xref: /freebsd/sys/netinet6/nd6.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arc.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/iso88025.h>
62 #include <net/fddi.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #define	L3_ADDR_SIN6(le)	((struct sockaddr_in6 *) L3_ADDR(le))
70 #include <netinet/if_ether.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet/ip6.h>
73 #include <netinet6/ip6_var.h>
74 #include <netinet6/scope6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet6/in6_ifattach.h>
77 #include <netinet/icmp6.h>
78 #include <netinet6/send.h>
79 
80 #include <sys/limits.h>
81 
82 #include <security/mac/mac_framework.h>
83 
84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
86 
87 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
88 
89 /* timer values */
90 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
91 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
92 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
93 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
94 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
95 					 * local traffic */
96 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
97 					 * collection timer */
98 
99 /* preventing too many loops in ND option parsing */
100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
101 
102 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
103 					 * layer hints */
104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
105 					 * ND entries */
106 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
107 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
108 
109 #ifdef ND6_DEBUG
110 VNET_DEFINE(int, nd6_debug) = 1;
111 #else
112 VNET_DEFINE(int, nd6_debug) = 0;
113 #endif
114 
115 /* for debugging? */
116 #if 0
117 static int nd6_inuse, nd6_allocated;
118 #endif
119 
120 VNET_DEFINE(struct nd_drhead, nd_defrouter);
121 VNET_DEFINE(struct nd_prhead, nd_prefix);
122 
123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
124 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
125 
126 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
127 
128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *,
129 	struct ifnet *);
130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
131 static void nd6_slowtimo(void *);
132 static int regen_tmpaddr(struct in6_ifaddr *);
133 static struct llentry *nd6_free(struct llentry *, int);
134 static void nd6_llinfo_timer(void *);
135 static void clear_llinfo_pqueue(struct llentry *);
136 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
137 static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *,
138 	struct sockaddr_in6 *);
139 static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *,
140     struct sockaddr_in6 *);
141 
142 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
143 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
144 
145 VNET_DEFINE(struct callout, nd6_timer_ch);
146 
147 void
148 nd6_init(void)
149 {
150 
151 	LIST_INIT(&V_nd_prefix);
152 
153 	/* initialization of the default router list */
154 	TAILQ_INIT(&V_nd_defrouter);
155 
156 	/* start timer */
157 	callout_init(&V_nd6_slowtimo_ch, 0);
158 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
159 	    nd6_slowtimo, curvnet);
160 
161 	nd6_dad_init();
162 }
163 
164 #ifdef VIMAGE
165 void
166 nd6_destroy()
167 {
168 
169 	callout_drain(&V_nd6_slowtimo_ch);
170 	callout_drain(&V_nd6_timer_ch);
171 }
172 #endif
173 
174 struct nd_ifinfo *
175 nd6_ifattach(struct ifnet *ifp)
176 {
177 	struct nd_ifinfo *nd;
178 
179 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
180 	nd->initialized = 1;
181 
182 	nd->chlim = IPV6_DEFHLIM;
183 	nd->basereachable = REACHABLE_TIME;
184 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
185 	nd->retrans = RETRANS_TIMER;
186 
187 	nd->flags = ND6_IFF_PERFORMNUD;
188 
189 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
190 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
191 	 * default regardless of the V_ip6_auto_linklocal configuration to
192 	 * give a reasonable default behavior.
193 	 */
194 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
195 	    (ifp->if_flags & IFF_LOOPBACK))
196 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
197 	/*
198 	 * A loopback interface does not need to accept RTADV.
199 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
200 	 * default regardless of the V_ip6_accept_rtadv configuration to
201 	 * prevent the interface from accepting RA messages arrived
202 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
203 	 */
204 	if (V_ip6_accept_rtadv &&
205 	    !(ifp->if_flags & IFF_LOOPBACK) &&
206 	    (ifp->if_type != IFT_BRIDGE))
207 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
208 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
209 		nd->flags |= ND6_IFF_NO_RADR;
210 
211 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
212 	nd6_setmtu0(ifp, nd);
213 
214 	return nd;
215 }
216 
217 void
218 nd6_ifdetach(struct nd_ifinfo *nd)
219 {
220 
221 	free(nd, M_IP6NDP);
222 }
223 
224 /*
225  * Reset ND level link MTU. This function is called when the physical MTU
226  * changes, which means we might have to adjust the ND level MTU.
227  */
228 void
229 nd6_setmtu(struct ifnet *ifp)
230 {
231 
232 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
233 }
234 
235 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
236 void
237 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
238 {
239 	u_int32_t omaxmtu;
240 
241 	omaxmtu = ndi->maxmtu;
242 
243 	switch (ifp->if_type) {
244 	case IFT_ARCNET:
245 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
246 		break;
247 	case IFT_FDDI:
248 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
249 		break;
250 	case IFT_ISO88025:
251 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
252 		 break;
253 	default:
254 		ndi->maxmtu = ifp->if_mtu;
255 		break;
256 	}
257 
258 	/*
259 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
260 	 * undesirable situation.  We thus notify the operator of the change
261 	 * explicitly.  The check for omaxmtu is necessary to restrict the
262 	 * log to the case of changing the MTU, not initializing it.
263 	 */
264 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
265 		log(LOG_NOTICE, "nd6_setmtu0: "
266 		    "new link MTU on %s (%lu) is too small for IPv6\n",
267 		    if_name(ifp), (unsigned long)ndi->maxmtu);
268 	}
269 
270 	if (ndi->maxmtu > V_in6_maxmtu)
271 		in6_setmaxmtu(); /* check all interfaces just in case */
272 
273 }
274 
275 void
276 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
277 {
278 
279 	bzero(ndopts, sizeof(*ndopts));
280 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
281 	ndopts->nd_opts_last
282 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
283 
284 	if (icmp6len == 0) {
285 		ndopts->nd_opts_done = 1;
286 		ndopts->nd_opts_search = NULL;
287 	}
288 }
289 
290 /*
291  * Take one ND option.
292  */
293 struct nd_opt_hdr *
294 nd6_option(union nd_opts *ndopts)
295 {
296 	struct nd_opt_hdr *nd_opt;
297 	int olen;
298 
299 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
300 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
301 	    __func__));
302 	if (ndopts->nd_opts_search == NULL)
303 		return NULL;
304 	if (ndopts->nd_opts_done)
305 		return NULL;
306 
307 	nd_opt = ndopts->nd_opts_search;
308 
309 	/* make sure nd_opt_len is inside the buffer */
310 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
311 		bzero(ndopts, sizeof(*ndopts));
312 		return NULL;
313 	}
314 
315 	olen = nd_opt->nd_opt_len << 3;
316 	if (olen == 0) {
317 		/*
318 		 * Message validation requires that all included
319 		 * options have a length that is greater than zero.
320 		 */
321 		bzero(ndopts, sizeof(*ndopts));
322 		return NULL;
323 	}
324 
325 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
326 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
327 		/* option overruns the end of buffer, invalid */
328 		bzero(ndopts, sizeof(*ndopts));
329 		return NULL;
330 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
331 		/* reached the end of options chain */
332 		ndopts->nd_opts_done = 1;
333 		ndopts->nd_opts_search = NULL;
334 	}
335 	return nd_opt;
336 }
337 
338 /*
339  * Parse multiple ND options.
340  * This function is much easier to use, for ND routines that do not need
341  * multiple options of the same type.
342  */
343 int
344 nd6_options(union nd_opts *ndopts)
345 {
346 	struct nd_opt_hdr *nd_opt;
347 	int i = 0;
348 
349 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
350 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
351 	    __func__));
352 	if (ndopts->nd_opts_search == NULL)
353 		return 0;
354 
355 	while (1) {
356 		nd_opt = nd6_option(ndopts);
357 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
358 			/*
359 			 * Message validation requires that all included
360 			 * options have a length that is greater than zero.
361 			 */
362 			ICMP6STAT_INC(icp6s_nd_badopt);
363 			bzero(ndopts, sizeof(*ndopts));
364 			return -1;
365 		}
366 
367 		if (nd_opt == NULL)
368 			goto skip1;
369 
370 		switch (nd_opt->nd_opt_type) {
371 		case ND_OPT_SOURCE_LINKADDR:
372 		case ND_OPT_TARGET_LINKADDR:
373 		case ND_OPT_MTU:
374 		case ND_OPT_REDIRECTED_HEADER:
375 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
376 				nd6log((LOG_INFO,
377 				    "duplicated ND6 option found (type=%d)\n",
378 				    nd_opt->nd_opt_type));
379 				/* XXX bark? */
380 			} else {
381 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
382 					= nd_opt;
383 			}
384 			break;
385 		case ND_OPT_PREFIX_INFORMATION:
386 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
387 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
388 					= nd_opt;
389 			}
390 			ndopts->nd_opts_pi_end =
391 				(struct nd_opt_prefix_info *)nd_opt;
392 			break;
393 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
394 		case ND_OPT_RDNSS:	/* RFC 6106 */
395 		case ND_OPT_DNSSL:	/* RFC 6106 */
396 			/*
397 			 * Silently ignore options we know and do not care about
398 			 * in the kernel.
