1 /* $FreeBSD$ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include "opt_inet.h" 34 #include "opt_inet6.h" 35 #include "opt_mac.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/callout.h> 40 #include <sys/mac.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/queue.h> 51 #include <sys/sysctl.h> 52 53 #include <net/if.h> 54 #include <net/if_arc.h> 55 #include <net/if_dl.h> 56 #include <net/if_types.h> 57 #include <net/if_atm.h> 58 #include <net/iso88025.h> 59 #include <net/fddi.h> 60 #include <net/route.h> 61 62 #include <netinet/in.h> 63 #include <netinet/if_ether.h> 64 #include <netinet6/in6_var.h> 65 #include <netinet/ip6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet6/nd6.h> 68 #include <netinet/icmp6.h> 69 70 #include <net/net_osdep.h> 71 72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 74 75 #define SIN6(s) ((struct sockaddr_in6 *)s) 76 #define SDL(s) ((struct sockaddr_dl *)s) 77 78 /* timer values */ 79 int nd6_prune = 1; /* walk list every 1 seconds */ 80 int nd6_delay = 5; /* delay first probe time 5 second */ 81 int nd6_umaxtries = 3; /* maximum unicast query */ 82 int nd6_mmaxtries = 3; /* maximum multicast query */ 83 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 84 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 85 86 /* preventing too many loops in ND option parsing */ 87 int nd6_maxndopt = 10; /* max # of ND options allowed */ 88 89 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 90 91 #ifdef ND6_DEBUG 92 int nd6_debug = 1; 93 #else 94 int nd6_debug = 0; 95 #endif 96 97 /* for debugging? */ 98 static int nd6_inuse, nd6_allocated; 99 100 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 101 struct nd_drhead nd_defrouter; 102 struct nd_prhead nd_prefix = { 0 }; 103 104 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 105 static struct sockaddr_in6 all1_sa; 106 107 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 108 struct ifnet *)); 109 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 110 static void nd6_slowtimo __P((void *)); 111 static int regen_tmpaddr __P((struct in6_ifaddr *)); 112 113 struct callout nd6_slowtimo_ch; 114 struct callout nd6_timer_ch; 115 extern struct callout in6_tmpaddrtimer_ch; 116 117 void 118 nd6_init() 119 { 120 static int nd6_init_done = 0; 121 int i; 122 123 if (nd6_init_done) { 124 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 125 return; 126 } 127 128 all1_sa.sin6_family = AF_INET6; 129 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 130 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 131 all1_sa.sin6_addr.s6_addr[i] = 0xff; 132 133 /* initialization of the default router list */ 134 TAILQ_INIT(&nd_defrouter); 135 136 nd6_init_done = 1; 137 138 /* start timer */ 139 callout_init(&nd6_slowtimo_ch, 0); 140 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 141 nd6_slowtimo, NULL); 142 } 143 144 struct nd_ifinfo * 145 nd6_ifattach(ifp) 146 struct ifnet *ifp; 147 { 148 struct nd_ifinfo *nd; 149 150 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 151 bzero(nd, sizeof(*nd)); 152 153 nd->initialized = 1; 154 155 nd->chlim = IPV6_DEFHLIM; 156 nd->basereachable = REACHABLE_TIME; 157 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 158 nd->retrans = RETRANS_TIMER; 159 /* 160 * Note that the default value of ip6_accept_rtadv is 0, which means 161 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 162 * here. 163 */ 164 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 165 166 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 167 nd6_setmtu0(ifp, nd); 168 169 return nd; 170 } 171 172 void 173 nd6_ifdetach(nd) 174 struct nd_ifinfo *nd; 175 { 176 177 free(nd, M_IP6NDP); 178 } 179 180 /* 181 * Reset ND level link MTU. This function is called when the physical MTU 182 * changes, which means we might have to adjust the ND level MTU. 183 */ 184 void 185 nd6_setmtu(ifp) 186 struct ifnet *ifp; 187 { 188 189 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 190 } 191 192 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 193 void 194 nd6_setmtu0(ifp, ndi) 195 struct ifnet *ifp; 196 struct nd_ifinfo *ndi; 197 { 198 u_int32_t omaxmtu; 199 200 omaxmtu = ndi->maxmtu; 201 202 switch (ifp->if_type) { 203 case IFT_ARCNET: 204 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 205 break; 206 case IFT_ETHER: 207 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 208 break; 209 case IFT_FDDI: 210 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 211 break; 212 case IFT_ATM: 213 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 214 break; 215 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 216 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 217 break; 218 #ifdef IFT_IEEE80211 219 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 220 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 221 break; 222 #endif 223 case IFT_ISO88025: 224 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 225 break; 226 default: 227 ndi->maxmtu = ifp->if_mtu; 228 break; 229 } 230 231 /* 232 * Decreasing the interface MTU under IPV6 minimum MTU may cause 233 * undesirable situation. We thus notify the operator of the change 234 * explicitly. The check for omaxmtu is necessary to restrict the 235 * log to the case of changing the MTU, not initializing it. 236 */ 237 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 238 log(LOG_NOTICE, "nd6_setmtu0: " 239 "new link MTU on %s (%lu) is too small for IPv6\n", 240 if_name(ifp), (unsigned long)ndi->maxmtu); 241 } 242 243 if (ndi->maxmtu > in6_maxmtu) 244 in6_setmaxmtu(); /* check all interfaces just in case */ 245 246 #undef MIN 247 } 248 249 void 250 nd6_option_init(opt, icmp6len, ndopts) 251 void *opt; 252 int icmp6len; 253 union nd_opts *ndopts; 254 { 255 256 bzero(ndopts, sizeof(*ndopts)); 257 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 258 ndopts->nd_opts_last 259 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 260 261 if (icmp6len == 0) { 262 ndopts->nd_opts_done = 1; 263 ndopts->nd_opts_search = NULL; 264 } 265 } 266 267 /* 268 * Take one ND option. 269 */ 270 struct nd_opt_hdr * 271 nd6_option(ndopts) 272 union nd_opts *ndopts; 273 { 274 struct nd_opt_hdr *nd_opt; 275 int olen; 276 277 if (!ndopts) 278 panic("ndopts == NULL in nd6_option"); 279 if (!ndopts->nd_opts_last) 280 panic("uninitialized ndopts in nd6_option"); 281 if (!ndopts->nd_opts_search) 282 return NULL; 283 if (ndopts->nd_opts_done) 284 return NULL; 285 286 nd_opt = ndopts->nd_opts_search; 287 288 /* make sure nd_opt_len is inside the buffer */ 289 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 290 bzero(ndopts, sizeof(*ndopts)); 291 return NULL; 292 } 293 294 olen = nd_opt->nd_opt_len << 3; 295 if (olen == 0) { 296 /* 297 * Message validation requires that all included 298 * options have a length that is greater than zero. 299 */ 300 bzero(ndopts, sizeof(*ndopts)); 301 return NULL; 302 } 303 304 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 305 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 306 /* option overruns the end of buffer, invalid */ 307 bzero(ndopts, sizeof(*ndopts)); 308 return NULL; 309 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 310 /* reached the end of options chain */ 311 ndopts->nd_opts_done = 1; 312 ndopts->nd_opts_search = NULL; 313 } 314 return nd_opt; 315 } 316 317 /* 318 * Parse multiple ND options. 