaddr(ia6)
616 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
617 {
618 	struct ifaddr *ifa;
619 	struct ifnet *ifp;
620 	struct in6_ifaddr *public_ifa6 = NULL;
621 
622 	ifp = ia6->ia_ifa.ifa_ifp;
623 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
624 	     ifa = ifa->ifa_list.tqe_next) {
625 		struct in6_ifaddr *it6;
626 
627 		if (ifa->ifa_addr->sa_family != AF_INET6)
628 			continue;
629 
630 		it6 = (struct in6_ifaddr *)ifa;
631 
632 		/* ignore no autoconf addresses. */
633 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
634 			continue;
635 
636 		/* ignore autoconf addresses with different prefixes. */
637 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
638 			continue;
639 
640 		/*
641 		 * Now we are looking at an autoconf address with the same
642 		 * prefix as ours.  If the address is temporary and is still
643 		 * preferred, do not create another one.  It would be rare, but
644 		 * could happen, for example, when we resume a laptop PC after
645 		 * a long period.
646 		 */
647 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
648 		    !IFA6_IS_DEPRECATED(it6)) {
649 			public_ifa6 = NULL;
650 			break;
651 		}
652 
653 		/*
654 		 * This is a public autoconf address that has the same prefix
655 		 * as ours.  If it is preferred, keep it.  We can't break the
656 		 * loop here, because there may be a still-preferred temporary
657 		 * address with the prefix.
658 		 */
659 		if (!IFA6_IS_DEPRECATED(it6))
660 		    public_ifa6 = it6;
661 	}
662 
663 	if (public_ifa6 != NULL) {
664 		int e;
665 
666 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
667 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
668 			    " tmp addr,errno=%d\n", e);
669 			return (-1);
670 		}
671 		return (0);
672 	}
673 
674 	return (-1);
675 }
676 
677 /*
678  * Nuke neighbor cache/prefix/default router management table, right before
679  * ifp goes away.
680  */
681 void
682 nd6_purge(ifp)
683 	struct ifnet *ifp;
684 {
685 	struct llinfo_nd6 *ln, *nln;
686 	struct nd_defrouter *dr, *ndr, drany;
687 	struct nd_prefix *pr, *npr;
688 
689 	/* Nuke default router list entries toward ifp */
690 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
691 		/*
692 		 * The first entry of the list may be stored in
693 		 * the routing table, so we'll delete it later.
694 		 */
695 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
696 			ndr = TAILQ_NEXT(dr, dr_entry);
697 			if (dr->ifp == ifp)
698 				defrtrlist_del(dr);
699 		}
700 		dr = TAILQ_FIRST(&nd_defrouter);
701 		if (dr->ifp == ifp)
702 			defrtrlist_del(dr);
703 	}
704 
705 	/* Nuke prefix list entries toward ifp */
706 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
707 		npr = pr->ndpr_next;
708 		if (pr->ndpr_ifp == ifp) {
709 			/*
710 			 * Previously, pr->ndpr_addr is removed as well,
711 			 * but I strongly believe we don't have to do it.
712 			 * nd6_purge() is only called from in6_ifdetach(),
713 			 * which removes all the associated interface addresses
714 			 * by itself.
715 			 * (jinmei@kame.net 20010129)
716 			 */
717 			prelist_remove(pr);
718 		}
719 	}
720 
721 	/* cancel default outgoing interface setting */
722 	if (nd6_defifindex == ifp->if_index)
723 		nd6_setdefaultiface(0);
724 
725 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
726 		/* refresh default router list */
727 		bzero(&drany, sizeof(drany));
728 		defrouter_delreq(&drany, 0);
729 		defrouter_select();
730 	}
731 
732 	/*
733 	 * Nuke neighbor cache entries for the ifp.
734 	 * Note that rt->rt_ifp may not be the same as ifp,
735 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
736 	 * nd6_rtrequest(), and ip6_input().
737 	 */
738 	ln = llinfo_nd6.ln_next;
739 	while (ln && ln != &llinfo_nd6) {
740 		struct rtentry *rt;
741 		struct sockaddr_dl *sdl;
742 
743 		nln = ln->ln_next;
744 		rt = ln->ln_rt;
745 		if (rt && rt->rt_gateway &&
746 		    rt->rt_gateway->sa_family == AF_LINK) {
747 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
748 			if (sdl->sdl_index == ifp->if_index)
749 				nln = nd6_free(rt);
750 		}
751 		ln = nln;
752 	}
753 }
754 
755 struct rtentry *
756 nd6_lookup(addr6, create, ifp)
757 	struct in6_addr *addr6;
758 	int create;
759 	struct ifnet *ifp;
760 {
761 	struct rtentry *rt;
762 	struct sockaddr_in6 sin6;
763 
764 	bzero(&sin6, sizeof(sin6));
765 	sin6.sin6_len = sizeof(struct sockaddr_in6);
766 	sin6.sin6_family = AF_INET6;
767 	sin6.sin6_addr = *addr6;
768 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
769 	if (rt) {
770 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
771 			/*
772 			 * This is the case for the default route.
773 			 * If we want to create a neighbor cache for the
774 			 * address, we should free the route for the
775 			 * destination and allocate an interface route.
776 			 */
777 			RTFREE_LOCKED(rt);
778 			rt = 0;
779 		}
780 	}
781 	if (!rt) {
782 		if (create && ifp) {
783 			int e;
784 
785 			/*
786 			 * If no route is available and create is set,
787 			 * we allocate a host route for the destination
788 			 * and treat it like an interface route.
789 			 * This hack is necessary for a neighbor which can't
790 			 * be covered by our own prefix.
791 			 */
792 			struct ifaddr *ifa =
793 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
794 			if (ifa == NULL)
795 				return (NULL);
796 
797 			/*
798 			 * Create a new route.  RTF_LLINFO is necessary
799 			 * to create a Neighbor Cache entry for the
800 			 * destination in nd6_rtrequest which will be
801 			 * called in rtrequest via ifa->ifa_rtrequest.
802 			 */
803 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
804 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
805 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
806 			    ~RTF_CLONING, &rt)) != 0) {
807 				log(LOG_ERR,
808 				    "nd6_lookup: failed to add route for a "
809 				    "neighbor(%s), errno=%d\n",
810 				    ip6_sprintf(addr6), e);
811 			}
812 			if (rt == NULL)
813 				return (NULL);
814 			RT_LOCK(rt);
815 			if (rt->rt_llinfo) {
816 				struct llinfo_nd6 *ln =
817 				    (struct llinfo_nd6 *)rt->rt_llinfo;
818 				ln->ln_state = ND6_LLINFO_NOSTATE;
819 			}
820 		} else
821 			return (NULL);
822 	}
823 	RT_LOCK_ASSERT(rt);
824 	RT_REMREF(rt);
825 	/*
826 	 * Validation for the entry.
