1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 /* timer values */ 90 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 91 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 92 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 93 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 94 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 95 * local traffic */ 96 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 97 * collection timer */ 98 99 /* preventing too many loops in ND option parsing */ 100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 101 102 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 103 * layer hints */ 104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 105 * ND entries */ 106 #define V_nd6_maxndopt VNET(nd6_maxndopt) 107 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 108 109 #ifdef ND6_DEBUG 110 VNET_DEFINE(int, nd6_debug) = 1; 111 #else 112 VNET_DEFINE(int, nd6_debug) = 0; 113 #endif 114 115 /* for debugging? */ 116 #if 0 117 static int nd6_inuse, nd6_allocated; 118 #endif 119 120 VNET_DEFINE(struct nd_drhead, nd_defrouter); 121 VNET_DEFINE(struct nd_prhead, nd_prefix); 122 123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 124 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 125 126 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 127 128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 129 struct ifnet *); 130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 131 static void nd6_slowtimo(void *); 132 static int regen_tmpaddr(struct in6_ifaddr *); 133 static struct llentry *nd6_free(struct llentry *, int); 134 static void nd6_llinfo_timer(void *); 135 static void clear_llinfo_pqueue(struct llentry *); 136 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 137 static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *, 138 struct sockaddr_in6 *); 139 static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, 140 struct sockaddr_in6 *); 141 142 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 143 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 144 145 VNET_DEFINE(struct callout, nd6_timer_ch); 146 147 void 148 nd6_init(void) 149 { 150 151 LIST_INIT(&V_nd_prefix); 152 153 /* initialization of the default router list */ 154 TAILQ_INIT(&V_nd_defrouter); 155 156 /* start timer */ 157 callout_init(&V_nd6_slowtimo_ch, 0); 158 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 159 nd6_slowtimo, curvnet); 160 161 nd6_dad_init(); 162 } 163 164 #ifdef VIMAGE 165 void 166 nd6_destroy() 167 { 168 169 callout_drain(&V_nd6_slowtimo_ch); 170 callout_drain(&V_nd6_timer_ch); 171 } 172 #endif 173 174 struct nd_ifinfo * 175 nd6_ifattach(struct ifnet *ifp) 176 { 177 struct nd_ifinfo *nd; 178 179 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 180 nd->initialized = 1; 181 182 nd->chlim = IPV6_DEFHLIM; 183 nd->basereachable = REACHABLE_TIME; 184 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 185 nd->retrans = RETRANS_TIMER; 186 187 nd->flags = ND6_IFF_PERFORMNUD; 188 189 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 190 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 191 * default regardless of the V_ip6_auto_linklocal configuration to 192 * give a reasonable default behavior. 193 */ 194 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 195 (ifp->if_flags & IFF_LOOPBACK)) 196 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 197 /* 198 * A loopback interface does not need to accept RTADV. 199 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 200 * default regardless of the V_ip6_accept_rtadv configuration to 201 * prevent the interface from accepting RA messages arrived 202 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 203 */ 204 if (V_ip6_accept_rtadv && 205 !(ifp->if_flags & IFF_LOOPBACK) && 206 (ifp->if_type != IFT_BRIDGE)) 207 nd->flags |= ND6_IFF_ACCEPT_RTADV; 208 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 209 nd->flags |= ND6_IFF_NO_RADR; 210 211 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 212 nd6_setmtu0(ifp, nd); 213 214 return nd; 215 } 216 217 void 218 nd6_ifdetach(struct nd_ifinfo *nd) 219 { 220 221 free(nd, M_IP6NDP); 222 } 223 224 /* 225 * Reset ND level link MTU. This function is called when the physical MTU 226 * changes, which means we might have to adjust the ND level MTU. 227 */ 228 void 229 nd6_setmtu(struct ifnet *ifp) 230 { 231 232 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 233 } 234 235 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 236 void 237 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 238 { 239 u_int32_t omaxmtu; 240 241 omaxmtu = ndi->maxmtu; 242 243 switch (ifp->if_type) { 244 case IFT_ARCNET: 245 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 246 break; 247 case IFT_FDDI: 248 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 249 break; 250 case IFT_ISO88025: 251 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 252 break; 253 default: 254 ndi->maxmtu = ifp->if_mtu; 255 break; 256 } 257 258 /* 259 * Decreasing the interface MTU under IPV6 minimum MTU may cause 260 * undesirable situation. We thus notify the operator of the change 261 * explicitly. The check for omaxmtu is necessary to restrict the 262 * log to the case of changing the MTU, not initializing it. 263 */ 264 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 265 log(LOG_NOTICE, "nd6_setmtu0: " 266 "new link MTU on %s (%lu) is too small for IPv6\n", 267 if_name(ifp), (unsigned long)ndi->maxmtu); 268 } 269 270 if (ndi->maxmtu > V_in6_maxmtu) 271 in6_setmaxmtu(); /* check all interfaces just in case */ 272 273 } 274 275 void 276 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 277 { 278 279 bzero(ndopts, sizeof(*ndopts)); 280 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 281 ndopts->nd_opts_last 282 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 283 284 if (icmp6len == 0) { 285 ndopts->nd_opts_done = 1; 286 ndopts->nd_opts_search = NULL; 287 } 288 } 289 290 /* 291 * Take one ND option. 292 */ 293 struct nd_opt_hdr * 294 nd6_option(union nd_opts *ndopts) 295 { 296 struct nd_opt_hdr *nd_opt; 297 int olen; 298 299 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 300 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 301 __func__)); 302 if (ndopts->nd_opts_search == NULL) 303 return NULL; 304 if (ndopts->nd_opts_done) 305 return NULL; 306 307 nd_opt = ndopts->nd_opts_search; 308 309 /* make sure nd_opt_len is inside the buffer */ 310 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 311 bzero(ndopts, sizeof(*ndopts)); 312 return NULL; 313 } 314 315 olen = nd_opt->nd_opt_len << 3; 316 if (olen == 0) { 317 /* 318 * Message validation requires that all included 319 * options have a length that is greater than zero. 320 */ 321 bzero(ndopts, sizeof(*ndopts)); 322 return NULL; 323 } 324 325 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 326 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 327 /* option overruns the end of buffer, invalid */ 328 bzero(ndopts, sizeof(*ndopts)); 329 return NULL; 330 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 331 /* reached the end of options chain */ 332 ndopts->nd_opts_done = 1; 333 ndopts->nd_opts_search = NULL; 334 } 335 return nd_opt; 336 } 337 338 /* 339 * Parse multiple ND options. 