1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 89 90 /* timer values */ 91 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 92 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 93 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 94 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 95 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 96 * local traffic */ 97 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 98 * collection timer */ 99 100 /* preventing too many loops in ND option parsing */ 101 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 102 103 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 104 * layer hints */ 105 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 106 * ND entries */ 107 #define V_nd6_maxndopt VNET(nd6_maxndopt) 108 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 109 110 #ifdef ND6_DEBUG 111 VNET_DEFINE(int, nd6_debug) = 1; 112 #else 113 VNET_DEFINE(int, nd6_debug) = 0; 114 #endif 115 116 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 117 118 VNET_DEFINE(struct nd_drhead, nd_defrouter); 119 VNET_DEFINE(struct nd_prhead, nd_prefix); 120 VNET_DEFINE(struct rwlock, nd6_lock); 121 122 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 123 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 124 125 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 126 127 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 128 struct ifnet *); 129 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 130 static void nd6_slowtimo(void *); 131 static int regen_tmpaddr(struct in6_ifaddr *); 132 static void nd6_free(struct llentry **, int); 133 static void nd6_free_redirect(const struct llentry *); 134 static void nd6_llinfo_timer(void *); 135 static void nd6_llinfo_settimer_locked(struct llentry *, long); 136 static void clear_llinfo_pqueue(struct llentry *); 137 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 138 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 139 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 140 static int nd6_need_cache(struct ifnet *); 141 142 143 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 144 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 145 146 VNET_DEFINE(struct callout, nd6_timer_ch); 147 #define V_nd6_timer_ch VNET(nd6_timer_ch) 148 149 static void 150 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 151 { 152 struct rt_addrinfo rtinfo; 153 struct sockaddr_in6 dst; 154 struct sockaddr_dl gw; 155 struct ifnet *ifp; 156 int type; 157 158 LLE_WLOCK_ASSERT(lle); 159 160 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 161 return; 162 163 switch (evt) { 164 case LLENTRY_RESOLVED: 165 type = RTM_ADD; 166 KASSERT(lle->la_flags & LLE_VALID, 167 ("%s: %p resolved but not valid?", __func__, lle)); 168 break; 169 case LLENTRY_EXPIRED: 170 type = RTM_DELETE; 171 break; 172 default: 173 return; 174 } 175 176 ifp = lltable_get_ifp(lle->lle_tbl); 177 178 bzero(&dst, sizeof(dst)); 179 bzero(&gw, sizeof(gw)); 180 bzero(&rtinfo, sizeof(rtinfo)); 181 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 182 dst.sin6_scope_id = in6_getscopezone(ifp, 183 in6_addrscope(&dst.sin6_addr)); 184 gw.sdl_len = sizeof(struct sockaddr_dl); 185 gw.sdl_family = AF_LINK; 186 gw.sdl_alen = ifp->if_addrlen; 187 gw.sdl_index = ifp->if_index; 188 gw.sdl_type = ifp->if_type; 189 if (evt == LLENTRY_RESOLVED) 190 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 191 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 192 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 193 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 194 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 195 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 196 } 197 198 /* 199 * A handler for interface link layer address change event. 200 */ 201 static void 202 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 203 { 204 205 lltable_update_ifaddr(LLTABLE6(ifp)); 206 } 207 208 void 209 nd6_init(void) 210 { 211 212 rw_init(&V_nd6_lock, "nd6"); 213 214 LIST_INIT(&V_nd_prefix); 215 216 /* initialization of the default router list */ 217 TAILQ_INIT(&V_nd_defrouter); 218 219 /* Start timers. */ 220 callout_init(&V_nd6_slowtimo_ch, 0); 221 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 222 nd6_slowtimo, curvnet); 223 224 callout_init(&V_nd6_timer_ch, 0); 225 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 226 227 nd6_dad_init(); 228 if (IS_DEFAULT_VNET(curvnet)) { 229 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 230 NULL, EVENTHANDLER_PRI_ANY); 231 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 232 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 233 } 234 } 235 236 #ifdef VIMAGE 237 void 238 nd6_destroy() 239 { 240 241 callout_drain(&V_nd6_slowtimo_ch); 242 callout_drain(&V_nd6_timer_ch); 243 if (IS_DEFAULT_VNET(curvnet)) { 244 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 245 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 246 } 247 rw_destroy(&V_nd6_lock); 248 } 249 #endif 250 251 struct nd_ifinfo * 252 nd6_ifattach(struct ifnet *ifp) 253 { 254 struct nd_ifinfo *nd; 255 256 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 257 nd->initialized = 1; 258 259 nd->chlim = IPV6_DEFHLIM; 260 nd->basereachable = REACHABLE_TIME; 261 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 262 nd->retrans = RETRANS_TIMER; 263 264 nd->flags = ND6_IFF_PERFORMNUD; 265 266 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 267 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 268 * default regardless of the V_ip6_auto_linklocal configuration to 269 * give a reasonable default behavior. 270 */ 271 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 272 (ifp->if_flags & IFF_LOOPBACK)) 273 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 274 /* 275 * A loopback interface does not need to accept RTADV. 276 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 277 * default regardless of the V_ip6_accept_rtadv configuration to 278 * prevent the interface from accepting RA messages arrived 279 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 280 */ 281 if (V_ip6_accept_rtadv && 282 !(ifp->if_flags & IFF_LOOPBACK) && 283 (ifp->if_type != IFT_BRIDGE)) 284 nd->flags |= ND6_IFF_ACCEPT_RTADV; 285 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 286 nd->flags |= ND6_IFF_NO_RADR; 287 288 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 289 nd6_setmtu0(ifp, nd); 290 291 return nd; 292 } 293 294 void 295 nd6_ifdetach(struct nd_ifinfo *nd) 296 { 297 298 free(nd, M_IP6NDP); 299 } 300 301 /* 302 * Reset ND level link MTU. This function is called when the physical MTU 303 * changes, which means we might have to adjust the ND level MTU. 304 */ 305 void 306 nd6_setmtu(struct ifnet *ifp) 307 { 308 if (ifp->if_afdata[AF_INET6] == NULL) 309 return; 310 311 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 312 } 313 314 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 315 void 316 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 317 { 318 u_int32_t omaxmtu; 319 320 omaxmtu = ndi->maxmtu; 321 322 switch (ifp->if_type) { 323 case IFT_ARCNET: 324 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 325 break; 326 case IFT_FDDI: 327 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 328 break; 329 case IFT_ISO88025: 330 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 331 break; 332 default: 333 ndi->maxmtu = ifp->if_mtu; 334 break; 335 } 336 337 /* 338 * Decreasing the interface MTU under IPV6 minimum MTU may cause 339 * undesirable situation. We thus notify the operator of the change 340 * explicitly. The check for omaxmtu is necessary to restrict the 341 * log to the case of changing the MTU, not initializing it. 342 */ 343 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 344 log(LOG_NOTICE, "nd6_setmtu0: " 345 "new link MTU on %s (%lu) is too small for IPv6\n", 346 if_name(ifp), (unsigned long)ndi->maxmtu); 347 } 348 349 if (ndi->maxmtu > V_in6_maxmtu) 350 in6_setmaxmtu(); /* check all interfaces just in case */ 351 352 } 353 354 void 355 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 356 { 357 358 bzero(ndopts, sizeof(*ndopts)); 359 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 360 ndopts->nd_opts_last 361 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 362 363 if (icmp6len == 0) { 364 ndopts->nd_opts_done = 1; 365 ndopts->nd_opts_search = NULL; 366 } 367 } 368 369 /* 370 * Take one ND option. 