1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_route.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/eventhandler.h> 42 #include <sys/callout.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/protosw.h> 52 #include <sys/errno.h> 53 #include <sys/syslog.h> 54 #include <sys/rwlock.h> 55 #include <sys/queue.h> 56 #include <sys/sdt.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_private.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/route/route_ctl.h> 66 #include <net/route/nhop.h> 67 #include <net/vnet.h> 68 69 #include <netinet/in.h> 70 #include <netinet/in_kdtrace.h> 71 #include <net/if_llatbl.h> 72 #include <netinet/if_ether.h> 73 #include <netinet6/in6_fib.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 VNET_DEFINE_STATIC(int, nd6_prune) = 1; 95 #define V_nd6_prune VNET(nd6_prune) 96 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_PRUNE, nd6_prune, 97 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_prune), 0, 98 "Frequency in seconds of checks for expired prefixes and routers"); 99 100 VNET_DEFINE_STATIC(int, nd6_delay) = 5; 101 #define V_nd6_delay VNET(nd6_delay) 102 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DELAY, nd6_delay, 103 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_delay), 0, 104 "Delay in seconds before probing for reachability"); 105 106 VNET_DEFINE_STATIC(int, nd6_umaxtries) = 3; 107 #define V_nd6_umaxtries VNET(nd6_umaxtries) 108 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_UMAXTRIES, nd6_umaxtries, 109 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_umaxtries), 0, 110 "Number of ICMPv6 NS messages sent during reachability detection"); 111 112 VNET_DEFINE(int, nd6_mmaxtries) = 3; 113 #define V_nd6_mmaxtries VNET(nd6_mmaxtries) 114 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MMAXTRIES, nd6_mmaxtries, 115 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_mmaxtries), 0, 116 "Number of ICMPv6 NS messages sent during address resolution"); 117 118 VNET_DEFINE_STATIC(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 119 * collection timer */ 120 #define V_nd6_gctimer VNET(nd6_gctimer) 121 122 /* preventing too many loops in ND option parsing */ 123 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 124 125 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved 126 * ND entries */ 127 #define V_nd6_maxndopt VNET(nd6_maxndopt) 128 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 129 130 #ifdef ND6_DEBUG 131 VNET_DEFINE(int, nd6_debug) = 1; 132 #else 133 VNET_DEFINE(int, nd6_debug) = 0; 134 #endif 135 #define V_nd6_debug VNET(nd6_debug) 136 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DEBUG, nd6_debug, 137 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_debug), 0, 138 "Log NDP debug messages"); 139 140 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 141 142 VNET_DEFINE(struct nd_prhead, nd_prefix); 143 VNET_DEFINE(struct rwlock, nd6_lock); 144 VNET_DEFINE(uint64_t, nd6_list_genid); 145 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 146 147 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 148 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 149 150 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 151 152 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 153 struct ifnet *); 154 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 155 static void nd6_slowtimo(void *); 156 static int regen_tmpaddr(struct in6_ifaddr *); 157 static void nd6_free(struct llentry **, int); 158 static void nd6_free_redirect(const struct llentry *); 159 static void nd6_llinfo_timer(void *); 160 static void nd6_llinfo_settimer_locked(struct llentry *, long); 161 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *, 162 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 163 static int nd6_need_cache(struct ifnet *); 164 165 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 166 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 167 168 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 169 #define V_nd6_timer_ch VNET(nd6_timer_ch) 170 171 static void 172 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 173 { 174 struct rt_addrinfo rtinfo; 175 struct sockaddr_in6 dst; 176 struct sockaddr_dl gw; 177 struct ifnet *ifp; 178 int type; 179 int fibnum; 180 181 LLE_WLOCK_ASSERT(lle); 182 183 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 184 return; 185 186 switch (evt) { 187 case LLENTRY_RESOLVED: 188 type = RTM_ADD; 189 KASSERT(lle->la_flags & LLE_VALID, 190 ("%s: %p resolved but not valid?", __func__, lle)); 191 break; 192 case LLENTRY_EXPIRED: 193 type = RTM_DELETE; 194 break; 195 default: 196 return; 197 } 198 199 ifp = lltable_get_ifp(lle->lle_tbl); 200 201 bzero(&dst, sizeof(dst)); 202 bzero(&gw, sizeof(gw)); 203 bzero(&rtinfo, sizeof(rtinfo)); 204 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 205 dst.sin6_scope_id = in6_getscopezone(ifp, 206 in6_addrscope(&dst.sin6_addr)); 207 gw.sdl_len = sizeof(struct sockaddr_dl); 208 gw.sdl_family = AF_LINK; 209 gw.sdl_alen = ifp->if_addrlen; 210 gw.sdl_index = ifp->if_index; 211 gw.sdl_type = ifp->if_type; 212 if (evt == LLENTRY_RESOLVED) 213 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 214 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 215 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 216 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 217 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 218 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 219 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 220 } 221 222 /* 223 * A handler for interface link layer address change event. 224 */ 225 static void 226 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 227 { 228 if (ifp->if_afdata[AF_INET6] == NULL) 229 return; 230 231 lltable_update_ifaddr(LLTABLE6(ifp)); 232 } 233 234 void 235 nd6_init(void) 236 { 237 238 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 239 rw_init(&V_nd6_lock, "nd6 list"); 240 241 LIST_INIT(&V_nd_prefix); 242 nd6_defrouter_init(); 243 244 /* Start timers. */ 245 callout_init(&V_nd6_slowtimo_ch, 1); 246 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 247 nd6_slowtimo, curvnet); 248 249 callout_init(&V_nd6_timer_ch, 1); 250 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 251 252 nd6_dad_init(); 253 if (IS_DEFAULT_VNET(curvnet)) { 254 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 255 NULL, EVENTHANDLER_PRI_ANY); 256 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 257 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 258 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 259 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 260 } 261 } 262 263 #ifdef VIMAGE 264 void 265 nd6_destroy(void) 266 { 267 268 callout_drain(&V_nd6_slowtimo_ch); 269 callout_drain(&V_nd6_timer_ch); 270 if (IS_DEFAULT_VNET(curvnet)) { 271 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 272 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 273 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 274 } 275 rw_destroy(&V_nd6_lock); 276 mtx_destroy(&V_nd6_onlink_mtx); 277 } 278 #endif 279 280 struct nd_ifinfo * 281 nd6_ifattach(struct ifnet *ifp) 282 { 283 struct nd_ifinfo *nd; 284 285 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 286 nd->initialized = 1; 287 288 nd->chlim = IPV6_DEFHLIM; 289 nd->basereachable = REACHABLE_TIME; 290 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 291 nd->retrans = RETRANS_TIMER; 292 293 nd->flags = ND6_IFF_PERFORMNUD; 294 295 /* Set IPv6 disabled on all interfaces but loopback by default. */ 296 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 297 nd->flags |= ND6_IFF_IFDISABLED; 298 299 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 300 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 301 * default regardless of the V_ip6_auto_linklocal configuration to 302 * give a reasonable default behavior. 303 */ 304 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE && 305 ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK)) 306 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 307 /* 308 * A loopback interface does not need to accept RTADV. 309 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 310 * default regardless of the V_ip6_accept_rtadv configuration to 311 * prevent the interface from accepting RA messages arrived 312 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 313 */ 314 if (V_ip6_accept_rtadv && 315 !