827 	 * Note that the check for rt_llinfo is necessary because a cloned
828 	 * route from a parent route that has the L flag (e.g. the default
829 	 * route to a p2p interface) may have the flag, too, while the
830 	 * destination is not actually a neighbor.
831 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
832 	 *      it might be the loopback interface if the entry is for our
833 	 *      own address on a non-loopback interface. Instead, we should
834 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
835 	 *	interface.
836 	 */
837 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
838 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
839 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
840 		if (create) {
841 			log(LOG_DEBUG,
842 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
843 			    ip6_sprintf(addr6),
844 			    ifp ? if_name(ifp) : "unspec");
845 			/* xxx more logs... kazu */
846 		}
847 		RT_UNLOCK(rt);
848 		return (NULL);
849 	}
850 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
851 	return (rt);
852 }
853 
854 /*
855  * Test whether a given IPv6 address is a neighbor or not, ignoring
856  * the actual neighbor cache.  The neighbor cache is ignored in order
857  * to not reenter the routing code from within itself.
858  */
859 static int
860 nd6_is_new_addr_neighbor(addr, ifp)
861 	struct sockaddr_in6 *addr;
862 	struct ifnet *ifp;
863 {
864 	struct nd_prefix *pr;
865 
866 	/*
867 	 * A link-local address is always a neighbor.
868 	 * XXX: a link does not necessarily specify a single interface.
869 	 */
870 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
871 		struct sockaddr_in6 sin6_copy;
872 		u_int32_t zone;
873 
874 		/*
875 		 * We need sin6_copy since sa6_recoverscope() may modify the
876 		 * content (XXX).
877 		 */
878 		sin6_copy = *addr;
879 		if (sa6_recoverscope(&sin6_copy))
880 			return (0); /* XXX: should be impossible */
881 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
882 			return (0);
883 		if (sin6_copy.sin6_scope_id == zone)
884 			return (1);
885 		else
886 			return (0);
887 	}
888 
889 	/*
890 	 * If the address matches one of our addresses,
891 	 * it should be a neighbor.
892 	 * If the address matches one of our on-link prefixes, it should be a
893 	 * neighbor.
894 	 */
895 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
896 		if (pr->ndpr_ifp != ifp)
897 			continue;
898 
899 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
900 			continue;
901 
902 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
903 		    &addr->sin6_addr, &pr->ndpr_mask))
904 			return (1);
905 	}
906 
907 	/*
908 	 * If the default router list is empty, all addresses are regarded
909 	 * as on-link, and thus, as a neighbor.
910 	 * XXX: we restrict the condition to hosts, because routers usually do
911 	 * not have the "default router list".
912 	 */
913 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
914 	    nd6_defifindex == ifp->if_index) {
915 		return (1);
916 	}
917 
918 	return (0);
919 }
920 
921 
922 /*
923  * Detect if a given IPv6 address identifies a neighbor on a given link.
924  * XXX: should take care of the destination of a p2p link?
925  */
926 int
927 nd6_is_addr_neighbor(addr, ifp)
928 	struct sockaddr_in6 *addr;
929 	struct ifnet *ifp;
930 {
931 
932 	if (nd6_is_new_addr_neighbor(addr, ifp))
933 		return (1);
934 
935 	/*
936 	 * Even if the address matches none of our addresses, it might be
937 	 * in the neighbor cache.
938 	 */
939 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
940 		return (1);
941 
942 	return (0);
943 }
944 
945 /*
946  * Free an nd6 llinfo entry.
947  */
948 struct llinfo_nd6 *
949 nd6_free(rt)
950 	struct rtentry *rt;
951 {
952 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
953 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
954 	struct nd_defrouter *dr;
955 
956 	/*
957 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
958 	 * even though it is not harmful, it was not really necessary.
959 	 */
960 
961 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
962 		int s;
963 		s = splnet();
964 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
965 		    rt->rt_ifp);
966 
967 		if (ln->ln_router || dr) {
968 			/*
969 			 * rt6_flush must be called whether or not the neighbor
970 			 * is in the Default Router List.
971 			 * See a corresponding comment in nd6_na_input().
972 			 */
973 			rt6_flush(&in6, rt->rt_ifp);
974 		}
975 
976 		if (dr) {
977 			/*
978 			 * Unreachablity of a router might affect the default
979 			 * router selection and on-link detection of advertised
980 			 * prefixes.
981 			 */
982 
983 			/*
984 			 * Temporarily fake the state to choose a new default
985 			 * router and to perform on-link determination of
986 			 * prefixes correctly.
987 			 * Below the state will be set correctly,
988 			 * or the entry itself will be deleted.
989 			 */
990 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
991 
992 			/*
993 			 * Since defrouter_select() does not affect the
994 			 * on-link determination and MIP6 needs the check
995 			 * before the default router selection, we perform
996 			 * the check now.
997 			 */
998 			pfxlist_onlink_check();
999 
1000 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
1001 				/*
1002 				 * It is used as the current default router,
1003 				 * so we have to move it to the end of the
1004 				 * list and choose a new one.
1005 				 * XXX: it is not very efficient if this is
1006 				 *      the only router.
1007 				 */
1008 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1009 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1010 
1011 				defrouter_select();
1012 			}
1013 		}
1014 		splx(s);
1015 	}
1016 
1017 	/*
1018 	 * Before deleting the entry, remember the next entry as the
1019 	 * return value.  We need this because pfxlist_onlink_check() above
1020 	 * might have freed other entries (particularly the old next entry) as
1021 	 * a side effect (XXX).
1022 	 */
1023 	next = ln->ln_next;
1024 
1025 	/*
1026 	 * Detach the route from the routing tree and the list of neighbor
1027 	 * caches, and disable the route entry not to be used in already
1028 	 * cached routes.
1029 	 */
1030 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1031 	    rt_mask(rt), 0, (struct rtentry **)0);
1032 
1033 	return (next);
1034 }
1035 
1036 /*
1037  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1038  *
1039  * XXX cost-effective methods?
1040  */
1041 void
1042 nd6_nud_hint(rt, dst6, force)
1043 	struct rtentry *rt;
1044 	struct in6_addr *dst6;
1045 	int force;
1046 {
1047 	struct llinfo_nd6 *ln;
1048 
1049 	/*
1050 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1051 	 * routing table by supplied "dst6".
