xref: /freebsd/sys/netinet6/nd6.c (revision 7dfd9569a2f0637fb9a48157b1c1bfe5709faee3)
1 /*	$FreeBSD$	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/mac.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/queue.h>
51 #include <sys/sysctl.h>
52 
53 #include <net/if.h>
54 #include <net/if_arc.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/iso88025.h>
58 #include <net/fddi.h>
59 #include <net/route.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/if_ether.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 
70 #include <sys/limits.h>
71 
72 #include <net/net_osdep.h>
73 
74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76 
77 #define SIN6(s) ((struct sockaddr_in6 *)s)
78 #define SDL(s) ((struct sockaddr_dl *)s)
79 
80 /* timer values */
81 int	nd6_prune	= 1;	/* walk list every 1 seconds */
82 int	nd6_delay	= 5;	/* delay first probe time 5 second */
83 int	nd6_umaxtries	= 3;	/* maximum unicast query */
84 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
85 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87 
88 /* preventing too many loops in ND option parsing */
89 int nd6_maxndopt = 10;	/* max # of ND options allowed */
90 
91 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
93 
94 #ifdef ND6_DEBUG
95 int nd6_debug = 1;
96 #else
97 int nd6_debug = 0;
98 #endif
99 
100 /* for debugging? */
101 static int nd6_inuse, nd6_allocated;
102 
103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104 struct nd_drhead nd_defrouter;
105 struct nd_prhead nd_prefix = { 0 };
106 
107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108 static struct sockaddr_in6 all1_sa;
109 
110 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
111 	struct ifnet *));
112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113 static void nd6_slowtimo __P((void *));
114 static int regen_tmpaddr __P((struct in6_ifaddr *));
115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116 static void nd6_llinfo_timer __P((void *));
117 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
118 
119 struct callout nd6_slowtimo_ch;
120 struct callout nd6_timer_ch;
121 extern struct callout in6_tmpaddrtimer_ch;
122 
123 void
124 nd6_init()
125 {
126 	static int nd6_init_done = 0;
127 	int i;
128 
129 	if (nd6_init_done) {
130 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131 		return;
132 	}
133 
134 	all1_sa.sin6_family = AF_INET6;
135 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
138 
139 	/* initialization of the default router list */
140 	TAILQ_INIT(&nd_defrouter);
141 
142 	nd6_init_done = 1;
143 
144 	/* start timer */
145 	callout_init(&nd6_slowtimo_ch, 0);
146 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147 	    nd6_slowtimo, NULL);
148 }
149 
150 struct nd_ifinfo *
151 nd6_ifattach(ifp)
152 	struct ifnet *ifp;
153 {
154 	struct nd_ifinfo *nd;
155 
156 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157 	bzero(nd, sizeof(*nd));
158 
159 	nd->initialized = 1;
160 
161 	nd->chlim = IPV6_DEFHLIM;
162 	nd->basereachable = REACHABLE_TIME;
163 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164 	nd->retrans = RETRANS_TIMER;
165 	/*
166 	 * Note that the default value of ip6_accept_rtadv is 0, which means
167 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
168 	 * here.
169 	 */
170 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
171 
172 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173 	nd6_setmtu0(ifp, nd);
174 
175 	return nd;
176 }
177 
178 void
179 nd6_ifdetach(nd)
180 	struct nd_ifinfo *nd;
181 {
182 
183 	free(nd, M_IP6NDP);
184 }
185 
186 /*
187  * Reset ND level link MTU. This function is called when the physical MTU
188  * changes, which means we might have to adjust the ND level MTU.
189  */
190 void
191 nd6_setmtu(ifp)
192 	struct ifnet *ifp;
193 {
194 
195 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
196 }
197 
198 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199 void
200 nd6_setmtu0(ifp, ndi)
201 	struct ifnet *ifp;
202 	struct nd_ifinfo *ndi;
203 {
204 	u_int32_t omaxmtu;
205 
206 	omaxmtu = ndi->maxmtu;
207 
208 	switch (ifp->if_type) {
209 	case IFT_ARCNET:
210 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
211 		break;
212 	case IFT_FDDI:
213 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
214 		break;
215 	case IFT_ISO88025:
216 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
217 		 break;
218 	default:
219 		ndi->maxmtu = ifp->if_mtu;
220 		break;
221 	}
222 
223 	/*
224 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
225 	 * undesirable situation.  We thus notify the operator of the change
226 	 * explicitly.  The check for omaxmtu is necessary to restrict the
227 	 * log to the case of changing the MTU, not initializing it.
228 	 */
229 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
230 		log(LOG_NOTICE, "nd6_setmtu0: "
231 		    "new link MTU on %s (%lu) is too small for IPv6\n",
232 		    if_name(ifp), (unsigned long)ndi->maxmtu);
233 	}
234 
235 	if (ndi->maxmtu > in6_maxmtu)
236 		in6_setmaxmtu(); /* check all interfaces just in case */
237 
238 #undef MIN
239 }
240 
241 void
242 nd6_option_init(opt, icmp6len, ndopts)
243 	void *opt;
244 	int icmp6len;
245 	union nd_opts *ndopts;
246 {
247 
248 	bzero(ndopts, sizeof(*ndopts));
249 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
250 	ndopts->nd_opts_last
251 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
252 
253 	if (icmp6len == 0) {
254 		ndopts->nd_opts_done = 1;
255 		ndopts->nd_opts_search = NULL;
256 	}
257 }
258 
259 /*
260  * Take one ND option.
261  */
262 struct nd_opt_hdr *
263 nd6_option(ndopts)
264 	union nd_opts *ndopts;
265 {
266 	struct nd_opt_hdr *nd_opt;
267 	int olen;
268 
269 	if (ndopts == NULL)
270 		panic("ndopts == NULL in nd6_option");
271 	if (ndopts->nd_opts_last == NULL)
272 		panic("uninitialized ndopts in nd6_option");
273 	if (ndopts->nd_opts_search == NULL)
274 		return NULL;
275 	if (ndopts->nd_opts_done)
276 		return NULL;
277 
278 	nd_opt = ndopts->nd_opts_search;
279 
280 	/* make sure nd_opt_len is inside the buffer */
281 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
282 		bzero(ndopts, sizeof(*ndopts));
283 		return NULL;
284 	}
285 
286 	olen = nd_opt->nd_opt_len << 3;
287 	if (olen == 0) {
288 		/*
289 		 * Message validation requires that all included
290 		 * options have a length that is greater than zero.
291 		 */
292 		bzero(ndopts, sizeof(*ndopts));
293 		return NULL;
294 	}
295 
296 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
297 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
298 		/* option overruns the end of buffer, invalid */
299 		bzero(ndopts, sizeof(*ndopts));
300 		return NULL;
301 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
302 		/* reached the end of options chain */
303 		ndopts->nd_opts_done = 1;
304 		ndopts->nd_opts_search = NULL;
305 	}
306 	return nd_opt;
307 }
308 
309 /*
310  * Parse multiple ND options.
311  * This function is much easier to use, for ND routines that do not need
312  * multiple options of the same type.
313  */
314 int
315 nd6_options(ndopts)
316 	union nd_opts *ndopts;
317 {
318 	struct nd_opt_hdr *nd_opt;
319 	int i = 0;
320 
321 	if (ndopts == NULL)
322 		panic("ndopts == NULL in nd6_options");
323 	if (ndopts->nd_opts_last == NULL)
324 		panic("uninitialized ndopts in nd6_options");
325 	if (ndopts->nd_opts_search == NULL)
326 		return 0;
327 
328 	while (1) {
329 		nd_opt = nd6_option(ndopts);
330 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
331 			/*
332 			 * Message validation requires that all included
333 			 * options have a length that is greater than zero.
334 			 */
335 			icmp6stat.icp6s_nd_badopt++;
336 			bzero(ndopts, sizeof(*ndopts));
337 			return -1;
338 		}
339 
340 		if (nd_opt == NULL)
341 			goto skip1;
342 
343 		switch (nd_opt->nd_opt_type) {
344 		case ND_OPT_SOURCE_LINKADDR:
345 		case ND_OPT_TARGET_LINKADDR:
346 		case ND_OPT_MTU:
347 		case ND_OPT_REDIRECTED_HEADER:
348 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
349 				nd6log((LOG_INFO,
350 				    "duplicated ND6 option found (type=%d)\n",
351 				    nd_opt->nd_opt_type));
352 				/* XXX bark? */
353 			} else {
354 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
355 					= nd_opt;
356 			}
357 			break;
358 		case ND_OPT_PREFIX_INFORMATION:
359 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
360 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
361 					= nd_opt;
362 			}
363 			ndopts->nd_opts_pi_end =
364 				(struct nd_opt_prefix_info *)nd_opt;
365 			break;
366 		default:
367 			/*
368 			 * Unknown options must be silently ignored,
369 			 * to accomodate future extension to the protocol.
