1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sysctl.h> 54 55 #include <net/if.h> 56 #include <net/if_arc.h> 57 #include <net/if_dl.h> 58 #include <net/if_types.h> 59 #include <net/iso88025.h> 60 #include <net/fddi.h> 61 #include <net/route.h> 62 #include <net/vnet.h> 63 64 #include <netinet/in.h> 65 #include <net/if_llatbl.h> 66 #define L3_ADDR_SIN6(le) ((struct sockaddr_in6 *) L3_ADDR(le)) 67 #include <netinet/if_ether.h> 68 #include <netinet6/in6_var.h> 69 #include <netinet/ip6.h> 70 #include <netinet6/ip6_var.h> 71 #include <netinet6/scope6_var.h> 72 #include <netinet6/nd6.h> 73 #include <netinet6/in6_ifattach.h> 74 #include <netinet/icmp6.h> 75 #include <netinet6/send.h> 76 77 #include <sys/limits.h> 78 79 #include <security/mac/mac_framework.h> 80 81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 83 84 #define SIN6(s) ((struct sockaddr_in6 *)s) 85 86 /* timer values */ 87 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 88 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 89 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 90 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 91 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 92 * local traffic */ 93 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 94 * collection timer */ 95 96 /* preventing too many loops in ND option parsing */ 97 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 98 99 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 100 * layer hints */ 101 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 102 * ND entries */ 103 #define V_nd6_maxndopt VNET(nd6_maxndopt) 104 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 105 106 #ifdef ND6_DEBUG 107 VNET_DEFINE(int, nd6_debug) = 1; 108 #else 109 VNET_DEFINE(int, nd6_debug) = 0; 110 #endif 111 112 /* for debugging? */ 113 #if 0 114 static int nd6_inuse, nd6_allocated; 115 #endif 116 117 VNET_DEFINE(struct nd_drhead, nd_defrouter); 118 VNET_DEFINE(struct nd_prhead, nd_prefix); 119 120 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 121 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 122 123 static struct sockaddr_in6 all1_sa; 124 125 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 126 127 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, 128 struct ifnet *); 129 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 130 static void nd6_slowtimo(void *); 131 static int regen_tmpaddr(struct in6_ifaddr *); 132 static struct llentry *nd6_free(struct llentry *, int); 133 static void nd6_llinfo_timer(void *); 134 static void clear_llinfo_pqueue(struct llentry *); 135 136 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 137 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 138 139 VNET_DEFINE(struct callout, nd6_timer_ch); 140 141 void 142 nd6_init(void) 143 { 144 int i; 145 146 LIST_INIT(&V_nd_prefix); 147 148 all1_sa.sin6_family = AF_INET6; 149 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 150 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 151 all1_sa.sin6_addr.s6_addr[i] = 0xff; 152 153 /* initialization of the default router list */ 154 TAILQ_INIT(&V_nd_defrouter); 155 156 /* start timer */ 157 callout_init(&V_nd6_slowtimo_ch, 0); 158 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 159 nd6_slowtimo, curvnet); 160 } 161 162 #ifdef VIMAGE 163 void 164 nd6_destroy() 165 { 166 167 callout_drain(&V_nd6_slowtimo_ch); 168 callout_drain(&V_nd6_timer_ch); 169 } 170 #endif 171 172 struct nd_ifinfo * 173 nd6_ifattach(struct ifnet *ifp) 174 { 175 struct nd_ifinfo *nd; 176 177 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 178 nd->initialized = 1; 179 180 nd->chlim = IPV6_DEFHLIM; 181 nd->basereachable = REACHABLE_TIME; 182 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 183 nd->retrans = RETRANS_TIMER; 184 185 nd->flags = ND6_IFF_PERFORMNUD; 186 187 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. */ 188 if (V_ip6_auto_linklocal || (ifp->if_flags & IFF_LOOPBACK)) 189 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 190 191 /* A loopback interface does not need to accept RTADV. */ 192 if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK)) 193 nd->flags |= ND6_IFF_ACCEPT_RTADV; 194 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 195 nd->flags |= ND6_IFF_NO_RADR; 196 197 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 198 nd6_setmtu0(ifp, nd); 199 200 return nd; 201 } 202 203 void 204 nd6_ifdetach(struct nd_ifinfo *nd) 205 { 206 207 free(nd, M_IP6NDP); 208 } 209 210 /* 211 * Reset ND level link MTU. This function is called when the physical MTU 212 * changes, which means we might have to adjust the ND level MTU. 213 */ 214 void 215 nd6_setmtu(struct ifnet *ifp) 216 { 217 218 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 219 } 220 221 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 222 void 223 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 224 { 225 u_int32_t omaxmtu; 226 227 omaxmtu = ndi->maxmtu; 228 229 switch (ifp->if_type) { 230 case IFT_ARCNET: 231 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 232 break; 233 case IFT_FDDI: 234 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 235 break; 236 case IFT_ISO88025: 237 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 238 break; 239 default: 240 ndi->maxmtu = ifp->if_mtu; 241 break; 242 } 243 244 /* 245 * Decreasing the interface MTU under IPV6 minimum MTU may cause 246 * undesirable situation. We thus notify the operator of the change 247 * explicitly. The check for omaxmtu is necessary to restrict the 248 * log to the case of changing the MTU, not initializing it. 249 */ 250 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 251 log(LOG_NOTICE, "nd6_setmtu0: " 252 "new link MTU on %s (%lu) is too small for IPv6\n", 253 if_name(ifp), (unsigned long)ndi->maxmtu); 254 } 255 256 if (ndi->maxmtu > V_in6_maxmtu) 257 in6_setmaxmtu(); /* check all interfaces just in case */ 258 259 } 260 261 void 262 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 263 { 264 265 bzero(ndopts, sizeof(*ndopts)); 266 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 267 ndopts->nd_opts_last 268 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 269 270 if (icmp6len == 0) { 271 ndopts->nd_opts_done = 1; 272 ndopts->nd_opts_search = NULL; 273 } 274 } 275 276 /* 277 * Take one ND option. 278 */ 279 struct nd_opt_hdr * 280 nd6_option(union nd_opts *ndopts) 281 { 282 struct nd_opt_hdr *nd_opt; 283 int olen; 284 285 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 286 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 287 __func__)); 288 if (ndopts->nd_opts_search == NULL) 289 return NULL; 290 if (ndopts->nd_opts_done) 291 return NULL; 292 293 nd_opt = ndopts->nd_opts_search; 294 295 /* make sure nd_opt_len is inside the buffer */ 296 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 297 bzero(ndopts, sizeof(*ndopts)); 298 return NULL; 299 } 300 301 olen = nd_opt->nd_opt_len << 3; 302 if (olen == 0) { 303 /* 304 * Message validation requires that all included 305 * options have a length that is greater than zero. 306 */ 307 bzero(ndopts, sizeof(*ndopts)); 308 return NULL; 309 } 310 311 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 312 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 313 /* option overruns the end of buffer, invalid */ 314 bzero(ndopts, sizeof(*ndopts)); 315 return NULL; 316 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 317 /* reached the end of options chain */ 318 ndopts->nd_opts_done = 1; 319 ndopts->nd_opts_search = NULL; 320 } 321 return nd_opt; 322 } 323 324 /* 325 * Parse multiple ND options. 