1 /* $FreeBSD$ */ 2 /* $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include "opt_inet.h" 42 #include "opt_inet6.h" 43 #include "opt_mac.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/callout.h> 48 #include <sys/mac.h> 49 #include <sys/malloc.h> 50 #include <sys/mbuf.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/time.h> 54 #include <sys/kernel.h> 55 #include <sys/protosw.h> 56 #include <sys/errno.h> 57 #include <sys/syslog.h> 58 #include <sys/queue.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/if_atm.h> 65 #include <net/fddi.h> 66 #include <net/route.h> 67 68 #include <netinet/in.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet6/in6_prefix.h> 75 #include <netinet/icmp6.h> 76 77 #include <net/net_osdep.h> 78 79 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 80 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 81 82 #define SIN6(s) ((struct sockaddr_in6 *)s) 83 #define SDL(s) ((struct sockaddr_dl *)s) 84 85 /* timer values */ 86 int nd6_prune = 1; /* walk list every 1 seconds */ 87 int nd6_delay = 5; /* delay first probe time 5 second */ 88 int nd6_umaxtries = 3; /* maximum unicast query */ 89 int nd6_mmaxtries = 3; /* maximum multicast query */ 90 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 91 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 92 93 /* preventing too many loops in ND option parsing */ 94 int nd6_maxndopt = 10; /* max # of ND options allowed */ 95 96 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 97 98 #ifdef ND6_DEBUG 99 int nd6_debug = 1; 100 #else 101 int nd6_debug = 0; 102 #endif 103 104 /* for debugging? */ 105 static int nd6_inuse, nd6_allocated; 106 107 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 108 static size_t nd_ifinfo_indexlim = 8; 109 struct nd_ifinfo *nd_ifinfo = NULL; 110 struct nd_drhead nd_defrouter; 111 struct nd_prhead nd_prefix = { 0 }; 112 113 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 114 static struct sockaddr_in6 all1_sa; 115 116 static void nd6_slowtimo __P((void *)); 117 static int regen_tmpaddr __P((struct in6_ifaddr *)); 118 119 struct callout nd6_slowtimo_ch; 120 struct callout nd6_timer_ch; 121 extern struct callout in6_tmpaddrtimer_ch; 122 123 void 124 nd6_init() 125 { 126 static int nd6_init_done = 0; 127 int i; 128 129 if (nd6_init_done) { 130 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 131 return; 132 } 133 134 all1_sa.sin6_family = AF_INET6; 135 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 136 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 137 all1_sa.sin6_addr.s6_addr[i] = 0xff; 138 139 /* initialization of the default router list */ 140 TAILQ_INIT(&nd_defrouter); 141 142 nd6_init_done = 1; 143 144 /* start timer */ 145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 146 nd6_slowtimo, NULL); 147 } 148 149 void 150 nd6_ifattach(ifp) 151 struct ifnet *ifp; 152 { 153 154 /* 155 * We have some arrays that should be indexed by if_index. 156 * since if_index will grow dynamically, they should grow too. 157 */ 158 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { 159 size_t n; 160 caddr_t q; 161 162 while (if_index >= nd_ifinfo_indexlim) 163 nd_ifinfo_indexlim <<= 1; 164 165 /* grow nd_ifinfo */ 166 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo); 167 q = (caddr_t)malloc(n, M_IP6NDP, 0); 168 bzero(q, n); 169 if (nd_ifinfo) { 170 bcopy((caddr_t)nd_ifinfo, q, n/2); 171 free((caddr_t)nd_ifinfo, M_IP6NDP); 172 } 173 nd_ifinfo = (struct nd_ifinfo *)q; 174 } 175 176 #define ND nd_ifinfo[ifp->if_index] 177 178 /* 179 * Don't initialize if called twice. 180 * XXX: to detect this, we should choose a member that is never set 181 * before initialization of the ND structure itself. We formaly used 182 * the linkmtu member, which was not suitable because it could be 183 * initialized via "ifconfig mtu". 184 */ 185 if (ND.basereachable) 186 return; 187 188 ND.linkmtu = ifnet_byindex(ifp->if_index)->if_mtu; 189 ND.chlim = IPV6_DEFHLIM; 190 ND.basereachable = REACHABLE_TIME; 191 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); 192 ND.retrans = RETRANS_TIMER; 193 ND.receivedra = 0; 194 ND.flags = ND6_IFF_PERFORMNUD; 195 nd6_setmtu(ifp); 196 #undef ND 197 } 198 199 /* 200 * Reset ND level link MTU. This function is called when the physical MTU 201 * changes, which means we might have to adjust the ND level MTU. 202 */ 203 void 204 nd6_setmtu(ifp) 205 struct ifnet *ifp; 206 { 207 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index]; 208 u_long oldmaxmtu = ndi->maxmtu; 209 u_long oldlinkmtu = ndi->linkmtu; 210 211 switch (ifp->if_type) { 212 case IFT_ARCNET: /* XXX MTU handling needs more work */ 213 ndi->maxmtu = MIN(60480, ifp->if_mtu); 214 break; 215 case IFT_ETHER: 216 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 217 break; 218 case IFT_FDDI: 219 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 220 break; 221 case IFT_ATM: 222 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 223 break; 224 case IFT_IEEE1394: /* XXX should be IEEE1394MTU(1500) */ 225 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 226 break; 227 #ifdef IFT_IEEE80211 228 case IFT_IEEE80211: /* XXX should be IEEE80211MTU(1500) */ 229 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 230 break; 231 #endif 232 default: 233 ndi->maxmtu = ifp->if_mtu; 234 break; 235 } 236 237 if (oldmaxmtu != ndi->maxmtu) { 238 /* 239 * If the ND level MTU is not set yet, or if the maxmtu 240 * is reset to a smaller value than the ND level MTU, 241 * also reset the ND level MTU. 242 */ 243 if (ndi->linkmtu == 0 || 244 ndi->maxmtu < ndi->linkmtu) { 245 ndi->linkmtu = ndi->maxmtu; 246 /* also adjust in6_maxmtu if necessary. */ 247 if (oldlinkmtu == 0) { 248 /* 249 * XXX: the case analysis is grotty, but 250 * it is not efficient to call in6_setmaxmtu() 251 * here when we are during the initialization 252 * procedure. 253 */ 254 if (in6_maxmtu < ndi->linkmtu) 255 in6_maxmtu = ndi->linkmtu; 256 } else 257 in6_setmaxmtu(); 258 } 259 } 260 #undef MIN 261 } 262 263 void 264 nd6_option_init(opt, icmp6len, ndopts) 265 void *opt; 266 int icmp6len; 267 union nd_opts *ndopts; 268 { 269 bzero(ndopts, sizeof(*ndopts)); 270 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 271 ndopts->nd_opts_last 272 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 273 274 if (icmp6len == 0) { 275 ndopts->nd_opts_done = 1; 276 ndopts->nd_opts_search = NULL; 277 } 278 } 279 280 /* 281 * Take one ND option. 282 */ 283 struct nd_opt_hdr * 284 nd6_option(ndopts) 285 union nd_opts *ndopts; 286 { 287 struct nd_opt_hdr *nd_opt; 288 int olen; 289 290 if (!ndopts) 291 panic("ndopts == NULL in nd6_option\n"); 292 if (!ndopts->nd_opts_last) 293 panic("uninitialized ndopts in nd6_option\n"); 294 if (!ndopts->nd_opts_search) 295 return NULL; 296 if (ndopts->nd_opts_done) 297 return NULL; 298 299 nd_opt = ndopts->nd_opts_search; 300 301 /* make sure nd_opt_len is inside the buffer */ 302 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 303 bzero(ndopts, sizeof(*ndopts)); 304 return NULL; 305 } 306 307 olen = nd_opt->nd_opt_len << 3; 308 if (olen == 0) { 309 /* 310 * Message validation requires that all included 311 * options have a length that is greater than zero. 312 */ 313 bzero(ndopts, sizeof(*ndopts)); 314 return NULL; 315 } 316 317 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 318 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 319 /* option overruns the end of buffer, invalid */ 320 bzero(ndopts, sizeof(*ndopts)); 321 return NULL; 322 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 323 /* reached the end of options chain */ 324 ndopts->nd_opts_done = 1; 325 ndopts->nd_opts_search = NULL; 326 } 327 return nd_opt; 328 } 329 330 /* 331 * Parse multiple ND options. 