370 			 */
371 			nd6log((LOG_DEBUG,
372 			    "nd6_options: unsupported option %d - "
373 			    "option ignored\n", nd_opt->nd_opt_type));
374 		}
375 
376 skip1:
377 		i++;
378 		if (i > nd6_maxndopt) {
379 			icmp6stat.icp6s_nd_toomanyopt++;
380 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
381 			break;
382 		}
383 
384 		if (ndopts->nd_opts_done)
385 			break;
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * ND6 timer routine to handle ND6 entries
393  */
394 void
395 nd6_llinfo_settimer(ln, tick)
396 	struct llinfo_nd6 *ln;
397 	long tick;
398 {
399 	if (tick < 0) {
400 		ln->ln_expire = 0;
401 		ln->ln_ntick = 0;
402 		callout_stop(&ln->ln_timer_ch);
403 	} else {
404 		ln->ln_expire = time_second + tick / hz;
405 		if (tick > INT_MAX) {
406 			ln->ln_ntick = tick - INT_MAX;
407 			callout_reset(&ln->ln_timer_ch, INT_MAX,
408 			    nd6_llinfo_timer, ln);
409 		} else {
410 			ln->ln_ntick = 0;
411 			callout_reset(&ln->ln_timer_ch, tick,
412 			    nd6_llinfo_timer, ln);
413 		}
414 	}
415 }
416 
417 static void
418 nd6_llinfo_timer(arg)
419 	void *arg;
420 {
421 	struct llinfo_nd6 *ln;
422 	struct rtentry *rt;
423 	struct in6_addr *dst;
424 	struct ifnet *ifp;
425 	struct nd_ifinfo *ndi = NULL;
426 
427 	ln = (struct llinfo_nd6 *)arg;
428 
429 	if (ln->ln_ntick > 0) {
430 		if (ln->ln_ntick > INT_MAX) {
431 			ln->ln_ntick -= INT_MAX;
432 			nd6_llinfo_settimer(ln, INT_MAX);
433 		} else {
434 			ln->ln_ntick = 0;
435 			nd6_llinfo_settimer(ln, ln->ln_ntick);
436 		}
437 		return;
438 	}
439 
440 	if ((rt = ln->ln_rt) == NULL)
441 		panic("ln->ln_rt == NULL");
442 	if ((ifp = rt->rt_ifp) == NULL)
443 		panic("ln->ln_rt->rt_ifp == NULL");
444 	ndi = ND_IFINFO(ifp);
445 
446 	/* sanity check */
447 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
448 		panic("rt_llinfo(%p) is not equal to ln(%p)",
449 		      rt->rt_llinfo, ln);
450 	if (rt_key(rt) == NULL)
451 		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
452 
453 	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
454 
455 	switch (ln->ln_state) {
456 	case ND6_LLINFO_INCOMPLETE:
457 		if (ln->ln_asked < nd6_mmaxtries) {
458 			ln->ln_asked++;
459 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
460 			nd6_ns_output(ifp, NULL, dst, ln, 0);
461 		} else {
462 			struct mbuf *m = ln->ln_hold;
463 			if (m) {
464 				struct mbuf *m0;
465 
466 				/*
467 				 * assuming every packet in ln_hold has the
468 				 * same IP header
469 				 */
470 				m0 = m->m_nextpkt;
471 				m->m_nextpkt = NULL;
472 				icmp6_error2(m, ICMP6_DST_UNREACH,
473 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
474 
475 				ln->ln_hold = m0;
476 				clear_llinfo_pqueue(ln);
477 			}
478 			if (rt)
479 				(void)nd6_free(rt, 0);
480 			ln = NULL;
481 		}
482 		break;
483 	case ND6_LLINFO_REACHABLE:
484 		if (!ND6_LLINFO_PERMANENT(ln)) {
485 			ln->ln_state = ND6_LLINFO_STALE;
486 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
487 		}
488 		break;
489 
490 	case ND6_LLINFO_STALE:
491 		/* Garbage Collection(RFC 2461 5.3) */
492 		if (!ND6_LLINFO_PERMANENT(ln)) {
493 			(void)nd6_free(rt, 1);
494 			ln = NULL;
495 		}
496 		break;
497 
498 	case ND6_LLINFO_DELAY:
499 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
500 			/* We need NUD */
501 			ln->ln_asked = 1;
502 			ln->ln_state = ND6_LLINFO_PROBE;
503 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 			nd6_ns_output(ifp, dst, dst, ln, 0);
505 		} else {
506 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
507 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
508 		}
509 		break;
510 	case ND6_LLINFO_PROBE:
511 		if (ln->ln_asked < nd6_umaxtries) {
512 			ln->ln_asked++;
513 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
514 			nd6_ns_output(ifp, dst, dst, ln, 0);
515 		} else {
516 			(void)nd6_free(rt, 0);
517 			ln = NULL;
518 		}
519 		break;
520 	}
521 }
522 
523 
524 /*
525  * ND6 timer routine to expire default route list and prefix list
526  */
527 void
528 nd6_timer(ignored_arg)
529 	void	*ignored_arg;
530 {
531 	int s;
532 	struct nd_defrouter *dr;
533 	struct nd_prefix *pr;
534 	struct in6_ifaddr *ia6, *nia6;
535 	struct in6_addrlifetime *lt6;
536 
537 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
538 	    nd6_timer, NULL);
539 
540 	/* expire default router list */
541 	s = splnet();
542 	dr = TAILQ_FIRST(&nd_defrouter);
543 	while (dr) {
544 		if (dr->expire && dr->expire < time_second) {
545 			struct nd_defrouter *t;
546 			t = TAILQ_NEXT(dr, dr_entry);
547 			defrtrlist_del(dr);
548 			dr = t;
549 		} else {
550 			dr = TAILQ_NEXT(dr, dr_entry);
551 		}
552 	}
553 
554 	/*
555 	 * expire interface addresses.
556 	 * in the past the loop was inside prefix expiry processing.
557 	 * However, from a stricter speci-confrmance standpoint, we should
558 	 * rather separate address lifetimes and prefix lifetimes.
559 	 */
560   addrloop:
561 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
562 		nia6 = ia6->ia_next;
563 		/* check address lifetime */
564 		lt6 = &ia6->ia6_lifetime;
565 		if (IFA6_IS_INVALID(ia6)) {
566 			int regen = 0;
567 
568 			/*
569 			 * If the expiring address is temporary, try
570 			 * regenerating a new one.  This would be useful when
571 			 * we suspended a laptop PC, then turned it on after a
572 			 * period that could invalidate all temporary
573 			 * addresses.  Although we may have to restart the
574 			 * loop (see below), it must be after purging the
575 			 * address.  Otherwise, we'd see an infinite loop of
576 			 * regeneration.
577 			 */
578 			if (ip6_use_tempaddr &&
579 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
580 				if (regen_tmpaddr(ia6) == 0)
581 					regen = 1;
582 			}
583 
584 			in6_purgeaddr(&ia6->ia_ifa);
585 
586 			if (regen)
587 				goto addrloop; /* XXX: see below */
588 		} else if (IFA6_IS_DEPRECATED(ia6)) {
589 			int oldflags = ia6->ia6_flags;
590 
591 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
592 
593 			/*
594 			 * If a temporary address has just become deprecated,
595 			 * regenerate a new one if possible.
596 			 */
597 			if (ip6_use_tempaddr &&
598 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
599 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
600 
601 				if (regen_tmpaddr(ia6) == 0) {
602 					/*
603 					 * A new temporary address is
604 					 * generated.
605 					 * XXX: this means the address chain
606 					 * has changed while we are still in
607 					 * the loop.  Although the change
608 					 * would not cause disaster (because
609 					 * it's not a deletion, but an
610 					 * addition,) we'd rather restart the
611 					 * loop just for safety.  Or does this
612 					 * significantly reduce performance??
613 					 */
614 					goto addrloop;
615 				}
616 			}
617 		} else {
618 			/*
619 			 * A new RA might have made a deprecated address
620 			 * preferred.
621 			 */
622 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
623 		}
624 	}
625 
626 	/* expire prefix list */
627 	pr = nd_prefix.lh_first;
628 	while (pr) {
629 		/*
630 		 * check prefix lifetime.
631 		 * since pltime is just for autoconf, pltime processing for
632 		 * prefix is not necessary.
633 		 */
634 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
635 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
636 			struct nd_prefix *t;
637 			t = pr->ndpr_next;
638 
639 			/*
640 			 * address expiration and prefix expiration are
641 			 * separate.  NEVER perform in6_purgeaddr here.
642 			 */
643 
644 			prelist_remove(pr);
645 			pr = t;
646 		} else
647 			pr = pr->ndpr_next;
648 	}
649 	splx(s);
650 }
651 
652 static int
653 regen_tmpaddr(ia6)
654 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
655 {
656 	struct ifaddr *ifa;
657 	struct ifnet *ifp;
658 	struct in6_ifaddr *public_ifa6 = NULL;
659 
660 	ifp = ia6->ia_ifa.ifa_ifp;
661 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
662 	     ifa = ifa->ifa_list.tqe_next) {
663 		struct in6_ifaddr *it6;
664 
665 		if (ifa->ifa_addr->sa_family != AF_INET6)
666 			continue;
667 
668 		it6 = (struct in6_ifaddr *)ifa;
669 
670 		/* ignore no autoconf addresses. */
671 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
672 			continue;
673 
674 		/* ignore autoconf addresses with different prefixes. */
675 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
676 			continue;
677 
678 		/*
679 		 * Now we are looking at an autoconf address with the same
680 		 * prefix as ours.  If the address is temporary and is still
681 		 * preferred, do not create another one.  It would be rare, but
682 		 * could happen, for example, when we resume a laptop PC after
683 		 * a long period.