1052 	 */
1053 	if (!rt) {
1054 		if (!dst6)
1055 			return;
1056 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1057 			return;
1058 	}
1059 
1060 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1061 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1062 	    !rt->rt_llinfo || !rt->rt_gateway ||
1063 	    rt->rt_gateway->sa_family != AF_LINK) {
1064 		/* This is not a host route. */
1065 		return;
1066 	}
1067 
1068 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1069 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1070 		return;
1071 
1072 	/*
1073 	 * if we get upper-layer reachability confirmation many times,
1074 	 * it is possible we have false information.
1075 	 */
1076 	if (!force) {
1077 		ln->ln_byhint++;
1078 		if (ln->ln_byhint > nd6_maxnudhint)
1079 			return;
1080 	}
1081 
1082 	ln->ln_state = ND6_LLINFO_REACHABLE;
1083 	if (ln->ln_expire)
1084 		ln->ln_expire = time_second +
1085 			ND_IFINFO(rt->rt_ifp)->reachable;
1086 }
1087 
1088 void
1089 nd6_rtrequest(req, rt, info)
1090 	int	req;
1091 	struct rtentry *rt;
1092 	struct rt_addrinfo *info; /* xxx unused */
1093 {
1094 	struct sockaddr *gate = rt->rt_gateway;
1095 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1096 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1097 	struct ifnet *ifp = rt->rt_ifp;
1098 	struct ifaddr *ifa;
1099 
1100 	RT_LOCK_ASSERT(rt);
1101 
1102 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1103 		return;
1104 
1105 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1106 		/*
1107 		 * This is probably an interface direct route for a link
1108 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1109 		 * We do not need special treatment below for such a route.
1110 		 * Moreover, the RTF_LLINFO flag which would be set below
1111 		 * would annoy the ndp(8) command.
1112 		 */
1113 		return;
1114 	}
1115 
1116 	if (req == RTM_RESOLVE &&
1117 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1118 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1119 	     ifp))) {
1120 		/*
1121 		 * FreeBSD and BSD/OS often make a cloned host route based
1122 		 * on a less-specific route (e.g. the default route).
1123 		 * If the less specific route does not have a "gateway"
1124 		 * (this is the case when the route just goes to a p2p or an
1125 		 * stf interface), we'll mistakenly make a neighbor cache for
1126 		 * the host route, and will see strange neighbor solicitation
1127 		 * for the corresponding destination.  In order to avoid the
1128 		 * confusion, we check if the destination of the route is
1129 		 * a neighbor in terms of neighbor discovery, and stop the
1130 		 * process if not.  Additionally, we remove the LLINFO flag
1131 		 * so that ndp(8) will not try to get the neighbor information
1132 		 * of the destination.
1133 		 */
1134 		rt->rt_flags &= ~RTF_LLINFO;
1135 		return;
1136 	}
1137 
1138 	switch (req) {
1139 	case RTM_ADD:
1140 		/*
1141 		 * There is no backward compatibility :)
1142 		 *
1143 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1144 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1145 		 *	   rt->rt_flags |= RTF_CLONING;
1146 		 */
1147 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1148 			/*
1149 			 * Case 1: This route should come from
1150 			 * a route to interface.  RTF_LLINFO flag is set
1151 			 * for a host route whose destination should be
1152 			 * treated as on-link.
1153 			 */
1154 			rt_setgate(rt, rt_key(rt),
1155 				   (struct sockaddr *)&null_sdl);
1156 			gate = rt->rt_gateway;
1157 			SDL(gate)->sdl_type = ifp->if_type;
1158 			SDL(gate)->sdl_index = ifp->if_index;
1159 			if (ln)
1160 				ln->ln_expire = time_second;
1161 			if (ln && ln->ln_expire == 0) {
1162 				/* kludge for desktops */
1163 				ln->ln_expire = 1;
1164 			}
1165 			if ((rt->rt_flags & RTF_CLONING) != 0)
1166 				break;
1167 		}
1168 		/*
1169 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1170 		 * We don't do that here since llinfo is not ready yet.
1171 		 *
1172 		 * There are also couple of other things to be discussed:
1173 		 * - unsolicited NA code needs improvement beforehand
1174 		 * - RFC2461 says we MAY send multicast unsolicited NA
1175 		 *   (7.2.6 paragraph 4), however, it also says that we
1176 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1177 		 *   we don't have anything like it right now.
1178 		 *   note that the mechanism needs a mutual agreement
1179 		 *   between proxies, which means that we need to implement
1180 		 *   a new protocol, or a new kludge.
1181 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1182 		 *   we need to check ip6forwarding before sending it.
1183 		 *   (or should we allow proxy ND configuration only for
1184 		 *   routers?  there's no mention about proxy ND from hosts)
1185 		 */
1186 #if 0
1187 		/* XXX it does not work */
1188 		if (rt->rt_flags & RTF_ANNOUNCE)
1189 			nd6_na_output(ifp,
1190 			      &SIN6(rt_key(rt))->sin6_addr,
1191 			      &SIN6(rt_key(rt))->sin6_addr,
1192 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1193 			      1, NULL);
1194 #endif
1195 		/* FALLTHROUGH */
1196 	case RTM_RESOLVE:
1197 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1198 			/*
1199 			 * Address resolution isn't necessary for a point to
1200 			 * point link, so we can skip this test for a p2p link.
1201 			 */
1202 			if (gate->sa_family != AF_LINK ||
1203 			    gate->sa_len < sizeof(null_sdl)) {
1204 				log(LOG_DEBUG,
1205 				    "nd6_rtrequest: bad gateway value: %s\n",
1206 				    if_name(ifp));
1207 				break;
1208 			}
1209 			SDL(gate)->sdl_type = ifp->if_type;
1210 			SDL(gate)->sdl_index = ifp->if_index;
1211 		}
1212 		if (ln != NULL)
1213 			break;	/* This happens on a route change */
1214 		/*
1215 		 * Case 2: This route may come from cloning, or a manual route
1216 		 * add with a LL address.
1217 		 */
1218 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1219 		rt->rt_llinfo = (caddr_t)ln;
1220 		if (!ln) {
1221 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1222 			break;
1223 		}
1224 		nd6_inuse++;
1225 		nd6_allocated++;
1226 		bzero(ln, sizeof(*ln));
1227 		ln->ln_rt = rt;
1228 		/* this is required for "ndp" command. - shin */
1229 		if (req == RTM_ADD) {
1230 		        /*
1231 			 * gate should have some valid AF_LINK entry,
1232 			 * and ln->ln_expire should have some lifetime
1233 			 * which is specified by ndp command.
1234 			 */
1235 			ln->ln_state = ND6_LLINFO_REACHABLE;
1236 			ln->ln_byhint = 0;
1237 		} else {
1238 		        /*
1239 			 * When req == RTM_RESOLVE, rt is created and
1240 			 * initialized in rtrequest(), so rt_expire is 0.
