1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route_var.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #include <netinet6/scope6_var.h> 77 #include <netinet6/nd6.h> 78 #include <netinet6/in6_ifattach.h> 79 #include <netinet/icmp6.h> 80 #include <netinet6/send.h> 81 82 #include <sys/limits.h> 83 84 #include <security/mac/mac_framework.h> 85 86 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 87 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 88 89 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 90 91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 92 93 /* timer values */ 94 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 95 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 96 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 97 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 98 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 99 * local traffic */ 100 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 101 * collection timer */ 102 103 /* preventing too many loops in ND option parsing */ 104 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 105 106 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 107 * layer hints */ 108 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 109 * ND entries */ 110 #define V_nd6_maxndopt VNET(nd6_maxndopt) 111 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 112 113 #ifdef ND6_DEBUG 114 VNET_DEFINE(int, nd6_debug) = 1; 115 #else 116 VNET_DEFINE(int, nd6_debug) = 0; 117 #endif 118 119 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 120 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 VNET_DEFINE(struct rwlock, nd6_lock); 123 VNET_DEFINE(uint64_t, nd6_list_genid); 124 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 125 126 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 127 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 128 129 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 130 131 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 132 struct ifnet *); 133 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 134 static void nd6_slowtimo(void *); 135 static int regen_tmpaddr(struct in6_ifaddr *); 136 static void nd6_free(struct llentry **, int); 137 static void nd6_free_redirect(const struct llentry *); 138 static void nd6_llinfo_timer(void *); 139 static void nd6_llinfo_settimer_locked(struct llentry *, long); 140 static void clear_llinfo_pqueue(struct llentry *); 141 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 147 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 148 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 149 150 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 151 #define V_nd6_timer_ch VNET(nd6_timer_ch) 152 153 SYSCTL_DECL(_net_inet6_icmp6); 154 155 static void 156 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 157 { 158 struct rt_addrinfo rtinfo; 159 struct sockaddr_in6 dst; 160 struct sockaddr_dl gw; 161 struct ifnet *ifp; 162 int type; 163 int fibnum; 164 165 LLE_WLOCK_ASSERT(lle); 166 167 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 168 return; 169 170 switch (evt) { 171 case LLENTRY_RESOLVED: 172 type = RTM_ADD; 173 KASSERT(lle->la_flags & LLE_VALID, 174 ("%s: %p resolved but not valid?", __func__, lle)); 175 break; 176 case LLENTRY_EXPIRED: 177 type = RTM_DELETE; 178 break; 179 default: 180 return; 181 } 182 183 ifp = lltable_get_ifp(lle->lle_tbl); 184 185 bzero(&dst, sizeof(dst)); 186 bzero(&gw, sizeof(gw)); 187 bzero(&rtinfo, sizeof(rtinfo)); 188 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 189 dst.sin6_scope_id = in6_getscopezone(ifp, 190 in6_addrscope(&dst.sin6_addr)); 191 gw.sdl_len = sizeof(struct sockaddr_dl); 192 gw.sdl_family = AF_LINK; 193 gw.sdl_alen = ifp->if_addrlen; 194 gw.sdl_index = ifp->if_index; 195 gw.sdl_type = ifp->if_type; 196 if (evt == LLENTRY_RESOLVED) 197 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 198 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 199 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 200 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 201 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 202 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 203 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 204 } 205 206 /* 207 * A handler for interface link layer address change event. 208 */ 209 static void 210 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 211 { 212 213 lltable_update_ifaddr(LLTABLE6(ifp)); 214 } 215 216 void 217 nd6_init(void) 218 { 219 220 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 221 rw_init(&V_nd6_lock, "nd6 list"); 222 223 LIST_INIT(&V_nd_prefix); 224 nd6_defrouter_init(); 225 226 /* Start timers. */ 227 callout_init(&V_nd6_slowtimo_ch, 0); 228 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 229 nd6_slowtimo, curvnet); 230 231 callout_init(&V_nd6_timer_ch, 0); 232 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 233 234 nd6_dad_init(); 235 if (IS_DEFAULT_VNET(curvnet)) { 236 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 237 NULL, EVENTHANDLER_PRI_ANY); 238 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 239 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 240 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 241 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 242 } 243 } 244 245 #ifdef VIMAGE 246 void 247 nd6_destroy() 248 { 249 250 callout_drain(&V_nd6_slowtimo_ch); 251 callout_drain(&V_nd6_timer_ch); 252 if (IS_DEFAULT_VNET(curvnet)) { 253 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 254 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 255 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 256 } 257 rw_destroy(&V_nd6_lock); 258 mtx_destroy(&V_nd6_onlink_mtx); 259 } 260 #endif 261 262 struct nd_ifinfo * 263 nd6_ifattach(struct ifnet *ifp) 264 { 265 struct nd_ifinfo *nd; 266 267 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 268 nd->initialized = 1; 269 270 nd->chlim = IPV6_DEFHLIM; 271 nd->basereachable = REACHABLE_TIME; 272 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 273 nd->retrans = RETRANS_TIMER; 274 275 nd->flags = ND6_IFF_PERFORMNUD; 276 277 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 278 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 279 * default regardless of the V_ip6_auto_linklocal configuration to 280 * give a reasonable default behavior. 281 */ 282 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 283 (ifp->if_flags & IFF_LOOPBACK)) 284 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 285 /* 286 * A loopback interface does not need to accept RTADV. 287 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 288 * default regardless of the V_ip6_accept_rtadv configuration to 289 * prevent the interface from accepting RA messages arrived 290 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 291 */ 292 if (V_ip6_accept_rtadv && 293 !(ifp->if_flags & IFF_LOOPBACK) && 294 (ifp->if_type != IFT_BRIDGE)) 295 nd->flags |= ND6_IFF_ACCEPT_RTADV; 296 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 297 nd->flags |= ND6_IFF_NO_RADR; 298 299 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 300 nd6_setmtu0(ifp, nd); 301 302 return nd; 303 } 304 305 void 306 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 307 { 308 struct epoch_tracker et; 309 struct ifaddr *ifa, *next; 310 311 NET_EPOCH_ENTER(et); 312 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 313 if (ifa->ifa_addr->sa_family != AF_INET6) 314 continue; 315 316 /* stop DAD processing */ 317 nd6_dad_stop(ifa); 318 } 319 NET_EPOCH_EXIT(et); 320 321 free(nd, M_IP6NDP); 322 } 323 324 /* 325 * Reset ND level link MTU. This function is called when the physical MTU 326 * changes, which means we might have to adjust the ND level MTU. 327 */ 328 void 329 nd6_setmtu(struct ifnet *ifp) 330 { 331 if (ifp->if_afdata[AF_INET6] == NULL) 332 return; 333 334 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 335 } 336 337 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 338 void 339 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 340 { 341 u_int32_t omaxmtu; 342 343 omaxmtu = ndi->maxmtu; 344 ndi->maxmtu = ifp->if_mtu; 345 346 /* 347 * Decreasing the interface MTU under IPV6 minimum MTU may cause 348 * undesirable situation. We thus notify the operator of the change 349 * explicitly. The check for omaxmtu is necessary to restrict the 350 * log to the case of changing the MTU, not initializing it. 351 */ 352 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 353 log(LOG_NOTICE, "nd6_setmtu0: " 354 "new link MTU on %s (%lu) is too small for IPv6\n", 355 if_name(ifp), (unsigned long)ndi->maxmtu); 356 } 357 358 if (ndi->maxmtu > V_in6_maxmtu) 359 in6_setmaxmtu(); /* check all interfaces just in case */ 360 361 } 362 363 void 364 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 365 { 366 367 bzero(ndopts, sizeof(*ndopts)); 368 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 369 ndopts->nd_opts_last 370 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 371 372 if (icmp6len == 0) { 373 ndopts->nd_opts_done = 1; 374 ndopts->nd_opts_search = NULL; 375 } 376 } 377 378 /* 379 * Take one ND option. 