684 		 */
685 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
686 		    !IFA6_IS_DEPRECATED(it6)) {
687 			public_ifa6 = NULL;
688 			break;
689 		}
690 
691 		/*
692 		 * This is a public autoconf address that has the same prefix
693 		 * as ours.  If it is preferred, keep it.  We can't break the
694 		 * loop here, because there may be a still-preferred temporary
695 		 * address with the prefix.
696 		 */
697 		if (!IFA6_IS_DEPRECATED(it6))
698 		    public_ifa6 = it6;
699 	}
700 
701 	if (public_ifa6 != NULL) {
702 		int e;
703 
704 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
705 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
706 			    " tmp addr,errno=%d\n", e);
707 			return (-1);
708 		}
709 		return (0);
710 	}
711 
712 	return (-1);
713 }
714 
715 /*
716  * Nuke neighbor cache/prefix/default router management table, right before
717  * ifp goes away.
718  */
719 void
720 nd6_purge(ifp)
721 	struct ifnet *ifp;
722 {
723 	struct llinfo_nd6 *ln, *nln;
724 	struct nd_defrouter *dr, *ndr;
725 	struct nd_prefix *pr, *npr;
726 
727 	/*
728 	 * Nuke default router list entries toward ifp.
729 	 * We defer removal of default router list entries that is installed
730 	 * in the routing table, in order to keep additional side effects as
731 	 * small as possible.
732 	 */
733 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
734 		ndr = TAILQ_NEXT(dr, dr_entry);
735 		if (dr->installed)
736 			continue;
737 
738 		if (dr->ifp == ifp)
739 			defrtrlist_del(dr);
740 	}
741 
742 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
743 		ndr = TAILQ_NEXT(dr, dr_entry);
744 		if (!dr->installed)
745 			continue;
746 
747 		if (dr->ifp == ifp)
748 			defrtrlist_del(dr);
749 	}
750 
751 	/* Nuke prefix list entries toward ifp */
752 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
753 		npr = pr->ndpr_next;
754 		if (pr->ndpr_ifp == ifp) {
755 			/*
756 			 * Because if_detach() does *not* release prefixes
757 			 * while purging addresses the reference count will
758 			 * still be above zero. We therefore reset it to
759 			 * make sure that the prefix really gets purged.
760 			 */
761 			pr->ndpr_refcnt = 0;
762 
763 			/*
764 			 * Previously, pr->ndpr_addr is removed as well,
765 			 * but I strongly believe we don't have to do it.
766 			 * nd6_purge() is only called from in6_ifdetach(),
767 			 * which removes all the associated interface addresses
768 			 * by itself.
769 			 * (jinmei@kame.net 20010129)
770 			 */
771 			prelist_remove(pr);
772 		}
773 	}
774 
775 	/* cancel default outgoing interface setting */
776 	if (nd6_defifindex == ifp->if_index)
777 		nd6_setdefaultiface(0);
778 
779 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
780 		/* refresh default router list */
781 		defrouter_select();
782 	}
783 
784 	/*
785 	 * Nuke neighbor cache entries for the ifp.
786 	 * Note that rt->rt_ifp may not be the same as ifp,
787 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
788 	 * nd6_rtrequest(), and ip6_input().
789 	 */
790 	ln = llinfo_nd6.ln_next;
791 	while (ln && ln != &llinfo_nd6) {
792 		struct rtentry *rt;
793 		struct sockaddr_dl *sdl;
794 
795 		nln = ln->ln_next;
796 		rt = ln->ln_rt;
797 		if (rt && rt->rt_gateway &&
798 		    rt->rt_gateway->sa_family == AF_LINK) {
799 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
800 			if (sdl->sdl_index == ifp->if_index)
801 				nln = nd6_free(rt, 0);
802 		}
803 		ln = nln;
804 	}
805 }
806 
807 struct rtentry *
808 nd6_lookup(addr6, create, ifp)
809 	struct in6_addr *addr6;
810 	int create;
811 	struct ifnet *ifp;
812 {
813 	struct rtentry *rt;
814 	struct sockaddr_in6 sin6;
815 
816 	bzero(&sin6, sizeof(sin6));
817 	sin6.sin6_len = sizeof(struct sockaddr_in6);
818 	sin6.sin6_family = AF_INET6;
819 	sin6.sin6_addr = *addr6;
820 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
821 	if (rt) {
822 		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
823 			/*
824 			 * This is the case for the default route.
825 			 * If we want to create a neighbor cache for the
826 			 * address, we should free the route for the
827 			 * destination and allocate an interface route.
828 			 */
829 			RTFREE_LOCKED(rt);
830 			rt = NULL;
831 		}
832 	}
833 	if (rt == NULL) {
834 		if (create && ifp) {
835 			int e;
836 
837 			/*
838 			 * If no route is available and create is set,
839 			 * we allocate a host route for the destination
840 			 * and treat it like an interface route.
841 			 * This hack is necessary for a neighbor which can't
842 			 * be covered by our own prefix.
843 			 */
844 			struct ifaddr *ifa =
845 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
846 			if (ifa == NULL)
847 				return (NULL);
848 
849 			/*
850 			 * Create a new route.  RTF_LLINFO is necessary
851 			 * to create a Neighbor Cache entry for the
852 			 * destination in nd6_rtrequest which will be
853 			 * called in rtrequest via ifa->ifa_rtrequest.
854 			 */
855 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
856 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
857 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
858 			    ~RTF_CLONING, &rt)) != 0) {
859 				log(LOG_ERR,
860 				    "nd6_lookup: failed to add route for a "
861 				    "neighbor(%s), errno=%d\n",
862 				    ip6_sprintf(addr6), e);
863 			}
864 			if (rt == NULL)
865 				return (NULL);
866 			RT_LOCK(rt);
867 			if (rt->rt_llinfo) {
868 				struct llinfo_nd6 *ln =
869 				    (struct llinfo_nd6 *)rt->rt_llinfo;
870 				ln->ln_state = ND6_LLINFO_NOSTATE;
871 			}
872 		} else
873 			return (NULL);
874 	}
875 	RT_LOCK_ASSERT(rt);
876 	RT_REMREF(rt);
877 	/*
878 	 * Validation for the entry.
879 	 * Note that the check for rt_llinfo is necessary because a cloned
880 	 * route from a parent route that has the L flag (e.g. the default
881 	 * route to a p2p interface) may have the flag, too, while the
882 	 * destination is not actually a neighbor.
883 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
884 	 *      it might be the loopback interface if the entry is for our
885 	 *      own address on a non-loopback interface. Instead, we should
886 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
887 	 *	interface.
888 	 * Note also that ifa_ifp and ifp may differ when we connect two
889 	 * interfaces to a same link, install a link prefix to an interface,
890 	 * and try to install a neighbor cache on an interface that does not
891 	 * have a route to the prefix.
892 	 */
893 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
894 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
895 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
896 		if (create) {
897 			nd6log((LOG_DEBUG,
898 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
899 			    ip6_sprintf(addr6),
900 			    ifp ? if_name(ifp) : "unspec"));
901 		}
902 		RT_UNLOCK(rt);
903 		return (NULL);
904 	}
905 	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
906 	return (rt);
907 }
908 
909 /*
910  * Test whether a given IPv6 address is a neighbor or not, ignoring
911  * the actual neighbor cache.  The neighbor cache is ignored in order
912  * to not reenter the routing code from within itself.
913  */
914 static int
915 nd6_is_new_addr_neighbor(addr, ifp)
916 	struct sockaddr_in6 *addr;
917 	struct ifnet *ifp;
918 {
919 	struct nd_prefix *pr;
920 	struct ifaddr *dstaddr;
921 
922 	/*
923 	 * A link-local address is always a neighbor.
924 	 * XXX: a link does not necessarily specify a single interface.
925 	 */
926 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
927 		struct sockaddr_in6 sin6_copy;
928 		u_int32_t zone;
929 
930 		/*
931 		 * We need sin6_copy since sa6_recoverscope() may modify the
932 		 * content (XXX).
933 		 */
934 		sin6_copy = *addr;
935 		if (sa6_recoverscope(&sin6_copy))
936 			return (0); /* XXX: should be impossible */
937 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
938 			return (0);
939 		if (sin6_copy.sin6_scope_id == zone)
940 			return (1);
941 		else
942 			return (0);
943 	}
944 
945 	/*
946 	 * If the address matches one of our addresses,
947 	 * it should be a neighbor.
948 	 * If the address matches one of our on-link prefixes, it should be a
949 	 * neighbor.
950 	 */
951 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
952 		if (pr->ndpr_ifp != ifp)
953 			continue;
954 
955 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
956 			continue;
957 
958 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
959 		    &addr->sin6_addr, &pr->ndpr_mask))
960 			return (1);
961 	}
962 
963 	/*
964 	 * If the address is assigned on the node of the other side of
965 	 * a p2p interface, the address should be a neighbor.
966 	 */
967 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
968 	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
969 		return (1);
970 
971 	/*
972 	 * If the default router list is empty, all addresses are regarded
973 	 * as on-link, and thus, as a neighbor.
974 	 * XXX: we restrict the condition to hosts, because routers usually do
975 	 * not have the "default router list".
976 	 */
977 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
978 	    nd6_defifindex == ifp->if_index) {
979 		return (1);
980 	}
981 
982 	return (0);
983 }
984 
985 
986 /*
987  * Detect if a given IPv6 address identifies a neighbor on a given link.
988  * XXX: should take care of the destination of a p2p link?