332 * This function is much easier to use, for ND routines that do not need 333 * multiple options of the same type. 334 */ 335 int 336 nd6_options(ndopts) 337 union nd_opts *ndopts; 338 { 339 struct nd_opt_hdr *nd_opt; 340 int i = 0; 341 342 if (!ndopts) 343 panic("ndopts == NULL in nd6_options\n"); 344 if (!ndopts->nd_opts_last) 345 panic("uninitialized ndopts in nd6_options\n"); 346 if (!ndopts->nd_opts_search) 347 return 0; 348 349 while (1) { 350 nd_opt = nd6_option(ndopts); 351 if (!nd_opt && !ndopts->nd_opts_last) { 352 /* 353 * Message validation requires that all included 354 * options have a length that is greater than zero. 355 */ 356 icmp6stat.icp6s_nd_badopt++; 357 bzero(ndopts, sizeof(*ndopts)); 358 return -1; 359 } 360 361 if (!nd_opt) 362 goto skip1; 363 364 switch (nd_opt->nd_opt_type) { 365 case ND_OPT_SOURCE_LINKADDR: 366 case ND_OPT_TARGET_LINKADDR: 367 case ND_OPT_MTU: 368 case ND_OPT_REDIRECTED_HEADER: 369 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 370 nd6log((LOG_INFO, 371 "duplicated ND6 option found (type=%d)\n", 372 nd_opt->nd_opt_type)); 373 /* XXX bark? */ 374 } else { 375 ndopts->nd_opt_array[nd_opt->nd_opt_type] 376 = nd_opt; 377 } 378 break; 379 case ND_OPT_PREFIX_INFORMATION: 380 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 381 ndopts->nd_opt_array[nd_opt->nd_opt_type] 382 = nd_opt; 383 } 384 ndopts->nd_opts_pi_end = 385 (struct nd_opt_prefix_info *)nd_opt; 386 break; 387 default: 388 /* 389 * Unknown options must be silently ignored, 390 * to accomodate future extension to the protocol. 391 */ 392 nd6log((LOG_DEBUG, 393 "nd6_options: unsupported option %d - " 394 "option ignored\n", nd_opt->nd_opt_type)); 395 } 396 397 skip1: 398 i++; 399 if (i > nd6_maxndopt) { 400 icmp6stat.icp6s_nd_toomanyopt++; 401 nd6log((LOG_INFO, "too many loop in nd opt\n")); 402 break; 403 } 404 405 if (ndopts->nd_opts_done) 406 break; 407 } 408 409 return 0; 410 } 411 412 /* 413 * ND6 timer routine to expire default route list and prefix list 414 */ 415 void 416 nd6_timer(ignored_arg) 417 void *ignored_arg; 418 { 419 int s; 420 struct llinfo_nd6 *ln; 421 struct nd_defrouter *dr; 422 struct nd_prefix *pr; 423 struct ifnet *ifp; 424 struct in6_ifaddr *ia6, *nia6; 425 struct in6_addrlifetime *lt6; 426 427 s = splnet(); 428 callout_reset(&nd6_timer_ch, nd6_prune * hz, 429 nd6_timer, NULL); 430 431 ln = llinfo_nd6.ln_next; 432 while (ln && ln != &llinfo_nd6) { 433 struct rtentry *rt; 434 struct sockaddr_in6 *dst; 435 struct llinfo_nd6 *next = ln->ln_next; 436 /* XXX: used for the DELAY case only: */ 437 struct nd_ifinfo *ndi = NULL; 438 439 if ((rt = ln->ln_rt) == NULL) { 440 ln = next; 441 continue; 442 } 443 if ((ifp = rt->rt_ifp) == NULL) { 444 ln = next; 445 continue; 446 } 447 ndi = &nd_ifinfo[ifp->if_index]; 448 dst = (struct sockaddr_in6 *)rt_key(rt); 449 450 if (ln->ln_expire > time_second) { 451 ln = next; 452 continue; 453 } 454 455 /* sanity check */ 456 if (!rt) 457 panic("rt=0 in nd6_timer(ln=%p)\n", ln); 458 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 459 panic("rt_llinfo(%p) is not equal to ln(%p)\n", 460 rt->rt_llinfo, ln); 461 if (!dst) 462 panic("dst=0 in nd6_timer(ln=%p)\n", ln); 463 464 switch (ln->ln_state) { 465 case ND6_LLINFO_INCOMPLETE: 466 if (ln->ln_asked < nd6_mmaxtries) { 467 ln->ln_asked++; 468 ln->ln_expire = time_second + 469 nd_ifinfo[ifp->if_index].retrans / 1000; 470 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 471 ln, 0); 472 } else { 473 struct mbuf *m = ln->ln_hold; 474 if (m) { 475 if (rt->rt_ifp) { 476 /* 477 * Fake rcvif to make ICMP error 478 * more helpful in diagnosing 479 * for the receiver. 480 * XXX: should we consider 481 * older rcvif? 482 */ 483 m->m_pkthdr.rcvif = rt->rt_ifp; 484 } 485 icmp6_error(m, ICMP6_DST_UNREACH, 486 ICMP6_DST_UNREACH_ADDR, 0); 487 ln->ln_hold = NULL; 488 } 489 next = nd6_free(rt); 490 } 491 break; 492 case ND6_LLINFO_REACHABLE: 493 if (ln->ln_expire) { 494 ln->ln_state = ND6_LLINFO_STALE; 495 ln->ln_expire = time_second + nd6_gctimer; 496 } 497 break; 498 499 case ND6_LLINFO_STALE: 500 /* Garbage Collection(RFC 2461 5.3) */ 501 if (ln->ln_expire) 502 next = nd6_free(rt); 503 break; 504 505 case ND6_LLINFO_DELAY: 506 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 507 /* We need NUD */ 508 ln->ln_asked = 1; 509 ln->ln_state = ND6_LLINFO_PROBE; 510 ln->ln_expire = time_second + 511 ndi->retrans / 1000; 512 nd6_ns_output(ifp, &dst->sin6_addr, 513 &dst->sin6_addr, 514 ln, 0); 515 } else { 516 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 517 ln->ln_expire = time_second + nd6_gctimer; 518 } 519 break; 520 case ND6_LLINFO_PROBE: 521 if (ln->ln_asked < nd6_umaxtries) { 522 ln->ln_asked++; 523 ln->ln_expire = time_second + 524 nd_ifinfo[ifp->if_index].retrans / 1000; 525 nd6_ns_output(ifp, &dst->sin6_addr, 526 &dst->sin6_addr, ln, 0); 527 } else { 528 next = nd6_free(rt); 529 } 530 break; 531 } 532 ln = next; 533 } 534 535 /* expire default router list */ 536 dr = TAILQ_FIRST(&nd_defrouter); 537 while (dr) { 538 if (dr->expire && dr->expire < time_second) { 539 struct nd_defrouter *t; 540 t = TAILQ_NEXT(dr, dr_entry); 541 defrtrlist_del(dr); 542 dr = t; 543 } else { 544 dr = TAILQ_NEXT(dr, dr_entry); 545 } 546 } 547 548 /* 549 * expire interface addresses. 550 * in the past the loop was inside prefix expiry processing. 551 * However, from a stricter speci-confrmance standpoint, we should 552 * rather separate address lifetimes and prefix lifetimes. 553 */ 554 addrloop: 555 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 556 nia6 = ia6->ia_next; 557 /* check address lifetime */ 558 lt6 = &ia6->ia6_lifetime; 559 if (IFA6_IS_INVALID(ia6)) { 560 int regen = 0; 561 562 /* 563 * If the expiring address is temporary, try 564 * regenerating a new one. This would be useful when 565 * we suspended a laptop PC, then turned it on after a 566 * period that could invalidate all temporary 567 * addresses. Although we may have to restart the 568 * loop (see below), it must be after purging the 569 * address. Otherwise, we'd see an infinite loop of 570 * regeneration. 571 */ 572 if (ip6_use_tempaddr && 573 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 574 if (regen_tmpaddr(ia6) == 0) 575 regen = 1; 576 } 577 578 in6_purgeaddr(&ia6->ia_ifa); 579 580 if (regen) 581 goto addrloop; /* XXX: see below */ 582 } 583 if (IFA6_IS_DEPRECATED(ia6)) { 584 int oldflags = ia6->ia6_flags; 585 586 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 587 588 /* 589 * If a temporary address has just become deprecated, 590 * regenerate a new one if possible. 591 */ 592 if (ip6_use_tempaddr && 593 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 594 (oldflags & IN6_IFF_DEPRECATED) == 0) { 595 596 if (regen_tmpaddr(ia6) == 0) { 597 /* 598 * A new temporary address is 599 * generated. 600 * XXX: this means the address chain 601 * has changed while we are still in 602 * the loop. Although the change 603 * would not cause disaster (because 604 * it's not a deletion, but an 605 * addition,) we'd rather restart the 606 * loop just for safety. Or does this 607 * significantly reduce performance?? 608 */ 609 goto addrloop; 610 } 611 } 612 } else { 613 /* 614 * A new RA might have made a deprecated address 615 * preferred. 616 */ 617 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 618 } 619 } 620 621 /* expire prefix list */ 622 pr = nd_prefix.lh_first; 623 while (pr) { 624 /* 625 * check prefix lifetime. 626 * since pltime is just for autoconf, pltime processing for 627 * prefix is not necessary. 