340 * This function is much easier to use, for ND routines that do not need 341 * multiple options of the same type. 342 */ 343 int 344 nd6_options(union nd_opts *ndopts) 345 { 346 struct nd_opt_hdr *nd_opt; 347 int i = 0; 348 349 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 350 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 351 __func__)); 352 if (ndopts->nd_opts_search == NULL) 353 return 0; 354 355 while (1) { 356 nd_opt = nd6_option(ndopts); 357 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 358 /* 359 * Message validation requires that all included 360 * options have a length that is greater than zero. 361 */ 362 ICMP6STAT_INC(icp6s_nd_badopt); 363 bzero(ndopts, sizeof(*ndopts)); 364 return -1; 365 } 366 367 if (nd_opt == NULL) 368 goto skip1; 369 370 switch (nd_opt->nd_opt_type) { 371 case ND_OPT_SOURCE_LINKADDR: 372 case ND_OPT_TARGET_LINKADDR: 373 case ND_OPT_MTU: 374 case ND_OPT_REDIRECTED_HEADER: 375 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 376 nd6log((LOG_INFO, 377 "duplicated ND6 option found (type=%d)\n", 378 nd_opt->nd_opt_type)); 379 /* XXX bark? */ 380 } else { 381 ndopts->nd_opt_array[nd_opt->nd_opt_type] 382 = nd_opt; 383 } 384 break; 385 case ND_OPT_PREFIX_INFORMATION: 386 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 387 ndopts->nd_opt_array[nd_opt->nd_opt_type] 388 = nd_opt; 389 } 390 ndopts->nd_opts_pi_end = 391 (struct nd_opt_prefix_info *)nd_opt; 392 break; 393 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 394 case ND_OPT_RDNSS: /* RFC 6106 */ 395 case ND_OPT_DNSSL: /* RFC 6106 */ 396 /* 397 * Silently ignore options we know and do not care about 398 * in the kernel. 399 */ 400 break; 401 default: 402 /* 403 * Unknown options must be silently ignored, 404 * to accomodate future extension to the protocol. 405 */ 406 nd6log((LOG_DEBUG, 407 "nd6_options: unsupported option %d - " 408 "option ignored\n", nd_opt->nd_opt_type)); 409 } 410 411 skip1: 412 i++; 413 if (i > V_nd6_maxndopt) { 414 ICMP6STAT_INC(icp6s_nd_toomanyopt); 415 nd6log((LOG_INFO, "too many loop in nd opt\n")); 416 break; 417 } 418 419 if (ndopts->nd_opts_done) 420 break; 421 } 422 423 return 0; 424 } 425 426 /* 427 * ND6 timer routine to handle ND6 entries 428 */ 429 void 430 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 431 { 432 int canceled; 433 434 LLE_WLOCK_ASSERT(ln); 435 436 if (tick < 0) { 437 ln->la_expire = 0; 438 ln->ln_ntick = 0; 439 canceled = callout_stop(&ln->ln_timer_ch); 440 } else { 441 ln->la_expire = time_uptime + tick / hz; 442 LLE_ADDREF(ln); 443 if (tick > INT_MAX) { 444 ln->ln_ntick = tick - INT_MAX; 445 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 446 nd6_llinfo_timer, ln); 447 } else { 448 ln->ln_ntick = 0; 449 canceled = callout_reset(&ln->ln_timer_ch, tick, 450 nd6_llinfo_timer, ln); 451 } 452 } 453 if (canceled) 454 LLE_REMREF(ln); 455 } 456 457 void 458 nd6_llinfo_settimer(struct llentry *ln, long tick) 459 { 460 461 LLE_WLOCK(ln); 462 nd6_llinfo_settimer_locked(ln, tick); 463 LLE_WUNLOCK(ln); 464 } 465 466 static void 467 nd6_llinfo_timer(void *arg) 468 { 469 struct llentry *ln; 470 struct in6_addr *dst; 471 struct ifnet *ifp; 472 struct nd_ifinfo *ndi = NULL; 473 474 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 475 ln = (struct llentry *)arg; 476 LLE_WLOCK_ASSERT(ln); 477 ifp = ln->lle_tbl->llt_ifp; 478 479 CURVNET_SET(ifp->if_vnet); 480 481 if (ln->ln_ntick > 0) { 482 if (ln->ln_ntick > INT_MAX) { 483 ln->ln_ntick -= INT_MAX; 484 nd6_llinfo_settimer_locked(ln, INT_MAX); 485 } else { 486 ln->ln_ntick = 0; 487 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 488 } 489 goto done; 490 } 491 492 ndi = ND_IFINFO(ifp); 493 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 494 if (ln->la_flags & LLE_STATIC) { 495 goto done; 496 } 497 498 if (ln->la_flags & LLE_DELETED) { 499 (void)nd6_free(ln, 0); 500 ln = NULL; 501 goto done; 502 } 503 504 switch (ln->ln_state) { 505 case ND6_LLINFO_INCOMPLETE: 506 if (ln->la_asked < V_nd6_mmaxtries) { 507 ln->la_asked++; 508 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 509 LLE_WUNLOCK(ln); 510 nd6_ns_output(ifp, NULL, dst, ln, 0); 511 LLE_WLOCK(ln); 512 } else { 513 struct mbuf *m = ln->la_hold; 514 if (m) { 515 struct mbuf *m0; 516 517 /* 518 * assuming every packet in la_hold has the 519 * same IP header. Send error after unlock. 520 */ 521 m0 = m->m_nextpkt; 522 m->m_nextpkt = NULL; 523 ln->la_hold = m0; 524 clear_llinfo_pqueue(ln); 525 } 526 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 527 (void)nd6_free(ln, 0); 528 ln = NULL; 529 if (m != NULL) 530 icmp6_error2(m, ICMP6_DST_UNREACH, 531 ICMP6_DST_UNREACH_ADDR, 0, ifp); 532 } 533 break; 534 case ND6_LLINFO_REACHABLE: 535 if (!ND6_LLINFO_PERMANENT(ln)) { 536 ln->ln_state = ND6_LLINFO_STALE; 537 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 538 } 539 break; 540 541 case ND6_LLINFO_STALE: 542 /* Garbage Collection(RFC 2461 5.3) */ 543 if (!ND6_LLINFO_PERMANENT(ln)) { 544 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 545 (void)nd6_free(ln, 1); 546 ln = NULL; 547 } 548 break; 549 550 case ND6_LLINFO_DELAY: 551 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 552 /* We need NUD */ 553 ln->la_asked = 1; 554 ln->ln_state = ND6_LLINFO_PROBE; 555 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 556 LLE_WUNLOCK(ln); 557 nd6_ns_output(ifp, dst, dst, ln, 0); 558 LLE_WLOCK(ln); 559 } else { 560 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 561 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 562 } 563 break; 564 case ND6_LLINFO_PROBE: 565 if (ln->la_asked < V_nd6_umaxtries) { 566 ln->la_asked++; 567 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 568 LLE_WUNLOCK(ln); 569 nd6_ns_output(ifp, dst, dst, ln, 0); 570 LLE_WLOCK(ln); 571 } else { 572 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 573 (void)nd6_free(ln, 0); 574 ln = NULL; 575 } 576 break; 577 default: 578 panic("%s: paths in a dark night can be confusing: %d", 579 __func__, ln->ln_state); 580 } 581 done: 582 if (ln != NULL) 583 LLE_FREE_LOCKED(ln); 584 CURVNET_RESTORE(); 585 } 586 587 588 /* 589 * ND6 timer routine to expire default route list and prefix list 590 */ 591 void 592 nd6_timer(void *arg) 593 { 594 CURVNET_SET((struct vnet *) arg); 595 struct nd_defrouter *dr, *ndr; 596 struct nd_prefix *pr, *npr; 597 struct in6_ifaddr *ia6, *nia6; 598 599 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 600 nd6_timer, curvnet); 601 602 /* expire default router list */ 603 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 604 if (dr->expire && dr->expire < time_uptime) 605 defrtrlist_del(dr); 606 } 607 608 /* 609 * expire interface addresses. 610 * in the past the loop was inside prefix expiry processing. 611 * However, from a stricter speci-confrmance standpoint, we should 612 * rather separate address lifetimes and prefix lifetimes. 613 * 614 * XXXRW: in6_ifaddrhead locking. 615 */ 616 addrloop: 617 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 618 /* check address lifetime */ 619 if (IFA6_IS_INVALID(ia6)) { 620 int regen = 0; 621 622 /* 623 * If the expiring address is temporary, try 624 * regenerating a new one. This would be useful when 625 * we suspended a laptop PC, then turned it on after a 626 * period that could invalidate all temporary 627 * addresses. Although we may have to restart the 628 * loop (see below), it must be after purging the 629 * address. Otherwise, we'd see an infinite loop of 630 * regeneration. 631 */ 632 if (V_ip6_use_tempaddr && 633 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 634 if (regen_tmpaddr(ia6) == 0) 635 regen = 1; 636 } 637 638 in6_purgeaddr(&ia6->ia_ifa); 639 640 if (regen) 641 goto addrloop; /* XXX: see below */ 642 } else if (IFA6_IS_DEPRECATED(ia6)) { 643 int oldflags = ia6->ia6_flags; 644 645 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 646 647 /* 648 * If a temporary address has just become deprecated, 649 * regenerate a new one if possible. 650 */ 651 if (V_ip6_use_tempaddr && 652 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 653 (oldflags & IN6_IFF_DEPRECATED) == 0) { 654 655 if (regen_tmpaddr(ia6) == 0) { 656 /* 657 * A new temporary address is 658 * generated. 659 * XXX: this means the address chain 660 * has changed while we are still in 661 * the loop. Although the change 662 * would not cause disaster (because 663 * it's not a deletion, but an 664 * addition,) we'd rather restart the 665 * loop just for safety. Or does this 666 * significantly reduce performance?? 667 */ 668 goto addrloop; 669 } 670 } 671 } else { 672 /* 673 * A new RA might have made a deprecated address 674 * preferred. 675 */ 676 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 677 } 678 } 679 680 /* expire prefix list */ 681 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 682 /* 683 * check prefix lifetime. 