326 * This function is much easier to use, for ND routines that do not need 327 * multiple options of the same type. 328 */ 329 int 330 nd6_options(union nd_opts *ndopts) 331 { 332 struct nd_opt_hdr *nd_opt; 333 int i = 0; 334 335 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 336 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 337 __func__)); 338 if (ndopts->nd_opts_search == NULL) 339 return 0; 340 341 while (1) { 342 nd_opt = nd6_option(ndopts); 343 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 344 /* 345 * Message validation requires that all included 346 * options have a length that is greater than zero. 347 */ 348 ICMP6STAT_INC(icp6s_nd_badopt); 349 bzero(ndopts, sizeof(*ndopts)); 350 return -1; 351 } 352 353 if (nd_opt == NULL) 354 goto skip1; 355 356 switch (nd_opt->nd_opt_type) { 357 case ND_OPT_SOURCE_LINKADDR: 358 case ND_OPT_TARGET_LINKADDR: 359 case ND_OPT_MTU: 360 case ND_OPT_REDIRECTED_HEADER: 361 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 362 nd6log((LOG_INFO, 363 "duplicated ND6 option found (type=%d)\n", 364 nd_opt->nd_opt_type)); 365 /* XXX bark? */ 366 } else { 367 ndopts->nd_opt_array[nd_opt->nd_opt_type] 368 = nd_opt; 369 } 370 break; 371 case ND_OPT_PREFIX_INFORMATION: 372 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 373 ndopts->nd_opt_array[nd_opt->nd_opt_type] 374 = nd_opt; 375 } 376 ndopts->nd_opts_pi_end = 377 (struct nd_opt_prefix_info *)nd_opt; 378 break; 379 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 380 case ND_OPT_RDNSS: /* RFC 6106 */ 381 case ND_OPT_DNSSL: /* RFC 6106 */ 382 /* 383 * Silently ignore options we know and do not care about 384 * in the kernel. 385 */ 386 break; 387 default: 388 /* 389 * Unknown options must be silently ignored, 390 * to accomodate future extension to the protocol. 391 */ 392 nd6log((LOG_DEBUG, 393 "nd6_options: unsupported option %d - " 394 "option ignored\n", nd_opt->nd_opt_type)); 395 } 396 397 skip1: 398 i++; 399 if (i > V_nd6_maxndopt) { 400 ICMP6STAT_INC(icp6s_nd_toomanyopt); 401 nd6log((LOG_INFO, "too many loop in nd opt\n")); 402 break; 403 } 404 405 if (ndopts->nd_opts_done) 406 break; 407 } 408 409 return 0; 410 } 411 412 /* 413 * ND6 timer routine to handle ND6 entries 414 */ 415 void 416 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 417 { 418 int canceled; 419 420 LLE_WLOCK_ASSERT(ln); 421 422 if (tick < 0) { 423 ln->la_expire = 0; 424 ln->ln_ntick = 0; 425 canceled = callout_stop(&ln->ln_timer_ch); 426 } else { 427 ln->la_expire = time_second + tick / hz; 428 LLE_ADDREF(ln); 429 if (tick > INT_MAX) { 430 ln->ln_ntick = tick - INT_MAX; 431 canceled = callout_reset(&ln->ln_timer_ch, INT_MAX, 432 nd6_llinfo_timer, ln); 433 } else { 434 ln->ln_ntick = 0; 435 canceled = callout_reset(&ln->ln_timer_ch, tick, 436 nd6_llinfo_timer, ln); 437 } 438 } 439 if (canceled) 440 LLE_REMREF(ln); 441 } 442 443 void 444 nd6_llinfo_settimer(struct llentry *ln, long tick) 445 { 446 447 LLE_WLOCK(ln); 448 nd6_llinfo_settimer_locked(ln, tick); 449 LLE_WUNLOCK(ln); 450 } 451 452 static void 453 nd6_llinfo_timer(void *arg) 454 { 455 struct llentry *ln; 456 struct in6_addr *dst; 457 struct ifnet *ifp; 458 struct nd_ifinfo *ndi = NULL; 459 460 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 461 ln = (struct llentry *)arg; 462 LLE_WLOCK_ASSERT(ln); 463 ifp = ln->lle_tbl->llt_ifp; 464 465 CURVNET_SET(ifp->if_vnet); 466 467 if (ln->ln_ntick > 0) { 468 if (ln->ln_ntick > INT_MAX) { 469 ln->ln_ntick -= INT_MAX; 470 nd6_llinfo_settimer_locked(ln, INT_MAX); 471 } else { 472 ln->ln_ntick = 0; 473 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 474 } 475 goto done; 476 } 477 478 ndi = ND_IFINFO(ifp); 479 dst = &L3_ADDR_SIN6(ln)->sin6_addr; 480 if (ln->la_flags & LLE_STATIC) { 481 goto done; 482 } 483 484 if (ln->la_flags & LLE_DELETED) { 485 (void)nd6_free(ln, 0); 486 ln = NULL; 487 goto done; 488 } 489 490 switch (ln->ln_state) { 491 case ND6_LLINFO_INCOMPLETE: 492 if (ln->la_asked < V_nd6_mmaxtries) { 493 ln->la_asked++; 494 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 495 LLE_WUNLOCK(ln); 496 nd6_ns_output(ifp, NULL, dst, ln, 0); 497 LLE_WLOCK(ln); 498 } else { 499 struct mbuf *m = ln->la_hold; 500 if (m) { 501 struct mbuf *m0; 502 503 /* 504 * assuming every packet in la_hold has the 505 * same IP header. Send error after unlock. 506 */ 507 m0 = m->m_nextpkt; 508 m->m_nextpkt = NULL; 509 ln->la_hold = m0; 510 clear_llinfo_pqueue(ln); 511 } 512 (void)nd6_free(ln, 0); 513 ln = NULL; 514 if (m != NULL) 515 icmp6_error2(m, ICMP6_DST_UNREACH, 516 ICMP6_DST_UNREACH_ADDR, 0, ifp); 517 } 518 break; 519 case ND6_LLINFO_REACHABLE: 520 if (!ND6_LLINFO_PERMANENT(ln)) { 521 ln->ln_state = ND6_LLINFO_STALE; 522 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 523 } 524 break; 525 526 case ND6_LLINFO_STALE: 527 /* Garbage Collection(RFC 2461 5.3) */ 528 if (!ND6_LLINFO_PERMANENT(ln)) { 529 (void)nd6_free(ln, 1); 530 ln = NULL; 531 } 532 break; 533 534 case ND6_LLINFO_DELAY: 535 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 536 /* We need NUD */ 537 ln->la_asked = 1; 538 ln->ln_state = ND6_LLINFO_PROBE; 539 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 540 LLE_WUNLOCK(ln); 541 nd6_ns_output(ifp, dst, dst, ln, 0); 542 LLE_WLOCK(ln); 543 } else { 544 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 545 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 546 } 547 break; 548 case ND6_LLINFO_PROBE: 549 if (ln->la_asked < V_nd6_umaxtries) { 550 ln->la_asked++; 551 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 552 LLE_WUNLOCK(ln); 553 nd6_ns_output(ifp, dst, dst, ln, 0); 554 LLE_WLOCK(ln); 555 } else { 556 (void)nd6_free(ln, 0); 557 ln = NULL; 558 } 559 break; 560 default: 561 panic("%s: paths in a dark night can be confusing: %d", 562 __func__, ln->ln_state); 563 } 564 done: 565 if (ln != NULL) 566 LLE_FREE_LOCKED(ln); 567 CURVNET_RESTORE(); 568 } 569 570 571 /* 572 * ND6 timer routine to expire default route list and prefix list 573 */ 574 void 575 nd6_timer(void *arg) 576 { 577 CURVNET_SET((struct vnet *) arg); 578 struct nd_defrouter *dr, *ndr; 579 struct nd_prefix *pr, *npr; 580 struct in6_ifaddr *ia6, *nia6; 581 582 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 583 nd6_timer, curvnet); 584 585 /* expire default router list */ 586 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 587 if (dr->expire && dr->expire < time_second) 588 defrtrlist_del(dr); 589 } 590 591 /* 592 * expire interface addresses. 593 * in the past the loop was inside prefix expiry processing. 594 * However, from a stricter speci-confrmance standpoint, we should 595 * rather separate address lifetimes and prefix lifetimes. 596 * 597 * XXXRW: in6_ifaddrhead locking. 598 */ 599 addrloop: 600 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 601 /* check address lifetime */ 602 if (IFA6_IS_INVALID(ia6)) { 603 int regen = 0; 604 605 /* 606 * If the expiring address is temporary, try 607 * regenerating a new one. This would be useful when 608 * we suspended a laptop PC, then turned it on after a 609 * period that could invalidate all temporary 610 * addresses. Although we may have to restart the 611 * loop (see below), it must be after purging the 612 * address. Otherwise, we'd see an infinite loop of 613 * regeneration. 614 */ 615 if (V_ip6_use_tempaddr && 616 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 617 if (regen_tmpaddr(ia6) == 0) 618 regen = 1; 619 } 620 621 in6_purgeaddr(&ia6->ia_ifa); 622 623 if (regen) 624 goto addrloop; /* XXX: see below */ 625 } else if (IFA6_IS_DEPRECATED(ia6)) { 626 int oldflags = ia6->ia6_flags; 627 628 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 629 630 /* 631 * If a temporary address has just become deprecated, 632 * regenerate a new one if possible. 