(ifp->if_flags & IFF_LOOPBACK) && 316 (ifp->if_type != IFT_BRIDGE)) { 317 nd->flags |= ND6_IFF_ACCEPT_RTADV; 318 /* If we globally accept rtadv, assume IPv6 on. */ 319 nd->flags &= ~ND6_IFF_IFDISABLED; 320 } 321 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 322 nd->flags |= ND6_IFF_NO_RADR; 323 324 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 325 nd6_setmtu0(ifp, nd); 326 327 return nd; 328 } 329 330 void 331 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 332 { 333 struct epoch_tracker et; 334 struct ifaddr *ifa, *next; 335 336 NET_EPOCH_ENTER(et); 337 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 338 if (ifa->ifa_addr->sa_family != AF_INET6) 339 continue; 340 341 /* stop DAD processing */ 342 nd6_dad_stop(ifa); 343 } 344 NET_EPOCH_EXIT(et); 345 346 free(nd, M_IP6NDP); 347 } 348 349 /* 350 * Reset ND level link MTU. This function is called when the physical MTU 351 * changes, which means we might have to adjust the ND level MTU. 352 */ 353 void 354 nd6_setmtu(struct ifnet *ifp) 355 { 356 if (ifp->if_afdata[AF_INET6] == NULL) 357 return; 358 359 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 360 } 361 362 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 363 void 364 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 365 { 366 u_int32_t omaxmtu; 367 368 omaxmtu = ndi->maxmtu; 369 ndi->maxmtu = ifp->if_mtu; 370 371 /* 372 * Decreasing the interface MTU under IPV6 minimum MTU may cause 373 * undesirable situation. We thus notify the operator of the change 374 * explicitly. The check for omaxmtu is necessary to restrict the 375 * log to the case of changing the MTU, not initializing it. 376 */ 377 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 378 log(LOG_NOTICE, "nd6_setmtu0: " 379 "new link MTU on %s (%lu) is too small for IPv6\n", 380 if_name(ifp), (unsigned long)ndi->maxmtu); 381 } 382 383 if (ndi->maxmtu > V_in6_maxmtu) 384 in6_setmaxmtu(); /* check all interfaces just in case */ 385 386 } 387 388 void 389 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 390 { 391 392 bzero(ndopts, sizeof(*ndopts)); 393 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 394 ndopts->nd_opts_last 395 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 396 397 if (icmp6len == 0) { 398 ndopts->nd_opts_done = 1; 399 ndopts->nd_opts_search = NULL; 400 } 401 } 402 403 /* 404 * Take one ND option. 405 */ 406 struct nd_opt_hdr * 407 nd6_option(union nd_opts *ndopts) 408 { 409 struct nd_opt_hdr *nd_opt; 410 int olen; 411 412 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 413 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 414 __func__)); 415 if (ndopts->nd_opts_search == NULL) 416 return NULL; 417 if (ndopts->nd_opts_done) 418 return NULL; 419 420 nd_opt = ndopts->nd_opts_search; 421 422 /* make sure nd_opt_len is inside the buffer */ 423 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 424 bzero(ndopts, sizeof(*ndopts)); 425 return NULL; 426 } 427 428 olen = nd_opt->nd_opt_len << 3; 429 if (olen == 0) { 430 /* 431 * Message validation requires that all included 432 * options have a length that is greater than zero. 433 */ 434 bzero(ndopts, sizeof(*ndopts)); 435 return NULL; 436 } 437 438 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 439 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 440 /* option overruns the end of buffer, invalid */ 441 bzero(ndopts, sizeof(*ndopts)); 442 return NULL; 443 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 444 /* reached the end of options chain */ 445 ndopts->nd_opts_done = 1; 446 ndopts->nd_opts_search = NULL; 447 } 448 return nd_opt; 449 } 450 451 /* 452 * Parse multiple ND options. 453 * This function is much easier to use, for ND routines that do not need 454 * multiple options of the same type. 455 */ 456 int 457 nd6_options(union nd_opts *ndopts) 458 { 459 struct nd_opt_hdr *nd_opt; 460 int i = 0; 461 462 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 463 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 464 __func__)); 465 if (ndopts->nd_opts_search == NULL) 466 return 0; 467 468 while (1) { 469 nd_opt = nd6_option(ndopts); 470 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 471 /* 472 * Message validation requires that all included 473 * options have a length that is greater than zero. 474 */ 475 ICMP6STAT_INC(icp6s_nd_badopt); 476 bzero(ndopts, sizeof(*ndopts)); 477 return -1; 478 } 479 480 if (nd_opt == NULL) 481 goto skip1; 482 483 switch (nd_opt->nd_opt_type) { 484 case ND_OPT_SOURCE_LINKADDR: 485 case ND_OPT_TARGET_LINKADDR: 486 case ND_OPT_MTU: 487 case ND_OPT_REDIRECTED_HEADER: 488 case ND_OPT_NONCE: 489 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 490 nd6log((LOG_INFO, 491 "duplicated ND6 option found (type=%d)\n", 492 nd_opt->nd_opt_type)); 493 /* XXX bark? */ 494 } else { 495 ndopts->nd_opt_array[nd_opt->nd_opt_type] 496 = nd_opt; 497 } 498 break; 499 case ND_OPT_PREFIX_INFORMATION: 500 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 501 ndopts->nd_opt_array[nd_opt->nd_opt_type] 502 = nd_opt; 503 } 504 ndopts->nd_opts_pi_end = 505 (struct nd_opt_prefix_info *)nd_opt; 506 break; 507 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 508 case ND_OPT_RDNSS: /* RFC 6106 */ 509 case ND_OPT_DNSSL: /* RFC 6106 */ 510 /* 511 * Silently ignore options we know and do not care about 512 * in the kernel. 513 */ 514 break; 515 default: 516 /* 517 * Unknown options must be silently ignored, 518 * to accommodate future extension to the protocol. 519 */ 520 nd6log((LOG_DEBUG, 521 "nd6_options: unsupported option %d - " 522 "option ignored\n", nd_opt->nd_opt_type)); 523 } 524 525 skip1: 526 i++; 527 if (i > V_nd6_maxndopt) { 528 ICMP6STAT_INC(icp6s_nd_toomanyopt); 529 nd6log((LOG_INFO, "too many loop in nd opt\n")); 530 break; 531 } 532 533 if (ndopts->nd_opts_done) 534 break; 535 } 536 537 return 0; 538 } 539 540 /* 541 * ND6 timer routine to handle ND6 entries 542 */ 543 static void 544 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 545 { 546 int canceled; 547 548 LLE_WLOCK_ASSERT(ln); 549 550 /* Do not schedule timers for child LLEs. */ 551 if (ln->la_flags & LLE_CHILD) 552 return; 553 554 if (tick < 0) { 555 ln->la_expire = 0; 556 ln->ln_ntick = 0; 557 canceled = callout_stop(&ln->lle_timer); 558 } else { 559 ln->la_expire = time_uptime + tick / hz; 560 LLE_ADDREF(ln); 561 if (tick > INT_MAX) { 562 ln->ln_ntick = tick - INT_MAX; 563 canceled = callout_reset(&ln->lle_timer, INT_MAX, 564 nd6_llinfo_timer, ln); 565 } else { 566 ln->ln_ntick = 0; 567 canceled = callout_reset(&ln->lle_timer, tick, 568 nd6_llinfo_timer, ln); 569 } 570 } 571 if (canceled > 0) 572 LLE_REMREF(ln); 573 } 574 575 /* 576 * Gets source address of the first packet in hold queue 577 * and stores it in @src. 578 * Returns pointer to @src (if hold queue is not empty) or NULL. 579 * 580 * Set noinline to be dtrace-friendly 581 */ 582 static __noinline struct in6_addr * 583 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 584 { 585 struct ip6_hdr hdr; 586 struct mbuf *m; 587 588 if (ln->la_hold == NULL) 589 return (NULL); 590 591 /* 592 * assume every packet in la_hold has the same IP header 593 */ 594 m = ln->la_hold; 595 if (sizeof(hdr) > m->m_len) 596 return (NULL); 597 598 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 599 *src = hdr.ip6_src; 600 601 return (src); 602 } 603 604 /* 605 * Checks if we need to switch from STALE state. 606 * 607 * RFC 4861 requires switching from STALE to DELAY state 608 * on first packet matching entry, waiting V_nd6_delay and 609 * transition to PROBE state (if upper layer confirmation was 610 * not received). 611 * 612 * This code performs a bit differently: 613 * On packet hit we don't change state (but desired state 614 * can be guessed by control plane). However, after V_nd6_delay 615 * seconds code will transition to PROBE state (so DELAY state 616 * is kinda skipped in most situations). 617 * 618 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 619 * we perform the following upon entering STALE state: 620 * 621 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 622 * if packet was transmitted at the start of given interval, we 623 * would be able to switch to PROBE state in V_nd6_delay seconds 624 * as user expects. 625 * 626 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 627 * lle in STALE state (remaining timer value stored in lle_remtime). 628 * 629 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 630 * seconds ago. 631 * 632 * Returns non-zero value if the entry is still STALE (storing 633 * the next timer interval in @pdelay). 634 * 635 * Returns zero value if original timer expired or we need to switch to 636 * PROBE (store that in @do_switch variable). 637 */ 638 static int 639 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 640 { 641 int nd_delay, nd_gctimer; 642 time_t lle_hittime; 643 long delay; 644 645 *do_switch = 0; 646 nd_gctimer = V_nd6_gctimer; 647 nd_delay = V_nd6_delay; 648 649 lle_hittime = llentry_get_hittime(lle); 650 651 if (lle_hittime == 0) { 652 /* 653 * Datapath feedback has been requested upon entering 654 * STALE state. No packets has been passed using this lle. 655 * Ask for the timer reschedule and keep STALE state. 656 */ 657 delay = (long)(MIN(nd_gctimer, nd_delay)); 658 delay *= hz; 659 if (lle->lle_remtime > delay) 660 lle->lle_remtime -= delay; 661 else { 662 delay = lle->lle_remtime; 663 lle->lle_remtime = 0; 664 } 665 666 if (delay == 0) { 667 /* 668 * The original ng6_gctime timeout ended, 669 * no more rescheduling. 670 */ 671 return (0); 672 } 673 674 *pdelay = delay; 675 return (1); 676 } 677 678 /* 679 * Packet received. Verify timestamp 680 */ 681 delay = (long)(time_uptime - lle_hittime); 682 if (delay < nd_delay) { 683 /* 684 * V_nd6_delay still not passed since the first 685 * hit in STALE state. 686 * Reschedule timer and return. 687 */ 688 *pdelay = (long)(nd_delay - delay) * hz; 689 return (1); 690 } 691 692 /* Request switching to probe */ 693 *do_switch = 1; 694 return (0); 695 } 696 697 /* 698 * Switch @lle state to new state optionally arming timers. 