399 			 */
400 			break;
401 		default:
402 			/*
403 			 * Unknown options must be silently ignored,
404 			 * to accomodate future extension to the protocol.
405 			 */
406 			nd6log((LOG_DEBUG,
407 			    "nd6_options: unsupported option %d - "
408 			    "option ignored\n", nd_opt->nd_opt_type));
409 		}
410 
411 skip1:
412 		i++;
413 		if (i > V_nd6_maxndopt) {
414 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
415 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
416 			break;
417 		}
418 
419 		if (ndopts->nd_opts_done)
420 			break;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * ND6 timer routine to handle ND6 entries
428  */
429 void
430 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
431 {
432 	int canceled;
433 
434 	LLE_WLOCK_ASSERT(ln);
435 
436 	if (tick < 0) {
437 		ln->la_expire = 0;
438 		ln->ln_ntick = 0;
439 		canceled = callout_stop(&ln->ln_timer_ch);
440 	} else {
441 		ln->la_expire = time_uptime + tick / hz;
442 		LLE_ADDREF(ln);
443 		if (tick > INT_MAX) {
444 			ln->ln_ntick = tick - INT_MAX;
445 			canceled = callout_reset(&ln->ln_timer_ch, INT_MAX,
446 			    nd6_llinfo_timer, ln);
447 		} else {
448 			ln->ln_ntick = 0;
449 			canceled = callout_reset(&ln->ln_timer_ch, tick,
450 			    nd6_llinfo_timer, ln);
451 		}
452 	}
453 	if (canceled)
454 		LLE_REMREF(ln);
455 }
456 
457 void
458 nd6_llinfo_settimer(struct llentry *ln, long tick)
459 {
460 
461 	LLE_WLOCK(ln);
462 	nd6_llinfo_settimer_locked(ln, tick);
463 	LLE_WUNLOCK(ln);
464 }
465 
466 static void
467 nd6_llinfo_timer(void *arg)
468 {
469 	struct llentry *ln;
470 	struct in6_addr *dst;
471 	struct ifnet *ifp;
472 	struct nd_ifinfo *ndi = NULL;
473 
474 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
475 	ln = (struct llentry *)arg;
476 	LLE_WLOCK_ASSERT(ln);
477 	ifp = ln->lle_tbl->llt_ifp;
478 
479 	CURVNET_SET(ifp->if_vnet);
480 
481 	if (ln->ln_ntick > 0) {
482 		if (ln->ln_ntick > INT_MAX) {
483 			ln->ln_ntick -= INT_MAX;
484 			nd6_llinfo_settimer_locked(ln, INT_MAX);
485 		} else {
486 			ln->ln_ntick = 0;
487 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
488 		}
489 		goto done;
490 	}
491 
492 	ndi = ND_IFINFO(ifp);
493 	dst = &L3_ADDR_SIN6(ln)->sin6_addr;
494 	if (ln->la_flags & LLE_STATIC) {
495 		goto done;
496 	}
497 
498 	if (ln->la_flags & LLE_DELETED) {
499 		(void)nd6_free(ln, 0);
500 		ln = NULL;
501 		goto done;
502 	}
503 
504 	switch (ln->ln_state) {
505 	case ND6_LLINFO_INCOMPLETE:
506 		if (ln->la_asked < V_nd6_mmaxtries) {
507 			ln->la_asked++;
508 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
509 			LLE_WUNLOCK(ln);
510 			nd6_ns_output(ifp, NULL, dst, ln, 0);
511 			LLE_WLOCK(ln);
512 		} else {
513 			struct mbuf *m = ln->la_hold;
514 			if (m) {
515 				struct mbuf *m0;
516 
517 				/*
518 				 * assuming every packet in la_hold has the
519 				 * same IP header.  Send error after unlock.
520 				 */
521 				m0 = m->m_nextpkt;
522 				m->m_nextpkt = NULL;
523 				ln->la_hold = m0;
524 				clear_llinfo_pqueue(ln);
525 			}
526 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT);
527 			(void)nd6_free(ln, 0);
528 			ln = NULL;
529 			if (m != NULL)
530 				icmp6_error2(m, ICMP6_DST_UNREACH,
531 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
532 		}
533 		break;
534 	case ND6_LLINFO_REACHABLE:
535 		if (!ND6_LLINFO_PERMANENT(ln)) {
536 			ln->ln_state = ND6_LLINFO_STALE;
537 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
538 		}
539 		break;
540 
541 	case ND6_LLINFO_STALE:
542 		/* Garbage Collection(RFC 2461 5.3) */
543 		if (!ND6_LLINFO_PERMANENT(ln)) {
544 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
545 			(void)nd6_free(ln, 1);
546 			ln = NULL;
547 		}
548 		break;
549 
550 	case ND6_LLINFO_DELAY:
551 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
552 			/* We need NUD */
553 			ln->la_asked = 1;
554 			ln->ln_state = ND6_LLINFO_PROBE;
555 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
556 			LLE_WUNLOCK(ln);
557 			nd6_ns_output(ifp, dst, dst, ln, 0);
558 			LLE_WLOCK(ln);
559 		} else {
560 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
561 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
562 		}
563 		break;
564 	case ND6_LLINFO_PROBE:
565 		if (ln->la_asked < V_nd6_umaxtries) {
566 			ln->la_asked++;
567 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
568 			LLE_WUNLOCK(ln);
569 			nd6_ns_output(ifp, dst, dst, ln, 0);
570 			LLE_WLOCK(ln);
571 		} else {
572 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
573 			(void)nd6_free(ln, 0);
574 			ln = NULL;
575 		}
576 		break;
577 	default:
578 		panic("%s: paths in a dark night can be confusing: %d",
579 		    __func__, ln->ln_state);
580 	}
581 done:
582 	if (ln != NULL)
583 		LLE_FREE_LOCKED(ln);
584 	CURVNET_RESTORE();
585 }
586 
587 
588 /*
589  * ND6 timer routine to expire default route list and prefix list
590  */
591 void
592 nd6_timer(void *arg)
593 {
594 	CURVNET_SET((struct vnet *) arg);
595 	struct nd_defrouter *dr, *ndr;
596 	struct nd_prefix *pr, *npr;
597 	struct in6_ifaddr *ia6, *nia6;
598 
599 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
600 	    nd6_timer, curvnet);
601 
602 	/* expire default router list */
603 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
604 		if (dr->expire && dr->expire < time_uptime)
605 			defrtrlist_del(dr);
606 	}
607 
608 	/*
609 	 * expire interface addresses.
610 	 * in the past the loop was inside prefix expiry processing.
611 	 * However, from a stricter speci-confrmance standpoint, we should
612 	 * rather separate address lifetimes and prefix lifetimes.
613 	 *
614 	 * XXXRW: in6_ifaddrhead locking.
615 	 */
616   addrloop:
617 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
618 		/* check address lifetime */
619 		if (IFA6_IS_INVALID(ia6)) {
620 			int regen = 0;
621 
622 			/*
623 			 * If the expiring address is temporary, try
624 			 * regenerating a new one.  This would be useful when
625 			 * we suspended a laptop PC, then turned it on after a
626 			 * period that could invalidate all temporary
627 			 * addresses.  Although we may have to restart the
628 			 * loop (see below), it must be after purging the
629 			 * address.  Otherwise, we'd see an infinite loop of
630 			 * regeneration.
631 			 */
632 			if (V_ip6_use_tempaddr &&
633 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
634 				if (regen_tmpaddr(ia6) == 0)
635 					regen = 1;
636 			}
637 
638 			in6_purgeaddr(&ia6->ia_ifa);
639 
640 			if (regen)
641 				goto addrloop; /* XXX: see below */
642 		} else if (IFA6_IS_DEPRECATED(ia6)) {
643 			int oldflags = ia6->ia6_flags;
644 
645 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
646 
647 			/*
648 			 * If a temporary address has just become deprecated,
649 			 * regenerate a new one if possible.
650 			 */
651 			if (V_ip6_use_tempaddr &&
652 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
653 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
654 
655 				if (regen_tmpaddr(ia6) == 0) {
656 					/*
657 					 * A new temporary address is
658 					 * generated.
659 					 * XXX: this means the address chain
660 					 * has changed while we are still in
661 					 * the loop.  Although the change
662 					 * would not cause disaster (because
663 					 * it's not a deletion, but an
664 					 * addition,) we'd rather restart the
665 					 * loop just for safety.  Or does this
666 					 * significantly reduce performance??
667 					 */
668 					goto addrloop;
669 				}
670 			}
671 		} else {
672 			/*
673 			 * A new RA might have made a deprecated address
674 			 * preferred.
675 			 */
676 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
677 		}
678 	}
679 
680 	/* expire prefix list */
681 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
682 		/*
683 		 * check prefix lifetime.
684 		 * since pltime is just for autoconf, pltime processing for
685 		 * prefix is not necessary.
686 		 */
687 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
688 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
689 
690 			/*
691 			 * address expiration and prefix expiration are
692 			 * separate.  NEVER perform in6_purgeaddr here.