371 */ 372 struct nd_opt_hdr * 373 nd6_option(union nd_opts *ndopts) 374 { 375 struct nd_opt_hdr *nd_opt; 376 int olen; 377 378 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 379 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 380 __func__)); 381 if (ndopts->nd_opts_search == NULL) 382 return NULL; 383 if (ndopts->nd_opts_done) 384 return NULL; 385 386 nd_opt = ndopts->nd_opts_search; 387 388 /* make sure nd_opt_len is inside the buffer */ 389 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 390 bzero(ndopts, sizeof(*ndopts)); 391 return NULL; 392 } 393 394 olen = nd_opt->nd_opt_len << 3; 395 if (olen == 0) { 396 /* 397 * Message validation requires that all included 398 * options have a length that is greater than zero. 399 */ 400 bzero(ndopts, sizeof(*ndopts)); 401 return NULL; 402 } 403 404 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 405 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 406 /* option overruns the end of buffer, invalid */ 407 bzero(ndopts, sizeof(*ndopts)); 408 return NULL; 409 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 410 /* reached the end of options chain */ 411 ndopts->nd_opts_done = 1; 412 ndopts->nd_opts_search = NULL; 413 } 414 return nd_opt; 415 } 416 417 /* 418 * Parse multiple ND options. 419 * This function is much easier to use, for ND routines that do not need 420 * multiple options of the same type. 421 */ 422 int 423 nd6_options(union nd_opts *ndopts) 424 { 425 struct nd_opt_hdr *nd_opt; 426 int i = 0; 427 428 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 429 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 430 __func__)); 431 if (ndopts->nd_opts_search == NULL) 432 return 0; 433 434 while (1) { 435 nd_opt = nd6_option(ndopts); 436 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 437 /* 438 * Message validation requires that all included 439 * options have a length that is greater than zero. 440 */ 441 ICMP6STAT_INC(icp6s_nd_badopt); 442 bzero(ndopts, sizeof(*ndopts)); 443 return -1; 444 } 445 446 if (nd_opt == NULL) 447 goto skip1; 448 449 switch (nd_opt->nd_opt_type) { 450 case ND_OPT_SOURCE_LINKADDR: 451 case ND_OPT_TARGET_LINKADDR: 452 case ND_OPT_MTU: 453 case ND_OPT_REDIRECTED_HEADER: 454 case ND_OPT_NONCE: 455 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 456 nd6log((LOG_INFO, 457 "duplicated ND6 option found (type=%d)\n", 458 nd_opt->nd_opt_type)); 459 /* XXX bark? */ 460 } else { 461 ndopts->nd_opt_array[nd_opt->nd_opt_type] 462 = nd_opt; 463 } 464 break; 465 case ND_OPT_PREFIX_INFORMATION: 466 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 467 ndopts->nd_opt_array[nd_opt->nd_opt_type] 468 = nd_opt; 469 } 470 ndopts->nd_opts_pi_end = 471 (struct nd_opt_prefix_info *)nd_opt; 472 break; 473 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 474 case ND_OPT_RDNSS: /* RFC 6106 */ 475 case ND_OPT_DNSSL: /* RFC 6106 */ 476 /* 477 * Silently ignore options we know and do not care about 478 * in the kernel. 479 */ 480 break; 481 default: 482 /* 483 * Unknown options must be silently ignored, 484 * to accommodate future extension to the protocol. 485 */ 486 nd6log((LOG_DEBUG, 487 "nd6_options: unsupported option %d - " 488 "option ignored\n", nd_opt->nd_opt_type)); 489 } 490 491 skip1: 492 i++; 493 if (i > V_nd6_maxndopt) { 494 ICMP6STAT_INC(icp6s_nd_toomanyopt); 495 nd6log((LOG_INFO, "too many loop in nd opt\n")); 496 break; 497 } 498 499 if (ndopts->nd_opts_done) 500 break; 501 } 502 503 return 0; 504 } 505 506 /* 507 * ND6 timer routine to handle ND6 entries 508 */ 509 static void 510 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 511 { 512 int canceled; 513 514 LLE_WLOCK_ASSERT(ln); 515 516 if (tick < 0) { 517 ln->la_expire = 0; 518 ln->ln_ntick = 0; 519 canceled = callout_stop(&ln->lle_timer); 520 } else { 521 ln->la_expire = time_uptime + tick / hz; 522 LLE_ADDREF(ln); 523 if (tick > INT_MAX) { 524 ln->ln_ntick = tick - INT_MAX; 525 canceled = callout_reset(&ln->lle_timer, INT_MAX, 526 nd6_llinfo_timer, ln); 527 } else { 528 ln->ln_ntick = 0; 529 canceled = callout_reset(&ln->lle_timer, tick, 530 nd6_llinfo_timer, ln); 531 } 532 } 533 if (canceled > 0) 534 LLE_REMREF(ln); 535 } 536 537 /* 538 * Gets source address of the first packet in hold queue 539 * and stores it in @src. 540 * Returns pointer to @src (if hold queue is not empty) or NULL. 541 * 542 * Set noinline to be dtrace-friendly 543 */ 544 static __noinline struct in6_addr * 545 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 546 { 547 struct ip6_hdr hdr; 548 struct mbuf *m; 549 550 if (ln->la_hold == NULL) 551 return (NULL); 552 553 /* 554 * assume every packet in la_hold has the same IP header 555 */ 556 m = ln->la_hold; 557 if (sizeof(hdr) > m->m_len) 558 return (NULL); 559 560 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 561 *src = hdr.ip6_src; 562 563 return (src); 564 } 565 566 /* 567 * Checks if we need to switch from STALE state. 568 * 569 * RFC 4861 requires switching from STALE to DELAY state 570 * on first packet matching entry, waiting V_nd6_delay and 571 * transition to PROBE state (if upper layer confirmation was 572 * not received). 573 * 574 * This code performs a bit differently: 575 * On packet hit we don't change state (but desired state 576 * can be guessed by control plane). However, after V_nd6_delay 577 * seconds code will transition to PROBE state (so DELAY state 578 * is kinda skipped in most situations). 579 * 580 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 581 * we perform the following upon entering STALE state: 582 * 583 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 584 * if packet was transmitted at the start of given interval, we 585 * would be able to switch to PROBE state in V_nd6_delay seconds 586 * as user expects. 587 * 588 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 589 * lle in STALE state (remaining timer value stored in lle_remtime). 590 * 591 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 592 * seconds ago. 593 * 594 * Returns non-zero value if the entry is still STALE (storing 595 * the next timer interval in @pdelay). 596 * 597 * Returns zero value if original timer expired or we need to switch to 598 * PROBE (store that in @do_switch variable). 599 */ 600 static int 601 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 602 { 603 int nd_delay, nd_gctimer, r_skip_req; 604 time_t lle_hittime; 605 long delay; 606 607 *do_switch = 0; 608 nd_gctimer = V_nd6_gctimer; 609 nd_delay = V_nd6_delay; 610 611 LLE_REQ_LOCK(lle); 612 r_skip_req = lle->r_skip_req; 613 lle_hittime = lle->lle_hittime; 614 LLE_REQ_UNLOCK(lle); 615 616 if (r_skip_req > 0) { 617 618 /* 619 * Nonzero r_skip_req value was set upon entering 620 * STALE state. Since value was not changed, no 621 * packets were passed using this lle. Ask for 622 * timer reschedule and keep STALE state. 623 */ 624 delay = (long)(MIN(nd_gctimer, nd_delay)); 625 delay *= hz; 626 if (lle->lle_remtime > delay) 627 lle->lle_remtime -= delay; 628 else { 629 delay = lle->lle_remtime; 630 lle->lle_remtime = 0; 631 } 632 633 if (delay == 0) { 634 635 /* 636 * The original ng6_gctime timeout ended, 637 * no more rescheduling. 638 */ 639 return (0); 640 } 641 642 *pdelay = delay; 643 return (1); 644 } 645 646 /* 647 * Packet received. Verify timestamp 648 */ 649 delay = (long)(time_uptime - lle_hittime); 650 if (delay < nd_delay) { 651 652 /* 653 * V_nd6_delay still not passed since the first 654 * hit in STALE state. 655 * Reshedule timer and return. 656 */ 657 *pdelay = (long)(nd_delay - delay) * hz; 658 return (1); 659 } 660 661 /* Request switching to probe */ 662 *do_switch = 1; 663 return (0); 664 } 665 666 667 /* 668 * Switch @lle state to new state optionally arming timers. 669 * 670 * Set noinline to be dtrace-friendly 671 */ 672 __noinline void 673 nd6_llinfo_setstate(struct llentry *lle, int newstate) 674 { 675 struct ifnet *ifp; 676 int nd_gctimer, nd_delay; 677 long delay, remtime; 678 679 delay = 0; 680 remtime = 0; 681 682 switch (newstate) { 683 case ND6_LLINFO_INCOMPLETE: 684 ifp = lle->lle_tbl->llt_ifp; 685 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 686 break; 687 case ND6_LLINFO_REACHABLE: 688 if (!ND6_LLINFO_PERMANENT(lle)) { 689 ifp = lle->lle_tbl->llt_ifp; 690 delay = (long)ND_IFINFO(ifp)->reachable * hz; 691 } 692 break; 693 case ND6_LLINFO_STALE: 694 695 /* 696 * Notify fast path that we want to know if any packet 697 * is transmitted by setting r_skip_req. 698 */ 699 LLE_REQ_LOCK(lle); 700 lle->r_skip_req = 1; 701 LLE_REQ_UNLOCK(lle); 702 nd_delay = V_nd6_delay; 703 nd_gctimer = V_nd6_gctimer; 704 705 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 706 remtime = (long)nd_gctimer * hz - delay; 707 break; 708 case ND6_LLINFO_DELAY: 709 lle->la_asked = 0; 710 delay = (long)V_nd6_delay * hz; 711 break; 712 } 713 714 if (delay > 0) 715 nd6_llinfo_settimer_locked(lle, delay); 716 717 lle->lle_remtime = remtime; 718 lle->ln_state = newstate; 719 } 720 721 /* 722 * Timer-dependent part of nd state machine. 723 * 724 * Set noinline to be dtrace-friendly 725 */ 726 static __noinline void 727 nd6_llinfo_timer(void *arg) 728 { 729 struct llentry *ln; 730 struct in6_addr *dst, *pdst, *psrc, src; 731 struct ifnet *ifp; 732 struct nd_ifinfo *ndi; 733 int do_switch, send_ns; 734 long delay; 735 736 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 737 ln = (struct llentry *)arg; 738 ifp = lltable_get_ifp(ln->lle_tbl); 739 CURVNET_SET(ifp->if_vnet); 740 741 ND6_RLOCK(); 742 LLE_WLOCK(ln); 743 if (callout_pending(&ln->lle_timer)) { 744 /* 745 * Here we are a bit odd here in the treatment of 746 * active/pending. If the pending bit is set, it got 747 * rescheduled before I ran. The active 748 * bit we ignore, since if it was stopped 749 * in ll_tablefree() and was currently running 750 * it would have return 0 so the code would 751 * not have deleted it since the callout could 752 * not be stopped so we want to go through 753 * with the delete here now. If the callout 754 * was restarted, the pending bit will be back on and 755 * we just want to bail since the callout_reset would 756 * return 1 and our reference would have been removed 757 * by nd6_llinfo_settimer_locked above since canceled 758 * would have been 1. 