1241 			 */
1242 			ln->ln_state = ND6_LLINFO_NOSTATE;
1243 			ln->ln_expire = time_second;
1244 		}
1245 		rt->rt_flags |= RTF_LLINFO;
1246 		ln->ln_next = llinfo_nd6.ln_next;
1247 		llinfo_nd6.ln_next = ln;
1248 		ln->ln_prev = &llinfo_nd6;
1249 		ln->ln_next->ln_prev = ln;
1250 
1251 		/*
1252 		 * check if rt_key(rt) is one of my address assigned
1253 		 * to the interface.
1254 		 */
1255 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1256 		    &SIN6(rt_key(rt))->sin6_addr);
1257 		if (ifa) {
1258 			caddr_t macp = nd6_ifptomac(ifp);
1259 			ln->ln_expire = 0;
1260 			ln->ln_state = ND6_LLINFO_REACHABLE;
1261 			ln->ln_byhint = 0;
1262 			if (macp) {
1263 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1264 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1265 			}
1266 			if (nd6_useloopback) {
1267 				rt->rt_ifp = &loif[0];	/* XXX */
1268 				/*
1269 				 * Make sure rt_ifa be equal to the ifaddr
1270 				 * corresponding to the address.
1271 				 * We need this because when we refer
1272 				 * rt_ifa->ia6_flags in ip6_input, we assume
1273 				 * that the rt_ifa points to the address instead
1274 				 * of the loopback address.
1275 				 */
1276 				if (ifa != rt->rt_ifa) {
1277 					IFAFREE(rt->rt_ifa);
1278 					IFAREF(ifa);
1279 					rt->rt_ifa = ifa;
1280 				}
1281 			}
1282 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1283 			ln->ln_expire = 0;
1284 			ln->ln_state = ND6_LLINFO_REACHABLE;
1285 			ln->ln_byhint = 0;
1286 
1287 			/* join solicited node multicast for proxy ND */
1288 			if (ifp->if_flags & IFF_MULTICAST) {
1289 				struct in6_addr llsol;
1290 				int error;
1291 
1292 				llsol = SIN6(rt_key(rt))->sin6_addr;
1293 				llsol.s6_addr16[0] = htons(0xff02);
1294 				llsol.s6_addr32[1] = 0;
1295 				llsol.s6_addr32[2] = htonl(1);
1296 				llsol.s6_addr8[12] = 0xff;
1297 				if (in6_setscope(&llsol, ifp, NULL))
1298 					break;
1299 				if (!in6_addmulti(&llsol, ifp, &error)) {
1300 					nd6log((LOG_ERR, "%s: failed to join "
1301 					    "%s (errno=%d)\n", if_name(ifp),
1302 					    ip6_sprintf(&llsol), error));
1303 				}
1304 			}
1305 		}
1306 		break;
1307 
1308 	case RTM_DELETE:
1309 		if (!ln)
1310 			break;
1311 		/* leave from solicited node multicast for proxy ND */
1312 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1313 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1314 			struct in6_addr llsol;
1315 			struct in6_multi *in6m;
1316 
1317 			llsol = SIN6(rt_key(rt))->sin6_addr;
1318 			llsol.s6_addr16[0] = htons(0xff02);
1319 			llsol.s6_addr32[1] = 0;
1320 			llsol.s6_addr32[2] = htonl(1);
1321 			llsol.s6_addr8[12] = 0xff;
1322 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1323 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1324 				if (in6m)
1325 					in6_delmulti(in6m);
1326 			} else
1327 				; /* XXX: should not happen. bark here? */
1328 		}
1329 		nd6_inuse--;
1330 		ln->ln_next->ln_prev = ln->ln_prev;
1331 		ln->ln_prev->ln_next = ln->ln_next;
1332 		ln->ln_prev = NULL;
1333 		rt->rt_llinfo = 0;
1334 		rt->rt_flags &= ~RTF_LLINFO;
1335 		if (ln->ln_hold)
1336 			m_freem(ln->ln_hold);
1337 		Free((caddr_t)ln);
1338 	}
1339 }
1340 
1341 int
1342 nd6_ioctl(cmd, data, ifp)
1343 	u_long cmd;
1344 	caddr_t	data;
1345 	struct ifnet *ifp;
1346 {
1347 	struct in6_drlist *drl = (struct in6_drlist *)data;
1348 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1349 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1350 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1351 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1352 	struct nd_defrouter *dr, any;
1353 	struct nd_prefix *pr;
1354 	struct rtentry *rt;
1355 	int i = 0, error = 0;
1356 	int s;
1357 
1358 	switch (cmd) {
1359 	case SIOCGDRLST_IN6:
1360 		/*
1361 		 * obsolete API, use sysctl under net.inet6.icmp6
1362 		 */
1363 		bzero(drl, sizeof(*drl));
1364 		s = splnet();
1365 		dr = TAILQ_FIRST(&nd_defrouter);
1366 		while (dr && i < DRLSTSIZ) {
1367 			drl->defrouter[i].rtaddr = dr->rtaddr;
1368 			in6_clearscope(&drl->defrouter[i].rtaddr);
1369 
1370 			drl->defrouter[i].flags = dr->flags;
1371 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1372 			drl->defrouter[i].expire = dr->expire;
1373 			drl->defrouter[i].if_index = dr->ifp->if_index;
1374 			i++;
1375 			dr = TAILQ_NEXT(dr, dr_entry);
1376 		}
1377 		splx(s);
1378 		break;
1379 	case SIOCGPRLST_IN6:
1380 		/*
1381 		 * obsolete API, use sysctl under net.inet6.icmp6
1382 		 *
1383 		 * XXX the structure in6_prlist was changed in backward-
1384 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1385 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1386 		 */
1387 		/*
1388 		 * XXX meaning of fields, especialy "raflags", is very
1389 		 * differnet between RA prefix list and RR/static prefix list.
1390 		 * how about separating ioctls into two?