380 */ 381 struct nd_opt_hdr * 382 nd6_option(union nd_opts *ndopts) 383 { 384 struct nd_opt_hdr *nd_opt; 385 int olen; 386 387 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 388 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 389 __func__)); 390 if (ndopts->nd_opts_search == NULL) 391 return NULL; 392 if (ndopts->nd_opts_done) 393 return NULL; 394 395 nd_opt = ndopts->nd_opts_search; 396 397 /* make sure nd_opt_len is inside the buffer */ 398 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 399 bzero(ndopts, sizeof(*ndopts)); 400 return NULL; 401 } 402 403 olen = nd_opt->nd_opt_len << 3; 404 if (olen == 0) { 405 /* 406 * Message validation requires that all included 407 * options have a length that is greater than zero. 408 */ 409 bzero(ndopts, sizeof(*ndopts)); 410 return NULL; 411 } 412 413 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 414 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 415 /* option overruns the end of buffer, invalid */ 416 bzero(ndopts, sizeof(*ndopts)); 417 return NULL; 418 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 419 /* reached the end of options chain */ 420 ndopts->nd_opts_done = 1; 421 ndopts->nd_opts_search = NULL; 422 } 423 return nd_opt; 424 } 425 426 /* 427 * Parse multiple ND options. 428 * This function is much easier to use, for ND routines that do not need 429 * multiple options of the same type. 430 */ 431 int 432 nd6_options(union nd_opts *ndopts) 433 { 434 struct nd_opt_hdr *nd_opt; 435 int i = 0; 436 437 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 438 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 439 __func__)); 440 if (ndopts->nd_opts_search == NULL) 441 return 0; 442 443 while (1) { 444 nd_opt = nd6_option(ndopts); 445 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 446 /* 447 * Message validation requires that all included 448 * options have a length that is greater than zero. 449 */ 450 ICMP6STAT_INC(icp6s_nd_badopt); 451 bzero(ndopts, sizeof(*ndopts)); 452 return -1; 453 } 454 455 if (nd_opt == NULL) 456 goto skip1; 457 458 switch (nd_opt->nd_opt_type) { 459 case ND_OPT_SOURCE_LINKADDR: 460 case ND_OPT_TARGET_LINKADDR: 461 case ND_OPT_MTU: 462 case ND_OPT_REDIRECTED_HEADER: 463 case ND_OPT_NONCE: 464 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 465 nd6log((LOG_INFO, 466 "duplicated ND6 option found (type=%d)\n", 467 nd_opt->nd_opt_type)); 468 /* XXX bark? */ 469 } else { 470 ndopts->nd_opt_array[nd_opt->nd_opt_type] 471 = nd_opt; 472 } 473 break; 474 case ND_OPT_PREFIX_INFORMATION: 475 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 476 ndopts->nd_opt_array[nd_opt->nd_opt_type] 477 = nd_opt; 478 } 479 ndopts->nd_opts_pi_end = 480 (struct nd_opt_prefix_info *)nd_opt; 481 break; 482 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 483 case ND_OPT_RDNSS: /* RFC 6106 */ 484 case ND_OPT_DNSSL: /* RFC 6106 */ 485 /* 486 * Silently ignore options we know and do not care about 487 * in the kernel. 488 */ 489 break; 490 default: 491 /* 492 * Unknown options must be silently ignored, 493 * to accommodate future extension to the protocol. 494 */ 495 nd6log((LOG_DEBUG, 496 "nd6_options: unsupported option %d - " 497 "option ignored\n", nd_opt->nd_opt_type)); 498 } 499 500 skip1: 501 i++; 502 if (i > V_nd6_maxndopt) { 503 ICMP6STAT_INC(icp6s_nd_toomanyopt); 504 nd6log((LOG_INFO, "too many loop in nd opt\n")); 505 break; 506 } 507 508 if (ndopts->nd_opts_done) 509 break; 510 } 511 512 return 0; 513 } 514 515 /* 516 * ND6 timer routine to handle ND6 entries 517 */ 518 static void 519 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 520 { 521 int canceled; 522 523 LLE_WLOCK_ASSERT(ln); 524 525 if (tick < 0) { 526 ln->la_expire = 0; 527 ln->ln_ntick = 0; 528 canceled = callout_stop(&ln->lle_timer); 529 } else { 530 ln->la_expire = time_uptime + tick / hz; 531 LLE_ADDREF(ln); 532 if (tick > INT_MAX) { 533 ln->ln_ntick = tick - INT_MAX; 534 canceled = callout_reset(&ln->lle_timer, INT_MAX, 535 nd6_llinfo_timer, ln); 536 } else { 537 ln->ln_ntick = 0; 538 canceled = callout_reset(&ln->lle_timer, tick, 539 nd6_llinfo_timer, ln); 540 } 541 } 542 if (canceled > 0) 543 LLE_REMREF(ln); 544 } 545 546 /* 547 * Gets source address of the first packet in hold queue 548 * and stores it in @src. 549 * Returns pointer to @src (if hold queue is not empty) or NULL. 550 * 551 * Set noinline to be dtrace-friendly 552 */ 553 static __noinline struct in6_addr * 554 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 555 { 556 struct ip6_hdr hdr; 557 struct mbuf *m; 558 559 if (ln->la_hold == NULL) 560 return (NULL); 561 562 /* 563 * assume every packet in la_hold has the same IP header 564 */ 565 m = ln->la_hold; 566 if (sizeof(hdr) > m->m_len) 567 return (NULL); 568 569 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 570 *src = hdr.ip6_src; 571 572 return (src); 573 } 574 575 /* 576 * Checks if we need to switch from STALE state. 577 * 578 * RFC 4861 requires switching from STALE to DELAY state 579 * on first packet matching entry, waiting V_nd6_delay and 580 * transition to PROBE state (if upper layer confirmation was 581 * not received). 582 * 583 * This code performs a bit differently: 584 * On packet hit we don't change state (but desired state 585 * can be guessed by control plane). However, after V_nd6_delay 586 * seconds code will transition to PROBE state (so DELAY state 587 * is kinda skipped in most situations). 588 * 589 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 590 * we perform the following upon entering STALE state: 591 * 592 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 593 * if packet was transmitted at the start of given interval, we 594 * would be able to switch to PROBE state in V_nd6_delay seconds 595 * as user expects. 596 * 597 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 598 * lle in STALE state (remaining timer value stored in lle_remtime). 599 * 600 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 601 * seconds ago. 602 * 603 * Returns non-zero value if the entry is still STALE (storing 604 * the next timer interval in @pdelay). 605 * 606 * Returns zero value if original timer expired or we need to switch to 607 * PROBE (store that in @do_switch variable). 608 */ 609 static int 610 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 611 { 612 int nd_delay, nd_gctimer, r_skip_req; 613 time_t lle_hittime; 614 long delay; 615 616 *do_switch = 0; 617 nd_gctimer = V_nd6_gctimer; 618 nd_delay = V_nd6_delay; 619 620 LLE_REQ_LOCK(lle); 621 r_skip_req = lle->r_skip_req; 622 lle_hittime = lle->lle_hittime; 623 LLE_REQ_UNLOCK(lle); 624 625 if (r_skip_req > 0) { 626 627 /* 628 * Nonzero r_skip_req value was set upon entering 629 * STALE state. Since value was not changed, no 630 * packets were passed using this lle. Ask for 631 * timer reschedule and keep STALE state. 632 */ 633 delay = (long)(MIN(nd_gctimer, nd_delay)); 634 delay *= hz; 635 if (lle->lle_remtime > delay) 636 lle->lle_remtime -= delay; 637 else { 638 delay = lle->lle_remtime; 639 lle->lle_remtime = 0; 640 } 641 642 if (delay == 0) { 643 644 /* 645 * The original ng6_gctime timeout ended, 646 * no more rescheduling. 647 */ 648 return (0); 649 } 650 651 *pdelay = delay; 652 return (1); 653 } 654 655 /* 656 * Packet received. Verify timestamp 657 */ 658 delay = (long)(time_uptime - lle_hittime); 659 if (delay < nd_delay) { 660 661 /* 662 * V_nd6_delay still not passed since the first 663 * hit in STALE state. 664 * Reshedule timer and return. 665 */ 666 *pdelay = (long)(nd_delay - delay) * hz; 667 return (1); 668 } 669 670 /* Request switching to probe */ 671 *do_switch = 1; 672 return (0); 673 } 674 675 676 /* 677 * Switch @lle state to new state optionally arming timers. 678 * 679 * Set noinline to be dtrace-friendly 680 */ 681 __noinline void 682 nd6_llinfo_setstate(struct llentry *lle, int newstate) 683 { 684 struct ifnet *ifp; 685 int nd_gctimer, nd_delay; 686 long delay, remtime; 687 688 delay = 0; 689 remtime = 0; 690 691 switch (newstate) { 692 case ND6_LLINFO_INCOMPLETE: 693 ifp = lle->lle_tbl->llt_ifp; 694 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 695 break; 696 case ND6_LLINFO_REACHABLE: 697 if (!ND6_LLINFO_PERMANENT(lle)) { 698 ifp = lle->lle_tbl->llt_ifp; 699 delay = (long)ND_IFINFO(ifp)->reachable * hz; 700 } 701 break; 702 case ND6_LLINFO_STALE: 703 704 /* 705 * Notify fast path that we want to know if any packet 706 * is transmitted by setting r_skip_req. 707 */ 708 LLE_REQ_LOCK(lle); 709 lle->r_skip_req = 1; 710 LLE_REQ_UNLOCK(lle); 711 nd_delay = V_nd6_delay; 712 nd_gctimer = V_nd6_gctimer; 713 714 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 715 remtime = (long)nd_gctimer * hz - delay; 716 break; 717 case ND6_LLINFO_DELAY: 718 lle->la_asked = 0; 719 delay = (long)V_nd6_delay * hz; 720 break; 721 } 722 723 if (delay > 0) 724 nd6_llinfo_settimer_locked(lle, delay); 725 726 lle->lle_remtime = remtime; 727 lle->ln_state = newstate; 728 } 729 730 /* 731 * Timer-dependent part of nd state machine. 