699 * 700 * Set noinline to be dtrace-friendly 701 */ 702 __noinline void 703 nd6_llinfo_setstate(struct llentry *lle, int newstate) 704 { 705 struct ifnet *ifp; 706 int nd_gctimer, nd_delay; 707 long delay, remtime; 708 709 delay = 0; 710 remtime = 0; 711 712 switch (newstate) { 713 case ND6_LLINFO_INCOMPLETE: 714 ifp = lle->lle_tbl->llt_ifp; 715 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 716 break; 717 case ND6_LLINFO_REACHABLE: 718 if (!ND6_LLINFO_PERMANENT(lle)) { 719 ifp = lle->lle_tbl->llt_ifp; 720 delay = (long)ND_IFINFO(ifp)->reachable * hz; 721 } 722 break; 723 case ND6_LLINFO_STALE: 724 725 llentry_request_feedback(lle); 726 nd_delay = V_nd6_delay; 727 nd_gctimer = V_nd6_gctimer; 728 729 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 730 remtime = (long)nd_gctimer * hz - delay; 731 break; 732 case ND6_LLINFO_DELAY: 733 lle->la_asked = 0; 734 delay = (long)V_nd6_delay * hz; 735 break; 736 } 737 738 if (delay > 0) 739 nd6_llinfo_settimer_locked(lle, delay); 740 741 lle->lle_remtime = remtime; 742 lle->ln_state = newstate; 743 } 744 745 /* 746 * Timer-dependent part of nd state machine. 747 * 748 * Set noinline to be dtrace-friendly 749 */ 750 static __noinline void 751 nd6_llinfo_timer(void *arg) 752 { 753 struct epoch_tracker et; 754 struct llentry *ln; 755 struct in6_addr *dst, *pdst, *psrc, src; 756 struct ifnet *ifp; 757 struct nd_ifinfo *ndi; 758 int do_switch, send_ns; 759 long delay; 760 761 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 762 ln = (struct llentry *)arg; 763 ifp = lltable_get_ifp(ln->lle_tbl); 764 CURVNET_SET(ifp->if_vnet); 765 766 ND6_RLOCK(); 767 LLE_WLOCK(ln); 768 if (callout_pending(&ln->lle_timer)) { 769 /* 770 * Here we are a bit odd here in the treatment of 771 * active/pending. If the pending bit is set, it got 772 * rescheduled before I ran. The active 773 * bit we ignore, since if it was stopped 774 * in ll_tablefree() and was currently running 775 * it would have return 0 so the code would 776 * not have deleted it since the callout could 777 * not be stopped so we want to go through 778 * with the delete here now. If the callout 779 * was restarted, the pending bit will be back on and 780 * we just want to bail since the callout_reset would 781 * return 1 and our reference would have been removed 782 * by nd6_llinfo_settimer_locked above since canceled 783 * would have been 1. 784 */ 785 LLE_WUNLOCK(ln); 786 ND6_RUNLOCK(); 787 CURVNET_RESTORE(); 788 return; 789 } 790 NET_EPOCH_ENTER(et); 791 ndi = ND_IFINFO(ifp); 792 send_ns = 0; 793 dst = &ln->r_l3addr.addr6; 794 pdst = dst; 795 796 if (ln->ln_ntick > 0) { 797 if (ln->ln_ntick > INT_MAX) { 798 ln->ln_ntick -= INT_MAX; 799 nd6_llinfo_settimer_locked(ln, INT_MAX); 800 } else { 801 ln->ln_ntick = 0; 802 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 803 } 804 goto done; 805 } 806 807 if (ln->la_flags & LLE_STATIC) { 808 goto done; 809 } 810 811 if (ln->la_flags & LLE_DELETED) { 812 nd6_free(&ln, 0); 813 goto done; 814 } 815 816 switch (ln->ln_state) { 817 case ND6_LLINFO_INCOMPLETE: 818 if (ln->la_asked < V_nd6_mmaxtries) { 819 ln->la_asked++; 820 send_ns = 1; 821 /* Send NS to multicast address */ 822 pdst = NULL; 823 } else { 824 struct mbuf *m; 825 826 ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld); 827 828 m = ln->la_hold; 829 if (m != NULL) { 830 /* 831 * assuming every packet in la_hold has the 832 * same IP header. Send error after unlock. 833 */ 834 ln->la_hold = m->m_nextpkt; 835 m->m_nextpkt = NULL; 836 ln->la_numheld--; 837 } 838 nd6_free(&ln, 0); 839 if (m != NULL) { 840 struct mbuf *n = m; 841 842 /* 843 * if there are any ummapped mbufs, we 844 * must free them, rather than using 845 * them for an ICMP, as they cannot be 846 * checksummed. 847 */ 848 while ((n = n->m_next) != NULL) { 849 if (n->m_flags & M_EXTPG) 850 break; 851 } 852 if (n != NULL) { 853 m_freem(m); 854 m = NULL; 855 } else { 856 icmp6_error2(m, ICMP6_DST_UNREACH, 857 ICMP6_DST_UNREACH_ADDR, 0, ifp); 858 } 859 } 860 } 861 break; 862 case ND6_LLINFO_REACHABLE: 863 if (!ND6_LLINFO_PERMANENT(ln)) 864 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 865 break; 866 867 case ND6_LLINFO_STALE: 868 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 869 /* 870 * No packet has used this entry and GC timeout 871 * has not been passed. Reschedule timer and 872 * return. 873 */ 874 nd6_llinfo_settimer_locked(ln, delay); 875 break; 876 } 877 878 if (do_switch == 0) { 879 /* 880 * GC timer has ended and entry hasn't been used. 881 * Run Garbage collector (RFC 4861, 5.3) 882 */ 883 if (!ND6_LLINFO_PERMANENT(ln)) 884 nd6_free(&ln, 1); 885 break; 886 } 887 888 /* Entry has been used AND delay timer has ended. */ 889 890 /* FALLTHROUGH */ 891 892 case ND6_LLINFO_DELAY: 893 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 894 /* We need NUD */ 895 ln->la_asked = 1; 896 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 897 send_ns = 1; 898 } else 899 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 900 break; 901 case ND6_LLINFO_PROBE: 902 if (ln->la_asked < V_nd6_umaxtries) { 903 ln->la_asked++; 904 send_ns = 1; 905 } else { 906 nd6_free(&ln, 0); 907 } 908 break; 909 default: 910 panic("%s: paths in a dark night can be confusing: %d", 911 __func__, ln->ln_state); 912 } 913 done: 914 if (ln != NULL) 915 ND6_RUNLOCK(); 916 if (send_ns != 0) { 917 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 918 psrc = nd6_llinfo_get_holdsrc(ln, &src); 919 LLE_FREE_LOCKED(ln); 920 ln = NULL; 921 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 922 } 923 924 if (ln != NULL) 925 LLE_FREE_LOCKED(ln); 926 NET_EPOCH_EXIT(et); 927 CURVNET_RESTORE(); 928 } 929 930 /* 931 * ND6 timer routine to expire default route list and prefix list 932 */ 933 void 934 nd6_timer(void *arg) 935 { 936 CURVNET_SET((struct vnet *) arg); 937 struct epoch_tracker et; 938 struct nd_prhead prl; 939 struct nd_prefix *pr, *npr; 940 struct ifnet *ifp; 941 struct in6_ifaddr *ia6, *nia6; 942 uint64_t genid; 943 944 LIST_INIT(&prl); 945 946 NET_EPOCH_ENTER(et); 947 nd6_defrouter_timer(); 948 949 /* 950 * expire interface addresses. 951 * in the past the loop was inside prefix expiry processing. 952 * However, from a stricter speci-confrmance standpoint, we should 953 * rather separate address lifetimes and prefix lifetimes. 954 * 955 * XXXRW: in6_ifaddrhead locking. 956 */ 957 addrloop: 958 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 959 /* check address lifetime */ 960 if (IFA6_IS_INVALID(ia6)) { 961 int regen = 0; 962 963 /* 964 * If the expiring address is temporary, try 965 * regenerating a new one. This would be useful when 966 * we suspended a laptop PC, then turned it on after a 967 * period that could invalidate all temporary 968 * addresses. Although we may have to restart the 969 * loop (see below), it must be after purging the 970 * address. Otherwise, we'd see an infinite loop of 971 * regeneration. 972 */ 973 if (V_ip6_use_tempaddr && 974 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 975 if (regen_tmpaddr(ia6) == 0) 976 regen = 1; 977 } 978 979 in6_purgeaddr(&ia6->ia_ifa); 980 981 if (regen) 982 goto addrloop; /* XXX: see below */ 983 } else if (IFA6_IS_DEPRECATED(ia6)) { 984 int oldflags = ia6->ia6_flags; 985 986 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 987 988 /* 989 * If a temporary address has just become deprecated, 990 * regenerate a new one if possible. 991 */ 992 if (V_ip6_use_tempaddr && 993 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 994 (oldflags & IN6_IFF_DEPRECATED) == 0) { 995 if (regen_tmpaddr(ia6) == 0) { 996 /* 997 * A new temporary address is 998 * generated. 999 * XXX: this means the address chain 1000 * has changed while we are still in 1001 * the loop. Although the change 1002 * would not cause disaster (because 1003 * it's not a deletion, but an 1004 * addition,) we'd rather restart the 1005 * loop just for safety. Or does this 1006 * significantly reduce performance?? 1007 */ 1008 goto addrloop; 1009 } 1010 } 1011 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 1012 /* 1013 * Schedule DAD for a tentative address. This happens 1014 * if the interface was down or not running 1015 * when the address was configured. 1016 */ 1017 int delay; 1018 1019 delay = arc4random() % 1020 (MAX_RTR_SOLICITATION_DELAY * hz); 1021 nd6_dad_start((struct ifaddr *)ia6, delay); 1022 } else { 1023 /* 1024 * Check status of the interface. If it is down, 1025 * mark the address as tentative for future DAD. 1026 */ 1027 ifp = ia6->ia_ifp; 1028 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1029 ((ifp->if_flags & IFF_UP) == 0 || 1030 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1031 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1032 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1033 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1034 } 1035 1036 /* 1037 * A new RA might have made a deprecated address 1038 * preferred. 1039 */ 1040 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1041 } 1042 } 1043 NET_EPOCH_EXIT(et); 1044 1045 ND6_WLOCK(); 1046 restart: 1047 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1048 /* 1049 * Expire prefixes. Since the pltime is only used for 1050 * autoconfigured addresses, pltime processing for prefixes is 1051 * not necessary. 1052 * 1053 * Only unlink after all derived addresses have expired. This 1054 * may not occur until two hours after the prefix has expired 1055 * per RFC 4862. If the prefix expires before its derived 1056 * addresses, mark it off-link. This will be done automatically 1057 * after unlinking if no address references remain. 