1391 		 */
1392 		bzero(oprl, sizeof(*oprl));
1393 		s = splnet();
1394 		pr = nd_prefix.lh_first;
1395 		while (pr && i < PRLSTSIZ) {
1396 			struct nd_pfxrouter *pfr;
1397 			int j;
1398 
1399 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1400 			oprl->prefix[i].raflags = pr->ndpr_raf;
1401 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1402 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1403 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1404 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1405 			oprl->prefix[i].expire = pr->ndpr_expire;
1406 
1407 			pfr = pr->ndpr_advrtrs.lh_first;
1408 			j = 0;
1409 			while (pfr) {
1410 				if (j < DRLSTSIZ) {
1411 #define RTRADDR oprl->prefix[i].advrtr[j]
1412 					RTRADDR = pfr->router->rtaddr;
1413 					in6_clearscope(&RTRADDR);
1414 #undef RTRADDR
1415 				}
1416 				j++;
1417 				pfr = pfr->pfr_next;
1418 			}
1419 			oprl->prefix[i].advrtrs = j;
1420 			oprl->prefix[i].origin = PR_ORIG_RA;
1421 
1422 			i++;
1423 			pr = pr->ndpr_next;
1424 		}
1425 		splx(s);
1426 
1427 		break;
1428 	case OSIOCGIFINFO_IN6:
1429 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1430 		bzero(&ndi->ndi, sizeof(ndi->ndi));
1431 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1432 		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1433 		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1434 		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1435 		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1436 		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1437 		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1438 		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1439 		break;
1440 	case SIOCGIFINFO_IN6:
1441 		ndi->ndi = *ND_IFINFO(ifp);
1442 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1443 		break;
1444 	case SIOCSIFINFO_FLAGS:
1445 		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1446 		break;
1447 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1448 		/* flush default router list */
1449 		/*
1450 		 * xxx sumikawa: should not delete route if default
1451 		 * route equals to the top of default router list
1452 		 */
1453 		bzero(&any, sizeof(any));
1454 		defrouter_delreq(&any, 0);
1455 		defrouter_select();
1456 		/* xxx sumikawa: flush prefix list */
1457 		break;
1458 	case SIOCSPFXFLUSH_IN6:
1459 	{
1460 		/* flush all the prefix advertised by routers */
1461 		struct nd_prefix *pr, *next;
1462 
1463 		s = splnet();
1464 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1465 			struct in6_ifaddr *ia, *ia_next;
1466 
1467 			next = pr->ndpr_next;
1468 
1469 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1470 				continue; /* XXX */
1471 
1472 			/* do we really have to remove addresses as well? */
1473 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1474 				/* ia might be removed.  keep the next ptr. */
1475 				ia_next = ia->ia_next;
1476 
1477 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1478 					continue;
1479 
1480 				if (ia->ia6_ndpr == pr)
1481 					in6_purgeaddr(&ia->ia_ifa);
1482 			}
1483 			prelist_remove(pr);
1484 		}
1485 		splx(s);
1486 		break;
1487 	}
1488 	case SIOCSRTRFLUSH_IN6:
1489 	{
1490 		/* flush all the default routers */
1491 		struct nd_defrouter *dr, *next;
1492 
1493 		s = splnet();
1494 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1495 			/*
1496 			 * The first entry of the list may be stored in
1497 			 * the routing table, so we'll delete it later.
1498 			 */
1499 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1500 				next = TAILQ_NEXT(dr, dr_entry);
1501 				defrtrlist_del(dr);
1502 			}
1503 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1504 		}
1505 		splx(s);
1506 		break;
1507 	}
1508 	case SIOCGNBRINFO_IN6:
1509 	{
1510 		struct llinfo_nd6 *ln;
1511 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1512 
1513 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1514 			return (error);
1515 
1516 		s = splnet();
1517 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1518 			error = EINVAL;
1519 			splx(s);
1520 			break;
1521 		}
1522 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1523 		nbi->state = ln->ln_state;
1524 		nbi->asked = ln->ln_asked;
1525 		nbi->isrouter = ln->ln_router;
1526 		nbi->expire = ln->ln_expire;
1527 		splx(s);
1528 
1529 		break;
1530 	}
1531 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1532 		ndif->ifindex = nd6_defifindex;
1533 		break;
1534 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1535 		return (nd6_setdefaultiface(ndif->ifindex));
1536 	}
1537 	return (error);
1538 }
1539 
1540 /*
1541  * Create neighbor cache entry and cache link-layer address,
1542  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1543  */
1544 struct rtentry *
1545 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1546 	struct ifnet *ifp;
1547 	struct in6_addr *from;
1548 	char *lladdr;
1549 	int lladdrlen;
1550 	int type;	/* ICMP6 type */
1551 	int code;	/* type dependent information */
1552 {
1553 	struct rtentry *rt = NULL;
1554 	struct llinfo_nd6 *ln = NULL;
1555 	int is_newentry;
1556 	struct sockaddr_dl *sdl = NULL;
1557 	int do_update;
1558 	int olladdr;
1559 	int llchange;
1560 	int newstate = 0;
1561 
1562 	if (!ifp)
1563 		panic("ifp == NULL in nd6_cache_lladdr");
1564 	if (!from)
1565 		panic("from == NULL in nd6_cache_lladdr");
1566 
1567 	/* nothing must be updated for unspecified address */
1568 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1569 		return NULL;
1570 
1571 	/*
1572 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1573 	 * the caller.
1574 	 *
1575 	 * XXX If the link does not have link-layer adderss, what should
1576 	 * we do? (ifp->if_addrlen == 0)
1577 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1578 	 * description on it in NS section (RFC 2461 7.2.3).
1579 	 */
1580 
1581 	rt = nd6_lookup(from, 0, ifp);
1582 	if (!rt) {
1583 #if 0
1584 		/* nothing must be done if there's no lladdr */
1585 		if (!lladdr || !lladdrlen)
1586 			return NULL;
1587 #endif
1588 
1589 		rt = nd6_lookup(from, 1, ifp);
1590 		is_newentry = 1;
1591 	} else {
1592 		/* do nothing if static ndp is set */
1593 		if (rt->rt_flags & RTF_STATIC)
1594 			return NULL;
1595 		is_newentry = 0;
1596 	}
1597 
1598 	if (!rt)
1599 		return NULL;
1600 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1601 fail:
1602 		(void)nd6_free(rt);
1603 		return NULL;
1604 	}
1605 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1606 	if (!ln)
1607 		goto fail;
1608 	if (!rt->rt_gateway)
1609 		goto fail;
1610 	if (rt->rt_gateway->sa_family != AF_LINK)
1611 		goto fail;
1612 	sdl = SDL(rt->rt_gateway);
1613 
1614 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1615 	if (olladdr && lladdr) {
1616 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1617 			llchange = 1;
1618 		else
1619 			llchange = 0;
1620 	} else
1621 		llchange = 0;
1622 
1623 	/*
1624 	 * newentry olladdr  lladdr  llchange	(*=record)
1625 	 *	0	n	n	--	(1)
1626 	 *	0	y	n	--	(2)
1627 	 *	0	n	y	--	(3) * STALE
1628 	 *	0	y	y	n	(4) *
1629 	 *	0	y	y	y	(5) * STALE
1630 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1631 	 *	1	--	y	--	(7) * STALE
1632 	 */
1633 
1634 	if (lladdr) {		/* (3-5) and (7) */
1635 		/*
1636 		 * Record source link-layer address
1637 		 * XXX is it dependent to ifp->if_type?