989  */
990 int
991 nd6_is_addr_neighbor(addr, ifp)
992 	struct sockaddr_in6 *addr;
993 	struct ifnet *ifp;
994 {
995 
996 	if (nd6_is_new_addr_neighbor(addr, ifp))
997 		return (1);
998 
999 	/*
1000 	 * Even if the address matches none of our addresses, it might be
1001 	 * in the neighbor cache.
1002 	 */
1003 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1004 		return (1);
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Free an nd6 llinfo entry.
1011  * Since the function would cause significant changes in the kernel, DO NOT
1012  * make it global, unless you have a strong reason for the change, and are sure
1013  * that the change is safe.
1014  */
1015 static struct llinfo_nd6 *
1016 nd6_free(rt, gc)
1017 	struct rtentry *rt;
1018 	int gc;
1019 {
1020 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1021 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1022 	struct nd_defrouter *dr;
1023 
1024 	/*
1025 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1026 	 * even though it is not harmful, it was not really necessary.
1027 	 */
1028 
1029 	/* cancel timer */
1030 	nd6_llinfo_settimer(ln, -1);
1031 
1032 	if (!ip6_forwarding) {
1033 		int s;
1034 		s = splnet();
1035 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1036 		    rt->rt_ifp);
1037 
1038 		if (dr != NULL && dr->expire &&
1039 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1040 			/*
1041 			 * If the reason for the deletion is just garbage
1042 			 * collection, and the neighbor is an active default
1043 			 * router, do not delete it.  Instead, reset the GC
1044 			 * timer using the router's lifetime.
1045 			 * Simply deleting the entry would affect default
1046 			 * router selection, which is not necessarily a good
1047 			 * thing, especially when we're using router preference
1048 			 * values.
1049 			 * XXX: the check for ln_state would be redundant,
1050 			 *      but we intentionally keep it just in case.
1051 			 */
1052 			if (dr->expire > time_second)
1053 				nd6_llinfo_settimer(ln,
1054 				    (dr->expire - time_second) * hz);
1055 			else
1056 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1057 			splx(s);
1058 			return (ln->ln_next);
1059 		}
1060 
1061 		if (ln->ln_router || dr) {
1062 			/*
1063 			 * rt6_flush must be called whether or not the neighbor
1064 			 * is in the Default Router List.
1065 			 * See a corresponding comment in nd6_na_input().
1066 			 */
1067 			rt6_flush(&in6, rt->rt_ifp);
1068 		}
1069 
1070 		if (dr) {
1071 			/*
1072 			 * Unreachablity of a router might affect the default
1073 			 * router selection and on-link detection of advertised
1074 			 * prefixes.
1075 			 */
1076 
1077 			/*
1078 			 * Temporarily fake the state to choose a new default
1079 			 * router and to perform on-link determination of
1080 			 * prefixes correctly.
1081 			 * Below the state will be set correctly,
1082 			 * or the entry itself will be deleted.
1083 			 */
1084 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1085 
1086 			/*
1087 			 * Since defrouter_select() does not affect the
1088 			 * on-link determination and MIP6 needs the check
1089 			 * before the default router selection, we perform
1090 			 * the check now.
1091 			 */
1092 			pfxlist_onlink_check();
1093 
1094 			/*
1095 			 * refresh default router list
1096 			 */
1097 			defrouter_select();
1098 		}
1099 		splx(s);
1100 	}
1101 
1102 	/*
1103 	 * Before deleting the entry, remember the next entry as the
1104 	 * return value.  We need this because pfxlist_onlink_check() above
1105 	 * might have freed other entries (particularly the old next entry) as
1106 	 * a side effect (XXX).
1107 	 */
1108 	next = ln->ln_next;
1109 
1110 	/*
1111 	 * Detach the route from the routing tree and the list of neighbor
1112 	 * caches, and disable the route entry not to be used in already
1113 	 * cached routes.
1114 	 */
1115 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1116 	    rt_mask(rt), 0, (struct rtentry **)0);
1117 
1118 	return (next);
1119 }
1120 
1121 /*
1122  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1123  *
1124  * XXX cost-effective methods?
1125  */
1126 void
1127 nd6_nud_hint(rt, dst6, force)
1128 	struct rtentry *rt;
1129 	struct in6_addr *dst6;
1130 	int force;
1131 {
1132 	struct llinfo_nd6 *ln;
1133 
1134 	/*
1135 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1136 	 * routing table by supplied "dst6".
1137 	 */
1138 	if (rt == NULL) {
1139 		if (dst6 == NULL)
1140 			return;
1141 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1142 			return;
1143 	}
1144 
1145 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1146 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1147 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1148 	    rt->rt_gateway->sa_family != AF_LINK) {
1149 		/* This is not a host route. */
1150 		return;
1151 	}
1152 
1153 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1154 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1155 		return;
1156 
1157 	/*
1158 	 * if we get upper-layer reachability confirmation many times,
1159 	 * it is possible we have false information.
1160 	 */
1161 	if (!force) {
1162 		ln->ln_byhint++;
1163 		if (ln->ln_byhint > nd6_maxnudhint)
1164 			return;
1165 	}
1166 
1167 	ln->ln_state = ND6_LLINFO_REACHABLE;
1168 	if (!ND6_LLINFO_PERMANENT(ln)) {
1169 		nd6_llinfo_settimer(ln,
1170 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1171 	}
1172 }
1173 
1174 void
1175 nd6_rtrequest(req, rt, info)
1176 	int	req;
1177 	struct rtentry *rt;
1178 	struct rt_addrinfo *info; /* xxx unused */
1179 {
1180 	struct sockaddr *gate = rt->rt_gateway;
1181 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1182 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1183 	struct ifnet *ifp = rt->rt_ifp;
1184 	struct ifaddr *ifa;
1185 
1186 	RT_LOCK_ASSERT(rt);
1187 
1188 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1189 		return;
1190 
1191 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1192 		/*
1193 		 * This is probably an interface direct route for a link
1194 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1195 		 * We do not need special treatment below for such a route.
1196 		 * Moreover, the RTF_LLINFO flag which would be set below
1197 		 * would annoy the ndp(8) command.
1198 		 */
1199 		return;
1200 	}
1201 
1202 	if (req == RTM_RESOLVE &&
1203 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1204 	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1205 	     ifp))) {
1206 		/*
1207 		 * FreeBSD and BSD/OS often make a cloned host route based
1208 		 * on a less-specific route (e.g. the default route).
1209 		 * If the less specific route does not have a "gateway"
1210 		 * (this is the case when the route just goes to a p2p or an
1211 		 * stf interface), we'll mistakenly make a neighbor cache for
1212 		 * the host route, and will see strange neighbor solicitation
1213 		 * for the corresponding destination.  In order to avoid the
1214 		 * confusion, we check if the destination of the route is
1215 		 * a neighbor in terms of neighbor discovery, and stop the
1216 		 * process if not.  Additionally, we remove the LLINFO flag
1217 		 * so that ndp(8) will not try to get the neighbor information
1218 		 * of the destination.
1219 		 */
1220 		rt->rt_flags &= ~RTF_LLINFO;
1221 		return;
1222 	}
1223 
1224 	switch (req) {
1225 	case RTM_ADD:
1226 		/*
1227 		 * There is no backward compatibility :)
1228 		 *
1229 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1230 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1231 		 *	   rt->rt_flags |= RTF_CLONING;
1232 		 */
1233 		if ((rt->rt_flags & RTF_CLONING) ||
1234 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1235 			/*
1236 			 * Case 1: This route should come from a route to
1237 			 * interface (RTF_CLONING case) or the route should be
1238 			 * treated as on-link but is currently not
1239 			 * (RTF_LLINFO && ln == NULL case).
1240 			 */
1241 			rt_setgate(rt, rt_key(rt),
1242 				   (struct sockaddr *)&null_sdl);
1243 			gate = rt->rt_gateway;
1244 			SDL(gate)->sdl_type = ifp->if_type;
1245 			SDL(gate)->sdl_index = ifp->if_index;
1246 			if (ln)
1247 				nd6_llinfo_settimer(ln, 0);
1248 			if ((rt->rt_flags & RTF_CLONING) != 0)
1249 				break;
1250 		}
1251 		/*
1252 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1253 		 * We don't do that here since llinfo is not ready yet.
1254 		 *
1255 		 * There are also couple of other things to be discussed:
1256 		 * - unsolicited NA code needs improvement beforehand
1257 		 * - RFC2461 says we MAY send multicast unsolicited NA
1258 		 *   (7.2.6 paragraph 4), however, it also says that we
1259 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1260 		 *   we don't have anything like it right now.
1261 		 *   note that the mechanism needs a mutual agreement
1262 		 *   between proxies, which means that we need to implement
1263 		 *   a new protocol, or a new kludge.
1264 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1265 		 *   we need to check ip6forwarding before sending it.
1266 		 *   (or should we allow proxy ND configuration only for
1267 		 *   routers?  there's no mention about proxy ND from hosts)
1268 		 */
1269 		/* FALLTHROUGH */
1270 	case RTM_RESOLVE:
1271 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1272 			/*
1273 			 * Address resolution isn't necessary for a point to
1274 			 * point link, so we can skip this test for a p2p link.