628 */ 629 if (pr->ndpr_expire && pr->ndpr_expire < time_second) { 630 struct nd_prefix *t; 631 t = pr->ndpr_next; 632 633 /* 634 * address expiration and prefix expiration are 635 * separate. NEVER perform in6_purgeaddr here. 636 */ 637 638 prelist_remove(pr); 639 pr = t; 640 } else 641 pr = pr->ndpr_next; 642 } 643 splx(s); 644 } 645 646 static int 647 regen_tmpaddr(ia6) 648 struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */ 649 { 650 struct ifaddr *ifa; 651 struct ifnet *ifp; 652 struct in6_ifaddr *public_ifa6 = NULL; 653 654 ifp = ia6->ia_ifa.ifa_ifp; 655 for (ifa = ifp->if_addrlist.tqh_first; ifa; 656 ifa = ifa->ifa_list.tqe_next) 657 { 658 struct in6_ifaddr *it6; 659 660 if (ifa->ifa_addr->sa_family != AF_INET6) 661 continue; 662 663 it6 = (struct in6_ifaddr *)ifa; 664 665 /* ignore no autoconf addresses. */ 666 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 667 continue; 668 669 /* ignore autoconf addresses with different prefixes. */ 670 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 671 continue; 672 673 /* 674 * Now we are looking at an autoconf address with the same 675 * prefix as ours. If the address is temporary and is still 676 * preferred, do not create another one. It would be rare, but 677 * could happen, for example, when we resume a laptop PC after 678 * a long period. 679 */ 680 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 681 !IFA6_IS_DEPRECATED(it6)) { 682 public_ifa6 = NULL; 683 break; 684 } 685 686 /* 687 * This is a public autoconf address that has the same prefix 688 * as ours. If it is preferred, keep it. We can't break the 689 * loop here, because there may be a still-preferred temporary 690 * address with the prefix. 691 */ 692 if (!IFA6_IS_DEPRECATED(it6)) 693 public_ifa6 = it6; 694 } 695 696 if (public_ifa6 != NULL) { 697 int e; 698 699 if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) { 700 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 701 " tmp addr,errno=%d\n", e); 702 return(-1); 703 } 704 return(0); 705 } 706 707 return(-1); 708 } 709 710 /* 711 * Nuke neighbor cache/prefix/default router management table, right before 712 * ifp goes away. 713 */ 714 void 715 nd6_purge(ifp) 716 struct ifnet *ifp; 717 { 718 struct llinfo_nd6 *ln, *nln; 719 struct nd_defrouter *dr, *ndr, drany; 720 struct nd_prefix *pr, *npr; 721 722 /* Nuke default router list entries toward ifp */ 723 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 724 /* 725 * The first entry of the list may be stored in 726 * the routing table, so we'll delete it later. 727 */ 728 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 729 ndr = TAILQ_NEXT(dr, dr_entry); 730 if (dr->ifp == ifp) 731 defrtrlist_del(dr); 732 } 733 dr = TAILQ_FIRST(&nd_defrouter); 734 if (dr->ifp == ifp) 735 defrtrlist_del(dr); 736 } 737 738 /* Nuke prefix list entries toward ifp */ 739 for (pr = nd_prefix.lh_first; pr; pr = npr) { 740 npr = pr->ndpr_next; 741 if (pr->ndpr_ifp == ifp) { 742 /* 743 * Previously, pr->ndpr_addr is removed as well, 744 * but I strongly believe we don't have to do it. 745 * nd6_purge() is only called from in6_ifdetach(), 746 * which removes all the associated interface addresses 747 * by itself. 748 * (jinmei@kame.net 20010129) 749 */ 750 prelist_remove(pr); 751 } 752 } 753 754 /* cancel default outgoing interface setting */ 755 if (nd6_defifindex == ifp->if_index) 756 nd6_setdefaultiface(0); 757 758 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 759 /* refresh default router list */ 760 bzero(&drany, sizeof(drany)); 761 defrouter_delreq(&drany, 0); 762 defrouter_select(); 763 } 764 765 /* 766 * Nuke neighbor cache entries for the ifp. 767 * Note that rt->rt_ifp may not be the same as ifp, 768 * due to KAME goto ours hack. See RTM_RESOLVE case in 769 * nd6_rtrequest(), and ip6_input(). 770 */ 771 ln = llinfo_nd6.ln_next; 772 while (ln && ln != &llinfo_nd6) { 773 struct rtentry *rt; 774 struct sockaddr_dl *sdl; 775 776 nln = ln->ln_next; 777 rt = ln->ln_rt; 778 if (rt && rt->rt_gateway && 779 rt->rt_gateway->sa_family == AF_LINK) { 780 sdl = (struct sockaddr_dl *)rt->rt_gateway; 781 if (sdl->sdl_index == ifp->if_index) 782 nln = nd6_free(rt); 783 } 784 ln = nln; 785 } 786 } 787 788 struct rtentry * 789 nd6_lookup(addr6, create, ifp) 790 struct in6_addr *addr6; 791 int create; 792 struct ifnet *ifp; 793 { 794 struct rtentry *rt; 795 struct sockaddr_in6 sin6; 796 797 bzero(&sin6, sizeof(sin6)); 798 sin6.sin6_len = sizeof(struct sockaddr_in6); 799 sin6.sin6_family = AF_INET6; 800 sin6.sin6_addr = *addr6; 801 #ifdef SCOPEDROUTING 802 sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6); 803 #endif 804 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 805 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 806 /* 807 * This is the case for the default route. 808 * If we want to create a neighbor cache for the address, we 809 * should free the route for the destination and allocate an 810 * interface route. 811 */ 812 if (create) { 813 RTFREE(rt); 814 rt = 0; 815 } 816 } 817 if (!rt) { 818 if (create && ifp) { 819 int e; 820 821 /* 822 * If no route is available and create is set, 823 * we allocate a host route for the destination 824 * and treat it like an interface route. 825 * This hack is necessary for a neighbor which can't 826 * be covered by our own prefix. 827 */ 828 struct ifaddr *ifa = 829 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 830 if (ifa == NULL) 831 return(NULL); 832 833 /* 834 * Create a new route. RTF_LLINFO is necessary 835 * to create a Neighbor Cache entry for the 836 * destination in nd6_rtrequest which will be 837 * called in rtrequest via ifa->ifa_rtrequest. 838 */ 839 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 840 ifa->ifa_addr, 841 (struct sockaddr *)&all1_sa, 842 (ifa->ifa_flags | 843 RTF_HOST | RTF_LLINFO) & 844 ~RTF_CLONING, 845 &rt)) != 0) 846 log(LOG_ERR, 847 "nd6_lookup: failed to add route for a " 848 "neighbor(%s), errno=%d\n", 849 ip6_sprintf(addr6), e); 850 if (rt == NULL) 851 return(NULL); 852 if (rt->rt_llinfo) { 853 struct llinfo_nd6 *ln = 854 (struct llinfo_nd6 *)rt->rt_llinfo; 855 ln->ln_state = ND6_LLINFO_NOSTATE; 856 } 857 } else 858 return(NULL); 859 } 860 rt->rt_refcnt--; 861 /* 862 * Validation for the entry. 863 * Note that the check for rt_llinfo is necessary because a cloned 864 * route from a parent route that has the L flag (e.g. the default 865 * route to a p2p interface) may have the flag, too, while the 866 * destination is not actually a neighbor. 867 * XXX: we can't use rt->rt_ifp to check for the interface, since 868 * it might be the loopback interface if the entry is for our 869 * own address on a non-loopback interface. Instead, we should 870 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 871 * interface. 872 */ 873 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 874 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 875 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 876 if (create) { 877 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 878 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 879 /* xxx more logs... kazu */ 880 } 881 return(NULL); 882 } 883 return(rt); 884 } 885 886 /* 887 * Detect if a given IPv6 address identifies a neighbor on a given link. 888 * XXX: should take care of the destination of a p2p link? 889 */ 890 int 891 nd6_is_addr_neighbor(addr, ifp) 892 struct sockaddr_in6 *addr; 893 struct ifnet *ifp; 894 { 895 struct ifaddr *ifa; 896 int i; 897 898 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 899 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 900 901 /* 902 * A link-local address is always a neighbor. 903 * XXX: we should use the sin6_scope_id field rather than the embedded 904 * interface index. 