1058 */ 1059 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1060 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1061 continue; 1062 1063 if (pr->ndpr_addrcnt == 0) { 1064 nd6_prefix_unlink(pr, &prl); 1065 continue; 1066 } 1067 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1068 genid = V_nd6_list_genid; 1069 nd6_prefix_ref(pr); 1070 ND6_WUNLOCK(); 1071 ND6_ONLINK_LOCK(); 1072 (void)nd6_prefix_offlink(pr); 1073 ND6_ONLINK_UNLOCK(); 1074 ND6_WLOCK(); 1075 nd6_prefix_rele(pr); 1076 if (genid != V_nd6_list_genid) 1077 goto restart; 1078 } 1079 } 1080 ND6_WUNLOCK(); 1081 1082 while ((pr = LIST_FIRST(&prl)) != NULL) { 1083 LIST_REMOVE(pr, ndpr_entry); 1084 nd6_prefix_del(pr); 1085 } 1086 1087 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1088 nd6_timer, curvnet); 1089 1090 CURVNET_RESTORE(); 1091 } 1092 1093 /* 1094 * ia6 - deprecated/invalidated temporary address 1095 */ 1096 static int 1097 regen_tmpaddr(struct in6_ifaddr *ia6) 1098 { 1099 struct ifaddr *ifa; 1100 struct ifnet *ifp; 1101 struct in6_ifaddr *public_ifa6 = NULL; 1102 1103 NET_EPOCH_ASSERT(); 1104 1105 ifp = ia6->ia_ifa.ifa_ifp; 1106 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1107 struct in6_ifaddr *it6; 1108 1109 if (ifa->ifa_addr->sa_family != AF_INET6) 1110 continue; 1111 1112 it6 = (struct in6_ifaddr *)ifa; 1113 1114 /* ignore no autoconf addresses. */ 1115 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1116 continue; 1117 1118 /* ignore autoconf addresses with different prefixes. */ 1119 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1120 continue; 1121 1122 /* 1123 * Now we are looking at an autoconf address with the same 1124 * prefix as ours. If the address is temporary and is still 1125 * preferred, do not create another one. It would be rare, but 1126 * could happen, for example, when we resume a laptop PC after 1127 * a long period. 1128 */ 1129 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1130 !IFA6_IS_DEPRECATED(it6)) { 1131 public_ifa6 = NULL; 1132 break; 1133 } 1134 1135 /* 1136 * This is a public autoconf address that has the same prefix 1137 * as ours. If it is preferred, keep it. We can't break the 1138 * loop here, because there may be a still-preferred temporary 1139 * address with the prefix. 1140 */ 1141 if (!IFA6_IS_DEPRECATED(it6)) 1142 public_ifa6 = it6; 1143 } 1144 if (public_ifa6 != NULL) 1145 ifa_ref(&public_ifa6->ia_ifa); 1146 1147 if (public_ifa6 != NULL) { 1148 int e; 1149 1150 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1151 ifa_free(&public_ifa6->ia_ifa); 1152 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1153 " tmp addr,errno=%d\n", e); 1154 return (-1); 1155 } 1156 ifa_free(&public_ifa6->ia_ifa); 1157 return (0); 1158 } 1159 1160 return (-1); 1161 } 1162 1163 /* 1164 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1165 * cache entries are freed in in6_domifdetach(). 1166 */ 1167 void 1168 nd6_purge(struct ifnet *ifp) 1169 { 1170 struct nd_prhead prl; 1171 struct nd_prefix *pr, *npr; 1172 1173 LIST_INIT(&prl); 1174 1175 /* Purge default router list entries toward ifp. */ 1176 nd6_defrouter_purge(ifp); 1177 1178 ND6_WLOCK(); 1179 /* 1180 * Remove prefixes on ifp. We should have already removed addresses on 1181 * this interface, so no addresses should be referencing these prefixes. 1182 */ 1183 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1184 if (pr->ndpr_ifp == ifp) 1185 nd6_prefix_unlink(pr, &prl); 1186 } 1187 ND6_WUNLOCK(); 1188 1189 /* Delete the unlinked prefix objects. */ 1190 while ((pr = LIST_FIRST(&prl)) != NULL) { 1191 LIST_REMOVE(pr, ndpr_entry); 1192 nd6_prefix_del(pr); 1193 } 1194 1195 /* cancel default outgoing interface setting */ 1196 if (V_nd6_defifindex == ifp->if_index) 1197 nd6_setdefaultiface(0); 1198 1199 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1200 /* Refresh default router list. */ 1201 defrouter_select_fib(ifp->if_fib); 1202 } 1203 } 1204 1205 /* 1206 * the caller acquires and releases the lock on the lltbls 1207 * Returns the llentry locked 1208 */ 1209 struct llentry * 1210 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1211 { 1212 struct sockaddr_in6 sin6; 1213 struct llentry *ln; 1214 1215 bzero(&sin6, sizeof(sin6)); 1216 sin6.sin6_len = sizeof(struct sockaddr_in6); 1217 sin6.sin6_family = AF_INET6; 1218 sin6.sin6_addr = *addr6; 1219 1220 IF_AFDATA_LOCK_ASSERT(ifp); 1221 1222 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1223 1224 return (ln); 1225 } 1226 1227 static struct llentry * 1228 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1229 { 1230 struct sockaddr_in6 sin6; 1231 struct llentry *ln; 1232 1233 bzero(&sin6, sizeof(sin6)); 1234 sin6.sin6_len = sizeof(struct sockaddr_in6); 1235 sin6.sin6_family = AF_INET6; 1236 sin6.sin6_addr = *addr6; 1237 1238 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1239 if (ln != NULL) 1240 ln->ln_state = ND6_LLINFO_NOSTATE; 1241 1242 return (ln); 1243 } 1244 1245 /* 1246 * Test whether a given IPv6 address can be a neighbor. 1247 */ 1248 static bool 1249 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1250 { 1251 1252 /* 1253 * A link-local address is always a neighbor. 1254 * XXX: a link does not necessarily specify a single interface. 1255 */ 1256 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1257 struct sockaddr_in6 sin6_copy; 1258 u_int32_t zone; 1259 1260 /* 1261 * We need sin6_copy since sa6_recoverscope() may modify the 1262 * content (XXX). 1263 */ 1264 sin6_copy = *addr; 1265 if (sa6_recoverscope(&sin6_copy)) 1266 return (0); /* XXX: should be impossible */ 1267 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1268 return (0); 1269 if (sin6_copy.sin6_scope_id == zone) 1270 return (1); 1271 else 1272 return (0); 1273 } 1274 /* Checking global unicast */ 1275 1276 /* If an address is directly reachable, it is a neigbor */ 1277 struct nhop_object *nh; 1278 nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0); 1279 if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0) 1280 return (true); 1281 1282 /* 1283 * Check prefixes with desired on-link state, as some may be not 1284 * installed in the routing table. 1285 */ 1286 bool matched = false; 1287 struct nd_prefix *pr; 1288 ND6_RLOCK(); 1289 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1290 if (pr->ndpr_ifp != ifp) 1291 continue; 1292 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) 1293 continue; 1294 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1295 &addr->sin6_addr, &pr->ndpr_mask)) { 1296 matched = true; 1297 break; 1298 } 1299 } 1300 ND6_RUNLOCK(); 1301 if (matched) 1302 return (true); 1303 1304 /* 1305 * If the address is assigned on the node of the other side of 1306 * a p2p interface, the address should be a neighbor. 1307 */ 1308 if (ifp->if_flags & IFF_POINTOPOINT) { 1309 struct ifaddr *ifa; 1310 1311 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1312 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1313 continue; 1314 if (ifa->ifa_dstaddr != NULL && 1315 sa_equal(addr, ifa->ifa_dstaddr)) { 1316 return (true); 1317 } 1318 } 1319 } 1320 1321 /* 1322 * If the default router list is empty, all addresses are regarded 1323 * as on-link, and thus, as a neighbor. 1324 */ 1325 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1326 nd6_defrouter_list_empty() && 1327 V_nd6_defifindex == ifp->if_index) { 1328 return (1); 1329 } 1330 1331 return (0); 1332 } 1333 1334 /* 1335 * Detect if a given IPv6 address identifies a neighbor on a given link. 1336 * XXX: should take care of the destination of a p2p link? 1337 */ 1338 int 1339 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1340 { 1341 struct llentry *lle; 1342 int rc = 0; 1343 1344 NET_EPOCH_ASSERT(); 1345 IF_AFDATA_UNLOCK_ASSERT(ifp); 1346 if (nd6_is_new_addr_neighbor(addr, ifp)) 1347 return (1); 1348 1349 /* 1350 * Even if the address matches none of our addresses, it might be 1351 * in the neighbor cache. 1352 */ 1353 if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) { 1354 LLE_RUNLOCK(lle); 1355 rc = 1; 1356 } 1357 return (rc); 1358 } 1359 1360 static __noinline void 1361 nd6_free_children(struct llentry *lle) 1362 { 1363 struct llentry *child_lle; 1364 1365 NET_EPOCH_ASSERT(); 1366 LLE_WLOCK_ASSERT(lle); 1367 1368 while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) { 1369 LLE_WLOCK(child_lle); 1370 lltable_unlink_child_entry(child_lle); 1371 llentry_free(child_lle); 1372 } 1373 } 1374 1375 /* 1376 * Tries to update @lle address/prepend data with new @lladdr. 1377 * 1378 * Returns true on success. 1379 * In any case, @lle is returned wlocked. 1380 */ 1381 static __noinline bool 1382 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1383 { 1384 u_char buf[LLE_MAX_LINKHDR]; 1385 int fam, off; 1386 size_t sz; 1387 1388 sz = sizeof(buf); 1389 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0) 1390 return (false); 1391 1392 /* Update data */ 1393 lltable_set_entry_addr(ifp, lle, buf, sz, off); 1394 1395 struct llentry *child_lle; 1396 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 1397 LLE_WLOCK(child_lle); 1398 fam = child_lle->r_family; 1399 sz = sizeof(buf); 1400 if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) { 1401 /* success */ 1402 lltable_set_entry_addr(ifp, child_lle, buf, sz, off); 1403 child_lle->ln_state = ND6_LLINFO_REACHABLE; 1404 } 1405 LLE_WUNLOCK(child_lle); 1406 } 1407 1408 return (true); 1409 } 1410 1411 bool 1412 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr) 1413 { 1414 NET_EPOCH_ASSERT(); 1415 LLE_WLOCK_ASSERT(lle); 1416 1417 if (!lltable_acquire_wlock(ifp, lle)) 1418 return (false); 1419 bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr); 1420 IF_AFDATA_WUNLOCK(ifp); 1421 1422 return (ret); 1423 } 1424 1425 /* 1426 * Free an nd6 llinfo entry. 