684 * since pltime is just for autoconf, pltime processing for 685 * prefix is not necessary. 686 */ 687 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 688 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 689 690 /* 691 * address expiration and prefix expiration are 692 * separate. NEVER perform in6_purgeaddr here. 693 */ 694 prelist_remove(pr); 695 } 696 } 697 CURVNET_RESTORE(); 698 } 699 700 /* 701 * ia6 - deprecated/invalidated temporary address 702 */ 703 static int 704 regen_tmpaddr(struct in6_ifaddr *ia6) 705 { 706 struct ifaddr *ifa; 707 struct ifnet *ifp; 708 struct in6_ifaddr *public_ifa6 = NULL; 709 710 ifp = ia6->ia_ifa.ifa_ifp; 711 IF_ADDR_RLOCK(ifp); 712 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 713 struct in6_ifaddr *it6; 714 715 if (ifa->ifa_addr->sa_family != AF_INET6) 716 continue; 717 718 it6 = (struct in6_ifaddr *)ifa; 719 720 /* ignore no autoconf addresses. */ 721 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 722 continue; 723 724 /* ignore autoconf addresses with different prefixes. */ 725 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 726 continue; 727 728 /* 729 * Now we are looking at an autoconf address with the same 730 * prefix as ours. If the address is temporary and is still 731 * preferred, do not create another one. It would be rare, but 732 * could happen, for example, when we resume a laptop PC after 733 * a long period. 734 */ 735 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 736 !IFA6_IS_DEPRECATED(it6)) { 737 public_ifa6 = NULL; 738 break; 739 } 740 741 /* 742 * This is a public autoconf address that has the same prefix 743 * as ours. If it is preferred, keep it. We can't break the 744 * loop here, because there may be a still-preferred temporary 745 * address with the prefix. 746 */ 747 if (!IFA6_IS_DEPRECATED(it6)) 748 public_ifa6 = it6; 749 750 if (public_ifa6 != NULL) 751 ifa_ref(&public_ifa6->ia_ifa); 752 } 753 IF_ADDR_RUNLOCK(ifp); 754 755 if (public_ifa6 != NULL) { 756 int e; 757 758 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 759 ifa_free(&public_ifa6->ia_ifa); 760 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 761 " tmp addr,errno=%d\n", e); 762 return (-1); 763 } 764 ifa_free(&public_ifa6->ia_ifa); 765 return (0); 766 } 767 768 return (-1); 769 } 770 771 /* 772 * Nuke neighbor cache/prefix/default router management table, right before 773 * ifp goes away. 774 */ 775 void 776 nd6_purge(struct ifnet *ifp) 777 { 778 struct nd_defrouter *dr, *ndr; 779 struct nd_prefix *pr, *npr; 780 781 /* 782 * Nuke default router list entries toward ifp. 783 * We defer removal of default router list entries that is installed 784 * in the routing table, in order to keep additional side effects as 785 * small as possible. 786 */ 787 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 788 if (dr->installed) 789 continue; 790 791 if (dr->ifp == ifp) 792 defrtrlist_del(dr); 793 } 794 795 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 796 if (!dr->installed) 797 continue; 798 799 if (dr->ifp == ifp) 800 defrtrlist_del(dr); 801 } 802 803 /* Nuke prefix list entries toward ifp */ 804 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 805 if (pr->ndpr_ifp == ifp) { 806 /* 807 * Because if_detach() does *not* release prefixes 808 * while purging addresses the reference count will 809 * still be above zero. We therefore reset it to 810 * make sure that the prefix really gets purged. 811 */ 812 pr->ndpr_refcnt = 0; 813 814 /* 815 * Previously, pr->ndpr_addr is removed as well, 816 * but I strongly believe we don't have to do it. 817 * nd6_purge() is only called from in6_ifdetach(), 818 * which removes all the associated interface addresses 819 * by itself. 820 * (jinmei@kame.net 20010129) 821 */ 822 prelist_remove(pr); 823 } 824 } 825 826 /* cancel default outgoing interface setting */ 827 if (V_nd6_defifindex == ifp->if_index) 828 nd6_setdefaultiface(0); 829 830 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 831 /* Refresh default router list. */ 832 defrouter_select(); 833 } 834 835 /* XXXXX 836 * We do not nuke the neighbor cache entries here any more 837 * because the neighbor cache is kept in if_afdata[AF_INET6]. 838 * nd6_purge() is invoked by in6_ifdetach() which is called 839 * from if_detach() where everything gets purged. So let 840 * in6_domifdetach() do the actual L2 table purging work. 841 */ 842 } 843 844 /* 845 * the caller acquires and releases the lock on the lltbls 846 * Returns the llentry locked 847 */ 848 struct llentry * 849 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 850 { 851 struct sockaddr_in6 sin6; 852 struct llentry *ln; 853 int llflags; 854 855 bzero(&sin6, sizeof(sin6)); 856 sin6.sin6_len = sizeof(struct sockaddr_in6); 857 sin6.sin6_family = AF_INET6; 858 sin6.sin6_addr = *addr6; 859 860 IF_AFDATA_LOCK_ASSERT(ifp); 861 862 llflags = 0; 863 if (flags & ND6_CREATE) 864 llflags |= LLE_CREATE; 865 if (flags & ND6_EXCLUSIVE) 866 llflags |= LLE_EXCLUSIVE; 867 868 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 869 if ((ln != NULL) && (llflags & LLE_CREATE)) 870 ln->ln_state = ND6_LLINFO_NOSTATE; 871 872 return (ln); 873 } 874 875 /* 876 * Test whether a given IPv6 address is a neighbor or not, ignoring 877 * the actual neighbor cache. The neighbor cache is ignored in order 878 * to not reenter the routing code from within itself. 879 */ 880 static int 881 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 882 { 883 struct nd_prefix *pr; 884 struct ifaddr *dstaddr; 885 886 /* 887 * A link-local address is always a neighbor. 888 * XXX: a link does not necessarily specify a single interface. 889 */ 890 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 891 struct sockaddr_in6 sin6_copy; 892 u_int32_t zone; 893 894 /* 895 * We need sin6_copy since sa6_recoverscope() may modify the 896 * content (XXX). 897 */ 898 sin6_copy = *addr; 899 if (sa6_recoverscope(&sin6_copy)) 900 return (0); /* XXX: should be impossible */ 901 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 902 return (0); 903 if (sin6_copy.sin6_scope_id == zone) 904 return (1); 905 else 906 return (0); 907 } 908 909 /* 910 * If the address matches one of our addresses, 911 * it should be a neighbor. 912 * If the address matches one of our on-link prefixes, it should be a 913 * neighbor. 914 */ 915 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 916 if (pr->ndpr_ifp != ifp) 917 continue; 918 919 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 920 struct rtentry *rt; 921 922 /* Always use the default FIB here. */ 923 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 924 0, 0, RT_DEFAULT_FIB); 925 if (rt == NULL) 926 continue; 927 /* 928 * This is the case where multiple interfaces 929 * have the same prefix, but only one is installed 930 * into the routing table and that prefix entry 931 * is not the one being examined here. In the case 932 * where RADIX_MPATH is enabled, multiple route 933 * entries (of the same rt_key value) will be 934 * installed because the interface addresses all 935 * differ. 936 */ 937 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 938 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 939 RTFREE_LOCKED(rt); 940 continue; 941 } 942 RTFREE_LOCKED(rt); 943 } 944 945 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 946 &addr->sin6_addr, &pr->ndpr_mask)) 947 return (1); 948 } 949 950 /* 951 * If the address is assigned on the node of the other side of 952 * a p2p interface, the address should be a neighbor. 953 */ 954 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS); 955 if (dstaddr != NULL) { 956 if (dstaddr->ifa_ifp == ifp) { 957 ifa_free(dstaddr); 958 return (1); 959 } 960 ifa_free(dstaddr); 961 } 962 963 /* 964 * If the default router list is empty, all addresses are regarded 965 * as on-link, and thus, as a neighbor. 