905 */ 906 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 907 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 908 return(1); 909 910 /* 911 * If the address matches one of our addresses, 912 * it should be a neighbor. 913 */ 914 for (ifa = ifp->if_addrlist.tqh_first; 915 ifa; 916 ifa = ifa->ifa_list.tqe_next) 917 { 918 if (ifa->ifa_addr->sa_family != AF_INET6) 919 next: continue; 920 921 for (i = 0; i < 4; i++) { 922 if ((IFADDR6(ifa).s6_addr32[i] ^ 923 addr->sin6_addr.s6_addr32[i]) & 924 IFMASK6(ifa).s6_addr32[i]) 925 goto next; 926 } 927 return(1); 928 } 929 930 /* 931 * Even if the address matches none of our addresses, it might be 932 * in the neighbor cache. 933 */ 934 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 935 return(1); 936 937 return(0); 938 #undef IFADDR6 939 #undef IFMASK6 940 } 941 942 /* 943 * Free an nd6 llinfo entry. 944 */ 945 struct llinfo_nd6 * 946 nd6_free(rt) 947 struct rtentry *rt; 948 { 949 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 950 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 951 struct nd_defrouter *dr; 952 953 /* 954 * we used to have pfctlinput(PRC_HOSTDEAD) here. 955 * even though it is not harmful, it was not really necessary. 956 */ 957 958 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 959 int s; 960 s = splnet(); 961 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 962 rt->rt_ifp); 963 964 if (ln->ln_router || dr) { 965 /* 966 * rt6_flush must be called whether or not the neighbor 967 * is in the Default Router List. 968 * See a corresponding comment in nd6_na_input(). 969 */ 970 rt6_flush(&in6, rt->rt_ifp); 971 } 972 973 if (dr) { 974 /* 975 * Unreachablity of a router might affect the default 976 * router selection and on-link detection of advertised 977 * prefixes. 978 */ 979 980 /* 981 * Temporarily fake the state to choose a new default 982 * router and to perform on-link determination of 983 * prefixes correctly. 984 * Below the state will be set correctly, 985 * or the entry itself will be deleted. 986 */ 987 ln->ln_state = ND6_LLINFO_INCOMPLETE; 988 989 /* 990 * Since defrouter_select() does not affect the 991 * on-link determination and MIP6 needs the check 992 * before the default router selection, we perform 993 * the check now. 994 */ 995 pfxlist_onlink_check(); 996 997 if (dr == TAILQ_FIRST(&nd_defrouter)) { 998 /* 999 * It is used as the current default router, 1000 * so we have to move it to the end of the 1001 * list and choose a new one. 1002 * XXX: it is not very efficient if this is 1003 * the only router. 1004 */ 1005 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 1006 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 1007 1008 defrouter_select(); 1009 } 1010 } 1011 splx(s); 1012 } 1013 1014 /* 1015 * Before deleting the entry, remember the next entry as the 1016 * return value. We need this because pfxlist_onlink_check() above 1017 * might have freed other entries (particularly the old next entry) as 1018 * a side effect (XXX). 1019 */ 1020 next = ln->ln_next; 1021 1022 /* 1023 * Detach the route from the routing tree and the list of neighbor 1024 * caches, and disable the route entry not to be used in already 1025 * cached routes. 1026 */ 1027 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1028 rt_mask(rt), 0, (struct rtentry **)0); 1029 1030 return(next); 1031 } 1032 1033 /* 1034 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1035 * 1036 * XXX cost-effective metods? 1037 */ 1038 void 1039 nd6_nud_hint(rt, dst6, force) 1040 struct rtentry *rt; 1041 struct in6_addr *dst6; 1042 int force; 1043 { 1044 struct llinfo_nd6 *ln; 1045 1046 /* 1047 * If the caller specified "rt", use that. Otherwise, resolve the 1048 * routing table by supplied "dst6". 1049 */ 1050 if (!rt) { 1051 if (!dst6) 1052 return; 1053 if (!(rt = nd6_lookup(dst6, 0, NULL))) 1054 return; 1055 } 1056 1057 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1058 (rt->rt_flags & RTF_LLINFO) == 0 || 1059 !rt->rt_llinfo || !rt->rt_gateway || 1060 rt->rt_gateway->sa_family != AF_LINK) { 1061 /* This is not a host route. */ 1062 return; 1063 } 1064 1065 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1066 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1067 return; 1068 1069 /* 1070 * if we get upper-layer reachability confirmation many times, 1071 * it is possible we have false information. 1072 */ 1073 if (!force) { 1074 ln->ln_byhint++; 1075 if (ln->ln_byhint > nd6_maxnudhint) 1076 return; 1077 } 1078 1079 ln->ln_state = ND6_LLINFO_REACHABLE; 1080 if (ln->ln_expire) 1081 ln->ln_expire = time_second + 1082 nd_ifinfo[rt->rt_ifp->if_index].reachable; 1083 } 1084 1085 void 1086 nd6_rtrequest(req, rt, info) 1087 int req; 1088 struct rtentry *rt; 1089 struct rt_addrinfo *info; /* xxx unused */ 1090 { 1091 struct sockaddr *gate = rt->rt_gateway; 1092 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1093 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1094 struct ifnet *ifp = rt->rt_ifp; 1095 struct ifaddr *ifa; 1096 1097 if ((rt->rt_flags & RTF_GATEWAY)) 1098 return; 1099 1100 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1101 /* 1102 * This is probably an interface direct route for a link 1103 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1104 * We do not need special treatment below for such a route. 1105 * Moreover, the RTF_LLINFO flag which would be set below 1106 * would annoy the ndp(8) command. 1107 */ 1108 return; 1109 } 1110 1111 if (req == RTM_RESOLVE && 1112 (nd6_need_cache(ifp) == 0 || /* stf case */ 1113 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1114 /* 1115 * FreeBSD and BSD/OS often make a cloned host route based 1116 * on a less-specific route (e.g. the default route). 1117 * If the less specific route does not have a "gateway" 1118 * (this is the case when the route just goes to a p2p or an 1119 * stf interface), we'll mistakenly make a neighbor cache for 1120 * the host route, and will see strange neighbor solicitation 1121 * for the corresponding destination. In order to avoid the 1122 * confusion, we check if the destination of the route is 1123 * a neighbor in terms of neighbor discovery, and stop the 1124 * process if not. Additionally, we remove the LLINFO flag 1125 * so that ndp(8) will not try to get the neighbor information 1126 * of the destination. 1127 */ 1128 rt->rt_flags &= ~RTF_LLINFO; 1129 return; 1130 } 1131 1132 switch (req) { 1133 case RTM_ADD: 1134 /* 1135 * There is no backward compatibility :) 1136 * 1137 * if ((rt->rt_flags & RTF_HOST) == 0 && 1138 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1139 * rt->rt_flags |= RTF_CLONING; 1140 */ 1141 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1142 /* 1143 * Case 1: This route should come from 1144 * a route to interface. RTF_LLINFO flag is set 1145 * for a host route whose destination should be 1146 * treated as on-link. 1147 */ 1148 rt_setgate(rt, rt_key(rt), 1149 (struct sockaddr *)&null_sdl); 1150 gate = rt->rt_gateway; 1151 SDL(gate)->sdl_type = ifp->if_type; 1152 SDL(gate)->sdl_index = ifp->if_index; 1153 if (ln) 1154 ln->ln_expire = time_second; 1155 #if 1 1156 if (ln && ln->ln_expire == 0) { 1157 /* kludge for desktops */ 1158 #if 0 1159 printf("nd6_rtequest: time.tv_sec is zero; " 1160 "treat it as 1\n"); 1161 #endif 1162 ln->ln_expire = 1; 1163 } 1164 #endif 1165 if ((rt->rt_flags & RTF_CLONING)) 1166 break; 1167 } 1168 /* 1169 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1170 * We don't do that here since llinfo is not ready yet. 1171 * 1172 * There are also couple of other things to be discussed: 1173 * - unsolicited NA code needs improvement beforehand 1174 * - RFC2461 says we MAY send multicast unsolicited NA 1175 * (7.2.6 paragraph 4), however, it also says that we 1176 * SHOULD provide a mechanism to prevent multicast NA storm. 