1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/nhop.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <net/if_llatbl.h> 73 #include <netinet/if_ether.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 /* timer values */ 95 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 96 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 97 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 98 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 99 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 100 * local traffic */ 101 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 102 * collection timer */ 103 104 /* preventing too many loops in ND option parsing */ 105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 106 107 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 108 * layer hints */ 109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 110 * ND entries */ 111 #define V_nd6_maxndopt VNET(nd6_maxndopt) 112 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 113 114 #ifdef ND6_DEBUG 115 VNET_DEFINE(int, nd6_debug) = 1; 116 #else 117 VNET_DEFINE(int, nd6_debug) = 0; 118 #endif 119 120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 121 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 VNET_DEFINE(struct rwlock, nd6_lock); 124 VNET_DEFINE(uint64_t, nd6_list_genid); 125 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 126 127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 128 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 129 130 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 131 132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 133 struct ifnet *); 134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 135 static void nd6_slowtimo(void *); 136 static int regen_tmpaddr(struct in6_ifaddr *); 137 static void nd6_free(struct llentry **, int); 138 static void nd6_free_redirect(const struct llentry *); 139 static void nd6_llinfo_timer(void *); 140 static void nd6_llinfo_settimer_locked(struct llentry *, long); 141 static void clear_llinfo_pqueue(struct llentry *); 142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 if (ifp->if_afdata[AF_INET6] == NULL) 212 return; 213 214 lltable_update_ifaddr(LLTABLE6(ifp)); 215 } 216 217 void 218 nd6_init(void) 219 { 220 221 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 222 rw_init(&V_nd6_lock, "nd6 list"); 223 224 LIST_INIT(&V_nd_prefix); 225 nd6_defrouter_init(); 226 227 /* Start timers. */ 228 callout_init(&V_nd6_slowtimo_ch, 0); 229 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 230 nd6_slowtimo, curvnet); 231 232 callout_init(&V_nd6_timer_ch, 0); 233 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 234 235 nd6_dad_init(); 236 if (IS_DEFAULT_VNET(curvnet)) { 237 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 238 NULL, EVENTHANDLER_PRI_ANY); 239 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 240 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 241 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 242 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 243 } 244 } 245 246 #ifdef VIMAGE 247 void 248 nd6_destroy() 249 { 250 251 callout_drain(&V_nd6_slowtimo_ch); 252 callout_drain(&V_nd6_timer_ch); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 255 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 256 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 257 } 258 rw_destroy(&V_nd6_lock); 259 mtx_destroy(&V_nd6_onlink_mtx); 260 } 261 #endif 262 263 struct nd_ifinfo * 264 nd6_ifattach(struct ifnet *ifp) 265 { 266 struct nd_ifinfo *nd; 267 268 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 269 nd->initialized = 1; 270 271 nd->chlim = IPV6_DEFHLIM; 272 nd->basereachable = REACHABLE_TIME; 273 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 274 nd->retrans = RETRANS_TIMER; 275 276 nd->flags = ND6_IFF_PERFORMNUD; 277 278 /* Set IPv6 disabled on all interfaces but loopback by default. */ 279 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 280 nd->flags |= ND6_IFF_IFDISABLED; 281 282 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 283 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 284 * default regardless of the V_ip6_auto_linklocal configuration to 285 * give a reasonable default behavior. 286 */ 287 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 288 (ifp->if_flags & IFF_LOOPBACK)) 289 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 290 /* 291 * A loopback interface does not need to accept RTADV. 292 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 293 * default regardless of the V_ip6_accept_rtadv configuration to 294 * prevent the interface from accepting RA messages arrived 295 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 296 */ 297 if (V_ip6_accept_rtadv && 298 !(ifp->if_flags & IFF_LOOPBACK) && 299 (ifp->if_type != IFT_BRIDGE)) { 300 nd->flags |= ND6_IFF_ACCEPT_RTADV; 301 /* If we globally accept rtadv, assume IPv6 on. */ 302 nd->flags &= ~ND6_IFF_IFDISABLED; 303 } 304 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 305 nd->flags |= ND6_IFF_NO_RADR; 306 307 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 308 nd6_setmtu0(ifp, nd); 309 310 return nd; 311 } 312 313 void 314 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 315 { 316 struct epoch_tracker et; 317 struct ifaddr *ifa, *next; 318 319 NET_EPOCH_ENTER(et); 320 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 321 if (ifa->ifa_addr->sa_family != AF_INET6) 322 continue; 323 324 /* stop DAD processing */ 325 nd6_dad_stop(ifa); 326 } 327 NET_EPOCH_EXIT(et); 328 329 free(nd, M_IP6NDP); 330 } 331 332 /* 333 * Reset ND level link MTU. This function is called when the physical MTU 334 * changes, which means we might have to adjust the ND level MTU. 335 */ 336 void 337 nd6_setmtu(struct ifnet *ifp) 338 { 339 if (ifp->if_afdata[AF_INET6] == NULL) 340 return; 341 342 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 343 } 344 345 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 346 void 347 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 348 { 349 u_int32_t omaxmtu; 350 351 omaxmtu = ndi->maxmtu; 352 ndi->maxmtu = ifp->if_mtu; 353 354 /* 355 * Decreasing the interface MTU under IPV6 minimum MTU may cause 356 * undesirable situation. We thus notify the operator of the change 357 * explicitly. The check for omaxmtu is necessary to restrict the 358 * log to the case of changing the MTU, not initializing it. 359 */ 360 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 361 log(LOG_NOTICE, "nd6_setmtu0: " 362 "new link MTU on %s (%lu) is too small for IPv6\n", 363 if_name(ifp), (unsigned long)ndi->maxmtu); 364 } 365 366 if (ndi->maxmtu > V_in6_maxmtu) 367 in6_setmaxmtu(); /* check all interfaces just in case */ 368 369 } 370 371 void 372 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 373 { 374 375 bzero(ndopts, sizeof(*ndopts)); 376 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 377 ndopts->nd_opts_last 378 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 379 380 if (icmp6len == 0) { 381 ndopts->nd_opts_done = 1; 382 ndopts->nd_opts_search = NULL; 383 } 384 } 385 386 /* 387 * Take one ND option. 388 */ 389 struct nd_opt_hdr * 390 nd6_option(union nd_opts *ndopts) 391 { 392 struct nd_opt_hdr *nd_opt; 393 int olen; 394 395 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 396 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 397 __func__)); 398 if (ndopts->nd_opts_search == NULL) 399 return NULL; 400 if (ndopts->nd_opts_done) 401 return NULL; 402 403 nd_opt = ndopts->nd_opts_search; 404 405 /* make sure nd_opt_len is inside the buffer */ 406 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 407 bzero(ndopts, sizeof(*ndopts)); 408 return NULL; 409 } 410 411 olen = nd_opt->nd_opt_len << 3; 412 if (olen == 0) { 413 /* 414 * Message validation requires that all included 415 * options have a length that is greater than zero. 416 */ 417 bzero(ndopts, sizeof(*ndopts)); 418 return NULL; 419 } 420 421 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 422 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 423 /* option overruns the end of buffer, invalid */ 424 bzero(ndopts, sizeof(*ndopts)); 425 return NULL; 426 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 427 /* reached the end of options chain */ 428 ndopts->nd_opts_done = 1; 429 ndopts->nd_opts_search = NULL; 430 } 431 return nd_opt; 432 } 433 434 /* 435 * Parse multiple ND options. 