319 * This function is much easier to use, for ND routines that do not need 320 * multiple options of the same type. 321 */ 322 int 323 nd6_options(ndopts) 324 union nd_opts *ndopts; 325 { 326 struct nd_opt_hdr *nd_opt; 327 int i = 0; 328 329 if (!ndopts) 330 panic("ndopts == NULL in nd6_options"); 331 if (!ndopts->nd_opts_last) 332 panic("uninitialized ndopts in nd6_options"); 333 if (!ndopts->nd_opts_search) 334 return 0; 335 336 while (1) { 337 nd_opt = nd6_option(ndopts); 338 if (!nd_opt && !ndopts->nd_opts_last) { 339 /* 340 * Message validation requires that all included 341 * options have a length that is greater than zero. 342 */ 343 icmp6stat.icp6s_nd_badopt++; 344 bzero(ndopts, sizeof(*ndopts)); 345 return -1; 346 } 347 348 if (!nd_opt) 349 goto skip1; 350 351 switch (nd_opt->nd_opt_type) { 352 case ND_OPT_SOURCE_LINKADDR: 353 case ND_OPT_TARGET_LINKADDR: 354 case ND_OPT_MTU: 355 case ND_OPT_REDIRECTED_HEADER: 356 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 357 nd6log((LOG_INFO, 358 "duplicated ND6 option found (type=%d)\n", 359 nd_opt->nd_opt_type)); 360 /* XXX bark? */ 361 } else { 362 ndopts->nd_opt_array[nd_opt->nd_opt_type] 363 = nd_opt; 364 } 365 break; 366 case ND_OPT_PREFIX_INFORMATION: 367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 368 ndopts->nd_opt_array[nd_opt->nd_opt_type] 369 = nd_opt; 370 } 371 ndopts->nd_opts_pi_end = 372 (struct nd_opt_prefix_info *)nd_opt; 373 break; 374 default: 375 /* 376 * Unknown options must be silently ignored, 377 * to accomodate future extension to the protocol. 378 */ 379 nd6log((LOG_DEBUG, 380 "nd6_options: unsupported option %d - " 381 "option ignored\n", nd_opt->nd_opt_type)); 382 } 383 384 skip1: 385 i++; 386 if (i > nd6_maxndopt) { 387 icmp6stat.icp6s_nd_toomanyopt++; 388 nd6log((LOG_INFO, "too many loop in nd opt\n")); 389 break; 390 } 391 392 if (ndopts->nd_opts_done) 393 break; 394 } 395 396 return 0; 397 } 398 399 /* 400 * ND6 timer routine to expire default route list and prefix list 401 */ 402 void 403 nd6_timer(ignored_arg) 404 void *ignored_arg; 405 { 406 int s; 407 struct llinfo_nd6 *ln; 408 struct nd_defrouter *dr; 409 struct nd_prefix *pr; 410 struct ifnet *ifp; 411 struct in6_ifaddr *ia6, *nia6; 412 struct in6_addrlifetime *lt6; 413 414 s = splnet(); 415 callout_reset(&nd6_timer_ch, nd6_prune * hz, 416 nd6_timer, NULL); 417 418 ln = llinfo_nd6.ln_next; 419 while (ln && ln != &llinfo_nd6) { 420 struct rtentry *rt; 421 struct sockaddr_in6 *dst; 422 struct llinfo_nd6 *next = ln->ln_next; 423 /* XXX: used for the DELAY case only: */ 424 struct nd_ifinfo *ndi = NULL; 425 426 if ((rt = ln->ln_rt) == NULL) { 427 ln = next; 428 continue; 429 } 430 if ((ifp = rt->rt_ifp) == NULL) { 431 ln = next; 432 continue; 433 } 434 ndi = ND_IFINFO(ifp); 435 dst = (struct sockaddr_in6 *)rt_key(rt); 436 437 if (ln->ln_expire > time_second) { 438 ln = next; 439 continue; 440 } 441 442 /* sanity check */ 443 if (!rt) 444 panic("rt=0 in nd6_timer(ln=%p)", ln); 445 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 446 panic("rt_llinfo(%p) is not equal to ln(%p)", 447 rt->rt_llinfo, ln); 448 if (!dst) 449 panic("dst=0 in nd6_timer(ln=%p)", ln); 450 451 switch (ln->ln_state) { 452 case ND6_LLINFO_INCOMPLETE: 453 if (ln->ln_asked < nd6_mmaxtries) { 454 ln->ln_asked++; 455 ln->ln_expire = time_second + 456 ND_IFINFO(ifp)->retrans / 1000; 457 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 458 ln, 0); 459 } else { 460 struct mbuf *m = ln->ln_hold; 461 if (m) { 462 if (rt->rt_ifp) { 463 /* 464 * Fake rcvif to make ICMP error 465 * more helpful in diagnosing 466 * for the receiver. 467 * XXX: should we consider 468 * older rcvif? 469 */ 470 m->m_pkthdr.rcvif = rt->rt_ifp; 471 } 472 icmp6_error(m, ICMP6_DST_UNREACH, 473 ICMP6_DST_UNREACH_ADDR, 0); 474 ln->ln_hold = NULL; 475 } 476 next = nd6_free(rt); 477 } 478 break; 479 case ND6_LLINFO_REACHABLE: 480 if (ln->ln_expire) { 481 ln->ln_state = ND6_LLINFO_STALE; 482 ln->ln_expire = time_second + nd6_gctimer; 483 } 484 break; 485 486 case ND6_LLINFO_STALE: 487 /* Garbage Collection(RFC 2461 5.3) */ 488 if (ln->ln_expire) 489 next = nd6_free(rt); 490 break; 491 492 case ND6_LLINFO_DELAY: 493 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 494 /* We need NUD */ 495 ln->ln_asked = 1; 496 ln->ln_state = ND6_LLINFO_PROBE; 497 ln->ln_expire = time_second + 498 ndi->retrans / 1000; 499 nd6_ns_output(ifp, &dst->sin6_addr, 500 &dst->sin6_addr, 501 ln, 0); 502 } else { 503 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 504 ln->ln_expire = time_second + nd6_gctimer; 505 } 506 break; 507 case ND6_LLINFO_PROBE: 508 if (ln->ln_asked < nd6_umaxtries) { 509 ln->ln_asked++; 510 ln->ln_expire = time_second + 511 ND_IFINFO(ifp)->retrans / 1000; 512 nd6_ns_output(ifp, &dst->sin6_addr, 513 &dst->sin6_addr, ln, 0); 514 } else { 515 next = nd6_free(rt); 516 } 517 break; 518 } 519 ln = next; 520 } 521 522 /* expire default router list */ 523 dr = TAILQ_FIRST(&nd_defrouter); 524 while (dr) { 525 if (dr->expire && dr->expire < time_second) { 526 struct nd_defrouter *t; 527 t = TAILQ_NEXT(dr, dr_entry); 528 defrtrlist_del(dr); 529 dr = t; 530 } else { 531 dr = TAILQ_NEXT(dr, dr_entry); 532 } 533 } 534 535 /* 536 * expire interface addresses. 537 * in the past the loop was inside prefix expiry processing. 538 * However, from a stricter speci-confrmance standpoint, we should 539 * rather separate address lifetimes and prefix lifetimes. 540 */ 541 addrloop: 542 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 543 nia6 = ia6->ia_next; 544 /* check address lifetime */ 545 lt6 = &ia6->ia6_lifetime; 546 if (IFA6_IS_INVALID(ia6)) { 547 int regen = 0; 548 549 /* 550 * If the expiring address is temporary, try 551 * regenerating a new one. This would be useful when 552 * we suspended a laptop PC, then turned it on after a 553 * period that could invalidate all temporary 554 * addresses. Although we may have to restart the 555 * loop (see below), it must be after purging the 556 * address. Otherwise, we'd see an infinite loop of 557 * regeneration. 558 */ 559 if (ip6_use_tempaddr && 560 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 561 if (regen_tmpaddr(ia6) == 0) 562 regen = 1; 563 } 564 565 in6_purgeaddr(&ia6->ia_ifa); 566 567 if (regen) 568 goto addrloop; /* XXX: see below */ 569 } 570 if (IFA6_IS_DEPRECATED(ia6)) { 571 int oldflags = ia6->ia6_flags; 572 573 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 574 575 /* 576 * If a temporary address has just become deprecated, 577 * regenerate a new one if possible. 578 */ 579 if (ip6_use_tempaddr && 580 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 581 (oldflags & IN6_IFF_DEPRECATED) == 0) { 582 583 if (regen_tmpaddr(ia6) == 0) { 584 /* 585 * A new temporary address is 586 * generated. 587 * XXX: this means the address chain 588 * has changed while we are still in 589 * the loop. Although the change 590 * would not cause disaster (because 591 * it's not a deletion, but an 592 * addition,) we'd rather restart the 593 * loop just for safety. Or does this 594 * significantly reduce performance?? 595 */ 596 goto addrloop; 597 } 598 } 599 } else { 600 /* 601 * A new RA might have made a deprecated address 602 * preferred. 603 */ 604 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 605 } 606 } 607 608 /* expire prefix list */ 609 pr = nd_prefix.lh_first; 610 while (pr) { 611 /* 612 * check prefix lifetime. 613 * since pltime is just for autoconf, pltime processing for 614 * prefix is not necessary. 