1427 * Since the function would cause significant changes in the kernel, DO NOT 1428 * make it global, unless you have a strong reason for the change, and are sure 1429 * that the change is safe. 1430 * 1431 * Set noinline to be dtrace-friendly 1432 */ 1433 static __noinline void 1434 nd6_free(struct llentry **lnp, int gc) 1435 { 1436 struct ifnet *ifp; 1437 struct llentry *ln; 1438 struct nd_defrouter *dr; 1439 1440 ln = *lnp; 1441 *lnp = NULL; 1442 1443 LLE_WLOCK_ASSERT(ln); 1444 ND6_RLOCK_ASSERT(); 1445 1446 KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle")); 1447 1448 ifp = lltable_get_ifp(ln->lle_tbl); 1449 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1450 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1451 else 1452 dr = NULL; 1453 ND6_RUNLOCK(); 1454 1455 if ((ln->la_flags & LLE_DELETED) == 0) 1456 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1457 1458 /* 1459 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1460 * even though it is not harmful, it was not really necessary. 1461 */ 1462 1463 /* cancel timer */ 1464 nd6_llinfo_settimer_locked(ln, -1); 1465 1466 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1467 if (dr != NULL && dr->expire && 1468 ln->ln_state == ND6_LLINFO_STALE && gc) { 1469 /* 1470 * If the reason for the deletion is just garbage 1471 * collection, and the neighbor is an active default 1472 * router, do not delete it. Instead, reset the GC 1473 * timer using the router's lifetime. 1474 * Simply deleting the entry would affect default 1475 * router selection, which is not necessarily a good 1476 * thing, especially when we're using router preference 1477 * values. 1478 * XXX: the check for ln_state would be redundant, 1479 * but we intentionally keep it just in case. 1480 */ 1481 if (dr->expire > time_uptime) 1482 nd6_llinfo_settimer_locked(ln, 1483 (dr->expire - time_uptime) * hz); 1484 else 1485 nd6_llinfo_settimer_locked(ln, 1486 (long)V_nd6_gctimer * hz); 1487 1488 LLE_REMREF(ln); 1489 LLE_WUNLOCK(ln); 1490 defrouter_rele(dr); 1491 return; 1492 } 1493 1494 if (dr) { 1495 /* 1496 * Unreachability of a router might affect the default 1497 * router selection and on-link detection of advertised 1498 * prefixes. 1499 */ 1500 1501 /* 1502 * Temporarily fake the state to choose a new default 1503 * router and to perform on-link determination of 1504 * prefixes correctly. 1505 * Below the state will be set correctly, 1506 * or the entry itself will be deleted. 1507 */ 1508 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1509 } 1510 1511 if (ln->ln_router || dr) { 1512 /* 1513 * We need to unlock to avoid a LOR with rt6_flush() with the 1514 * rnh and for the calls to pfxlist_onlink_check() and 1515 * defrouter_select_fib() in the block further down for calls 1516 * into nd6_lookup(). We still hold a ref. 1517 */ 1518 LLE_WUNLOCK(ln); 1519 1520 /* 1521 * rt6_flush must be called whether or not the neighbor 1522 * is in the Default Router List. 1523 * See a corresponding comment in nd6_na_input(). 1524 */ 1525 rt6_flush(&ln->r_l3addr.addr6, ifp); 1526 } 1527 1528 if (dr) { 1529 /* 1530 * Since defrouter_select_fib() does not affect the 1531 * on-link determination and MIP6 needs the check 1532 * before the default router selection, we perform 1533 * the check now. 1534 */ 1535 pfxlist_onlink_check(); 1536 1537 /* 1538 * Refresh default router list. 1539 */ 1540 defrouter_select_fib(dr->ifp->if_fib); 1541 } 1542 1543 /* 1544 * If this entry was added by an on-link redirect, remove the 1545 * corresponding host route. 1546 */ 1547 if (ln->la_flags & LLE_REDIRECT) 1548 nd6_free_redirect(ln); 1549 1550 if (ln->ln_router || dr) 1551 LLE_WLOCK(ln); 1552 } 1553 1554 /* 1555 * Save to unlock. We still hold an extra reference and will not 1556 * free(9) in llentry_free() if someone else holds one as well. 1557 */ 1558 LLE_WUNLOCK(ln); 1559 IF_AFDATA_LOCK(ifp); 1560 LLE_WLOCK(ln); 1561 /* Guard against race with other llentry_free(). */ 1562 if (ln->la_flags & LLE_LINKED) { 1563 /* Remove callout reference */ 1564 LLE_REMREF(ln); 1565 lltable_unlink_entry(ln->lle_tbl, ln); 1566 } 1567 IF_AFDATA_UNLOCK(ifp); 1568 1569 nd6_free_children(ln); 1570 1571 llentry_free(ln); 1572 if (dr != NULL) 1573 defrouter_rele(dr); 1574 } 1575 1576 static int 1577 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1578 { 1579 1580 if (nh->nh_flags & NHF_REDIRECT) 1581 return (1); 1582 1583 return (0); 1584 } 1585 1586 /* 1587 * Remove the rtentry for the given llentry, 1588 * both of which were installed by a redirect. 1589 */ 1590 static void 1591 nd6_free_redirect(const struct llentry *ln) 1592 { 1593 int fibnum; 1594 struct sockaddr_in6 sin6; 1595 struct rib_cmd_info rc; 1596 struct epoch_tracker et; 1597 1598 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1599 1600 NET_EPOCH_ENTER(et); 1601 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1602 rib_del_route_px(fibnum, (struct sockaddr *)&sin6, 128, 1603 nd6_isdynrte, NULL, 0, &rc); 1604 NET_EPOCH_EXIT(et); 1605 } 1606 1607 /* 1608 * Updates status of the default router route. 1609 */ 1610 static void 1611 check_release_defrouter(const struct rib_cmd_info *rc, void *_cbdata) 1612 { 1613 struct nd_defrouter *dr; 1614 struct nhop_object *nh; 1615 1616 nh = rc->rc_nh_old; 1617 1618 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1619 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1620 if (dr != NULL) { 1621 dr->installed = 0; 1622 defrouter_rele(dr); 1623 } 1624 } 1625 } 1626 1627 void 1628 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1629 { 1630 1631 #ifdef ROUTE_MPATH 1632 rib_decompose_notification(rc, check_release_defrouter, NULL); 1633 #else 1634 check_release_defrouter(rc, NULL); 1635 #endif 1636 } 1637 1638 int 1639 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1640 { 1641 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1642 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1643 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1644 struct epoch_tracker et; 1645 int error = 0; 1646 1647 if (ifp->if_afdata[AF_INET6] == NULL) 1648 return (EPFNOSUPPORT); 1649 switch (cmd) { 1650 case OSIOCGIFINFO_IN6: 1651 #define ND ndi->ndi 1652 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1653 bzero(&ND, sizeof(ND)); 1654 ND.linkmtu = IN6_LINKMTU(ifp); 1655 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1656 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1657 ND.reachable = ND_IFINFO(ifp)->reachable; 1658 ND.retrans = ND_IFINFO(ifp)->retrans; 1659 ND.flags = ND_IFINFO(ifp)->flags; 1660 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1661 ND.chlim = ND_IFINFO(ifp)->chlim; 1662 break; 1663 case SIOCGIFINFO_IN6: 1664 ND = *ND_IFINFO(ifp); 1665 break; 1666 case SIOCSIFINFO_IN6: 1667 /* 1668 * used to change host variables from userland. 1669 * intended for a use on router to reflect RA configurations. 1670 */ 1671 /* 0 means 'unspecified' */ 1672 if (ND.linkmtu != 0) { 1673 if (ND.linkmtu < IPV6_MMTU || 1674 ND.linkmtu > IN6_LINKMTU(ifp)) { 1675 error = EINVAL; 1676 break; 1677 } 1678 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1679 } 1680 1681 if (ND.basereachable != 0) { 1682 int obasereachable = ND_IFINFO(ifp)->basereachable; 1683 1684 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1685 if (ND.basereachable != obasereachable) 1686 ND_IFINFO(ifp)->reachable = 1687 ND_COMPUTE_RTIME(ND.basereachable); 1688 } 1689 if (ND.retrans != 0) 1690 ND_IFINFO(ifp)->retrans = ND.retrans; 1691 if (ND.chlim != 0) 1692 ND_IFINFO(ifp)->chlim = ND.chlim; 1693 /* FALLTHROUGH */ 1694 case SIOCSIFINFO_FLAGS: 1695 { 1696 struct ifaddr *ifa; 1697 struct in6_ifaddr *ia; 1698 1699 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1700 !(ND.flags & ND6_IFF_IFDISABLED)) { 1701 /* ifdisabled 1->0 transision */ 1702 1703 /* 1704 * If the interface is marked as ND6_IFF_IFDISABLED and 1705 * has an link-local address with IN6_IFF_DUPLICATED, 1706 * do not clear ND6_IFF_IFDISABLED. 1707 * See RFC 4862, Section 5.4.5. 1708 */ 1709 NET_EPOCH_ENTER(et); 1710 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1711 if (ifa->ifa_addr->sa_family != AF_INET6) 1712 continue; 1713 ia = (struct in6_ifaddr *)ifa; 1714 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1715 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1716 break; 1717 } 1718 NET_EPOCH_EXIT(et); 1719 1720 if (ifa != NULL) { 1721 /* LLA is duplicated. */ 1722 ND.flags |= ND6_IFF_IFDISABLED; 1723 log(LOG_ERR, "Cannot enable an interface" 1724 " with a link-local address marked" 1725 " duplicate.