966 */ 967 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 968 TAILQ_EMPTY(&V_nd_defrouter) && 969 V_nd6_defifindex == ifp->if_index) { 970 return (1); 971 } 972 973 return (0); 974 } 975 976 977 /* 978 * Detect if a given IPv6 address identifies a neighbor on a given link. 979 * XXX: should take care of the destination of a p2p link? 980 */ 981 int 982 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 983 { 984 struct llentry *lle; 985 int rc = 0; 986 987 IF_AFDATA_UNLOCK_ASSERT(ifp); 988 if (nd6_is_new_addr_neighbor(addr, ifp)) 989 return (1); 990 991 /* 992 * Even if the address matches none of our addresses, it might be 993 * in the neighbor cache. 994 */ 995 IF_AFDATA_RLOCK(ifp); 996 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 997 LLE_RUNLOCK(lle); 998 rc = 1; 999 } 1000 IF_AFDATA_RUNLOCK(ifp); 1001 return (rc); 1002 } 1003 1004 /* 1005 * Free an nd6 llinfo entry. 1006 * Since the function would cause significant changes in the kernel, DO NOT 1007 * make it global, unless you have a strong reason for the change, and are sure 1008 * that the change is safe. 1009 */ 1010 static struct llentry * 1011 nd6_free(struct llentry *ln, int gc) 1012 { 1013 struct llentry *next; 1014 struct nd_defrouter *dr; 1015 struct ifnet *ifp; 1016 1017 LLE_WLOCK_ASSERT(ln); 1018 1019 /* 1020 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1021 * even though it is not harmful, it was not really necessary. 1022 */ 1023 1024 /* cancel timer */ 1025 nd6_llinfo_settimer_locked(ln, -1); 1026 1027 ifp = ln->lle_tbl->llt_ifp; 1028 1029 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1030 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1031 1032 if (dr != NULL && dr->expire && 1033 ln->ln_state == ND6_LLINFO_STALE && gc) { 1034 /* 1035 * If the reason for the deletion is just garbage 1036 * collection, and the neighbor is an active default 1037 * router, do not delete it. Instead, reset the GC 1038 * timer using the router's lifetime. 1039 * Simply deleting the entry would affect default 1040 * router selection, which is not necessarily a good 1041 * thing, especially when we're using router preference 1042 * values. 1043 * XXX: the check for ln_state would be redundant, 1044 * but we intentionally keep it just in case. 1045 */ 1046 if (dr->expire > time_uptime) 1047 nd6_llinfo_settimer_locked(ln, 1048 (dr->expire - time_uptime) * hz); 1049 else 1050 nd6_llinfo_settimer_locked(ln, 1051 (long)V_nd6_gctimer * hz); 1052 1053 next = LIST_NEXT(ln, lle_next); 1054 LLE_REMREF(ln); 1055 LLE_WUNLOCK(ln); 1056 return (next); 1057 } 1058 1059 if (dr) { 1060 /* 1061 * Unreachablity of a router might affect the default 1062 * router selection and on-link detection of advertised 1063 * prefixes. 1064 */ 1065 1066 /* 1067 * Temporarily fake the state to choose a new default 1068 * router and to perform on-link determination of 1069 * prefixes correctly. 1070 * Below the state will be set correctly, 1071 * or the entry itself will be deleted. 1072 */ 1073 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1074 } 1075 1076 if (ln->ln_router || dr) { 1077 1078 /* 1079 * We need to unlock to avoid a LOR with rt6_flush() with the 1080 * rnh and for the calls to pfxlist_onlink_check() and 1081 * defrouter_select() in the block further down for calls 1082 * into nd6_lookup(). We still hold a ref. 1083 */ 1084 LLE_WUNLOCK(ln); 1085 1086 /* 1087 * rt6_flush must be called whether or not the neighbor 1088 * is in the Default Router List. 1089 * See a corresponding comment in nd6_na_input(). 1090 */ 1091 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1092 } 1093 1094 if (dr) { 1095 /* 1096 * Since defrouter_select() does not affect the 1097 * on-link determination and MIP6 needs the check 1098 * before the default router selection, we perform 1099 * the check now. 1100 */ 1101 pfxlist_onlink_check(); 1102 1103 /* 1104 * Refresh default router list. 1105 */ 1106 defrouter_select(); 1107 } 1108 1109 if (ln->ln_router || dr) 1110 LLE_WLOCK(ln); 1111 } 1112 1113 /* 1114 * Before deleting the entry, remember the next entry as the 1115 * return value. We need this because pfxlist_onlink_check() above 1116 * might have freed other entries (particularly the old next entry) as 1117 * a side effect (XXX). 1118 */ 1119 next = LIST_NEXT(ln, lle_next); 1120 1121 /* 1122 * Save to unlock. We still hold an extra reference and will not 1123 * free(9) in llentry_free() if someone else holds one as well. 1124 */ 1125 LLE_WUNLOCK(ln); 1126 IF_AFDATA_LOCK(ifp); 1127 LLE_WLOCK(ln); 1128 1129 /* Guard against race with other llentry_free(). */ 1130 if (ln->la_flags & LLE_LINKED) { 1131 LLE_REMREF(ln); 1132 llentry_free(ln); 1133 } else 1134 LLE_FREE_LOCKED(ln); 1135 1136 IF_AFDATA_UNLOCK(ifp); 1137 1138 return (next); 1139 } 1140 1141 /* 1142 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1143 * 1144 * XXX cost-effective methods? 1145 */ 1146 void 1147 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1148 { 1149 struct llentry *ln; 1150 struct ifnet *ifp; 1151 1152 if ((dst6 == NULL) || (rt == NULL)) 1153 return; 1154 1155 ifp = rt->rt_ifp; 1156 IF_AFDATA_RLOCK(ifp); 1157 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1158 IF_AFDATA_RUNLOCK(ifp); 1159 if (ln == NULL) 1160 return; 1161 1162 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1163 goto done; 1164 1165 /* 1166 * if we get upper-layer reachability confirmation many times, 1167 * it is possible we have false information. 1168 */ 1169 if (!force) { 1170 ln->ln_byhint++; 1171 if (ln->ln_byhint > V_nd6_maxnudhint) { 1172 goto done; 1173 } 1174 } 1175 1176 ln->ln_state = ND6_LLINFO_REACHABLE; 1177 if (!ND6_LLINFO_PERMANENT(ln)) { 1178 nd6_llinfo_settimer_locked(ln, 1179 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1180 } 1181 done: 1182 LLE_WUNLOCK(ln); 1183 } 1184 1185 1186 /* 1187 * Rejuvenate this function for routing operations related 1188 * processing. 1189 */ 1190 void 1191 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1192 { 1193 struct sockaddr_in6 *gateway; 1194 struct nd_defrouter *dr; 1195 struct ifnet *ifp; 1196 1197 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1198 ifp = rt->rt_ifp; 1199 1200 switch (req) { 1201 case RTM_ADD: 1202 break; 1203 1204 case RTM_DELETE: 1205 if (!ifp) 1206 return; 1207 /* 1208 * Only indirect routes are interesting. 1209 */ 1210 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1211 return; 1212 /* 1213 * check for default route 1214 */ 1215 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1216 &SIN6(rt_key(rt))->sin6_addr)) { 1217 1218 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1219 if (dr != NULL) 1220 dr->installed = 0; 1221 } 1222 break; 1223 } 1224 } 1225 1226 1227 int 1228 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1229 { 1230 struct in6_drlist *drl = (struct in6_drlist *)data; 1231 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1232 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1233 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1234 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1235 struct nd_defrouter *dr; 1236 struct nd_prefix *pr; 1237 int i = 0, error = 0; 1238 1239 if (ifp->if_afdata[AF_INET6] == NULL) 1240 return (EPFNOSUPPORT); 1241 switch (cmd) { 1242 case SIOCGDRLST_IN6: 1243 /* 1244 * obsolete API, use sysctl under net.inet6.icmp6 1245 */ 1246 bzero(drl, sizeof(*drl)); 1247 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1248 if (i >= DRLSTSIZ) 1249 break; 1250 drl->defrouter[i].rtaddr = dr->rtaddr; 1251 in6_clearscope(&drl->defrouter[i].rtaddr); 1252 1253 drl->defrouter[i].flags = dr->flags; 1254 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1255 drl->defrouter[i].expire = dr->expire + 1256 (time_second - time_uptime); 1257 drl->defrouter[i].if_index = dr->ifp->if_index; 1258 i++; 1259 } 1260 break; 1261 case SIOCGPRLST_IN6: 1262 /* 1263 * obsolete API, use sysctl under net.inet6.icmp6 1264 * 1265 * XXX the structure in6_prlist was changed in backward- 1266 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1267 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1268 */ 1269 /* 1270 * XXX meaning of fields, especialy "raflags", is very 1271 * differnet between RA