615 */ 616 if (pr->ndpr_expire && pr->ndpr_expire < time_second) { 617 struct nd_prefix *t; 618 t = pr->ndpr_next; 619 620 /* 621 * address expiration and prefix expiration are 622 * separate. NEVER perform in6_purgeaddr here. 623 */ 624 625 prelist_remove(pr); 626 pr = t; 627 } else 628 pr = pr->ndpr_next; 629 } 630 splx(s); 631 } 632 633 static int 634 regen_tmpaddr(ia6) 635 struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */ 636 { 637 struct ifaddr *ifa; 638 struct ifnet *ifp; 639 struct in6_ifaddr *public_ifa6 = NULL; 640 641 ifp = ia6->ia_ifa.ifa_ifp; 642 for (ifa = ifp->if_addrlist.tqh_first; ifa; 643 ifa = ifa->ifa_list.tqe_next) { 644 struct in6_ifaddr *it6; 645 646 if (ifa->ifa_addr->sa_family != AF_INET6) 647 continue; 648 649 it6 = (struct in6_ifaddr *)ifa; 650 651 /* ignore no autoconf addresses. */ 652 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 653 continue; 654 655 /* ignore autoconf addresses with different prefixes. */ 656 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 657 continue; 658 659 /* 660 * Now we are looking at an autoconf address with the same 661 * prefix as ours. If the address is temporary and is still 662 * preferred, do not create another one. It would be rare, but 663 * could happen, for example, when we resume a laptop PC after 664 * a long period. 665 */ 666 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 667 !IFA6_IS_DEPRECATED(it6)) { 668 public_ifa6 = NULL; 669 break; 670 } 671 672 /* 673 * This is a public autoconf address that has the same prefix 674 * as ours. If it is preferred, keep it. We can't break the 675 * loop here, because there may be a still-preferred temporary 676 * address with the prefix. 677 */ 678 if (!IFA6_IS_DEPRECATED(it6)) 679 public_ifa6 = it6; 680 } 681 682 if (public_ifa6 != NULL) { 683 int e; 684 685 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 686 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 687 " tmp addr,errno=%d\n", e); 688 return (-1); 689 } 690 return (0); 691 } 692 693 return (-1); 694 } 695 696 /* 697 * Nuke neighbor cache/prefix/default router management table, right before 698 * ifp goes away. 699 */ 700 void 701 nd6_purge(ifp) 702 struct ifnet *ifp; 703 { 704 struct llinfo_nd6 *ln, *nln; 705 struct nd_defrouter *dr, *ndr, drany; 706 struct nd_prefix *pr, *npr; 707 708 /* Nuke default router list entries toward ifp */ 709 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 710 /* 711 * The first entry of the list may be stored in 712 * the routing table, so we'll delete it later. 713 */ 714 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 715 ndr = TAILQ_NEXT(dr, dr_entry); 716 if (dr->ifp == ifp) 717 defrtrlist_del(dr); 718 } 719 dr = TAILQ_FIRST(&nd_defrouter); 720 if (dr->ifp == ifp) 721 defrtrlist_del(dr); 722 } 723 724 /* Nuke prefix list entries toward ifp */ 725 for (pr = nd_prefix.lh_first; pr; pr = npr) { 726 npr = pr->ndpr_next; 727 if (pr->ndpr_ifp == ifp) { 728 /* 729 * Previously, pr->ndpr_addr is removed as well, 730 * but I strongly believe we don't have to do it. 731 * nd6_purge() is only called from in6_ifdetach(), 732 * which removes all the associated interface addresses 733 * by itself. 734 * (jinmei@kame.net 20010129) 735 */ 736 prelist_remove(pr); 737 } 738 } 739 740 /* cancel default outgoing interface setting */ 741 if (nd6_defifindex == ifp->if_index) 742 nd6_setdefaultiface(0); 743 744 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 745 /* refresh default router list */ 746 bzero(&drany, sizeof(drany)); 747 defrouter_delreq(&drany, 0); 748 defrouter_select(); 749 } 750 751 /* 752 * Nuke neighbor cache entries for the ifp. 753 * Note that rt->rt_ifp may not be the same as ifp, 754 * due to KAME goto ours hack. See RTM_RESOLVE case in 755 * nd6_rtrequest(), and ip6_input(). 756 */ 757 ln = llinfo_nd6.ln_next; 758 while (ln && ln != &llinfo_nd6) { 759 struct rtentry *rt; 760 struct sockaddr_dl *sdl; 761 762 nln = ln->ln_next; 763 rt = ln->ln_rt; 764 if (rt && rt->rt_gateway && 765 rt->rt_gateway->sa_family == AF_LINK) { 766 sdl = (struct sockaddr_dl *)rt->rt_gateway; 767 if (sdl->sdl_index == ifp->if_index) 768 nln = nd6_free(rt); 769 } 770 ln = nln; 771 } 772 } 773 774 struct rtentry * 775 nd6_lookup(addr6, create, ifp) 776 struct in6_addr *addr6; 777 int create; 778 struct ifnet *ifp; 779 { 780 struct rtentry *rt; 781 struct sockaddr_in6 sin6; 782 783 bzero(&sin6, sizeof(sin6)); 784 sin6.sin6_len = sizeof(struct sockaddr_in6); 785 sin6.sin6_family = AF_INET6; 786 sin6.sin6_addr = *addr6; 787 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 788 if (rt) { 789 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) { 790 /* 791 * This is the case for the default route. 792 * If we want to create a neighbor cache for the 793 * address, we should free the route for the 794 * destination and allocate an interface route. 795 */ 796 RTFREE_LOCKED(rt); 797 rt = 0; 798 } 799 } 800 if (!rt) { 801 if (create && ifp) { 802 int e; 803 804 /* 805 * If no route is available and create is set, 806 * we allocate a host route for the destination 807 * and treat it like an interface route. 808 * This hack is necessary for a neighbor which can't 809 * be covered by our own prefix. 810 */ 811 struct ifaddr *ifa = 812 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 813 if (ifa == NULL) 814 return (NULL); 815 816 /* 817 * Create a new route. RTF_LLINFO is necessary 818 * to create a Neighbor Cache entry for the 819 * destination in nd6_rtrequest which will be 820 * called in rtrequest via ifa->ifa_rtrequest. 821 */ 822 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 823 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 824 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 825 ~RTF_CLONING, &rt)) != 0) { 826 log(LOG_ERR, 827 "nd6_lookup: failed to add route for a " 828 "neighbor(%s), errno=%d\n", 829 ip6_sprintf(addr6), e); 830 } 831 if (rt == NULL) 832 return (NULL); 833 RT_LOCK(rt); 834 if (rt->rt_llinfo) { 835 struct llinfo_nd6 *ln = 836 (struct llinfo_nd6 *)rt->rt_llinfo; 837 ln->ln_state = ND6_LLINFO_NOSTATE; 838 } 839 } else 840 return (NULL); 841 } 842 RT_LOCK_ASSERT(rt); 843 RT_REMREF(rt); 844 /* 845 * Validation for the entry. 846 * Note that the check for rt_llinfo is necessary because a cloned 847 * route from a parent route that has the L flag (e.g. the default 848 * route to a p2p interface) may have the flag, too, while the 849 * destination is not actually a neighbor. 850 * XXX: we can't use rt->rt_ifp to check for the interface, since 851 * it might be the loopback interface if the entry is for our 852 * own address on a non-loopback interface. Instead, we should 853 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 854 * interface. 855 */ 856 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 857 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 858 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 859 if (create) { 860 log(LOG_DEBUG, 861 "nd6_lookup: failed to lookup %s (if = %s)\n", 862 ip6_sprintf(addr6), 863 ifp ? if_name(ifp) : "unspec"); 864 /* xxx more logs... kazu */ 865 } 866 RT_UNLOCK(rt); 867 return (NULL); 868 } 869 RT_UNLOCK(rt); /* XXX not ready to return rt locked */ 870 return (rt); 871 } 872 873 /* 874 * Test whether a given IPv6 address is a neighbor or not, ignoring 875 * the actual neighbor cache. The neighbor cache is ignored in order 876 * to not reenter the routing code from within itself. 877 */ 878 static int 879 nd6_is_new_addr_neighbor(addr, ifp) 880 struct sockaddr_in6 *addr; 881 struct ifnet *ifp; 882 { 883 struct nd_prefix *pr; 884 885 /* 886 * A link-local address is always a neighbor. 887 * XXX: we should use the sin6_scope_id field rather than the embedded 888 * interface index. 889 * XXX: a link does not necessarily specify a single interface. 890 */ 891 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 892 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 893 return (1); 894 895 /* 896 * If the address matches one of our addresses, 897 * it should be a neighbor. 