1177 * we don't have anything like it right now. 1178 * note that the mechanism needs a mutual agreement 1179 * between proxies, which means that we need to implement 1180 * a new protocol, or a new kludge. 1181 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1182 * we need to check ip6forwarding before sending it. 1183 * (or should we allow proxy ND configuration only for 1184 * routers? there's no mention about proxy ND from hosts) 1185 */ 1186 #if 0 1187 /* XXX it does not work */ 1188 if (rt->rt_flags & RTF_ANNOUNCE) 1189 nd6_na_output(ifp, 1190 &SIN6(rt_key(rt))->sin6_addr, 1191 &SIN6(rt_key(rt))->sin6_addr, 1192 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1193 1, NULL); 1194 #endif 1195 /* FALLTHROUGH */ 1196 case RTM_RESOLVE: 1197 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1198 /* 1199 * Address resolution isn't necessary for a point to 1200 * point link, so we can skip this test for a p2p link. 1201 */ 1202 if (gate->sa_family != AF_LINK || 1203 gate->sa_len < sizeof(null_sdl)) { 1204 log(LOG_DEBUG, 1205 "nd6_rtrequest: bad gateway value: %s\n", 1206 if_name(ifp)); 1207 break; 1208 } 1209 SDL(gate)->sdl_type = ifp->if_type; 1210 SDL(gate)->sdl_index = ifp->if_index; 1211 } 1212 if (ln != NULL) 1213 break; /* This happens on a route change */ 1214 /* 1215 * Case 2: This route may come from cloning, or a manual route 1216 * add with a LL address. 1217 */ 1218 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1219 rt->rt_llinfo = (caddr_t)ln; 1220 if (!ln) { 1221 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1222 break; 1223 } 1224 nd6_inuse++; 1225 nd6_allocated++; 1226 Bzero(ln, sizeof(*ln)); 1227 ln->ln_rt = rt; 1228 /* this is required for "ndp" command. - shin */ 1229 if (req == RTM_ADD) { 1230 /* 1231 * gate should have some valid AF_LINK entry, 1232 * and ln->ln_expire should have some lifetime 1233 * which is specified by ndp command. 1234 */ 1235 ln->ln_state = ND6_LLINFO_REACHABLE; 1236 ln->ln_byhint = 0; 1237 } else { 1238 /* 1239 * When req == RTM_RESOLVE, rt is created and 1240 * initialized in rtrequest(), so rt_expire is 0. 1241 */ 1242 ln->ln_state = ND6_LLINFO_NOSTATE; 1243 ln->ln_expire = time_second; 1244 } 1245 rt->rt_flags |= RTF_LLINFO; 1246 ln->ln_next = llinfo_nd6.ln_next; 1247 llinfo_nd6.ln_next = ln; 1248 ln->ln_prev = &llinfo_nd6; 1249 ln->ln_next->ln_prev = ln; 1250 1251 /* 1252 * check if rt_key(rt) is one of my address assigned 1253 * to the interface. 1254 */ 1255 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1256 &SIN6(rt_key(rt))->sin6_addr); 1257 if (ifa) { 1258 caddr_t macp = nd6_ifptomac(ifp); 1259 ln->ln_expire = 0; 1260 ln->ln_state = ND6_LLINFO_REACHABLE; 1261 ln->ln_byhint = 0; 1262 if (macp) { 1263 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1264 SDL(gate)->sdl_alen = ifp->if_addrlen; 1265 } 1266 if (nd6_useloopback) { 1267 rt->rt_ifp = &loif[0]; /* XXX */ 1268 /* 1269 * Make sure rt_ifa be equal to the ifaddr 1270 * corresponding to the address. 1271 * We need this because when we refer 1272 * rt_ifa->ia6_flags in ip6_input, we assume 1273 * that the rt_ifa points to the address instead 1274 * of the loopback address. 1275 */ 1276 if (ifa != rt->rt_ifa) { 1277 IFAFREE(rt->rt_ifa); 1278 IFAREF(ifa); 1279 rt->rt_ifa = ifa; 1280 } 1281 } 1282 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1283 ln->ln_expire = 0; 1284 ln->ln_state = ND6_LLINFO_REACHABLE; 1285 ln->ln_byhint = 0; 1286 1287 /* join solicited node multicast for proxy ND */ 1288 if (ifp->if_flags & IFF_MULTICAST) { 1289 struct in6_addr llsol; 1290 int error; 1291 1292 llsol = SIN6(rt_key(rt))->sin6_addr; 1293 llsol.s6_addr16[0] = htons(0xff02); 1294 llsol.s6_addr16[1] = htons(ifp->if_index); 1295 llsol.s6_addr32[1] = 0; 1296 llsol.s6_addr32[2] = htonl(1); 1297 llsol.s6_addr8[12] = 0xff; 1298 1299 if (!in6_addmulti(&llsol, ifp, &error)) { 1300 nd6log((LOG_ERR, "%s: failed to join " 1301 "%s (errno=%d)\n", if_name(ifp), 1302 ip6_sprintf(&llsol), error)); 1303 } 1304 } 1305 } 1306 break; 1307 1308 case RTM_DELETE: 1309 if (!ln) 1310 break; 1311 /* leave from solicited node multicast for proxy ND */ 1312 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1313 (ifp->if_flags & IFF_MULTICAST) != 0) { 1314 struct in6_addr llsol; 1315 struct in6_multi *in6m; 1316 1317 llsol = SIN6(rt_key(rt))->sin6_addr; 1318 llsol.s6_addr16[0] = htons(0xff02); 1319 llsol.s6_addr16[1] = htons(ifp->if_index); 1320 llsol.s6_addr32[1] = 0; 1321 llsol.s6_addr32[2] = htonl(1); 1322 llsol.s6_addr8[12] = 0xff; 1323 1324 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1325 if (in6m) 1326 in6_delmulti(in6m); 1327 } 1328 nd6_inuse--; 1329 ln->ln_next->ln_prev = ln->ln_prev; 1330 ln->ln_prev->ln_next = ln->ln_next; 1331 ln->ln_prev = NULL; 1332 rt->rt_llinfo = 0; 1333 rt->rt_flags &= ~RTF_LLINFO; 1334 if (ln->ln_hold) 1335 m_freem(ln->ln_hold); 1336 Free((caddr_t)ln); 1337 } 1338 } 1339 1340 int 1341 nd6_ioctl(cmd, data, ifp) 1342 u_long cmd; 1343 caddr_t data; 1344 struct ifnet *ifp; 1345 { 1346 struct in6_drlist *drl = (struct in6_drlist *)data; 1347 struct in6_prlist *prl = (struct in6_prlist *)data; 1348 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1349 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1350 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1351 struct nd_defrouter *dr, any; 1352 struct nd_prefix *pr; 1353 struct rtentry *rt; 1354 int i = 0, error = 0; 1355 int s; 1356 1357 switch (cmd) { 1358 case SIOCGDRLST_IN6: 1359 /* 1360 * obsolete API, use sysctl under net.inet6.icmp6 1361 */ 1362 bzero(drl, sizeof(*drl)); 1363 s = splnet(); 1364 dr = TAILQ_FIRST(&nd_defrouter); 1365 while (dr && i < DRLSTSIZ) { 1366 drl->defrouter[i].rtaddr = dr->rtaddr; 1367 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1368 /* XXX: need to this hack for KAME stack */ 1369 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1370 } else 1371 log(LOG_ERR, 1372 "default router list contains a " 1373 "non-linklocal address(%s)\n", 1374 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1375 1376 drl->defrouter[i].flags = dr->flags; 1377 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1378 drl->defrouter[i].expire = dr->expire; 1379 drl->defrouter[i].if_index = dr->ifp->if_index; 1380 i++; 1381 dr = TAILQ_NEXT(dr, dr_entry); 1382 } 1383 splx(s); 1384 break; 1385 case SIOCGPRLST_IN6: 1386 /* 1387 * obsolete API, use sysctl under net.inet6.icmp6 1388 */ 1389 /* 1390 * XXX meaning of fields, especialy "raflags", is very 1391 * differnet between RA prefix list and RR/static prefix list. 1392 * how about separating ioctls into two? 1393 */ 1394 bzero(prl, sizeof(*prl)); 1395 s = splnet(); 1396 pr = nd_prefix.lh_first; 1397 while (pr && i < PRLSTSIZ) { 1398 struct nd_pfxrouter *pfr; 1399 int j; 1400 1401 (void)in6_embedscope(&prl->prefix[i].prefix, 1402 &pr->ndpr_prefix, NULL, NULL); 1403 prl->prefix[i].raflags = pr->ndpr_raf; 1404 prl->prefix[i].prefixlen = pr->ndpr_plen; 1405 prl->prefix[i].vltime = pr->ndpr_vltime; 1406 prl->prefix[i].pltime = pr->ndpr_pltime; 1407 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1408 prl->prefix[i].expire = pr->ndpr_expire; 1409 1410 pfr = pr->ndpr_advrtrs.lh_first; 1411 j = 0; 1412 while (pfr) { 1413 if (j < DRLSTSIZ) { 1414 #define RTRADDR prl->prefix[i].advrtr[j] 1415 RTRADDR = pfr->router->rtaddr; 1416 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1417 /* XXX: hack for KAME */ 1418 RTRADDR.s6_addr16[1] = 0; 1419 } else 1420 log(LOG_ERR, 1421 "a router(%s) advertises " 1422 "a prefix with " 1423 "non-link local address\n", 1424 ip6_sprintf(&RTRADDR)); 1425 #undef RTRADDR 1426 } 1427 j++; 1428 pfr = pfr->pfr_next; 1429 } 1430 prl->prefix[i].advrtrs = j; 1431 prl->prefix[i].origin = PR_ORIG_RA; 1432 1433 i++; 1434 pr = pr->ndpr_next; 1435 } 1436 { 1437 struct rr_prefix *rpp; 1438 1439 for (rpp = LIST_FIRST(&rr_prefix); rpp; 1440 rpp = LIST_NEXT(rpp, rp_entry)) { 1441 if (i >= PRLSTSIZ) 1442 break; 1443 (void)in6_embedscope(&prl->prefix[i].prefix, 1444 &pr->ndpr_prefix, NULL, NULL); 1445 prl->prefix[i].raflags = rpp->rp_raf; 1446 prl->prefix[i].prefixlen = rpp->rp_plen; 1447 prl->prefix[i].vltime = rpp->rp_vltime; 1448 prl->prefix[i].pltime = rpp->rp_pltime; 1449 prl->prefix[i].if_index = rpp->rp_ifp->if_index; 1450 prl->prefix[i].expire = rpp->rp_expire; 1451 prl->prefix[i].advrtrs = 0; 1452 prl->prefix[i].origin = rpp->rp_origin; 1453 i++; 1454 } 1455 } 1456 splx(s); 1457 1458 break; 1459 case OSIOCGIFINFO_IN6: 1460 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1461 error = EINVAL; 1462 break; 1463 } 1464 ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu; 1465 ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu; 1466 ndi->ndi.basereachable = 1467 nd_ifinfo[ifp->if_index].basereachable; 1468 ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable; 1469 ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans; 1470 ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags; 1471 ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm; 1472 ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim; 1473 ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra; 1474 break; 1475 case SIOCGIFINFO_IN6: 1476 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1477 error = EINVAL; 1478 break; 1479 } 1480 ndi->ndi = nd_ifinfo[ifp->if_index]; 1481 break; 1482 case SIOCSIFINFO_FLAGS: 1483 /* XXX: almost all other fields of ndi->ndi is unused */ 1484 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1485 error = EINVAL; 1486 break; 1487 } 1488 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags; 1489 break; 1490 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1491 /* flush default router list */ 1492 /* 1493 * xxx sumikawa: should not delete route if default 1494 * route equals to the top of default router list 1495 */ 1496 bzero(&any, sizeof(any)); 1497 defrouter_delreq(&any, 0); 1498 defrouter_select(); 1499 /* xxx sumikawa: flush prefix list */ 1500 break; 1501 case SIOCSPFXFLUSH_IN6: 1502 { 1503 /* flush all the prefix advertised by routers */ 1504 struct nd_prefix *pr, *next; 1505 1506 s = splnet(); 1507 for (pr = nd_prefix.lh_first; pr; pr = next) { 1508 struct in6_ifaddr *ia, *ia_next; 1509 1510 next = pr->ndpr_next; 1511 1512 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1513 continue; /* XXX */ 1514 1515 /* do we really have to remove addresses as well? */ 1516 for (ia = in6_ifaddr; ia; ia = ia_next) { 1517 /* ia might be removed. keep the next ptr. */ 1518 ia_next = ia->ia_next; 1519 1520 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1521 continue; 1522 1523 if (ia->ia6_ndpr == pr) 1524 in6_purgeaddr(&ia->ia_ifa); 1525 } 1526 prelist_remove(pr); 1527 } 1528 splx(s); 1529 break; 1530 } 1531 case SIOCSRTRFLUSH_IN6: 1532 { 1533 /* flush all the default routers */ 1534 struct nd_defrouter *dr, *next; 1535 1536 s = splnet(); 1537 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1538 /* 1539 * The first entry of the list may be stored in 1540 * the routing table, so we'll delete it later. 1541 */ 1542 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1543 next = TAILQ_NEXT(dr, dr_entry); 1544 defrtrlist_del(dr); 1545 } 1546 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1547 } 1548 splx(s); 1549 break; 1550 } 1551 case SIOCGNBRINFO_IN6: 1552 { 1553 struct llinfo_nd6 *ln; 1554 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1555 1556 /* 1557 * XXX: KAME specific hack for scoped addresses 1558 * XXXX: for other scopes than link-local? 1559 */ 1560 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1561 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1562 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1563 1564 if (*idp == 0) 1565 *idp = htons(ifp->if_index); 1566 } 1567 1568 s = splnet(); 1569 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1570 error = EINVAL; 1571 splx(s); 1572 break; 1573 } 1574 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1575 nbi->state = ln->ln_state; 1576 nbi->asked = ln->ln_asked; 1577 nbi->isrouter = ln->ln_router; 1578 nbi->expire = ln->ln_expire; 1579 splx(s); 1580 1581 break; 1582 } 1583 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1584 ndif->ifindex = nd6_defifindex; 1585 break; 1586 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1587 return(nd6_setdefaultiface(ndif->ifindex)); 1588 break; 1589 } 1590 return(error); 1591 } 1592 1593 /* 1594 * Create neighbor cache entry and cache link-layer address, 1595 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1596 */ 1597 struct rtentry * 1598 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1599 struct ifnet *ifp; 1600 struct in6_addr *from; 1601 char *lladdr; 1602 int lladdrlen; 1603 int type; /* ICMP6 type */ 1604 int code; /* type dependent information */ 1605 { 1606 struct rtentry *rt = NULL; 1607 struct llinfo_nd6 *ln = NULL; 1608 int is_newentry; 1609 struct sockaddr_dl *sdl = NULL; 1610 int do_update; 1611 int olladdr; 1612 int llchange; 1613 int newstate = 0; 1614 1615 if (!ifp) 1616 panic("ifp == NULL in nd6_cache_lladdr"); 1617 if (!from) 1618 panic("from == NULL in nd6_cache_lladdr"); 1619 1620 /* nothing must be updated for unspecified address */ 1621 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1622 return NULL; 1623 1624 /* 1625 * Validation about ifp->if_addrlen and lladdrlen must be done in 1626 * the caller. 1627 * 1628 * XXX If the link does not have link-layer adderss, what should 1629 * we do? (ifp->if_addrlen == 0) 1630 * Spec says nothing in sections for RA, RS and NA. There's small 1631 * description on it in NS section (RFC 2461 7.2.3). 1632 */ 1633 1634 rt = nd6_lookup(from, 0, ifp); 1635 if (!rt) { 1636 #if 0 1637 /* nothing must be done if there's no lladdr */ 1638 if (!lladdr || !lladdrlen) 1639 return NULL; 1640 #endif 1641 1642 rt = nd6_lookup(from, 1, ifp); 1643 is_newentry = 1; 1644 } else { 1645 /* do nothing if static ndp is set */ 1646 if (rt->rt_flags & RTF_STATIC) 1647 return NULL; 1648 is_newentry = 0; 1649 } 1650 1651 if (!rt) 1652 return NULL; 1653 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1654 fail: 1655 (void)nd6_free(rt); 1656 return NULL; 1657 } 1658 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1659 if (!ln) 1660 goto fail; 1661 if (!rt->rt_gateway) 1662 goto fail; 1663 if (rt->rt_gateway->sa_family != AF_LINK) 1664 goto fail; 1665 sdl = SDL(rt->rt_gateway); 1666 1667 olladdr = (sdl->sdl_alen) ? 1 : 0; 1668 if (olladdr && lladdr) { 1669 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1670 llchange = 1; 1671 else 1672 llchange = 0; 1673 } else 1674 llchange = 0; 1675 1676 /* 1677 * newentry olladdr lladdr llchange (*=record) 1678 * 0 n n -- (1) 1679 * 0 y n -- (2) 1680 * 0 n y -- (3) * STALE 1681 * 0 y y n (4) * 1682 * 0 y y y (5) * STALE 1683 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1684 * 1 -- y -- (7) * STALE 1685 */ 1686 1687 if (lladdr) { /* (3-5) and (7) */ 1688 /* 1689 * Record source link-layer address 1690 * XXX is it dependent to ifp->if_type? 1691 */ 1692 sdl->sdl_alen = ifp->if_addrlen; 1693 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1694 } 1695 1696 if (!is_newentry) { 1697 if ((!olladdr && lladdr) /* (3) */ 1698 || (olladdr && lladdr && llchange)) { /* (5) */ 1699 do_update = 1; 1700 newstate = ND6_LLINFO_STALE; 1701 } else /* (1-2,4) */ 1702 do_update = 0; 1703 } else { 1704 do_update = 1; 1705 if (!lladdr) /* (6) */ 1706 newstate = ND6_LLINFO_NOSTATE; 1707 else /* (7) */ 1708 newstate = ND6_LLINFO_STALE; 1709 } 1710 1711 if (do_update) { 1712 /* 1713 * Update the state of the neighbor cache. 