436 * This function is much easier to use, for ND routines that do not need 437 * multiple options of the same type. 438 */ 439 int 440 nd6_options(union nd_opts *ndopts) 441 { 442 struct nd_opt_hdr *nd_opt; 443 int i = 0; 444 445 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 446 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 447 __func__)); 448 if (ndopts->nd_opts_search == NULL) 449 return 0; 450 451 while (1) { 452 nd_opt = nd6_option(ndopts); 453 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 454 /* 455 * Message validation requires that all included 456 * options have a length that is greater than zero. 457 */ 458 ICMP6STAT_INC(icp6s_nd_badopt); 459 bzero(ndopts, sizeof(*ndopts)); 460 return -1; 461 } 462 463 if (nd_opt == NULL) 464 goto skip1; 465 466 switch (nd_opt->nd_opt_type) { 467 case ND_OPT_SOURCE_LINKADDR: 468 case ND_OPT_TARGET_LINKADDR: 469 case ND_OPT_MTU: 470 case ND_OPT_REDIRECTED_HEADER: 471 case ND_OPT_NONCE: 472 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 473 nd6log((LOG_INFO, 474 "duplicated ND6 option found (type=%d)\n", 475 nd_opt->nd_opt_type)); 476 /* XXX bark? */ 477 } else { 478 ndopts->nd_opt_array[nd_opt->nd_opt_type] 479 = nd_opt; 480 } 481 break; 482 case ND_OPT_PREFIX_INFORMATION: 483 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 484 ndopts->nd_opt_array[nd_opt->nd_opt_type] 485 = nd_opt; 486 } 487 ndopts->nd_opts_pi_end = 488 (struct nd_opt_prefix_info *)nd_opt; 489 break; 490 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 491 case ND_OPT_RDNSS: /* RFC 6106 */ 492 case ND_OPT_DNSSL: /* RFC 6106 */ 493 /* 494 * Silently ignore options we know and do not care about 495 * in the kernel. 496 */ 497 break; 498 default: 499 /* 500 * Unknown options must be silently ignored, 501 * to accommodate future extension to the protocol. 502 */ 503 nd6log((LOG_DEBUG, 504 "nd6_options: unsupported option %d - " 505 "option ignored\n", nd_opt->nd_opt_type)); 506 } 507 508 skip1: 509 i++; 510 if (i > V_nd6_maxndopt) { 511 ICMP6STAT_INC(icp6s_nd_toomanyopt); 512 nd6log((LOG_INFO, "too many loop in nd opt\n")); 513 break; 514 } 515 516 if (ndopts->nd_opts_done) 517 break; 518 } 519 520 return 0; 521 } 522 523 /* 524 * ND6 timer routine to handle ND6 entries 525 */ 526 static void 527 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 528 { 529 int canceled; 530 531 LLE_WLOCK_ASSERT(ln); 532 533 if (tick < 0) { 534 ln->la_expire = 0; 535 ln->ln_ntick = 0; 536 canceled = callout_stop(&ln->lle_timer); 537 } else { 538 ln->la_expire = time_uptime + tick / hz; 539 LLE_ADDREF(ln); 540 if (tick > INT_MAX) { 541 ln->ln_ntick = tick - INT_MAX; 542 canceled = callout_reset(&ln->lle_timer, INT_MAX, 543 nd6_llinfo_timer, ln); 544 } else { 545 ln->ln_ntick = 0; 546 canceled = callout_reset(&ln->lle_timer, tick, 547 nd6_llinfo_timer, ln); 548 } 549 } 550 if (canceled > 0) 551 LLE_REMREF(ln); 552 } 553 554 /* 555 * Gets source address of the first packet in hold queue 556 * and stores it in @src. 557 * Returns pointer to @src (if hold queue is not empty) or NULL. 558 * 559 * Set noinline to be dtrace-friendly 560 */ 561 static __noinline struct in6_addr * 562 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 563 { 564 struct ip6_hdr hdr; 565 struct mbuf *m; 566 567 if (ln->la_hold == NULL) 568 return (NULL); 569 570 /* 571 * assume every packet in la_hold has the same IP header 572 */ 573 m = ln->la_hold; 574 if (sizeof(hdr) > m->m_len) 575 return (NULL); 576 577 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 578 *src = hdr.ip6_src; 579 580 return (src); 581 } 582 583 /* 584 * Checks if we need to switch from STALE state. 585 * 586 * RFC 4861 requires switching from STALE to DELAY state 587 * on first packet matching entry, waiting V_nd6_delay and 588 * transition to PROBE state (if upper layer confirmation was 589 * not received). 590 * 591 * This code performs a bit differently: 592 * On packet hit we don't change state (but desired state 593 * can be guessed by control plane). However, after V_nd6_delay 594 * seconds code will transition to PROBE state (so DELAY state 595 * is kinda skipped in most situations). 596 * 597 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 598 * we perform the following upon entering STALE state: 599 * 600 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 601 * if packet was transmitted at the start of given interval, we 602 * would be able to switch to PROBE state in V_nd6_delay seconds 603 * as user expects. 604 * 605 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 606 * lle in STALE state (remaining timer value stored in lle_remtime). 607 * 608 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 609 * seconds ago. 610 * 611 * Returns non-zero value if the entry is still STALE (storing 612 * the next timer interval in @pdelay). 613 * 614 * Returns zero value if original timer expired or we need to switch to 615 * PROBE (store that in @do_switch variable). 616 */ 617 static int 618 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 619 { 620 int nd_delay, nd_gctimer, r_skip_req; 621 time_t lle_hittime; 622 long delay; 623 624 *do_switch = 0; 625 nd_gctimer = V_nd6_gctimer; 626 nd_delay = V_nd6_delay; 627 628 LLE_REQ_LOCK(lle); 629 r_skip_req = lle->r_skip_req; 630 lle_hittime = lle->lle_hittime; 631 LLE_REQ_UNLOCK(lle); 632 633 if (r_skip_req > 0) { 634 /* 635 * Nonzero r_skip_req value was set upon entering 636 * STALE state. Since value was not changed, no 637 * packets were passed using this lle. Ask for 638 * timer reschedule and keep STALE state. 639 */ 640 delay = (long)(MIN(nd_gctimer, nd_delay)); 641 delay *= hz; 642 if (lle->lle_remtime > delay) 643 lle->lle_remtime -= delay; 644 else { 645 delay = lle->lle_remtime; 646 lle->lle_remtime = 0; 647 } 648 649 if (delay == 0) { 650 /* 651 * The original ng6_gctime timeout ended, 652 * no more rescheduling. 653 */ 654 return (0); 655 } 656 657 *pdelay = delay; 658 return (1); 659 } 660 661 /* 662 * Packet received. Verify timestamp 663 */ 664 delay = (long)(time_uptime - lle_hittime); 665 if (delay < nd_delay) { 666 /* 667 * V_nd6_delay still not passed since the first 668 * hit in STALE state. 669 * Reshedule timer and return. 670 */ 671 *pdelay = (long)(nd_delay - delay) * hz; 672 return (1); 673 } 674 675 /* Request switching to probe */ 676 *do_switch = 1; 677 return (0); 678 } 679 680 /* 681 * Switch @lle state to new state optionally arming timers. 682 * 683 * Set noinline to be dtrace-friendly 684 */ 685 __noinline void 686 nd6_llinfo_setstate(struct llentry *lle, int newstate) 687 { 688 struct ifnet *ifp; 689 int nd_gctimer, nd_delay; 690 long delay, remtime; 691 692 delay = 0; 693 remtime = 0; 694 695 switch (newstate) { 696 case ND6_LLINFO_INCOMPLETE: 697 ifp = lle->lle_tbl->llt_ifp; 698 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 699 break; 700 case ND6_LLINFO_REACHABLE: 701 if (!ND6_LLINFO_PERMANENT(lle)) { 702 ifp = lle->lle_tbl->llt_ifp; 703 delay = (long)ND_IFINFO(ifp)->reachable * hz; 704 } 705 break; 706 case ND6_LLINFO_STALE: 707 708 /* 709 * Notify fast path that we want to know if any packet 710 * is transmitted by setting r_skip_req. 711 */ 712 LLE_REQ_LOCK(lle); 713 lle->r_skip_req = 1; 714 LLE_REQ_UNLOCK(lle); 715 nd_delay = V_nd6_delay; 716 nd_gctimer = V_nd6_gctimer; 717 718 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 719 remtime = (long)nd_gctimer * hz - delay; 720 break; 721 case ND6_LLINFO_DELAY: 722 lle->la_asked = 0; 723 delay = (long)V_nd6_delay * hz; 724 break; 725 } 726 727 if (delay > 0) 728 nd6_llinfo_settimer_locked(lle, delay); 729 730 lle->lle_remtime = remtime; 731 lle->ln_state = newstate; 732 } 733 734 /* 735 * Timer-dependent part of nd state machine. 736 * 737 * Set noinline to be dtrace-friendly 738 */ 739 static __noinline void 740 nd6_llinfo_timer(void *arg) 741 { 742 struct epoch_tracker et; 743 struct llentry *ln; 744 struct in6_addr *dst, *pdst, *psrc, src; 745 struct ifnet *ifp; 746 struct nd_ifinfo *ndi; 747 int do_switch, send_ns; 748 long delay; 749 750 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 751 ln = (struct llentry *)arg; 752 ifp = lltable_get_ifp(ln->lle_tbl); 753 CURVNET_SET(ifp->if_vnet); 754 755 ND6_RLOCK(); 756 LLE_WLOCK(ln); 757 if (callout_pending(&ln->lle_timer)) { 758 /* 759 * Here we are a bit odd here in the treatment of 760 * active/pending. If the pending bit is set, it got 761 * rescheduled before I ran. The active 762 * bit we ignore, since if it was stopped 763 * in ll_tablefree() and was currently running 764 * it would have return 0 so the code would 765 * not have deleted it since the callout could 766 * not be stopped so we want to go through 767 * with the delete here now. If the callout 768 * was restarted, the pending bit will be back on and 769 * we just want to bail since the callout_reset would 770 * return 1 and our reference would have been removed 771 * by nd6_llinfo_settimer_locked above since canceled 772 * would have been 1. 