\n"); 1726 } else { 1727 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1728 if (ifp->if_flags & IFF_UP) 1729 in6_if_up(ifp); 1730 } 1731 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1732 (ND.flags & ND6_IFF_IFDISABLED)) { 1733 /* ifdisabled 0->1 transision */ 1734 /* Mark all IPv6 address as tentative. */ 1735 1736 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1737 if (V_ip6_dad_count > 0 && 1738 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1739 NET_EPOCH_ENTER(et); 1740 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1741 ifa_link) { 1742 if (ifa->ifa_addr->sa_family != 1743 AF_INET6) 1744 continue; 1745 ia = (struct in6_ifaddr *)ifa; 1746 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1747 } 1748 NET_EPOCH_EXIT(et); 1749 } 1750 } 1751 1752 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1753 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1754 /* auto_linklocal 0->1 transision */ 1755 1756 /* If no link-local address on ifp, configure */ 1757 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1758 in6_ifattach(ifp, NULL); 1759 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1760 ifp->if_flags & IFF_UP) { 1761 /* 1762 * When the IF already has 1763 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1764 * address is assigned, and IFF_UP, try to 1765 * assign one. 1766 */ 1767 NET_EPOCH_ENTER(et); 1768 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1769 ifa_link) { 1770 if (ifa->ifa_addr->sa_family != 1771 AF_INET6) 1772 continue; 1773 ia = (struct in6_ifaddr *)ifa; 1774 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1775 break; 1776 } 1777 NET_EPOCH_EXIT(et); 1778 if (ifa != NULL) 1779 /* No LLA is configured. */ 1780 in6_ifattach(ifp, NULL); 1781 } 1782 } 1783 ND_IFINFO(ifp)->flags = ND.flags; 1784 break; 1785 } 1786 #undef ND 1787 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1788 /* sync kernel routing table with the default router list */ 1789 defrouter_reset(); 1790 defrouter_select_fib(RT_ALL_FIBS); 1791 break; 1792 case SIOCSPFXFLUSH_IN6: 1793 { 1794 /* flush all the prefix advertised by routers */ 1795 struct in6_ifaddr *ia, *ia_next; 1796 struct nd_prefix *pr, *next; 1797 struct nd_prhead prl; 1798 1799 LIST_INIT(&prl); 1800 1801 ND6_WLOCK(); 1802 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1803 if (pr->ndpr_raf_ra_derived) 1804 nd6_prefix_unlink(pr, &prl); 1805 } 1806 ND6_WUNLOCK(); 1807 1808 while ((pr = LIST_FIRST(&prl)) != NULL) { 1809 LIST_REMOVE(pr, ndpr_entry); 1810 /* XXXRW: in6_ifaddrhead locking. */ 1811 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1812 ia_next) { 1813 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1814 continue; 1815 1816 if (ia->ia6_ndpr == pr) 1817 in6_purgeaddr(&ia->ia_ifa); 1818 } 1819 nd6_prefix_del(pr); 1820 } 1821 break; 1822 } 1823 case SIOCSRTRFLUSH_IN6: 1824 { 1825 /* flush all the default routers */ 1826 1827 defrouter_reset(); 1828 nd6_defrouter_flush_all(); 1829 defrouter_select_fib(RT_ALL_FIBS); 1830 break; 1831 } 1832 case SIOCGNBRINFO_IN6: 1833 { 1834 struct llentry *ln; 1835 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1836 1837 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1838 return (error); 1839 1840 NET_EPOCH_ENTER(et); 1841 ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp); 1842 NET_EPOCH_EXIT(et); 1843 1844 if (ln == NULL) { 1845 error = EINVAL; 1846 break; 1847 } 1848 nbi->state = ln->ln_state; 1849 nbi->asked = ln->la_asked; 1850 nbi->isrouter = ln->ln_router; 1851 if (ln->la_expire == 0) 1852 nbi->expire = 0; 1853 else 1854 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1855 (time_second - time_uptime); 1856 LLE_RUNLOCK(ln); 1857 break; 1858 } 1859 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1860 ndif->ifindex = V_nd6_defifindex; 1861 break; 1862 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1863 return (nd6_setdefaultiface(ndif->ifindex)); 1864 } 1865 return (error); 1866 } 1867 1868 /* 1869 * Calculates new isRouter value based on provided parameters and 1870 * returns it. 1871 */ 1872 static int 1873 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1874 int ln_router) 1875 { 1876 1877 /* 1878 * ICMP6 type dependent behavior. 1879 * 1880 * NS: clear IsRouter if new entry 1881 * RS: clear IsRouter 1882 * RA: set IsRouter if there's lladdr 1883 * redir: clear IsRouter if new entry 1884 * 1885 * RA case, (1): 1886 * The spec says that we must set IsRouter in the following cases: 1887 * - If lladdr exist, set IsRouter. This means (1-5). 1888 * - If it is old entry (!newentry), set IsRouter. This means (7). 1889 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1890 * A quetion arises for (1) case. (1) case has no lladdr in the 1891 * neighbor cache, this is similar to (6). 1892 * This case is rare but we figured that we MUST NOT set IsRouter. 1893 * 1894 * is_new old_addr new_addr NS RS RA redir 1895 * D R 1896 * 0 n n (1) c ? s 1897 * 0 y n (2) c s s 1898 * 0 n y (3) c s s 1899 * 0 y y (4) c s s 1900 * 0 y y (5) c s s 1901 * 1 -- n (6) c c c s 1902 * 1 -- y (7) c c s c s 1903 * 1904 * (c=clear s=set) 1905 */ 1906 switch (type & 0xff) { 1907 case ND_NEIGHBOR_SOLICIT: 1908 /* 1909 * New entry must have is_router flag cleared. 1910 */ 1911 if (is_new) /* (6-7) */ 1912 ln_router = 0; 1913 break; 1914 case ND_REDIRECT: 1915 /* 1916 * If the icmp is a redirect to a better router, always set the 1917 * is_router flag. Otherwise, if the entry is newly created, 1918 * clear the flag. [RFC 2461, sec 8.3] 1919 */ 1920 if (code == ND_REDIRECT_ROUTER) 1921 ln_router = 1; 1922 else { 1923 if (is_new) /* (6-7) */ 1924 ln_router = 0; 1925 } 1926 break; 1927 case ND_ROUTER_SOLICIT: 1928 /* 1929 * is_router flag must always be cleared. 1930 */ 1931 ln_router = 0; 1932 break; 1933 case ND_ROUTER_ADVERT: 1934 /* 1935 * Mark an entry with lladdr as a router. 1936 */ 1937 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1938 (is_new && new_addr)) { /* (7) */ 1939 ln_router = 1; 1940 } 1941 break; 1942 } 1943 1944 return (ln_router); 1945 } 1946 1947 /* 1948 * Create neighbor cache entry and cache link-layer address, 1949 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1950 * 1951 * type - ICMP6 type 1952 * code - type dependent information 1953 * 1954 */ 1955 void 1956 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1957 int lladdrlen, int type, int code) 1958 { 1959 struct llentry *ln = NULL, *ln_tmp; 1960 int is_newentry; 1961 int do_update; 1962 int olladdr; 1963 int llchange; 1964 int flags; 1965 uint16_t router = 0; 1966 struct mbuf *chain = NULL; 1967 u_char linkhdr[LLE_MAX_LINKHDR]; 1968 size_t linkhdrsize; 1969 int lladdr_off; 1970 1971 NET_EPOCH_ASSERT(); 1972 IF_AFDATA_UNLOCK_ASSERT(ifp); 1973 1974 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1975 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1976 1977 /* nothing must be updated for unspecified address */ 1978 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1979 return; 1980 1981 /* 1982 * Validation about ifp->if_addrlen and lladdrlen must be done in 1983 * the caller. 1984 * 1985 * XXX If the link does not have link-layer adderss, what should 1986 * we do? (ifp->if_addrlen == 0) 1987 * Spec says nothing in sections for RA, RS and NA. There's small 1988 * description on it in NS section (RFC 2461 7.2.3). 1989 */ 1990 flags = lladdr ? LLE_EXCLUSIVE : 0; 1991 ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp); 1992 is_newentry = 0; 1993 if (ln == NULL) { 1994 flags |= LLE_EXCLUSIVE; 1995 ln = nd6_alloc(from, 0, ifp); 1996 if (ln == NULL) 1997 return; 1998 1999 /* 2000 * Since we already know all the data for the new entry, 2001 * fill it before insertion. 2002 */ 2003 if (lladdr != NULL) { 2004 linkhdrsize = sizeof(linkhdr); 2005 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2006 linkhdr, &linkhdrsize, &lladdr_off) != 0) { 2007 lltable_free_entry(LLTABLE6(ifp), ln); 2008 return; 2009 } 2010 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2011 lladdr_off); 2012 } 2013 2014 IF_AFDATA_WLOCK(ifp); 2015 LLE_WLOCK(ln); 2016 /* Prefer any existing lle over newly-created one */ 2017 ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2018 if (ln_tmp == NULL) 2019 lltable_link_entry(LLTABLE6(ifp), ln); 2020 IF_AFDATA_WUNLOCK(ifp); 2021 if (ln_tmp == NULL) { 2022 /* No existing lle, mark as new entry (6,7) */ 2023 is_newentry = 1; 2024 if (lladdr != NULL) { /* (7) */ 2025 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2026 EVENTHANDLER_INVOKE(lle_event, ln, 2027 LLENTRY_RESOLVED); 2028 } 2029 } else { 2030 lltable_free_entry(LLTABLE6(ifp), ln); 2031 ln = ln_tmp; 2032 ln_tmp = NULL; 2033 } 2034 } 2035 /* do nothing if static ndp is set */ 2036 if ((ln->la_flags & LLE_STATIC)) { 2037 if (flags & LLE_EXCLUSIVE) 2038 LLE_WUNLOCK(ln); 2039 else 2040 LLE_RUNLOCK(ln); 2041 return; 2042 } 2043 2044 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2045 if (olladdr && lladdr) { 2046 llchange = bcmp(lladdr, ln->ll_addr, 2047 ifp->if_addrlen); 2048 } else if (!olladdr && lladdr) 2049 llchange = 1; 2050 else 2051 llchange = 0; 2052 2053 /* 2054 * newentry olladdr lladdr llchange (*=record) 2055 * 0 n n -- (1) 2056 * 0 y n -- (2) 2057 * 0 n y y (3) * STALE 2058 * 0 y y n (4) * 2059 * 0 y y y (5) * STALE 2060 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2061 * 1 -- y -- (7) * STALE 2062 */ 2063 2064 do_update = 0; 2065 if (is_newentry == 0 && llchange != 0) { 2066 do_update = 1; /* (3,5) */ 2067 2068 /* 2069 * Record source link-layer address 2070 * XXX is it dependent to ifp->if_type? 2071 */ 2072 if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) { 2073 /* Entry was deleted */ 2074 LLE_WUNLOCK(ln); 2075 return; 2076 } 2077 2078 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2079 2080 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2081 2082 if (ln->la_hold != NULL) 2083 chain = nd6_grab_holdchain(ln); 2084 } 2085 2086 /* Calculates new router status */ 2087 router = nd6_is_router(type, code, is_newentry, olladdr, 2088 lladdr != NULL ? 