693 			 */
694 			prelist_remove(pr);
695 		}
696 	}
697 	CURVNET_RESTORE();
698 }
699 
700 /*
701  * ia6 - deprecated/invalidated temporary address
702  */
703 static int
704 regen_tmpaddr(struct in6_ifaddr *ia6)
705 {
706 	struct ifaddr *ifa;
707 	struct ifnet *ifp;
708 	struct in6_ifaddr *public_ifa6 = NULL;
709 
710 	ifp = ia6->ia_ifa.ifa_ifp;
711 	IF_ADDR_RLOCK(ifp);
712 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
713 		struct in6_ifaddr *it6;
714 
715 		if (ifa->ifa_addr->sa_family != AF_INET6)
716 			continue;
717 
718 		it6 = (struct in6_ifaddr *)ifa;
719 
720 		/* ignore no autoconf addresses. */
721 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
722 			continue;
723 
724 		/* ignore autoconf addresses with different prefixes. */
725 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
726 			continue;
727 
728 		/*
729 		 * Now we are looking at an autoconf address with the same
730 		 * prefix as ours.  If the address is temporary and is still
731 		 * preferred, do not create another one.  It would be rare, but
732 		 * could happen, for example, when we resume a laptop PC after
733 		 * a long period.
734 		 */
735 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
736 		    !IFA6_IS_DEPRECATED(it6)) {
737 			public_ifa6 = NULL;
738 			break;
739 		}
740 
741 		/*
742 		 * This is a public autoconf address that has the same prefix
743 		 * as ours.  If it is preferred, keep it.  We can't break the
744 		 * loop here, because there may be a still-preferred temporary
745 		 * address with the prefix.
746 		 */
747 		if (!IFA6_IS_DEPRECATED(it6))
748 		    public_ifa6 = it6;
749 
750 		if (public_ifa6 != NULL)
751 			ifa_ref(&public_ifa6->ia_ifa);
752 	}
753 	IF_ADDR_RUNLOCK(ifp);
754 
755 	if (public_ifa6 != NULL) {
756 		int e;
757 
758 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
759 			ifa_free(&public_ifa6->ia_ifa);
760 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
761 			    " tmp addr,errno=%d\n", e);
762 			return (-1);
763 		}
764 		ifa_free(&public_ifa6->ia_ifa);
765 		return (0);
766 	}
767 
768 	return (-1);
769 }
770 
771 /*
772  * Nuke neighbor cache/prefix/default router management table, right before
773  * ifp goes away.
774  */
775 void
776 nd6_purge(struct ifnet *ifp)
777 {
778 	struct nd_defrouter *dr, *ndr;
779 	struct nd_prefix *pr, *npr;
780 
781 	/*
782 	 * Nuke default router list entries toward ifp.
783 	 * We defer removal of default router list entries that is installed
784 	 * in the routing table, in order to keep additional side effects as
785 	 * small as possible.
786 	 */
787 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
788 		if (dr->installed)
789 			continue;
790 
791 		if (dr->ifp == ifp)
792 			defrtrlist_del(dr);
793 	}
794 
795 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
796 		if (!dr->installed)
797 			continue;
798 
799 		if (dr->ifp == ifp)
800 			defrtrlist_del(dr);
801 	}
802 
803 	/* Nuke prefix list entries toward ifp */
804 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
805 		if (pr->ndpr_ifp == ifp) {
806 			/*
807 			 * Because if_detach() does *not* release prefixes
808 			 * while purging addresses the reference count will
809 			 * still be above zero. We therefore reset it to
810 			 * make sure that the prefix really gets purged.
811 			 */
812 			pr->ndpr_refcnt = 0;
813 
814 			/*
815 			 * Previously, pr->ndpr_addr is removed as well,
816 			 * but I strongly believe we don't have to do it.
817 			 * nd6_purge() is only called from in6_ifdetach(),
818 			 * which removes all the associated interface addresses
819 			 * by itself.
820 			 * (jinmei@kame.net 20010129)
821 			 */
822 			prelist_remove(pr);
823 		}
824 	}
825 
826 	/* cancel default outgoing interface setting */
827 	if (V_nd6_defifindex == ifp->if_index)
828 		nd6_setdefaultiface(0);
829 
830 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
831 		/* Refresh default router list. */
832 		defrouter_select();
833 	}
834 
835 	/* XXXXX
836 	 * We do not nuke the neighbor cache entries here any more
837 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
838 	 * nd6_purge() is invoked by in6_ifdetach() which is called
839 	 * from if_detach() where everything gets purged. So let
840 	 * in6_domifdetach() do the actual L2 table purging work.
841 	 */
842 }
843 
844 /*
845  * the caller acquires and releases the lock on the lltbls
846  * Returns the llentry locked
847  */
848 struct llentry *
849 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp)
850 {
851 	struct sockaddr_in6 sin6;
852 	struct llentry *ln;
853 	int llflags;
854 
855 	bzero(&sin6, sizeof(sin6));
856 	sin6.sin6_len = sizeof(struct sockaddr_in6);
857 	sin6.sin6_family = AF_INET6;
858 	sin6.sin6_addr = *addr6;
859 
860 	IF_AFDATA_LOCK_ASSERT(ifp);
861 
862 	llflags = 0;
863 	if (flags & ND6_CREATE)
864 	    llflags |= LLE_CREATE;
865 	if (flags & ND6_EXCLUSIVE)
866 	    llflags |= LLE_EXCLUSIVE;
867 
868 	ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6);
869 	if ((ln != NULL) && (llflags & LLE_CREATE))
870 		ln->ln_state = ND6_LLINFO_NOSTATE;
871 
872 	return (ln);
873 }
874 
875 /*
876  * Test whether a given IPv6 address is a neighbor or not, ignoring
877  * the actual neighbor cache.  The neighbor cache is ignored in order
878  * to not reenter the routing code from within itself.
879  */
880 static int
881 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
882 {
883 	struct nd_prefix *pr;
884 	struct ifaddr *dstaddr;
885 
886 	/*
887 	 * A link-local address is always a neighbor.
888 	 * XXX: a link does not necessarily specify a single interface.
889 	 */
890 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
891 		struct sockaddr_in6 sin6_copy;
892 		u_int32_t zone;
893 
894 		/*
895 		 * We need sin6_copy since sa6_recoverscope() may modify the
896 		 * content (XXX).
897 		 */
898 		sin6_copy = *addr;
899 		if (sa6_recoverscope(&sin6_copy))
900 			return (0); /* XXX: should be impossible */
901 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
902 			return (0);
903 		if (sin6_copy.sin6_scope_id == zone)
904 			return (1);
905 		else
906 			return (0);
907 	}
908 
909 	/*
910 	 * If the address matches one of our addresses,
911 	 * it should be a neighbor.
912 	 * If the address matches one of our on-link prefixes, it should be a
913 	 * neighbor.
914 	 */
915 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
916 		if (pr->ndpr_ifp != ifp)
917 			continue;
918 
919 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
920 			struct rtentry *rt;
921 
922 			/* Always use the default FIB here. */
923 			rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix,
924 			    0, 0, RT_DEFAULT_FIB);
925 			if (rt == NULL)
926 				continue;
927 			/*
928 			 * This is the case where multiple interfaces
929 			 * have the same prefix, but only one is installed
930 			 * into the routing table and that prefix entry
931 			 * is not the one being examined here. In the case
932 			 * where RADIX_MPATH is enabled, multiple route
933 			 * entries (of the same rt_key value) will be
934 			 * installed because the interface addresses all
935 			 * differ.
936 			 */
937 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
938 			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
939 				RTFREE_LOCKED(rt);
940 				continue;
941 			}
942 			RTFREE_LOCKED(rt);
943 		}
944 
945 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
946 		    &addr->sin6_addr, &pr->ndpr_mask))
947 			return (1);
948 	}
949 
950 	/*
951 	 * If the address is assigned on the node of the other side of
952 	 * a p2p interface, the address should be a neighbor.
953 	 */
954 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS);
955 	if (dstaddr != NULL) {
956 		if (dstaddr->ifa_ifp == ifp) {
957 			ifa_free(dstaddr);
958 			return (1);
959 		}
960 		ifa_free(dstaddr);
961 	}
962 
963 	/*
964 	 * If the default router list is empty, all addresses are regarded
965 	 * as on-link, and thus, as a neighbor.
966 	 */
967 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
968 	    TAILQ_EMPTY(&V_nd_defrouter) &&
969 	    V_nd6_defifindex == ifp->if_index) {
970 		return (1);
971 	}
972 
973 	return (0);
974 }
975 
976 
977 /*
978  * Detect if a given IPv6 address identifies a neighbor on a given link.
979  * XXX: should take care of the destination of a p2p link?
980  */
981 int
982 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
983 {
984 	struct llentry *lle;
985 	int rc = 0;
986 
987 	IF_AFDATA_UNLOCK_ASSERT(ifp);
988 	if (nd6_is_new_addr_neighbor(addr, ifp))
989 		return (1);
990 
991 	/*
992 	 * Even if the address matches none of our addresses, it might be
993 	 * in the neighbor cache.