prefix list and RR/static prefix list. 1272 * how about separating ioctls into two? 1273 */ 1274 bzero(oprl, sizeof(*oprl)); 1275 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1276 struct nd_pfxrouter *pfr; 1277 int j; 1278 1279 if (i >= PRLSTSIZ) 1280 break; 1281 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1282 oprl->prefix[i].raflags = pr->ndpr_raf; 1283 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1284 oprl->prefix[i].vltime = pr->ndpr_vltime; 1285 oprl->prefix[i].pltime = pr->ndpr_pltime; 1286 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1287 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1288 oprl->prefix[i].expire = 0; 1289 else { 1290 time_t maxexpire; 1291 1292 /* XXX: we assume time_t is signed. */ 1293 maxexpire = (-1) & 1294 ~((time_t)1 << 1295 ((sizeof(maxexpire) * 8) - 1)); 1296 if (pr->ndpr_vltime < 1297 maxexpire - pr->ndpr_lastupdate) { 1298 oprl->prefix[i].expire = 1299 pr->ndpr_lastupdate + 1300 pr->ndpr_vltime + 1301 (time_second - time_uptime); 1302 } else 1303 oprl->prefix[i].expire = maxexpire; 1304 } 1305 1306 j = 0; 1307 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1308 if (j < DRLSTSIZ) { 1309 #define RTRADDR oprl->prefix[i].advrtr[j] 1310 RTRADDR = pfr->router->rtaddr; 1311 in6_clearscope(&RTRADDR); 1312 #undef RTRADDR 1313 } 1314 j++; 1315 } 1316 oprl->prefix[i].advrtrs = j; 1317 oprl->prefix[i].origin = PR_ORIG_RA; 1318 1319 i++; 1320 } 1321 1322 break; 1323 case OSIOCGIFINFO_IN6: 1324 #define ND ndi->ndi 1325 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1326 bzero(&ND, sizeof(ND)); 1327 ND.linkmtu = IN6_LINKMTU(ifp); 1328 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1329 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1330 ND.reachable = ND_IFINFO(ifp)->reachable; 1331 ND.retrans = ND_IFINFO(ifp)->retrans; 1332 ND.flags = ND_IFINFO(ifp)->flags; 1333 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1334 ND.chlim = ND_IFINFO(ifp)->chlim; 1335 break; 1336 case SIOCGIFINFO_IN6: 1337 ND = *ND_IFINFO(ifp); 1338 break; 1339 case SIOCSIFINFO_IN6: 1340 /* 1341 * used to change host variables from userland. 1342 * intented for a use on router to reflect RA configurations. 1343 */ 1344 /* 0 means 'unspecified' */ 1345 if (ND.linkmtu != 0) { 1346 if (ND.linkmtu < IPV6_MMTU || 1347 ND.linkmtu > IN6_LINKMTU(ifp)) { 1348 error = EINVAL; 1349 break; 1350 } 1351 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1352 } 1353 1354 if (ND.basereachable != 0) { 1355 int obasereachable = ND_IFINFO(ifp)->basereachable; 1356 1357 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1358 if (ND.basereachable != obasereachable) 1359 ND_IFINFO(ifp)->reachable = 1360 ND_COMPUTE_RTIME(ND.basereachable); 1361 } 1362 if (ND.retrans != 0) 1363 ND_IFINFO(ifp)->retrans = ND.retrans; 1364 if (ND.chlim != 0) 1365 ND_IFINFO(ifp)->chlim = ND.chlim; 1366 /* FALLTHROUGH */ 1367 case SIOCSIFINFO_FLAGS: 1368 { 1369 struct ifaddr *ifa; 1370 struct in6_ifaddr *ia; 1371 1372 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1373 !(ND.flags & ND6_IFF_IFDISABLED)) { 1374 /* ifdisabled 1->0 transision */ 1375 1376 /* 1377 * If the interface is marked as ND6_IFF_IFDISABLED and 1378 * has an link-local address with IN6_IFF_DUPLICATED, 1379 * do not clear ND6_IFF_IFDISABLED. 1380 * See RFC 4862, Section 5.4.5. 1381 */ 1382 int duplicated_linklocal = 0; 1383 1384 IF_ADDR_RLOCK(ifp); 1385 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1386 if (ifa->ifa_addr->sa_family != AF_INET6) 1387 continue; 1388 ia = (struct in6_ifaddr *)ifa; 1389 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1390 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1391 duplicated_linklocal = 1; 1392 break; 1393 } 1394 } 1395 IF_ADDR_RUNLOCK(ifp); 1396 1397 if (duplicated_linklocal) { 1398 ND.flags |= ND6_IFF_IFDISABLED; 1399 log(LOG_ERR, "Cannot enable an interface" 1400 " with a link-local address marked" 1401 " duplicate.\n"); 1402 } else { 1403 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1404 if (ifp->if_flags & IFF_UP) 1405 in6_if_up(ifp); 1406 } 1407 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1408 (ND.flags & ND6_IFF_IFDISABLED)) { 1409 /* ifdisabled 0->1 transision */ 1410 /* Mark all IPv6 address as tentative. */ 1411 1412 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1413 IF_ADDR_RLOCK(ifp); 1414 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1415 if (ifa->ifa_addr->sa_family != AF_INET6) 1416 continue; 1417 ia = (struct in6_ifaddr *)ifa; 1418 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1419 } 1420 IF_ADDR_RUNLOCK(ifp); 1421 } 1422 1423 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1424 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1425 /* auto_linklocal 0->1 transision */ 1426 1427 /* If no link-local address on ifp, configure */ 1428 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1429 in6_ifattach(ifp, NULL); 1430 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1431 ifp->if_flags & IFF_UP) { 1432 /* 1433 * When the IF already has 1434 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1435 * address is assigned, and IFF_UP, try to 1436 * assign one. 1437 */ 1438 int haslinklocal = 0; 1439 1440 IF_ADDR_RLOCK(ifp); 1441 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1442 if (ifa->ifa_addr->sa_family != AF_INET6) 1443 continue; 1444 ia = (struct in6_ifaddr *)ifa; 1445 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1446 haslinklocal = 1; 1447 break; 1448 } 1449 } 1450 IF_ADDR_RUNLOCK(ifp); 1451 if (!haslinklocal) 1452 in6_ifattach(ifp, NULL); 1453 } 1454 } 1455 } 1456 ND_IFINFO(ifp)->flags = ND.flags; 1457 break; 1458 #undef ND 1459 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1460 /* sync kernel routing table with the default router list */ 1461 defrouter_reset(); 1462 defrouter_select(); 1463 break; 1464 case SIOCSPFXFLUSH_IN6: 1465 { 1466 /* flush all the prefix advertised by routers */ 1467 struct nd_prefix *pr, *next; 1468 1469 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1470 struct in6_ifaddr *ia, *ia_next; 1471 1472 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1473 continue; /* XXX */ 1474 1475 /* do we really have to remove addresses as well? */ 1476 /* XXXRW: in6_ifaddrhead locking. */ 1477 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1478 ia_next) { 1479 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1480 continue; 1481 1482 if (ia->ia6_ndpr == pr) 1483 in6_purgeaddr(&ia->ia_ifa); 1484 } 1485 prelist_remove(pr); 1486 } 1487 break; 1488 } 1489 case SIOCSRTRFLUSH_IN6: 1490 { 1491 /* flush all the default routers */ 1492 struct nd_defrouter *dr, *next; 1493 1494 defrouter_reset(); 1495 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1496 defrtrlist_del(dr); 1497 } 1498 defrouter_select(); 1499 break; 1500 } 1501 case SIOCGNBRINFO_IN6: 1502 { 1503 struct llentry *ln; 1504 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1505 1506 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1507 return (error); 1508 1509 IF_AFDATA_RLOCK(ifp); 1510 ln = nd6_lookup(&nb_addr, 0, ifp); 1511 IF_AFDATA_RUNLOCK(ifp); 1512 1513 if (ln == NULL) { 1514 error = EINVAL; 1515 break; 1516 } 1517 nbi->state = ln->ln_state; 1518 nbi->asked = ln->la_asked; 1519 nbi->isrouter = ln->ln_router; 1520 if (ln->la_expire == 0) 1521 nbi->expire = 0; 1522 else 1523 nbi->expire = ln->la_expire + 1524 (time_second - time_uptime); 1525 LLE_RUNLOCK(ln); 1526 break; 1527 } 1528 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1529 ndif->ifindex = V_nd6_defifindex; 1530 break; 1531 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1532 return (nd6_setdefaultiface(ndif->ifindex)); 1533 } 1534 return (error); 1535 } 1536 1537 /* 1538 * Create neighbor cache entry and cache link-layer address, 1539 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1540 * 1541 * type - ICMP6 type 1542 * code - type dependent information 1543 * 1544 * XXXXX 1545 * The caller of this function already acquired the ndp 1546 * cache table lock because the cache entry is returned. 