773 */ 774 LLE_WUNLOCK(ln); 775 ND6_RUNLOCK(); 776 CURVNET_RESTORE(); 777 return; 778 } 779 NET_EPOCH_ENTER(et); 780 ndi = ND_IFINFO(ifp); 781 send_ns = 0; 782 dst = &ln->r_l3addr.addr6; 783 pdst = dst; 784 785 if (ln->ln_ntick > 0) { 786 if (ln->ln_ntick > INT_MAX) { 787 ln->ln_ntick -= INT_MAX; 788 nd6_llinfo_settimer_locked(ln, INT_MAX); 789 } else { 790 ln->ln_ntick = 0; 791 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 792 } 793 goto done; 794 } 795 796 if (ln->la_flags & LLE_STATIC) { 797 goto done; 798 } 799 800 if (ln->la_flags & LLE_DELETED) { 801 nd6_free(&ln, 0); 802 goto done; 803 } 804 805 switch (ln->ln_state) { 806 case ND6_LLINFO_INCOMPLETE: 807 if (ln->la_asked < V_nd6_mmaxtries) { 808 ln->la_asked++; 809 send_ns = 1; 810 /* Send NS to multicast address */ 811 pdst = NULL; 812 } else { 813 struct mbuf *m = ln->la_hold; 814 if (m) { 815 struct mbuf *m0; 816 817 /* 818 * assuming every packet in la_hold has the 819 * same IP header. Send error after unlock. 820 */ 821 m0 = m->m_nextpkt; 822 m->m_nextpkt = NULL; 823 ln->la_hold = m0; 824 clear_llinfo_pqueue(ln); 825 } 826 nd6_free(&ln, 0); 827 if (m != NULL) { 828 struct mbuf *n = m; 829 830 /* 831 * if there are any ummapped mbufs, we 832 * must free them, rather than using 833 * them for an ICMP, as they cannot be 834 * checksummed. 835 */ 836 while ((n = n->m_next) != NULL) { 837 if (n->m_flags & M_EXTPG) 838 break; 839 } 840 if (n != NULL) { 841 m_freem(m); 842 m = NULL; 843 } else { 844 icmp6_error2(m, ICMP6_DST_UNREACH, 845 ICMP6_DST_UNREACH_ADDR, 0, ifp); 846 } 847 } 848 } 849 break; 850 case ND6_LLINFO_REACHABLE: 851 if (!ND6_LLINFO_PERMANENT(ln)) 852 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 853 break; 854 855 case ND6_LLINFO_STALE: 856 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 857 /* 858 * No packet has used this entry and GC timeout 859 * has not been passed. Reshedule timer and 860 * return. 861 */ 862 nd6_llinfo_settimer_locked(ln, delay); 863 break; 864 } 865 866 if (do_switch == 0) { 867 /* 868 * GC timer has ended and entry hasn't been used. 869 * Run Garbage collector (RFC 4861, 5.3) 870 */ 871 if (!ND6_LLINFO_PERMANENT(ln)) 872 nd6_free(&ln, 1); 873 break; 874 } 875 876 /* Entry has been used AND delay timer has ended. */ 877 878 /* FALLTHROUGH */ 879 880 case ND6_LLINFO_DELAY: 881 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 882 /* We need NUD */ 883 ln->la_asked = 1; 884 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 885 send_ns = 1; 886 } else 887 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 888 break; 889 case ND6_LLINFO_PROBE: 890 if (ln->la_asked < V_nd6_umaxtries) { 891 ln->la_asked++; 892 send_ns = 1; 893 } else { 894 nd6_free(&ln, 0); 895 } 896 break; 897 default: 898 panic("%s: paths in a dark night can be confusing: %d", 899 __func__, ln->ln_state); 900 } 901 done: 902 if (ln != NULL) 903 ND6_RUNLOCK(); 904 if (send_ns != 0) { 905 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 906 psrc = nd6_llinfo_get_holdsrc(ln, &src); 907 LLE_FREE_LOCKED(ln); 908 ln = NULL; 909 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 910 } 911 912 if (ln != NULL) 913 LLE_FREE_LOCKED(ln); 914 NET_EPOCH_EXIT(et); 915 CURVNET_RESTORE(); 916 } 917 918 /* 919 * ND6 timer routine to expire default route list and prefix list 920 */ 921 void 922 nd6_timer(void *arg) 923 { 924 CURVNET_SET((struct vnet *) arg); 925 struct epoch_tracker et; 926 struct nd_prhead prl; 927 struct nd_prefix *pr, *npr; 928 struct ifnet *ifp; 929 struct in6_ifaddr *ia6, *nia6; 930 uint64_t genid; 931 932 LIST_INIT(&prl); 933 934 NET_EPOCH_ENTER(et); 935 nd6_defrouter_timer(); 936 937 /* 938 * expire interface addresses. 939 * in the past the loop was inside prefix expiry processing. 940 * However, from a stricter speci-confrmance standpoint, we should 941 * rather separate address lifetimes and prefix lifetimes. 942 * 943 * XXXRW: in6_ifaddrhead locking. 944 */ 945 addrloop: 946 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 947 /* check address lifetime */ 948 if (IFA6_IS_INVALID(ia6)) { 949 int regen = 0; 950 951 /* 952 * If the expiring address is temporary, try 953 * regenerating a new one. This would be useful when 954 * we suspended a laptop PC, then turned it on after a 955 * period that could invalidate all temporary 956 * addresses. Although we may have to restart the 957 * loop (see below), it must be after purging the 958 * address. Otherwise, we'd see an infinite loop of 959 * regeneration. 960 */ 961 if (V_ip6_use_tempaddr && 962 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 963 if (regen_tmpaddr(ia6) == 0) 964 regen = 1; 965 } 966 967 in6_purgeaddr(&ia6->ia_ifa); 968 969 if (regen) 970 goto addrloop; /* XXX: see below */ 971 } else if (IFA6_IS_DEPRECATED(ia6)) { 972 int oldflags = ia6->ia6_flags; 973 974 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 975 976 /* 977 * If a temporary address has just become deprecated, 978 * regenerate a new one if possible. 979 */ 980 if (V_ip6_use_tempaddr && 981 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 982 (oldflags & IN6_IFF_DEPRECATED) == 0) { 983 if (regen_tmpaddr(ia6) == 0) { 984 /* 985 * A new temporary address is 986 * generated. 987 * XXX: this means the address chain 988 * has changed while we are still in 989 * the loop. Although the change 990 * would not cause disaster (because 991 * it's not a deletion, but an 992 * addition,) we'd rather restart the 993 * loop just for safety. Or does this 994 * significantly reduce performance?? 995 */ 996 goto addrloop; 997 } 998 } 999 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 1000 /* 1001 * Schedule DAD for a tentative address. This happens 1002 * if the interface was down or not running 1003 * when the address was configured. 1004 */ 1005 int delay; 1006 1007 delay = arc4random() % 1008 (MAX_RTR_SOLICITATION_DELAY * hz); 1009 nd6_dad_start((struct ifaddr *)ia6, delay); 1010 } else { 1011 /* 1012 * Check status of the interface. If it is down, 1013 * mark the address as tentative for future DAD. 1014 */ 1015 ifp = ia6->ia_ifp; 1016 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1017 ((ifp->if_flags & IFF_UP) == 0 || 1018 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1019 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1020 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1021 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1022 } 1023 1024 /* 1025 * A new RA might have made a deprecated address 1026 * preferred. 1027 */ 1028 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1029 } 1030 } 1031 NET_EPOCH_EXIT(et); 1032 1033 ND6_WLOCK(); 1034 restart: 1035 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1036 /* 1037 * Expire prefixes. Since the pltime is only used for 1038 * autoconfigured addresses, pltime processing for prefixes is 1039 * not necessary. 1040 * 1041 * Only unlink after all derived addresses have expired. This 1042 * may not occur until two hours after the prefix has expired 1043 * per RFC 4862. If the prefix expires before its derived 1044 * addresses, mark it off-link. This will be done automatically 1045 * after unlinking if no address references remain. 1046 */ 1047 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1048 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1049 continue; 1050 1051 if (pr->ndpr_addrcnt == 0) { 1052 nd6_prefix_unlink(pr, &prl); 1053 continue; 1054 } 1055 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1056 genid = V_nd6_list_genid; 1057 nd6_prefix_ref(pr); 1058 ND6_WUNLOCK(); 1059 ND6_ONLINK_LOCK(); 1060 (void)nd6_prefix_offlink(pr); 1061 ND6_ONLINK_UNLOCK(); 1062 ND6_WLOCK(); 1063 nd6_prefix_rele(pr); 1064 if (genid != V_nd6_list_genid) 1065 goto restart; 1066 } 1067 } 1068 ND6_WUNLOCK(); 1069 1070 while ((pr = LIST_FIRST(&prl)) != NULL) { 1071 LIST_REMOVE(pr, ndpr_entry); 1072 nd6_prefix_del(pr); 1073 } 1074 1075 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1076 nd6_timer, curvnet); 1077 1078 CURVNET_RESTORE(); 1079 } 1080 1081 /* 1082 * ia6 - deprecated/invalidated temporary address 1083 */ 1084 static int 1085 regen_tmpaddr(struct in6_ifaddr *ia6) 1086 { 1087 struct ifaddr *ifa; 1088 struct ifnet *ifp; 1089 struct in6_ifaddr *public_ifa6 = NULL; 1090 1091 NET_EPOCH_ASSERT(); 1092 1093 ifp = ia6->ia_ifa.ifa_ifp; 1094 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1095 struct in6_ifaddr *it6; 1096 1097 if (ifa->ifa_addr->sa_family != AF_INET6) 1098 continue; 1099 1100 it6 = (struct in6_ifaddr *)ifa; 1101 1102 /* ignore no autoconf addresses. */ 1103 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1104 continue; 1105 1106 /* ignore autoconf addresses with different prefixes. */ 1107 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1108 continue; 1109 1110 /* 1111 * Now we are looking at an autoconf address with the same 1112 * prefix as ours. If the address is temporary and is still 1113 * preferred, do not create another one. It would be rare, but 1114 * could happen, for example, when we resume a laptop PC after 1115 * a long period. 