1275 			 */
1276 			if (gate->sa_family != AF_LINK ||
1277 			    gate->sa_len < sizeof(null_sdl)) {
1278 				log(LOG_DEBUG,
1279 				    "nd6_rtrequest: bad gateway value: %s\n",
1280 				    if_name(ifp));
1281 				break;
1282 			}
1283 			SDL(gate)->sdl_type = ifp->if_type;
1284 			SDL(gate)->sdl_index = ifp->if_index;
1285 		}
1286 		if (ln != NULL)
1287 			break;	/* This happens on a route change */
1288 		/*
1289 		 * Case 2: This route may come from cloning, or a manual route
1290 		 * add with a LL address.
1291 		 */
1292 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1293 		rt->rt_llinfo = (caddr_t)ln;
1294 		if (ln == NULL) {
1295 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1296 			break;
1297 		}
1298 		nd6_inuse++;
1299 		nd6_allocated++;
1300 		bzero(ln, sizeof(*ln));
1301 		ln->ln_rt = rt;
1302 		callout_init(&ln->ln_timer_ch, 0);
1303 
1304 		/* this is required for "ndp" command. - shin */
1305 		if (req == RTM_ADD) {
1306 		        /*
1307 			 * gate should have some valid AF_LINK entry,
1308 			 * and ln->ln_expire should have some lifetime
1309 			 * which is specified by ndp command.
1310 			 */
1311 			ln->ln_state = ND6_LLINFO_REACHABLE;
1312 			ln->ln_byhint = 0;
1313 		} else {
1314 		        /*
1315 			 * When req == RTM_RESOLVE, rt is created and
1316 			 * initialized in rtrequest(), so rt_expire is 0.
1317 			 */
1318 			ln->ln_state = ND6_LLINFO_NOSTATE;
1319 			nd6_llinfo_settimer(ln, 0);
1320 		}
1321 		rt->rt_flags |= RTF_LLINFO;
1322 		ln->ln_next = llinfo_nd6.ln_next;
1323 		llinfo_nd6.ln_next = ln;
1324 		ln->ln_prev = &llinfo_nd6;
1325 		ln->ln_next->ln_prev = ln;
1326 
1327 		/*
1328 		 * check if rt_key(rt) is one of my address assigned
1329 		 * to the interface.
1330 		 */
1331 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1332 		    &SIN6(rt_key(rt))->sin6_addr);
1333 		if (ifa) {
1334 			caddr_t macp = nd6_ifptomac(ifp);
1335 			nd6_llinfo_settimer(ln, -1);
1336 			ln->ln_state = ND6_LLINFO_REACHABLE;
1337 			ln->ln_byhint = 0;
1338 			if (macp) {
1339 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1340 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1341 			}
1342 			if (nd6_useloopback) {
1343 				rt->rt_ifp = &loif[0];	/* XXX */
1344 				/*
1345 				 * Make sure rt_ifa be equal to the ifaddr
1346 				 * corresponding to the address.
1347 				 * We need this because when we refer
1348 				 * rt_ifa->ia6_flags in ip6_input, we assume
1349 				 * that the rt_ifa points to the address instead
1350 				 * of the loopback address.
1351 				 */
1352 				if (ifa != rt->rt_ifa) {
1353 					IFAFREE(rt->rt_ifa);
1354 					IFAREF(ifa);
1355 					rt->rt_ifa = ifa;
1356 				}
1357 			}
1358 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1359 			nd6_llinfo_settimer(ln, -1);
1360 			ln->ln_state = ND6_LLINFO_REACHABLE;
1361 			ln->ln_byhint = 0;
1362 
1363 			/* join solicited node multicast for proxy ND */
1364 			if (ifp->if_flags & IFF_MULTICAST) {
1365 				struct in6_addr llsol;
1366 				int error;
1367 
1368 				llsol = SIN6(rt_key(rt))->sin6_addr;
1369 				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1370 				llsol.s6_addr32[1] = 0;
1371 				llsol.s6_addr32[2] = htonl(1);
1372 				llsol.s6_addr8[12] = 0xff;
1373 				if (in6_setscope(&llsol, ifp, NULL))
1374 					break;
1375 				if (in6_addmulti(&llsol, ifp,
1376 				    &error, 0) == NULL) {
1377 					nd6log((LOG_ERR, "%s: failed to join "
1378 					    "%s (errno=%d)\n", if_name(ifp),
1379 					    ip6_sprintf(&llsol), error));
1380 				}
1381 			}
1382 		}
1383 		break;
1384 
1385 	case RTM_DELETE:
1386 		if (ln == NULL)
1387 			break;
1388 		/* leave from solicited node multicast for proxy ND */
1389 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1390 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1391 			struct in6_addr llsol;
1392 			struct in6_multi *in6m;
1393 
1394 			llsol = SIN6(rt_key(rt))->sin6_addr;
1395 			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1396 			llsol.s6_addr32[1] = 0;
1397 			llsol.s6_addr32[2] = htonl(1);
1398 			llsol.s6_addr8[12] = 0xff;
1399 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1400 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1401 				if (in6m)
1402 					in6_delmulti(in6m);
1403 			} else
1404 				; /* XXX: should not happen. bark here? */
1405 		}
1406 		nd6_inuse--;
1407 		ln->ln_next->ln_prev = ln->ln_prev;
1408 		ln->ln_prev->ln_next = ln->ln_next;
1409 		ln->ln_prev = NULL;
1410 		nd6_llinfo_settimer(ln, -1);
1411 		rt->rt_llinfo = 0;
1412 		rt->rt_flags &= ~RTF_LLINFO;
1413 		clear_llinfo_pqueue(ln);
1414 		Free((caddr_t)ln);
1415 	}
1416 }
1417 
1418 int
1419 nd6_ioctl(cmd, data, ifp)
1420 	u_long cmd;
1421 	caddr_t	data;
1422 	struct ifnet *ifp;
1423 {
1424 	struct in6_drlist *drl = (struct in6_drlist *)data;
1425 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1426 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1427 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1428 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1429 	struct nd_defrouter *dr;
1430 	struct nd_prefix *pr;
1431 	struct rtentry *rt;
1432 	int i = 0, error = 0;
1433 	int s;
1434 
1435 	switch (cmd) {
1436 	case SIOCGDRLST_IN6:
1437 		/*
1438 		 * obsolete API, use sysctl under net.inet6.icmp6
1439 		 */
1440 		bzero(drl, sizeof(*drl));
1441 		s = splnet();
1442 		dr = TAILQ_FIRST(&nd_defrouter);
1443 		while (dr && i < DRLSTSIZ) {
1444 			drl->defrouter[i].rtaddr = dr->rtaddr;
1445 			in6_clearscope(&drl->defrouter[i].rtaddr);
1446 
1447 			drl->defrouter[i].flags = dr->flags;
1448 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1449 			drl->defrouter[i].expire = dr->expire;
1450 			drl->defrouter[i].if_index = dr->ifp->if_index;
1451 			i++;
1452 			dr = TAILQ_NEXT(dr, dr_entry);
1453 		}
1454 		splx(s);
1455 		break;
1456 	case SIOCGPRLST_IN6:
1457 		/*
1458 		 * obsolete API, use sysctl under net.inet6.icmp6
1459 		 *
1460 		 * XXX the structure in6_prlist was changed in backward-
1461 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1462 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1463 		 */
1464 		/*
1465 		 * XXX meaning of fields, especialy "raflags", is very
1466 		 * differnet between RA prefix list and RR/static prefix list.
1467 		 * how about separating ioctls into two?
1468 		 */
1469 		bzero(oprl, sizeof(*oprl));
1470 		s = splnet();
1471 		pr = nd_prefix.lh_first;
1472 		while (pr && i < PRLSTSIZ) {
1473 			struct nd_pfxrouter *pfr;
1474 			int j;
1475 
1476 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1477 			oprl->prefix[i].raflags = pr->ndpr_raf;
1478 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1479 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1480 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1481 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1482 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1483 				oprl->prefix[i].expire = 0;
1484 			else {
1485 				time_t maxexpire;
1486 
1487 				/* XXX: we assume time_t is signed. */
1488 				maxexpire = (-1) &
1489 				    ~((time_t)1 <<
1490 				    ((sizeof(maxexpire) * 8) - 1));
1491 				if (pr->ndpr_vltime <
1492 				    maxexpire - pr->ndpr_lastupdate) {
1493 					oprl->prefix[i].expire =
1494 					    pr->ndpr_lastupdate +
1495 					    pr->ndpr_vltime;
1496 				} else
1497 					oprl->prefix[i].expire = maxexpire;
1498 			}
1499 
1500 			pfr = pr->ndpr_advrtrs.lh_first;
1501 			j = 0;
1502 			while (pfr) {
1503 				if (j < DRLSTSIZ) {
1504 #define RTRADDR oprl->prefix[i].advrtr[j]
1505 					RTRADDR = pfr->router->rtaddr;
1506 					in6_clearscope(&RTRADDR);
1507 #undef RTRADDR
1508 				}
1509 				j++;
1510 				pfr = pfr->pfr_next;
1511 			}
1512 			oprl->prefix[i].advrtrs = j;
1513 			oprl->prefix[i].origin = PR_ORIG_RA;
1514 
1515 			i++;
1516 			pr = pr->ndpr_next;
1517 		}
1518 		splx(s);
1519 
1520 		break;
1521 	case OSIOCGIFINFO_IN6:
1522 #define ND	ndi->ndi
1523 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1524 		bzero(&ND, sizeof(ND));
1525 		ND.linkmtu = IN6_LINKMTU(ifp);
1526 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1527 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1528 		ND.reachable = ND_IFINFO(ifp)->reachable;
1529 		ND.retrans = ND_IFINFO(ifp)->retrans;
1530 		ND.flags = ND_IFINFO(ifp)->flags;
1531 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1532 		ND.chlim = ND_IFINFO(ifp)->chlim;
1533 		break;
1534 	case SIOCGIFINFO_IN6:
1535 		ND = *ND_IFINFO(ifp);
1536 		break;
1537 	case SIOCSIFINFO_IN6:
1538 		/*
1539 		 * used to change host variables from userland.