633 */ 634 if (V_ip6_use_tempaddr && 635 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 636 (oldflags & IN6_IFF_DEPRECATED) == 0) { 637 638 if (regen_tmpaddr(ia6) == 0) { 639 /* 640 * A new temporary address is 641 * generated. 642 * XXX: this means the address chain 643 * has changed while we are still in 644 * the loop. Although the change 645 * would not cause disaster (because 646 * it's not a deletion, but an 647 * addition,) we'd rather restart the 648 * loop just for safety. Or does this 649 * significantly reduce performance?? 650 */ 651 goto addrloop; 652 } 653 } 654 } else { 655 /* 656 * A new RA might have made a deprecated address 657 * preferred. 658 */ 659 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 660 } 661 } 662 663 /* expire prefix list */ 664 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 665 /* 666 * check prefix lifetime. 667 * since pltime is just for autoconf, pltime processing for 668 * prefix is not necessary. 669 */ 670 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 671 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 672 673 /* 674 * address expiration and prefix expiration are 675 * separate. NEVER perform in6_purgeaddr here. 676 */ 677 prelist_remove(pr); 678 } 679 } 680 CURVNET_RESTORE(); 681 } 682 683 /* 684 * ia6 - deprecated/invalidated temporary address 685 */ 686 static int 687 regen_tmpaddr(struct in6_ifaddr *ia6) 688 { 689 struct ifaddr *ifa; 690 struct ifnet *ifp; 691 struct in6_ifaddr *public_ifa6 = NULL; 692 693 ifp = ia6->ia_ifa.ifa_ifp; 694 IF_ADDR_RLOCK(ifp); 695 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 696 struct in6_ifaddr *it6; 697 698 if (ifa->ifa_addr->sa_family != AF_INET6) 699 continue; 700 701 it6 = (struct in6_ifaddr *)ifa; 702 703 /* ignore no autoconf addresses. */ 704 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 705 continue; 706 707 /* ignore autoconf addresses with different prefixes. */ 708 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 709 continue; 710 711 /* 712 * Now we are looking at an autoconf address with the same 713 * prefix as ours. If the address is temporary and is still 714 * preferred, do not create another one. It would be rare, but 715 * could happen, for example, when we resume a laptop PC after 716 * a long period. 717 */ 718 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 719 !IFA6_IS_DEPRECATED(it6)) { 720 public_ifa6 = NULL; 721 break; 722 } 723 724 /* 725 * This is a public autoconf address that has the same prefix 726 * as ours. If it is preferred, keep it. We can't break the 727 * loop here, because there may be a still-preferred temporary 728 * address with the prefix. 729 */ 730 if (!IFA6_IS_DEPRECATED(it6)) 731 public_ifa6 = it6; 732 733 if (public_ifa6 != NULL) 734 ifa_ref(&public_ifa6->ia_ifa); 735 } 736 IF_ADDR_RUNLOCK(ifp); 737 738 if (public_ifa6 != NULL) { 739 int e; 740 741 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 742 ifa_free(&public_ifa6->ia_ifa); 743 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 744 " tmp addr,errno=%d\n", e); 745 return (-1); 746 } 747 ifa_free(&public_ifa6->ia_ifa); 748 return (0); 749 } 750 751 return (-1); 752 } 753 754 /* 755 * Nuke neighbor cache/prefix/default router management table, right before 756 * ifp goes away. 757 */ 758 void 759 nd6_purge(struct ifnet *ifp) 760 { 761 struct nd_defrouter *dr, *ndr; 762 struct nd_prefix *pr, *npr; 763 764 /* 765 * Nuke default router list entries toward ifp. 766 * We defer removal of default router list entries that is installed 767 * in the routing table, in order to keep additional side effects as 768 * small as possible. 769 */ 770 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 771 if (dr->installed) 772 continue; 773 774 if (dr->ifp == ifp) 775 defrtrlist_del(dr); 776 } 777 778 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 779 if (!dr->installed) 780 continue; 781 782 if (dr->ifp == ifp) 783 defrtrlist_del(dr); 784 } 785 786 /* Nuke prefix list entries toward ifp */ 787 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 788 if (pr->ndpr_ifp == ifp) { 789 /* 790 * Because if_detach() does *not* release prefixes 791 * while purging addresses the reference count will 792 * still be above zero. We therefore reset it to 793 * make sure that the prefix really gets purged. 794 */ 795 pr->ndpr_refcnt = 0; 796 797 /* 798 * Previously, pr->ndpr_addr is removed as well, 799 * but I strongly believe we don't have to do it. 800 * nd6_purge() is only called from in6_ifdetach(), 801 * which removes all the associated interface addresses 802 * by itself. 803 * (jinmei@kame.net 20010129) 804 */ 805 prelist_remove(pr); 806 } 807 } 808 809 /* cancel default outgoing interface setting */ 810 if (V_nd6_defifindex == ifp->if_index) 811 nd6_setdefaultiface(0); 812 813 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 814 /* Refresh default router list. */ 815 defrouter_select(); 816 } 817 818 /* XXXXX 819 * We do not nuke the neighbor cache entries here any more 820 * because the neighbor cache is kept in if_afdata[AF_INET6]. 821 * nd6_purge() is invoked by in6_ifdetach() which is called 822 * from if_detach() where everything gets purged. So let 823 * in6_domifdetach() do the actual L2 table purging work. 824 */ 825 } 826 827 /* 828 * the caller acquires and releases the lock on the lltbls 829 * Returns the llentry locked 830 */ 831 struct llentry * 832 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp) 833 { 834 struct sockaddr_in6 sin6; 835 struct llentry *ln; 836 int llflags; 837 838 bzero(&sin6, sizeof(sin6)); 839 sin6.sin6_len = sizeof(struct sockaddr_in6); 840 sin6.sin6_family = AF_INET6; 841 sin6.sin6_addr = *addr6; 842 843 IF_AFDATA_LOCK_ASSERT(ifp); 844 845 llflags = 0; 846 if (flags & ND6_CREATE) 847 llflags |= LLE_CREATE; 848 if (flags & ND6_EXCLUSIVE) 849 llflags |= LLE_EXCLUSIVE; 850 851 ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6); 852 if ((ln != NULL) && (llflags & LLE_CREATE)) 853 ln->ln_state = ND6_LLINFO_NOSTATE; 854 855 return (ln); 856 } 857 858 /* 859 * Test whether a given IPv6 address is a neighbor or not, ignoring 860 * the actual neighbor cache. The neighbor cache is ignored in order 861 * to not reenter the routing code from within itself. 862 */ 863 static int 864 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 865 { 866 struct nd_prefix *pr; 867 struct ifaddr *dstaddr; 868 869 /* 870 * A link-local address is always a neighbor. 871 * XXX: a link does not necessarily specify a single interface. 872 */ 873 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 874 struct sockaddr_in6 sin6_copy; 875 u_int32_t zone; 876 877 /* 878 * We need sin6_copy since sa6_recoverscope() may modify the 879 * content (XXX). 880 */ 881 sin6_copy = *addr; 882 if (sa6_recoverscope(&sin6_copy)) 883 return (0); /* XXX: should be impossible */ 884 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 885 return (0); 886 if (sin6_copy.sin6_scope_id == zone) 887 return (1); 888 else 889 return (0); 890 } 891 892 /* 893 * If the address matches one of our addresses, 894 * it should be a neighbor. 895 * If the address matches one of our on-link prefixes, it should be a 896 * neighbor. 