732 * 733 * Set noinline to be dtrace-friendly 734 */ 735 static __noinline void 736 nd6_llinfo_timer(void *arg) 737 { 738 struct epoch_tracker et; 739 struct llentry *ln; 740 struct in6_addr *dst, *pdst, *psrc, src; 741 struct ifnet *ifp; 742 struct nd_ifinfo *ndi; 743 int do_switch, send_ns; 744 long delay; 745 746 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 747 ln = (struct llentry *)arg; 748 ifp = lltable_get_ifp(ln->lle_tbl); 749 CURVNET_SET(ifp->if_vnet); 750 751 ND6_RLOCK(); 752 LLE_WLOCK(ln); 753 if (callout_pending(&ln->lle_timer)) { 754 /* 755 * Here we are a bit odd here in the treatment of 756 * active/pending. If the pending bit is set, it got 757 * rescheduled before I ran. The active 758 * bit we ignore, since if it was stopped 759 * in ll_tablefree() and was currently running 760 * it would have return 0 so the code would 761 * not have deleted it since the callout could 762 * not be stopped so we want to go through 763 * with the delete here now. If the callout 764 * was restarted, the pending bit will be back on and 765 * we just want to bail since the callout_reset would 766 * return 1 and our reference would have been removed 767 * by nd6_llinfo_settimer_locked above since canceled 768 * would have been 1. 769 */ 770 LLE_WUNLOCK(ln); 771 ND6_RUNLOCK(); 772 CURVNET_RESTORE(); 773 return; 774 } 775 NET_EPOCH_ENTER(et); 776 ndi = ND_IFINFO(ifp); 777 send_ns = 0; 778 dst = &ln->r_l3addr.addr6; 779 pdst = dst; 780 781 if (ln->ln_ntick > 0) { 782 if (ln->ln_ntick > INT_MAX) { 783 ln->ln_ntick -= INT_MAX; 784 nd6_llinfo_settimer_locked(ln, INT_MAX); 785 } else { 786 ln->ln_ntick = 0; 787 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 788 } 789 goto done; 790 } 791 792 if (ln->la_flags & LLE_STATIC) { 793 goto done; 794 } 795 796 if (ln->la_flags & LLE_DELETED) { 797 nd6_free(&ln, 0); 798 goto done; 799 } 800 801 switch (ln->ln_state) { 802 case ND6_LLINFO_INCOMPLETE: 803 if (ln->la_asked < V_nd6_mmaxtries) { 804 ln->la_asked++; 805 send_ns = 1; 806 /* Send NS to multicast address */ 807 pdst = NULL; 808 } else { 809 struct mbuf *m = ln->la_hold; 810 if (m) { 811 struct mbuf *m0; 812 813 /* 814 * assuming every packet in la_hold has the 815 * same IP header. Send error after unlock. 816 */ 817 m0 = m->m_nextpkt; 818 m->m_nextpkt = NULL; 819 ln->la_hold = m0; 820 clear_llinfo_pqueue(ln); 821 } 822 nd6_free(&ln, 0); 823 if (m != NULL) 824 icmp6_error2(m, ICMP6_DST_UNREACH, 825 ICMP6_DST_UNREACH_ADDR, 0, ifp); 826 } 827 break; 828 case ND6_LLINFO_REACHABLE: 829 if (!ND6_LLINFO_PERMANENT(ln)) 830 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 831 break; 832 833 case ND6_LLINFO_STALE: 834 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 835 836 /* 837 * No packet has used this entry and GC timeout 838 * has not been passed. Reshedule timer and 839 * return. 840 */ 841 nd6_llinfo_settimer_locked(ln, delay); 842 break; 843 } 844 845 if (do_switch == 0) { 846 847 /* 848 * GC timer has ended and entry hasn't been used. 849 * Run Garbage collector (RFC 4861, 5.3) 850 */ 851 if (!ND6_LLINFO_PERMANENT(ln)) 852 nd6_free(&ln, 1); 853 break; 854 } 855 856 /* Entry has been used AND delay timer has ended. */ 857 858 /* FALLTHROUGH */ 859 860 case ND6_LLINFO_DELAY: 861 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 862 /* We need NUD */ 863 ln->la_asked = 1; 864 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 865 send_ns = 1; 866 } else 867 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 868 break; 869 case ND6_LLINFO_PROBE: 870 if (ln->la_asked < V_nd6_umaxtries) { 871 ln->la_asked++; 872 send_ns = 1; 873 } else { 874 nd6_free(&ln, 0); 875 } 876 break; 877 default: 878 panic("%s: paths in a dark night can be confusing: %d", 879 __func__, ln->ln_state); 880 } 881 done: 882 if (ln != NULL) 883 ND6_RUNLOCK(); 884 if (send_ns != 0) { 885 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 886 psrc = nd6_llinfo_get_holdsrc(ln, &src); 887 LLE_FREE_LOCKED(ln); 888 ln = NULL; 889 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 890 } 891 892 if (ln != NULL) 893 LLE_FREE_LOCKED(ln); 894 NET_EPOCH_EXIT(et); 895 CURVNET_RESTORE(); 896 } 897 898 899 /* 900 * ND6 timer routine to expire default route list and prefix list 901 */ 902 void 903 nd6_timer(void *arg) 904 { 905 CURVNET_SET((struct vnet *) arg); 906 struct epoch_tracker et; 907 struct nd_prhead prl; 908 struct nd_prefix *pr, *npr; 909 struct ifnet *ifp; 910 struct in6_ifaddr *ia6, *nia6; 911 uint64_t genid; 912 913 LIST_INIT(&prl); 914 915 NET_EPOCH_ENTER(et); 916 nd6_defrouter_timer(); 917 918 /* 919 * expire interface addresses. 920 * in the past the loop was inside prefix expiry processing. 921 * However, from a stricter speci-confrmance standpoint, we should 922 * rather separate address lifetimes and prefix lifetimes. 923 * 924 * XXXRW: in6_ifaddrhead locking. 925 */ 926 addrloop: 927 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 928 /* check address lifetime */ 929 if (IFA6_IS_INVALID(ia6)) { 930 int regen = 0; 931 932 /* 933 * If the expiring address is temporary, try 934 * regenerating a new one. This would be useful when 935 * we suspended a laptop PC, then turned it on after a 936 * period that could invalidate all temporary 937 * addresses. Although we may have to restart the 938 * loop (see below), it must be after purging the 939 * address. Otherwise, we'd see an infinite loop of 940 * regeneration. 941 */ 942 if (V_ip6_use_tempaddr && 943 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 944 if (regen_tmpaddr(ia6) == 0) 945 regen = 1; 946 } 947 948 in6_purgeaddr(&ia6->ia_ifa); 949 950 if (regen) 951 goto addrloop; /* XXX: see below */ 952 } else if (IFA6_IS_DEPRECATED(ia6)) { 953 int oldflags = ia6->ia6_flags; 954 955 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 956 957 /* 958 * If a temporary address has just become deprecated, 959 * regenerate a new one if possible. 960 */ 961 if (V_ip6_use_tempaddr && 962 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 963 (oldflags & IN6_IFF_DEPRECATED) == 0) { 964 965 if (regen_tmpaddr(ia6) == 0) { 966 /* 967 * A new temporary address is 968 * generated. 969 * XXX: this means the address chain 970 * has changed while we are still in 971 * the loop. Although the change 972 * would not cause disaster (because 973 * it's not a deletion, but an 974 * addition,) we'd rather restart the 975 * loop just for safety. Or does this 976 * significantly reduce performance?? 977 */ 978 goto addrloop; 979 } 980 } 981 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 982 /* 983 * Schedule DAD for a tentative address. This happens 984 * if the interface was down or not running 985 * when the address was configured. 986 */ 987 int delay; 988 989 delay = arc4random() % 990 (MAX_RTR_SOLICITATION_DELAY * hz); 991 nd6_dad_start((struct ifaddr *)ia6, delay); 992 } else { 993 /* 994 * Check status of the interface. If it is down, 995 * mark the address as tentative for future DAD. 996 */ 997 ifp = ia6->ia_ifp; 998 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 999 ((ifp->if_flags & IFF_UP) == 0 || 1000 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1001 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1002 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1003 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1004 } 1005 1006 /* 1007 * A new RA might have made a deprecated address 1008 * preferred. 1009 */ 1010 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1011 } 1012 } 1013 NET_EPOCH_EXIT(et); 1014 1015 ND6_WLOCK(); 1016 restart: 1017 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1018 /* 1019 * Expire prefixes. Since the pltime is only used for 1020 * autoconfigured addresses, pltime processing for prefixes is 1021 * not necessary. 1022 * 1023 * Only unlink after all derived addresses have expired. This 1024 * may not occur until two hours after the prefix has expired 1025 * per RFC 4862. If the prefix expires before its derived 1026 * addresses, mark it off-link. This will be done automatically 1027 * after unlinking if no address references remain. 