1540 		 * intented for a use on router to reflect RA configurations.
1541 		 */
1542 		/* 0 means 'unspecified' */
1543 		if (ND.linkmtu != 0) {
1544 			if (ND.linkmtu < IPV6_MMTU ||
1545 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1546 				error = EINVAL;
1547 				break;
1548 			}
1549 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1550 		}
1551 
1552 		if (ND.basereachable != 0) {
1553 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1554 
1555 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1556 			if (ND.basereachable != obasereachable)
1557 				ND_IFINFO(ifp)->reachable =
1558 				    ND_COMPUTE_RTIME(ND.basereachable);
1559 		}
1560 		if (ND.retrans != 0)
1561 			ND_IFINFO(ifp)->retrans = ND.retrans;
1562 		if (ND.chlim != 0)
1563 			ND_IFINFO(ifp)->chlim = ND.chlim;
1564 		/* FALLTHROUGH */
1565 	case SIOCSIFINFO_FLAGS:
1566 		ND_IFINFO(ifp)->flags = ND.flags;
1567 		break;
1568 #undef ND
1569 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1570 		/* sync kernel routing table with the default router list */
1571 		defrouter_reset();
1572 		defrouter_select();
1573 		break;
1574 	case SIOCSPFXFLUSH_IN6:
1575 	{
1576 		/* flush all the prefix advertised by routers */
1577 		struct nd_prefix *pr, *next;
1578 
1579 		s = splnet();
1580 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1581 			struct in6_ifaddr *ia, *ia_next;
1582 
1583 			next = pr->ndpr_next;
1584 
1585 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1586 				continue; /* XXX */
1587 
1588 			/* do we really have to remove addresses as well? */
1589 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1590 				/* ia might be removed.  keep the next ptr. */
1591 				ia_next = ia->ia_next;
1592 
1593 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1594 					continue;
1595 
1596 				if (ia->ia6_ndpr == pr)
1597 					in6_purgeaddr(&ia->ia_ifa);
1598 			}
1599 			prelist_remove(pr);
1600 		}
1601 		splx(s);
1602 		break;
1603 	}
1604 	case SIOCSRTRFLUSH_IN6:
1605 	{
1606 		/* flush all the default routers */
1607 		struct nd_defrouter *dr, *next;
1608 
1609 		s = splnet();
1610 		defrouter_reset();
1611 		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1612 			next = TAILQ_NEXT(dr, dr_entry);
1613 			defrtrlist_del(dr);
1614 		}
1615 		defrouter_select();
1616 		splx(s);
1617 		break;
1618 	}
1619 	case SIOCGNBRINFO_IN6:
1620 	{
1621 		struct llinfo_nd6 *ln;
1622 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1623 
1624 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1625 			return (error);
1626 
1627 		s = splnet();
1628 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1629 			error = EINVAL;
1630 			splx(s);
1631 			break;
1632 		}
1633 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1634 		nbi->state = ln->ln_state;
1635 		nbi->asked = ln->ln_asked;
1636 		nbi->isrouter = ln->ln_router;
1637 		nbi->expire = ln->ln_expire;
1638 		splx(s);
1639 
1640 		break;
1641 	}
1642 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1643 		ndif->ifindex = nd6_defifindex;
1644 		break;
1645 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1646 		return (nd6_setdefaultiface(ndif->ifindex));
1647 	}
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Create neighbor cache entry and cache link-layer address,
1653  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1654  */
1655 struct rtentry *
1656 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1657 	struct ifnet *ifp;
1658 	struct in6_addr *from;
1659 	char *lladdr;
1660 	int lladdrlen;
1661 	int type;	/* ICMP6 type */
1662 	int code;	/* type dependent information */
1663 {
1664 	struct rtentry *rt = NULL;
1665 	struct llinfo_nd6 *ln = NULL;
1666 	int is_newentry;
1667 	struct sockaddr_dl *sdl = NULL;
1668 	int do_update;
1669 	int olladdr;
1670 	int llchange;
1671 	int newstate = 0;
1672 
1673 	if (ifp == NULL)
1674 		panic("ifp == NULL in nd6_cache_lladdr");
1675 	if (from == NULL)
1676 		panic("from == NULL in nd6_cache_lladdr");
1677 
1678 	/* nothing must be updated for unspecified address */
1679 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1680 		return NULL;
1681 
1682 	/*
1683 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1684 	 * the caller.
1685 	 *
1686 	 * XXX If the link does not have link-layer adderss, what should
1687 	 * we do? (ifp->if_addrlen == 0)
1688 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1689 	 * description on it in NS section (RFC 2461 7.2.3).
1690 	 */
1691 
1692 	rt = nd6_lookup(from, 0, ifp);
1693 	if (rt == NULL) {
1694 		rt = nd6_lookup(from, 1, ifp);
1695 		is_newentry = 1;
1696 	} else {
1697 		/* do nothing if static ndp is set */
1698 		if (rt->rt_flags & RTF_STATIC)
1699 			return NULL;
1700 		is_newentry = 0;
1701 	}
1702 
1703 	if (rt == NULL)
1704 		return NULL;
1705 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1706 fail:
1707 		(void)nd6_free(rt, 0);
1708 		return NULL;
1709 	}
1710 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1711 	if (ln == NULL)
1712 		goto fail;
1713 	if (rt->rt_gateway == NULL)
1714 		goto fail;
1715 	if (rt->rt_gateway->sa_family != AF_LINK)
1716 		goto fail;
1717 	sdl = SDL(rt->rt_gateway);
1718 
1719 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1720 	if (olladdr && lladdr) {
1721 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1722 			llchange = 1;
1723 		else
1724 			llchange = 0;
1725 	} else
1726 		llchange = 0;
1727 
1728 	/*
1729 	 * newentry olladdr  lladdr  llchange	(*=record)
1730 	 *	0	n	n	--	(1)
1731 	 *	0	y	n	--	(2)
1732 	 *	0	n	y	--	(3) * STALE
1733 	 *	0	y	y	n	(4) *
1734 	 *	0	y	y	y	(5) * STALE
1735 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1736 	 *	1	--	y	--	(7) * STALE
1737 	 */
1738 
1739 	if (lladdr) {		/* (3-5) and (7) */
1740 		/*
1741 		 * Record source link-layer address
1742 		 * XXX is it dependent to ifp->if_type?
1743 		 */
1744 		sdl->sdl_alen = ifp->if_addrlen;
1745 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1746 	}
1747 
1748 	if (!is_newentry) {
1749 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1750 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1751 			do_update = 1;
1752 			newstate = ND6_LLINFO_STALE;
1753 		} else					/* (1-2,4) */
1754 			do_update = 0;
1755 	} else {
1756 		do_update = 1;
1757 		if (lladdr == NULL)			/* (6) */
1758 			newstate = ND6_LLINFO_NOSTATE;
1759 		else					/* (7) */
1760 			newstate = ND6_LLINFO_STALE;
1761 	}
1762 
1763 	if (do_update) {
1764 		/*
1765 		 * Update the state of the neighbor cache.
1766 		 */
1767 		ln->ln_state = newstate;
1768 
1769 		if (ln->ln_state == ND6_LLINFO_STALE) {
1770 			/*
1771 			 * XXX: since nd6_output() below will cause
1772 			 * state tansition to DELAY and reset the timer,
1773 			 * we must set the timer now, although it is actually
1774 			 * meaningless.
1775 			 */
1776 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1777 
1778 			if (ln->ln_hold) {
1779 				struct mbuf *m_hold, *m_hold_next;
1780 				for (m_hold = ln->ln_hold; m_hold;
1781 				     m_hold = m_hold_next) {
1782 					struct mbuf *mpkt = NULL;
1783 
1784 					m_hold_next = m_hold->m_nextpkt;
1785 					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1786 					if (mpkt == NULL) {
1787 						m_freem(m_hold);
1788 						break;
1789 					}
1790 					mpkt->m_nextpkt = NULL;
1791 
1792 					/*
1793 					 * we assume ifp is not a p2p here, so
1794 					 * just set the 2nd argument as the
1795 					 * 1st one.
1796 					 */
1797 					nd6_output(ifp, ifp, mpkt,
1798 					     (struct sockaddr_in6 *)rt_key(rt),
1799 					     rt);
1800 				}
1801 				ln->ln_hold = NULL;
1802 			}
1803 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1804 			/* probe right away */
1805 			nd6_llinfo_settimer((void *)ln, 0);
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * ICMP6 type dependent behavior.
1811 	 *
1812 	 * NS: clear IsRouter if new entry
1813 	 * RS: clear IsRouter
1814 	 * RA: set IsRouter if there's lladdr
1815 	 * redir: clear IsRouter if new entry
1816 	 *
1817 	 * RA case, (1):
1818 	 * The spec says that we must set IsRouter in the following cases:
1819 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1820 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1821 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1822 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1823 	 * neighbor cache, this is similar to (6).