898 * If the address matches one of our on-link prefixes, it should be a 899 * neighbor. 900 */ 901 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 902 if (pr->ndpr_ifp != ifp) 903 continue; 904 905 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 906 continue; 907 908 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 909 &addr->sin6_addr, &pr->ndpr_mask)) 910 return (1); 911 } 912 913 /* 914 * If the default router list is empty, all addresses are regarded 915 * as on-link, and thus, as a neighbor. 916 * XXX: we restrict the condition to hosts, because routers usually do 917 * not have the "default router list". 918 */ 919 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 920 nd6_defifindex == ifp->if_index) { 921 return (1); 922 } 923 924 return (0); 925 } 926 927 928 /* 929 * Detect if a given IPv6 address identifies a neighbor on a given link. 930 * XXX: should take care of the destination of a p2p link? 931 */ 932 int 933 nd6_is_addr_neighbor(addr, ifp) 934 struct sockaddr_in6 *addr; 935 struct ifnet *ifp; 936 { 937 938 if (nd6_is_new_addr_neighbor(addr, ifp)) 939 return (1); 940 941 /* 942 * Even if the address matches none of our addresses, it might be 943 * in the neighbor cache. 944 */ 945 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 946 return (1); 947 948 return (0); 949 } 950 951 /* 952 * Free an nd6 llinfo entry. 953 */ 954 struct llinfo_nd6 * 955 nd6_free(rt) 956 struct rtentry *rt; 957 { 958 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 959 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 960 struct nd_defrouter *dr; 961 962 /* 963 * we used to have pfctlinput(PRC_HOSTDEAD) here. 964 * even though it is not harmful, it was not really necessary. 965 */ 966 967 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 968 int s; 969 s = splnet(); 970 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 971 rt->rt_ifp); 972 973 if (ln->ln_router || dr) { 974 /* 975 * rt6_flush must be called whether or not the neighbor 976 * is in the Default Router List. 977 * See a corresponding comment in nd6_na_input(). 978 */ 979 rt6_flush(&in6, rt->rt_ifp); 980 } 981 982 if (dr) { 983 /* 984 * Unreachablity of a router might affect the default 985 * router selection and on-link detection of advertised 986 * prefixes. 987 */ 988 989 /* 990 * Temporarily fake the state to choose a new default 991 * router and to perform on-link determination of 992 * prefixes correctly. 993 * Below the state will be set correctly, 994 * or the entry itself will be deleted. 995 */ 996 ln->ln_state = ND6_LLINFO_INCOMPLETE; 997 998 /* 999 * Since defrouter_select() does not affect the 1000 * on-link determination and MIP6 needs the check 1001 * before the default router selection, we perform 1002 * the check now. 1003 */ 1004 pfxlist_onlink_check(); 1005 1006 if (dr == TAILQ_FIRST(&nd_defrouter)) { 1007 /* 1008 * It is used as the current default router, 1009 * so we have to move it to the end of the 1010 * list and choose a new one. 1011 * XXX: it is not very efficient if this is 1012 * the only router. 1013 */ 1014 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 1015 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 1016 1017 defrouter_select(); 1018 } 1019 } 1020 splx(s); 1021 } 1022 1023 /* 1024 * Before deleting the entry, remember the next entry as the 1025 * return value. We need this because pfxlist_onlink_check() above 1026 * might have freed other entries (particularly the old next entry) as 1027 * a side effect (XXX). 1028 */ 1029 next = ln->ln_next; 1030 1031 /* 1032 * Detach the route from the routing tree and the list of neighbor 1033 * caches, and disable the route entry not to be used in already 1034 * cached routes. 1035 */ 1036 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1037 rt_mask(rt), 0, (struct rtentry **)0); 1038 1039 return (next); 1040 } 1041 1042 /* 1043 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1044 * 1045 * XXX cost-effective metods? 1046 */ 1047 void 1048 nd6_nud_hint(rt, dst6, force) 1049 struct rtentry *rt; 1050 struct in6_addr *dst6; 1051 int force; 1052 { 1053 struct llinfo_nd6 *ln; 1054 1055 /* 1056 * If the caller specified "rt", use that. Otherwise, resolve the 1057 * routing table by supplied "dst6". 1058 */ 1059 if (!rt) { 1060 if (!dst6) 1061 return; 1062 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1063 return; 1064 } 1065 1066 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1067 (rt->rt_flags & RTF_LLINFO) == 0 || 1068 !rt->rt_llinfo || !rt->rt_gateway || 1069 rt->rt_gateway->sa_family != AF_LINK) { 1070 /* This is not a host route. */ 1071 return; 1072 } 1073 1074 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1075 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1076 return; 1077 1078 /* 1079 * if we get upper-layer reachability confirmation many times, 1080 * it is possible we have false information. 1081 */ 1082 if (!force) { 1083 ln->ln_byhint++; 1084 if (ln->ln_byhint > nd6_maxnudhint) 1085 return; 1086 } 1087 1088 ln->ln_state = ND6_LLINFO_REACHABLE; 1089 if (ln->ln_expire) 1090 ln->ln_expire = time_second + 1091 ND_IFINFO(rt->rt_ifp)->reachable; 1092 } 1093 1094 void 1095 nd6_rtrequest(req, rt, info) 1096 int req; 1097 struct rtentry *rt; 1098 struct rt_addrinfo *info; /* xxx unused */ 1099 { 1100 struct sockaddr *gate = rt->rt_gateway; 1101 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1102 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1103 struct ifnet *ifp = rt->rt_ifp; 1104 struct ifaddr *ifa; 1105 1106 RT_LOCK_ASSERT(rt); 1107 1108 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1109 return; 1110 1111 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1112 /* 1113 * This is probably an interface direct route for a link 1114 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1115 * We do not need special treatment below for such a route. 1116 * Moreover, the RTF_LLINFO flag which would be set below 1117 * would annoy the ndp(8) command. 1118 */ 1119 return; 1120 } 1121 1122 if (req == RTM_RESOLVE && 1123 (nd6_need_cache(ifp) == 0 || /* stf case */ 1124 !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), 1125 ifp))) { 1126 /* 1127 * FreeBSD and BSD/OS often make a cloned host route based 1128 * on a less-specific route (e.g. the default route). 1129 * If the less specific route does not have a "gateway" 1130 * (this is the case when the route just goes to a p2p or an 1131 * stf interface), we'll mistakenly make a neighbor cache for 1132 * the host route, and will see strange neighbor solicitation 1133 * for the corresponding destination. In order to avoid the 1134 * confusion, we check if the destination of the route is 1135 * a neighbor in terms of neighbor discovery, and stop the 1136 * process if not. Additionally, we remove the LLINFO flag 1137 * so that ndp(8) will not try to get the neighbor information 1138 * of the destination. 1139 */ 1140 rt->rt_flags &= ~RTF_LLINFO; 1141 return; 1142 } 1143 1144 switch (req) { 1145 case RTM_ADD: 1146 /* 1147 * There is no backward compatibility :) 1148 * 1149 * if ((rt->rt_flags & RTF_HOST) == 0 && 1150 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1151 * rt->rt_flags |= RTF_CLONING; 1152 */ 1153 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1154 /* 1155 * Case 1: This route should come from 1156 * a route to interface. RTF_LLINFO flag is set 1157 * for a host route whose destination should be 1158 * treated as on-link. 1159 */ 1160 rt_setgate(rt, rt_key(rt), 1161 (struct sockaddr *)&null_sdl); 1162 gate = rt->rt_gateway; 1163 SDL(gate)->sdl_type = ifp->if_type; 1164 SDL(gate)->sdl_index = ifp->if_index; 1165 if (ln) 1166 ln->ln_expire = time_second; 1167 if (ln && ln->ln_expire == 0) { 1168 /* kludge for desktops */ 1169 ln->ln_expire = 1; 1170 } 1171 if ((rt->rt_flags & RTF_CLONING) != 0) 1172 break; 1173 } 1174 /* 1175 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1176 * We don't do that here since llinfo is not ready yet. 1177 * 1178 * There are also couple of other things to be discussed: 1179 * - unsolicited NA code needs improvement beforehand 1180 * - RFC2461 says we MAY send multicast unsolicited NA 1181 * (7.2.6 paragraph 4), however, it also says that we 1182 * SHOULD provide a mechanism to prevent multicast NA storm. 