994 	 */
995 	IF_AFDATA_RLOCK(ifp);
996 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
997 		LLE_RUNLOCK(lle);
998 		rc = 1;
999 	}
1000 	IF_AFDATA_RUNLOCK(ifp);
1001 	return (rc);
1002 }
1003 
1004 /*
1005  * Free an nd6 llinfo entry.
1006  * Since the function would cause significant changes in the kernel, DO NOT
1007  * make it global, unless you have a strong reason for the change, and are sure
1008  * that the change is safe.
1009  */
1010 static struct llentry *
1011 nd6_free(struct llentry *ln, int gc)
1012 {
1013         struct llentry *next;
1014 	struct nd_defrouter *dr;
1015 	struct ifnet *ifp;
1016 
1017 	LLE_WLOCK_ASSERT(ln);
1018 
1019 	/*
1020 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1021 	 * even though it is not harmful, it was not really necessary.
1022 	 */
1023 
1024 	/* cancel timer */
1025 	nd6_llinfo_settimer_locked(ln, -1);
1026 
1027 	ifp = ln->lle_tbl->llt_ifp;
1028 
1029 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1030 		dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1031 
1032 		if (dr != NULL && dr->expire &&
1033 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1034 			/*
1035 			 * If the reason for the deletion is just garbage
1036 			 * collection, and the neighbor is an active default
1037 			 * router, do not delete it.  Instead, reset the GC
1038 			 * timer using the router's lifetime.
1039 			 * Simply deleting the entry would affect default
1040 			 * router selection, which is not necessarily a good
1041 			 * thing, especially when we're using router preference
1042 			 * values.
1043 			 * XXX: the check for ln_state would be redundant,
1044 			 *      but we intentionally keep it just in case.
1045 			 */
1046 			if (dr->expire > time_uptime)
1047 				nd6_llinfo_settimer_locked(ln,
1048 				    (dr->expire - time_uptime) * hz);
1049 			else
1050 				nd6_llinfo_settimer_locked(ln,
1051 				    (long)V_nd6_gctimer * hz);
1052 
1053 			next = LIST_NEXT(ln, lle_next);
1054 			LLE_REMREF(ln);
1055 			LLE_WUNLOCK(ln);
1056 			return (next);
1057 		}
1058 
1059 		if (dr) {
1060 			/*
1061 			 * Unreachablity of a router might affect the default
1062 			 * router selection and on-link detection of advertised
1063 			 * prefixes.
1064 			 */
1065 
1066 			/*
1067 			 * Temporarily fake the state to choose a new default
1068 			 * router and to perform on-link determination of
1069 			 * prefixes correctly.
1070 			 * Below the state will be set correctly,
1071 			 * or the entry itself will be deleted.
1072 			 */
1073 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1074 		}
1075 
1076 		if (ln->ln_router || dr) {
1077 
1078 			/*
1079 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1080 			 * rnh and for the calls to pfxlist_onlink_check() and
1081 			 * defrouter_select() in the block further down for calls
1082 			 * into nd6_lookup().  We still hold a ref.
1083 			 */
1084 			LLE_WUNLOCK(ln);
1085 
1086 			/*
1087 			 * rt6_flush must be called whether or not the neighbor
1088 			 * is in the Default Router List.
1089 			 * See a corresponding comment in nd6_na_input().
1090 			 */
1091 			rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1092 		}
1093 
1094 		if (dr) {
1095 			/*
1096 			 * Since defrouter_select() does not affect the
1097 			 * on-link determination and MIP6 needs the check
1098 			 * before the default router selection, we perform
1099 			 * the check now.
1100 			 */
1101 			pfxlist_onlink_check();
1102 
1103 			/*
1104 			 * Refresh default router list.
1105 			 */
1106 			defrouter_select();
1107 		}
1108 
1109 		if (ln->ln_router || dr)
1110 			LLE_WLOCK(ln);
1111 	}
1112 
1113 	/*
1114 	 * Before deleting the entry, remember the next entry as the
1115 	 * return value.  We need this because pfxlist_onlink_check() above
1116 	 * might have freed other entries (particularly the old next entry) as
1117 	 * a side effect (XXX).
1118 	 */
1119 	next = LIST_NEXT(ln, lle_next);
1120 
1121 	/*
1122 	 * Save to unlock. We still hold an extra reference and will not
1123 	 * free(9) in llentry_free() if someone else holds one as well.
1124 	 */
1125 	LLE_WUNLOCK(ln);
1126 	IF_AFDATA_LOCK(ifp);
1127 	LLE_WLOCK(ln);
1128 
1129 	/* Guard against race with other llentry_free(). */
1130 	if (ln->la_flags & LLE_LINKED) {
1131 		LLE_REMREF(ln);
1132 		llentry_free(ln);
1133 	} else
1134 		LLE_FREE_LOCKED(ln);
1135 
1136 	IF_AFDATA_UNLOCK(ifp);
1137 
1138 	return (next);
1139 }
1140 
1141 /*
1142  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1143  *
1144  * XXX cost-effective methods?
1145  */
1146 void
1147 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1148 {
1149 	struct llentry *ln;
1150 	struct ifnet *ifp;
1151 
1152 	if ((dst6 == NULL) || (rt == NULL))
1153 		return;
1154 
1155 	ifp = rt->rt_ifp;
1156 	IF_AFDATA_RLOCK(ifp);
1157 	ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL);
1158 	IF_AFDATA_RUNLOCK(ifp);
1159 	if (ln == NULL)
1160 		return;
1161 
1162 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1163 		goto done;
1164 
1165 	/*
1166 	 * if we get upper-layer reachability confirmation many times,
1167 	 * it is possible we have false information.
1168 	 */
1169 	if (!force) {
1170 		ln->ln_byhint++;
1171 		if (ln->ln_byhint > V_nd6_maxnudhint) {
1172 			goto done;
1173 		}
1174 	}
1175 
1176  	ln->ln_state = ND6_LLINFO_REACHABLE;
1177 	if (!ND6_LLINFO_PERMANENT(ln)) {
1178 		nd6_llinfo_settimer_locked(ln,
1179 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1180 	}
1181 done:
1182 	LLE_WUNLOCK(ln);
1183 }
1184 
1185 
1186 /*
1187  * Rejuvenate this function for routing operations related
1188  * processing.
1189  */
1190 void
1191 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1192 {
1193 	struct sockaddr_in6 *gateway;
1194 	struct nd_defrouter *dr;
1195 	struct ifnet *ifp;
1196 
1197 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1198 	ifp = rt->rt_ifp;
1199 
1200 	switch (req) {
1201 	case RTM_ADD:
1202 		break;
1203 
1204 	case RTM_DELETE:
1205 		if (!ifp)
1206 			return;
1207 		/*
1208 		 * Only indirect routes are interesting.
1209 		 */
1210 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1211 			return;
1212 		/*
1213 		 * check for default route
1214 		 */
1215 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1216 				       &SIN6(rt_key(rt))->sin6_addr)) {
1217 
1218 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1219 			if (dr != NULL)
1220 				dr->installed = 0;
1221 		}
1222 		break;
1223 	}
1224 }
1225 
1226 
1227 int
1228 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1229 {
1230 	struct in6_drlist *drl = (struct in6_drlist *)data;
1231 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1232 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1233 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1234 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1235 	struct nd_defrouter *dr;
1236 	struct nd_prefix *pr;
1237 	int i = 0, error = 0;
1238 
1239 	if (ifp->if_afdata[AF_INET6] == NULL)
1240 		return (EPFNOSUPPORT);
1241 	switch (cmd) {
1242 	case SIOCGDRLST_IN6:
1243 		/*
1244 		 * obsolete API, use sysctl under net.inet6.icmp6
1245 		 */
1246 		bzero(drl, sizeof(*drl));
1247 		TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
1248 			if (i >= DRLSTSIZ)
1249 				break;
1250 			drl->defrouter[i].rtaddr = dr->rtaddr;
1251 			in6_clearscope(&drl->defrouter[i].rtaddr);
1252 
1253 			drl->defrouter[i].flags = dr->flags;
1254 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1255 			drl->defrouter[i].expire = dr->expire +
1256 			    (time_second - time_uptime);
1257 			drl->defrouter[i].if_index = dr->ifp->if_index;
1258 			i++;
1259 		}
1260 		break;
1261 	case SIOCGPRLST_IN6:
1262 		/*
1263 		 * obsolete API, use sysctl under net.inet6.icmp6
1264 		 *
1265 		 * XXX the structure in6_prlist was changed in backward-
1266 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1267 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1268 		 */
1269 		/*
1270 		 * XXX meaning of fields, especialy "raflags", is very
1271 		 * differnet between RA prefix list and RR/static prefix list.
1272 		 * how about separating ioctls into two?