1824 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1825 	 *
1826 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1827 	 *							D R
1828 	 *	0	n	n	--	(1)	c   ?     s
1829 	 *	0	y	n	--	(2)	c   s     s
1830 	 *	0	n	y	--	(3)	c   s     s
1831 	 *	0	y	y	n	(4)	c   s     s
1832 	 *	0	y	y	y	(5)	c   s     s
1833 	 *	1	--	n	--	(6) c	c 	c s
1834 	 *	1	--	y	--	(7) c	c   s	c s
1835 	 *
1836 	 *					(c=clear s=set)
1837 	 */
1838 	switch (type & 0xff) {
1839 	case ND_NEIGHBOR_SOLICIT:
1840 		/*
1841 		 * New entry must have is_router flag cleared.
1842 		 */
1843 		if (is_newentry)	/* (6-7) */
1844 			ln->ln_router = 0;
1845 		break;
1846 	case ND_REDIRECT:
1847 		/*
1848 		 * If the icmp is a redirect to a better router, always set the
1849 		 * is_router flag.  Otherwise, if the entry is newly created,
1850 		 * clear the flag.  [RFC 2461, sec 8.3]
1851 		 */
1852 		if (code == ND_REDIRECT_ROUTER)
1853 			ln->ln_router = 1;
1854 		else if (is_newentry) /* (6-7) */
1855 			ln->ln_router = 0;
1856 		break;
1857 	case ND_ROUTER_SOLICIT:
1858 		/*
1859 		 * is_router flag must always be cleared.
1860 		 */
1861 		ln->ln_router = 0;
1862 		break;
1863 	case ND_ROUTER_ADVERT:
1864 		/*
1865 		 * Mark an entry with lladdr as a router.
1866 		 */
1867 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1868 		    (is_newentry && lladdr)) {			/* (7) */
1869 			ln->ln_router = 1;
1870 		}
1871 		break;
1872 	}
1873 
1874 	/*
1875 	 * When the link-layer address of a router changes, select the
1876 	 * best router again.  In particular, when the neighbor entry is newly
1877 	 * created, it might affect the selection policy.
1878 	 * Question: can we restrict the first condition to the "is_newentry"
1879 	 * case?
1880 	 * XXX: when we hear an RA from a new router with the link-layer
1881 	 * address option, defrouter_select() is called twice, since
1882 	 * defrtrlist_update called the function as well.  However, I believe
1883 	 * we can compromise the overhead, since it only happens the first
1884 	 * time.
1885 	 * XXX: although defrouter_select() should not have a bad effect
1886 	 * for those are not autoconfigured hosts, we explicitly avoid such
1887 	 * cases for safety.
1888 	 */
1889 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1890 		defrouter_select();
1891 
1892 	return rt;
1893 }
1894 
1895 static void
1896 nd6_slowtimo(ignored_arg)
1897     void *ignored_arg;
1898 {
1899 	struct nd_ifinfo *nd6if;
1900 	struct ifnet *ifp;
1901 
1902 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1903 	    nd6_slowtimo, NULL);
1904 	IFNET_RLOCK();
1905 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1906 		nd6if = ND_IFINFO(ifp);
1907 		if (nd6if->basereachable && /* already initialized */
1908 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1909 			/*
1910 			 * Since reachable time rarely changes by router
1911 			 * advertisements, we SHOULD insure that a new random
1912 			 * value gets recomputed at least once every few hours.
1913 			 * (RFC 2461, 6.3.4)
1914 			 */
1915 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1916 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1917 		}
1918 	}
1919 	IFNET_RUNLOCK();
1920 }
1921 
1922 #define senderr(e) { error = (e); goto bad;}
1923 int
1924 nd6_output(ifp, origifp, m0, dst, rt0)
1925 	struct ifnet *ifp;
1926 	struct ifnet *origifp;
1927 	struct mbuf *m0;
1928 	struct sockaddr_in6 *dst;
1929 	struct rtentry *rt0;
1930 {
1931 	struct mbuf *m = m0;
1932 	struct rtentry *rt = rt0;
1933 	struct sockaddr_in6 *gw6 = NULL;
1934 	struct llinfo_nd6 *ln = NULL;
1935 	int error = 0;
1936 
1937 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1938 		goto sendpkt;
1939 
1940 	if (nd6_need_cache(ifp) == 0)
1941 		goto sendpkt;
1942 
1943 	/*
1944 	 * next hop determination.  This routine is derived from ether_output.
1945 	 */
1946 again:
1947 	if (rt) {
1948 		if ((rt->rt_flags & RTF_UP) == 0) {
1949 			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1950 			if (rt != NULL) {
1951 				RT_REMREF(rt);
1952 				RT_UNLOCK(rt);
1953 				if (rt->rt_ifp != ifp)
1954 					/*
1955 					 * XXX maybe we should update ifp too,
1956 					 * but the original code didn't and I
1957 					 * don't know what is correct here.
1958 					 */
1959 					goto again;
1960 			} else
1961 				senderr(EHOSTUNREACH);
1962 		}
1963 
1964 		if (rt->rt_flags & RTF_GATEWAY) {
1965 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1966 
1967 			/*
1968 			 * We skip link-layer address resolution and NUD
1969 			 * if the gateway is not a neighbor from ND point
1970 			 * of view, regardless of the value of nd_ifinfo.flags.
1971 			 * The second condition is a bit tricky; we skip
1972 			 * if the gateway is our own address, which is
1973 			 * sometimes used to install a route to a p2p link.
1974 			 */
1975 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1976 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1977 				/*
1978 				 * We allow this kind of tricky route only
1979 				 * when the outgoing interface is p2p.
1980 				 * XXX: we may need a more generic rule here.
1981 				 */
1982 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1983 					senderr(EHOSTUNREACH);
1984 
1985 				goto sendpkt;
1986 			}
1987 
1988 			if (rt->rt_gwroute == 0)
1989 				goto lookup;
1990 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1991 				RT_LOCK(rt);
1992 				rtfree(rt); rt = rt0;
1993 			lookup:
1994 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1995 				if ((rt = rt->rt_gwroute) == 0)
1996 					senderr(EHOSTUNREACH);
1997 				RT_UNLOCK(rt);
1998 			}
1999 		}
2000 	}
2001 
2002 	/*
2003 	 * Address resolution or Neighbor Unreachability Detection
2004 	 * for the next hop.
2005 	 * At this point, the destination of the packet must be a unicast
2006 	 * or an anycast address(i.e. not a multicast).
2007 	 */
2008 
2009 	/* Look up the neighbor cache for the nexthop */
2010 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2011 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2012 	else {
2013 		/*
2014 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2015 		 * the condition below is not very efficient.  But we believe
2016 		 * it is tolerable, because this should be a rare case.
2017 		 */
2018 		if (nd6_is_addr_neighbor(dst, ifp) &&
2019 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2020 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2021 	}
2022 	if (ln == NULL || rt == NULL) {
2023 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2024 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2025 			log(LOG_DEBUG,
2026 			    "nd6_output: can't allocate llinfo for %s "
2027 			    "(ln=%p, rt=%p)\n",
2028 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2029 			senderr(EIO);	/* XXX: good error? */
2030 		}
2031 
2032 		goto sendpkt;	/* send anyway */
2033 	}
2034 
2035 	/* We don't have to do link-layer address resolution on a p2p link. */
2036 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2037 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2038 		ln->ln_state = ND6_LLINFO_STALE;
2039 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2040 	}
2041 
2042 	/*
2043 	 * The first time we send a packet to a neighbor whose entry is
2044 	 * STALE, we have to change the state to DELAY and a sets a timer to
2045 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2046 	 * neighbor unreachability detection on expiration.
2047 	 * (RFC 2461 7.3.3)
2048 	 */
2049 	if (ln->ln_state == ND6_LLINFO_STALE) {
2050 		ln->ln_asked = 0;
2051 		ln->ln_state = ND6_LLINFO_DELAY;
2052 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2053 	}
2054 
2055 	/*
2056 	 * If the neighbor cache entry has a state other than INCOMPLETE
2057 	 * (i.e. its link-layer address is already resolved), just
2058 	 * send the packet.
2059 	 */
2060 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2061 		goto sendpkt;
2062 
2063 	/*
2064 	 * There is a neighbor cache entry, but no ethernet address
2065 	 * response yet.  Append this latest packet to the end of the
2066 	 * packet queue in the mbuf, unless the number of the packet
2067 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2068 	 * the oldest packet in the queue will be removed.
2069 	 */
2070 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2071 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2072 	if (ln->ln_hold) {
2073 		struct mbuf *m_hold;
2074 		int i;
2075 
2076 		i = 0;
2077 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2078 			i++;
2079 			if (m_hold->m_nextpkt == NULL) {
2080 				m_hold->m_nextpkt = m;
2081 				break;
2082 			}
2083 		}
2084 		while (i >= nd6_maxqueuelen) {
2085 			m_hold = ln->ln_hold;
2086 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2087 			m_freem(m_hold);
2088 			i--;
2089 		}
2090 	} else {
2091 		ln->ln_hold = m;
2092 	}
2093 
2094 	/*
2095 	 * If there has been no NS for the neighbor after entering the
2096 	 * INCOMPLETE state, send the first solicitation.