1547 */ 1548 struct llentry * 1549 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1550 int lladdrlen, int type, int code) 1551 { 1552 struct llentry *ln = NULL; 1553 int is_newentry; 1554 int do_update; 1555 int olladdr; 1556 int llchange; 1557 int flags; 1558 int newstate = 0; 1559 uint16_t router = 0; 1560 struct sockaddr_in6 sin6; 1561 struct mbuf *chain = NULL; 1562 int static_route = 0; 1563 1564 IF_AFDATA_UNLOCK_ASSERT(ifp); 1565 1566 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1567 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1568 1569 /* nothing must be updated for unspecified address */ 1570 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1571 return NULL; 1572 1573 /* 1574 * Validation about ifp->if_addrlen and lladdrlen must be done in 1575 * the caller. 1576 * 1577 * XXX If the link does not have link-layer adderss, what should 1578 * we do? (ifp->if_addrlen == 0) 1579 * Spec says nothing in sections for RA, RS and NA. There's small 1580 * description on it in NS section (RFC 2461 7.2.3). 1581 */ 1582 flags = lladdr ? ND6_EXCLUSIVE : 0; 1583 IF_AFDATA_RLOCK(ifp); 1584 ln = nd6_lookup(from, flags, ifp); 1585 IF_AFDATA_RUNLOCK(ifp); 1586 if (ln == NULL) { 1587 flags |= ND6_EXCLUSIVE; 1588 IF_AFDATA_LOCK(ifp); 1589 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1590 IF_AFDATA_UNLOCK(ifp); 1591 is_newentry = 1; 1592 } else { 1593 /* do nothing if static ndp is set */ 1594 if (ln->la_flags & LLE_STATIC) { 1595 static_route = 1; 1596 goto done; 1597 } 1598 is_newentry = 0; 1599 } 1600 if (ln == NULL) 1601 return (NULL); 1602 1603 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1604 if (olladdr && lladdr) { 1605 llchange = bcmp(lladdr, &ln->ll_addr, 1606 ifp->if_addrlen); 1607 } else 1608 llchange = 0; 1609 1610 /* 1611 * newentry olladdr lladdr llchange (*=record) 1612 * 0 n n -- (1) 1613 * 0 y n -- (2) 1614 * 0 n y -- (3) * STALE 1615 * 0 y y n (4) * 1616 * 0 y y y (5) * STALE 1617 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1618 * 1 -- y -- (7) * STALE 1619 */ 1620 1621 if (lladdr) { /* (3-5) and (7) */ 1622 /* 1623 * Record source link-layer address 1624 * XXX is it dependent to ifp->if_type? 1625 */ 1626 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1627 ln->la_flags |= LLE_VALID; 1628 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1629 } 1630 1631 if (!is_newentry) { 1632 if ((!olladdr && lladdr != NULL) || /* (3) */ 1633 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1634 do_update = 1; 1635 newstate = ND6_LLINFO_STALE; 1636 } else /* (1-2,4) */ 1637 do_update = 0; 1638 } else { 1639 do_update = 1; 1640 if (lladdr == NULL) /* (6) */ 1641 newstate = ND6_LLINFO_NOSTATE; 1642 else /* (7) */ 1643 newstate = ND6_LLINFO_STALE; 1644 } 1645 1646 if (do_update) { 1647 /* 1648 * Update the state of the neighbor cache. 1649 */ 1650 ln->ln_state = newstate; 1651 1652 if (ln->ln_state == ND6_LLINFO_STALE) { 1653 if (ln->la_hold != NULL) 1654 nd6_grab_holdchain(ln, &chain, &sin6); 1655 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1656 /* probe right away */ 1657 nd6_llinfo_settimer_locked((void *)ln, 0); 1658 } 1659 } 1660 1661 /* 1662 * ICMP6 type dependent behavior. 1663 * 1664 * NS: clear IsRouter if new entry 1665 * RS: clear IsRouter 1666 * RA: set IsRouter if there's lladdr 1667 * redir: clear IsRouter if new entry 1668 * 1669 * RA case, (1): 1670 * The spec says that we must set IsRouter in the following cases: 1671 * - If lladdr exist, set IsRouter. This means (1-5). 1672 * - If it is old entry (!newentry), set IsRouter. This means (7). 1673 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1674 * A quetion arises for (1) case. (1) case has no lladdr in the 1675 * neighbor cache, this is similar to (6). 1676 * This case is rare but we figured that we MUST NOT set IsRouter. 1677 * 1678 * newentry olladdr lladdr llchange NS RS RA redir 1679 * D R 1680 * 0 n n -- (1) c ? s 1681 * 0 y n -- (2) c s s 1682 * 0 n y -- (3) c s s 1683 * 0 y y n (4) c s s 1684 * 0 y y y (5) c s s 1685 * 1 -- n -- (6) c c c s 1686 * 1 -- y -- (7) c c s c s 1687 * 1688 * (c=clear s=set) 1689 */ 1690 switch (type & 0xff) { 1691 case ND_NEIGHBOR_SOLICIT: 1692 /* 1693 * New entry must have is_router flag cleared. 1694 */ 1695 if (is_newentry) /* (6-7) */ 1696 ln->ln_router = 0; 1697 break; 1698 case ND_REDIRECT: 1699 /* 1700 * If the icmp is a redirect to a better router, always set the 1701 * is_router flag. Otherwise, if the entry is newly created, 1702 * clear the flag. [RFC 2461, sec 8.3] 1703 */ 1704 if (code == ND_REDIRECT_ROUTER) 1705 ln->ln_router = 1; 1706 else if (is_newentry) /* (6-7) */ 1707 ln->ln_router = 0; 1708 break; 1709 case ND_ROUTER_SOLICIT: 1710 /* 1711 * is_router flag must always be cleared. 1712 */ 1713 ln->ln_router = 0; 1714 break; 1715 case ND_ROUTER_ADVERT: 1716 /* 1717 * Mark an entry with lladdr as a router. 1718 */ 1719 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1720 (is_newentry && lladdr)) { /* (7) */ 1721 ln->ln_router = 1; 1722 } 1723 break; 1724 } 1725 1726 if (ln != NULL) { 1727 static_route = (ln->la_flags & LLE_STATIC); 1728 router = ln->ln_router; 1729 1730 if (flags & ND6_EXCLUSIVE) 1731 LLE_WUNLOCK(ln); 1732 else 1733 LLE_RUNLOCK(ln); 1734 if (static_route) 1735 ln = NULL; 1736 } 1737 if (chain != NULL) 1738 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 1739 1740 /* 1741 * When the link-layer address of a router changes, select the 1742 * best router again. In particular, when the neighbor entry is newly 1743 * created, it might affect the selection policy. 1744 * Question: can we restrict the first condition to the "is_newentry" 1745 * case? 1746 * XXX: when we hear an RA from a new router with the link-layer 1747 * address option, defrouter_select() is called twice, since 1748 * defrtrlist_update called the function as well. However, I believe 1749 * we can compromise the overhead, since it only happens the first 1750 * time. 1751 * XXX: although defrouter_select() should not have a bad effect 1752 * for those are not autoconfigured hosts, we explicitly avoid such 1753 * cases for safety. 1754 */ 1755 if (do_update && router && 1756 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1757 /* 1758 * guaranteed recursion 1759 */ 1760 defrouter_select(); 1761 } 1762 1763 return (ln); 1764 done: 1765 if (ln != NULL) { 1766 if (flags & ND6_EXCLUSIVE) 1767 LLE_WUNLOCK(ln); 1768 else 1769 LLE_RUNLOCK(ln); 1770 if (static_route) 1771 ln = NULL; 1772 } 1773 return (ln); 1774 } 1775 1776 static void 1777 nd6_slowtimo(void *arg) 1778 { 1779 CURVNET_SET((struct vnet *) arg); 1780 struct nd_ifinfo *nd6if; 1781 struct ifnet *ifp; 1782 1783 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1784 nd6_slowtimo, curvnet); 1785 IFNET_RLOCK_NOSLEEP(); 1786 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 1787 if (ifp->if_afdata[AF_INET6] == NULL) 1788 continue; 1789 nd6if = ND_IFINFO(ifp); 1790 if (nd6if->basereachable && /* already initialized */ 1791 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1792 /* 1793 * Since reachable time rarely changes by router 1794 * advertisements, we SHOULD insure that a new random 1795 * value gets recomputed at least once every few hours. 1796 * (RFC 2461, 6.3.4) 1797 */ 1798 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1799 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1800 } 1801 } 1802 IFNET_RUNLOCK_NOSLEEP(); 1803 CURVNET_RESTORE(); 1804 } 1805 1806 void 1807 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 1808 struct sockaddr_in6 *sin6) 1809 { 1810 1811 LLE_WLOCK_ASSERT(ln); 1812 1813 *chain = ln->la_hold; 1814 ln->la_hold = NULL; 1815 memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6)); 1816 1817 if (ln->ln_state == ND6_LLINFO_STALE) { 1818 1819 /* 1820 * The first time we send a packet to a 1821 * neighbor whose entry is STALE, we have 1822 * to change the state to DELAY and a sets 1823 * a timer to expire in DELAY_FIRST_PROBE_TIME 1824 * seconds to ensure do neighbor unreachability 1825 * detection on expiration. 