1638 		 */
1639 		sdl->sdl_alen = ifp->if_addrlen;
1640 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1641 	}
1642 
1643 	if (!is_newentry) {
1644 		if ((!olladdr && lladdr) ||		/* (3) */
1645 		    (olladdr && lladdr && llchange)) {	/* (5) */
1646 			do_update = 1;
1647 			newstate = ND6_LLINFO_STALE;
1648 		} else					/* (1-2,4) */
1649 			do_update = 0;
1650 	} else {
1651 		do_update = 1;
1652 		if (!lladdr)				/* (6) */
1653 			newstate = ND6_LLINFO_NOSTATE;
1654 		else					/* (7) */
1655 			newstate = ND6_LLINFO_STALE;
1656 	}
1657 
1658 	if (do_update) {
1659 		/*
1660 		 * Update the state of the neighbor cache.
1661 		 */
1662 		ln->ln_state = newstate;
1663 
1664 		if (ln->ln_state == ND6_LLINFO_STALE) {
1665 			/*
1666 			 * XXX: since nd6_output() below will cause
1667 			 * state tansition to DELAY and reset the timer,
1668 			 * we must set the timer now, although it is actually
1669 			 * meaningless.
1670 			 */
1671 			ln->ln_expire = time_second + nd6_gctimer;
1672 
1673 			if (ln->ln_hold) {
1674 				/*
1675 				 * we assume ifp is not a p2p here, so just
1676 				 * set the 2nd argument as the 1st one.
1677 				 */
1678 				nd6_output(ifp, ifp, ln->ln_hold,
1679 				    (struct sockaddr_in6 *)rt_key(rt), rt);
1680 				ln->ln_hold = NULL;
1681 			}
1682 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1683 			/* probe right away */
1684 			ln->ln_expire = time_second;
1685 		}
1686 	}
1687 
1688 	/*
1689 	 * ICMP6 type dependent behavior.
1690 	 *
1691 	 * NS: clear IsRouter if new entry
1692 	 * RS: clear IsRouter
1693 	 * RA: set IsRouter if there's lladdr
1694 	 * redir: clear IsRouter if new entry
1695 	 *
1696 	 * RA case, (1):
1697 	 * The spec says that we must set IsRouter in the following cases:
1698 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1699 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1700 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1701 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1702 	 * neighbor cache, this is similar to (6).
1703 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1704 	 *
1705 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1706 	 *							D R
1707 	 *	0	n	n	--	(1)	c   ?     s
1708 	 *	0	y	n	--	(2)	c   s     s
1709 	 *	0	n	y	--	(3)	c   s     s
1710 	 *	0	y	y	n	(4)	c   s     s
1711 	 *	0	y	y	y	(5)	c   s     s
1712 	 *	1	--	n	--	(6) c	c 	c s
1713 	 *	1	--	y	--	(7) c	c   s	c s
1714 	 *
1715 	 *					(c=clear s=set)
1716 	 */
1717 	switch (type & 0xff) {
1718 	case ND_NEIGHBOR_SOLICIT:
1719 		/*
1720 		 * New entry must have is_router flag cleared.
1721 		 */
1722 		if (is_newentry)	/* (6-7) */
1723 			ln->ln_router = 0;
1724 		break;
1725 	case ND_REDIRECT:
1726 		/*
1727 		 * If the icmp is a redirect to a better router, always set the
1728 		 * is_router flag.  Otherwise, if the entry is newly created,
1729 		 * clear the flag.  [RFC 2461, sec 8.3]
1730 		 */
1731 		if (code == ND_REDIRECT_ROUTER)
1732 			ln->ln_router = 1;
1733 		else if (is_newentry) /* (6-7) */
1734 			ln->ln_router = 0;
1735 		break;
1736 	case ND_ROUTER_SOLICIT:
1737 		/*
1738 		 * is_router flag must always be cleared.
1739 		 */
1740 		ln->ln_router = 0;
1741 		break;
1742 	case ND_ROUTER_ADVERT:
1743 		/*
1744 		 * Mark an entry with lladdr as a router.
1745 		 */
1746 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1747 		    (is_newentry && lladdr)) {			/* (7) */
1748 			ln->ln_router = 1;
1749 		}
1750 		break;
1751 	}
1752 
1753 	/*
1754 	 * When the link-layer address of a router changes, select the
1755 	 * best router again.  In particular, when the neighbor entry is newly
1756 	 * created, it might affect the selection policy.
1757 	 * Question: can we restrict the first condition to the "is_newentry"
1758 	 * case?
1759 	 * XXX: when we hear an RA from a new router with the link-layer
1760 	 * address option, defrouter_select() is called twice, since
1761 	 * defrtrlist_update called the function as well.  However, I believe
1762 	 * we can compromise the overhead, since it only happens the first
1763 	 * time.
1764 	 * XXX: although defrouter_select() should not have a bad effect
1765 	 * for those are not autoconfigured hosts, we explicitly avoid such
1766 	 * cases for safety.
1767 	 */
1768 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1769 		defrouter_select();
1770 
1771 	return rt;
1772 }
1773 
1774 static void
1775 nd6_slowtimo(ignored_arg)
1776     void *ignored_arg;
1777 {
1778 	int s = splnet();
1779 	struct nd_ifinfo *nd6if;
1780 	struct ifnet *ifp;
1781 
1782 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1783 	    nd6_slowtimo, NULL);
1784 	IFNET_RLOCK();
1785 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1786 		nd6if = ND_IFINFO(ifp);
1787 		if (nd6if->basereachable && /* already initialized */
1788 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1789 			/*
1790 			 * Since reachable time rarely changes by router
1791 			 * advertisements, we SHOULD insure that a new random
1792 			 * value gets recomputed at least once every few hours.
1793 			 * (RFC 2461, 6.3.4)
1794 			 */
1795 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1796 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1797 		}
1798 	}
1799 	IFNET_RUNLOCK();
1800 	splx(s);
1801 }
1802 
1803 #define senderr(e) { error = (e); goto bad;}
1804 int
1805 nd6_output(ifp, origifp, m0, dst, rt0)
1806 	struct ifnet *ifp;
1807 	struct ifnet *origifp;
1808 	struct mbuf *m0;
1809 	struct sockaddr_in6 *dst;
1810 	struct rtentry *rt0;
1811 {
1812 	struct mbuf *m = m0;
1813 	struct rtentry *rt = rt0;
1814 	struct sockaddr_in6 *gw6 = NULL;
1815 	struct llinfo_nd6 *ln = NULL;
1816 	int error = 0;
1817 
1818 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1819 		goto sendpkt;
1820 
1821 	if (nd6_need_cache(ifp) == 0)
1822 		goto sendpkt;
1823 
1824 	/*
1825 	 * next hop determination.  This routine is derived from ether_output.