1183 * we don't have anything like it right now. 1184 * note that the mechanism needs a mutual agreement 1185 * between proxies, which means that we need to implement 1186 * a new protocol, or a new kludge. 1187 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1188 * we need to check ip6forwarding before sending it. 1189 * (or should we allow proxy ND configuration only for 1190 * routers? there's no mention about proxy ND from hosts) 1191 */ 1192 #if 0 1193 /* XXX it does not work */ 1194 if (rt->rt_flags & RTF_ANNOUNCE) 1195 nd6_na_output(ifp, 1196 &SIN6(rt_key(rt))->sin6_addr, 1197 &SIN6(rt_key(rt))->sin6_addr, 1198 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1199 1, NULL); 1200 #endif 1201 /* FALLTHROUGH */ 1202 case RTM_RESOLVE: 1203 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1204 /* 1205 * Address resolution isn't necessary for a point to 1206 * point link, so we can skip this test for a p2p link. 1207 */ 1208 if (gate->sa_family != AF_LINK || 1209 gate->sa_len < sizeof(null_sdl)) { 1210 log(LOG_DEBUG, 1211 "nd6_rtrequest: bad gateway value: %s\n", 1212 if_name(ifp)); 1213 break; 1214 } 1215 SDL(gate)->sdl_type = ifp->if_type; 1216 SDL(gate)->sdl_index = ifp->if_index; 1217 } 1218 if (ln != NULL) 1219 break; /* This happens on a route change */ 1220 /* 1221 * Case 2: This route may come from cloning, or a manual route 1222 * add with a LL address. 1223 */ 1224 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1225 rt->rt_llinfo = (caddr_t)ln; 1226 if (!ln) { 1227 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1228 break; 1229 } 1230 nd6_inuse++; 1231 nd6_allocated++; 1232 bzero(ln, sizeof(*ln)); 1233 ln->ln_rt = rt; 1234 /* this is required for "ndp" command. - shin */ 1235 if (req == RTM_ADD) { 1236 /* 1237 * gate should have some valid AF_LINK entry, 1238 * and ln->ln_expire should have some lifetime 1239 * which is specified by ndp command. 1240 */ 1241 ln->ln_state = ND6_LLINFO_REACHABLE; 1242 ln->ln_byhint = 0; 1243 } else { 1244 /* 1245 * When req == RTM_RESOLVE, rt is created and 1246 * initialized in rtrequest(), so rt_expire is 0. 1247 */ 1248 ln->ln_state = ND6_LLINFO_NOSTATE; 1249 ln->ln_expire = time_second; 1250 } 1251 rt->rt_flags |= RTF_LLINFO; 1252 ln->ln_next = llinfo_nd6.ln_next; 1253 llinfo_nd6.ln_next = ln; 1254 ln->ln_prev = &llinfo_nd6; 1255 ln->ln_next->ln_prev = ln; 1256 1257 /* 1258 * check if rt_key(rt) is one of my address assigned 1259 * to the interface. 1260 */ 1261 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1262 &SIN6(rt_key(rt))->sin6_addr); 1263 if (ifa) { 1264 caddr_t macp = nd6_ifptomac(ifp); 1265 ln->ln_expire = 0; 1266 ln->ln_state = ND6_LLINFO_REACHABLE; 1267 ln->ln_byhint = 0; 1268 if (macp) { 1269 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1270 SDL(gate)->sdl_alen = ifp->if_addrlen; 1271 } 1272 if (nd6_useloopback) { 1273 rt->rt_ifp = &loif[0]; /* XXX */ 1274 /* 1275 * Make sure rt_ifa be equal to the ifaddr 1276 * corresponding to the address. 1277 * We need this because when we refer 1278 * rt_ifa->ia6_flags in ip6_input, we assume 1279 * that the rt_ifa points to the address instead 1280 * of the loopback address. 1281 */ 1282 if (ifa != rt->rt_ifa) { 1283 IFAFREE(rt->rt_ifa); 1284 IFAREF(ifa); 1285 rt->rt_ifa = ifa; 1286 } 1287 } 1288 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1289 ln->ln_expire = 0; 1290 ln->ln_state = ND6_LLINFO_REACHABLE; 1291 ln->ln_byhint = 0; 1292 1293 /* join solicited node multicast for proxy ND */ 1294 if (ifp->if_flags & IFF_MULTICAST) { 1295 struct in6_addr llsol; 1296 int error; 1297 1298 llsol = SIN6(rt_key(rt))->sin6_addr; 1299 llsol.s6_addr16[0] = htons(0xff02); 1300 llsol.s6_addr16[1] = htons(ifp->if_index); 1301 llsol.s6_addr32[1] = 0; 1302 llsol.s6_addr32[2] = htonl(1); 1303 llsol.s6_addr8[12] = 0xff; 1304 1305 if (!in6_addmulti(&llsol, ifp, &error)) { 1306 nd6log((LOG_ERR, "%s: failed to join " 1307 "%s (errno=%d)\n", if_name(ifp), 1308 ip6_sprintf(&llsol), error)); 1309 } 1310 } 1311 } 1312 break; 1313 1314 case RTM_DELETE: 1315 if (!ln) 1316 break; 1317 /* leave from solicited node multicast for proxy ND */ 1318 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1319 (ifp->if_flags & IFF_MULTICAST) != 0) { 1320 struct in6_addr llsol; 1321 struct in6_multi *in6m; 1322 1323 llsol = SIN6(rt_key(rt))->sin6_addr; 1324 llsol.s6_addr16[0] = htons(0xff02); 1325 llsol.s6_addr16[1] = htons(ifp->if_index); 1326 llsol.s6_addr32[1] = 0; 1327 llsol.s6_addr32[2] = htonl(1); 1328 llsol.s6_addr8[12] = 0xff; 1329 1330 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1331 if (in6m) 1332 in6_delmulti(in6m); 1333 } 1334 nd6_inuse--; 1335 ln->ln_next->ln_prev = ln->ln_prev; 1336 ln->ln_prev->ln_next = ln->ln_next; 1337 ln->ln_prev = NULL; 1338 rt->rt_llinfo = 0; 1339 rt->rt_flags &= ~RTF_LLINFO; 1340 if (ln->ln_hold) 1341 m_freem(ln->ln_hold); 1342 Free((caddr_t)ln); 1343 } 1344 } 1345 1346 int 1347 nd6_ioctl(cmd, data, ifp) 1348 u_long cmd; 1349 caddr_t data; 1350 struct ifnet *ifp; 1351 { 1352 struct in6_drlist *drl = (struct in6_drlist *)data; 1353 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1354 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1355 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1356 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1357 struct nd_defrouter *dr, any; 1358 struct nd_prefix *pr; 1359 struct rtentry *rt; 1360 int i = 0, error = 0; 1361 int s; 1362 1363 switch (cmd) { 1364 case SIOCGDRLST_IN6: 1365 /* 1366 * obsolete API, use sysctl under net.inet6.icmp6 1367 */ 1368 bzero(drl, sizeof(*drl)); 1369 s = splnet(); 1370 dr = TAILQ_FIRST(&nd_defrouter); 1371 while (dr && i < DRLSTSIZ) { 1372 drl->defrouter[i].rtaddr = dr->rtaddr; 1373 in6_clearscope(&drl->defrouter[i].rtaddr); 1374 1375 drl->defrouter[i].flags = dr->flags; 1376 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1377 drl->defrouter[i].expire = dr->expire; 1378 drl->defrouter[i].if_index = dr->ifp->if_index; 1379 i++; 1380 dr = TAILQ_NEXT(dr, dr_entry); 1381 } 1382 splx(s); 1383 break; 1384 case SIOCGPRLST_IN6: 1385 /* 1386 * obsolete API, use sysctl under net.inet6.icmp6 1387 * 1388 * XXX the structure in6_prlist was changed in backward- 1389 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1390 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1391 */ 1392 /* 1393 * XXX meaning of fields, especialy "raflags", is very 1394 * differnet between RA prefix list and RR/static prefix list. 1395 * how about separating ioctls into two? 1396 */ 1397 bzero(oprl, sizeof(*oprl)); 1398 s = splnet(); 1399 pr = nd_prefix.lh_first; 1400 while (pr && i < PRLSTSIZ) { 1401 struct nd_pfxrouter *pfr; 1402 int j; 1403 1404 (void)in6_embedscope(&oprl->prefix[i].prefix, 1405 &pr->ndpr_prefix, NULL, NULL); 1406 oprl->prefix[i].raflags = pr->ndpr_raf; 1407 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1408 oprl->prefix[i].vltime = pr->ndpr_vltime; 1409 oprl->prefix[i].pltime = pr->ndpr_pltime; 1410 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1411 oprl->prefix[i].expire = pr->ndpr_expire; 1412 1413 pfr = pr->ndpr_advrtrs.lh_first; 1414 j = 0; 1415 while (pfr) { 1416 if (j < DRLSTSIZ) { 1417 #define RTRADDR oprl->prefix[i].advrtr[j] 1418 RTRADDR = pfr->router->rtaddr; 1419 in6_clearscope(&RTRADDR); 1420 #undef RTRADDR 1421 } 1422 j++; 1423 pfr = pfr->pfr_next; 1424 } 1425 oprl->prefix[i].advrtrs = j; 1426 oprl->prefix[i].origin = PR_ORIG_RA; 1427 1428 i++; 1429 pr = pr->ndpr_next; 1430 } 1431 splx(s); 1432 1433 break; 1434 case OSIOCGIFINFO_IN6: 1435 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1436 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1437 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1438 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1439 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1440 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1441 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1442 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1443 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1444 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1445 break; 1446 case SIOCGIFINFO_IN6: 1447 ndi->ndi = *ND_IFINFO(ifp); 1448 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1449 break; 1450 case SIOCSIFINFO_FLAGS: 1451 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1452 break; 1453 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1454 /* flush default router list */ 1455 /* 1456 * xxx sumikawa: should not delete route if default 1457 * route equals to the top of default router list 1458 */ 1459 bzero(&any, sizeof(any)); 1460 defrouter_delreq(&any, 0); 1461 defrouter_select(); 1462 /* xxx sumikawa: flush prefix list */ 1463 break; 1464 case SIOCSPFXFLUSH_IN6: 1465 { 1466 /* flush all the prefix advertised by routers */ 1467 struct nd_prefix *pr, *next; 1468 1469 s = splnet(); 1470 for (pr = nd_prefix.lh_first; pr; pr = next) { 1471 struct in6_ifaddr *ia, *ia_next; 1472 1473 next = pr->ndpr_next; 1474 1475 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1476 continue; /* XXX */ 1477 1478 /* do we really have to remove addresses as well? */ 1479 for (ia = in6_ifaddr; ia; ia = ia_next) { 1480 /* ia might be removed. keep the next ptr. */ 1481 ia_next = ia->ia_next; 1482 1483 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1484 continue; 1485 1486 if (ia->ia6_ndpr == pr) 1487 in6_purgeaddr(&ia->ia_ifa); 1488 } 1489 prelist_remove(pr); 1490 } 1491 splx(s); 1492 break; 1493 } 1494 case SIOCSRTRFLUSH_IN6: 1495 { 1496 /* flush all the default routers */ 1497 struct nd_defrouter *dr, *next; 1498 1499 s = splnet(); 1500 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1501 /* 1502 * The first entry of the list may be stored in 1503 * the routing table, so we'll delete it later. 1504 */ 1505 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1506 next = TAILQ_NEXT(dr, dr_entry); 1507 defrtrlist_del(dr); 1508 } 1509 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1510 } 1511 splx(s); 1512 break; 1513 } 1514 case SIOCGNBRINFO_IN6: 1515 { 1516 struct llinfo_nd6 *ln; 1517 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1518 1519 /* 1520 * XXX: KAME specific hack for scoped addresses 1521 * XXXX: for other scopes than link-local? 1522 */ 1523 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1524 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1525 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1526 1527 if (*idp == 0) 1528 *idp = htons(ifp->if_index); 1529 } 1530 1531 s = splnet(); 1532 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1533 error = EINVAL; 1534 splx(s); 1535 break; 1536 } 1537 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1538 nbi->state = ln->ln_state; 1539 nbi->asked = ln->ln_asked; 1540 nbi->isrouter = ln->ln_router; 1541 nbi->expire = ln->ln_expire; 1542 splx(s); 1543 1544 break; 1545 } 1546 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1547 ndif->ifindex = nd6_defifindex; 1548 break; 1549 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1550 return (nd6_setdefaultiface(ndif->ifindex)); 1551 } 1552 return (error); 1553 } 1554 1555 /* 1556 * Create neighbor cache entry and cache link-layer address, 1557 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1558 */ 1559 struct rtentry * 1560 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1561 struct ifnet *ifp; 1562 struct in6_addr *from; 1563 char *lladdr; 1564 int lladdrlen; 1565 int type; /* ICMP6 type */ 1566 int code; /* type dependent information */ 1567 { 1568 struct rtentry *rt = NULL; 1569 struct llinfo_nd6 *ln = NULL; 1570 int is_newentry; 1571 struct sockaddr_dl *sdl = NULL; 1572 int do_update; 1573 int olladdr; 1574 int llchange; 1575 int newstate = 0; 1576 1577 if (!ifp) 1578 panic("ifp == NULL in nd6_cache_lladdr"); 1579 if (!from) 1580 panic("from == NULL in nd6_cache_lladdr"); 1581 1582 /* nothing must be updated for unspecified address */ 1583 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1584 return NULL; 1585 1586 /* 1587 * Validation about ifp->if_addrlen and lladdrlen must be done in 1588 * the caller. 1589 * 1590 * XXX If the link does not have link-layer adderss, what should 1591 * we do? (ifp->if_addrlen == 0) 1592 * Spec says nothing in sections for RA, RS and NA. There's small 1593 * description on it in NS section (RFC 2461 7.2.3). 1594 */ 1595 1596 rt = nd6_lookup(from, 0, ifp); 1597 if (!rt) { 1598 #if 0 1599 /* nothing must be done if there's no lladdr */ 1600 if (!lladdr || !lladdrlen) 1601 return NULL; 1602 #endif 1603 1604 rt = nd6_lookup(from, 1, ifp); 1605 is_newentry = 1; 1606 } else { 1607 /* do nothing if static ndp is set */ 1608 if (rt->rt_flags & RTF_STATIC) 1609 return NULL; 1610 is_newentry = 0; 1611 } 1612 1613 if (!rt) 1614 return NULL; 1615 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1616 fail: 1617 (void)nd6_free(rt); 1618 return NULL; 1619 } 1620 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1621 if (!ln) 1622 goto fail; 1623 if (!rt->rt_gateway) 1624 goto fail; 1625 if (rt->rt_gateway->sa_family != AF_LINK) 1626 goto fail; 1627 sdl = SDL(rt->rt_gateway); 1628 1629 olladdr = (sdl->sdl_alen) ? 1 : 0; 1630 if (olladdr && lladdr) { 1631 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1632 llchange = 1; 1633 else 1634 llchange = 0; 1635 } else 1636 llchange = 0; 1637 1638 /* 1639 * newentry olladdr lladdr llchange (*=record) 1640 * 0 n n -- (1) 1641 * 0 y n -- (2) 1642 * 0 n y -- (3) * STALE 1643 * 0 y y n (4) * 1644 * 0 y y y (5) * STALE 1645 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1646 * 1 -- y -- (7) * STALE 1647 */ 1648 1649 if (lladdr) { /* (3-5) and (7) */ 1650 /* 1651 * Record source link-layer address 1652 * XXX is it dependent to ifp->if_type? 1653 */ 1654 sdl->sdl_alen = ifp->if_addrlen; 1655 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1656 } 1657 1658 if (!is_newentry) { 1659 if ((!olladdr && lladdr) || /* (3) */ 1660 (olladdr && lladdr && llchange)) { /* (5) */ 1661 do_update = 1; 1662 newstate = ND6_LLINFO_STALE; 1663 } else /* (1-2,4) */ 1664 do_update = 0; 1665 } else { 1666 do_update = 1; 1667 if (!lladdr) /* (6) */ 1668 newstate = ND6_LLINFO_NOSTATE; 1669 else /* (7) */ 1670 newstate = ND6_LLINFO_STALE; 1671 } 1672 1673 if (do_update) { 1674 /* 1675 * Update the state of the neighbor cache. 1676 */ 1677 ln->ln_state = newstate; 1678 1679 if (ln->ln_state == ND6_LLINFO_STALE) { 1680 /* 1681 * XXX: since nd6_output() below will cause 1682 * state tansition to DELAY and reset the timer, 1683 * we must set the timer now, although it is actually 1684 * meaningless. 