897 */ 898 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 899 if (pr->ndpr_ifp != ifp) 900 continue; 901 902 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 903 struct rtentry *rt; 904 905 /* Always use the default FIB here. */ 906 rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 907 0, 0, RT_DEFAULT_FIB); 908 if (rt == NULL) 909 continue; 910 /* 911 * This is the case where multiple interfaces 912 * have the same prefix, but only one is installed 913 * into the routing table and that prefix entry 914 * is not the one being examined here. In the case 915 * where RADIX_MPATH is enabled, multiple route 916 * entries (of the same rt_key value) will be 917 * installed because the interface addresses all 918 * differ. 919 */ 920 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 921 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) { 922 RTFREE_LOCKED(rt); 923 continue; 924 } 925 RTFREE_LOCKED(rt); 926 } 927 928 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 929 &addr->sin6_addr, &pr->ndpr_mask)) 930 return (1); 931 } 932 933 /* 934 * If the address is assigned on the node of the other side of 935 * a p2p interface, the address should be a neighbor. 936 */ 937 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 938 if (dstaddr != NULL) { 939 if (dstaddr->ifa_ifp == ifp) { 940 ifa_free(dstaddr); 941 return (1); 942 } 943 ifa_free(dstaddr); 944 } 945 946 /* 947 * If the default router list is empty, all addresses are regarded 948 * as on-link, and thus, as a neighbor. 949 */ 950 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 951 TAILQ_EMPTY(&V_nd_defrouter) && 952 V_nd6_defifindex == ifp->if_index) { 953 return (1); 954 } 955 956 return (0); 957 } 958 959 960 /* 961 * Detect if a given IPv6 address identifies a neighbor on a given link. 962 * XXX: should take care of the destination of a p2p link? 963 */ 964 int 965 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 966 { 967 struct llentry *lle; 968 int rc = 0; 969 970 IF_AFDATA_UNLOCK_ASSERT(ifp); 971 if (nd6_is_new_addr_neighbor(addr, ifp)) 972 return (1); 973 974 /* 975 * Even if the address matches none of our addresses, it might be 976 * in the neighbor cache. 977 */ 978 IF_AFDATA_RLOCK(ifp); 979 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 980 LLE_RUNLOCK(lle); 981 rc = 1; 982 } 983 IF_AFDATA_RUNLOCK(ifp); 984 return (rc); 985 } 986 987 /* 988 * Free an nd6 llinfo entry. 989 * Since the function would cause significant changes in the kernel, DO NOT 990 * make it global, unless you have a strong reason for the change, and are sure 991 * that the change is safe. 992 */ 993 static struct llentry * 994 nd6_free(struct llentry *ln, int gc) 995 { 996 struct llentry *next; 997 struct nd_defrouter *dr; 998 struct ifnet *ifp; 999 1000 LLE_WLOCK_ASSERT(ln); 1001 1002 /* 1003 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1004 * even though it is not harmful, it was not really necessary. 1005 */ 1006 1007 /* cancel timer */ 1008 nd6_llinfo_settimer_locked(ln, -1); 1009 1010 ifp = ln->lle_tbl->llt_ifp; 1011 1012 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1013 dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1014 1015 if (dr != NULL && dr->expire && 1016 ln->ln_state == ND6_LLINFO_STALE && gc) { 1017 /* 1018 * If the reason for the deletion is just garbage 1019 * collection, and the neighbor is an active default 1020 * router, do not delete it. Instead, reset the GC 1021 * timer using the router's lifetime. 1022 * Simply deleting the entry would affect default 1023 * router selection, which is not necessarily a good 1024 * thing, especially when we're using router preference 1025 * values. 1026 * XXX: the check for ln_state would be redundant, 1027 * but we intentionally keep it just in case. 1028 */ 1029 if (dr->expire > time_second) 1030 nd6_llinfo_settimer_locked(ln, 1031 (dr->expire - time_second) * hz); 1032 else 1033 nd6_llinfo_settimer_locked(ln, 1034 (long)V_nd6_gctimer * hz); 1035 1036 next = LIST_NEXT(ln, lle_next); 1037 LLE_REMREF(ln); 1038 LLE_WUNLOCK(ln); 1039 return (next); 1040 } 1041 1042 if (dr) { 1043 /* 1044 * Unreachablity of a router might affect the default 1045 * router selection and on-link detection of advertised 1046 * prefixes. 1047 */ 1048 1049 /* 1050 * Temporarily fake the state to choose a new default 1051 * router and to perform on-link determination of 1052 * prefixes correctly. 1053 * Below the state will be set correctly, 1054 * or the entry itself will be deleted. 1055 */ 1056 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1057 } 1058 1059 if (ln->ln_router || dr) { 1060 1061 /* 1062 * We need to unlock to avoid a LOR with rt6_flush() with the 1063 * rnh and for the calls to pfxlist_onlink_check() and 1064 * defrouter_select() in the block further down for calls 1065 * into nd6_lookup(). We still hold a ref. 1066 */ 1067 LLE_WUNLOCK(ln); 1068 1069 /* 1070 * rt6_flush must be called whether or not the neighbor 1071 * is in the Default Router List. 1072 * See a corresponding comment in nd6_na_input(). 1073 */ 1074 rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp); 1075 } 1076 1077 if (dr) { 1078 /* 1079 * Since defrouter_select() does not affect the 1080 * on-link determination and MIP6 needs the check 1081 * before the default router selection, we perform 1082 * the check now. 1083 */ 1084 pfxlist_onlink_check(); 1085 1086 /* 1087 * Refresh default router list. 1088 */ 1089 defrouter_select(); 1090 } 1091 1092 if (ln->ln_router || dr) 1093 LLE_WLOCK(ln); 1094 } 1095 1096 /* 1097 * Before deleting the entry, remember the next entry as the 1098 * return value. We need this because pfxlist_onlink_check() above 1099 * might have freed other entries (particularly the old next entry) as 1100 * a side effect (XXX). 1101 */ 1102 next = LIST_NEXT(ln, lle_next); 1103 1104 /* 1105 * Save to unlock. We still hold an extra reference and will not 1106 * free(9) in llentry_free() if someone else holds one as well. 1107 */ 1108 LLE_WUNLOCK(ln); 1109 IF_AFDATA_LOCK(ifp); 1110 LLE_WLOCK(ln); 1111 1112 /* Guard against race with other llentry_free(). */ 1113 if (ln->la_flags & LLE_LINKED) { 1114 LLE_REMREF(ln); 1115 llentry_free(ln); 1116 } else 1117 LLE_FREE_LOCKED(ln); 1118 1119 IF_AFDATA_UNLOCK(ifp); 1120 1121 return (next); 1122 } 1123 1124 /* 1125 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1126 * 1127 * XXX cost-effective methods? 1128 */ 1129 void 1130 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1131 { 1132 struct llentry *ln; 1133 struct ifnet *ifp; 1134 1135 if ((dst6 == NULL) || (rt == NULL)) 1136 return; 1137 1138 ifp = rt->rt_ifp; 1139 IF_AFDATA_LOCK(ifp); 1140 ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL); 1141 IF_AFDATA_UNLOCK(ifp); 1142 if (ln == NULL) 1143 return; 1144 1145 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1146 goto done; 1147 1148 /* 1149 * if we get upper-layer reachability confirmation many times, 1150 * it is possible we have false information. 1151 */ 1152 if (!force) { 1153 ln->ln_byhint++; 1154 if (ln->ln_byhint > V_nd6_maxnudhint) { 1155 goto done; 1156 } 1157 } 1158 1159 ln->ln_state = ND6_LLINFO_REACHABLE; 1160 if (!ND6_LLINFO_PERMANENT(ln)) { 1161 nd6_llinfo_settimer_locked(ln, 1162 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1163 } 1164 done: 1165 LLE_WUNLOCK(ln); 1166 } 1167 1168 1169 /* 1170 * Rejuvenate this function for routing operations related 1171 * processing. 1172 */ 1173 void 1174 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1175 { 1176 struct sockaddr_in6 *gateway; 1177 struct nd_defrouter *dr; 1178 struct ifnet *ifp; 1179 1180 RT_LOCK_ASSERT(rt); 1181 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1182 ifp = rt->rt_ifp; 1183 1184 switch (req) { 1185 case RTM_ADD: 1186 break; 1187 1188 case RTM_DELETE: 1189 if (!ifp) 1190 return; 1191 /* 1192 * Only indirect routes are interesting. 