1 : 0, ln->ln_router); 2089 2090 ln->ln_router = router; 2091 /* Mark non-router redirects with special flag */ 2092 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2093 ln->la_flags |= LLE_REDIRECT; 2094 2095 if (flags & LLE_EXCLUSIVE) 2096 LLE_WUNLOCK(ln); 2097 else 2098 LLE_RUNLOCK(ln); 2099 2100 if (chain != NULL) 2101 nd6_flush_holdchain(ifp, ln, chain); 2102 if (do_update) 2103 nd6_flush_children_holdchain(ifp, ln); 2104 2105 /* 2106 * When the link-layer address of a router changes, select the 2107 * best router again. In particular, when the neighbor entry is newly 2108 * created, it might affect the selection policy. 2109 * Question: can we restrict the first condition to the "is_newentry" 2110 * case? 2111 * XXX: when we hear an RA from a new router with the link-layer 2112 * address option, defrouter_select_fib() is called twice, since 2113 * defrtrlist_update called the function as well. However, I believe 2114 * we can compromise the overhead, since it only happens the first 2115 * time. 2116 * XXX: although defrouter_select_fib() should not have a bad effect 2117 * for those are not autoconfigured hosts, we explicitly avoid such 2118 * cases for safety. 2119 */ 2120 if ((do_update || is_newentry) && router && 2121 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2122 /* 2123 * guaranteed recursion 2124 */ 2125 defrouter_select_fib(ifp->if_fib); 2126 } 2127 } 2128 2129 static void 2130 nd6_slowtimo(void *arg) 2131 { 2132 struct epoch_tracker et; 2133 CURVNET_SET((struct vnet *) arg); 2134 struct nd_ifinfo *nd6if; 2135 struct ifnet *ifp; 2136 2137 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2138 nd6_slowtimo, curvnet); 2139 NET_EPOCH_ENTER(et); 2140 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2141 if (ifp->if_afdata[AF_INET6] == NULL) 2142 continue; 2143 nd6if = ND_IFINFO(ifp); 2144 if (nd6if->basereachable && /* already initialized */ 2145 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2146 /* 2147 * Since reachable time rarely changes by router 2148 * advertisements, we SHOULD insure that a new random 2149 * value gets recomputed at least once every few hours. 2150 * (RFC 2461, 6.3.4) 2151 */ 2152 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2153 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2154 } 2155 } 2156 NET_EPOCH_EXIT(et); 2157 CURVNET_RESTORE(); 2158 } 2159 2160 struct mbuf * 2161 nd6_grab_holdchain(struct llentry *ln) 2162 { 2163 struct mbuf *chain; 2164 2165 LLE_WLOCK_ASSERT(ln); 2166 2167 chain = ln->la_hold; 2168 ln->la_hold = NULL; 2169 ln->la_numheld = 0; 2170 2171 if (ln->ln_state == ND6_LLINFO_STALE) { 2172 /* 2173 * The first time we send a packet to a 2174 * neighbor whose entry is STALE, we have 2175 * to change the state to DELAY and a sets 2176 * a timer to expire in DELAY_FIRST_PROBE_TIME 2177 * seconds to ensure do neighbor unreachability 2178 * detection on expiration. 2179 * (RFC 2461 7.3.3) 2180 */ 2181 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2182 } 2183 2184 return (chain); 2185 } 2186 2187 int 2188 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2189 struct sockaddr_in6 *dst, struct route *ro) 2190 { 2191 int error; 2192 int ip6len; 2193 struct ip6_hdr *ip6; 2194 struct m_tag *mtag; 2195 2196 #ifdef MAC 2197 mac_netinet6_nd6_send(ifp, m); 2198 #endif 2199 2200 /* 2201 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2202 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2203 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2204 * to be diverted to user space. When re-injected into the kernel, 2205 * send_output() will directly dispatch them to the outgoing interface. 2206 */ 2207 if (send_sendso_input_hook != NULL) { 2208 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2209 if (mtag != NULL) { 2210 ip6 = mtod(m, struct ip6_hdr *); 2211 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2212 /* Use the SEND socket */ 2213 error = send_sendso_input_hook(m, ifp, SND_OUT, 2214 ip6len); 2215 /* -1 == no app on SEND socket */ 2216 if (error == 0 || error != -1) 2217 return (error); 2218 } 2219 } 2220 2221 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2222 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2223 mtod(m, struct ip6_hdr *)); 2224 2225 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2226 origifp = ifp; 2227 2228 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2229 return (error); 2230 } 2231 2232 /* 2233 * Lookup link headerfor @sa_dst address. Stores found 2234 * data in @desten buffer. Copy of lle ln_flags can be also 2235 * saved in @pflags if @pflags is non-NULL. 2236 * 2237 * If destination LLE does not exists or lle state modification 2238 * is required, call "slow" version. 2239 * 2240 * Return values: 2241 * - 0 on success (address copied to buffer). 2242 * - EWOULDBLOCK (no local error, but address is still unresolved) 2243 * - other errors (alloc failure, etc) 2244 */ 2245 int 2246 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m, 2247 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2248 struct llentry **plle) 2249 { 2250 struct llentry *ln = NULL; 2251 const struct sockaddr_in6 *dst6; 2252 2253 NET_EPOCH_ASSERT(); 2254 2255 if (pflags != NULL) 2256 *pflags = 0; 2257 2258 dst6 = (const struct sockaddr_in6 *)sa_dst; 2259 2260 /* discard the packet if IPv6 operation is disabled on the interface */ 2261 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2262 m_freem(m); 2263 return (ENETDOWN); /* better error? */ 2264 } 2265 2266 if (m != NULL && m->m_flags & M_MCAST) { 2267 switch (ifp->if_type) { 2268 case IFT_ETHER: 2269 case IFT_L2VLAN: 2270 case IFT_BRIDGE: 2271 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2272 desten); 2273 return (0); 2274 default: 2275 m_freem(m); 2276 return (EAFNOSUPPORT); 2277 } 2278 } 2279 2280 int family = gw_flags >> 16; 2281 int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED; 2282 ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp); 2283 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2284 /* Entry found, let's copy lle info */ 2285 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2286 if (pflags != NULL) 2287 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2288 llentry_provide_feedback(ln); 2289 if (plle) { 2290 LLE_ADDREF(ln); 2291 *plle = ln; 2292 LLE_WUNLOCK(ln); 2293 } 2294 return (0); 2295 } else if (plle && ln) 2296 LLE_WUNLOCK(ln); 2297 2298 return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle)); 2299 } 2300 2301 /* 2302 * Finds or creates a new llentry for @addr and @family. 2303 * Returns wlocked llentry or NULL. 2304 * 2305 * 2306 * Child LLEs. 2307 * 2308 * Do not have their own state machine (gets marked as static) 2309 * settimer bails out for child LLEs just in case. 2310 * 2311 * Locking order: parent lle gets locked first, chen goes the child. 2312 */ 2313 static __noinline struct llentry * 2314 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family) 2315 { 2316 struct llentry *child_lle = NULL; 2317 struct llentry *lle, *lle_tmp; 2318 2319 lle = nd6_alloc(addr, 0, ifp); 2320 if (lle != NULL && family != AF_INET6) { 2321 child_lle = nd6_alloc(addr, 0, ifp); 2322 if (child_lle == NULL) { 2323 lltable_free_entry(LLTABLE6(ifp), lle); 2324 return (NULL); 2325 } 2326 child_lle->r_family = family; 2327 child_lle->la_flags |= LLE_CHILD | LLE_STATIC; 2328 child_lle->ln_state = ND6_LLINFO_INCOMPLETE; 2329 } 2330 2331 if (lle == NULL) { 2332 char ip6buf[INET6_ADDRSTRLEN]; 2333 log(LOG_DEBUG, 2334 "nd6_get_llentry: can't allocate llinfo for %s " 2335 "(ln=%p)\n", 2336 ip6_sprintf(ip6buf, addr), lle); 2337 return (NULL); 2338 } 2339 2340 IF_AFDATA_WLOCK(ifp); 2341 LLE_WLOCK(lle); 2342 /* Prefer any existing entry over newly-created one */ 2343 lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp); 2344 if (lle_tmp == NULL) 2345 lltable_link_entry(LLTABLE6(ifp), lle); 2346 else { 2347 lltable_free_entry(LLTABLE6(ifp), lle); 2348 lle = lle_tmp; 2349 } 2350 if (child_lle != NULL) { 2351 /* Check if child lle for the same family exists */ 2352 lle_tmp = llentry_lookup_family(lle, child_lle->r_family); 2353 LLE_WLOCK(child_lle); 2354 if (lle_tmp == NULL) { 2355 /* Attach */ 2356 lltable_link_child_entry(lle, child_lle); 2357 } else { 2358 /* child lle already exists, free newly-created one */ 2359 lltable_free_entry(LLTABLE6(ifp), child_lle); 2360 child_lle = lle_tmp; 2361 } 2362 LLE_WUNLOCK(lle); 2363 lle = child_lle; 2364 } 2365 IF_AFDATA_WUNLOCK(ifp); 2366 return (lle); 2367 } 2368 2369 /* 2370 * Do L2 address resolution for @sa_dst address. Stores found 2371 * address in @desten buffer. Copy of lle ln_flags can be also 2372 * saved in @pflags if @pflags is non-NULL. 2373 * 2374 * Heavy version. 2375 * Function assume that destination LLE does not exist, 2376 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2377 * 2378 * Set noinline to be dtrace-friendly 2379 */ 2380 static __noinline int 2381 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m, 2382 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2383 struct llentry **plle) 2384 { 2385 struct llentry *lle = NULL; 2386 struct in6_addr *psrc, src; 2387 int send_ns, ll_len; 2388 char *lladdr; 2389 2390 NET_EPOCH_ASSERT(); 2391 2392 /* 2393 * Address resolution or Neighbor Unreachability Detection 2394 * for the next hop. 2395 * At this point, the destination of the packet must be a unicast 2396 * or an anycast address(i.e. not a multicast). 