1685 */ 1686 ln->ln_expire = time_second + nd6_gctimer; 1687 1688 if (ln->ln_hold) { 1689 /* 1690 * we assume ifp is not a p2p here, so just 1691 * set the 2nd argument as the 1st one. 1692 */ 1693 nd6_output(ifp, ifp, ln->ln_hold, 1694 (struct sockaddr_in6 *)rt_key(rt), rt); 1695 ln->ln_hold = NULL; 1696 } 1697 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1698 /* probe right away */ 1699 ln->ln_expire = time_second; 1700 } 1701 } 1702 1703 /* 1704 * ICMP6 type dependent behavior. 1705 * 1706 * NS: clear IsRouter if new entry 1707 * RS: clear IsRouter 1708 * RA: set IsRouter if there's lladdr 1709 * redir: clear IsRouter if new entry 1710 * 1711 * RA case, (1): 1712 * The spec says that we must set IsRouter in the following cases: 1713 * - If lladdr exist, set IsRouter. This means (1-5). 1714 * - If it is old entry (!newentry), set IsRouter. This means (7). 1715 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1716 * A quetion arises for (1) case. (1) case has no lladdr in the 1717 * neighbor cache, this is similar to (6). 1718 * This case is rare but we figured that we MUST NOT set IsRouter. 1719 * 1720 * newentry olladdr lladdr llchange NS RS RA redir 1721 * D R 1722 * 0 n n -- (1) c ? s 1723 * 0 y n -- (2) c s s 1724 * 0 n y -- (3) c s s 1725 * 0 y y n (4) c s s 1726 * 0 y y y (5) c s s 1727 * 1 -- n -- (6) c c c s 1728 * 1 -- y -- (7) c c s c s 1729 * 1730 * (c=clear s=set) 1731 */ 1732 switch (type & 0xff) { 1733 case ND_NEIGHBOR_SOLICIT: 1734 /* 1735 * New entry must have is_router flag cleared. 1736 */ 1737 if (is_newentry) /* (6-7) */ 1738 ln->ln_router = 0; 1739 break; 1740 case ND_REDIRECT: 1741 /* 1742 * If the icmp is a redirect to a better router, always set the 1743 * is_router flag. Otherwise, if the entry is newly created, 1744 * clear the flag. [RFC 2461, sec 8.3] 1745 */ 1746 if (code == ND_REDIRECT_ROUTER) 1747 ln->ln_router = 1; 1748 else if (is_newentry) /* (6-7) */ 1749 ln->ln_router = 0; 1750 break; 1751 case ND_ROUTER_SOLICIT: 1752 /* 1753 * is_router flag must always be cleared. 1754 */ 1755 ln->ln_router = 0; 1756 break; 1757 case ND_ROUTER_ADVERT: 1758 /* 1759 * Mark an entry with lladdr as a router. 1760 */ 1761 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1762 (is_newentry && lladdr)) { /* (7) */ 1763 ln->ln_router = 1; 1764 } 1765 break; 1766 } 1767 1768 /* 1769 * When the link-layer address of a router changes, select the 1770 * best router again. In particular, when the neighbor entry is newly 1771 * created, it might affect the selection policy. 1772 * Question: can we restrict the first condition to the "is_newentry" 1773 * case? 1774 * XXX: when we hear an RA from a new router with the link-layer 1775 * address option, defrouter_select() is called twice, since 1776 * defrtrlist_update called the function as well. However, I believe 1777 * we can compromise the overhead, since it only happens the first 1778 * time. 1779 * XXX: although defrouter_select() should not have a bad effect 1780 * for those are not autoconfigured hosts, we explicitly avoid such 1781 * cases for safety. 1782 */ 1783 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1784 defrouter_select(); 1785 1786 return rt; 1787 } 1788 1789 static void 1790 nd6_slowtimo(ignored_arg) 1791 void *ignored_arg; 1792 { 1793 int s = splnet(); 1794 struct nd_ifinfo *nd6if; 1795 struct ifnet *ifp; 1796 1797 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1798 nd6_slowtimo, NULL); 1799 IFNET_RLOCK(); 1800 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1801 nd6if = ND_IFINFO(ifp); 1802 if (nd6if->basereachable && /* already initialized */ 1803 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1804 /* 1805 * Since reachable time rarely changes by router 1806 * advertisements, we SHOULD insure that a new random 1807 * value gets recomputed at least once every few hours. 1808 * (RFC 2461, 6.3.4) 1809 */ 1810 nd6if->recalctm = nd6_recalc_reachtm_interval; 1811 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1812 } 1813 } 1814 IFNET_RUNLOCK(); 1815 splx(s); 1816 } 1817 1818 #define senderr(e) { error = (e); goto bad;} 1819 int 1820 nd6_output(ifp, origifp, m0, dst, rt0) 1821 struct ifnet *ifp; 1822 struct ifnet *origifp; 1823 struct mbuf *m0; 1824 struct sockaddr_in6 *dst; 1825 struct rtentry *rt0; 1826 { 1827 struct mbuf *m = m0; 1828 struct rtentry *rt = rt0; 1829 struct sockaddr_in6 *gw6 = NULL; 1830 struct llinfo_nd6 *ln = NULL; 1831 int error = 0; 1832 1833 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1834 goto sendpkt; 1835 1836 if (nd6_need_cache(ifp) == 0) 1837 goto sendpkt; 1838 1839 /* 1840 * next hop determination. This routine is derived from ether_outpout. 1841 */ 1842 again: 1843 if (rt) { 1844 if ((rt->rt_flags & RTF_UP) == 0) { 1845 rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL); 1846 if (rt != NULL) { 1847 RT_REMREF(rt); 1848 RT_UNLOCK(rt); 1849 if (rt->rt_ifp != ifp) 1850 /* 1851 * XXX maybe we should update ifp too, 1852 * but the original code didn't and I 1853 * don't know what is correct here. 1854 */ 1855 goto again; 1856 } else 1857 senderr(EHOSTUNREACH); 1858 } 1859 1860 if (rt->rt_flags & RTF_GATEWAY) { 1861 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1862 1863 /* 1864 * We skip link-layer address resolution and NUD 1865 * if the gateway is not a neighbor from ND point 1866 * of view, regardless of the value of nd_ifinfo.flags. 1867 * The second condition is a bit tricky; we skip 1868 * if the gateway is our own address, which is 1869 * sometimes used to install a route to a p2p link. 1870 */ 1871 if (!nd6_is_addr_neighbor(gw6, ifp) || 1872 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1873 /* 1874 * We allow this kind of tricky route only 1875 * when the outgoing interface is p2p. 1876 * XXX: we may need a more generic rule here. 1877 */ 1878 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1879 senderr(EHOSTUNREACH); 1880 1881 goto sendpkt; 1882 } 1883 1884 if (rt->rt_gwroute == 0) 1885 goto lookup; 1886 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1887 RT_LOCK(rt); 1888 rtfree(rt); rt = rt0; 1889 lookup: 1890 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); 1891 if ((rt = rt->rt_gwroute) == 0) 1892 senderr(EHOSTUNREACH); 1893 RT_UNLOCK(rt); 1894 } 1895 } 1896 } 1897 1898 /* 1899 * Address resolution or Neighbor Unreachability Detection 1900 * for the next hop. 1901 * At this point, the destination of the packet must be a unicast 1902 * or an anycast address(i.e. not a multicast). 1903 */ 1904 1905 /* Look up the neighbor cache for the nexthop */ 1906 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1907 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1908 else { 1909 /* 1910 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1911 * the condition below is not very efficient. But we believe 1912 * it is tolerable, because this should be a rare case. 1913 */ 1914 if (nd6_is_addr_neighbor(dst, ifp) && 1915 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1916 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1917 } 1918 if (!ln || !rt) { 1919 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1920 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1921 log(LOG_DEBUG, 1922 "nd6_output: can't allocate llinfo for %s " 1923 "(ln=%p, rt=%p)\n", 1924 ip6_sprintf(&dst->sin6_addr), ln, rt); 1925 senderr(EIO); /* XXX: good error? */ 1926 } 1927 1928 goto sendpkt; /* send anyway */ 1929 } 1930 1931 /* We don't have to do link-layer address resolution on a p2p link. */ 1932 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1933 ln->ln_state < ND6_LLINFO_REACHABLE) { 1934 ln->ln_state = ND6_LLINFO_STALE; 1935 ln->ln_expire = time_second + nd6_gctimer; 1936 } 1937 1938 /* 1939 * The first time we send a packet to a neighbor whose entry is 1940 * STALE, we have to change the state to DELAY and a sets a timer to 1941 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1942 * neighbor unreachability detection on expiration. 