1273 		 */
1274 		bzero(oprl, sizeof(*oprl));
1275 		LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1276 			struct nd_pfxrouter *pfr;
1277 			int j;
1278 
1279 			if (i >= PRLSTSIZ)
1280 				break;
1281 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1282 			oprl->prefix[i].raflags = pr->ndpr_raf;
1283 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1284 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1285 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1286 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1287 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1288 				oprl->prefix[i].expire = 0;
1289 			else {
1290 				time_t maxexpire;
1291 
1292 				/* XXX: we assume time_t is signed. */
1293 				maxexpire = (-1) &
1294 				    ~((time_t)1 <<
1295 				    ((sizeof(maxexpire) * 8) - 1));
1296 				if (pr->ndpr_vltime <
1297 				    maxexpire - pr->ndpr_lastupdate) {
1298 					oprl->prefix[i].expire =
1299 					    pr->ndpr_lastupdate +
1300 					    pr->ndpr_vltime +
1301 					    (time_second - time_uptime);
1302 				} else
1303 					oprl->prefix[i].expire = maxexpire;
1304 			}
1305 
1306 			j = 0;
1307 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1308 				if (j < DRLSTSIZ) {
1309 #define RTRADDR oprl->prefix[i].advrtr[j]
1310 					RTRADDR = pfr->router->rtaddr;
1311 					in6_clearscope(&RTRADDR);
1312 #undef RTRADDR
1313 				}
1314 				j++;
1315 			}
1316 			oprl->prefix[i].advrtrs = j;
1317 			oprl->prefix[i].origin = PR_ORIG_RA;
1318 
1319 			i++;
1320 		}
1321 
1322 		break;
1323 	case OSIOCGIFINFO_IN6:
1324 #define ND	ndi->ndi
1325 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1326 		bzero(&ND, sizeof(ND));
1327 		ND.linkmtu = IN6_LINKMTU(ifp);
1328 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1329 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1330 		ND.reachable = ND_IFINFO(ifp)->reachable;
1331 		ND.retrans = ND_IFINFO(ifp)->retrans;
1332 		ND.flags = ND_IFINFO(ifp)->flags;
1333 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1334 		ND.chlim = ND_IFINFO(ifp)->chlim;
1335 		break;
1336 	case SIOCGIFINFO_IN6:
1337 		ND = *ND_IFINFO(ifp);
1338 		break;
1339 	case SIOCSIFINFO_IN6:
1340 		/*
1341 		 * used to change host variables from userland.
1342 		 * intented for a use on router to reflect RA configurations.
1343 		 */
1344 		/* 0 means 'unspecified' */
1345 		if (ND.linkmtu != 0) {
1346 			if (ND.linkmtu < IPV6_MMTU ||
1347 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1348 				error = EINVAL;
1349 				break;
1350 			}
1351 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1352 		}
1353 
1354 		if (ND.basereachable != 0) {
1355 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1356 
1357 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1358 			if (ND.basereachable != obasereachable)
1359 				ND_IFINFO(ifp)->reachable =
1360 				    ND_COMPUTE_RTIME(ND.basereachable);
1361 		}
1362 		if (ND.retrans != 0)
1363 			ND_IFINFO(ifp)->retrans = ND.retrans;
1364 		if (ND.chlim != 0)
1365 			ND_IFINFO(ifp)->chlim = ND.chlim;
1366 		/* FALLTHROUGH */
1367 	case SIOCSIFINFO_FLAGS:
1368 	{
1369 		struct ifaddr *ifa;
1370 		struct in6_ifaddr *ia;
1371 
1372 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1373 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1374 			/* ifdisabled 1->0 transision */
1375 
1376 			/*
1377 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1378 			 * has an link-local address with IN6_IFF_DUPLICATED,
1379 			 * do not clear ND6_IFF_IFDISABLED.
1380 			 * See RFC 4862, Section 5.4.5.
1381 			 */
1382 			int duplicated_linklocal = 0;
1383 
1384 			IF_ADDR_RLOCK(ifp);
1385 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1386 				if (ifa->ifa_addr->sa_family != AF_INET6)
1387 					continue;
1388 				ia = (struct in6_ifaddr *)ifa;
1389 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1390 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) {
1391 					duplicated_linklocal = 1;
1392 					break;
1393 				}
1394 			}
1395 			IF_ADDR_RUNLOCK(ifp);
1396 
1397 			if (duplicated_linklocal) {
1398 				ND.flags |= ND6_IFF_IFDISABLED;
1399 				log(LOG_ERR, "Cannot enable an interface"
1400 				    " with a link-local address marked"
1401 				    " duplicate.\n");
1402 			} else {
1403 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1404 				if (ifp->if_flags & IFF_UP)
1405 					in6_if_up(ifp);
1406 			}
1407 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1408 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1409 			/* ifdisabled 0->1 transision */
1410 			/* Mark all IPv6 address as tentative. */
1411 
1412 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1413 			IF_ADDR_RLOCK(ifp);
1414 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1415 				if (ifa->ifa_addr->sa_family != AF_INET6)
1416 					continue;
1417 				ia = (struct in6_ifaddr *)ifa;
1418 				ia->ia6_flags |= IN6_IFF_TENTATIVE;
1419 			}
1420 			IF_ADDR_RUNLOCK(ifp);
1421 		}
1422 
1423 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1424 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1425 				/* auto_linklocal 0->1 transision */
1426 
1427 				/* If no link-local address on ifp, configure */
1428 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1429 				in6_ifattach(ifp, NULL);
1430 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1431 			    ifp->if_flags & IFF_UP) {
1432 				/*
1433 				 * When the IF already has
1434 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1435 				 * address is assigned, and IFF_UP, try to
1436 				 * assign one.
1437 				 */
1438 				int haslinklocal = 0;
1439 
1440 				IF_ADDR_RLOCK(ifp);
1441 				TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1442 					if (ifa->ifa_addr->sa_family != AF_INET6)
1443 						continue;
1444 					ia = (struct in6_ifaddr *)ifa;
1445 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) {
1446 						haslinklocal = 1;
1447 						break;
1448 					}
1449 				}
1450 				IF_ADDR_RUNLOCK(ifp);
1451 				if (!haslinklocal)
1452 					in6_ifattach(ifp, NULL);
1453 			}
1454 		}
1455 	}
1456 		ND_IFINFO(ifp)->flags = ND.flags;
1457 		break;
1458 #undef ND
1459 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1460 		/* sync kernel routing table with the default router list */
1461 		defrouter_reset();
1462 		defrouter_select();
1463 		break;
1464 	case SIOCSPFXFLUSH_IN6:
1465 	{
1466 		/* flush all the prefix advertised by routers */
1467 		struct nd_prefix *pr, *next;
1468 
1469 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1470 			struct in6_ifaddr *ia, *ia_next;
1471 
1472 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1473 				continue; /* XXX */
1474 
1475 			/* do we really have to remove addresses as well? */
1476 			/* XXXRW: in6_ifaddrhead locking. */
1477 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1478 			    ia_next) {
1479 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1480 					continue;
1481 
1482 				if (ia->ia6_ndpr == pr)
1483 					in6_purgeaddr(&ia->ia_ifa);
1484 			}
1485 			prelist_remove(pr);
1486 		}
1487 		break;
1488 	}
1489 	case SIOCSRTRFLUSH_IN6:
1490 	{
1491 		/* flush all the default routers */
1492 		struct nd_defrouter *dr, *next;
1493 
1494 		defrouter_reset();
1495 		TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) {
1496 			defrtrlist_del(dr);
1497 		}
1498 		defrouter_select();
1499 		break;
1500 	}
1501 	case SIOCGNBRINFO_IN6:
1502 	{
1503 		struct llentry *ln;
1504 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1505 
1506 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1507 			return (error);
1508 
1509 		IF_AFDATA_RLOCK(ifp);
1510 		ln = nd6_lookup(&nb_addr, 0, ifp);
1511 		IF_AFDATA_RUNLOCK(ifp);
1512 
1513 		if (ln == NULL) {
1514 			error = EINVAL;
1515 			break;
1516 		}
1517 		nbi->state = ln->ln_state;
1518 		nbi->asked = ln->la_asked;
1519 		nbi->isrouter = ln->ln_router;
1520 		if (ln->la_expire == 0)
1521 			nbi->expire = 0;
1522 		else
1523 			nbi->expire = ln->la_expire +
1524 			    (time_second - time_uptime);
1525 		LLE_RUNLOCK(ln);
1526 		break;
1527 	}
1528 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1529 		ndif->ifindex = V_nd6_defifindex;
1530 		break;
1531 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1532 		return (nd6_setdefaultiface(ndif->ifindex));
1533 	}
1534 	return (error);
1535 }
1536 
1537 /*
1538  * Create neighbor cache entry and cache link-layer address,
1539  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1540  *
1541  * type - ICMP6 type
1542  * code - type dependent information
1543  *
1544  * XXXXX
1545  *  The caller of this function already acquired the ndp
1546  *  cache table lock because the cache entry is returned.
1547  */
1548 struct llentry *
1549 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1550     int lladdrlen, int type, int code)
1551 {
1552 	struct llentry *ln = NULL;
1553 	int is_newentry;
1554 	int do_update;
1555 	int olladdr;
1556 	int llchange;
1557 	int flags;
1558 	int newstate = 0;
1559 	uint16_t router = 0;
1560 	struct sockaddr_in6 sin6;
1561 	struct mbuf *chain = NULL;
1562 	int static_route = 0;
1563 
1564 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1565 
1566 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1567 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1568 
1569 	/* nothing must be updated for unspecified address */
1570 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1571 		return NULL;
1572 
1573 	/*
1574 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1575 	 * the caller.