2397 */ 2398 lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp); 2399 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2400 /* 2401 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2402 * the condition below is not very efficient. But we believe 2403 * it is tolerable, because this should be a rare case. 2404 */ 2405 lle = nd6_get_llentry(ifp, &dst->sin6_addr, family); 2406 } 2407 2408 if (lle == NULL) { 2409 m_freem(m); 2410 return (ENOBUFS); 2411 } 2412 2413 LLE_WLOCK_ASSERT(lle); 2414 2415 /* 2416 * The first time we send a packet to a neighbor whose entry is 2417 * STALE, we have to change the state to DELAY and a sets a timer to 2418 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2419 * neighbor unreachability detection on expiration. 2420 * (RFC 2461 7.3.3) 2421 */ 2422 if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE)) 2423 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2424 2425 /* 2426 * If the neighbor cache entry has a state other than INCOMPLETE 2427 * (i.e. its link-layer address is already resolved), just 2428 * send the packet. 2429 */ 2430 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2431 if (flags & LLE_ADDRONLY) { 2432 lladdr = lle->ll_addr; 2433 ll_len = ifp->if_addrlen; 2434 } else { 2435 lladdr = lle->r_linkdata; 2436 ll_len = lle->r_hdrlen; 2437 } 2438 bcopy(lladdr, desten, ll_len); 2439 if (pflags != NULL) 2440 *pflags = lle->la_flags; 2441 if (plle) { 2442 LLE_ADDREF(lle); 2443 *plle = lle; 2444 } 2445 LLE_WUNLOCK(lle); 2446 return (0); 2447 } 2448 2449 /* 2450 * There is a neighbor cache entry, but no ethernet address 2451 * response yet. Append this latest packet to the end of the 2452 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2453 * the oldest packet in the queue will be removed. 2454 */ 2455 if (m != NULL) { 2456 size_t dropped; 2457 2458 dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen); 2459 ICMP6STAT_ADD(icp6s_dropped, dropped); 2460 } 2461 2462 /* 2463 * If there has been no NS for the neighbor after entering the 2464 * INCOMPLETE state, send the first solicitation. 2465 * Note that for newly-created lle la_asked will be 0, 2466 * so we will transition from ND6_LLINFO_NOSTATE to 2467 * ND6_LLINFO_INCOMPLETE state here. 2468 */ 2469 psrc = NULL; 2470 send_ns = 0; 2471 2472 /* If we have child lle, switch to the parent to send NS */ 2473 if (lle->la_flags & LLE_CHILD) { 2474 struct llentry *lle_parent = lle->lle_parent; 2475 LLE_WUNLOCK(lle); 2476 lle = lle_parent; 2477 LLE_WLOCK(lle); 2478 } 2479 if (lle->la_asked == 0) { 2480 lle->la_asked++; 2481 send_ns = 1; 2482 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2483 2484 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2485 } 2486 LLE_WUNLOCK(lle); 2487 if (send_ns != 0) 2488 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2489 2490 return (EWOULDBLOCK); 2491 } 2492 2493 /* 2494 * Do L2 address resolution for @sa_dst address. Stores found 2495 * address in @desten buffer. Copy of lle ln_flags can be also 2496 * saved in @pflags if @pflags is non-NULL. 2497 * 2498 * Return values: 2499 * - 0 on success (address copied to buffer). 2500 * - EWOULDBLOCK (no local error, but address is still unresolved) 2501 * - other errors (alloc failure, etc) 2502 */ 2503 int 2504 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2505 char *desten, uint32_t *pflags) 2506 { 2507 int error; 2508 2509 flags |= LLE_ADDRONLY; 2510 error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL, 2511 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2512 return (error); 2513 } 2514 2515 int 2516 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain) 2517 { 2518 struct mbuf *m, *m_head; 2519 struct sockaddr_in6 dst6; 2520 int error = 0; 2521 2522 NET_EPOCH_ASSERT(); 2523 2524 struct route_in6 ro = { 2525 .ro_prepend = lle->r_linkdata, 2526 .ro_plen = lle->r_hdrlen, 2527 }; 2528 2529 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6); 2530 m_head = chain; 2531 2532 while (m_head) { 2533 m = m_head; 2534 m_head = m_head->m_nextpkt; 2535 m->m_nextpkt = NULL; 2536 error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro); 2537 } 2538 2539 /* 2540 * XXX 2541 * note that intermediate errors are blindly ignored 2542 */ 2543 return (error); 2544 } 2545 2546 __noinline void 2547 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle) 2548 { 2549 struct llentry *child_lle; 2550 struct mbuf *chain; 2551 2552 NET_EPOCH_ASSERT(); 2553 2554 CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) { 2555 LLE_WLOCK(child_lle); 2556 chain = nd6_grab_holdchain(child_lle); 2557 LLE_WUNLOCK(child_lle); 2558 nd6_flush_holdchain(ifp, child_lle, chain); 2559 } 2560 } 2561 2562 static int 2563 nd6_need_cache(struct ifnet *ifp) 2564 { 2565 /* 2566 * XXX: we currently do not make neighbor cache on any interface 2567 * other than Ethernet and GIF. 2568 * 2569 * RFC2893 says: 2570 * - unidirectional tunnels needs no ND 2571 */ 2572 switch (ifp->if_type) { 2573 case IFT_ETHER: 2574 case IFT_IEEE1394: 2575 case IFT_L2VLAN: 2576 case IFT_INFINIBAND: 2577 case IFT_BRIDGE: 2578 case IFT_PROPVIRTUAL: 2579 return (1); 2580 default: 2581 return (0); 2582 } 2583 } 2584 2585 /* 2586 * Add pernament ND6 link-layer record for given 2587 * interface address. 2588 * 2589 * Very similar to IPv4 arp_ifinit(), but: 2590 * 1) IPv6 DAD is performed in different place 2591 * 2) It is called by IPv6 protocol stack in contrast to 2592 * arp_ifinit() which is typically called in SIOCSIFADDR 2593 * driver ioctl handler. 2594 * 2595 */ 2596 int 2597 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2598 { 2599 struct ifnet *ifp; 2600 struct llentry *ln, *ln_tmp; 2601 struct sockaddr *dst; 2602 2603 ifp = ia->ia_ifa.ifa_ifp; 2604 if (nd6_need_cache(ifp) == 0) 2605 return (0); 2606 2607 dst = (struct sockaddr *)&ia->ia_addr; 2608 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2609 if (ln == NULL) 2610 return (ENOBUFS); 2611 2612 IF_AFDATA_WLOCK(ifp); 2613 LLE_WLOCK(ln); 2614 /* Unlink any entry if exists */ 2615 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst); 2616 if (ln_tmp != NULL) 2617 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2618 lltable_link_entry(LLTABLE6(ifp), ln); 2619 IF_AFDATA_WUNLOCK(ifp); 2620 2621 if (ln_tmp != NULL) 2622 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2623 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2624 2625 LLE_WUNLOCK(ln); 2626 if (ln_tmp != NULL) 2627 llentry_free(ln_tmp); 2628 2629 return (0); 2630 } 2631 2632 /* 2633 * Removes either all lle entries for given @ia, or lle 2634 * corresponding to @ia address. 2635 */ 2636 void 2637 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2638 { 2639 struct sockaddr_in6 mask, addr; 2640 struct sockaddr *saddr, *smask; 2641 struct ifnet *ifp; 2642 2643 ifp = ia->ia_ifa.ifa_ifp; 2644 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2645 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2646 saddr = (struct sockaddr *)&addr; 2647 smask = (struct sockaddr *)&mask; 2648 2649 if (all != 0) 2650 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2651 else 2652 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2653 } 2654 2655 static int 2656 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2657 { 2658 struct in6_prefix p; 2659 struct sockaddr_in6 s6; 2660 struct nd_prefix *pr; 2661 struct nd_pfxrouter *pfr; 2662 time_t maxexpire; 2663 int error; 2664 char ip6buf[INET6_ADDRSTRLEN]; 2665 2666 if (req->newptr) 2667 return (EPERM); 2668 2669 error = sysctl_wire_old_buffer(req, 0); 2670 if (error != 0) 2671 return (error); 2672 2673 bzero(&p, sizeof(p)); 2674 p.origin = PR_ORIG_RA; 2675 bzero(&s6, sizeof(s6)); 2676 s6.sin6_family = AF_INET6; 2677 s6.sin6_len = sizeof(s6); 2678 2679 ND6_RLOCK(); 2680 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2681 if (!pr->ndpr_raf_ra_derived) 2682 continue; 2683 p.prefix = pr->ndpr_prefix; 2684 if (sa6_recoverscope(&p.prefix)) { 2685 log(LOG_ERR, "scope error in prefix list (%s)\n", 2686 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2687 /* XXX: press on... */ 2688 } 2689 p.raflags = pr->ndpr_raf; 2690 p.prefixlen = pr->ndpr_plen; 2691 p.vltime = pr->ndpr_vltime; 2692 p.pltime = pr->ndpr_pltime; 2693 p.if_index = pr->ndpr_ifp->if_index; 2694 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2695 p.expire = 0; 2696 else { 2697 /* XXX: we assume time_t is signed. */ 2698 maxexpire = (-1) & 2699 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2700 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2701 p.expire = pr->ndpr_lastupdate + 2702 pr->ndpr_vltime + 2703 (time_second - time_uptime); 2704 else 2705 p.expire = maxexpire; 2706 } 2707 p.refcnt = pr->ndpr_addrcnt; 2708 p.flags = pr->ndpr_stateflags; 2709 p.advrtrs = 0; 2710 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2711 p.advrtrs++; 2712 error = SYSCTL_OUT(req, &p, sizeof(p)); 2713 if (error != 0) 2714 break; 2715 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2716 s6.sin6_addr = pfr->router->rtaddr; 2717 if (sa6_recoverscope(&s6)) 2718 log(LOG_ERR, 2719 "scope error in prefix list (%s)\n", 2720 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2721 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2722 if (error != 0) 2723 goto out; 2724 } 2725 } 2726 out: 2727 ND6_RUNLOCK(); 2728 return (error); 2729 } 2730 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2731 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2732 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2733 "NDP prefix list"); 2734 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2735 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2736 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2737 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2738