1714 */ 1715 ln->ln_state = newstate; 1716 1717 if (ln->ln_state == ND6_LLINFO_STALE) { 1718 /* 1719 * XXX: since nd6_output() below will cause 1720 * state tansition to DELAY and reset the timer, 1721 * we must set the timer now, although it is actually 1722 * meaningless. 1723 */ 1724 ln->ln_expire = time_second + nd6_gctimer; 1725 1726 if (ln->ln_hold) { 1727 /* 1728 * we assume ifp is not a p2p here, so just 1729 * set the 2nd argument as the 1st one. 1730 */ 1731 nd6_output(ifp, ifp, ln->ln_hold, 1732 (struct sockaddr_in6 *)rt_key(rt), 1733 rt); 1734 ln->ln_hold = NULL; 1735 } 1736 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1737 /* probe right away */ 1738 ln->ln_expire = time_second; 1739 } 1740 } 1741 1742 /* 1743 * ICMP6 type dependent behavior. 1744 * 1745 * NS: clear IsRouter if new entry 1746 * RS: clear IsRouter 1747 * RA: set IsRouter if there's lladdr 1748 * redir: clear IsRouter if new entry 1749 * 1750 * RA case, (1): 1751 * The spec says that we must set IsRouter in the following cases: 1752 * - If lladdr exist, set IsRouter. This means (1-5). 1753 * - If it is old entry (!newentry), set IsRouter. This means (7). 1754 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1755 * A quetion arises for (1) case. (1) case has no lladdr in the 1756 * neighbor cache, this is similar to (6). 1757 * This case is rare but we figured that we MUST NOT set IsRouter. 1758 * 1759 * newentry olladdr lladdr llchange NS RS RA redir 1760 * D R 1761 * 0 n n -- (1) c ? s 1762 * 0 y n -- (2) c s s 1763 * 0 n y -- (3) c s s 1764 * 0 y y n (4) c s s 1765 * 0 y y y (5) c s s 1766 * 1 -- n -- (6) c c c s 1767 * 1 -- y -- (7) c c s c s 1768 * 1769 * (c=clear s=set) 1770 */ 1771 switch (type & 0xff) { 1772 case ND_NEIGHBOR_SOLICIT: 1773 /* 1774 * New entry must have is_router flag cleared. 1775 */ 1776 if (is_newentry) /* (6-7) */ 1777 ln->ln_router = 0; 1778 break; 1779 case ND_REDIRECT: 1780 /* 1781 * If the icmp is a redirect to a better router, always set the 1782 * is_router flag. Otherwise, if the entry is newly created, 1783 * clear the flag. [RFC 2461, sec 8.3] 1784 */ 1785 if (code == ND_REDIRECT_ROUTER) 1786 ln->ln_router = 1; 1787 else if (is_newentry) /* (6-7) */ 1788 ln->ln_router = 0; 1789 break; 1790 case ND_ROUTER_SOLICIT: 1791 /* 1792 * is_router flag must always be cleared. 1793 */ 1794 ln->ln_router = 0; 1795 break; 1796 case ND_ROUTER_ADVERT: 1797 /* 1798 * Mark an entry with lladdr as a router. 1799 */ 1800 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1801 || (is_newentry && lladdr)) { /* (7) */ 1802 ln->ln_router = 1; 1803 } 1804 break; 1805 } 1806 1807 /* 1808 * When the link-layer address of a router changes, select the 1809 * best router again. In particular, when the neighbor entry is newly 1810 * created, it might affect the selection policy. 1811 * Question: can we restrict the first condition to the "is_newentry" 1812 * case? 1813 * XXX: when we hear an RA from a new router with the link-layer 1814 * address option, defrouter_select() is called twice, since 1815 * defrtrlist_update called the function as well. However, I believe 1816 * we can compromise the overhead, since it only happens the first 1817 * time. 1818 * XXX: although defrouter_select() should not have a bad effect 1819 * for those are not autoconfigured hosts, we explicitly avoid such 1820 * cases for safety. 1821 */ 1822 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1823 defrouter_select(); 1824 1825 return rt; 1826 } 1827 1828 static void 1829 nd6_slowtimo(ignored_arg) 1830 void *ignored_arg; 1831 { 1832 int s = splnet(); 1833 int i; 1834 struct nd_ifinfo *nd6if; 1835 1836 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1837 nd6_slowtimo, NULL); 1838 for (i = 1; i < if_index + 1; i++) { 1839 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) 1840 continue; 1841 nd6if = &nd_ifinfo[i]; 1842 if (nd6if->basereachable && /* already initialized */ 1843 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1844 /* 1845 * Since reachable time rarely changes by router 1846 * advertisements, we SHOULD insure that a new random 1847 * value gets recomputed at least once every few hours. 1848 * (RFC 2461, 6.3.4) 1849 */ 1850 nd6if->recalctm = nd6_recalc_reachtm_interval; 1851 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1852 } 1853 } 1854 splx(s); 1855 } 1856 1857 #define senderr(e) { error = (e); goto bad;} 1858 int 1859 nd6_output(ifp, origifp, m0, dst, rt0) 1860 struct ifnet *ifp; 1861 struct ifnet *origifp; 1862 struct mbuf *m0; 1863 struct sockaddr_in6 *dst; 1864 struct rtentry *rt0; 1865 { 1866 struct mbuf *m = m0; 1867 struct rtentry *rt = rt0; 1868 struct sockaddr_in6 *gw6 = NULL; 1869 struct llinfo_nd6 *ln = NULL; 1870 int error = 0; 1871 1872 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1873 goto sendpkt; 1874 1875 if (nd6_need_cache(ifp) == 0) 1876 goto sendpkt; 1877 1878 /* 1879 * next hop determination. This routine is derived from ether_outpout. 1880 */ 1881 if (rt) { 1882 if ((rt->rt_flags & RTF_UP) == 0) { 1883 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL)) != 1884 NULL) 1885 { 1886 rt->rt_refcnt--; 1887 if (rt->rt_ifp != ifp) { 1888 /* XXX: loop care? */ 1889 return nd6_output(ifp, origifp, m0, 1890 dst, rt); 1891 } 1892 } else 1893 senderr(EHOSTUNREACH); 1894 } 1895 1896 if (rt->rt_flags & RTF_GATEWAY) { 1897 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1898 1899 /* 1900 * We skip link-layer address resolution and NUD 1901 * if the gateway is not a neighbor from ND point 1902 * of view, regardless of the value of nd_ifinfo.flags. 1903 * The second condition is a bit tricky; we skip 1904 * if the gateway is our own address, which is 1905 * sometimes used to install a route to a p2p link. 1906 */ 1907 if (!nd6_is_addr_neighbor(gw6, ifp) || 1908 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1909 /* 1910 * We allow this kind of tricky route only 1911 * when the outgoing interface is p2p. 1912 * XXX: we may need a more generic rule here. 1913 */ 1914 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1915 senderr(EHOSTUNREACH); 1916 1917 goto sendpkt; 1918 } 1919 1920 if (rt->rt_gwroute == 0) 1921 goto lookup; 1922 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1923 rtfree(rt); rt = rt0; 1924 lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); 1925 if ((rt = rt->rt_gwroute) == 0) 1926 senderr(EHOSTUNREACH); 1927 } 1928 } 1929 } 1930 1931 /* 1932 * Address resolution or Neighbor Unreachability Detection 1933 * for the next hop. 1934 * At this point, the destination of the packet must be a unicast 1935 * or an anycast address(i.e. not a multicast). 1936 */ 1937 1938 /* Look up the neighbor cache for the nexthop */ 1939 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1940 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1941 else { 1942 /* 1943 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1944 * the condition below is not very efficient. But we believe 1945 * it is tolerable, because this should be a rare case. 1946 */ 1947 if (nd6_is_addr_neighbor(dst, ifp) && 1948 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1949 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1950 } 1951 if (!ln || !rt) { 1952 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1953 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) { 1954 log(LOG_DEBUG, 1955 "nd6_output: can't allocate llinfo for %s " 1956 "(ln=%p, rt=%p)\n", 1957 ip6_sprintf(&dst->sin6_addr), ln, rt); 1958 senderr(EIO); /* XXX: good error? */ 1959 } 1960 1961 goto sendpkt; /* send anyway */ 1962 } 1963 1964 /* We don't have to do link-layer address resolution on a p2p link. */ 1965 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1966 ln->ln_state < ND6_LLINFO_REACHABLE) { 1967 ln->ln_state = ND6_LLINFO_STALE; 1968 ln->ln_expire = time_second + nd6_gctimer; 1969 } 1970 1971 /* 1972 * The first time we send a packet to a neighbor whose entry is 1973 * STALE, we have to change the state to DELAY and a sets a timer to 1974 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1975 * neighbor unreachability detection on expiration. 