1028 */ 1029 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1030 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1031 continue; 1032 1033 if (pr->ndpr_addrcnt == 0) { 1034 nd6_prefix_unlink(pr, &prl); 1035 continue; 1036 } 1037 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1038 genid = V_nd6_list_genid; 1039 nd6_prefix_ref(pr); 1040 ND6_WUNLOCK(); 1041 ND6_ONLINK_LOCK(); 1042 (void)nd6_prefix_offlink(pr); 1043 ND6_ONLINK_UNLOCK(); 1044 ND6_WLOCK(); 1045 nd6_prefix_rele(pr); 1046 if (genid != V_nd6_list_genid) 1047 goto restart; 1048 } 1049 } 1050 ND6_WUNLOCK(); 1051 1052 while ((pr = LIST_FIRST(&prl)) != NULL) { 1053 LIST_REMOVE(pr, ndpr_entry); 1054 nd6_prefix_del(pr); 1055 } 1056 1057 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1058 nd6_timer, curvnet); 1059 1060 CURVNET_RESTORE(); 1061 } 1062 1063 /* 1064 * ia6 - deprecated/invalidated temporary address 1065 */ 1066 static int 1067 regen_tmpaddr(struct in6_ifaddr *ia6) 1068 { 1069 struct ifaddr *ifa; 1070 struct ifnet *ifp; 1071 struct in6_ifaddr *public_ifa6 = NULL; 1072 1073 NET_EPOCH_ASSERT(); 1074 1075 ifp = ia6->ia_ifa.ifa_ifp; 1076 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1077 struct in6_ifaddr *it6; 1078 1079 if (ifa->ifa_addr->sa_family != AF_INET6) 1080 continue; 1081 1082 it6 = (struct in6_ifaddr *)ifa; 1083 1084 /* ignore no autoconf addresses. */ 1085 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1086 continue; 1087 1088 /* ignore autoconf addresses with different prefixes. */ 1089 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1090 continue; 1091 1092 /* 1093 * Now we are looking at an autoconf address with the same 1094 * prefix as ours. If the address is temporary and is still 1095 * preferred, do not create another one. It would be rare, but 1096 * could happen, for example, when we resume a laptop PC after 1097 * a long period. 1098 */ 1099 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1100 !IFA6_IS_DEPRECATED(it6)) { 1101 public_ifa6 = NULL; 1102 break; 1103 } 1104 1105 /* 1106 * This is a public autoconf address that has the same prefix 1107 * as ours. If it is preferred, keep it. We can't break the 1108 * loop here, because there may be a still-preferred temporary 1109 * address with the prefix. 1110 */ 1111 if (!IFA6_IS_DEPRECATED(it6)) 1112 public_ifa6 = it6; 1113 } 1114 if (public_ifa6 != NULL) 1115 ifa_ref(&public_ifa6->ia_ifa); 1116 1117 if (public_ifa6 != NULL) { 1118 int e; 1119 1120 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1121 ifa_free(&public_ifa6->ia_ifa); 1122 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1123 " tmp addr,errno=%d\n", e); 1124 return (-1); 1125 } 1126 ifa_free(&public_ifa6->ia_ifa); 1127 return (0); 1128 } 1129 1130 return (-1); 1131 } 1132 1133 /* 1134 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1135 * cache entries are freed in in6_domifdetach(). 1136 */ 1137 void 1138 nd6_purge(struct ifnet *ifp) 1139 { 1140 struct nd_prhead prl; 1141 struct nd_prefix *pr, *npr; 1142 1143 LIST_INIT(&prl); 1144 1145 /* Purge default router list entries toward ifp. */ 1146 nd6_defrouter_purge(ifp); 1147 1148 ND6_WLOCK(); 1149 /* 1150 * Remove prefixes on ifp. We should have already removed addresses on 1151 * this interface, so no addresses should be referencing these prefixes. 1152 */ 1153 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1154 if (pr->ndpr_ifp == ifp) 1155 nd6_prefix_unlink(pr, &prl); 1156 } 1157 ND6_WUNLOCK(); 1158 1159 /* Delete the unlinked prefix objects. */ 1160 while ((pr = LIST_FIRST(&prl)) != NULL) { 1161 LIST_REMOVE(pr, ndpr_entry); 1162 nd6_prefix_del(pr); 1163 } 1164 1165 /* cancel default outgoing interface setting */ 1166 if (V_nd6_defifindex == ifp->if_index) 1167 nd6_setdefaultiface(0); 1168 1169 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1170 /* Refresh default router list. */ 1171 defrouter_select_fib(ifp->if_fib); 1172 } 1173 } 1174 1175 /* 1176 * the caller acquires and releases the lock on the lltbls 1177 * Returns the llentry locked 1178 */ 1179 struct llentry * 1180 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1181 { 1182 struct sockaddr_in6 sin6; 1183 struct llentry *ln; 1184 1185 bzero(&sin6, sizeof(sin6)); 1186 sin6.sin6_len = sizeof(struct sockaddr_in6); 1187 sin6.sin6_family = AF_INET6; 1188 sin6.sin6_addr = *addr6; 1189 1190 IF_AFDATA_LOCK_ASSERT(ifp); 1191 1192 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1193 1194 return (ln); 1195 } 1196 1197 static struct llentry * 1198 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1199 { 1200 struct sockaddr_in6 sin6; 1201 struct llentry *ln; 1202 1203 bzero(&sin6, sizeof(sin6)); 1204 sin6.sin6_len = sizeof(struct sockaddr_in6); 1205 sin6.sin6_family = AF_INET6; 1206 sin6.sin6_addr = *addr6; 1207 1208 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1209 if (ln != NULL) 1210 ln->ln_state = ND6_LLINFO_NOSTATE; 1211 1212 return (ln); 1213 } 1214 1215 /* 1216 * Test whether a given IPv6 address is a neighbor or not, ignoring 1217 * the actual neighbor cache. The neighbor cache is ignored in order 1218 * to not reenter the routing code from within itself. 1219 */ 1220 static int 1221 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1222 { 1223 struct nd_prefix *pr; 1224 struct ifaddr *ifa; 1225 struct rt_addrinfo info; 1226 struct sockaddr_in6 rt_key; 1227 const struct sockaddr *dst6; 1228 uint64_t genid; 1229 int error, fibnum; 1230 1231 /* 1232 * A link-local address is always a neighbor. 1233 * XXX: a link does not necessarily specify a single interface. 1234 */ 1235 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1236 struct sockaddr_in6 sin6_copy; 1237 u_int32_t zone; 1238 1239 /* 1240 * We need sin6_copy since sa6_recoverscope() may modify the 1241 * content (XXX). 1242 */ 1243 sin6_copy = *addr; 1244 if (sa6_recoverscope(&sin6_copy)) 1245 return (0); /* XXX: should be impossible */ 1246 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1247 return (0); 1248 if (sin6_copy.sin6_scope_id == zone) 1249 return (1); 1250 else 1251 return (0); 1252 } 1253 1254 bzero(&rt_key, sizeof(rt_key)); 1255 bzero(&info, sizeof(info)); 1256 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1257 1258 /* 1259 * If the address matches one of our addresses, 1260 * it should be a neighbor. 1261 * If the address matches one of our on-link prefixes, it should be a 1262 * neighbor. 1263 */ 1264 ND6_RLOCK(); 1265 restart: 1266 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1267 if (pr->ndpr_ifp != ifp) 1268 continue; 1269 1270 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1271 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1272 1273 /* 1274 * We only need to check all FIBs if add_addr_allfibs 1275 * is unset. If set, checking any FIB will suffice. 1276 */ 1277 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1278 for (; fibnum < rt_numfibs; fibnum++) { 1279 genid = V_nd6_list_genid; 1280 ND6_RUNLOCK(); 1281 1282 /* 1283 * Restore length field before 1284 * retrying lookup 1285 */ 1286 rt_key.sin6_len = sizeof(rt_key); 1287 error = rib_lookup_info(fibnum, dst6, 0, 0, 1288 &info); 1289 1290 ND6_RLOCK(); 1291 if (genid != V_nd6_list_genid) 1292 goto restart; 1293 if (error == 0) 1294 break; 1295 } 1296 if (error != 0) 1297 continue; 1298 1299 /* 1300 * This is the case where multiple interfaces 1301 * have the same prefix, but only one is installed 1302 * into the routing table and that prefix entry 1303 * is not the one being examined here. In the case 1304 * where RADIX_MPATH is enabled, multiple route 1305 * entries (of the same rt_key value) will be 1306 * installed because the interface addresses all 1307 * differ. 1308 */ 1309 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1310 &rt_key.sin6_addr)) 1311 continue; 1312 } 1313 1314 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1315 &addr->sin6_addr, &pr->ndpr_mask)) { 1316 ND6_RUNLOCK(); 1317 return (1); 1318 } 1319 } 1320 ND6_RUNLOCK(); 1321 1322 /* 1323 * If the address is assigned on the node of the other side of 1324 * a p2p interface, the address should be a neighbor. 1325 */ 1326 if (ifp->if_flags & IFF_POINTOPOINT) { 1327 struct epoch_tracker et; 1328 1329 NET_EPOCH_ENTER(et); 1330 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1331 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1332 continue; 1333 if (ifa->ifa_dstaddr != NULL && 1334 sa_equal(addr, ifa->ifa_dstaddr)) { 1335 NET_EPOCH_EXIT(et); 1336 return 1; 1337 } 1338 } 1339 NET_EPOCH_EXIT(et); 1340 } 1341 1342 /* 1343 * If the default router list is empty, all addresses are regarded 1344 * as on-link, and thus, as a neighbor. 1345 */ 1346 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1347 nd6_defrouter_list_empty() && 1348 V_nd6_defifindex == ifp->if_index) { 1349 return (1); 1350 } 1351 1352 return (0); 1353 } 1354 1355 1356 /* 1357 * Detect if a given IPv6 address identifies a neighbor on a given link. 1358 * XXX: should take care of the destination of a p2p link? 1359 */ 1360 int 1361 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1362 { 1363 struct llentry *lle; 1364 int rc = 0; 1365 1366 NET_EPOCH_ASSERT(); 1367 IF_AFDATA_UNLOCK_ASSERT(ifp); 1368 if (nd6_is_new_addr_neighbor(addr, ifp)) 1369 return (1); 1370 1371 /* 1372 * Even if the address matches none of our addresses, it might be 1373 * in the neighbor cache. 1374 */ 1375 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1376 LLE_RUNLOCK(lle); 1377 rc = 1; 1378 } 1379 return (rc); 1380 } 1381 1382 /* 1383 * Free an nd6 llinfo entry. 