1116 */ 1117 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1118 !IFA6_IS_DEPRECATED(it6)) { 1119 public_ifa6 = NULL; 1120 break; 1121 } 1122 1123 /* 1124 * This is a public autoconf address that has the same prefix 1125 * as ours. If it is preferred, keep it. We can't break the 1126 * loop here, because there may be a still-preferred temporary 1127 * address with the prefix. 1128 */ 1129 if (!IFA6_IS_DEPRECATED(it6)) 1130 public_ifa6 = it6; 1131 } 1132 if (public_ifa6 != NULL) 1133 ifa_ref(&public_ifa6->ia_ifa); 1134 1135 if (public_ifa6 != NULL) { 1136 int e; 1137 1138 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1139 ifa_free(&public_ifa6->ia_ifa); 1140 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1141 " tmp addr,errno=%d\n", e); 1142 return (-1); 1143 } 1144 ifa_free(&public_ifa6->ia_ifa); 1145 return (0); 1146 } 1147 1148 return (-1); 1149 } 1150 1151 /* 1152 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1153 * cache entries are freed in in6_domifdetach(). 1154 */ 1155 void 1156 nd6_purge(struct ifnet *ifp) 1157 { 1158 struct nd_prhead prl; 1159 struct nd_prefix *pr, *npr; 1160 1161 LIST_INIT(&prl); 1162 1163 /* Purge default router list entries toward ifp. */ 1164 nd6_defrouter_purge(ifp); 1165 1166 ND6_WLOCK(); 1167 /* 1168 * Remove prefixes on ifp. We should have already removed addresses on 1169 * this interface, so no addresses should be referencing these prefixes. 1170 */ 1171 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1172 if (pr->ndpr_ifp == ifp) 1173 nd6_prefix_unlink(pr, &prl); 1174 } 1175 ND6_WUNLOCK(); 1176 1177 /* Delete the unlinked prefix objects. */ 1178 while ((pr = LIST_FIRST(&prl)) != NULL) { 1179 LIST_REMOVE(pr, ndpr_entry); 1180 nd6_prefix_del(pr); 1181 } 1182 1183 /* cancel default outgoing interface setting */ 1184 if (V_nd6_defifindex == ifp->if_index) 1185 nd6_setdefaultiface(0); 1186 1187 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1188 /* Refresh default router list. */ 1189 defrouter_select_fib(ifp->if_fib); 1190 } 1191 } 1192 1193 /* 1194 * the caller acquires and releases the lock on the lltbls 1195 * Returns the llentry locked 1196 */ 1197 struct llentry * 1198 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1199 { 1200 struct sockaddr_in6 sin6; 1201 struct llentry *ln; 1202 1203 bzero(&sin6, sizeof(sin6)); 1204 sin6.sin6_len = sizeof(struct sockaddr_in6); 1205 sin6.sin6_family = AF_INET6; 1206 sin6.sin6_addr = *addr6; 1207 1208 IF_AFDATA_LOCK_ASSERT(ifp); 1209 1210 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1211 1212 return (ln); 1213 } 1214 1215 static struct llentry * 1216 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1217 { 1218 struct sockaddr_in6 sin6; 1219 struct llentry *ln; 1220 1221 bzero(&sin6, sizeof(sin6)); 1222 sin6.sin6_len = sizeof(struct sockaddr_in6); 1223 sin6.sin6_family = AF_INET6; 1224 sin6.sin6_addr = *addr6; 1225 1226 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1227 if (ln != NULL) 1228 ln->ln_state = ND6_LLINFO_NOSTATE; 1229 1230 return (ln); 1231 } 1232 1233 /* 1234 * Test whether a given IPv6 address is a neighbor or not, ignoring 1235 * the actual neighbor cache. The neighbor cache is ignored in order 1236 * to not reenter the routing code from within itself. 1237 */ 1238 static int 1239 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1240 { 1241 struct nd_prefix *pr; 1242 struct ifaddr *ifa; 1243 struct rt_addrinfo info; 1244 struct sockaddr_in6 rt_key; 1245 const struct sockaddr *dst6; 1246 uint64_t genid; 1247 int error, fibnum; 1248 1249 /* 1250 * A link-local address is always a neighbor. 1251 * XXX: a link does not necessarily specify a single interface. 1252 */ 1253 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1254 struct sockaddr_in6 sin6_copy; 1255 u_int32_t zone; 1256 1257 /* 1258 * We need sin6_copy since sa6_recoverscope() may modify the 1259 * content (XXX). 1260 */ 1261 sin6_copy = *addr; 1262 if (sa6_recoverscope(&sin6_copy)) 1263 return (0); /* XXX: should be impossible */ 1264 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1265 return (0); 1266 if (sin6_copy.sin6_scope_id == zone) 1267 return (1); 1268 else 1269 return (0); 1270 } 1271 1272 bzero(&rt_key, sizeof(rt_key)); 1273 bzero(&info, sizeof(info)); 1274 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1275 1276 /* 1277 * If the address matches one of our addresses, 1278 * it should be a neighbor. 1279 * If the address matches one of our on-link prefixes, it should be a 1280 * neighbor. 1281 */ 1282 ND6_RLOCK(); 1283 restart: 1284 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1285 if (pr->ndpr_ifp != ifp) 1286 continue; 1287 1288 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1289 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1290 1291 /* 1292 * We only need to check all FIBs if add_addr_allfibs 1293 * is unset. If set, checking any FIB will suffice. 1294 */ 1295 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1296 for (; fibnum < rt_numfibs; fibnum++) { 1297 genid = V_nd6_list_genid; 1298 ND6_RUNLOCK(); 1299 1300 /* 1301 * Restore length field before 1302 * retrying lookup 1303 */ 1304 rt_key.sin6_len = sizeof(rt_key); 1305 error = rib_lookup_info(fibnum, dst6, 0, 0, 1306 &info); 1307 1308 ND6_RLOCK(); 1309 if (genid != V_nd6_list_genid) 1310 goto restart; 1311 if (error == 0) 1312 break; 1313 } 1314 if (error != 0) 1315 continue; 1316 1317 /* 1318 * This is the case where multiple interfaces 1319 * have the same prefix, but only one is installed 1320 * into the routing table and that prefix entry 1321 * is not the one being examined here. 1322 */ 1323 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1324 &rt_key.sin6_addr)) 1325 continue; 1326 } 1327 1328 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1329 &addr->sin6_addr, &pr->ndpr_mask)) { 1330 ND6_RUNLOCK(); 1331 return (1); 1332 } 1333 } 1334 ND6_RUNLOCK(); 1335 1336 /* 1337 * If the address is assigned on the node of the other side of 1338 * a p2p interface, the address should be a neighbor. 1339 */ 1340 if (ifp->if_flags & IFF_POINTOPOINT) { 1341 struct epoch_tracker et; 1342 1343 NET_EPOCH_ENTER(et); 1344 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1345 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1346 continue; 1347 if (ifa->ifa_dstaddr != NULL && 1348 sa_equal(addr, ifa->ifa_dstaddr)) { 1349 NET_EPOCH_EXIT(et); 1350 return 1; 1351 } 1352 } 1353 NET_EPOCH_EXIT(et); 1354 } 1355 1356 /* 1357 * If the default router list is empty, all addresses are regarded 1358 * as on-link, and thus, as a neighbor. 1359 */ 1360 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1361 nd6_defrouter_list_empty() && 1362 V_nd6_defifindex == ifp->if_index) { 1363 return (1); 1364 } 1365 1366 return (0); 1367 } 1368 1369 /* 1370 * Detect if a given IPv6 address identifies a neighbor on a given link. 1371 * XXX: should take care of the destination of a p2p link? 1372 */ 1373 int 1374 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1375 { 1376 struct llentry *lle; 1377 int rc = 0; 1378 1379 NET_EPOCH_ASSERT(); 1380 IF_AFDATA_UNLOCK_ASSERT(ifp); 1381 if (nd6_is_new_addr_neighbor(addr, ifp)) 1382 return (1); 1383 1384 /* 1385 * Even if the address matches none of our addresses, it might be 1386 * in the neighbor cache. 1387 */ 1388 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1389 LLE_RUNLOCK(lle); 1390 rc = 1; 1391 } 1392 return (rc); 1393 } 1394 1395 /* 1396 * Free an nd6 llinfo entry. 1397 * Since the function would cause significant changes in the kernel, DO NOT 1398 * make it global, unless you have a strong reason for the change, and are sure 1399 * that the change is safe. 1400 * 1401 * Set noinline to be dtrace-friendly 1402 */ 1403 static __noinline void 1404 nd6_free(struct llentry **lnp, int gc) 1405 { 1406 struct ifnet *ifp; 1407 struct llentry *ln; 1408 struct nd_defrouter *dr; 1409 1410 ln = *lnp; 1411 *lnp = NULL; 1412 1413 LLE_WLOCK_ASSERT(ln); 1414 ND6_RLOCK_ASSERT(); 1415 1416 ifp = lltable_get_ifp(ln->lle_tbl); 1417 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1418 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1419 else 1420 dr = NULL; 1421 ND6_RUNLOCK(); 1422 1423 if ((ln->la_flags & LLE_DELETED) == 0) 1424 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1425 1426 /* 1427 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1428 * even though it is not harmful, it was not really necessary. 