1193 */ 1194 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1195 return; 1196 /* 1197 * check for default route 1198 */ 1199 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1200 &SIN6(rt_key(rt))->sin6_addr)) { 1201 1202 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1203 if (dr != NULL) 1204 dr->installed = 0; 1205 } 1206 break; 1207 } 1208 } 1209 1210 1211 int 1212 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1213 { 1214 struct in6_drlist *drl = (struct in6_drlist *)data; 1215 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1216 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1217 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1218 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1219 struct nd_defrouter *dr; 1220 struct nd_prefix *pr; 1221 int i = 0, error = 0; 1222 1223 switch (cmd) { 1224 case SIOCGDRLST_IN6: 1225 /* 1226 * obsolete API, use sysctl under net.inet6.icmp6 1227 */ 1228 bzero(drl, sizeof(*drl)); 1229 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 1230 if (i >= DRLSTSIZ) 1231 break; 1232 drl->defrouter[i].rtaddr = dr->rtaddr; 1233 in6_clearscope(&drl->defrouter[i].rtaddr); 1234 1235 drl->defrouter[i].flags = dr->flags; 1236 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1237 drl->defrouter[i].expire = dr->expire; 1238 drl->defrouter[i].if_index = dr->ifp->if_index; 1239 i++; 1240 } 1241 break; 1242 case SIOCGPRLST_IN6: 1243 /* 1244 * obsolete API, use sysctl under net.inet6.icmp6 1245 * 1246 * XXX the structure in6_prlist was changed in backward- 1247 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1248 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1249 */ 1250 /* 1251 * XXX meaning of fields, especialy "raflags", is very 1252 * differnet between RA prefix list and RR/static prefix list. 1253 * how about separating ioctls into two? 1254 */ 1255 bzero(oprl, sizeof(*oprl)); 1256 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1257 struct nd_pfxrouter *pfr; 1258 int j; 1259 1260 if (i >= PRLSTSIZ) 1261 break; 1262 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1263 oprl->prefix[i].raflags = pr->ndpr_raf; 1264 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1265 oprl->prefix[i].vltime = pr->ndpr_vltime; 1266 oprl->prefix[i].pltime = pr->ndpr_pltime; 1267 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1268 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1269 oprl->prefix[i].expire = 0; 1270 else { 1271 time_t maxexpire; 1272 1273 /* XXX: we assume time_t is signed. */ 1274 maxexpire = (-1) & 1275 ~((time_t)1 << 1276 ((sizeof(maxexpire) * 8) - 1)); 1277 if (pr->ndpr_vltime < 1278 maxexpire - pr->ndpr_lastupdate) { 1279 oprl->prefix[i].expire = 1280 pr->ndpr_lastupdate + 1281 pr->ndpr_vltime; 1282 } else 1283 oprl->prefix[i].expire = maxexpire; 1284 } 1285 1286 j = 0; 1287 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1288 if (j < DRLSTSIZ) { 1289 #define RTRADDR oprl->prefix[i].advrtr[j] 1290 RTRADDR = pfr->router->rtaddr; 1291 in6_clearscope(&RTRADDR); 1292 #undef RTRADDR 1293 } 1294 j++; 1295 } 1296 oprl->prefix[i].advrtrs = j; 1297 oprl->prefix[i].origin = PR_ORIG_RA; 1298 1299 i++; 1300 } 1301 1302 break; 1303 case OSIOCGIFINFO_IN6: 1304 #define ND ndi->ndi 1305 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1306 bzero(&ND, sizeof(ND)); 1307 ND.linkmtu = IN6_LINKMTU(ifp); 1308 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1309 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1310 ND.reachable = ND_IFINFO(ifp)->reachable; 1311 ND.retrans = ND_IFINFO(ifp)->retrans; 1312 ND.flags = ND_IFINFO(ifp)->flags; 1313 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1314 ND.chlim = ND_IFINFO(ifp)->chlim; 1315 break; 1316 case SIOCGIFINFO_IN6: 1317 ND = *ND_IFINFO(ifp); 1318 break; 1319 case SIOCSIFINFO_IN6: 1320 /* 1321 * used to change host variables from userland. 1322 * intented for a use on router to reflect RA configurations. 1323 */ 1324 /* 0 means 'unspecified' */ 1325 if (ND.linkmtu != 0) { 1326 if (ND.linkmtu < IPV6_MMTU || 1327 ND.linkmtu > IN6_LINKMTU(ifp)) { 1328 error = EINVAL; 1329 break; 1330 } 1331 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1332 } 1333 1334 if (ND.basereachable != 0) { 1335 int obasereachable = ND_IFINFO(ifp)->basereachable; 1336 1337 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1338 if (ND.basereachable != obasereachable) 1339 ND_IFINFO(ifp)->reachable = 1340 ND_COMPUTE_RTIME(ND.basereachable); 1341 } 1342 if (ND.retrans != 0) 1343 ND_IFINFO(ifp)->retrans = ND.retrans; 1344 if (ND.chlim != 0) 1345 ND_IFINFO(ifp)->chlim = ND.chlim; 1346 /* FALLTHROUGH */ 1347 case SIOCSIFINFO_FLAGS: 1348 { 1349 struct ifaddr *ifa; 1350 struct in6_ifaddr *ia; 1351 1352 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1353 !(ND.flags & ND6_IFF_IFDISABLED)) { 1354 /* ifdisabled 1->0 transision */ 1355 1356 /* 1357 * If the interface is marked as ND6_IFF_IFDISABLED and 1358 * has an link-local address with IN6_IFF_DUPLICATED, 1359 * do not clear ND6_IFF_IFDISABLED. 1360 * See RFC 4862, Section 5.4.5. 1361 */ 1362 int duplicated_linklocal = 0; 1363 1364 IF_ADDR_RLOCK(ifp); 1365 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1366 if (ifa->ifa_addr->sa_family != AF_INET6) 1367 continue; 1368 ia = (struct in6_ifaddr *)ifa; 1369 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1370 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1371 duplicated_linklocal = 1; 1372 break; 1373 } 1374 } 1375 IF_ADDR_RUNLOCK(ifp); 1376 1377 if (duplicated_linklocal) { 1378 ND.flags |= ND6_IFF_IFDISABLED; 1379 log(LOG_ERR, "Cannot enable an interface" 1380 " with a link-local address marked" 1381 " duplicate.\n"); 1382 } else { 1383 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1384 if (ifp->if_flags & IFF_UP) 1385 in6_if_up(ifp); 1386 } 1387 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1388 (ND.flags & ND6_IFF_IFDISABLED)) { 1389 /* ifdisabled 0->1 transision */ 1390 /* Mark all IPv6 address as tentative. */ 1391 1392 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1393 IF_ADDR_RLOCK(ifp); 1394 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1395 if (ifa->ifa_addr->sa_family != AF_INET6) 1396 continue; 1397 ia = (struct in6_ifaddr *)ifa; 1398 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1399 } 1400 IF_ADDR_RUNLOCK(ifp); 1401 } 1402 1403 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1404 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1405 /* auto_linklocal 0->1 transision */ 1406 1407 /* If no link-local address on ifp, configure */ 1408 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1409 in6_ifattach(ifp, NULL); 1410 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1411 ifp->if_flags & IFF_UP) { 1412 /* 1413 * When the IF already has 1414 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1415 * address is assigned, and IFF_UP, try to 1416 * assign one. 1417 */ 1418 int haslinklocal = 0; 1419 1420 IF_ADDR_RLOCK(ifp); 1421 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1422 if (ifa->ifa_addr->sa_family != AF_INET6) 1423 continue; 1424 ia = (struct in6_ifaddr *)ifa; 1425 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { 1426 haslinklocal = 1; 1427 break; 1428 } 1429 } 1430 IF_ADDR_RUNLOCK(ifp); 1431 if (!haslinklocal) 1432 in6_ifattach(ifp, NULL); 1433 } 1434 } 1435 } 1436 ND_IFINFO(ifp)->flags = ND.flags; 1437 break; 1438 #undef ND 1439 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1440 /* sync kernel routing table with the default router list */ 1441 defrouter_reset(); 1442 defrouter_select(); 1443 