1384 * Since the function would cause significant changes in the kernel, DO NOT 1385 * make it global, unless you have a strong reason for the change, and are sure 1386 * that the change is safe. 1387 * 1388 * Set noinline to be dtrace-friendly 1389 */ 1390 static __noinline void 1391 nd6_free(struct llentry **lnp, int gc) 1392 { 1393 struct ifnet *ifp; 1394 struct llentry *ln; 1395 struct nd_defrouter *dr; 1396 1397 ln = *lnp; 1398 *lnp = NULL; 1399 1400 LLE_WLOCK_ASSERT(ln); 1401 ND6_RLOCK_ASSERT(); 1402 1403 ifp = lltable_get_ifp(ln->lle_tbl); 1404 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1405 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1406 else 1407 dr = NULL; 1408 ND6_RUNLOCK(); 1409 1410 if ((ln->la_flags & LLE_DELETED) == 0) 1411 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1412 1413 /* 1414 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1415 * even though it is not harmful, it was not really necessary. 1416 */ 1417 1418 /* cancel timer */ 1419 nd6_llinfo_settimer_locked(ln, -1); 1420 1421 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1422 if (dr != NULL && dr->expire && 1423 ln->ln_state == ND6_LLINFO_STALE && gc) { 1424 /* 1425 * If the reason for the deletion is just garbage 1426 * collection, and the neighbor is an active default 1427 * router, do not delete it. Instead, reset the GC 1428 * timer using the router's lifetime. 1429 * Simply deleting the entry would affect default 1430 * router selection, which is not necessarily a good 1431 * thing, especially when we're using router preference 1432 * values. 1433 * XXX: the check for ln_state would be redundant, 1434 * but we intentionally keep it just in case. 1435 */ 1436 if (dr->expire > time_uptime) 1437 nd6_llinfo_settimer_locked(ln, 1438 (dr->expire - time_uptime) * hz); 1439 else 1440 nd6_llinfo_settimer_locked(ln, 1441 (long)V_nd6_gctimer * hz); 1442 1443 LLE_REMREF(ln); 1444 LLE_WUNLOCK(ln); 1445 defrouter_rele(dr); 1446 return; 1447 } 1448 1449 if (dr) { 1450 /* 1451 * Unreachablity of a router might affect the default 1452 * router selection and on-link detection of advertised 1453 * prefixes. 1454 */ 1455 1456 /* 1457 * Temporarily fake the state to choose a new default 1458 * router and to perform on-link determination of 1459 * prefixes correctly. 1460 * Below the state will be set correctly, 1461 * or the entry itself will be deleted. 1462 */ 1463 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1464 } 1465 1466 if (ln->ln_router || dr) { 1467 1468 /* 1469 * We need to unlock to avoid a LOR with rt6_flush() with the 1470 * rnh and for the calls to pfxlist_onlink_check() and 1471 * defrouter_select_fib() in the block further down for calls 1472 * into nd6_lookup(). We still hold a ref. 1473 */ 1474 LLE_WUNLOCK(ln); 1475 1476 /* 1477 * rt6_flush must be called whether or not the neighbor 1478 * is in the Default Router List. 1479 * See a corresponding comment in nd6_na_input(). 1480 */ 1481 rt6_flush(&ln->r_l3addr.addr6, ifp); 1482 } 1483 1484 if (dr) { 1485 /* 1486 * Since defrouter_select_fib() does not affect the 1487 * on-link determination and MIP6 needs the check 1488 * before the default router selection, we perform 1489 * the check now. 1490 */ 1491 pfxlist_onlink_check(); 1492 1493 /* 1494 * Refresh default router list. 1495 */ 1496 defrouter_select_fib(dr->ifp->if_fib); 1497 } 1498 1499 /* 1500 * If this entry was added by an on-link redirect, remove the 1501 * corresponding host route. 1502 */ 1503 if (ln->la_flags & LLE_REDIRECT) 1504 nd6_free_redirect(ln); 1505 1506 if (ln->ln_router || dr) 1507 LLE_WLOCK(ln); 1508 } 1509 1510 /* 1511 * Save to unlock. We still hold an extra reference and will not 1512 * free(9) in llentry_free() if someone else holds one as well. 1513 */ 1514 LLE_WUNLOCK(ln); 1515 IF_AFDATA_LOCK(ifp); 1516 LLE_WLOCK(ln); 1517 /* Guard against race with other llentry_free(). */ 1518 if (ln->la_flags & LLE_LINKED) { 1519 /* Remove callout reference */ 1520 LLE_REMREF(ln); 1521 lltable_unlink_entry(ln->lle_tbl, ln); 1522 } 1523 IF_AFDATA_UNLOCK(ifp); 1524 1525 llentry_free(ln); 1526 if (dr != NULL) 1527 defrouter_rele(dr); 1528 } 1529 1530 static int 1531 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1532 { 1533 1534 if (nh->nh_flags & NHF_REDIRECT) 1535 return (1); 1536 1537 return (0); 1538 } 1539 1540 /* 1541 * Remove the rtentry for the given llentry, 1542 * both of which were installed by a redirect. 1543 */ 1544 static void 1545 nd6_free_redirect(const struct llentry *ln) 1546 { 1547 int fibnum; 1548 struct sockaddr_in6 sin6; 1549 struct rt_addrinfo info; 1550 1551 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1552 memset(&info, 0, sizeof(info)); 1553 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1554 info.rti_filter = nd6_isdynrte; 1555 1556 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1557 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1558 } 1559 1560 /* 1561 * Rejuvenate this function for routing operations related 1562 * processing. 1563 */ 1564 void 1565 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1566 { 1567 struct sockaddr_in6 *gateway; 1568 struct nd_defrouter *dr; 1569 struct nhop_object *nh; 1570 1571 nh = rt->rt_nhop; 1572 gateway = &nh->gw6_sa; 1573 1574 switch (req) { 1575 case RTM_ADD: 1576 break; 1577 1578 case RTM_DELETE: 1579 /* 1580 * Only indirect routes are interesting. 1581 */ 1582 if ((nh->nh_flags & NHF_GATEWAY) == 0) 1583 return; 1584 /* 1585 * check for default route 1586 */ 1587 if (nh->nh_flags & NHF_DEFAULT) { 1588 dr = defrouter_lookup(&gateway->sin6_addr, nh->nh_ifp); 1589 if (dr != NULL) { 1590 dr->installed = 0; 1591 defrouter_rele(dr); 1592 } 1593 } 1594 break; 1595 } 1596 } 1597 1598 1599 int 1600 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1601 { 1602 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1603 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1604 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1605 struct epoch_tracker et; 1606 int error = 0; 1607 1608 if (ifp->if_afdata[AF_INET6] == NULL) 1609 return (EPFNOSUPPORT); 1610 switch (cmd) { 1611 case OSIOCGIFINFO_IN6: 1612 #define ND ndi->ndi 1613 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1614 bzero(&ND, sizeof(ND)); 1615 ND.linkmtu = IN6_LINKMTU(ifp); 1616 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1617 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1618 ND.reachable = ND_IFINFO(ifp)->reachable; 1619 ND.retrans = ND_IFINFO(ifp)->retrans; 1620 ND.flags = ND_IFINFO(ifp)->flags; 1621 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1622 ND.chlim = ND_IFINFO(ifp)->chlim; 1623 break; 1624 case SIOCGIFINFO_IN6: 1625 ND = *ND_IFINFO(ifp); 1626 break; 1627 case SIOCSIFINFO_IN6: 1628 /* 1629 * used to change host variables from userland. 1630 * intended for a use on router to reflect RA configurations. 1631 */ 1632 /* 0 means 'unspecified' */ 1633 if (ND.linkmtu != 0) { 1634 if (ND.linkmtu < IPV6_MMTU || 1635 ND.linkmtu > IN6_LINKMTU(ifp)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1640 } 1641 1642 if (ND.basereachable != 0) { 1643 int obasereachable = ND_IFINFO(ifp)->basereachable; 1644 1645 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1646 if (ND.basereachable != obasereachable) 1647 ND_IFINFO(ifp)->reachable = 1648 ND_COMPUTE_RTIME(ND.basereachable); 1649 } 1650 if (ND.retrans != 0) 1651 ND_IFINFO(ifp)->retrans = ND.retrans; 1652 if (ND.chlim != 0) 1653 ND_IFINFO(ifp)->chlim = ND.chlim; 1654 /* FALLTHROUGH */ 1655 case SIOCSIFINFO_FLAGS: 1656 { 1657 struct ifaddr *ifa; 1658 struct in6_ifaddr *ia; 1659 1660 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1661 !(ND.flags & ND6_IFF_IFDISABLED)) { 1662 /* ifdisabled 1->0 transision */ 1663 1664 /* 1665 * If the interface is marked as ND6_IFF_IFDISABLED and 1666 * has an link-local address with IN6_IFF_DUPLICATED, 1667 * do not clear ND6_IFF_IFDISABLED. 1668 * See RFC 4862, Section 5.4.5. 1669 */ 1670 NET_EPOCH_ENTER(et); 1671 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1672 if (ifa->ifa_addr->sa_family != AF_INET6) 1673 continue; 1674 ia = (struct in6_ifaddr *)ifa; 1675 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1676 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1677 break; 1678 } 1679 NET_EPOCH_EXIT(et); 1680 1681 if (ifa != NULL) { 1682 /* LLA is duplicated. */ 1683 ND.flags |= ND6_IFF_IFDISABLED; 1684 log(LOG_ERR, "Cannot enable an interface" 1685 " with a link-local address marked" 1686 " duplicate.