1429 */ 1430 1431 /* cancel timer */ 1432 nd6_llinfo_settimer_locked(ln, -1); 1433 1434 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1435 if (dr != NULL && dr->expire && 1436 ln->ln_state == ND6_LLINFO_STALE && gc) { 1437 /* 1438 * If the reason for the deletion is just garbage 1439 * collection, and the neighbor is an active default 1440 * router, do not delete it. Instead, reset the GC 1441 * timer using the router's lifetime. 1442 * Simply deleting the entry would affect default 1443 * router selection, which is not necessarily a good 1444 * thing, especially when we're using router preference 1445 * values. 1446 * XXX: the check for ln_state would be redundant, 1447 * but we intentionally keep it just in case. 1448 */ 1449 if (dr->expire > time_uptime) 1450 nd6_llinfo_settimer_locked(ln, 1451 (dr->expire - time_uptime) * hz); 1452 else 1453 nd6_llinfo_settimer_locked(ln, 1454 (long)V_nd6_gctimer * hz); 1455 1456 LLE_REMREF(ln); 1457 LLE_WUNLOCK(ln); 1458 defrouter_rele(dr); 1459 return; 1460 } 1461 1462 if (dr) { 1463 /* 1464 * Unreachablity of a router might affect the default 1465 * router selection and on-link detection of advertised 1466 * prefixes. 1467 */ 1468 1469 /* 1470 * Temporarily fake the state to choose a new default 1471 * router and to perform on-link determination of 1472 * prefixes correctly. 1473 * Below the state will be set correctly, 1474 * or the entry itself will be deleted. 1475 */ 1476 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1477 } 1478 1479 if (ln->ln_router || dr) { 1480 /* 1481 * We need to unlock to avoid a LOR with rt6_flush() with the 1482 * rnh and for the calls to pfxlist_onlink_check() and 1483 * defrouter_select_fib() in the block further down for calls 1484 * into nd6_lookup(). We still hold a ref. 1485 */ 1486 LLE_WUNLOCK(ln); 1487 1488 /* 1489 * rt6_flush must be called whether or not the neighbor 1490 * is in the Default Router List. 1491 * See a corresponding comment in nd6_na_input(). 1492 */ 1493 rt6_flush(&ln->r_l3addr.addr6, ifp); 1494 } 1495 1496 if (dr) { 1497 /* 1498 * Since defrouter_select_fib() does not affect the 1499 * on-link determination and MIP6 needs the check 1500 * before the default router selection, we perform 1501 * the check now. 1502 */ 1503 pfxlist_onlink_check(); 1504 1505 /* 1506 * Refresh default router list. 1507 */ 1508 defrouter_select_fib(dr->ifp->if_fib); 1509 } 1510 1511 /* 1512 * If this entry was added by an on-link redirect, remove the 1513 * corresponding host route. 1514 */ 1515 if (ln->la_flags & LLE_REDIRECT) 1516 nd6_free_redirect(ln); 1517 1518 if (ln->ln_router || dr) 1519 LLE_WLOCK(ln); 1520 } 1521 1522 /* 1523 * Save to unlock. We still hold an extra reference and will not 1524 * free(9) in llentry_free() if someone else holds one as well. 1525 */ 1526 LLE_WUNLOCK(ln); 1527 IF_AFDATA_LOCK(ifp); 1528 LLE_WLOCK(ln); 1529 /* Guard against race with other llentry_free(). */ 1530 if (ln->la_flags & LLE_LINKED) { 1531 /* Remove callout reference */ 1532 LLE_REMREF(ln); 1533 lltable_unlink_entry(ln->lle_tbl, ln); 1534 } 1535 IF_AFDATA_UNLOCK(ifp); 1536 1537 llentry_free(ln); 1538 if (dr != NULL) 1539 defrouter_rele(dr); 1540 } 1541 1542 static int 1543 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1544 { 1545 1546 if (nh->nh_flags & NHF_REDIRECT) 1547 return (1); 1548 1549 return (0); 1550 } 1551 1552 /* 1553 * Remove the rtentry for the given llentry, 1554 * both of which were installed by a redirect. 1555 */ 1556 static void 1557 nd6_free_redirect(const struct llentry *ln) 1558 { 1559 int fibnum; 1560 struct sockaddr_in6 sin6; 1561 struct rt_addrinfo info; 1562 struct rib_cmd_info rc; 1563 struct epoch_tracker et; 1564 1565 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1566 memset(&info, 0, sizeof(info)); 1567 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1568 info.rti_filter = nd6_isdynrte; 1569 1570 NET_EPOCH_ENTER(et); 1571 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1572 rib_action(fibnum, RTM_DELETE, &info, &rc); 1573 NET_EPOCH_EXIT(et); 1574 } 1575 1576 /* 1577 * Updates status of the default router route. 1578 */ 1579 static void 1580 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) 1581 { 1582 struct nd_defrouter *dr; 1583 struct nhop_object *nh; 1584 1585 nh = rc->rc_nh_old; 1586 1587 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1588 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1589 if (dr != NULL) { 1590 dr->installed = 0; 1591 defrouter_rele(dr); 1592 } 1593 } 1594 } 1595 1596 void 1597 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1598 { 1599 1600 #ifdef ROUTE_MPATH 1601 rib_decompose_notification(rc, check_release_defrouter, NULL); 1602 #else 1603 check_release_defrouter(rc, NULL); 1604 #endif 1605 } 1606 1607 int 1608 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1609 { 1610 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1611 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1612 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1613 struct epoch_tracker et; 1614 int error = 0; 1615 1616 if (ifp->if_afdata[AF_INET6] == NULL) 1617 return (EPFNOSUPPORT); 1618 switch (cmd) { 1619 case OSIOCGIFINFO_IN6: 1620 #define ND ndi->ndi 1621 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1622 bzero(&ND, sizeof(ND)); 1623 ND.linkmtu = IN6_LINKMTU(ifp); 1624 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1625 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1626 ND.reachable = ND_IFINFO(ifp)->reachable; 1627 ND.retrans = ND_IFINFO(ifp)->retrans; 1628 ND.flags = ND_IFINFO(ifp)->flags; 1629 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1630 ND.chlim = ND_IFINFO(ifp)->chlim; 1631 break; 1632 case SIOCGIFINFO_IN6: 1633 ND = *ND_IFINFO(ifp); 1634 break; 1635 case SIOCSIFINFO_IN6: 1636 /* 1637 * used to change host variables from userland. 1638 * intended for a use on router to reflect RA configurations. 1639 */ 1640 /* 0 means 'unspecified' */ 1641 if (ND.linkmtu != 0) { 1642 if (ND.linkmtu < IPV6_MMTU || 1643 ND.linkmtu > IN6_LINKMTU(ifp)) { 1644 error = EINVAL; 1645 break; 1646 } 1647 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1648 } 1649 1650 if (ND.basereachable != 0) { 1651 int obasereachable = ND_IFINFO(ifp)->basereachable; 1652 1653 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1654 if (ND.basereachable != obasereachable) 1655 ND_IFINFO(ifp)->reachable = 1656 ND_COMPUTE_RTIME(ND.basereachable); 1657 } 1658 if (ND.retrans != 0) 1659 ND_IFINFO(ifp)->retrans = ND.retrans; 1660 if (ND.chlim != 0) 1661 ND_IFINFO(ifp)->chlim = ND.chlim; 1662 /* FALLTHROUGH */ 1663 case SIOCSIFINFO_FLAGS: 1664 { 1665 struct ifaddr *ifa; 1666 struct in6_ifaddr *ia; 1667 1668 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1669 !(ND.flags & ND6_IFF_IFDISABLED)) { 1670 /* ifdisabled 1->0 transision */ 1671 1672 /* 1673 * If the interface is marked as ND6_IFF_IFDISABLED and 1674 * has an link-local address with IN6_IFF_DUPLICATED, 1675 * do not clear ND6_IFF_IFDISABLED. 1676 * See RFC 4862, Section 5.4.5. 1677 */ 1678 NET_EPOCH_ENTER(et); 1679 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1680 if (ifa->ifa_addr->sa_family != AF_INET6) 1681 continue; 1682 ia = (struct in6_ifaddr *)ifa; 1683 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1684 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1685 break; 1686 } 1687 NET_EPOCH_EXIT(et); 1688 1689 if (ifa != NULL) { 1690 /* LLA is duplicated. */ 1691 ND.flags |= ND6_IFF_IFDISABLED; 1692 log(LOG_ERR, "Cannot enable an interface" 1693 " with a link-local address marked" 1694 " duplicate.\n"); 1695 } else { 1696 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1697 if (ifp->if_flags & IFF_UP) 1698 in6_if_up(ifp); 1699 } 1700 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1701 (ND.flags & ND6_IFF_IFDISABLED)) { 1702 /* ifdisabled 0->1 transision */ 1703 /* Mark all IPv6 address as tentative. */ 1704 1705 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1706 if (V_ip6_dad_count > 0 && 1707 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1708 NET_EPOCH_ENTER(et); 1709 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1710 ifa_link) { 1711 if (ifa->ifa_addr->sa_family != 1712 AF_INET6) 1713 continue; 1714 ia = (struct in6_ifaddr *)ifa; 1715 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1716 } 1717 NET_EPOCH_EXIT(et); 1718 } 1719 } 1720 1721 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1722 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1723 /* auto_linklocal 0->1 transision */ 1724 1725 /* If no link-local address on ifp, configure */ 1726 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1727 in6_ifattach(ifp, NULL); 1728 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1729 ifp->if_flags & IFF_UP) { 1730 /* 1731 * When the IF already has 1732 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1733 * address is assigned, and IFF_UP, try to 1734 * assign one. 1735 */ 1736 NET_EPOCH_ENTER(et); 1737 