1576 	 *
1577 	 * XXX If the link does not have link-layer adderss, what should
1578 	 * we do? (ifp->if_addrlen == 0)
1579 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1580 	 * description on it in NS section (RFC 2461 7.2.3).
1581 	 */
1582 	flags = lladdr ? ND6_EXCLUSIVE : 0;
1583 	IF_AFDATA_RLOCK(ifp);
1584 	ln = nd6_lookup(from, flags, ifp);
1585 	IF_AFDATA_RUNLOCK(ifp);
1586 	if (ln == NULL) {
1587 		flags |= ND6_EXCLUSIVE;
1588 		IF_AFDATA_LOCK(ifp);
1589 		ln = nd6_lookup(from, flags | ND6_CREATE, ifp);
1590 		IF_AFDATA_UNLOCK(ifp);
1591 		is_newentry = 1;
1592 	} else {
1593 		/* do nothing if static ndp is set */
1594 		if (ln->la_flags & LLE_STATIC) {
1595 			static_route = 1;
1596 			goto done;
1597 		}
1598 		is_newentry = 0;
1599 	}
1600 	if (ln == NULL)
1601 		return (NULL);
1602 
1603 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1604 	if (olladdr && lladdr) {
1605 		llchange = bcmp(lladdr, &ln->ll_addr,
1606 		    ifp->if_addrlen);
1607 	} else
1608 		llchange = 0;
1609 
1610 	/*
1611 	 * newentry olladdr  lladdr  llchange	(*=record)
1612 	 *	0	n	n	--	(1)
1613 	 *	0	y	n	--	(2)
1614 	 *	0	n	y	--	(3) * STALE
1615 	 *	0	y	y	n	(4) *
1616 	 *	0	y	y	y	(5) * STALE
1617 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1618 	 *	1	--	y	--	(7) * STALE
1619 	 */
1620 
1621 	if (lladdr) {		/* (3-5) and (7) */
1622 		/*
1623 		 * Record source link-layer address
1624 		 * XXX is it dependent to ifp->if_type?
1625 		 */
1626 		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1627 		ln->la_flags |= LLE_VALID;
1628 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
1629 	}
1630 
1631 	if (!is_newentry) {
1632 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1633 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1634 			do_update = 1;
1635 			newstate = ND6_LLINFO_STALE;
1636 		} else					/* (1-2,4) */
1637 			do_update = 0;
1638 	} else {
1639 		do_update = 1;
1640 		if (lladdr == NULL)			/* (6) */
1641 			newstate = ND6_LLINFO_NOSTATE;
1642 		else					/* (7) */
1643 			newstate = ND6_LLINFO_STALE;
1644 	}
1645 
1646 	if (do_update) {
1647 		/*
1648 		 * Update the state of the neighbor cache.
1649 		 */
1650 		ln->ln_state = newstate;
1651 
1652 		if (ln->ln_state == ND6_LLINFO_STALE) {
1653 			if (ln->la_hold != NULL)
1654 				nd6_grab_holdchain(ln, &chain, &sin6);
1655 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1656 			/* probe right away */
1657 			nd6_llinfo_settimer_locked((void *)ln, 0);
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * ICMP6 type dependent behavior.
1663 	 *
1664 	 * NS: clear IsRouter if new entry
1665 	 * RS: clear IsRouter
1666 	 * RA: set IsRouter if there's lladdr
1667 	 * redir: clear IsRouter if new entry
1668 	 *
1669 	 * RA case, (1):
1670 	 * The spec says that we must set IsRouter in the following cases:
1671 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1672 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1673 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1674 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1675 	 * neighbor cache, this is similar to (6).
1676 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1677 	 *
1678 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1679 	 *							D R
1680 	 *	0	n	n	--	(1)	c   ?     s
1681 	 *	0	y	n	--	(2)	c   s     s
1682 	 *	0	n	y	--	(3)	c   s     s
1683 	 *	0	y	y	n	(4)	c   s     s
1684 	 *	0	y	y	y	(5)	c   s     s
1685 	 *	1	--	n	--	(6) c	c	c s
1686 	 *	1	--	y	--	(7) c	c   s	c s
1687 	 *
1688 	 *					(c=clear s=set)
1689 	 */
1690 	switch (type & 0xff) {
1691 	case ND_NEIGHBOR_SOLICIT:
1692 		/*
1693 		 * New entry must have is_router flag cleared.
1694 		 */
1695 		if (is_newentry)	/* (6-7) */
1696 			ln->ln_router = 0;
1697 		break;
1698 	case ND_REDIRECT:
1699 		/*
1700 		 * If the icmp is a redirect to a better router, always set the
1701 		 * is_router flag.  Otherwise, if the entry is newly created,
1702 		 * clear the flag.  [RFC 2461, sec 8.3]
1703 		 */
1704 		if (code == ND_REDIRECT_ROUTER)
1705 			ln->ln_router = 1;
1706 		else if (is_newentry) /* (6-7) */
1707 			ln->ln_router = 0;
1708 		break;
1709 	case ND_ROUTER_SOLICIT:
1710 		/*
1711 		 * is_router flag must always be cleared.
1712 		 */
1713 		ln->ln_router = 0;
1714 		break;
1715 	case ND_ROUTER_ADVERT:
1716 		/*
1717 		 * Mark an entry with lladdr as a router.
1718 		 */
1719 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1720 		    (is_newentry && lladdr)) {			/* (7) */
1721 			ln->ln_router = 1;
1722 		}
1723 		break;
1724 	}
1725 
1726 	if (ln != NULL) {
1727 		static_route = (ln->la_flags & LLE_STATIC);
1728 		router = ln->ln_router;
1729 
1730 		if (flags & ND6_EXCLUSIVE)
1731 			LLE_WUNLOCK(ln);
1732 		else
1733 			LLE_RUNLOCK(ln);
1734 		if (static_route)
1735 			ln = NULL;
1736 	}
1737 	if (chain != NULL)
1738 		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
1739 
1740 	/*
1741 	 * When the link-layer address of a router changes, select the
1742 	 * best router again.  In particular, when the neighbor entry is newly
1743 	 * created, it might affect the selection policy.
1744 	 * Question: can we restrict the first condition to the "is_newentry"
1745 	 * case?
1746 	 * XXX: when we hear an RA from a new router with the link-layer
1747 	 * address option, defrouter_select() is called twice, since
1748 	 * defrtrlist_update called the function as well.  However, I believe
1749 	 * we can compromise the overhead, since it only happens the first
1750 	 * time.
1751 	 * XXX: although defrouter_select() should not have a bad effect
1752 	 * for those are not autoconfigured hosts, we explicitly avoid such
1753 	 * cases for safety.
1754 	 */
1755 	if (do_update && router &&
1756 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1757 		/*
1758 		 * guaranteed recursion
1759 		 */
1760 		defrouter_select();
1761 	}
1762 
1763 	return (ln);
1764 done:
1765 	if (ln != NULL) {
1766 		if (flags & ND6_EXCLUSIVE)
1767 			LLE_WUNLOCK(ln);
1768 		else
1769 			LLE_RUNLOCK(ln);
1770 		if (static_route)
1771 			ln = NULL;
1772 	}
1773 	return (ln);
1774 }
1775 
1776 static void
1777 nd6_slowtimo(void *arg)
1778 {
1779 	CURVNET_SET((struct vnet *) arg);
1780 	struct nd_ifinfo *nd6if;
1781 	struct ifnet *ifp;
1782 
1783 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1784 	    nd6_slowtimo, curvnet);
1785 	IFNET_RLOCK_NOSLEEP();
1786 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1787 		if (ifp->if_afdata[AF_INET6] == NULL)
1788 			continue;
1789 		nd6if = ND_IFINFO(ifp);
1790 		if (nd6if->basereachable && /* already initialized */
1791 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1792 			/*
1793 			 * Since reachable time rarely changes by router
1794 			 * advertisements, we SHOULD insure that a new random
1795 			 * value gets recomputed at least once every few hours.
1796 			 * (RFC 2461, 6.3.4)
1797 			 */
1798 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1799 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1800 		}
1801 	}
1802 	IFNET_RUNLOCK_NOSLEEP();
1803 	CURVNET_RESTORE();
1804 }
1805 
1806 void
1807 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
1808     struct sockaddr_in6 *sin6)
1809 {
1810 
1811 	LLE_WLOCK_ASSERT(ln);
1812 
1813 	*chain = ln->la_hold;
1814 	ln->la_hold = NULL;
1815 	memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6));
1816 
1817 	if (ln->ln_state == ND6_LLINFO_STALE) {
1818 
1819 		/*
1820 		 * The first time we send a packet to a
1821 		 * neighbor whose entry is STALE, we have
1822 		 * to change the state to DELAY and a sets
1823 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
1824 		 * seconds to ensure do neighbor unreachability
1825 		 * detection on expiration.