\n"); 1687 } else { 1688 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1689 if (ifp->if_flags & IFF_UP) 1690 in6_if_up(ifp); 1691 } 1692 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1693 (ND.flags & ND6_IFF_IFDISABLED)) { 1694 /* ifdisabled 0->1 transision */ 1695 /* Mark all IPv6 address as tentative. */ 1696 1697 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1698 if (V_ip6_dad_count > 0 && 1699 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1700 NET_EPOCH_ENTER(et); 1701 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1702 ifa_link) { 1703 if (ifa->ifa_addr->sa_family != 1704 AF_INET6) 1705 continue; 1706 ia = (struct in6_ifaddr *)ifa; 1707 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1708 } 1709 NET_EPOCH_EXIT(et); 1710 } 1711 } 1712 1713 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1714 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1715 /* auto_linklocal 0->1 transision */ 1716 1717 /* If no link-local address on ifp, configure */ 1718 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1719 in6_ifattach(ifp, NULL); 1720 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1721 ifp->if_flags & IFF_UP) { 1722 /* 1723 * When the IF already has 1724 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1725 * address is assigned, and IFF_UP, try to 1726 * assign one. 1727 */ 1728 NET_EPOCH_ENTER(et); 1729 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1730 ifa_link) { 1731 if (ifa->ifa_addr->sa_family != 1732 AF_INET6) 1733 continue; 1734 ia = (struct in6_ifaddr *)ifa; 1735 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1736 break; 1737 } 1738 NET_EPOCH_EXIT(et); 1739 if (ifa != NULL) 1740 /* No LLA is configured. */ 1741 in6_ifattach(ifp, NULL); 1742 } 1743 } 1744 ND_IFINFO(ifp)->flags = ND.flags; 1745 break; 1746 } 1747 #undef ND 1748 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1749 /* sync kernel routing table with the default router list */ 1750 defrouter_reset(); 1751 defrouter_select_fib(RT_ALL_FIBS); 1752 break; 1753 case SIOCSPFXFLUSH_IN6: 1754 { 1755 /* flush all the prefix advertised by routers */ 1756 struct in6_ifaddr *ia, *ia_next; 1757 struct nd_prefix *pr, *next; 1758 struct nd_prhead prl; 1759 1760 LIST_INIT(&prl); 1761 1762 ND6_WLOCK(); 1763 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1764 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1765 continue; /* XXX */ 1766 nd6_prefix_unlink(pr, &prl); 1767 } 1768 ND6_WUNLOCK(); 1769 1770 while ((pr = LIST_FIRST(&prl)) != NULL) { 1771 LIST_REMOVE(pr, ndpr_entry); 1772 /* XXXRW: in6_ifaddrhead locking. */ 1773 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1774 ia_next) { 1775 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1776 continue; 1777 1778 if (ia->ia6_ndpr == pr) 1779 in6_purgeaddr(&ia->ia_ifa); 1780 } 1781 nd6_prefix_del(pr); 1782 } 1783 break; 1784 } 1785 case SIOCSRTRFLUSH_IN6: 1786 { 1787 /* flush all the default routers */ 1788 1789 defrouter_reset(); 1790 nd6_defrouter_flush_all(); 1791 defrouter_select_fib(RT_ALL_FIBS); 1792 break; 1793 } 1794 case SIOCGNBRINFO_IN6: 1795 { 1796 struct llentry *ln; 1797 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1798 1799 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1800 return (error); 1801 1802 NET_EPOCH_ENTER(et); 1803 ln = nd6_lookup(&nb_addr, 0, ifp); 1804 NET_EPOCH_EXIT(et); 1805 1806 if (ln == NULL) { 1807 error = EINVAL; 1808 break; 1809 } 1810 nbi->state = ln->ln_state; 1811 nbi->asked = ln->la_asked; 1812 nbi->isrouter = ln->ln_router; 1813 if (ln->la_expire == 0) 1814 nbi->expire = 0; 1815 else 1816 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1817 (time_second - time_uptime); 1818 LLE_RUNLOCK(ln); 1819 break; 1820 } 1821 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1822 ndif->ifindex = V_nd6_defifindex; 1823 break; 1824 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1825 return (nd6_setdefaultiface(ndif->ifindex)); 1826 } 1827 return (error); 1828 } 1829 1830 /* 1831 * Calculates new isRouter value based on provided parameters and 1832 * returns it. 1833 */ 1834 static int 1835 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1836 int ln_router) 1837 { 1838 1839 /* 1840 * ICMP6 type dependent behavior. 1841 * 1842 * NS: clear IsRouter if new entry 1843 * RS: clear IsRouter 1844 * RA: set IsRouter if there's lladdr 1845 * redir: clear IsRouter if new entry 1846 * 1847 * RA case, (1): 1848 * The spec says that we must set IsRouter in the following cases: 1849 * - If lladdr exist, set IsRouter. This means (1-5). 1850 * - If it is old entry (!newentry), set IsRouter. This means (7). 1851 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1852 * A quetion arises for (1) case. (1) case has no lladdr in the 1853 * neighbor cache, this is similar to (6). 1854 * This case is rare but we figured that we MUST NOT set IsRouter. 1855 * 1856 * is_new old_addr new_addr NS RS RA redir 1857 * D R 1858 * 0 n n (1) c ? s 1859 * 0 y n (2) c s s 1860 * 0 n y (3) c s s 1861 * 0 y y (4) c s s 1862 * 0 y y (5) c s s 1863 * 1 -- n (6) c c c s 1864 * 1 -- y (7) c c s c s 1865 * 1866 * (c=clear s=set) 1867 */ 1868 switch (type & 0xff) { 1869 case ND_NEIGHBOR_SOLICIT: 1870 /* 1871 * New entry must have is_router flag cleared. 1872 */ 1873 if (is_new) /* (6-7) */ 1874 ln_router = 0; 1875 break; 1876 case ND_REDIRECT: 1877 /* 1878 * If the icmp is a redirect to a better router, always set the 1879 * is_router flag. Otherwise, if the entry is newly created, 1880 * clear the flag. [RFC 2461, sec 8.3] 1881 */ 1882 if (code == ND_REDIRECT_ROUTER) 1883 ln_router = 1; 1884 else { 1885 if (is_new) /* (6-7) */ 1886 ln_router = 0; 1887 } 1888 break; 1889 case ND_ROUTER_SOLICIT: 1890 /* 1891 * is_router flag must always be cleared. 1892 */ 1893 ln_router = 0; 1894 break; 1895 case ND_ROUTER_ADVERT: 1896 /* 1897 * Mark an entry with lladdr as a router. 1898 */ 1899 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1900 (is_new && new_addr)) { /* (7) */ 1901 ln_router = 1; 1902 } 1903 break; 1904 } 1905 1906 return (ln_router); 1907 } 1908 1909 /* 1910 * Create neighbor cache entry and cache link-layer address, 1911 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1912 * 1913 * type - ICMP6 type 1914 * code - type dependent information 1915 * 1916 */ 1917 void 1918 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1919 int lladdrlen, int type, int code) 1920 { 1921 struct llentry *ln = NULL, *ln_tmp; 1922 int is_newentry; 1923 int do_update; 1924 int olladdr; 1925 int llchange; 1926 int flags; 1927 uint16_t router = 0; 1928 struct sockaddr_in6 sin6; 1929 struct mbuf *chain = NULL; 1930 u_char linkhdr[LLE_MAX_LINKHDR]; 1931 size_t linkhdrsize; 1932 int lladdr_off; 1933 1934 NET_EPOCH_ASSERT(); 1935 IF_AFDATA_UNLOCK_ASSERT(ifp); 1936 1937 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1938 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1939 1940 /* nothing must be updated for unspecified address */ 1941 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1942 return; 1943 1944 /* 1945 * Validation about ifp->if_addrlen and lladdrlen must be done in 1946 * the caller. 1947 * 1948 * XXX If the link does not have link-layer adderss, what should 1949 * we do? (ifp->if_addrlen == 0) 1950 * Spec says nothing in sections for RA, RS and NA. There's small 1951 * description on it in NS section (RFC 2461 7.2.3). 1952 */ 1953 flags = lladdr ? LLE_EXCLUSIVE : 0; 1954 ln = nd6_lookup(from, flags, ifp); 1955 is_newentry = 0; 1956 if (ln == NULL) { 1957 flags |= LLE_EXCLUSIVE; 1958 ln = nd6_alloc(from, 0, ifp); 1959 if (ln == NULL) 1960 return; 1961 1962 /* 1963 * Since we already know all the data for the new entry, 1964 * fill it before insertion. 1965 */ 1966 if (lladdr != NULL) { 1967 linkhdrsize = sizeof(linkhdr); 1968 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1969 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1970 return; 1971 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1972 lladdr_off); 1973 } 1974 1975 IF_AFDATA_WLOCK(ifp); 1976 LLE_WLOCK(ln); 1977 /* Prefer any existing lle over newly-created one */ 1978 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1979 if (ln_tmp == NULL) 1980 lltable_link_entry(LLTABLE6(ifp), ln); 1981 IF_AFDATA_WUNLOCK(ifp); 1982 if (ln_tmp == NULL) { 1983 /* No existing lle, mark as new entry (6,7) */ 1984 is_newentry = 1; 1985 if (lladdr != NULL) { /* (7) */ 1986 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1987 EVENTHANDLER_INVOKE(lle_event, ln, 1988 LLENTRY_RESOLVED); 1989 } 1990 } else { 1991 lltable_free_entry(LLTABLE6(ifp), ln); 1992 ln = ln_tmp; 1993 ln_tmp = NULL; 1994 } 1995 } 1996 /* do nothing if static ndp is set */ 1997 if ((ln->la_flags & LLE_STATIC)) { 1998 if (flags & LLE_EXCLUSIVE) 1999 LLE_WUNLOCK(ln); 2000 else 2001 LLE_RUNLOCK(ln); 2002 return; 2003 } 2004 2005 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2006 if (olladdr && lladdr) { 2007 llchange = bcmp(lladdr, ln->ll_addr, 2008 ifp->if_addrlen); 2009 } else if (!olladdr && lladdr) 2010 llchange = 1; 2011 else 2012 llchange = 0; 2013 2014 /* 2015 * newentry olladdr lladdr llchange (*=record) 2016 * 0 n n -- (1) 2017 * 0 y n -- (2) 2018 * 0 n y y (3) * STALE 2019 * 0 y y n (4) * 2020 * 0 y y y (5) * STALE 2021 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2022 * 1 -- y -- (7) * STALE 2023 */ 2024 2025 do_update = 0; 2026 if (is_newentry == 0 && llchange != 0) { 2027 do_update = 1; /* (3,5) */ 2028 2029 /* 2030 * Record source link-layer address 2031 * XXX is it dependent to ifp->if_type? 2032 */ 2033 linkhdrsize = sizeof(linkhdr); 2034 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2035 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2036 return; 2037 2038 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2039 lladdr_off) == 0) { 2040 /* Entry was deleted */ 2041 return; 2042 } 2043 2044 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2045 2046 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2047 2048 if (ln->la_hold != NULL) 2049 nd6_grab_holdchain(ln, &chain, &sin6); 2050 } 2051 2052 /* Calculates new router status */ 2053 router = nd6_is_router(type, code, is_newentry, olladdr, 2054 lladdr != NULL ? 