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1738 ifa_link) { 1739 if (ifa->ifa_addr->sa_family != 1740 AF_INET6) 1741 continue; 1742 ia = (struct in6_ifaddr *)ifa; 1743 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1744 break; 1745 } 1746 NET_EPOCH_EXIT(et); 1747 if (ifa != NULL) 1748 /* No LLA is configured. */ 1749 in6_ifattach(ifp, NULL); 1750 } 1751 } 1752 ND_IFINFO(ifp)->flags = ND.flags; 1753 break; 1754 } 1755 #undef ND 1756 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1757 /* sync kernel routing table with the default router list */ 1758 defrouter_reset(); 1759 defrouter_select_fib(RT_ALL_FIBS); 1760 break; 1761 case SIOCSPFXFLUSH_IN6: 1762 { 1763 /* flush all the prefix advertised by routers */ 1764 struct in6_ifaddr *ia, *ia_next; 1765 struct nd_prefix *pr, *next; 1766 struct nd_prhead prl; 1767 1768 LIST_INIT(&prl); 1769 1770 ND6_WLOCK(); 1771 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1772 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1773 continue; /* XXX */ 1774 nd6_prefix_unlink(pr, &prl); 1775 } 1776 ND6_WUNLOCK(); 1777 1778 while ((pr = LIST_FIRST(&prl)) != NULL) { 1779 LIST_REMOVE(pr, ndpr_entry); 1780 /* XXXRW: in6_ifaddrhead locking. */ 1781 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1782 ia_next) { 1783 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1784 continue; 1785 1786 if (ia->ia6_ndpr == pr) 1787 in6_purgeaddr(&ia->ia_ifa); 1788 } 1789 nd6_prefix_del(pr); 1790 } 1791 break; 1792 } 1793 case SIOCSRTRFLUSH_IN6: 1794 { 1795 /* flush all the default routers */ 1796 1797 defrouter_reset(); 1798 nd6_defrouter_flush_all(); 1799 defrouter_select_fib(RT_ALL_FIBS); 1800 break; 1801 } 1802 case SIOCGNBRINFO_IN6: 1803 { 1804 struct llentry *ln; 1805 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1806 1807 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1808 return (error); 1809 1810 NET_EPOCH_ENTER(et); 1811 ln = nd6_lookup(&nb_addr, 0, ifp); 1812 NET_EPOCH_EXIT(et); 1813 1814 if (ln == NULL) { 1815 error = EINVAL; 1816 break; 1817 } 1818 nbi->state = ln->ln_state; 1819 nbi->asked = ln->la_asked; 1820 nbi->isrouter = ln->ln_router; 1821 if (ln->la_expire == 0) 1822 nbi->expire = 0; 1823 else 1824 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1825 (time_second - time_uptime); 1826 LLE_RUNLOCK(ln); 1827 break; 1828 } 1829 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1830 ndif->ifindex = V_nd6_defifindex; 1831 break; 1832 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1833 return (nd6_setdefaultiface(ndif->ifindex)); 1834 } 1835 return (error); 1836 } 1837 1838 /* 1839 * Calculates new isRouter value based on provided parameters and 1840 * returns it. 1841 */ 1842 static int 1843 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1844 int ln_router) 1845 { 1846 1847 /* 1848 * ICMP6 type dependent behavior. 1849 * 1850 * NS: clear IsRouter if new entry 1851 * RS: clear IsRouter 1852 * RA: set IsRouter if there's lladdr 1853 * redir: clear IsRouter if new entry 1854 * 1855 * RA case, (1): 1856 * The spec says that we must set IsRouter in the following cases: 1857 * - If lladdr exist, set IsRouter. This means (1-5). 1858 * - If it is old entry (!newentry), set IsRouter. This means (7). 1859 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1860 * A quetion arises for (1) case. (1) case has no lladdr in the 1861 * neighbor cache, this is similar to (6). 1862 * This case is rare but we figured that we MUST NOT set IsRouter. 1863 * 1864 * is_new old_addr new_addr NS RS RA redir 1865 * D R 1866 * 0 n n (1) c ? s 1867 * 0 y n (2) c s s 1868 * 0 n y (3) c s s 1869 * 0 y y (4) c s s 1870 * 0 y y (5) c s s 1871 * 1 -- n (6) c c c s 1872 * 1 -- y (7) c c s c s 1873 * 1874 * (c=clear s=set) 1875 */ 1876 switch (type & 0xff) { 1877 case ND_NEIGHBOR_SOLICIT: 1878 /* 1879 * New entry must have is_router flag cleared. 1880 */ 1881 if (is_new) /* (6-7) */ 1882 ln_router = 0; 1883 break; 1884 case ND_REDIRECT: 1885 /* 1886 * If the icmp is a redirect to a better router, always set the 1887 * is_router flag. Otherwise, if the entry is newly created, 1888 * clear the flag. [RFC 2461, sec 8.3] 1889 */ 1890 if (code == ND_REDIRECT_ROUTER) 1891 ln_router = 1; 1892 else { 1893 if (is_new) /* (6-7) */ 1894 ln_router = 0; 1895 } 1896 break; 1897 case ND_ROUTER_SOLICIT: 1898 /* 1899 * is_router flag must always be cleared. 1900 */ 1901 ln_router = 0; 1902 break; 1903 case ND_ROUTER_ADVERT: 1904 /* 1905 * Mark an entry with lladdr as a router. 1906 */ 1907 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1908 (is_new && new_addr)) { /* (7) */ 1909 ln_router = 1; 1910 } 1911 break; 1912 } 1913 1914 return (ln_router); 1915 } 1916 1917 /* 1918 * Create neighbor cache entry and cache link-layer address, 1919 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1920 * 1921 * type - ICMP6 type 1922 * code - type dependent information 1923 * 1924 */ 1925 void 1926 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1927 int lladdrlen, int type, int code) 1928 { 1929 struct llentry *ln = NULL, *ln_tmp; 1930 int is_newentry; 1931 int do_update; 1932 int olladdr; 1933 int llchange; 1934 int flags; 1935 uint16_t router = 0; 1936 struct sockaddr_in6 sin6; 1937 struct mbuf *chain = NULL; 1938 u_char linkhdr[LLE_MAX_LINKHDR]; 1939 size_t linkhdrsize; 1940 int lladdr_off; 1941 1942 NET_EPOCH_ASSERT(); 1943 IF_AFDATA_UNLOCK_ASSERT(ifp); 1944 1945 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1946 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1947 1948 /* nothing must be updated for unspecified address */ 1949 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1950 return; 1951 1952 /* 1953 * Validation about ifp->if_addrlen and lladdrlen must be done in 1954 * the caller. 1955 * 1956 * XXX If the link does not have link-layer adderss, what should 1957 * we do? (ifp->if_addrlen == 0) 1958 * Spec says nothing in sections for RA, RS and NA. There's small 1959 * description on it in NS section (RFC 2461 7.2.3). 1960 */ 1961 flags = lladdr ? LLE_EXCLUSIVE : 0; 1962 ln = nd6_lookup(from, flags, ifp); 1963 is_newentry = 0; 1964 if (ln == NULL) { 1965 flags |= LLE_EXCLUSIVE; 1966 ln = nd6_alloc(from, 0, ifp); 1967 if (ln == NULL) 1968 return; 1969 1970 /* 1971 * Since we already know all the data for the new entry, 1972 * fill it before insertion. 1973 */ 1974 if (lladdr != NULL) { 1975 linkhdrsize = sizeof(linkhdr); 1976 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1977 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1978 return; 1979 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1980 lladdr_off); 1981 } 1982 1983 IF_AFDATA_WLOCK(ifp); 1984 LLE_WLOCK(ln); 1985 /* Prefer any existing lle over newly-created one */ 1986 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1987 if (ln_tmp == NULL) 1988 lltable_link_entry(LLTABLE6(ifp), ln); 1989 IF_AFDATA_WUNLOCK(ifp); 1990 if (ln_tmp == NULL) { 1991 /* No existing lle, mark as new entry (6,7) */ 1992 is_newentry = 1; 1993 if (lladdr != NULL) { /* (7) */ 1994 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1995 EVENTHANDLER_INVOKE(lle_event, ln, 1996 LLENTRY_RESOLVED); 1997 } 1998 } else { 1999 lltable_free_entry(LLTABLE6(ifp), ln); 2000 ln = ln_tmp; 2001 ln_tmp = NULL; 2002 } 2003 } 2004 /* do nothing if static ndp is set */ 2005 if ((ln->la_flags & LLE_STATIC)) { 2006 if (flags & LLE_EXCLUSIVE) 2007 LLE_WUNLOCK(ln); 2008 else 2009 LLE_RUNLOCK(ln); 2010 return; 2011 } 2012 2013 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2014 if (olladdr && lladdr) { 2015 llchange = bcmp(lladdr, ln->ll_addr, 2016 ifp->if_addrlen); 2017 } else if (!olladdr && lladdr) 2018 llchange = 1; 2019 else 2020 llchange = 0; 2021 2022 /* 2023 * newentry olladdr lladdr llchange (*=record) 2024 * 0 n n -- (1) 2025 * 0 y n -- (2) 2026 * 0 n y y (3) * STALE 2027 * 0 y y n (4) * 2028 * 0 y y y (5) * STALE 2029 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2030 * 1 -- y -- (7) * STALE 2031 */ 2032 2033 do_update = 0; 2034 if (is_newentry == 0 && llchange != 0) { 2035 do_update = 1; /* (3,5) */ 2036 2037 /* 2038 * Record source link-layer address 2039 * XXX is it dependent to ifp->if_type? 2040 */ 2041 linkhdrsize = sizeof(linkhdr); 2042 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2043 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2044 return; 2045 2046 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2047 lladdr_off) == 0) { 2048 /* Entry was deleted */ 2049 return; 2050 } 2051 2052 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2053 2054 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2055 2056 if (ln->la_hold != NULL) 2057 nd6_grab_holdchain(ln, &chain, &sin6); 2058 } 2059 2060 /* Calculates new router status */ 2061 router = nd6_is_router(type, code, is_newentry, olladdr, 2062 lladdr != NULL ? 