1826 		 * (RFC 2461 7.3.3)
1827 		 */
1828 		ln->la_asked = 0;
1829 		ln->ln_state = ND6_LLINFO_DELAY;
1830 		nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz);
1831 	}
1832 }
1833 
1834 static int
1835 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1836     struct sockaddr_in6 *dst)
1837 {
1838 	int error;
1839 	int ip6len;
1840 	struct ip6_hdr *ip6;
1841 	struct m_tag *mtag;
1842 
1843 #ifdef MAC
1844 	mac_netinet6_nd6_send(ifp, m);
1845 #endif
1846 
1847 	/*
1848 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
1849 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
1850 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
1851 	 * to be diverted to user space.  When re-injected into the kernel,
1852 	 * send_output() will directly dispatch them to the outgoing interface.
1853 	 */
1854 	if (send_sendso_input_hook != NULL) {
1855 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
1856 		if (mtag != NULL) {
1857 			ip6 = mtod(m, struct ip6_hdr *);
1858 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
1859 			/* Use the SEND socket */
1860 			error = send_sendso_input_hook(m, ifp, SND_OUT,
1861 			    ip6len);
1862 			/* -1 == no app on SEND socket */
1863 			if (error == 0 || error != -1)
1864 			    return (error);
1865 		}
1866 	}
1867 
1868 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
1869 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
1870 	    mtod(m, struct ip6_hdr *));
1871 
1872 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
1873 		origifp = ifp;
1874 
1875 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL);
1876 	return (error);
1877 }
1878 
1879 /*
1880  * IPv6 packet output - light version.
1881  * Checks if destination LLE exists and is in proper state
1882  * (e.g no modification required). If not true, fall back to
1883  * "heavy" version.
1884  */
1885 int
1886 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1887     struct sockaddr_in6 *dst, struct rtentry *rt0)
1888 {
1889 	struct llentry *ln = NULL;
1890 
1891 	/* discard the packet if IPv6 operation is disabled on the interface */
1892 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1893 		m_freem(m);
1894 		return (ENETDOWN); /* better error? */
1895 	}
1896 
1897 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1898 		goto sendpkt;
1899 
1900 	if (nd6_need_cache(ifp) == 0)
1901 		goto sendpkt;
1902 
1903 	IF_AFDATA_RLOCK(ifp);
1904 	ln = nd6_lookup(&dst->sin6_addr, 0, ifp);
1905 	IF_AFDATA_RUNLOCK(ifp);
1906 
1907 	/*
1908 	 * Perform fast path for the following cases:
1909 	 * 1) lle state is REACHABLE
1910 	 * 2) lle state is DELAY (NS message sentNS message sent)
1911 	 *
1912 	 * Every other case involves lle modification, so we handle
1913 	 * them separately.
1914 	 */
1915 	if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE &&
1916 	    ln->ln_state != ND6_LLINFO_DELAY)) {
1917 		/* Fall back to slow processing path */
1918 		if (ln != NULL)
1919 			LLE_RUNLOCK(ln);
1920 		return (nd6_output_lle(ifp, origifp, m, dst));
1921 	}
1922 
1923 sendpkt:
1924 	if (ln != NULL)
1925 		LLE_RUNLOCK(ln);
1926 
1927 	return (nd6_output_ifp(ifp, origifp, m, dst));
1928 }
1929 
1930 
1931 /*
1932  * Output IPv6 packet - heavy version.
1933  * Function assume that either
1934  * 1) destination LLE does not exist, is invalid or stale, so
1935  *   ND6_EXCLUSIVE lock needs to be acquired
1936  * 2) destination lle is provided (with ND6_EXCLUSIVE lock),
1937  *   in that case packets are queued in &chain.
1938  *
1939  */
1940 static int
1941 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1942     struct sockaddr_in6 *dst)
1943 {
1944 	struct llentry *lle = NULL;
1945 	int flags = 0;
1946 
1947 	KASSERT(m != NULL, ("NULL mbuf, nothing to send"));
1948 	/* discard the packet if IPv6 operation is disabled on the interface */
1949 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1950 		m_freem(m);
1951 		return (ENETDOWN); /* better error? */
1952 	}
1953 
1954 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1955 		goto sendpkt;
1956 
1957 	if (nd6_need_cache(ifp) == 0)
1958 		goto sendpkt;
1959 
1960 	/*
1961 	 * Address resolution or Neighbor Unreachability Detection
1962 	 * for the next hop.
1963 	 * At this point, the destination of the packet must be a unicast
1964 	 * or an anycast address(i.e. not a multicast).
1965 	 */
1966 	if (lle == NULL) {
1967 		IF_AFDATA_RLOCK(ifp);
1968 		lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp);
1969 		IF_AFDATA_RUNLOCK(ifp);
1970 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
1971 			/*
1972 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1973 			 * the condition below is not very efficient.  But we believe
1974 			 * it is tolerable, because this should be a rare case.
1975 			 */
1976 			flags = ND6_CREATE | ND6_EXCLUSIVE;
1977 			IF_AFDATA_LOCK(ifp);
1978 			lle = nd6_lookup(&dst->sin6_addr, flags, ifp);
1979 			IF_AFDATA_UNLOCK(ifp);
1980 		}
1981 	}
1982 	if (lle == NULL) {
1983 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1984 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1985 			char ip6buf[INET6_ADDRSTRLEN];
1986 			log(LOG_DEBUG,
1987 			    "nd6_output: can't allocate llinfo for %s "
1988 			    "(ln=%p)\n",
1989 			    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
1990 			m_freem(m);
1991 			return (ENOBUFS);
1992 		}
1993 		goto sendpkt;	/* send anyway */
1994 	}
1995 
1996 	LLE_WLOCK_ASSERT(lle);
1997 
1998 	/* We don't have to do link-layer address resolution on a p2p link. */
1999 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2000 	    lle->ln_state < ND6_LLINFO_REACHABLE) {
2001 		lle->ln_state = ND6_LLINFO_STALE;
2002 		nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz);
2003 	}
2004 
2005 	/*
2006 	 * The first time we send a packet to a neighbor whose entry is
2007 	 * STALE, we have to change the state to DELAY and a sets a timer to
2008 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2009 	 * neighbor unreachability detection on expiration.
2010 	 * (RFC 2461 7.3.3)
2011 	 */
2012 	if (lle->ln_state == ND6_LLINFO_STALE) {
2013 		lle->la_asked = 0;
2014 		lle->ln_state = ND6_LLINFO_DELAY;
2015 		nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz);
2016 	}
2017 
2018 	/*
2019 	 * If the neighbor cache entry has a state other than INCOMPLETE
2020 	 * (i.e. its link-layer address is already resolved), just
2021 	 * send the packet.
2022 	 */
2023 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE)
2024 		goto sendpkt;
2025 
2026 	/*
2027 	 * There is a neighbor cache entry, but no ethernet address
2028 	 * response yet.  Append this latest packet to the end of the
2029 	 * packet queue in the mbuf, unless the number of the packet
2030 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2031 	 * the oldest packet in the queue will be removed.
2032 	 */
2033 	if (lle->ln_state == ND6_LLINFO_NOSTATE)
2034 		lle->ln_state = ND6_LLINFO_INCOMPLETE;
2035 
2036 	if (lle->la_hold != NULL) {
2037 		struct mbuf *m_hold;
2038 		int i;
2039 
2040 		i = 0;
2041 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2042 			i++;
2043 			if (m_hold->m_nextpkt == NULL) {
2044 				m_hold->m_nextpkt = m;
2045 				break;
2046 			}
2047 		}
2048 		while (i >= V_nd6_maxqueuelen) {
2049 			m_hold = lle->la_hold;
2050 			lle->la_hold = lle->la_hold->m_nextpkt;
2051 			m_freem(m_hold);
2052 			i--;
2053 		}
2054 	} else {
2055 		lle->la_hold = m;
2056 	}
2057 
2058 	/*
2059 	 * If there has been no NS for the neighbor after entering the
2060 	 * INCOMPLETE state, send the first solicitation.
2061 	 */
2062 	if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) {
2063 		lle->la_asked++;
2064 
2065 		nd6_llinfo_settimer_locked(lle,
2066 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2067 		LLE_WUNLOCK(lle);
2068 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, 0);
2069 	} else {
2070 		/* We did the lookup so we need to do the unlock here. */
2071 		LLE_WUNLOCK(lle);
2072 	}
2073 
2074 	return (0);
2075 
2076   sendpkt:
2077 	if (lle != NULL)
2078 		LLE_WUNLOCK(lle);
2079 
2080 	return (nd6_output_ifp(ifp, origifp, m, dst));
2081 }
2082 
2083 
2084 int
2085 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2086     struct sockaddr_in6 *dst)
2087 {
2088 	struct mbuf *m, *m_head;
2089 	struct ifnet *outifp;
2090 	int error = 0;
2091 
2092 	m_head = chain;
2093 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2094 		outifp = origifp;
2095 	else
2096 		outifp = ifp;
2097 
2098 	while (m_head) {
2099 		m = m_head;
2100 		m_head = m_head->m_nextpkt;
2101 		error = nd6_output_ifp(ifp, origifp, m, dst);
2102 	}
2103 
2104 	/*
2105 	 * XXX
2106 	 * note that intermediate errors are blindly ignored - but this is
2107 	 * the same convention as used with nd6_output when called by
2108 	 * nd6_cache_lladdr
2109 	 */
2110 	return (error);
2111 }
2112 
2113 
2114 int
2115 nd6_need_cache(struct ifnet *ifp)
2116 {
2117 	/*
2118 	 * XXX: we currently do not make neighbor cache on any interface
2119 	 * other than ARCnet, Ethernet, FDDI and GIF.