2097 	 */
2098 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2099 		ln->ln_asked++;
2100 		nd6_llinfo_settimer(ln,
2101 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2102 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2103 	}
2104 	return (0);
2105 
2106   sendpkt:
2107 	/* discard the packet if IPv6 operation is disabled on the interface */
2108 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2109 		error = ENETDOWN; /* better error? */
2110 		goto bad;
2111 	}
2112 
2113 #ifdef IPSEC
2114 	/* clean ipsec history once it goes out of the node */
2115 	ipsec_delaux(m);
2116 #endif
2117 
2118 #ifdef MAC
2119 	mac_create_mbuf_linklayer(ifp, m);
2120 #endif
2121 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2122 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2123 		    rt));
2124 	}
2125 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2126 
2127   bad:
2128 	if (m)
2129 		m_freem(m);
2130 	return (error);
2131 }
2132 #undef senderr
2133 
2134 int
2135 nd6_need_cache(ifp)
2136 	struct ifnet *ifp;
2137 {
2138 	/*
2139 	 * XXX: we currently do not make neighbor cache on any interface
2140 	 * other than ARCnet, Ethernet, FDDI and GIF.
2141 	 *
2142 	 * RFC2893 says:
2143 	 * - unidirectional tunnels needs no ND
2144 	 */
2145 	switch (ifp->if_type) {
2146 	case IFT_ARCNET:
2147 	case IFT_ETHER:
2148 	case IFT_FDDI:
2149 	case IFT_IEEE1394:
2150 #ifdef IFT_L2VLAN
2151 	case IFT_L2VLAN:
2152 #endif
2153 #ifdef IFT_IEEE80211
2154 	case IFT_IEEE80211:
2155 #endif
2156 #ifdef IFT_CARP
2157 	case IFT_CARP:
2158 #endif
2159 	case IFT_GIF:		/* XXX need more cases? */
2160 	case IFT_PPP:
2161 	case IFT_TUNNEL:
2162 	case IFT_BRIDGE:
2163 		return (1);
2164 	default:
2165 		return (0);
2166 	}
2167 }
2168 
2169 int
2170 nd6_storelladdr(ifp, rt0, m, dst, desten)
2171 	struct ifnet *ifp;
2172 	struct rtentry *rt0;
2173 	struct mbuf *m;
2174 	struct sockaddr *dst;
2175 	u_char *desten;
2176 {
2177 	struct sockaddr_dl *sdl;
2178 	struct rtentry *rt;
2179 	int error;
2180 
2181 	if (m->m_flags & M_MCAST) {
2182 		int i;
2183 
2184 		switch (ifp->if_type) {
2185 		case IFT_ETHER:
2186 		case IFT_FDDI:
2187 #ifdef IFT_L2VLAN
2188 		case IFT_L2VLAN:
2189 #endif
2190 #ifdef IFT_IEEE80211
2191 		case IFT_IEEE80211:
2192 #endif
2193 		case IFT_BRIDGE:
2194 		case IFT_ISO88025:
2195 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2196 						 desten);
2197 			return (0);
2198 		case IFT_IEEE1394:
2199 			/*
2200 			 * netbsd can use if_broadcastaddr, but we don't do so
2201 			 * to reduce # of ifdef.
2202 			 */
2203 			for (i = 0; i < ifp->if_addrlen; i++)
2204 				desten[i] = ~0;
2205 			return (0);
2206 		case IFT_ARCNET:
2207 			*desten = 0;
2208 			return (0);
2209 		default:
2210 			m_freem(m);
2211 			return (EAFNOSUPPORT);
2212 		}
2213 	}
2214 
2215 	if (rt0 == NULL) {
2216 		/* this could happen, if we could not allocate memory */
2217 		m_freem(m);
2218 		return (ENOMEM);
2219 	}
2220 
2221 	error = rt_check(&rt, &rt0, dst);
2222 	if (error) {
2223 		m_freem(m);
2224 		return (error);
2225 	}
2226 	RT_UNLOCK(rt);
2227 
2228 	if (rt->rt_gateway->sa_family != AF_LINK) {
2229 		printf("nd6_storelladdr: something odd happens\n");
2230 		m_freem(m);
2231 		return (EINVAL);
2232 	}
2233 	sdl = SDL(rt->rt_gateway);
2234 	if (sdl->sdl_alen == 0) {
2235 		/* this should be impossible, but we bark here for debugging */
2236 		printf("nd6_storelladdr: sdl_alen == 0\n");
2237 		m_freem(m);
2238 		return (EINVAL);
2239 	}
2240 
2241 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2242 	return (0);
2243 }
2244 
2245 static void
2246 clear_llinfo_pqueue(ln)
2247 	struct llinfo_nd6 *ln;
2248 {
2249 	struct mbuf *m_hold, *m_hold_next;
2250 
2251 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2252 		m_hold_next = m_hold->m_nextpkt;
2253 		m_hold->m_nextpkt = NULL;
2254 		m_freem(m_hold);
2255 	}
2256 
2257 	ln->ln_hold = NULL;
2258 	return;
2259 }
2260 
2261 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2262 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2263 #ifdef SYSCTL_DECL
2264 SYSCTL_DECL(_net_inet6_icmp6);
2265 #endif
2266 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2267 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2268 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2269 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2270 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2271 	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2272 
2273 static int
2274 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2275 {
2276 	int error;
2277 	char buf[1024];
2278 	struct in6_defrouter *d, *de;
2279 	struct nd_defrouter *dr;
2280 
2281 	if (req->newptr)
2282 		return EPERM;
2283 	error = 0;
2284 
2285 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2286 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2287 		d = (struct in6_defrouter *)buf;
2288 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2289 
2290 		if (d + 1 <= de) {
2291 			bzero(d, sizeof(*d));
2292 			d->rtaddr.sin6_family = AF_INET6;
2293 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2294 			d->rtaddr.sin6_addr = dr->rtaddr;
2295 			sa6_recoverscope(&d->rtaddr);
2296 			d->flags = dr->flags;
2297 			d->rtlifetime = dr->rtlifetime;
2298 			d->expire = dr->expire;
2299 			d->if_index = dr->ifp->if_index;
2300 		} else
2301 			panic("buffer too short");
2302 
2303 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2304 		if (error)
2305 			break;
2306 	}
2307 
2308 	return (error);
2309 }
2310 
2311 static int
2312 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2313 {
2314 	int error;
2315 	char buf[1024];
2316 	struct in6_prefix *p, *pe;
2317 	struct nd_prefix *pr;
2318 
2319 	if (req->newptr)
2320 		return EPERM;
2321 	error = 0;
2322 
2323 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2324 		u_short advrtrs;
2325 		size_t advance;
2326 		struct sockaddr_in6 *sin6, *s6;
2327 		struct nd_pfxrouter *pfr;
2328 
2329 		p = (struct in6_prefix *)buf;
2330 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2331 
2332 		if (p + 1 <= pe) {
2333 			bzero(p, sizeof(*p));
2334 			sin6 = (struct sockaddr_in6 *)(p + 1);
2335 
2336 			p->prefix = pr->ndpr_prefix;
2337 			if (sa6_recoverscope(&p->prefix)) {
2338 				log(LOG_ERR,
2339 				    "scope error in prefix list (%s)\n",
2340 				    ip6_sprintf(&p->prefix.sin6_addr));
2341 				/* XXX: press on... */
2342 			}
2343 			p->raflags = pr->ndpr_raf;
2344 			p->prefixlen = pr->ndpr_plen;
2345 			p->vltime = pr->ndpr_vltime;
2346 			p->pltime = pr->ndpr_pltime;
2347 			p->if_index = pr->ndpr_ifp->if_index;
2348 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2349 				p->expire = 0;
2350 			else {
2351 				time_t maxexpire;
2352 
2353 				/* XXX: we assume time_t is signed. */
2354 				maxexpire = (-1) &
2355 				    ~((time_t)1 <<
2356 				    ((sizeof(maxexpire) * 8) - 1));
2357 				if (pr->ndpr_vltime <
2358 				    maxexpire - pr->ndpr_lastupdate) {
2359 				    p->expire = pr->ndpr_lastupdate +
2360 				        pr->ndpr_vltime;
2361 				} else
2362 					p->expire = maxexpire;
2363 			}
2364 			p->refcnt = pr->ndpr_refcnt;
2365 			p->flags = pr->ndpr_stateflags;
2366 			p->origin = PR_ORIG_RA;
2367 			advrtrs = 0;
2368 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2369 			     pfr = pfr->pfr_next) {
2370 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2371 					advrtrs++;
2372 					continue;
2373 				}
2374 				s6 = &sin6[advrtrs];
2375 				bzero(s6, sizeof(*s6));
2376 				s6->sin6_family = AF_INET6;
2377 				s6->sin6_len = sizeof(*sin6);
2378 				s6->sin6_addr = pfr->router->rtaddr;
2379 				if (sa6_recoverscope(s6)) {
2380 					log(LOG_ERR,
2381 					    "scope error in "
2382 					    "prefix list (%s)\n",
2383 					    ip6_sprintf(&pfr->router->rtaddr));
2384 				}
2385 				advrtrs++;
2386 			}
2387 			p->advrtrs = advrtrs;
2388 		} else
2389 			panic("buffer too short");
2390 
2391 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2392 		error = SYSCTL_OUT(req, buf, advance);
2393 		if (error)
2394 			break;
2395 	}
2396 
2397 	return (error);
2398 }
2399