1 : 0, ln->ln_router); 2055 2056 ln->ln_router = router; 2057 /* Mark non-router redirects with special flag */ 2058 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2059 ln->la_flags |= LLE_REDIRECT; 2060 2061 if (flags & LLE_EXCLUSIVE) 2062 LLE_WUNLOCK(ln); 2063 else 2064 LLE_RUNLOCK(ln); 2065 2066 if (chain != NULL) 2067 nd6_flush_holdchain(ifp, chain, &sin6); 2068 2069 /* 2070 * When the link-layer address of a router changes, select the 2071 * best router again. In particular, when the neighbor entry is newly 2072 * created, it might affect the selection policy. 2073 * Question: can we restrict the first condition to the "is_newentry" 2074 * case? 2075 * XXX: when we hear an RA from a new router with the link-layer 2076 * address option, defrouter_select_fib() is called twice, since 2077 * defrtrlist_update called the function as well. However, I believe 2078 * we can compromise the overhead, since it only happens the first 2079 * time. 2080 * XXX: although defrouter_select_fib() should not have a bad effect 2081 * for those are not autoconfigured hosts, we explicitly avoid such 2082 * cases for safety. 2083 */ 2084 if ((do_update || is_newentry) && router && 2085 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2086 /* 2087 * guaranteed recursion 2088 */ 2089 defrouter_select_fib(ifp->if_fib); 2090 } 2091 } 2092 2093 static void 2094 nd6_slowtimo(void *arg) 2095 { 2096 struct epoch_tracker et; 2097 CURVNET_SET((struct vnet *) arg); 2098 struct nd_ifinfo *nd6if; 2099 struct ifnet *ifp; 2100 2101 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2102 nd6_slowtimo, curvnet); 2103 NET_EPOCH_ENTER(et); 2104 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2105 if (ifp->if_afdata[AF_INET6] == NULL) 2106 continue; 2107 nd6if = ND_IFINFO(ifp); 2108 if (nd6if->basereachable && /* already initialized */ 2109 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2110 /* 2111 * Since reachable time rarely changes by router 2112 * advertisements, we SHOULD insure that a new random 2113 * value gets recomputed at least once every few hours. 2114 * (RFC 2461, 6.3.4) 2115 */ 2116 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2117 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2118 } 2119 } 2120 NET_EPOCH_EXIT(et); 2121 CURVNET_RESTORE(); 2122 } 2123 2124 void 2125 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2126 struct sockaddr_in6 *sin6) 2127 { 2128 2129 LLE_WLOCK_ASSERT(ln); 2130 2131 *chain = ln->la_hold; 2132 ln->la_hold = NULL; 2133 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2134 2135 if (ln->ln_state == ND6_LLINFO_STALE) { 2136 2137 /* 2138 * The first time we send a packet to a 2139 * neighbor whose entry is STALE, we have 2140 * to change the state to DELAY and a sets 2141 * a timer to expire in DELAY_FIRST_PROBE_TIME 2142 * seconds to ensure do neighbor unreachability 2143 * detection on expiration. 2144 * (RFC 2461 7.3.3) 2145 */ 2146 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2147 } 2148 } 2149 2150 int 2151 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2152 struct sockaddr_in6 *dst, struct route *ro) 2153 { 2154 int error; 2155 int ip6len; 2156 struct ip6_hdr *ip6; 2157 struct m_tag *mtag; 2158 2159 #ifdef MAC 2160 mac_netinet6_nd6_send(ifp, m); 2161 #endif 2162 2163 /* 2164 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2165 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2166 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2167 * to be diverted to user space. When re-injected into the kernel, 2168 * send_output() will directly dispatch them to the outgoing interface. 2169 */ 2170 if (send_sendso_input_hook != NULL) { 2171 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2172 if (mtag != NULL) { 2173 ip6 = mtod(m, struct ip6_hdr *); 2174 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2175 /* Use the SEND socket */ 2176 error = send_sendso_input_hook(m, ifp, SND_OUT, 2177 ip6len); 2178 /* -1 == no app on SEND socket */ 2179 if (error == 0 || error != -1) 2180 return (error); 2181 } 2182 } 2183 2184 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2185 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2186 mtod(m, struct ip6_hdr *)); 2187 2188 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2189 origifp = ifp; 2190 2191 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2192 return (error); 2193 } 2194 2195 /* 2196 * Lookup link headerfor @sa_dst address. Stores found 2197 * data in @desten buffer. Copy of lle ln_flags can be also 2198 * saved in @pflags if @pflags is non-NULL. 2199 * 2200 * If destination LLE does not exists or lle state modification 2201 * is required, call "slow" version. 2202 * 2203 * Return values: 2204 * - 0 on success (address copied to buffer). 2205 * - EWOULDBLOCK (no local error, but address is still unresolved) 2206 * - other errors (alloc failure, etc) 2207 */ 2208 int 2209 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2210 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2211 struct llentry **plle) 2212 { 2213 struct llentry *ln = NULL; 2214 const struct sockaddr_in6 *dst6; 2215 2216 NET_EPOCH_ASSERT(); 2217 2218 if (pflags != NULL) 2219 *pflags = 0; 2220 2221 dst6 = (const struct sockaddr_in6 *)sa_dst; 2222 2223 /* discard the packet if IPv6 operation is disabled on the interface */ 2224 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2225 m_freem(m); 2226 return (ENETDOWN); /* better error? */ 2227 } 2228 2229 if (m != NULL && m->m_flags & M_MCAST) { 2230 switch (ifp->if_type) { 2231 case IFT_ETHER: 2232 case IFT_L2VLAN: 2233 case IFT_BRIDGE: 2234 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2235 desten); 2236 return (0); 2237 default: 2238 m_freem(m); 2239 return (EAFNOSUPPORT); 2240 } 2241 } 2242 2243 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2244 ifp); 2245 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2246 /* Entry found, let's copy lle info */ 2247 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2248 if (pflags != NULL) 2249 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2250 /* Check if we have feedback request from nd6 timer */ 2251 if (ln->r_skip_req != 0) { 2252 LLE_REQ_LOCK(ln); 2253 ln->r_skip_req = 0; /* Notify that entry was used */ 2254 ln->lle_hittime = time_uptime; 2255 LLE_REQ_UNLOCK(ln); 2256 } 2257 if (plle) { 2258 LLE_ADDREF(ln); 2259 *plle = ln; 2260 LLE_WUNLOCK(ln); 2261 } 2262 return (0); 2263 } else if (plle && ln) 2264 LLE_WUNLOCK(ln); 2265 2266 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2267 } 2268 2269 2270 /* 2271 * Do L2 address resolution for @sa_dst address. Stores found 2272 * address in @desten buffer. Copy of lle ln_flags can be also 2273 * saved in @pflags if @pflags is non-NULL. 2274 * 2275 * Heavy version. 2276 * Function assume that destination LLE does not exist, 2277 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2278 * 2279 * Set noinline to be dtrace-friendly 2280 */ 2281 static __noinline int 2282 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2283 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2284 struct llentry **plle) 2285 { 2286 struct llentry *lle = NULL, *lle_tmp; 2287 struct in6_addr *psrc, src; 2288 int send_ns, ll_len; 2289 char *lladdr; 2290 2291 NET_EPOCH_ASSERT(); 2292 2293 /* 2294 * Address resolution or Neighbor Unreachability Detection 2295 * for the next hop. 2296 * At this point, the destination of the packet must be a unicast 2297 * or an anycast address(i.e. not a multicast). 2298 */ 2299 if (lle == NULL) { 2300 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2301 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2302 /* 2303 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2304 * the condition below is not very efficient. But we believe 2305 * it is tolerable, because this should be a rare case. 2306 */ 2307 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2308 if (lle == NULL) { 2309 char ip6buf[INET6_ADDRSTRLEN]; 2310 log(LOG_DEBUG, 2311 "nd6_output: can't allocate llinfo for %s " 2312 "(ln=%p)\n", 2313 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2314 m_freem(m); 2315 return (ENOBUFS); 2316 } 2317 2318 IF_AFDATA_WLOCK(ifp); 2319 LLE_WLOCK(lle); 2320 /* Prefer any existing entry over newly-created one */ 2321 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2322 if (lle_tmp == NULL) 2323 lltable_link_entry(LLTABLE6(ifp), lle); 2324 IF_AFDATA_WUNLOCK(ifp); 2325 if (lle_tmp != NULL) { 2326 lltable_free_entry(LLTABLE6(ifp), lle); 2327 lle = lle_tmp; 2328 lle_tmp = NULL; 2329 } 2330 } 2331 } 2332 if (lle == NULL) { 2333 m_freem(m); 2334 return (ENOBUFS); 2335 } 2336 2337 LLE_WLOCK_ASSERT(lle); 2338 2339 /* 2340 * The first time we send a packet to a neighbor whose entry is 2341 * STALE, we have to change the state to DELAY and a sets a timer to 2342 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2343 * neighbor unreachability detection on expiration. 