759 */ 760 LLE_WUNLOCK(ln); 761 ND6_RUNLOCK(); 762 CURVNET_RESTORE(); 763 return; 764 } 765 ndi = ND_IFINFO(ifp); 766 send_ns = 0; 767 dst = &ln->r_l3addr.addr6; 768 pdst = dst; 769 770 if (ln->ln_ntick > 0) { 771 if (ln->ln_ntick > INT_MAX) { 772 ln->ln_ntick -= INT_MAX; 773 nd6_llinfo_settimer_locked(ln, INT_MAX); 774 } else { 775 ln->ln_ntick = 0; 776 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 777 } 778 goto done; 779 } 780 781 if (ln->la_flags & LLE_STATIC) { 782 goto done; 783 } 784 785 if (ln->la_flags & LLE_DELETED) { 786 nd6_free(&ln, 0); 787 goto done; 788 } 789 790 switch (ln->ln_state) { 791 case ND6_LLINFO_INCOMPLETE: 792 if (ln->la_asked < V_nd6_mmaxtries) { 793 ln->la_asked++; 794 send_ns = 1; 795 /* Send NS to multicast address */ 796 pdst = NULL; 797 } else { 798 struct mbuf *m = ln->la_hold; 799 if (m) { 800 struct mbuf *m0; 801 802 /* 803 * assuming every packet in la_hold has the 804 * same IP header. Send error after unlock. 805 */ 806 m0 = m->m_nextpkt; 807 m->m_nextpkt = NULL; 808 ln->la_hold = m0; 809 clear_llinfo_pqueue(ln); 810 } 811 nd6_free(&ln, 0); 812 if (m != NULL) 813 icmp6_error2(m, ICMP6_DST_UNREACH, 814 ICMP6_DST_UNREACH_ADDR, 0, ifp); 815 } 816 break; 817 case ND6_LLINFO_REACHABLE: 818 if (!ND6_LLINFO_PERMANENT(ln)) 819 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 820 break; 821 822 case ND6_LLINFO_STALE: 823 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 824 825 /* 826 * No packet has used this entry and GC timeout 827 * has not been passed. Reshedule timer and 828 * return. 829 */ 830 nd6_llinfo_settimer_locked(ln, delay); 831 break; 832 } 833 834 if (do_switch == 0) { 835 836 /* 837 * GC timer has ended and entry hasn't been used. 838 * Run Garbage collector (RFC 4861, 5.3) 839 */ 840 if (!ND6_LLINFO_PERMANENT(ln)) 841 nd6_free(&ln, 1); 842 break; 843 } 844 845 /* Entry has been used AND delay timer has ended. */ 846 847 /* FALLTHROUGH */ 848 849 case ND6_LLINFO_DELAY: 850 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 851 /* We need NUD */ 852 ln->la_asked = 1; 853 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 854 send_ns = 1; 855 } else 856 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 857 break; 858 case ND6_LLINFO_PROBE: 859 if (ln->la_asked < V_nd6_umaxtries) { 860 ln->la_asked++; 861 send_ns = 1; 862 } else { 863 nd6_free(&ln, 0); 864 } 865 break; 866 default: 867 panic("%s: paths in a dark night can be confusing: %d", 868 __func__, ln->ln_state); 869 } 870 done: 871 if (ln != NULL) 872 ND6_RUNLOCK(); 873 if (send_ns != 0) { 874 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 875 psrc = nd6_llinfo_get_holdsrc(ln, &src); 876 LLE_FREE_LOCKED(ln); 877 ln = NULL; 878 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 879 } 880 881 if (ln != NULL) 882 LLE_FREE_LOCKED(ln); 883 CURVNET_RESTORE(); 884 } 885 886 887 /* 888 * ND6 timer routine to expire default route list and prefix list 889 */ 890 void 891 nd6_timer(void *arg) 892 { 893 CURVNET_SET((struct vnet *) arg); 894 struct nd_drhead drq; 895 struct nd_defrouter *dr, *ndr; 896 struct nd_prefix *pr, *npr; 897 struct in6_ifaddr *ia6, *nia6; 898 899 TAILQ_INIT(&drq); 900 901 /* expire default router list */ 902 ND6_WLOCK(); 903 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 904 if (dr->expire && dr->expire < time_uptime) 905 defrouter_unlink(dr, &drq); 906 ND6_WUNLOCK(); 907 908 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 909 TAILQ_REMOVE(&drq, dr, dr_entry); 910 defrouter_del(dr); 911 } 912 913 /* 914 * expire interface addresses. 915 * in the past the loop was inside prefix expiry processing. 916 * However, from a stricter speci-confrmance standpoint, we should 917 * rather separate address lifetimes and prefix lifetimes. 918 * 919 * XXXRW: in6_ifaddrhead locking. 920 */ 921 addrloop: 922 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 923 /* check address lifetime */ 924 if (IFA6_IS_INVALID(ia6)) { 925 int regen = 0; 926 927 /* 928 * If the expiring address is temporary, try 929 * regenerating a new one. This would be useful when 930 * we suspended a laptop PC, then turned it on after a 931 * period that could invalidate all temporary 932 * addresses. Although we may have to restart the 933 * loop (see below), it must be after purging the 934 * address. Otherwise, we'd see an infinite loop of 935 * regeneration. 936 */ 937 if (V_ip6_use_tempaddr && 938 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 939 if (regen_tmpaddr(ia6) == 0) 940 regen = 1; 941 } 942 943 in6_purgeaddr(&ia6->ia_ifa); 944 945 if (regen) 946 goto addrloop; /* XXX: see below */ 947 } else if (IFA6_IS_DEPRECATED(ia6)) { 948 int oldflags = ia6->ia6_flags; 949 950 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 951 952 /* 953 * If a temporary address has just become deprecated, 954 * regenerate a new one if possible. 955 */ 956 if (V_ip6_use_tempaddr && 957 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 958 (oldflags & IN6_IFF_DEPRECATED) == 0) { 959 960 if (regen_tmpaddr(ia6) == 0) { 961 /* 962 * A new temporary address is 963 * generated. 964 * XXX: this means the address chain 965 * has changed while we are still in 966 * the loop. Although the change 967 * would not cause disaster (because 968 * it's not a deletion, but an 969 * addition,) we'd rather restart the 970 * loop just for safety. Or does this 971 * significantly reduce performance?? 972 */ 973 goto addrloop; 974 } 975 } 976 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 977 /* 978 * Schedule DAD for a tentative address. This happens 979 * if the interface was down or not running 980 * when the address was configured. 981 */ 982 int delay; 983 984 delay = arc4random() % 985 (MAX_RTR_SOLICITATION_DELAY * hz); 986 nd6_dad_start((struct ifaddr *)ia6, delay); 987 } else { 988 /* 989 * Check status of the interface. If it is down, 990 * mark the address as tentative for future DAD. 991 */ 992 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 993 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 994 == 0 || 995 (ND_IFINFO(ia6->ia_ifp)->flags & 996 ND6_IFF_IFDISABLED) != 0) { 997 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 998 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 999 } 1000 /* 1001 * A new RA might have made a deprecated address 1002 * preferred. 1003 */ 1004 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1005 } 1006 } 1007 1008 /* expire prefix list */ 1009 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1010 /* 1011 * check prefix lifetime. 1012 * since pltime is just for autoconf, pltime processing for 1013 * prefix is not necessary. 1014 */ 1015 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1016 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1017 1018 /* 1019 * address expiration and prefix expiration are 1020 * separate. NEVER perform in6_purgeaddr here. 1021 */ 1022 prelist_remove(pr); 1023 } 1024 } 1025 1026 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1027 nd6_timer, curvnet); 1028 1029 CURVNET_RESTORE(); 1030 } 1031 1032 /* 1033 * ia6 - deprecated/invalidated temporary address 1034 */ 1035 static int 1036 regen_tmpaddr(struct in6_ifaddr *ia6) 1037 { 1038 struct ifaddr *ifa; 1039 struct ifnet *ifp; 1040 struct in6_ifaddr *public_ifa6 = NULL; 1041 1042 ifp = ia6->ia_ifa.ifa_ifp; 1043 IF_ADDR_RLOCK(ifp); 1044 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1045 struct in6_ifaddr *it6; 1046 1047 if (ifa->ifa_addr->sa_family != AF_INET6) 1048 continue; 1049 1050 it6 = (struct in6_ifaddr *)ifa; 1051 1052 /* ignore no autoconf addresses. */ 1053 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1054 continue; 1055 1056 /* ignore autoconf addresses with different prefixes. */ 1057 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1058 continue; 1059 1060 /* 1061 * Now we are looking at an autoconf address with the same 1062 * prefix as ours. If the address is temporary and is still 1063 * preferred, do not create another one. It would be rare, but 1064 * could happen, for example, when we resume a laptop PC after 1065 * a long period. 1066 */ 1067 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1068 !IFA6_IS_DEPRECATED(it6)) { 1069 public_ifa6 = NULL; 1070 break; 1071 } 1072 1073 /* 1074 * This is a public autoconf address that has the same prefix 1075 * as ours. If it is preferred, keep it. We can't break the 1076 * loop here, because there may be a still-preferred temporary 1077 * address with the prefix. 