break; 1444 case SIOCSPFXFLUSH_IN6: 1445 { 1446 /* flush all the prefix advertised by routers */ 1447 struct nd_prefix *pr, *next; 1448 1449 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1450 struct in6_ifaddr *ia, *ia_next; 1451 1452 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1453 continue; /* XXX */ 1454 1455 /* do we really have to remove addresses as well? */ 1456 /* XXXRW: in6_ifaddrhead locking. */ 1457 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1458 ia_next) { 1459 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1460 continue; 1461 1462 if (ia->ia6_ndpr == pr) 1463 in6_purgeaddr(&ia->ia_ifa); 1464 } 1465 prelist_remove(pr); 1466 } 1467 break; 1468 } 1469 case SIOCSRTRFLUSH_IN6: 1470 { 1471 /* flush all the default routers */ 1472 struct nd_defrouter *dr, *next; 1473 1474 defrouter_reset(); 1475 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1476 defrtrlist_del(dr); 1477 } 1478 defrouter_select(); 1479 break; 1480 } 1481 case SIOCGNBRINFO_IN6: 1482 { 1483 struct llentry *ln; 1484 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1485 1486 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1487 return (error); 1488 1489 IF_AFDATA_RLOCK(ifp); 1490 ln = nd6_lookup(&nb_addr, 0, ifp); 1491 IF_AFDATA_RUNLOCK(ifp); 1492 1493 if (ln == NULL) { 1494 error = EINVAL; 1495 break; 1496 } 1497 nbi->state = ln->ln_state; 1498 nbi->asked = ln->la_asked; 1499 nbi->isrouter = ln->ln_router; 1500 nbi->expire = ln->la_expire; 1501 LLE_RUNLOCK(ln); 1502 break; 1503 } 1504 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1505 ndif->ifindex = V_nd6_defifindex; 1506 break; 1507 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1508 return (nd6_setdefaultiface(ndif->ifindex)); 1509 } 1510 return (error); 1511 } 1512 1513 /* 1514 * Create neighbor cache entry and cache link-layer address, 1515 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1516 * 1517 * type - ICMP6 type 1518 * code - type dependent information 1519 * 1520 * XXXXX 1521 * The caller of this function already acquired the ndp 1522 * cache table lock because the cache entry is returned. 1523 */ 1524 struct llentry * 1525 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1526 int lladdrlen, int type, int code) 1527 { 1528 struct llentry *ln = NULL; 1529 int is_newentry; 1530 int do_update; 1531 int olladdr; 1532 int llchange; 1533 int flags; 1534 int newstate = 0; 1535 uint16_t router = 0; 1536 struct sockaddr_in6 sin6; 1537 struct mbuf *chain = NULL; 1538 int static_route = 0; 1539 1540 IF_AFDATA_UNLOCK_ASSERT(ifp); 1541 1542 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1543 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1544 1545 /* nothing must be updated for unspecified address */ 1546 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1547 return NULL; 1548 1549 /* 1550 * Validation about ifp->if_addrlen and lladdrlen must be done in 1551 * the caller. 1552 * 1553 * XXX If the link does not have link-layer adderss, what should 1554 * we do? (ifp->if_addrlen == 0) 1555 * Spec says nothing in sections for RA, RS and NA. There's small 1556 * description on it in NS section (RFC 2461 7.2.3). 1557 */ 1558 flags = lladdr ? ND6_EXCLUSIVE : 0; 1559 IF_AFDATA_LOCK(ifp); 1560 ln = nd6_lookup(from, flags, ifp); 1561 1562 if (ln == NULL) { 1563 flags |= ND6_EXCLUSIVE; 1564 ln = nd6_lookup(from, flags | ND6_CREATE, ifp); 1565 IF_AFDATA_UNLOCK(ifp); 1566 is_newentry = 1; 1567 } else { 1568 IF_AFDATA_UNLOCK(ifp); 1569 /* do nothing if static ndp is set */ 1570 if (ln->la_flags & LLE_STATIC) { 1571 static_route = 1; 1572 goto done; 1573 } 1574 is_newentry = 0; 1575 } 1576 if (ln == NULL) 1577 return (NULL); 1578 1579 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1580 if (olladdr && lladdr) { 1581 llchange = bcmp(lladdr, &ln->ll_addr, 1582 ifp->if_addrlen); 1583 } else 1584 llchange = 0; 1585 1586 /* 1587 * newentry olladdr lladdr llchange (*=record) 1588 * 0 n n -- (1) 1589 * 0 y n -- (2) 1590 * 0 n y -- (3) * STALE 1591 * 0 y y n (4) * 1592 * 0 y y y (5) * STALE 1593 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1594 * 1 -- y -- (7) * STALE 1595 */ 1596 1597 if (lladdr) { /* (3-5) and (7) */ 1598 /* 1599 * Record source link-layer address 1600 * XXX is it dependent to ifp->if_type? 1601 */ 1602 bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen); 1603 ln->la_flags |= LLE_VALID; 1604 } 1605 1606 if (!is_newentry) { 1607 if ((!olladdr && lladdr != NULL) || /* (3) */ 1608 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1609 do_update = 1; 1610 newstate = ND6_LLINFO_STALE; 1611 } else /* (1-2,4) */ 1612 do_update = 0; 1613 } else { 1614 do_update = 1; 1615 if (lladdr == NULL) /* (6) */ 1616 newstate = ND6_LLINFO_NOSTATE; 1617 else /* (7) */ 1618 newstate = ND6_LLINFO_STALE; 1619 } 1620 1621 if (do_update) { 1622 /* 1623 * Update the state of the neighbor cache. 1624 */ 1625 ln->ln_state = newstate; 1626 1627 if (ln->ln_state == ND6_LLINFO_STALE) { 1628 /* 1629 * XXX: since nd6_output() below will cause 1630 * state tansition to DELAY and reset the timer, 1631 * we must set the timer now, although it is actually 1632 * meaningless. 1633 */ 1634 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1635 1636 if (ln->la_hold) { 1637 struct mbuf *m_hold, *m_hold_next; 1638 1639 /* 1640 * reset the la_hold in advance, to explicitly 1641 * prevent a la_hold lookup in nd6_output() 1642 * (wouldn't happen, though...) 1643 */ 1644 for (m_hold = ln->la_hold, ln->la_hold = NULL; 1645 m_hold; m_hold = m_hold_next) { 1646 m_hold_next = m_hold->m_nextpkt; 1647 m_hold->m_nextpkt = NULL; 1648 1649 /* 1650 * we assume ifp is not a p2p here, so 1651 * just set the 2nd argument as the 1652 * 1st one. 1653 */ 1654 nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain); 1655 } 1656 /* 1657 * If we have mbufs in the chain we need to do 1658 * deferred transmit. Copy the address from the 1659 * llentry before dropping the lock down below. 1660 */ 1661 if (chain != NULL) 1662 memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6)); 1663 } 1664 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1665 /* probe right away */ 1666 nd6_llinfo_settimer_locked((void *)ln, 0); 1667 } 1668 } 1669 1670 /* 1671 * ICMP6 type dependent behavior. 1672 * 1673 * NS: clear IsRouter if new entry 1674 * RS: clear IsRouter 1675 * RA: set IsRouter if there's lladdr 1676 * redir: clear IsRouter if new entry 1677 * 1678 * RA case, (1): 1679 * The spec says that we must set IsRouter in the following cases: 1680 * - If lladdr exist, set IsRouter. This means (1-5). 1681 * - If it is old entry (!newentry), set IsRouter. This means (7). 1682 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1683 * A quetion arises for (1) case. (1) case has no lladdr in the 1684 * neighbor cache, this is similar to (6). 1685 * This case is rare but we figured that we MUST NOT set IsRouter. 1686 * 1687 * newentry olladdr lladdr llchange NS RS RA redir 1688 * D R 1689 * 0 n n -- (1) c ? s 1690 * 0 y n -- (2) c s s 1691 * 0 n y -- (3) c s s 1692 * 0 y y n (4) c s s 1693 * 0 y y y (5) c s s 1694 * 1 -- n -- (6) c c c s 1695 * 1 -- y -- (7) c c s c s 1696 * 1697 * (c=clear s=set) 1698 */ 1699 switch (type & 0xff) { 1700 case ND_NEIGHBOR_SOLICIT: 1701 /* 1702 * New entry must have is_router flag cleared. 1703 */ 1704 if (is_newentry) /* (6-7) */ 1705 ln->ln_router = 0; 1706 break; 1707 case ND_REDIRECT: 1708 /* 1709 * If the icmp is a redirect to a better router, always set the 1710 * is_router flag. Otherwise, if the entry is newly created, 1711 * clear the flag. [RFC 2461, sec 8.3] 1712 */ 1713 if (code == ND_REDIRECT_ROUTER) 1714 ln->ln_router = 1; 1715 else if (is_newentry) /* (6-7) */ 1716 ln->ln_router = 0; 1717 break; 1718 case ND_ROUTER_SOLICIT: 1719 /* 1720 * is_router flag must always be cleared. 