1826 	 */
1827 again:
1828 	if (rt) {
1829 		if ((rt->rt_flags & RTF_UP) == 0) {
1830 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1831 			if (rt != NULL) {
1832 				RT_REMREF(rt);
1833 				RT_UNLOCK(rt);
1834 				if (rt->rt_ifp != ifp)
1835 					/*
1836 					 * XXX maybe we should update ifp too,
1837 					 * but the original code didn't and I
1838 					 * don't know what is correct here.
1839 					 */
1840 					goto again;
1841 			} else
1842 				senderr(EHOSTUNREACH);
1843 		}
1844 
1845 		if (rt->rt_flags & RTF_GATEWAY) {
1846 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1847 
1848 			/*
1849 			 * We skip link-layer address resolution and NUD
1850 			 * if the gateway is not a neighbor from ND point
1851 			 * of view, regardless of the value of nd_ifinfo.flags.
1852 			 * The second condition is a bit tricky; we skip
1853 			 * if the gateway is our own address, which is
1854 			 * sometimes used to install a route to a p2p link.
1855 			 */
1856 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1857 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1858 				/*
1859 				 * We allow this kind of tricky route only
1860 				 * when the outgoing interface is p2p.
1861 				 * XXX: we may need a more generic rule here.
1862 				 */
1863 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1864 					senderr(EHOSTUNREACH);
1865 
1866 				goto sendpkt;
1867 			}
1868 
1869 			if (rt->rt_gwroute == 0)
1870 				goto lookup;
1871 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1872 				RT_LOCK(rt);
1873 				rtfree(rt); rt = rt0;
1874 			lookup:
1875 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1876 				if ((rt = rt->rt_gwroute) == 0)
1877 					senderr(EHOSTUNREACH);
1878 				RT_UNLOCK(rt);
1879 			}
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * Address resolution or Neighbor Unreachability Detection
1885 	 * for the next hop.
1886 	 * At this point, the destination of the packet must be a unicast
1887 	 * or an anycast address(i.e. not a multicast).
1888 	 */
1889 
1890 	/* Look up the neighbor cache for the nexthop */
1891 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1892 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1893 	else {
1894 		/*
1895 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1896 		 * the condition below is not very efficient.  But we believe
1897 		 * it is tolerable, because this should be a rare case.
1898 		 */
1899 		if (nd6_is_addr_neighbor(dst, ifp) &&
1900 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1901 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1902 	}
1903 	if (!ln || !rt) {
1904 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1905 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1906 			log(LOG_DEBUG,
1907 			    "nd6_output: can't allocate llinfo for %s "
1908 			    "(ln=%p, rt=%p)\n",
1909 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1910 			senderr(EIO);	/* XXX: good error? */
1911 		}
1912 
1913 		goto sendpkt;	/* send anyway */
1914 	}
1915 
1916 	/* We don't have to do link-layer address resolution on a p2p link. */
1917 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1918 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1919 		ln->ln_state = ND6_LLINFO_STALE;
1920 		ln->ln_expire = time_second + nd6_gctimer;
1921 	}
1922 
1923 	/*
1924 	 * The first time we send a packet to a neighbor whose entry is
1925 	 * STALE, we have to change the state to DELAY and a sets a timer to
1926 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1927 	 * neighbor unreachability detection on expiration.
1928 	 * (RFC 2461 7.3.3)
1929 	 */
1930 	if (ln->ln_state == ND6_LLINFO_STALE) {
1931 		ln->ln_asked = 0;
1932 		ln->ln_state = ND6_LLINFO_DELAY;
1933 		ln->ln_expire = time_second + nd6_delay;
1934 	}
1935 
1936 	/*
1937 	 * If the neighbor cache entry has a state other than INCOMPLETE
1938 	 * (i.e. its link-layer address is already resolved), just
1939 	 * send the packet.
1940 	 */
1941 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1942 		goto sendpkt;
1943 
1944 	/*
1945 	 * There is a neighbor cache entry, but no ethernet address
1946 	 * response yet.  Replace the held mbuf (if any) with this
1947 	 * latest one.
1948 	 *
1949 	 * This code conforms to the rate-limiting rule described in Section
1950 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1951 	 * an NS below.
1952 	 */
1953 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1954 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1955 	if (ln->ln_hold)
1956 		m_freem(ln->ln_hold);
1957 	ln->ln_hold = m;
1958 	if (ln->ln_expire) {
1959 		if (ln->ln_asked < nd6_mmaxtries &&
1960 		    ln->ln_expire < time_second) {
1961 			ln->ln_asked++;
1962 			ln->ln_expire = time_second +
1963 				ND_IFINFO(ifp)->retrans / 1000;
1964 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1965 		}
1966 	}
1967 	return (0);
1968 
1969   sendpkt:
1970 #ifdef IPSEC
1971 	/* clean ipsec history once it goes out of the node */
1972 	ipsec_delaux(m);
1973 #endif
1974 
1975 #ifdef MAC
1976 	mac_create_mbuf_linklayer(ifp, m);
1977 #endif
1978 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1979 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1980 		    rt));
1981 	}
1982 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1983 
1984   bad:
1985 	if (m)
1986 		m_freem(m);
1987 	return (error);
1988 }
1989 #undef senderr
1990 
1991 int
1992 nd6_need_cache(ifp)
1993 	struct ifnet *ifp;
1994 {
1995 	/*
1996 	 * XXX: we currently do not make neighbor cache on any interface
1997 	 * other than ARCnet, Ethernet, FDDI and GIF.