1078 */ 1079 if (!IFA6_IS_DEPRECATED(it6)) 1080 public_ifa6 = it6; 1081 } 1082 if (public_ifa6 != NULL) 1083 ifa_ref(&public_ifa6->ia_ifa); 1084 IF_ADDR_RUNLOCK(ifp); 1085 1086 if (public_ifa6 != NULL) { 1087 int e; 1088 1089 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1090 ifa_free(&public_ifa6->ia_ifa); 1091 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1092 " tmp addr,errno=%d\n", e); 1093 return (-1); 1094 } 1095 ifa_free(&public_ifa6->ia_ifa); 1096 return (0); 1097 } 1098 1099 return (-1); 1100 } 1101 1102 /* 1103 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1104 * cache entries are freed in in6_domifdetach(). 1105 */ 1106 void 1107 nd6_purge(struct ifnet *ifp) 1108 { 1109 struct nd_drhead drq; 1110 struct nd_defrouter *dr, *ndr; 1111 struct nd_prefix *pr, *npr; 1112 1113 TAILQ_INIT(&drq); 1114 1115 /* 1116 * Nuke default router list entries toward ifp. 1117 * We defer removal of default router list entries that is installed 1118 * in the routing table, in order to keep additional side effects as 1119 * small as possible. 1120 */ 1121 ND6_WLOCK(); 1122 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1123 if (dr->installed) 1124 continue; 1125 if (dr->ifp == ifp) 1126 defrouter_unlink(dr, &drq); 1127 } 1128 1129 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1130 if (!dr->installed) 1131 continue; 1132 if (dr->ifp == ifp) 1133 defrouter_unlink(dr, &drq); 1134 } 1135 ND6_WUNLOCK(); 1136 1137 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1138 TAILQ_REMOVE(&drq, dr, dr_entry); 1139 defrouter_del(dr); 1140 } 1141 1142 /* Nuke prefix list entries toward ifp */ 1143 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1144 if (pr->ndpr_ifp == ifp) { 1145 /* 1146 * Because if_detach() does *not* release prefixes 1147 * while purging addresses the reference count will 1148 * still be above zero. We therefore reset it to 1149 * make sure that the prefix really gets purged. 1150 */ 1151 pr->ndpr_refcnt = 0; 1152 1153 prelist_remove(pr); 1154 } 1155 } 1156 1157 /* cancel default outgoing interface setting */ 1158 if (V_nd6_defifindex == ifp->if_index) 1159 nd6_setdefaultiface(0); 1160 1161 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1162 /* Refresh default router list. */ 1163 defrouter_select(); 1164 } 1165 } 1166 1167 /* 1168 * the caller acquires and releases the lock on the lltbls 1169 * Returns the llentry locked 1170 */ 1171 struct llentry * 1172 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1173 { 1174 struct sockaddr_in6 sin6; 1175 struct llentry *ln; 1176 1177 bzero(&sin6, sizeof(sin6)); 1178 sin6.sin6_len = sizeof(struct sockaddr_in6); 1179 sin6.sin6_family = AF_INET6; 1180 sin6.sin6_addr = *addr6; 1181 1182 IF_AFDATA_LOCK_ASSERT(ifp); 1183 1184 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1185 1186 return (ln); 1187 } 1188 1189 struct llentry * 1190 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1191 { 1192 struct sockaddr_in6 sin6; 1193 struct llentry *ln; 1194 1195 bzero(&sin6, sizeof(sin6)); 1196 sin6.sin6_len = sizeof(struct sockaddr_in6); 1197 sin6.sin6_family = AF_INET6; 1198 sin6.sin6_addr = *addr6; 1199 1200 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1201 if (ln != NULL) 1202 ln->ln_state = ND6_LLINFO_NOSTATE; 1203 1204 return (ln); 1205 } 1206 1207 /* 1208 * Test whether a given IPv6 address is a neighbor or not, ignoring 1209 * the actual neighbor cache. The neighbor cache is ignored in order 1210 * to not reenter the routing code from within itself. 1211 */ 1212 static int 1213 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1214 { 1215 struct nd_prefix *pr; 1216 struct ifaddr *dstaddr; 1217 struct rt_addrinfo info; 1218 struct sockaddr_in6 rt_key; 1219 struct sockaddr *dst6; 1220 int fibnum; 1221 1222 /* 1223 * A link-local address is always a neighbor. 1224 * XXX: a link does not necessarily specify a single interface. 1225 */ 1226 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1227 struct sockaddr_in6 sin6_copy; 1228 u_int32_t zone; 1229 1230 /* 1231 * We need sin6_copy since sa6_recoverscope() may modify the 1232 * content (XXX). 1233 */ 1234 sin6_copy = *addr; 1235 if (sa6_recoverscope(&sin6_copy)) 1236 return (0); /* XXX: should be impossible */ 1237 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1238 return (0); 1239 if (sin6_copy.sin6_scope_id == zone) 1240 return (1); 1241 else 1242 return (0); 1243 } 1244 1245 bzero(&rt_key, sizeof(rt_key)); 1246 bzero(&info, sizeof(info)); 1247 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1248 1249 /* Always use the default FIB here. XXME - why? */ 1250 fibnum = RT_DEFAULT_FIB; 1251 1252 /* 1253 * If the address matches one of our addresses, 1254 * it should be a neighbor. 1255 * If the address matches one of our on-link prefixes, it should be a 1256 * neighbor. 1257 */ 1258 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1259 if (pr->ndpr_ifp != ifp) 1260 continue; 1261 1262 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1263 1264 /* Always use the default FIB here. */ 1265 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1266 1267 /* Restore length field before retrying lookup */ 1268 rt_key.sin6_len = sizeof(rt_key); 1269 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1270 continue; 1271 /* 1272 * This is the case where multiple interfaces 1273 * have the same prefix, but only one is installed 1274 * into the routing table and that prefix entry 1275 * is not the one being examined here. In the case 1276 * where RADIX_MPATH is enabled, multiple route 1277 * entries (of the same rt_key value) will be 1278 * installed because the interface addresses all 1279 * differ. 1280 */ 1281 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1282 &rt_key.sin6_addr)) 1283 continue; 1284 } 1285 1286 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1287 &addr->sin6_addr, &pr->ndpr_mask)) 1288 return (1); 1289 } 1290 1291 /* 1292 * If the address is assigned on the node of the other side of 1293 * a p2p interface, the address should be a neighbor. 1294 */ 1295 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1296 if (dstaddr != NULL) { 1297 if (dstaddr->ifa_ifp == ifp) { 1298 ifa_free(dstaddr); 1299 return (1); 1300 } 1301 ifa_free(dstaddr); 1302 } 1303 1304 /* 1305 * If the default router list is empty, all addresses are regarded 1306 * as on-link, and thus, as a neighbor. 1307 */ 1308 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1309 TAILQ_EMPTY(&V_nd_defrouter) && 1310 V_nd6_defifindex == ifp->if_index) { 1311 return (1); 1312 } 1313 1314 return (0); 1315 } 1316 1317 1318 /* 1319 * Detect if a given IPv6 address identifies a neighbor on a given link. 1320 * XXX: should take care of the destination of a p2p link? 1321 */ 1322 int 1323 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1324 { 1325 struct llentry *lle; 1326 int rc = 0; 1327 1328 IF_AFDATA_UNLOCK_ASSERT(ifp); 1329 if (nd6_is_new_addr_neighbor(addr, ifp)) 1330 return (1); 1331 1332 /* 1333 * Even if the address matches none of our addresses, it might be 1334 * in the neighbor cache. 1335 */ 1336 IF_AFDATA_RLOCK(ifp); 1337 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1338 LLE_RUNLOCK(lle); 1339 rc = 1; 1340 } 1341 IF_AFDATA_RUNLOCK(ifp); 1342 return (rc); 1343 } 1344 1345 /* 1346 * Free an nd6 llinfo entry. 1347 * Since the function would cause significant changes in the kernel, DO NOT 1348 * make it global, unless you have a strong reason for the change, and are sure 1349 * that the change is safe. 1350 * 1351 * Set noinline to be dtrace-friendly 1352 */ 1353 static __noinline void 1354 nd6_free(struct llentry **lnp, int gc) 1355 { 1356 struct ifnet *ifp; 1357 struct llentry *ln; 1358 struct nd_defrouter *dr; 1359 1360 ln = *lnp; 1361 *lnp = NULL; 1362 1363 LLE_WLOCK_ASSERT(ln); 1364 ND6_RLOCK_ASSERT(); 1365 1366 ifp = lltable_get_ifp(ln->lle_tbl); 1367 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1368 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1369 else 1370 dr = NULL; 1371 ND6_RUNLOCK(); 1372 1373 if ((ln->la_flags & LLE_DELETED) == 0) 1374 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1375 1376 /* 1377 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1378 * even though it is not harmful, it was not really necessary. 1379 */ 1380 1381 /* cancel timer */ 1382 nd6_llinfo_settimer_locked(ln, -1); 1383 1384 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1385 if (dr != NULL && dr->expire && 1386 ln->ln_state == ND6_LLINFO_STALE && gc) { 1387 /* 1388 * If the reason for the deletion is just garbage 1389 * collection, and the neighbor is an active default 1390 * router, do not delete it. Instead, reset the GC 1391 * timer using the router's lifetime. 1392 * Simply deleting the entry would affect default 1393 * router selection, which is not necessarily a good 1394 * thing, especially when we're using router preference 1395 * values. 