1721 */ 1722 ln->ln_router = 0; 1723 break; 1724 case ND_ROUTER_ADVERT: 1725 /* 1726 * Mark an entry with lladdr as a router. 1727 */ 1728 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1729 (is_newentry && lladdr)) { /* (7) */ 1730 ln->ln_router = 1; 1731 } 1732 break; 1733 } 1734 1735 if (ln != NULL) { 1736 static_route = (ln->la_flags & LLE_STATIC); 1737 router = ln->ln_router; 1738 1739 if (flags & ND6_EXCLUSIVE) 1740 LLE_WUNLOCK(ln); 1741 else 1742 LLE_RUNLOCK(ln); 1743 if (static_route) 1744 ln = NULL; 1745 } 1746 if (chain) 1747 nd6_output_flush(ifp, ifp, chain, &sin6, NULL); 1748 1749 /* 1750 * When the link-layer address of a router changes, select the 1751 * best router again. In particular, when the neighbor entry is newly 1752 * created, it might affect the selection policy. 1753 * Question: can we restrict the first condition to the "is_newentry" 1754 * case? 1755 * XXX: when we hear an RA from a new router with the link-layer 1756 * address option, defrouter_select() is called twice, since 1757 * defrtrlist_update called the function as well. However, I believe 1758 * we can compromise the overhead, since it only happens the first 1759 * time. 1760 * XXX: although defrouter_select() should not have a bad effect 1761 * for those are not autoconfigured hosts, we explicitly avoid such 1762 * cases for safety. 1763 */ 1764 if (do_update && router && 1765 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1766 /* 1767 * guaranteed recursion 1768 */ 1769 defrouter_select(); 1770 } 1771 1772 return (ln); 1773 done: 1774 if (ln != NULL) { 1775 if (flags & ND6_EXCLUSIVE) 1776 LLE_WUNLOCK(ln); 1777 else 1778 LLE_RUNLOCK(ln); 1779 if (static_route) 1780 ln = NULL; 1781 } 1782 return (ln); 1783 } 1784 1785 static void 1786 nd6_slowtimo(void *arg) 1787 { 1788 CURVNET_SET((struct vnet *) arg); 1789 struct nd_ifinfo *nd6if; 1790 struct ifnet *ifp; 1791 1792 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1793 nd6_slowtimo, curvnet); 1794 IFNET_RLOCK_NOSLEEP(); 1795 TAILQ_FOREACH(ifp, &V_ifnet, if_list) { 1796 nd6if = ND_IFINFO(ifp); 1797 if (nd6if->basereachable && /* already initialized */ 1798 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1799 /* 1800 * Since reachable time rarely changes by router 1801 * advertisements, we SHOULD insure that a new random 1802 * value gets recomputed at least once every few hours. 1803 * (RFC 2461, 6.3.4) 1804 */ 1805 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 1806 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1807 } 1808 } 1809 IFNET_RUNLOCK_NOSLEEP(); 1810 CURVNET_RESTORE(); 1811 } 1812 1813 int 1814 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1815 struct sockaddr_in6 *dst, struct rtentry *rt0) 1816 { 1817 1818 return (nd6_output_lle(ifp, origifp, m0, dst, rt0, NULL, NULL)); 1819 } 1820 1821 1822 /* 1823 * Note that I'm not enforcing any global serialization 1824 * lle state or asked changes here as the logic is too 1825 * complicated to avoid having to always acquire an exclusive 1826 * lock 1827 * KMM 1828 * 1829 */ 1830 #define senderr(e) { error = (e); goto bad;} 1831 1832 int 1833 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1834 struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle, 1835 struct mbuf **chain) 1836 { 1837 struct mbuf *m = m0; 1838 struct m_tag *mtag; 1839 struct llentry *ln = lle; 1840 struct ip6_hdr *ip6; 1841 int error = 0; 1842 int flags = 0; 1843 int ip6len; 1844 1845 #ifdef INVARIANTS 1846 if (lle != NULL) { 1847 1848 LLE_WLOCK_ASSERT(lle); 1849 1850 KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed")); 1851 } 1852 #endif 1853 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1854 goto sendpkt; 1855 1856 if (nd6_need_cache(ifp) == 0) 1857 goto sendpkt; 1858 1859 /* 1860 * next hop determination. This routine is derived from ether_output. 1861 */ 1862 1863 /* 1864 * Address resolution or Neighbor Unreachability Detection 1865 * for the next hop. 1866 * At this point, the destination of the packet must be a unicast 1867 * or an anycast address(i.e. not a multicast). 1868 */ 1869 1870 flags = ((m != NULL) || (lle != NULL)) ? LLE_EXCLUSIVE : 0; 1871 if (ln == NULL) { 1872 retry: 1873 IF_AFDATA_LOCK(ifp); 1874 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)dst); 1875 IF_AFDATA_UNLOCK(ifp); 1876 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 1877 /* 1878 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1879 * the condition below is not very efficient. But we believe 1880 * it is tolerable, because this should be a rare case. 1881 */ 1882 flags = ND6_CREATE | (m ? ND6_EXCLUSIVE : 0); 1883 IF_AFDATA_LOCK(ifp); 1884 ln = nd6_lookup(&dst->sin6_addr, flags, ifp); 1885 IF_AFDATA_UNLOCK(ifp); 1886 } 1887 } 1888 if (ln == NULL) { 1889 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1890 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1891 char ip6buf[INET6_ADDRSTRLEN]; 1892 log(LOG_DEBUG, 1893 "nd6_output: can't allocate llinfo for %s " 1894 "(ln=%p)\n", 1895 ip6_sprintf(ip6buf, &dst->sin6_addr), ln); 1896 senderr(EIO); /* XXX: good error? */ 1897 } 1898 goto sendpkt; /* send anyway */ 1899 } 1900 1901 /* We don't have to do link-layer address resolution on a p2p link. */ 1902 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1903 ln->ln_state < ND6_LLINFO_REACHABLE) { 1904 if ((flags & LLE_EXCLUSIVE) == 0) { 1905 flags |= LLE_EXCLUSIVE; 1906 goto retry; 1907 } 1908 ln->ln_state = ND6_LLINFO_STALE; 1909 nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); 1910 } 1911 1912 /* 1913 * The first time we send a packet to a neighbor whose entry is 1914 * STALE, we have to change the state to DELAY and a sets a timer to 1915 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1916 * neighbor unreachability detection on expiration. 1917 * (RFC 2461 7.3.3) 1918 */ 1919 if (ln->ln_state == ND6_LLINFO_STALE) { 1920 if ((flags & LLE_EXCLUSIVE) == 0) { 1921 flags |= LLE_EXCLUSIVE; 1922 LLE_RUNLOCK(ln); 1923 goto retry; 1924 } 1925 ln->la_asked = 0; 1926 ln->ln_state = ND6_LLINFO_DELAY; 1927 nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz); 1928 } 1929 1930 /* 1931 * If the neighbor cache entry has a state other than INCOMPLETE 1932 * (i.e. its link-layer address is already resolved), just 1933 * send the packet. 1934 */ 1935 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1936 goto sendpkt; 1937 1938 /* 1939 * There is a neighbor cache entry, but no ethernet address 1940 * response yet. Append this latest packet to the end of the 1941 * packet queue in the mbuf, unless the number of the packet 1942 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 1943 * the oldest packet in the queue will be removed. 1944 */ 1945 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1946 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1947 1948 if ((flags & LLE_EXCLUSIVE) == 0) { 1949 flags |= LLE_EXCLUSIVE; 1950 LLE_RUNLOCK(ln); 1951 goto retry; 1952 } 1953 1954 LLE_WLOCK_ASSERT(ln); 1955 1956 if (ln->la_hold) { 1957 struct mbuf *m_hold; 1958 int i; 1959 1960 i = 0; 1961 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold->m_nextpkt) { 1962 i++; 1963 if (m_hold->m_nextpkt == NULL) { 1964 m_hold->m_nextpkt = m; 1965 break; 1966 } 1967 } 1968 while (i >= V_nd6_maxqueuelen) { 1969 m_hold = ln->la_hold; 1970 ln->la_hold = ln->la_hold->m_nextpkt; 1971 m_freem(m_hold); 1972 i--; 1973 } 1974 } else { 1975 ln->la_hold = m; 1976 } 1977 1978 /* 1979 * If there has been no NS for the neighbor after entering the 1980 * INCOMPLETE state, send the first solicitation. 