1826 * (RFC 2461 7.3.3) 1827 */ 1828 ln->la_asked = 0; 1829 ln->ln_state = ND6_LLINFO_DELAY; 1830 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1831 } 1832 } 1833 1834 static int 1835 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1836 struct sockaddr_in6 *dst) 1837 { 1838 int error; 1839 int ip6len; 1840 struct ip6_hdr *ip6; 1841 struct m_tag *mtag; 1842 1843 #ifdef MAC 1844 mac_netinet6_nd6_send(ifp, m); 1845 #endif 1846 1847 /* 1848 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 1849 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 1850 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 1851 * to be diverted to user space. When re-injected into the kernel, 1852 * send_output() will directly dispatch them to the outgoing interface. 1853 */ 1854 if (send_sendso_input_hook != NULL) { 1855 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 1856 if (mtag != NULL) { 1857 ip6 = mtod(m, struct ip6_hdr *); 1858 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 1859 /* Use the SEND socket */ 1860 error = send_sendso_input_hook(m, ifp, SND_OUT, 1861 ip6len); 1862 /* -1 == no app on SEND socket */ 1863 if (error == 0 || error != -1) 1864 return (error); 1865 } 1866 } 1867 1868 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 1869 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 1870 mtod(m, struct ip6_hdr *)); 1871 1872 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 1873 origifp = ifp; 1874 1875 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL); 1876 return (error); 1877 } 1878 1879 /* 1880 * IPv6 packet output - light version. 1881 * Checks if destination LLE exists and is in proper state 1882 * (e.g no modification required). If not true, fall back to 1883 * "heavy" version. 1884 */ 1885 int 1886 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1887 struct sockaddr_in6 *dst, struct rtentry *rt0) 1888 { 1889 struct llentry *ln = NULL; 1890 1891 /* discard the packet if IPv6 operation is disabled on the interface */ 1892 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1893 m_freem(m); 1894 return (ENETDOWN); /* better error? */ 1895 } 1896 1897 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1898 goto sendpkt; 1899 1900 if (nd6_need_cache(ifp) == 0) 1901 goto sendpkt; 1902 1903 IF_AFDATA_RLOCK(ifp); 1904 ln = nd6_lookup(&dst->sin6_addr, 0, ifp); 1905 IF_AFDATA_RUNLOCK(ifp); 1906 1907 /* 1908 * Perform fast path for the following cases: 1909 * 1) lle state is REACHABLE 1910 * 2) lle state is DELAY (NS message sentNS message sent) 1911 * 1912 * Every other case involves lle modification, so we handle 1913 * them separately. 1914 */ 1915 if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE && 1916 ln->ln_state != ND6_LLINFO_DELAY)) { 1917 /* Fall back to slow processing path */ 1918 if (ln != NULL) 1919 LLE_RUNLOCK(ln); 1920 return (nd6_output_lle(ifp, origifp, m, dst)); 1921 } 1922 1923 sendpkt: 1924 if (ln != NULL) 1925 LLE_RUNLOCK(ln); 1926 1927 return (nd6_output_ifp(ifp, origifp, m, dst)); 1928 } 1929 1930 1931 /* 1932 * Output IPv6 packet - heavy version. 1933 * Function assume that either 1934 * 1) destination LLE does not exist, is invalid or stale, so 1935 * ND6_EXCLUSIVE lock needs to be acquired 1936 * 2) destination lle is provided (with ND6_EXCLUSIVE lock), 1937 * in that case packets are queued in &chain. 1938 * 1939 */ 1940 static int 1941 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 1942 struct sockaddr_in6 *dst) 1943 { 1944 struct llentry *lle = NULL; 1945 int flags = 0; 1946 1947 KASSERT(m != NULL, ("NULL mbuf, nothing to send")); 1948 /* discard the packet if IPv6 operation is disabled on the interface */ 1949 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 1950 m_freem(m); 1951 return (ENETDOWN); /* better error? */ 1952 } 1953 1954 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1955 goto sendpkt; 1956 1957 if (nd6_need_cache(ifp) == 0) 1958 goto sendpkt; 1959 1960 /* 1961 * Address resolution or Neighbor Unreachability Detection 1962 * for the next hop. 1963 * At this point, the destination of the packet must be a unicast 1964 * or an anycast address(i.e. not a multicast). 1965 */ 1966 if (lle == NULL) { 1967 IF_AFDATA_RLOCK(ifp); 1968 lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp); 1969 IF_AFDATA_RUNLOCK(ifp); 1970 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1971 /* 1972 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1973 * the condition below is not very efficient. But we believe 1974 * it is tolerable, because this should be a rare case. 1975 */ 1976 flags = ND6_CREATE | ND6_EXCLUSIVE; 1977 IF_AFDATA_LOCK(ifp); 1978 lle = nd6_lookup(&dst->sin6_addr, flags, ifp); 1979 IF_AFDATA_UNLOCK(ifp); 1980 } 1981 } 1982 if (lle == NULL) { 1983 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1984 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1985 char ip6buf[INET6_ADDRSTRLEN]; 1986 log(LOG_DEBUG, 1987 "nd6_output: can't allocate llinfo for %s " 1988 "(ln=%p)\n", 1989 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 1990 m_freem(m); 1991 return (ENOBUFS); 1992 } 1993 goto sendpkt; /* send anyway */ 1994 } 1995 1996 LLE_WLOCK_ASSERT(lle); 1997 1998 /* We don't have to do link-layer address resolution on a p2p link. */ 1999 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2000 lle->ln_state < ND6_LLINFO_REACHABLE) { 2001 lle->ln_state = ND6_LLINFO_STALE; 2002 nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz); 2003 } 2004 2005 /* 2006 * The first time we send a packet to a neighbor whose entry is 2007 * STALE, we have to change the state to DELAY and a sets a timer to 2008 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2009 * neighbor unreachability detection on expiration. 2010 * (RFC 2461 7.3.3) 2011 */ 2012 if (lle->ln_state == ND6_LLINFO_STALE) { 2013 lle->la_asked = 0; 2014 lle->ln_state = ND6_LLINFO_DELAY; 2015 nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz); 2016 } 2017 2018 /* 2019 * If the neighbor cache entry has a state other than INCOMPLETE 2020 * (i.e. its link-layer address is already resolved), just 2021 * send the packet. 2022 */ 2023 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) 2024 goto sendpkt; 2025 2026 /* 2027 * There is a neighbor cache entry, but no ethernet address 2028 * response yet. Append this latest packet to the end of the 2029 * packet queue in the mbuf, unless the number of the packet 2030 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2031 * the oldest packet in the queue will be removed. 2032 */ 2033 if (lle->ln_state == ND6_LLINFO_NOSTATE) 2034 lle->ln_state = ND6_LLINFO_INCOMPLETE; 2035 2036 if (lle->la_hold != NULL) { 2037 struct mbuf *m_hold; 2038 int i; 2039 2040 i = 0; 2041 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2042 i++; 2043 if (m_hold->m_nextpkt == NULL) { 2044 m_hold->m_nextpkt = m; 2045 break; 2046 } 2047 } 2048 while (i >= V_nd6_maxqueuelen) { 2049 m_hold = lle->la_hold; 2050 lle->la_hold = lle->la_hold->m_nextpkt; 2051 m_freem(m_hold); 2052 i--; 2053 } 2054 } else { 2055 lle->la_hold = m; 2056 } 2057 2058 /* 2059 * If there has been no NS for the neighbor after entering the 2060 * INCOMPLETE state, send the first solicitation. 