1943 * (RFC 2461 7.3.3) 1944 */ 1945 if (ln->ln_state == ND6_LLINFO_STALE) { 1946 ln->ln_asked = 0; 1947 ln->ln_state = ND6_LLINFO_DELAY; 1948 ln->ln_expire = time_second + nd6_delay; 1949 } 1950 1951 /* 1952 * If the neighbor cache entry has a state other than INCOMPLETE 1953 * (i.e. its link-layer address is already resolved), just 1954 * send the packet. 1955 */ 1956 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1957 goto sendpkt; 1958 1959 /* 1960 * There is a neighbor cache entry, but no ethernet address 1961 * response yet. Replace the held mbuf (if any) with this 1962 * latest one. 1963 * 1964 * This code conforms to the rate-limiting rule described in Section 1965 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1966 * an NS below. 1967 */ 1968 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1969 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1970 if (ln->ln_hold) 1971 m_freem(ln->ln_hold); 1972 ln->ln_hold = m; 1973 if (ln->ln_expire) { 1974 if (ln->ln_asked < nd6_mmaxtries && 1975 ln->ln_expire < time_second) { 1976 ln->ln_asked++; 1977 ln->ln_expire = time_second + 1978 ND_IFINFO(ifp)->retrans / 1000; 1979 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1980 } 1981 } 1982 return (0); 1983 1984 sendpkt: 1985 #ifdef IPSEC 1986 /* clean ipsec history once it goes out of the node */ 1987 ipsec_delaux(m); 1988 #endif 1989 1990 #ifdef MAC 1991 mac_create_mbuf_linklayer(ifp, m); 1992 #endif 1993 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1994 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1995 rt)); 1996 } 1997 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1998 1999 bad: 2000 if (m) 2001 m_freem(m); 2002 return (error); 2003 } 2004 #undef senderr 2005 2006 int 2007 nd6_need_cache(ifp) 2008 struct ifnet *ifp; 2009 { 2010 /* 2011 * XXX: we currently do not make neighbor cache on any interface 2012 * other than ARCnet, Ethernet, FDDI and GIF. 2013 * 2014 * RFC2893 says: 2015 * - unidirectional tunnels needs no ND 2016 */ 2017 switch (ifp->if_type) { 2018 case IFT_ARCNET: 2019 case IFT_ETHER: 2020 case IFT_FDDI: 2021 case IFT_IEEE1394: 2022 #ifdef IFT_L2VLAN 2023 case IFT_L2VLAN: 2024 #endif 2025 #ifdef IFT_IEEE80211 2026 case IFT_IEEE80211: 2027 #endif 2028 case IFT_GIF: /* XXX need more cases? */ 2029 return (1); 2030 default: 2031 return (0); 2032 } 2033 } 2034 2035 int 2036 nd6_storelladdr(ifp, rt0, m, dst, desten) 2037 struct ifnet *ifp; 2038 struct rtentry *rt0; 2039 struct mbuf *m; 2040 struct sockaddr *dst; 2041 u_char *desten; 2042 { 2043 int i; 2044 struct sockaddr_dl *sdl; 2045 struct rtentry *rt; 2046 2047 if (m->m_flags & M_MCAST) { 2048 switch (ifp->if_type) { 2049 case IFT_ETHER: 2050 case IFT_FDDI: 2051 #ifdef IFT_L2VLAN 2052 case IFT_L2VLAN: 2053 #endif 2054 #ifdef IFT_IEEE80211 2055 case IFT_IEEE80211: 2056 #endif 2057 case IFT_ISO88025: 2058 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2059 desten); 2060 return (0); 2061 case IFT_IEEE1394: 2062 /* 2063 * netbsd can use if_broadcastaddr, but we don't do so 2064 * to reduce # of ifdef. 2065 */ 2066 for (i = 0; i < ifp->if_addrlen; i++) 2067 desten[i] = ~0; 2068 return (0); 2069 case IFT_ARCNET: 2070 *desten = 0; 2071 return (0); 2072 default: 2073 m_freem(m); 2074 return (EAFNOSUPPORT); 2075 } 2076 } 2077 2078 i = rt_check(&rt, &rt0, dst); 2079 if (i) { 2080 m_freem(m); 2081 return i; 2082 } 2083 2084 if (rt == NULL) { 2085 /* this could happen, if we could not allocate memory */ 2086 m_freem(m); 2087 return (ENOMEM); 2088 } 2089 if (rt->rt_gateway->sa_family != AF_LINK) { 2090 printf("nd6_storelladdr: something odd happens\n"); 2091 m_freem(m); 2092 return (EINVAL); 2093 } 2094 sdl = SDL(rt->rt_gateway); 2095 if (sdl->sdl_alen == 0) { 2096 /* this should be impossible, but we bark here for debugging */ 2097 printf("nd6_storelladdr: sdl_alen == 0\n"); 2098 m_freem(m); 2099 return (EINVAL); 2100 } 2101 2102 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2103 return (0); 2104 } 2105 2106 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2107 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2108 #ifdef SYSCTL_DECL 2109 SYSCTL_DECL(_net_inet6_icmp6); 2110 #endif 2111 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2112 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2113 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2114 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2115 2116 static int 2117 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2118 { 2119 int error; 2120 char buf[1024]; 2121 struct in6_defrouter *d, *de; 2122 struct nd_defrouter *dr; 2123 2124 if (req->newptr) 2125 return EPERM; 2126 error = 0; 2127 2128 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2129 dr = TAILQ_NEXT(dr, dr_entry)) { 2130 d = (struct in6_defrouter *)buf; 2131 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2132 2133 if (d + 1 <= de) { 2134 bzero(d, sizeof(*d)); 2135 d->rtaddr.sin6_family = AF_INET6; 2136 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2137 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2138 dr->ifp) != 0) 2139 log(LOG_ERR, 2140 "scope error in " 2141 "default router list (%s)\n", 2142 ip6_sprintf(&dr->rtaddr)); 2143 d->flags = dr->flags; 2144 d->rtlifetime = dr->rtlifetime; 2145 d->expire = dr->expire; 2146 d->if_index = dr->ifp->if_index; 2147 } else 2148 panic("buffer too short"); 2149 2150 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2151 if (error) 2152 break; 2153 } 2154 2155 return (error); 2156 } 2157 2158 static int 2159 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2160 { 2161 int error; 2162 char buf[1024]; 2163 struct in6_prefix *p, *pe; 2164 struct nd_prefix *pr; 2165 2166 if (req->newptr) 2167 return EPERM; 2168 error = 0; 2169 2170 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2171 u_short advrtrs; 2172 size_t advance; 2173 struct sockaddr_in6 *sin6, *s6; 2174 struct nd_pfxrouter *pfr; 2175 2176 p = (struct in6_prefix *)buf; 2177 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2178 2179 if (p + 1 <= pe) { 2180 bzero(p, sizeof(*p)); 2181 sin6 = (struct sockaddr_in6 *)(p + 1); 2182 2183 p->prefix = pr->ndpr_prefix; 2184 if (in6_recoverscope(&p->prefix, 2185 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2186 log(LOG_ERR, 2187 "scope error in prefix list (%s)\n", 2188 ip6_sprintf(&p->prefix.sin6_addr)); 2189 p->raflags = pr->ndpr_raf; 2190 p->prefixlen = pr->ndpr_plen; 2191 p->vltime = pr->ndpr_vltime; 2192 p->pltime = pr->ndpr_pltime; 2193 p->if_index = pr->ndpr_ifp->if_index; 2194 p->expire = pr->ndpr_expire; 2195 p->refcnt = pr->ndpr_refcnt; 2196 p->flags = pr->ndpr_stateflags; 2197 p->origin = PR_ORIG_RA; 2198 advrtrs = 0; 2199 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2200 pfr = pfr->pfr_next) { 2201 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2202 advrtrs++; 2203 continue; 2204 } 2205 s6 = &sin6[advrtrs]; 2206 bzero(s6, sizeof(*s6)); 2207 s6->sin6_family = AF_INET6; 2208 s6->sin6_len = sizeof(*sin6); 2209 if (in6_recoverscope(s6, &pfr->router->rtaddr, 2210 pfr->router->ifp) != 0) 2211 log(LOG_ERR, 2212 "scope error in " 2213 "prefix list (%s)\n", 2214 ip6_sprintf(&pfr->router->rtaddr)); 2215 advrtrs++; 2216 } 2217 p->advrtrs = advrtrs; 2218 } else 2219 panic("buffer too short"); 2220 2221 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2222 error = SYSCTL_OUT(req, buf, advance); 2223 if (error) 2224 break; 2225 } 2226 2227 return (error); 2228 } 2229