1396 * XXX: the check for ln_state would be redundant, 1397 * but we intentionally keep it just in case. 1398 */ 1399 if (dr->expire > time_uptime) 1400 nd6_llinfo_settimer_locked(ln, 1401 (dr->expire - time_uptime) * hz); 1402 else 1403 nd6_llinfo_settimer_locked(ln, 1404 (long)V_nd6_gctimer * hz); 1405 1406 LLE_REMREF(ln); 1407 LLE_WUNLOCK(ln); 1408 defrouter_rele(dr); 1409 return; 1410 } 1411 1412 if (dr) { 1413 /* 1414 * Unreachablity of a router might affect the default 1415 * router selection and on-link detection of advertised 1416 * prefixes. 1417 */ 1418 1419 /* 1420 * Temporarily fake the state to choose a new default 1421 * router and to perform on-link determination of 1422 * prefixes correctly. 1423 * Below the state will be set correctly, 1424 * or the entry itself will be deleted. 1425 */ 1426 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1427 } 1428 1429 if (ln->ln_router || dr) { 1430 1431 /* 1432 * We need to unlock to avoid a LOR with rt6_flush() with the 1433 * rnh and for the calls to pfxlist_onlink_check() and 1434 * defrouter_select() in the block further down for calls 1435 * into nd6_lookup(). We still hold a ref. 1436 */ 1437 LLE_WUNLOCK(ln); 1438 1439 /* 1440 * rt6_flush must be called whether or not the neighbor 1441 * is in the Default Router List. 1442 * See a corresponding comment in nd6_na_input(). 1443 */ 1444 rt6_flush(&ln->r_l3addr.addr6, ifp); 1445 } 1446 1447 if (dr) { 1448 /* 1449 * Since defrouter_select() does not affect the 1450 * on-link determination and MIP6 needs the check 1451 * before the default router selection, we perform 1452 * the check now. 1453 */ 1454 pfxlist_onlink_check(); 1455 1456 /* 1457 * Refresh default router list. 1458 */ 1459 defrouter_select(); 1460 } 1461 1462 /* 1463 * If this entry was added by an on-link redirect, remove the 1464 * corresponding host route. 1465 */ 1466 if (ln->la_flags & LLE_REDIRECT) 1467 nd6_free_redirect(ln); 1468 1469 if (ln->ln_router || dr) 1470 LLE_WLOCK(ln); 1471 } 1472 1473 /* 1474 * Save to unlock. We still hold an extra reference and will not 1475 * free(9) in llentry_free() if someone else holds one as well. 1476 */ 1477 LLE_WUNLOCK(ln); 1478 IF_AFDATA_LOCK(ifp); 1479 LLE_WLOCK(ln); 1480 /* Guard against race with other llentry_free(). */ 1481 if (ln->la_flags & LLE_LINKED) { 1482 /* Remove callout reference */ 1483 LLE_REMREF(ln); 1484 lltable_unlink_entry(ln->lle_tbl, ln); 1485 } 1486 IF_AFDATA_UNLOCK(ifp); 1487 1488 llentry_free(ln); 1489 if (dr != NULL) 1490 defrouter_rele(dr); 1491 } 1492 1493 static int 1494 nd6_isdynrte(const struct rtentry *rt, void *xap) 1495 { 1496 1497 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1498 return (1); 1499 1500 return (0); 1501 } 1502 /* 1503 * Remove the rtentry for the given llentry, 1504 * both of which were installed by a redirect. 1505 */ 1506 static void 1507 nd6_free_redirect(const struct llentry *ln) 1508 { 1509 int fibnum; 1510 struct sockaddr_in6 sin6; 1511 struct rt_addrinfo info; 1512 1513 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1514 memset(&info, 0, sizeof(info)); 1515 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1516 info.rti_filter = nd6_isdynrte; 1517 1518 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1519 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1520 } 1521 1522 /* 1523 * Rejuvenate this function for routing operations related 1524 * processing. 1525 */ 1526 void 1527 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1528 { 1529 struct sockaddr_in6 *gateway; 1530 struct nd_defrouter *dr; 1531 struct ifnet *ifp; 1532 1533 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1534 ifp = rt->rt_ifp; 1535 1536 switch (req) { 1537 case RTM_ADD: 1538 break; 1539 1540 case RTM_DELETE: 1541 if (!ifp) 1542 return; 1543 /* 1544 * Only indirect routes are interesting. 1545 */ 1546 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1547 return; 1548 /* 1549 * check for default route 1550 */ 1551 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1552 &SIN6(rt_key(rt))->sin6_addr)) { 1553 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1554 if (dr != NULL) { 1555 dr->installed = 0; 1556 defrouter_rele(dr); 1557 } 1558 } 1559 break; 1560 } 1561 } 1562 1563 1564 int 1565 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1566 { 1567 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1568 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1569 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1570 int error = 0; 1571 1572 if (ifp->if_afdata[AF_INET6] == NULL) 1573 return (EPFNOSUPPORT); 1574 switch (cmd) { 1575 case OSIOCGIFINFO_IN6: 1576 #define ND ndi->ndi 1577 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1578 bzero(&ND, sizeof(ND)); 1579 ND.linkmtu = IN6_LINKMTU(ifp); 1580 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1581 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1582 ND.reachable = ND_IFINFO(ifp)->reachable; 1583 ND.retrans = ND_IFINFO(ifp)->retrans; 1584 ND.flags = ND_IFINFO(ifp)->flags; 1585 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1586 ND.chlim = ND_IFINFO(ifp)->chlim; 1587 break; 1588 case SIOCGIFINFO_IN6: 1589 ND = *ND_IFINFO(ifp); 1590 break; 1591 case SIOCSIFINFO_IN6: 1592 /* 1593 * used to change host variables from userland. 1594 * intended for a use on router to reflect RA configurations. 1595 */ 1596 /* 0 means 'unspecified' */ 1597 if (ND.linkmtu != 0) { 1598 if (ND.linkmtu < IPV6_MMTU || 1599 ND.linkmtu > IN6_LINKMTU(ifp)) { 1600 error = EINVAL; 1601 break; 1602 } 1603 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1604 } 1605 1606 if (ND.basereachable != 0) { 1607 int obasereachable = ND_IFINFO(ifp)->basereachable; 1608 1609 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1610 if (ND.basereachable != obasereachable) 1611 ND_IFINFO(ifp)->reachable = 1612 ND_COMPUTE_RTIME(ND.basereachable); 1613 } 1614 if (ND.retrans != 0) 1615 ND_IFINFO(ifp)->retrans = ND.retrans; 1616 if (ND.chlim != 0) 1617 ND_IFINFO(ifp)->chlim = ND.chlim; 1618 /* FALLTHROUGH */ 1619 case SIOCSIFINFO_FLAGS: 1620 { 1621 struct ifaddr *ifa; 1622 struct in6_ifaddr *ia; 1623 1624 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1625 !(ND.flags & ND6_IFF_IFDISABLED)) { 1626 /* ifdisabled 1->0 transision */ 1627 1628 /* 1629 * If the interface is marked as ND6_IFF_IFDISABLED and 1630 * has an link-local address with IN6_IFF_DUPLICATED, 1631 * do not clear ND6_IFF_IFDISABLED. 1632 * See RFC 4862, Section 5.4.5. 1633 */ 1634 IF_ADDR_RLOCK(ifp); 1635 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1636 if (ifa->ifa_addr->sa_family != AF_INET6) 1637 continue; 1638 ia = (struct in6_ifaddr *)ifa; 1639 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1640 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1641 break; 1642 } 1643 IF_ADDR_RUNLOCK(ifp); 1644 1645 if (ifa != NULL) { 1646 /* LLA is duplicated. */ 1647 ND.flags |= ND6_IFF_IFDISABLED; 1648 log(LOG_ERR, "Cannot enable an interface" 1649 " with a link-local address marked" 1650 " duplicate.\n"); 1651 } else { 1652 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1653 if (ifp->if_flags & IFF_UP) 1654 in6_if_up(ifp); 1655 } 1656 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1657 (ND.flags & ND6_IFF_IFDISABLED)) { 1658 /* ifdisabled 0->1 transision */ 1659 /* Mark all IPv6 address as tentative. */ 1660 1661 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1662 if (V_ip6_dad_count > 0 && 1663 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1664 IF_ADDR_RLOCK(ifp); 1665 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1666 ifa_link) { 1667 if (ifa->ifa_addr->sa_family != 1668 AF_INET6) 1669 continue; 1670 ia = (struct in6_ifaddr *)ifa; 1671 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1672 } 1673 IF_ADDR_RUNLOCK(ifp); 1674 } 1675 } 1676 1677 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1678 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1679 /* auto_linklocal 0->1 transision */ 1680 1681 /* If no link-local address on ifp, configure */ 1682 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1683 in6_ifattach(ifp, NULL); 1684 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1685 ifp->if_flags & IFF_UP) { 1686 /* 1687 * When the IF already has 1688 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1689 * address is assigned, and IFF_UP, try to 1690 * assign one. 1691 */ 1692 IF_ADDR_RLOCK(ifp); 1693 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1694 ifa_link) { 1695 if (ifa->ifa_addr->sa_family != 1696 AF_INET6) 1697 continue; 1698 ia = (struct in6_ifaddr *)ifa; 1699 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1700 break; 1701 } 1702 IF_ADDR_RUNLOCK(ifp); 1703 if (ifa != NULL) 1704 /* No LLA is configured. */ 1705 in6_ifattach(ifp, NULL); 1706 } 1707 } 1708 } 1709 ND_IFINFO(ifp)->flags = ND.flags; 1710 break; 1711 #undef ND 1712 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1713 /* sync kernel routing table with the default router list */ 1714 defrouter_reset(); 1715 defrouter_select(); 1716 break; 1717 case SIOCSPFXFLUSH_IN6: 1718 { 1719 /* flush all the prefix advertised by routers */ 1720 struct nd_prefix *pr, *next; 1721 1722 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1723 struct in6_ifaddr *ia, *ia_next; 1724 1725 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1726 