1998 	 *
1999 	 * RFC2893 says:
2000 	 * - unidirectional tunnels needs no ND
2001 	 */
2002 	switch (ifp->if_type) {
2003 	case IFT_ARCNET:
2004 	case IFT_ETHER:
2005 	case IFT_FDDI:
2006 	case IFT_IEEE1394:
2007 #ifdef IFT_L2VLAN
2008 	case IFT_L2VLAN:
2009 #endif
2010 #ifdef IFT_IEEE80211
2011 	case IFT_IEEE80211:
2012 #endif
2013 #ifdef IFT_CARP
2014 	case IFT_CARP:
2015 #endif
2016 	case IFT_GIF:		/* XXX need more cases? */
2017 	case IFT_BRIDGE:
2018 		return (1);
2019 	default:
2020 		return (0);
2021 	}
2022 }
2023 
2024 int
2025 nd6_storelladdr(ifp, rt0, m, dst, desten)
2026 	struct ifnet *ifp;
2027 	struct rtentry *rt0;
2028 	struct mbuf *m;
2029 	struct sockaddr *dst;
2030 	u_char *desten;
2031 {
2032 	struct sockaddr_dl *sdl;
2033 	struct rtentry *rt;
2034 	int error;
2035 
2036 	if (m->m_flags & M_MCAST) {
2037 		int i;
2038 
2039 		switch (ifp->if_type) {
2040 		case IFT_ETHER:
2041 		case IFT_FDDI:
2042 #ifdef IFT_L2VLAN
2043 		case IFT_L2VLAN:
2044 #endif
2045 #ifdef IFT_IEEE80211
2046 		case IFT_IEEE80211:
2047 #endif
2048 		case IFT_BRIDGE:
2049 		case IFT_ISO88025:
2050 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2051 						 desten);
2052 			return (0);
2053 		case IFT_IEEE1394:
2054 			/*
2055 			 * netbsd can use if_broadcastaddr, but we don't do so
2056 			 * to reduce # of ifdef.
2057 			 */
2058 			for (i = 0; i < ifp->if_addrlen; i++)
2059 				desten[i] = ~0;
2060 			return (0);
2061 		case IFT_ARCNET:
2062 			*desten = 0;
2063 			return (0);
2064 		default:
2065 			m_freem(m);
2066 			return (EAFNOSUPPORT);
2067 		}
2068 	}
2069 
2070 	if (rt0 == NULL) {
2071 		/* this could happen, if we could not allocate memory */
2072 		m_freem(m);
2073 		return (ENOMEM);
2074 	}
2075 
2076 	error = rt_check(&rt, &rt0, dst);
2077 	if (error) {
2078 		m_freem(m);
2079 		return (error);
2080 	}
2081 	RT_UNLOCK(rt);
2082 
2083 	if (rt->rt_gateway->sa_family != AF_LINK) {
2084 		printf("nd6_storelladdr: something odd happens\n");
2085 		m_freem(m);
2086 		return (EINVAL);
2087 	}
2088 	sdl = SDL(rt->rt_gateway);
2089 	if (sdl->sdl_alen == 0) {
2090 		/* this should be impossible, but we bark here for debugging */
2091 		printf("nd6_storelladdr: sdl_alen == 0\n");
2092 		m_freem(m);
2093 		return (EINVAL);
2094 	}
2095 
2096 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2097 	return (0);
2098 }
2099 
2100 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2101 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2102 #ifdef SYSCTL_DECL
2103 SYSCTL_DECL(_net_inet6_icmp6);
2104 #endif
2105 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2106 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2107 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2108 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2109 
2110 static int
2111 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2112 {
2113 	int error;
2114 	char buf[1024];
2115 	struct in6_defrouter *d, *de;
2116 	struct nd_defrouter *dr;
2117 
2118 	if (req->newptr)
2119 		return EPERM;
2120 	error = 0;
2121 
2122 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2123 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2124 		d = (struct in6_defrouter *)buf;
2125 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2126 
2127 		if (d + 1 <= de) {
2128 			bzero(d, sizeof(*d));
2129 			d->rtaddr.sin6_family = AF_INET6;
2130 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2131 			d->rtaddr.sin6_addr = dr->rtaddr;
2132 			if (sa6_recoverscope(&d->rtaddr)) {
2133 				log(LOG_ERR,
2134 				    "scope error in router list (%s)\n",
2135 				    ip6_sprintf(&d->rtaddr.sin6_addr));
2136 				/* XXX: press on... */
2137 			}
2138 			d->flags = dr->flags;
2139 			d->rtlifetime = dr->rtlifetime;
2140 			d->expire = dr->expire;
2141 			d->if_index = dr->ifp->if_index;
2142 		} else
2143 			panic("buffer too short");
2144 
2145 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2146 		if (error)
2147 			break;
2148 	}
2149 
2150 	return (error);
2151 }
2152 
2153 static int
2154 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2155 {
2156 	int error;
2157 	char buf[1024];
2158 	struct in6_prefix *p, *pe;
2159 	struct nd_prefix *pr;
2160 
2161 	if (req->newptr)
2162 		return EPERM;
2163 	error = 0;
2164 
2165 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2166 		u_short advrtrs;
2167 		size_t advance;
2168 		struct sockaddr_in6 *sin6, *s6;
2169 		struct nd_pfxrouter *pfr;
2170 
2171 		p = (struct in6_prefix *)buf;
2172 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2173 
2174 		if (p + 1 <= pe) {
2175 			bzero(p, sizeof(*p));
2176 			sin6 = (struct sockaddr_in6 *)(p + 1);
2177 
2178 			p->prefix = pr->ndpr_prefix;
2179 			if (sa6_recoverscope(&p->prefix)) {
2180 				log(LOG_ERR,
2181 				    "scope error in prefix list (%s)\n",
2182 				    ip6_sprintf(&p->prefix.sin6_addr));
2183 				/* XXX: press on... */
2184 			}
2185 			p->raflags = pr->ndpr_raf;
2186 			p->prefixlen = pr->ndpr_plen;
2187 			p->vltime = pr->ndpr_vltime;
2188 			p->pltime = pr->ndpr_pltime;
2189 			p->if_index = pr->ndpr_ifp->if_index;
2190 			p->expire = pr->ndpr_expire;
2191 			p->refcnt = pr->ndpr_refcnt;
2192 			p->flags = pr->ndpr_stateflags;
2193 			p->origin = PR_ORIG_RA;
2194 			advrtrs = 0;
2195 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2196 			     pfr = pfr->pfr_next) {
2197 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2198 					advrtrs++;
2199 					continue;
2200 				}
2201 				s6 = &sin6[advrtrs];
2202 				bzero(s6, sizeof(*s6));
2203 				s6->sin6_family = AF_INET6;
2204 				s6->sin6_len = sizeof(*sin6);
2205 				s6->sin6_addr = pfr->router->rtaddr;
2206 				if (sa6_recoverscope(s6)) {
2207 					log(LOG_ERR,
2208 					    "scope error in "
2209 					    "prefix list (%s)\n",
2210 					    ip6_sprintf(&pfr->router->rtaddr));
2211 				}
2212 				advrtrs++;
2213 			}
2214 			p->advrtrs = advrtrs;
2215 		} else
2216 			panic("buffer too short");
2217 
2218 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2219 		error = SYSCTL_OUT(req, buf, advance);
2220 		if (error)
2221 			break;
2222 	}
2223 
2224 	return (error);
2225 }
2226