2120 	 *
2121 	 * RFC2893 says:
2122 	 * - unidirectional tunnels needs no ND
2123 	 */
2124 	switch (ifp->if_type) {
2125 	case IFT_ARCNET:
2126 	case IFT_ETHER:
2127 	case IFT_FDDI:
2128 	case IFT_IEEE1394:
2129 #ifdef IFT_L2VLAN
2130 	case IFT_L2VLAN:
2131 #endif
2132 #ifdef IFT_IEEE80211
2133 	case IFT_IEEE80211:
2134 #endif
2135 	case IFT_INFINIBAND:
2136 	case IFT_BRIDGE:
2137 	case IFT_PROPVIRTUAL:
2138 		return (1);
2139 	default:
2140 		return (0);
2141 	}
2142 }
2143 
2144 /*
2145  * Add pernament ND6 link-layer record for given
2146  * interface address.
2147  *
2148  * Very similar to IPv4 arp_ifinit(), but:
2149  * 1) IPv6 DAD is performed in different place
2150  * 2) It is called by IPv6 protocol stack in contrast to
2151  * arp_ifinit() which is typically called in SIOCSIFADDR
2152  * driver ioctl handler.
2153  *
2154  */
2155 int
2156 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2157 {
2158 	struct ifnet *ifp;
2159 	struct llentry *ln;
2160 
2161 	ifp = ia->ia_ifa.ifa_ifp;
2162 	if (nd6_need_cache(ifp) == 0)
2163 		return (0);
2164 	IF_AFDATA_LOCK(ifp);
2165 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2166 	ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR |
2167 	    LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr);
2168 	IF_AFDATA_UNLOCK(ifp);
2169 	if (ln != NULL) {
2170 		ln->la_expire = 0;  /* for IPv6 this means permanent */
2171 		ln->ln_state = ND6_LLINFO_REACHABLE;
2172 		LLE_WUNLOCK(ln);
2173 		in6_newaddrmsg(ia, RTM_ADD);
2174 		return (0);
2175 	}
2176 
2177 	return (ENOBUFS);
2178 }
2179 
2180 /*
2181  * Removes ALL lle records for interface address prefix.
2182  * XXXME: That's probably not we really want to do, we need
2183  * to remove address record only and keep other records
2184  * until we determine if given prefix is really going
2185  * to be removed.
2186  */
2187 void
2188 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2189 {
2190 	struct sockaddr_in6 mask, addr;
2191 	struct ifnet *ifp;
2192 
2193 	in6_newaddrmsg(ia, RTM_DELETE);
2194 
2195 	ifp = ia->ia_ifa.ifa_ifp;
2196 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2197 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2198 	lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr,
2199 	            (struct sockaddr *)&mask, LLE_STATIC);
2200 }
2201 
2202 /*
2203  * the callers of this function need to be re-worked to drop
2204  * the lle lock, drop here for now
2205  */
2206 int
2207 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m,
2208     const struct sockaddr *dst, u_char *desten, uint32_t *pflags)
2209 {
2210 	struct llentry *ln;
2211 
2212 	if (pflags != NULL)
2213 		*pflags = 0;
2214 	IF_AFDATA_UNLOCK_ASSERT(ifp);
2215 	if (m != NULL && m->m_flags & M_MCAST) {
2216 		switch (ifp->if_type) {
2217 		case IFT_ETHER:
2218 		case IFT_FDDI:
2219 #ifdef IFT_L2VLAN
2220 		case IFT_L2VLAN:
2221 #endif
2222 #ifdef IFT_IEEE80211
2223 		case IFT_IEEE80211:
2224 #endif
2225 		case IFT_BRIDGE:
2226 		case IFT_ISO88025:
2227 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2228 						 desten);
2229 			return (0);
2230 		default:
2231 			m_freem(m);
2232 			return (EAFNOSUPPORT);
2233 		}
2234 	}
2235 
2236 
2237 	/*
2238 	 * the entry should have been created in nd6_store_lladdr
2239 	 */
2240 	IF_AFDATA_RLOCK(ifp);
2241 	ln = lla_lookup(LLTABLE6(ifp), 0, dst);
2242 	IF_AFDATA_RUNLOCK(ifp);
2243 	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2244 		if (ln != NULL)
2245 			LLE_RUNLOCK(ln);
2246 		/* this could happen, if we could not allocate memory */
2247 		m_freem(m);
2248 		return (1);
2249 	}
2250 
2251 	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2252 	if (pflags != NULL)
2253 		*pflags = ln->la_flags;
2254 	LLE_RUNLOCK(ln);
2255 	/*
2256 	 * A *small* use after free race exists here
2257 	 */
2258 	return (0);
2259 }
2260 
2261 static void
2262 clear_llinfo_pqueue(struct llentry *ln)
2263 {
2264 	struct mbuf *m_hold, *m_hold_next;
2265 
2266 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2267 		m_hold_next = m_hold->m_nextpkt;
2268 		m_freem(m_hold);
2269 	}
2270 
2271 	ln->la_hold = NULL;
2272 	return;
2273 }
2274 
2275 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2276 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2277 #ifdef SYSCTL_DECL
2278 SYSCTL_DECL(_net_inet6_icmp6);
2279 #endif
2280 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2281 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2282 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2283 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2284 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2285 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2286 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2287 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2288 
2289 static int
2290 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2291 {
2292 	struct in6_defrouter d;
2293 	struct nd_defrouter *dr;
2294 	int error;
2295 
2296 	if (req->newptr)
2297 		return (EPERM);
2298 
2299 	bzero(&d, sizeof(d));
2300 	d.rtaddr.sin6_family = AF_INET6;
2301 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2302 
2303 	/*
2304 	 * XXX locking
2305 	 */
2306 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2307 		d.rtaddr.sin6_addr = dr->rtaddr;
2308 		error = sa6_recoverscope(&d.rtaddr);
2309 		if (error != 0)
2310 			return (error);
2311 		d.flags = dr->flags;
2312 		d.rtlifetime = dr->rtlifetime;
2313 		d.expire = dr->expire + (time_second - time_uptime);
2314 		d.if_index = dr->ifp->if_index;
2315 		error = SYSCTL_OUT(req, &d, sizeof(d));
2316 		if (error != 0)
2317 			return (error);
2318 	}
2319 	return (0);
2320 }
2321 
2322 static int
2323 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2324 {
2325 	struct in6_prefix p;
2326 	struct sockaddr_in6 s6;
2327 	struct nd_prefix *pr;
2328 	struct nd_pfxrouter *pfr;
2329 	time_t maxexpire;
2330 	int error;
2331 	char ip6buf[INET6_ADDRSTRLEN];
2332 
2333 	if (req->newptr)
2334 		return (EPERM);
2335 
2336 	bzero(&p, sizeof(p));
2337 	p.origin = PR_ORIG_RA;
2338 	bzero(&s6, sizeof(s6));
2339 	s6.sin6_family = AF_INET6;
2340 	s6.sin6_len = sizeof(s6);
2341 
2342 	/*
2343 	 * XXX locking
2344 	 */
2345 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2346 		p.prefix = pr->ndpr_prefix;
2347 		if (sa6_recoverscope(&p.prefix)) {
2348 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2349 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2350 			/* XXX: press on... */
2351 		}
2352 		p.raflags = pr->ndpr_raf;
2353 		p.prefixlen = pr->ndpr_plen;
2354 		p.vltime = pr->ndpr_vltime;
2355 		p.pltime = pr->ndpr_pltime;
2356 		p.if_index = pr->ndpr_ifp->if_index;
2357 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2358 			p.expire = 0;
2359 		else {
2360 			/* XXX: we assume time_t is signed. */
2361 			maxexpire = (-1) &
2362 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2363 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2364 				p.expire = pr->ndpr_lastupdate +
2365 				    pr->ndpr_vltime +
2366 				    (time_second - time_uptime);
2367 			else
2368 				p.expire = maxexpire;
2369 		}
2370 		p.refcnt = pr->ndpr_refcnt;
2371 		p.flags = pr->ndpr_stateflags;
2372 		p.advrtrs = 0;
2373 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2374 			p.advrtrs++;
2375 		error = SYSCTL_OUT(req, &p, sizeof(p));
2376 		if (error != 0)
2377 			return (error);
2378 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2379 			s6.sin6_addr = pfr->router->rtaddr;
2380 			if (sa6_recoverscope(&s6))
2381 				log(LOG_ERR,
2382 				    "scope error in prefix list (%s)\n",
2383 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2384 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2385 			if (error != 0)
2386 				return (error);
2387 		}
2388 	}
2389 	return (0);
2390 }
2391