continue; /* XXX */ 1727 1728 /* do we really have to remove addresses as well? */ 1729 /* XXXRW: in6_ifaddrhead locking. */ 1730 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1731 ia_next) { 1732 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1733 continue; 1734 1735 if (ia->ia6_ndpr == pr) 1736 in6_purgeaddr(&ia->ia_ifa); 1737 } 1738 prelist_remove(pr); 1739 } 1740 break; 1741 } 1742 case SIOCSRTRFLUSH_IN6: 1743 { 1744 /* flush all the default routers */ 1745 struct nd_drhead drq; 1746 struct nd_defrouter *dr; 1747 1748 TAILQ_INIT(&drq); 1749 1750 defrouter_reset(); 1751 1752 ND6_WLOCK(); 1753 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1754 defrouter_unlink(dr, &drq); 1755 ND6_WUNLOCK(); 1756 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1757 TAILQ_REMOVE(&drq, dr, dr_entry); 1758 defrouter_del(dr); 1759 } 1760 1761 defrouter_select(); 1762 break; 1763 } 1764 case SIOCGNBRINFO_IN6: 1765 { 1766 struct llentry *ln; 1767 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1768 1769 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1770 return (error); 1771 1772 IF_AFDATA_RLOCK(ifp); 1773 ln = nd6_lookup(&nb_addr, 0, ifp); 1774 IF_AFDATA_RUNLOCK(ifp); 1775 1776 if (ln == NULL) { 1777 error = EINVAL; 1778 break; 1779 } 1780 nbi->state = ln->ln_state; 1781 nbi->asked = ln->la_asked; 1782 nbi->isrouter = ln->ln_router; 1783 if (ln->la_expire == 0) 1784 nbi->expire = 0; 1785 else 1786 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1787 (time_second - time_uptime); 1788 LLE_RUNLOCK(ln); 1789 break; 1790 } 1791 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1792 ndif->ifindex = V_nd6_defifindex; 1793 break; 1794 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1795 return (nd6_setdefaultiface(ndif->ifindex)); 1796 } 1797 return (error); 1798 } 1799 1800 /* 1801 * Calculates new isRouter value based on provided parameters and 1802 * returns it. 1803 */ 1804 static int 1805 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1806 int ln_router) 1807 { 1808 1809 /* 1810 * ICMP6 type dependent behavior. 1811 * 1812 * NS: clear IsRouter if new entry 1813 * RS: clear IsRouter 1814 * RA: set IsRouter if there's lladdr 1815 * redir: clear IsRouter if new entry 1816 * 1817 * RA case, (1): 1818 * The spec says that we must set IsRouter in the following cases: 1819 * - If lladdr exist, set IsRouter. This means (1-5). 1820 * - If it is old entry (!newentry), set IsRouter. This means (7). 1821 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1822 * A quetion arises for (1) case. (1) case has no lladdr in the 1823 * neighbor cache, this is similar to (6). 1824 * This case is rare but we figured that we MUST NOT set IsRouter. 1825 * 1826 * is_new old_addr new_addr NS RS RA redir 1827 * D R 1828 * 0 n n (1) c ? s 1829 * 0 y n (2) c s s 1830 * 0 n y (3) c s s 1831 * 0 y y (4) c s s 1832 * 0 y y (5) c s s 1833 * 1 -- n (6) c c c s 1834 * 1 -- y (7) c c s c s 1835 * 1836 * (c=clear s=set) 1837 */ 1838 switch (type & 0xff) { 1839 case ND_NEIGHBOR_SOLICIT: 1840 /* 1841 * New entry must have is_router flag cleared. 1842 */ 1843 if (is_new) /* (6-7) */ 1844 ln_router = 0; 1845 break; 1846 case ND_REDIRECT: 1847 /* 1848 * If the icmp is a redirect to a better router, always set the 1849 * is_router flag. Otherwise, if the entry is newly created, 1850 * clear the flag. [RFC 2461, sec 8.3] 1851 */ 1852 if (code == ND_REDIRECT_ROUTER) 1853 ln_router = 1; 1854 else { 1855 if (is_new) /* (6-7) */ 1856 ln_router = 0; 1857 } 1858 break; 1859 case ND_ROUTER_SOLICIT: 1860 /* 1861 * is_router flag must always be cleared. 1862 */ 1863 ln_router = 0; 1864 break; 1865 case ND_ROUTER_ADVERT: 1866 /* 1867 * Mark an entry with lladdr as a router. 1868 */ 1869 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1870 (is_new && new_addr)) { /* (7) */ 1871 ln_router = 1; 1872 } 1873 break; 1874 } 1875 1876 return (ln_router); 1877 } 1878 1879 /* 1880 * Create neighbor cache entry and cache link-layer address, 1881 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1882 * 1883 * type - ICMP6 type 1884 * code - type dependent information 1885 * 1886 */ 1887 void 1888 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1889 int lladdrlen, int type, int code) 1890 { 1891 struct llentry *ln = NULL, *ln_tmp; 1892 int is_newentry; 1893 int do_update; 1894 int olladdr; 1895 int llchange; 1896 int flags; 1897 uint16_t router = 0; 1898 struct sockaddr_in6 sin6; 1899 struct mbuf *chain = NULL; 1900 u_char linkhdr[LLE_MAX_LINKHDR]; 1901 size_t linkhdrsize; 1902 int lladdr_off; 1903 1904 IF_AFDATA_UNLOCK_ASSERT(ifp); 1905 1906 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1907 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1908 1909 /* nothing must be updated for unspecified address */ 1910 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1911 return; 1912 1913 /* 1914 * Validation about ifp->if_addrlen and lladdrlen must be done in 1915 * the caller. 1916 * 1917 * XXX If the link does not have link-layer adderss, what should 1918 * we do? (ifp->if_addrlen == 0) 1919 * Spec says nothing in sections for RA, RS and NA. There's small 1920 * description on it in NS section (RFC 2461 7.2.3). 1921 */ 1922 flags = lladdr ? LLE_EXCLUSIVE : 0; 1923 IF_AFDATA_RLOCK(ifp); 1924 ln = nd6_lookup(from, flags, ifp); 1925 IF_AFDATA_RUNLOCK(ifp); 1926 is_newentry = 0; 1927 if (ln == NULL) { 1928 flags |= LLE_EXCLUSIVE; 1929 ln = nd6_alloc(from, 0, ifp); 1930 if (ln == NULL) 1931 return; 1932 1933 /* 1934 * Since we already know all the data for the new entry, 1935 * fill it before insertion. 1936 */ 1937 if (lladdr != NULL) { 1938 linkhdrsize = sizeof(linkhdr); 1939 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1940 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1941 return; 1942 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1943 lladdr_off); 1944 } 1945 1946 IF_AFDATA_WLOCK(ifp); 1947 LLE_WLOCK(ln); 1948 /* Prefer any existing lle over newly-created one */ 1949 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1950 if (ln_tmp == NULL) 1951 lltable_link_entry(LLTABLE6(ifp), ln); 1952 IF_AFDATA_WUNLOCK(ifp); 1953 if (ln_tmp == NULL) { 1954 /* No existing lle, mark as new entry (6,7) */ 1955 is_newentry = 1; 1956 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1957 if (lladdr != NULL) /* (7) */ 1958 EVENTHANDLER_INVOKE(lle_event, ln, 1959 LLENTRY_RESOLVED); 1960 } else { 1961 lltable_free_entry(LLTABLE6(ifp), ln); 1962 ln = ln_tmp; 1963 ln_tmp = NULL; 1964 } 1965 } 1966 /* do nothing if static ndp is set */ 1967 if ((ln->la_flags & LLE_STATIC)) { 1968 if (flags & LLE_EXCLUSIVE) 1969 LLE_WUNLOCK(ln); 1970 else 1971 LLE_RUNLOCK(ln); 1972 return; 1973 } 1974 1975 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1976 if (olladdr && lladdr) { 1977 llchange = bcmp(lladdr, ln->ll_addr, 1978 ifp->if_addrlen); 1979 } else if (!olladdr && lladdr) 1980 llchange = 1; 1981 else 1982 llchange = 0; 1983 1984 /* 1985 * newentry olladdr lladdr llchange (*=record) 1986 * 0 n n -- (1) 1987 * 0 y n -- (2) 1988 * 0 n y y (3) * STALE 1989 * 0 y y n (4) * 1990 * 0 y y y (5) * STALE 1991 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1992 * 1 -- y -- (7) * STALE 1993 */ 1994 1995 do_update = 0; 1996 if (is_newentry == 0 && llchange != 0) { 1997 do_update = 1; /* (3,5) */ 1998 1999 /* 2000 * Record source link-layer address 2001 * XXX is it dependent to ifp->if_type? 2002 */ 2003 linkhdrsize = sizeof(linkhdr); 2004 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2005 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2006 return; 2007 2008 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2009 lladdr_off) == 0) { 2010 /* Entry was deleted */ 2011 return; 2012 } 2013 2014 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2015 2016 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2017 2018 if (ln->la_hold != NULL) 2019 nd6_grab_holdchain(ln, &chain, &sin6); 2020 } 2021 2022 /* Calculates new router status */ 2023 router = nd6_is_router(type, code, is_newentry, olladdr, 2024 lladdr != NULL ? 1 : 0, ln->ln_router); 2025 2026 ln->ln_router = router; 2027 /* Mark non-router redirects with special flag */ 2028 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2029 ln->la_flags |= LLE_REDIRECT; 2030 2031 if (flags & LLE_EXCLUSIVE) 2032 LLE_WUNLOCK(ln); 2033 else 2034 LLE_RUNLOCK(ln); 2035 2036 if (chain != NULL) 2037 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2038 2039 /* 2040 * When the link-layer address of a router changes, select the 2041 * best router again. In particular, when the neighbor entry is newly 2042 * created, it might affect the selection policy. 2043 * Question: can we restrict the first condition to the "is_newentry" 2044 * case? 2045 * XXX: when we hear an RA from a new router with the link-layer 2046 * address option, defrouter_select() is called twice, since 2047 * defrtrlist_update called the function as well. However, I believe 2048 * we can compromise the overhead, since it only happens the first 2049 * time. 2050 * XXX: although defrouter_select() should not have a bad effect 2051 * for those are not autoconfigured hosts, we explicitly avoid such 2052 * cases for safety. 