1976 * (RFC 2461 7.3.3) 1977 */ 1978 if (ln->ln_state == ND6_LLINFO_STALE) { 1979 ln->ln_asked = 0; 1980 ln->ln_state = ND6_LLINFO_DELAY; 1981 ln->ln_expire = time_second + nd6_delay; 1982 } 1983 1984 /* 1985 * If the neighbor cache entry has a state other than INCOMPLETE 1986 * (i.e. its link-layer address is already resolved), just 1987 * send the packet. 1988 */ 1989 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1990 goto sendpkt; 1991 1992 /* 1993 * There is a neighbor cache entry, but no ethernet address 1994 * response yet. Replace the held mbuf (if any) with this 1995 * latest one. 1996 * 1997 * This code conforms to the rate-limiting rule described in Section 1998 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1999 * an NS below. 2000 */ 2001 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2002 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2003 if (ln->ln_hold) 2004 m_freem(ln->ln_hold); 2005 ln->ln_hold = m; 2006 if (ln->ln_expire) { 2007 if (ln->ln_asked < nd6_mmaxtries && 2008 ln->ln_expire < time_second) { 2009 ln->ln_asked++; 2010 ln->ln_expire = time_second + 2011 nd_ifinfo[ifp->if_index].retrans / 1000; 2012 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2013 } 2014 } 2015 return(0); 2016 2017 sendpkt: 2018 2019 #ifdef MAC 2020 mac_create_mbuf_linklayer(ifp, m); 2021 #endif 2022 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2023 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2024 rt)); 2025 } 2026 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 2027 2028 bad: 2029 if (m) 2030 m_freem(m); 2031 return (error); 2032 } 2033 #undef senderr 2034 2035 int 2036 nd6_need_cache(ifp) 2037 struct ifnet *ifp; 2038 { 2039 /* 2040 * XXX: we currently do not make neighbor cache on any interface 2041 * other than ARCnet, Ethernet, FDDI and GIF. 2042 * 2043 * RFC2893 says: 2044 * - unidirectional tunnels needs no ND 2045 */ 2046 switch (ifp->if_type) { 2047 case IFT_ARCNET: 2048 case IFT_ETHER: 2049 case IFT_FDDI: 2050 case IFT_IEEE1394: 2051 #ifdef IFT_L2VLAN 2052 case IFT_L2VLAN: 2053 #endif 2054 #ifdef IFT_IEEE80211 2055 case IFT_IEEE80211: 2056 #endif 2057 case IFT_GIF: /* XXX need more cases? */ 2058 return(1); 2059 default: 2060 return(0); 2061 } 2062 } 2063 2064 int 2065 nd6_storelladdr(ifp, rt, m, dst, desten) 2066 struct ifnet *ifp; 2067 struct rtentry *rt; 2068 struct mbuf *m; 2069 struct sockaddr *dst; 2070 u_char *desten; 2071 { 2072 int i; 2073 struct sockaddr_dl *sdl; 2074 2075 if (m->m_flags & M_MCAST) { 2076 switch (ifp->if_type) { 2077 case IFT_ETHER: 2078 case IFT_FDDI: 2079 #ifdef IFT_L2VLAN 2080 case IFT_L2VLAN: 2081 #endif 2082 #ifdef IFT_IEEE80211 2083 case IFT_IEEE80211: 2084 #endif 2085 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2086 desten); 2087 return(1); 2088 case IFT_IEEE1394: 2089 /* 2090 * netbsd can use if_broadcastaddr, but we don't do so 2091 * to reduce # of ifdef. 2092 */ 2093 for (i = 0; i < ifp->if_addrlen; i++) 2094 desten[i] = ~0; 2095 return(1); 2096 case IFT_ARCNET: 2097 *desten = 0; 2098 return(1); 2099 default: 2100 m_freem(m); 2101 return(0); 2102 } 2103 } 2104 2105 if (rt == NULL) { 2106 /* this could happen, if we could not allocate memory */ 2107 m_freem(m); 2108 return(0); 2109 } 2110 if (rt->rt_gateway->sa_family != AF_LINK) { 2111 printf("nd6_storelladdr: something odd happens\n"); 2112 m_freem(m); 2113 return(0); 2114 } 2115 sdl = SDL(rt->rt_gateway); 2116 if (sdl->sdl_alen == 0) { 2117 /* this should be impossible, but we bark here for debugging */ 2118 printf("nd6_storelladdr: sdl_alen == 0\n"); 2119 m_freem(m); 2120 return(0); 2121 } 2122 2123 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2124 return(1); 2125 } 2126 2127 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2128 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2129 #ifdef SYSCTL_DECL 2130 SYSCTL_DECL(_net_inet6_icmp6); 2131 #endif 2132 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2133 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2134 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2135 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2136 2137 static int 2138 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2139 { 2140 int error; 2141 char buf[1024]; 2142 struct in6_defrouter *d, *de; 2143 struct nd_defrouter *dr; 2144 2145 if (req->newptr) 2146 return EPERM; 2147 error = 0; 2148 2149 for (dr = TAILQ_FIRST(&nd_defrouter); 2150 dr; 2151 dr = TAILQ_NEXT(dr, dr_entry)) { 2152 d = (struct in6_defrouter *)buf; 2153 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2154 2155 if (d + 1 <= de) { 2156 bzero(d, sizeof(*d)); 2157 d->rtaddr.sin6_family = AF_INET6; 2158 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2159 if (in6_recoverscope(&d->rtaddr, &dr->rtaddr, 2160 dr->ifp) != 0) 2161 log(LOG_ERR, 2162 "scope error in " 2163 "default router list (%s)\n", 2164 ip6_sprintf(&dr->rtaddr)); 2165 d->flags = dr->flags; 2166 d->rtlifetime = dr->rtlifetime; 2167 d->expire = dr->expire; 2168 d->if_index = dr->ifp->if_index; 2169 } else 2170 panic("buffer too short"); 2171 2172 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2173 if (error) 2174 break; 2175 } 2176 return error; 2177 } 2178 2179 static int 2180 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2181 { 2182 int error; 2183 char buf[1024]; 2184 struct in6_prefix *p, *pe; 2185 struct nd_prefix *pr; 2186 2187 if (req->newptr) 2188 return EPERM; 2189 error = 0; 2190 2191 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2192 u_short advrtrs; 2193 size_t advance; 2194 struct sockaddr_in6 *sin6, *s6; 2195 struct nd_pfxrouter *pfr; 2196 2197 p = (struct in6_prefix *)buf; 2198 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2199 2200 if (p + 1 <= pe) { 2201 bzero(p, sizeof(*p)); 2202 sin6 = (struct sockaddr_in6 *)(p + 1); 2203 2204 p->prefix = pr->ndpr_prefix; 2205 if (in6_recoverscope(&p->prefix, 2206 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2207 log(LOG_ERR, 2208 "scope error in prefix list (%s)\n", 2209 ip6_sprintf(&p->prefix.sin6_addr)); 2210 p->raflags = pr->ndpr_raf; 2211 p->prefixlen = pr->ndpr_plen; 2212 p->vltime = pr->ndpr_vltime; 2213 p->pltime = pr->ndpr_pltime; 2214 p->if_index = pr->ndpr_ifp->if_index; 2215 p->expire = pr->ndpr_expire; 2216 p->refcnt = pr->ndpr_refcnt; 2217 p->flags = pr->ndpr_stateflags; 2218 p->origin = PR_ORIG_RA; 2219 advrtrs = 0; 2220 for (pfr = pr->ndpr_advrtrs.lh_first; 2221 pfr; 2222 pfr = pfr->pfr_next) { 2223 if ((void *)&sin6[advrtrs + 1] > 2224 (void *)pe) { 2225 advrtrs++; 2226 continue; 2227 } 2228 s6 = &sin6[advrtrs]; 2229 bzero(s6, sizeof(*s6)); 2230 s6->sin6_family = AF_INET6; 2231 s6->sin6_len = sizeof(*sin6); 2232 if (in6_recoverscope(s6, 2233 &pfr->router->rtaddr, 2234 pfr->router->ifp) != 0) 2235 log(LOG_ERR, 2236 "scope error in " 2237 "prefix list (%s)\n", 2238 ip6_sprintf(&pfr->router->rtaddr)); 2239 advrtrs++; 2240 } 2241 p->advrtrs = advrtrs; 2242 } else 2243 panic("buffer too short"); 2244 2245 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2246 error = SYSCTL_OUT(req, buf, advance); 2247 if (error) 2248 break; 2249 } 2250 return error; 2251 } 2252