2344 * (RFC 2461 7.3.3) 2345 */ 2346 if (lle->ln_state == ND6_LLINFO_STALE) 2347 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2348 2349 /* 2350 * If the neighbor cache entry has a state other than INCOMPLETE 2351 * (i.e. its link-layer address is already resolved), just 2352 * send the packet. 2353 */ 2354 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2355 if (flags & LLE_ADDRONLY) { 2356 lladdr = lle->ll_addr; 2357 ll_len = ifp->if_addrlen; 2358 } else { 2359 lladdr = lle->r_linkdata; 2360 ll_len = lle->r_hdrlen; 2361 } 2362 bcopy(lladdr, desten, ll_len); 2363 if (pflags != NULL) 2364 *pflags = lle->la_flags; 2365 if (plle) { 2366 LLE_ADDREF(lle); 2367 *plle = lle; 2368 } 2369 LLE_WUNLOCK(lle); 2370 return (0); 2371 } 2372 2373 /* 2374 * There is a neighbor cache entry, but no ethernet address 2375 * response yet. Append this latest packet to the end of the 2376 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2377 * the oldest packet in the queue will be removed. 2378 */ 2379 2380 if (lle->la_hold != NULL) { 2381 struct mbuf *m_hold; 2382 int i; 2383 2384 i = 0; 2385 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2386 i++; 2387 if (m_hold->m_nextpkt == NULL) { 2388 m_hold->m_nextpkt = m; 2389 break; 2390 } 2391 } 2392 while (i >= V_nd6_maxqueuelen) { 2393 m_hold = lle->la_hold; 2394 lle->la_hold = lle->la_hold->m_nextpkt; 2395 m_freem(m_hold); 2396 i--; 2397 } 2398 } else { 2399 lle->la_hold = m; 2400 } 2401 2402 /* 2403 * If there has been no NS for the neighbor after entering the 2404 * INCOMPLETE state, send the first solicitation. 2405 * Note that for newly-created lle la_asked will be 0, 2406 * so we will transition from ND6_LLINFO_NOSTATE to 2407 * ND6_LLINFO_INCOMPLETE state here. 2408 */ 2409 psrc = NULL; 2410 send_ns = 0; 2411 if (lle->la_asked == 0) { 2412 lle->la_asked++; 2413 send_ns = 1; 2414 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2415 2416 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2417 } 2418 LLE_WUNLOCK(lle); 2419 if (send_ns != 0) 2420 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2421 2422 return (EWOULDBLOCK); 2423 } 2424 2425 /* 2426 * Do L2 address resolution for @sa_dst address. Stores found 2427 * address in @desten buffer. Copy of lle ln_flags can be also 2428 * saved in @pflags if @pflags is non-NULL. 2429 * 2430 * Return values: 2431 * - 0 on success (address copied to buffer). 2432 * - EWOULDBLOCK (no local error, but address is still unresolved) 2433 * - other errors (alloc failure, etc) 2434 */ 2435 int 2436 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2437 char *desten, uint32_t *pflags) 2438 { 2439 int error; 2440 2441 flags |= LLE_ADDRONLY; 2442 error = nd6_resolve_slow(ifp, flags, NULL, 2443 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2444 return (error); 2445 } 2446 2447 int 2448 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2449 struct sockaddr_in6 *dst) 2450 { 2451 struct mbuf *m, *m_head; 2452 int error = 0; 2453 2454 m_head = chain; 2455 2456 while (m_head) { 2457 m = m_head; 2458 m_head = m_head->m_nextpkt; 2459 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2460 } 2461 2462 /* 2463 * XXX 2464 * note that intermediate errors are blindly ignored 2465 */ 2466 return (error); 2467 } 2468 2469 static int 2470 nd6_need_cache(struct ifnet *ifp) 2471 { 2472 /* 2473 * XXX: we currently do not make neighbor cache on any interface 2474 * other than Ethernet and GIF. 2475 * 2476 * RFC2893 says: 2477 * - unidirectional tunnels needs no ND 2478 */ 2479 switch (ifp->if_type) { 2480 case IFT_ETHER: 2481 case IFT_IEEE1394: 2482 case IFT_L2VLAN: 2483 case IFT_INFINIBAND: 2484 case IFT_BRIDGE: 2485 case IFT_PROPVIRTUAL: 2486 return (1); 2487 default: 2488 return (0); 2489 } 2490 } 2491 2492 /* 2493 * Add pernament ND6 link-layer record for given 2494 * interface address. 2495 * 2496 * Very similar to IPv4 arp_ifinit(), but: 2497 * 1) IPv6 DAD is performed in different place 2498 * 2) It is called by IPv6 protocol stack in contrast to 2499 * arp_ifinit() which is typically called in SIOCSIFADDR 2500 * driver ioctl handler. 2501 * 2502 */ 2503 int 2504 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2505 { 2506 struct ifnet *ifp; 2507 struct llentry *ln, *ln_tmp; 2508 struct sockaddr *dst; 2509 2510 ifp = ia->ia_ifa.ifa_ifp; 2511 if (nd6_need_cache(ifp) == 0) 2512 return (0); 2513 2514 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2515 dst = (struct sockaddr *)&ia->ia_addr; 2516 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2517 if (ln == NULL) 2518 return (ENOBUFS); 2519 2520 IF_AFDATA_WLOCK(ifp); 2521 LLE_WLOCK(ln); 2522 /* Unlink any entry if exists */ 2523 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2524 if (ln_tmp != NULL) 2525 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2526 lltable_link_entry(LLTABLE6(ifp), ln); 2527 IF_AFDATA_WUNLOCK(ifp); 2528 2529 if (ln_tmp != NULL) 2530 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2531 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2532 2533 LLE_WUNLOCK(ln); 2534 if (ln_tmp != NULL) 2535 llentry_free(ln_tmp); 2536 2537 return (0); 2538 } 2539 2540 /* 2541 * Removes either all lle entries for given @ia, or lle 2542 * corresponding to @ia address. 2543 */ 2544 void 2545 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2546 { 2547 struct sockaddr_in6 mask, addr; 2548 struct sockaddr *saddr, *smask; 2549 struct ifnet *ifp; 2550 2551 ifp = ia->ia_ifa.ifa_ifp; 2552 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2553 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2554 saddr = (struct sockaddr *)&addr; 2555 smask = (struct sockaddr *)&mask; 2556 2557 if (all != 0) 2558 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2559 else 2560 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2561 } 2562 2563 static void 2564 clear_llinfo_pqueue(struct llentry *ln) 2565 { 2566 struct mbuf *m_hold, *m_hold_next; 2567 2568 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2569 m_hold_next = m_hold->m_nextpkt; 2570 m_freem(m_hold); 2571 } 2572 2573 ln->la_hold = NULL; 2574 } 2575 2576 static int 2577 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2578 { 2579 struct in6_prefix p; 2580 struct sockaddr_in6 s6; 2581 struct nd_prefix *pr; 2582 struct nd_pfxrouter *pfr; 2583 time_t maxexpire; 2584 int error; 2585 char ip6buf[INET6_ADDRSTRLEN]; 2586 2587 if (req->newptr) 2588 return (EPERM); 2589 2590 error = sysctl_wire_old_buffer(req, 0); 2591 if (error != 0) 2592 return (error); 2593 2594 bzero(&p, sizeof(p)); 2595 p.origin = PR_ORIG_RA; 2596 bzero(&s6, sizeof(s6)); 2597 s6.sin6_family = AF_INET6; 2598 s6.sin6_len = sizeof(s6); 2599 2600 ND6_RLOCK(); 2601 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2602 p.prefix = pr->ndpr_prefix; 2603 if (sa6_recoverscope(&p.prefix)) { 2604 log(LOG_ERR, "scope error in prefix list (%s)\n", 2605 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2606 /* XXX: press on... */ 2607 } 2608 p.raflags = pr->ndpr_raf; 2609 p.prefixlen = pr->ndpr_plen; 2610 p.vltime = pr->ndpr_vltime; 2611 p.pltime = pr->ndpr_pltime; 2612 p.if_index = pr->ndpr_ifp->if_index; 2613 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2614 p.expire = 0; 2615 else { 2616 /* XXX: we assume time_t is signed. */ 2617 maxexpire = (-1) & 2618 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2619 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2620 p.expire = pr->ndpr_lastupdate + 2621 pr->ndpr_vltime + 2622 (time_second - time_uptime); 2623 else 2624 p.expire = maxexpire; 2625 } 2626 p.refcnt = pr->ndpr_addrcnt; 2627 p.flags = pr->ndpr_stateflags; 2628 p.advrtrs = 0; 2629 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2630 p.advrtrs++; 2631 error = SYSCTL_OUT(req, &p, sizeof(p)); 2632 if (error != 0) 2633 break; 2634 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2635 s6.sin6_addr = pfr->router->rtaddr; 2636 if (sa6_recoverscope(&s6)) 2637 log(LOG_ERR, 2638 "scope error in prefix list (%s)\n", 2639 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2640 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2641 if (error != 0) 2642 goto out; 2643 } 2644 } 2645 out: 2646 ND6_RUNLOCK(); 2647 return (error); 2648 } 2649 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2650 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2651 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2652 "NDP prefix list"); 2653 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2654 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2655 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2656 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2657