2053 */ 2054 if ((do_update || is_newentry) && router && 2055 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2056 /* 2057 * guaranteed recursion 2058 */ 2059 defrouter_select(); 2060 } 2061 } 2062 2063 static void 2064 nd6_slowtimo(void *arg) 2065 { 2066 CURVNET_SET((struct vnet *) arg); 2067 struct nd_ifinfo *nd6if; 2068 struct ifnet *ifp; 2069 2070 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2071 nd6_slowtimo, curvnet); 2072 IFNET_RLOCK_NOSLEEP(); 2073 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2074 if (ifp->if_afdata[AF_INET6] == NULL) 2075 continue; 2076 nd6if = ND_IFINFO(ifp); 2077 if (nd6if->basereachable && /* already initialized */ 2078 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2079 /* 2080 * Since reachable time rarely changes by router 2081 * advertisements, we SHOULD insure that a new random 2082 * value gets recomputed at least once every few hours. 2083 * (RFC 2461, 6.3.4) 2084 */ 2085 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2086 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2087 } 2088 } 2089 IFNET_RUNLOCK_NOSLEEP(); 2090 CURVNET_RESTORE(); 2091 } 2092 2093 void 2094 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2095 struct sockaddr_in6 *sin6) 2096 { 2097 2098 LLE_WLOCK_ASSERT(ln); 2099 2100 *chain = ln->la_hold; 2101 ln->la_hold = NULL; 2102 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2103 2104 if (ln->ln_state == ND6_LLINFO_STALE) { 2105 2106 /* 2107 * The first time we send a packet to a 2108 * neighbor whose entry is STALE, we have 2109 * to change the state to DELAY and a sets 2110 * a timer to expire in DELAY_FIRST_PROBE_TIME 2111 * seconds to ensure do neighbor unreachability 2112 * detection on expiration. 2113 * (RFC 2461 7.3.3) 2114 */ 2115 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2116 } 2117 } 2118 2119 int 2120 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2121 struct sockaddr_in6 *dst, struct route *ro) 2122 { 2123 int error; 2124 int ip6len; 2125 struct ip6_hdr *ip6; 2126 struct m_tag *mtag; 2127 2128 #ifdef MAC 2129 mac_netinet6_nd6_send(ifp, m); 2130 #endif 2131 2132 /* 2133 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2134 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2135 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2136 * to be diverted to user space. When re-injected into the kernel, 2137 * send_output() will directly dispatch them to the outgoing interface. 2138 */ 2139 if (send_sendso_input_hook != NULL) { 2140 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2141 if (mtag != NULL) { 2142 ip6 = mtod(m, struct ip6_hdr *); 2143 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2144 /* Use the SEND socket */ 2145 error = send_sendso_input_hook(m, ifp, SND_OUT, 2146 ip6len); 2147 /* -1 == no app on SEND socket */ 2148 if (error == 0 || error != -1) 2149 return (error); 2150 } 2151 } 2152 2153 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2154 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2155 mtod(m, struct ip6_hdr *)); 2156 2157 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2158 origifp = ifp; 2159 2160 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2161 return (error); 2162 } 2163 2164 /* 2165 * Lookup link headerfor @sa_dst address. Stores found 2166 * data in @desten buffer. Copy of lle ln_flags can be also 2167 * saved in @pflags if @pflags is non-NULL. 2168 * 2169 * If destination LLE does not exists or lle state modification 2170 * is required, call "slow" version. 2171 * 2172 * Return values: 2173 * - 0 on success (address copied to buffer). 2174 * - EWOULDBLOCK (no local error, but address is still unresolved) 2175 * - other errors (alloc failure, etc) 2176 */ 2177 int 2178 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2179 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2180 struct llentry **plle) 2181 { 2182 struct llentry *ln = NULL; 2183 const struct sockaddr_in6 *dst6; 2184 2185 if (pflags != NULL) 2186 *pflags = 0; 2187 2188 dst6 = (const struct sockaddr_in6 *)sa_dst; 2189 2190 /* discard the packet if IPv6 operation is disabled on the interface */ 2191 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2192 m_freem(m); 2193 return (ENETDOWN); /* better error? */ 2194 } 2195 2196 if (m != NULL && m->m_flags & M_MCAST) { 2197 switch (ifp->if_type) { 2198 case IFT_ETHER: 2199 case IFT_FDDI: 2200 case IFT_L2VLAN: 2201 case IFT_IEEE80211: 2202 case IFT_BRIDGE: 2203 case IFT_ISO88025: 2204 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2205 desten); 2206 return (0); 2207 default: 2208 m_freem(m); 2209 return (EAFNOSUPPORT); 2210 } 2211 } 2212 2213 IF_AFDATA_RLOCK(ifp); 2214 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2215 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2216 /* Entry found, let's copy lle info */ 2217 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2218 if (pflags != NULL) 2219 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2220 /* Check if we have feedback request from nd6 timer */ 2221 if (ln->r_skip_req != 0) { 2222 LLE_REQ_LOCK(ln); 2223 ln->r_skip_req = 0; /* Notify that entry was used */ 2224 ln->lle_hittime = time_uptime; 2225 LLE_REQ_UNLOCK(ln); 2226 } 2227 IF_AFDATA_RUNLOCK(ifp); 2228 return (0); 2229 } 2230 IF_AFDATA_RUNLOCK(ifp); 2231 2232 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2233 } 2234 2235 2236 /* 2237 * Do L2 address resolution for @sa_dst address. Stores found 2238 * address in @desten buffer. Copy of lle ln_flags can be also 2239 * saved in @pflags if @pflags is non-NULL. 2240 * 2241 * Heavy version. 2242 * Function assume that destination LLE does not exist, 2243 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2244 * 2245 * Set noinline to be dtrace-friendly 2246 */ 2247 static __noinline int 2248 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2249 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2250 struct llentry **plle) 2251 { 2252 struct llentry *lle = NULL, *lle_tmp; 2253 struct in6_addr *psrc, src; 2254 int send_ns, ll_len; 2255 char *lladdr; 2256 2257 /* 2258 * Address resolution or Neighbor Unreachability Detection 2259 * for the next hop. 2260 * At this point, the destination of the packet must be a unicast 2261 * or an anycast address(i.e. not a multicast). 2262 */ 2263 if (lle == NULL) { 2264 IF_AFDATA_RLOCK(ifp); 2265 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2266 IF_AFDATA_RUNLOCK(ifp); 2267 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2268 /* 2269 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2270 * the condition below is not very efficient. But we believe 2271 * it is tolerable, because this should be a rare case. 2272 */ 2273 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2274 if (lle == NULL) { 2275 char ip6buf[INET6_ADDRSTRLEN]; 2276 log(LOG_DEBUG, 2277 "nd6_output: can't allocate llinfo for %s " 2278 "(ln=%p)\n", 2279 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2280 m_freem(m); 2281 return (ENOBUFS); 2282 } 2283 2284 IF_AFDATA_WLOCK(ifp); 2285 LLE_WLOCK(lle); 2286 /* Prefer any existing entry over newly-created one */ 2287 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2288 if (lle_tmp == NULL) 2289 lltable_link_entry(LLTABLE6(ifp), lle); 2290 IF_AFDATA_WUNLOCK(ifp); 2291 if (lle_tmp != NULL) { 2292 lltable_free_entry(LLTABLE6(ifp), lle); 2293 lle = lle_tmp; 2294 lle_tmp = NULL; 2295 } 2296 } 2297 } 2298 if (lle == NULL) { 2299 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2300 m_freem(m); 2301 return (ENOBUFS); 2302 } 2303 2304 if (m != NULL) 2305 m_freem(m); 2306 return (ENOBUFS); 2307 } 2308 2309 LLE_WLOCK_ASSERT(lle); 2310 2311 /* 2312 * The first time we send a packet to a neighbor whose entry is 2313 * STALE, we have to change the state to DELAY and a sets a timer to 2314 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2315 * neighbor unreachability detection on expiration. 2316 * (RFC 2461 7.3.3) 2317 */ 2318 if (lle->ln_state == ND6_LLINFO_STALE) 2319 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2320 2321 /* 2322 * If the neighbor cache entry has a state other than INCOMPLETE 2323 * (i.e. its link-layer address is already resolved), just 2324 * send the packet. 2325 */ 2326 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2327 if (flags & LLE_ADDRONLY) { 2328 lladdr = lle->ll_addr; 2329 ll_len = ifp->if_addrlen; 2330 } else { 2331 lladdr = lle->r_linkdata; 2332 ll_len = lle->r_hdrlen; 2333 } 2334 bcopy(lladdr, desten, ll_len); 2335 if (pflags != NULL) 2336 *pflags = lle->la_flags; 2337 if (plle) { 2338 LLE_ADDREF(lle); 2339 *plle = lle; 2340 } 2341 LLE_WUNLOCK(lle); 2342 return (0); 2343 } 2344 2345 /* 2346 * There is a neighbor cache entry, but no ethernet address 2347 * response yet. Append this latest packet to the end of the 2348 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2349 * the oldest packet in the queue will be removed. 