2061 */ 2062 if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) { 2063 lle->la_asked++; 2064 2065 nd6_llinfo_settimer_locked(lle, 2066 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2067 LLE_WUNLOCK(lle); 2068 nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, 0); 2069 } else { 2070 /* We did the lookup so we need to do the unlock here. */ 2071 LLE_WUNLOCK(lle); 2072 } 2073 2074 return (0); 2075 2076 sendpkt: 2077 if (lle != NULL) 2078 LLE_WUNLOCK(lle); 2079 2080 return (nd6_output_ifp(ifp, origifp, m, dst)); 2081 } 2082 2083 2084 int 2085 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2086 struct sockaddr_in6 *dst) 2087 { 2088 struct mbuf *m, *m_head; 2089 struct ifnet *outifp; 2090 int error = 0; 2091 2092 m_head = chain; 2093 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2094 outifp = origifp; 2095 else 2096 outifp = ifp; 2097 2098 while (m_head) { 2099 m = m_head; 2100 m_head = m_head->m_nextpkt; 2101 error = nd6_output_ifp(ifp, origifp, m, dst); 2102 } 2103 2104 /* 2105 * XXX 2106 * note that intermediate errors are blindly ignored - but this is 2107 * the same convention as used with nd6_output when called by 2108 * nd6_cache_lladdr 2109 */ 2110 return (error); 2111 } 2112 2113 2114 int 2115 nd6_need_cache(struct ifnet *ifp) 2116 { 2117 /* 2118 * XXX: we currently do not make neighbor cache on any interface 2119 * other than ARCnet, Ethernet, FDDI and GIF. 2120 * 2121 * RFC2893 says: 2122 * - unidirectional tunnels needs no ND 2123 */ 2124 switch (ifp->if_type) { 2125 case IFT_ARCNET: 2126 case IFT_ETHER: 2127 case IFT_FDDI: 2128 case IFT_IEEE1394: 2129 #ifdef IFT_L2VLAN 2130 case IFT_L2VLAN: 2131 #endif 2132 #ifdef IFT_IEEE80211 2133 case IFT_IEEE80211: 2134 #endif 2135 case IFT_INFINIBAND: 2136 case IFT_BRIDGE: 2137 case IFT_PROPVIRTUAL: 2138 return (1); 2139 default: 2140 return (0); 2141 } 2142 } 2143 2144 /* 2145 * Add pernament ND6 link-layer record for given 2146 * interface address. 2147 * 2148 * Very similar to IPv4 arp_ifinit(), but: 2149 * 1) IPv6 DAD is performed in different place 2150 * 2) It is called by IPv6 protocol stack in contrast to 2151 * arp_ifinit() which is typically called in SIOCSIFADDR 2152 * driver ioctl handler. 2153 * 2154 */ 2155 int 2156 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2157 { 2158 struct ifnet *ifp; 2159 struct llentry *ln; 2160 2161 ifp = ia->ia_ifa.ifa_ifp; 2162 if (nd6_need_cache(ifp) == 0) 2163 return (0); 2164 IF_AFDATA_LOCK(ifp); 2165 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2166 ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR | 2167 LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr); 2168 IF_AFDATA_UNLOCK(ifp); 2169 if (ln != NULL) { 2170 ln->la_expire = 0; /* for IPv6 this means permanent */ 2171 ln->ln_state = ND6_LLINFO_REACHABLE; 2172 LLE_WUNLOCK(ln); 2173 in6_newaddrmsg(ia, RTM_ADD); 2174 return (0); 2175 } 2176 2177 return (ENOBUFS); 2178 } 2179 2180 /* 2181 * Removes ALL lle records for interface address prefix. 2182 * XXXME: That's probably not we really want to do, we need 2183 * to remove address record only and keep other records 2184 * until we determine if given prefix is really going 2185 * to be removed. 2186 */ 2187 void 2188 nd6_rem_ifa_lle(struct in6_ifaddr *ia) 2189 { 2190 struct sockaddr_in6 mask, addr; 2191 struct ifnet *ifp; 2192 2193 in6_newaddrmsg(ia, RTM_DELETE); 2194 2195 ifp = ia->ia_ifa.ifa_ifp; 2196 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2197 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2198 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 2199 (struct sockaddr *)&mask, LLE_STATIC); 2200 } 2201 2202 /* 2203 * the callers of this function need to be re-worked to drop 2204 * the lle lock, drop here for now 2205 */ 2206 int 2207 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2208 const struct sockaddr *dst, u_char *desten, uint32_t *pflags) 2209 { 2210 struct llentry *ln; 2211 2212 if (pflags != NULL) 2213 *pflags = 0; 2214 IF_AFDATA_UNLOCK_ASSERT(ifp); 2215 if (m != NULL && m->m_flags & M_MCAST) { 2216 switch (ifp->if_type) { 2217 case IFT_ETHER: 2218 case IFT_FDDI: 2219 #ifdef IFT_L2VLAN 2220 case IFT_L2VLAN: 2221 #endif 2222 #ifdef IFT_IEEE80211 2223 case IFT_IEEE80211: 2224 #endif 2225 case IFT_BRIDGE: 2226 case IFT_ISO88025: 2227 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2228 desten); 2229 return (0); 2230 default: 2231 m_freem(m); 2232 return (EAFNOSUPPORT); 2233 } 2234 } 2235 2236 2237 /* 2238 * the entry should have been created in nd6_store_lladdr 2239 */ 2240 IF_AFDATA_RLOCK(ifp); 2241 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2242 IF_AFDATA_RUNLOCK(ifp); 2243 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2244 if (ln != NULL) 2245 LLE_RUNLOCK(ln); 2246 /* this could happen, if we could not allocate memory */ 2247 m_freem(m); 2248 return (1); 2249 } 2250 2251 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2252 if (pflags != NULL) 2253 *pflags = ln->la_flags; 2254 LLE_RUNLOCK(ln); 2255 /* 2256 * A *small* use after free race exists here 2257 */ 2258 return (0); 2259 } 2260 2261 static void 2262 clear_llinfo_pqueue(struct llentry *ln) 2263 { 2264 struct mbuf *m_hold, *m_hold_next; 2265 2266 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2267 m_hold_next = m_hold->m_nextpkt; 2268 m_freem(m_hold); 2269 } 2270 2271 ln->la_hold = NULL; 2272 return; 2273 } 2274 2275 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2276 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2277 #ifdef SYSCTL_DECL 2278 SYSCTL_DECL(_net_inet6_icmp6); 2279 #endif 2280 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2281 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2282 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2283 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2284 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2285 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2286 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2287 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2288 2289 static int 2290 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2291 { 2292 struct in6_defrouter d; 2293 struct nd_defrouter *dr; 2294 int error; 2295 2296 if (req->newptr) 2297 return (EPERM); 2298 2299 bzero(&d, sizeof(d)); 2300 d.rtaddr.sin6_family = AF_INET6; 2301 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2302 2303 /* 2304 * XXX locking 2305 */ 2306 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2307 d.rtaddr.sin6_addr = dr->rtaddr; 2308 error = sa6_recoverscope(&d.rtaddr); 2309 if (error != 0) 2310 return (error); 2311 d.flags = dr->flags; 2312 d.rtlifetime = dr->rtlifetime; 2313 d.expire = dr->expire + (time_second - time_uptime); 2314 d.if_index = dr->ifp->if_index; 2315 error = SYSCTL_OUT(req, &d, sizeof(d)); 2316 if (error != 0) 2317 return (error); 2318 } 2319 return (0); 2320 } 2321 2322 static int 2323 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2324 { 2325 struct in6_prefix p; 2326 struct sockaddr_in6 s6; 2327 struct nd_prefix *pr; 2328 struct nd_pfxrouter *pfr; 2329 time_t maxexpire; 2330 int error; 2331 char ip6buf[INET6_ADDRSTRLEN]; 2332 2333 if (req->newptr) 2334 return (EPERM); 2335 2336 bzero(&p, sizeof(p)); 2337 p.origin = PR_ORIG_RA; 2338 bzero(&s6, sizeof(s6)); 2339 s6.sin6_family = AF_INET6; 2340 s6.sin6_len = sizeof(s6); 2341 2342 /* 2343 * XXX locking 2344 */ 2345 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2346 p.prefix = pr->ndpr_prefix; 2347 if (sa6_recoverscope(&p.prefix)) { 2348 log(LOG_ERR, "scope error in prefix list (%s)\n", 2349 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2350 /* XXX: press on... */ 2351 } 2352 p.raflags = pr->ndpr_raf; 2353 p.prefixlen = pr->ndpr_plen; 2354 p.vltime = pr->ndpr_vltime; 2355 p.pltime = pr->ndpr_pltime; 2356 p.if_index = pr->ndpr_ifp->if_index; 2357 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2358 p.expire = 0; 2359 else { 2360 /* XXX: we assume time_t is signed. */ 2361 maxexpire = (-1) & 2362 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2363 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2364 p.expire = pr->ndpr_lastupdate + 2365 pr->ndpr_vltime + 2366 (time_second - time_uptime); 2367 else 2368 p.expire = maxexpire; 2369 } 2370 p.refcnt = pr->ndpr_refcnt; 2371 p.flags = pr->ndpr_stateflags; 2372 p.advrtrs = 0; 2373 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2374 p.advrtrs++; 2375 error = SYSCTL_OUT(req, &p, sizeof(p)); 2376 if (error != 0) 2377 return (error); 2378 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2379 s6.sin6_addr = pfr->router->rtaddr; 2380 if (sa6_recoverscope(&s6)) 2381 log(LOG_ERR, 2382 "scope error in prefix list (%s)\n", 2383 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2384 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2385 if (error != 0) 2386 return (error); 2387 } 2388 } 2389 return (0); 2390 } 2391