1 : 0, ln->ln_router); 2063 2064 ln->ln_router = router; 2065 /* Mark non-router redirects with special flag */ 2066 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2067 ln->la_flags |= LLE_REDIRECT; 2068 2069 if (flags & LLE_EXCLUSIVE) 2070 LLE_WUNLOCK(ln); 2071 else 2072 LLE_RUNLOCK(ln); 2073 2074 if (chain != NULL) 2075 nd6_flush_holdchain(ifp, chain, &sin6); 2076 2077 /* 2078 * When the link-layer address of a router changes, select the 2079 * best router again. In particular, when the neighbor entry is newly 2080 * created, it might affect the selection policy. 2081 * Question: can we restrict the first condition to the "is_newentry" 2082 * case? 2083 * XXX: when we hear an RA from a new router with the link-layer 2084 * address option, defrouter_select_fib() is called twice, since 2085 * defrtrlist_update called the function as well. However, I believe 2086 * we can compromise the overhead, since it only happens the first 2087 * time. 2088 * XXX: although defrouter_select_fib() should not have a bad effect 2089 * for those are not autoconfigured hosts, we explicitly avoid such 2090 * cases for safety. 2091 */ 2092 if ((do_update || is_newentry) && router && 2093 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2094 /* 2095 * guaranteed recursion 2096 */ 2097 defrouter_select_fib(ifp->if_fib); 2098 } 2099 } 2100 2101 static void 2102 nd6_slowtimo(void *arg) 2103 { 2104 struct epoch_tracker et; 2105 CURVNET_SET((struct vnet *) arg); 2106 struct nd_ifinfo *nd6if; 2107 struct ifnet *ifp; 2108 2109 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2110 nd6_slowtimo, curvnet); 2111 NET_EPOCH_ENTER(et); 2112 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2113 if (ifp->if_afdata[AF_INET6] == NULL) 2114 continue; 2115 nd6if = ND_IFINFO(ifp); 2116 if (nd6if->basereachable && /* already initialized */ 2117 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2118 /* 2119 * Since reachable time rarely changes by router 2120 * advertisements, we SHOULD insure that a new random 2121 * value gets recomputed at least once every few hours. 2122 * (RFC 2461, 6.3.4) 2123 */ 2124 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2125 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2126 } 2127 } 2128 NET_EPOCH_EXIT(et); 2129 CURVNET_RESTORE(); 2130 } 2131 2132 void 2133 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2134 struct sockaddr_in6 *sin6) 2135 { 2136 2137 LLE_WLOCK_ASSERT(ln); 2138 2139 *chain = ln->la_hold; 2140 ln->la_hold = NULL; 2141 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2142 2143 if (ln->ln_state == ND6_LLINFO_STALE) { 2144 /* 2145 * The first time we send a packet to a 2146 * neighbor whose entry is STALE, we have 2147 * to change the state to DELAY and a sets 2148 * a timer to expire in DELAY_FIRST_PROBE_TIME 2149 * seconds to ensure do neighbor unreachability 2150 * detection on expiration. 2151 * (RFC 2461 7.3.3) 2152 */ 2153 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2154 } 2155 } 2156 2157 int 2158 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2159 struct sockaddr_in6 *dst, struct route *ro) 2160 { 2161 int error; 2162 int ip6len; 2163 struct ip6_hdr *ip6; 2164 struct m_tag *mtag; 2165 2166 #ifdef MAC 2167 mac_netinet6_nd6_send(ifp, m); 2168 #endif 2169 2170 /* 2171 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2172 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2173 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2174 * to be diverted to user space. When re-injected into the kernel, 2175 * send_output() will directly dispatch them to the outgoing interface. 2176 */ 2177 if (send_sendso_input_hook != NULL) { 2178 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2179 if (mtag != NULL) { 2180 ip6 = mtod(m, struct ip6_hdr *); 2181 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2182 /* Use the SEND socket */ 2183 error = send_sendso_input_hook(m, ifp, SND_OUT, 2184 ip6len); 2185 /* -1 == no app on SEND socket */ 2186 if (error == 0 || error != -1) 2187 return (error); 2188 } 2189 } 2190 2191 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2192 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2193 mtod(m, struct ip6_hdr *)); 2194 2195 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2196 origifp = ifp; 2197 2198 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2199 return (error); 2200 } 2201 2202 /* 2203 * Lookup link headerfor @sa_dst address. Stores found 2204 * data in @desten buffer. Copy of lle ln_flags can be also 2205 * saved in @pflags if @pflags is non-NULL. 2206 * 2207 * If destination LLE does not exists or lle state modification 2208 * is required, call "slow" version. 2209 * 2210 * Return values: 2211 * - 0 on success (address copied to buffer). 2212 * - EWOULDBLOCK (no local error, but address is still unresolved) 2213 * - other errors (alloc failure, etc) 2214 */ 2215 int 2216 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2217 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2218 struct llentry **plle) 2219 { 2220 struct llentry *ln = NULL; 2221 const struct sockaddr_in6 *dst6; 2222 2223 NET_EPOCH_ASSERT(); 2224 2225 if (pflags != NULL) 2226 *pflags = 0; 2227 2228 dst6 = (const struct sockaddr_in6 *)sa_dst; 2229 2230 /* discard the packet if IPv6 operation is disabled on the interface */ 2231 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2232 m_freem(m); 2233 return (ENETDOWN); /* better error? */ 2234 } 2235 2236 if (m != NULL && m->m_flags & M_MCAST) { 2237 switch (ifp->if_type) { 2238 case IFT_ETHER: 2239 case IFT_L2VLAN: 2240 case IFT_BRIDGE: 2241 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2242 desten); 2243 return (0); 2244 default: 2245 m_freem(m); 2246 return (EAFNOSUPPORT); 2247 } 2248 } 2249 2250 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2251 ifp); 2252 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2253 /* Entry found, let's copy lle info */ 2254 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2255 if (pflags != NULL) 2256 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2257 /* Check if we have feedback request from nd6 timer */ 2258 if (ln->r_skip_req != 0) { 2259 LLE_REQ_LOCK(ln); 2260 ln->r_skip_req = 0; /* Notify that entry was used */ 2261 ln->lle_hittime = time_uptime; 2262 LLE_REQ_UNLOCK(ln); 2263 } 2264 if (plle) { 2265 LLE_ADDREF(ln); 2266 *plle = ln; 2267 LLE_WUNLOCK(ln); 2268 } 2269 return (0); 2270 } else if (plle && ln) 2271 LLE_WUNLOCK(ln); 2272 2273 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2274 } 2275 2276 /* 2277 * Do L2 address resolution for @sa_dst address. Stores found 2278 * address in @desten buffer. Copy of lle ln_flags can be also 2279 * saved in @pflags if @pflags is non-NULL. 2280 * 2281 * Heavy version. 2282 * Function assume that destination LLE does not exist, 2283 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2284 * 2285 * Set noinline to be dtrace-friendly 2286 */ 2287 static __noinline int 2288 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2289 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2290 struct llentry **plle) 2291 { 2292 struct llentry *lle = NULL, *lle_tmp; 2293 struct in6_addr *psrc, src; 2294 int send_ns, ll_len; 2295 char *lladdr; 2296 2297 NET_EPOCH_ASSERT(); 2298 2299 /* 2300 * Address resolution or Neighbor Unreachability Detection 2301 * for the next hop. 2302 * At this point, the destination of the packet must be a unicast 2303 * or an anycast address(i.e. not a multicast). 2304 */ 2305 if (lle == NULL) { 2306 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2307 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2308 /* 2309 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2310 * the condition below is not very efficient. But we believe 2311 * it is tolerable, because this should be a rare case. 2312 */ 2313 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2314 if (lle == NULL) { 2315 char ip6buf[INET6_ADDRSTRLEN]; 2316 log(LOG_DEBUG, 2317 "nd6_output: can't allocate llinfo for %s " 2318 "(ln=%p)\n", 2319 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2320 m_freem(m); 2321 return (ENOBUFS); 2322 } 2323 2324 IF_AFDATA_WLOCK(ifp); 2325 LLE_WLOCK(lle); 2326 /* Prefer any existing entry over newly-created one */ 2327 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2328 if (lle_tmp == NULL) 2329 lltable_link_entry(LLTABLE6(ifp), lle); 2330 IF_AFDATA_WUNLOCK(ifp); 2331 if (lle_tmp != NULL) { 2332 lltable_free_entry(LLTABLE6(ifp), lle); 2333 lle = lle_tmp; 2334 lle_tmp = NULL; 2335 } 2336 } 2337 } 2338 if (lle == NULL) { 2339 m_freem(m); 2340 return (ENOBUFS); 2341 } 2342 2343 LLE_WLOCK_ASSERT(lle); 2344 2345 /* 2346 * The first time we send a packet to a neighbor whose entry is 2347 * STALE, we have to change the state to DELAY and a sets a timer to 2348 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2349 * neighbor unreachability detection on expiration. 