2350 */ 2351 2352 if (lle->la_hold != NULL) { 2353 struct mbuf *m_hold; 2354 int i; 2355 2356 i = 0; 2357 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2358 i++; 2359 if (m_hold->m_nextpkt == NULL) { 2360 m_hold->m_nextpkt = m; 2361 break; 2362 } 2363 } 2364 while (i >= V_nd6_maxqueuelen) { 2365 m_hold = lle->la_hold; 2366 lle->la_hold = lle->la_hold->m_nextpkt; 2367 m_freem(m_hold); 2368 i--; 2369 } 2370 } else { 2371 lle->la_hold = m; 2372 } 2373 2374 /* 2375 * If there has been no NS for the neighbor after entering the 2376 * INCOMPLETE state, send the first solicitation. 2377 * Note that for newly-created lle la_asked will be 0, 2378 * so we will transition from ND6_LLINFO_NOSTATE to 2379 * ND6_LLINFO_INCOMPLETE state here. 2380 */ 2381 psrc = NULL; 2382 send_ns = 0; 2383 if (lle->la_asked == 0) { 2384 lle->la_asked++; 2385 send_ns = 1; 2386 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2387 2388 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2389 } 2390 LLE_WUNLOCK(lle); 2391 if (send_ns != 0) 2392 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2393 2394 return (EWOULDBLOCK); 2395 } 2396 2397 /* 2398 * Do L2 address resolution for @sa_dst address. Stores found 2399 * address in @desten buffer. Copy of lle ln_flags can be also 2400 * saved in @pflags if @pflags is non-NULL. 2401 * 2402 * Return values: 2403 * - 0 on success (address copied to buffer). 2404 * - EWOULDBLOCK (no local error, but address is still unresolved) 2405 * - other errors (alloc failure, etc) 2406 */ 2407 int 2408 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2409 char *desten, uint32_t *pflags) 2410 { 2411 int error; 2412 2413 flags |= LLE_ADDRONLY; 2414 error = nd6_resolve_slow(ifp, flags, NULL, 2415 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2416 return (error); 2417 } 2418 2419 int 2420 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2421 struct sockaddr_in6 *dst) 2422 { 2423 struct mbuf *m, *m_head; 2424 struct ifnet *outifp; 2425 int error = 0; 2426 2427 m_head = chain; 2428 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2429 outifp = origifp; 2430 else 2431 outifp = ifp; 2432 2433 while (m_head) { 2434 m = m_head; 2435 m_head = m_head->m_nextpkt; 2436 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2437 } 2438 2439 /* 2440 * XXX 2441 * note that intermediate errors are blindly ignored 2442 */ 2443 return (error); 2444 } 2445 2446 static int 2447 nd6_need_cache(struct ifnet *ifp) 2448 { 2449 /* 2450 * XXX: we currently do not make neighbor cache on any interface 2451 * other than ARCnet, Ethernet, FDDI and GIF. 2452 * 2453 * RFC2893 says: 2454 * - unidirectional tunnels needs no ND 2455 */ 2456 switch (ifp->if_type) { 2457 case IFT_ARCNET: 2458 case IFT_ETHER: 2459 case IFT_FDDI: 2460 case IFT_IEEE1394: 2461 case IFT_L2VLAN: 2462 case IFT_IEEE80211: 2463 case IFT_INFINIBAND: 2464 case IFT_BRIDGE: 2465 case IFT_PROPVIRTUAL: 2466 return (1); 2467 default: 2468 return (0); 2469 } 2470 } 2471 2472 /* 2473 * Add pernament ND6 link-layer record for given 2474 * interface address. 2475 * 2476 * Very similar to IPv4 arp_ifinit(), but: 2477 * 1) IPv6 DAD is performed in different place 2478 * 2) It is called by IPv6 protocol stack in contrast to 2479 * arp_ifinit() which is typically called in SIOCSIFADDR 2480 * driver ioctl handler. 2481 * 2482 */ 2483 int 2484 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2485 { 2486 struct ifnet *ifp; 2487 struct llentry *ln, *ln_tmp; 2488 struct sockaddr *dst; 2489 2490 ifp = ia->ia_ifa.ifa_ifp; 2491 if (nd6_need_cache(ifp) == 0) 2492 return (0); 2493 2494 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2495 dst = (struct sockaddr *)&ia->ia_addr; 2496 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2497 if (ln == NULL) 2498 return (ENOBUFS); 2499 2500 IF_AFDATA_WLOCK(ifp); 2501 LLE_WLOCK(ln); 2502 /* Unlink any entry if exists */ 2503 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2504 if (ln_tmp != NULL) 2505 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2506 lltable_link_entry(LLTABLE6(ifp), ln); 2507 IF_AFDATA_WUNLOCK(ifp); 2508 2509 if (ln_tmp != NULL) 2510 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2511 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2512 2513 LLE_WUNLOCK(ln); 2514 if (ln_tmp != NULL) 2515 llentry_free(ln_tmp); 2516 2517 return (0); 2518 } 2519 2520 /* 2521 * Removes either all lle entries for given @ia, or lle 2522 * corresponding to @ia address. 2523 */ 2524 void 2525 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2526 { 2527 struct sockaddr_in6 mask, addr; 2528 struct sockaddr *saddr, *smask; 2529 struct ifnet *ifp; 2530 2531 ifp = ia->ia_ifa.ifa_ifp; 2532 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2533 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2534 saddr = (struct sockaddr *)&addr; 2535 smask = (struct sockaddr *)&mask; 2536 2537 if (all != 0) 2538 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2539 else 2540 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2541 } 2542 2543 static void 2544 clear_llinfo_pqueue(struct llentry *ln) 2545 { 2546 struct mbuf *m_hold, *m_hold_next; 2547 2548 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2549 m_hold_next = m_hold->m_nextpkt; 2550 m_freem(m_hold); 2551 } 2552 2553 ln->la_hold = NULL; 2554 } 2555 2556 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2557 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2558 2559 SYSCTL_DECL(_net_inet6_icmp6); 2560 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2561 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2562 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2563 "NDP default router list"); 2564 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2565 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2566 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2567 "NDP prefix list"); 2568 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2569 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2570 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2571 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2572 2573 static int 2574 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2575 { 2576 struct in6_defrouter d; 2577 struct nd_defrouter *dr; 2578 int error; 2579 2580 if (req->newptr != NULL) 2581 return (EPERM); 2582 2583 error = sysctl_wire_old_buffer(req, 0); 2584 if (error != 0) 2585 return (error); 2586 2587 bzero(&d, sizeof(d)); 2588 d.rtaddr.sin6_family = AF_INET6; 2589 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2590 2591 ND6_RLOCK(); 2592 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2593 d.rtaddr.sin6_addr = dr->rtaddr; 2594 error = sa6_recoverscope(&d.rtaddr); 2595 if (error != 0) 2596 break; 2597 d.flags = dr->raflags; 2598 d.rtlifetime = dr->rtlifetime; 2599 d.expire = dr->expire + (time_second - time_uptime); 2600 d.if_index = dr->ifp->if_index; 2601 error = SYSCTL_OUT(req, &d, sizeof(d)); 2602 if (error != 0) 2603 break; 2604 } 2605 ND6_RUNLOCK(); 2606 return (error); 2607 } 2608 2609 static int 2610 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2611 { 2612 struct in6_prefix p; 2613 struct sockaddr_in6 s6; 2614 struct nd_prefix *pr; 2615 struct nd_pfxrouter *pfr; 2616 time_t maxexpire; 2617 int error; 2618 char ip6buf[INET6_ADDRSTRLEN]; 2619 2620 if (req->newptr) 2621 return (EPERM); 2622 2623 error = sysctl_wire_old_buffer(req, 0); 2624 if (error != 0) 2625 return (error); 2626 2627 bzero(&p, sizeof(p)); 2628 p.origin = PR_ORIG_RA; 2629 bzero(&s6, sizeof(s6)); 2630 s6.sin6_family = AF_INET6; 2631 s6.sin6_len = sizeof(s6); 2632 2633 ND6_RLOCK(); 2634 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2635 p.prefix = pr->ndpr_prefix; 2636 if (sa6_recoverscope(&p.prefix)) { 2637 log(LOG_ERR, "scope error in prefix list (%s)\n", 2638 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2639 /* XXX: press on... */ 2640 } 2641 p.raflags = pr->ndpr_raf; 2642 p.prefixlen = pr->ndpr_plen; 2643 p.vltime = pr->ndpr_vltime; 2644 p.pltime = pr->ndpr_pltime; 2645 p.if_index = pr->ndpr_ifp->if_index; 2646 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2647 p.expire = 0; 2648 else { 2649 /* XXX: we assume time_t is signed. */ 2650 maxexpire = (-1) & 2651 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2652 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2653 p.expire = pr->ndpr_lastupdate + 2654 pr->ndpr_vltime + 2655 (time_second - time_uptime); 2656 else 2657 p.expire = maxexpire; 2658 } 2659 p.refcnt = pr->ndpr_refcnt; 2660 p.flags = pr->ndpr_stateflags; 2661 p.advrtrs = 0; 2662 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2663 p.advrtrs++; 2664 error = SYSCTL_OUT(req, &p, sizeof(p)); 2665 if (error != 0) 2666 break; 2667 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2668 s6.sin6_addr = pfr->router->rtaddr; 2669 if (sa6_recoverscope(&s6)) 2670 log(LOG_ERR, 2671 "scope error in prefix list (%s)\n", 2672 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2673 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2674 if (error != 0) 2675 break; 2676 } 2677 } 2678 ND6_RUNLOCK(); 2679 return (error); 2680 } 2681