2350 * (RFC 2461 7.3.3) 2351 */ 2352 if (lle->ln_state == ND6_LLINFO_STALE) 2353 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2354 2355 /* 2356 * If the neighbor cache entry has a state other than INCOMPLETE 2357 * (i.e. its link-layer address is already resolved), just 2358 * send the packet. 2359 */ 2360 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2361 if (flags & LLE_ADDRONLY) { 2362 lladdr = lle->ll_addr; 2363 ll_len = ifp->if_addrlen; 2364 } else { 2365 lladdr = lle->r_linkdata; 2366 ll_len = lle->r_hdrlen; 2367 } 2368 bcopy(lladdr, desten, ll_len); 2369 if (pflags != NULL) 2370 *pflags = lle->la_flags; 2371 if (plle) { 2372 LLE_ADDREF(lle); 2373 *plle = lle; 2374 } 2375 LLE_WUNLOCK(lle); 2376 return (0); 2377 } 2378 2379 /* 2380 * There is a neighbor cache entry, but no ethernet address 2381 * response yet. Append this latest packet to the end of the 2382 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2383 * the oldest packet in the queue will be removed. 2384 */ 2385 2386 if (lle->la_hold != NULL) { 2387 struct mbuf *m_hold; 2388 int i; 2389 2390 i = 0; 2391 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2392 i++; 2393 if (m_hold->m_nextpkt == NULL) { 2394 m_hold->m_nextpkt = m; 2395 break; 2396 } 2397 } 2398 while (i >= V_nd6_maxqueuelen) { 2399 m_hold = lle->la_hold; 2400 lle->la_hold = lle->la_hold->m_nextpkt; 2401 m_freem(m_hold); 2402 i--; 2403 } 2404 } else { 2405 lle->la_hold = m; 2406 } 2407 2408 /* 2409 * If there has been no NS for the neighbor after entering the 2410 * INCOMPLETE state, send the first solicitation. 2411 * Note that for newly-created lle la_asked will be 0, 2412 * so we will transition from ND6_LLINFO_NOSTATE to 2413 * ND6_LLINFO_INCOMPLETE state here. 2414 */ 2415 psrc = NULL; 2416 send_ns = 0; 2417 if (lle->la_asked == 0) { 2418 lle->la_asked++; 2419 send_ns = 1; 2420 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2421 2422 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2423 } 2424 LLE_WUNLOCK(lle); 2425 if (send_ns != 0) 2426 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2427 2428 return (EWOULDBLOCK); 2429 } 2430 2431 /* 2432 * Do L2 address resolution for @sa_dst address. Stores found 2433 * address in @desten buffer. Copy of lle ln_flags can be also 2434 * saved in @pflags if @pflags is non-NULL. 2435 * 2436 * Return values: 2437 * - 0 on success (address copied to buffer). 2438 * - EWOULDBLOCK (no local error, but address is still unresolved) 2439 * - other errors (alloc failure, etc) 2440 */ 2441 int 2442 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2443 char *desten, uint32_t *pflags) 2444 { 2445 int error; 2446 2447 flags |= LLE_ADDRONLY; 2448 error = nd6_resolve_slow(ifp, flags, NULL, 2449 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2450 return (error); 2451 } 2452 2453 int 2454 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2455 struct sockaddr_in6 *dst) 2456 { 2457 struct mbuf *m, *m_head; 2458 int error = 0; 2459 2460 m_head = chain; 2461 2462 while (m_head) { 2463 m = m_head; 2464 m_head = m_head->m_nextpkt; 2465 m->m_nextpkt = NULL; 2466 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2467 } 2468 2469 /* 2470 * XXX 2471 * note that intermediate errors are blindly ignored 2472 */ 2473 return (error); 2474 } 2475 2476 static int 2477 nd6_need_cache(struct ifnet *ifp) 2478 { 2479 /* 2480 * XXX: we currently do not make neighbor cache on any interface 2481 * other than Ethernet and GIF. 2482 * 2483 * RFC2893 says: 2484 * - unidirectional tunnels needs no ND 2485 */ 2486 switch (ifp->if_type) { 2487 case IFT_ETHER: 2488 case IFT_IEEE1394: 2489 case IFT_L2VLAN: 2490 case IFT_INFINIBAND: 2491 case IFT_BRIDGE: 2492 case IFT_PROPVIRTUAL: 2493 return (1); 2494 default: 2495 return (0); 2496 } 2497 } 2498 2499 /* 2500 * Add pernament ND6 link-layer record for given 2501 * interface address. 2502 * 2503 * Very similar to IPv4 arp_ifinit(), but: 2504 * 1) IPv6 DAD is performed in different place 2505 * 2) It is called by IPv6 protocol stack in contrast to 2506 * arp_ifinit() which is typically called in SIOCSIFADDR 2507 * driver ioctl handler. 2508 * 2509 */ 2510 int 2511 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2512 { 2513 struct ifnet *ifp; 2514 struct llentry *ln, *ln_tmp; 2515 struct sockaddr *dst; 2516 2517 ifp = ia->ia_ifa.ifa_ifp; 2518 if (nd6_need_cache(ifp) == 0) 2519 return (0); 2520 2521 dst = (struct sockaddr *)&ia->ia_addr; 2522 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2523 if (ln == NULL) 2524 return (ENOBUFS); 2525 2526 IF_AFDATA_WLOCK(ifp); 2527 LLE_WLOCK(ln); 2528 /* Unlink any entry if exists */ 2529 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2530 if (ln_tmp != NULL) 2531 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2532 lltable_link_entry(LLTABLE6(ifp), ln); 2533 IF_AFDATA_WUNLOCK(ifp); 2534 2535 if (ln_tmp != NULL) 2536 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2537 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2538 2539 LLE_WUNLOCK(ln); 2540 if (ln_tmp != NULL) 2541 llentry_free(ln_tmp); 2542 2543 return (0); 2544 } 2545 2546 /* 2547 * Removes either all lle entries for given @ia, or lle 2548 * corresponding to @ia address. 2549 */ 2550 void 2551 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2552 { 2553 struct sockaddr_in6 mask, addr; 2554 struct sockaddr *saddr, *smask; 2555 struct ifnet *ifp; 2556 2557 ifp = ia->ia_ifa.ifa_ifp; 2558 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2559 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2560 saddr = (struct sockaddr *)&addr; 2561 smask = (struct sockaddr *)&mask; 2562 2563 if (all != 0) 2564 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2565 else 2566 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2567 } 2568 2569 static void 2570 clear_llinfo_pqueue(struct llentry *ln) 2571 { 2572 struct mbuf *m_hold, *m_hold_next; 2573 2574 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2575 m_hold_next = m_hold->m_nextpkt; 2576 m_freem(m_hold); 2577 } 2578 2579 ln->la_hold = NULL; 2580 } 2581 2582 static int 2583 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2584 { 2585 struct in6_prefix p; 2586 struct sockaddr_in6 s6; 2587 struct nd_prefix *pr; 2588 struct nd_pfxrouter *pfr; 2589 time_t maxexpire; 2590 int error; 2591 char ip6buf[INET6_ADDRSTRLEN]; 2592 2593 if (req->newptr) 2594 return (EPERM); 2595 2596 error = sysctl_wire_old_buffer(req, 0); 2597 if (error != 0) 2598 return (error); 2599 2600 bzero(&p, sizeof(p)); 2601 p.origin = PR_ORIG_RA; 2602 bzero(&s6, sizeof(s6)); 2603 s6.sin6_family = AF_INET6; 2604 s6.sin6_len = sizeof(s6); 2605 2606 ND6_RLOCK(); 2607 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2608 p.prefix = pr->ndpr_prefix; 2609 if (sa6_recoverscope(&p.prefix)) { 2610 log(LOG_ERR, "scope error in prefix list (%s)\n", 2611 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2612 /* XXX: press on... */ 2613 } 2614 p.raflags = pr->ndpr_raf; 2615 p.prefixlen = pr->ndpr_plen; 2616 p.vltime = pr->ndpr_vltime; 2617 p.pltime = pr->ndpr_pltime; 2618 p.if_index = pr->ndpr_ifp->if_index; 2619 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2620 p.expire = 0; 2621 else { 2622 /* XXX: we assume time_t is signed. */ 2623 maxexpire = (-1) & 2624 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2625 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2626 p.expire = pr->ndpr_lastupdate + 2627 pr->ndpr_vltime + 2628 (time_second - time_uptime); 2629 else 2630 p.expire = maxexpire; 2631 } 2632 p.refcnt = pr->ndpr_addrcnt; 2633 p.flags = pr->ndpr_stateflags; 2634 p.advrtrs = 0; 2635 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2636 p.advrtrs++; 2637 error = SYSCTL_OUT(req, &p, sizeof(p)); 2638 if (error != 0) 2639 break; 2640 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2641 s6.sin6_addr = pfr->router->rtaddr; 2642 if (sa6_recoverscope(&s6)) 2643 log(LOG_ERR, 2644 "scope error in prefix list (%s)\n", 2645 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2646 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2647 if (error != 0) 2648 goto out; 2649 } 2650 } 2651 out: 2652 ND6_RUNLOCK(); 2653 return (error); 2654 } 2655 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2656 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2657 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2658 "NDP prefix list"); 2659 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2660 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2661 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2662 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2663