1981 */ 1982 if (!ND6_LLINFO_PERMANENT(ln) && ln->la_asked == 0) { 1983 ln->la_asked++; 1984 1985 nd6_llinfo_settimer_locked(ln, 1986 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1987 LLE_WUNLOCK(ln); 1988 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1989 if (lle != NULL && ln == lle) 1990 LLE_WLOCK(lle); 1991 1992 } else if (lle == NULL || ln != lle) { 1993 /* 1994 * We did the lookup (no lle arg) so we 1995 * need to do the unlock here. 1996 */ 1997 LLE_WUNLOCK(ln); 1998 } 1999 2000 return (0); 2001 2002 sendpkt: 2003 /* discard the packet if IPv6 operation is disabled on the interface */ 2004 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2005 error = ENETDOWN; /* better error? */ 2006 goto bad; 2007 } 2008 /* 2009 * ln is valid and the caller did not pass in 2010 * an llentry 2011 */ 2012 if ((ln != NULL) && (lle == NULL)) { 2013 if (flags & LLE_EXCLUSIVE) 2014 LLE_WUNLOCK(ln); 2015 else 2016 LLE_RUNLOCK(ln); 2017 } 2018 2019 #ifdef MAC 2020 mac_netinet6_nd6_send(ifp, m); 2021 #endif 2022 2023 /* 2024 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2025 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2026 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2027 * to be diverted to user space. When re-injected into the kernel, 2028 * send_output() will directly dispatch them to the outgoing interface. 2029 */ 2030 if (send_sendso_input_hook != NULL) { 2031 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2032 if (mtag != NULL) { 2033 ip6 = mtod(m, struct ip6_hdr *); 2034 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2035 /* Use the SEND socket */ 2036 error = send_sendso_input_hook(m, ifp, SND_OUT, 2037 ip6len); 2038 /* -1 == no app on SEND socket */ 2039 if (error == 0 || error != -1) 2040 return (error); 2041 } 2042 } 2043 2044 /* 2045 * We were passed in a pointer to an lle with the lock held 2046 * this means that we can't call if_output as we will 2047 * recurse on the lle lock - so what we do is we create 2048 * a list of mbufs to send and transmit them in the caller 2049 * after the lock is dropped 2050 */ 2051 if (lle != NULL) { 2052 if (*chain == NULL) 2053 *chain = m; 2054 else { 2055 struct mbuf *mb; 2056 2057 /* 2058 * append mbuf to end of deferred chain 2059 */ 2060 mb = *chain; 2061 while (mb->m_nextpkt != NULL) 2062 mb = mb->m_nextpkt; 2063 mb->m_nextpkt = m; 2064 } 2065 return (error); 2066 } 2067 /* Reset layer specific mbuf flags to avoid confusing lower layers. */ 2068 m->m_flags &= ~(M_PROTOFLAGS); 2069 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2070 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2071 NULL)); 2072 } 2073 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, NULL); 2074 return (error); 2075 2076 bad: 2077 /* 2078 * ln is valid and the caller did not pass in 2079 * an llentry 2080 */ 2081 if ((ln != NULL) && (lle == NULL)) { 2082 if (flags & LLE_EXCLUSIVE) 2083 LLE_WUNLOCK(ln); 2084 else 2085 LLE_RUNLOCK(ln); 2086 } 2087 if (m) 2088 m_freem(m); 2089 return (error); 2090 } 2091 #undef senderr 2092 2093 2094 int 2095 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2096 struct sockaddr_in6 *dst, struct route *ro) 2097 { 2098 struct mbuf *m, *m_head; 2099 struct ifnet *outifp; 2100 int error = 0; 2101 2102 m_head = chain; 2103 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2104 outifp = origifp; 2105 else 2106 outifp = ifp; 2107 2108 while (m_head) { 2109 m = m_head; 2110 m_head = m_head->m_nextpkt; 2111 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro); 2112 } 2113 2114 /* 2115 * XXX 2116 * note that intermediate errors are blindly ignored - but this is 2117 * the same convention as used with nd6_output when called by 2118 * nd6_cache_lladdr 2119 */ 2120 return (error); 2121 } 2122 2123 2124 int 2125 nd6_need_cache(struct ifnet *ifp) 2126 { 2127 /* 2128 * XXX: we currently do not make neighbor cache on any interface 2129 * other than ARCnet, Ethernet, FDDI and GIF. 2130 * 2131 * RFC2893 says: 2132 * - unidirectional tunnels needs no ND 2133 */ 2134 switch (ifp->if_type) { 2135 case IFT_ARCNET: 2136 case IFT_ETHER: 2137 case IFT_FDDI: 2138 case IFT_IEEE1394: 2139 #ifdef IFT_L2VLAN 2140 case IFT_L2VLAN: 2141 #endif 2142 #ifdef IFT_IEEE80211 2143 case IFT_IEEE80211: 2144 #endif 2145 case IFT_INFINIBAND: 2146 case IFT_GIF: /* XXX need more cases? */ 2147 case IFT_PPP: 2148 case IFT_TUNNEL: 2149 case IFT_BRIDGE: 2150 case IFT_PROPVIRTUAL: 2151 return (1); 2152 default: 2153 return (0); 2154 } 2155 } 2156 2157 /* 2158 * the callers of this function need to be re-worked to drop 2159 * the lle lock, drop here for now 2160 */ 2161 int 2162 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m, 2163 struct sockaddr *dst, u_char *desten, struct llentry **lle) 2164 { 2165 struct llentry *ln; 2166 2167 *lle = NULL; 2168 IF_AFDATA_UNLOCK_ASSERT(ifp); 2169 if (m->m_flags & M_MCAST) { 2170 int i; 2171 2172 switch (ifp->if_type) { 2173 case IFT_ETHER: 2174 case IFT_FDDI: 2175 #ifdef IFT_L2VLAN 2176 case IFT_L2VLAN: 2177 #endif 2178 #ifdef IFT_IEEE80211 2179 case IFT_IEEE80211: 2180 #endif 2181 case IFT_BRIDGE: 2182 case IFT_ISO88025: 2183 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2184 desten); 2185 return (0); 2186 case IFT_IEEE1394: 2187 /* 2188 * netbsd can use if_broadcastaddr, but we don't do so 2189 * to reduce # of ifdef. 2190 */ 2191 for (i = 0; i < ifp->if_addrlen; i++) 2192 desten[i] = ~0; 2193 return (0); 2194 case IFT_ARCNET: 2195 *desten = 0; 2196 return (0); 2197 default: 2198 m_freem(m); 2199 return (EAFNOSUPPORT); 2200 } 2201 } 2202 2203 2204 /* 2205 * the entry should have been created in nd6_store_lladdr 2206 */ 2207 IF_AFDATA_RLOCK(ifp); 2208 ln = lla_lookup(LLTABLE6(ifp), 0, dst); 2209 IF_AFDATA_RUNLOCK(ifp); 2210 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2211 if (ln != NULL) 2212 LLE_RUNLOCK(ln); 2213 /* this could happen, if we could not allocate memory */ 2214 m_freem(m); 2215 return (1); 2216 } 2217 2218 bcopy(&ln->ll_addr, desten, ifp->if_addrlen); 2219 *lle = ln; 2220 LLE_RUNLOCK(ln); 2221 /* 2222 * A *small* use after free race exists here 2223 */ 2224 return (0); 2225 } 2226 2227 static void 2228 clear_llinfo_pqueue(struct llentry *ln) 2229 { 2230 struct mbuf *m_hold, *m_hold_next; 2231 2232 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2233 m_hold_next = m_hold->m_nextpkt; 2234 m_freem(m_hold); 2235 } 2236 2237 ln->la_hold = NULL; 2238 return; 2239 } 2240 2241 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2242 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2243 #ifdef SYSCTL_DECL 2244 SYSCTL_DECL(_net_inet6_icmp6); 2245 #endif 2246 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2247 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2248 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2249 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2250 SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2251 CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2252 2253 static int 2254 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2255 { 2256 struct in6_defrouter d; 2257 struct nd_defrouter *dr; 2258 int error; 2259 2260 if (req->newptr) 2261 return (EPERM); 2262 2263 bzero(&d, sizeof(d)); 2264 d.rtaddr.sin6_family = AF_INET6; 2265 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2266 2267 /* 2268 * XXX locking 2269 */ 2270 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2271 d.rtaddr.sin6_addr = dr->rtaddr; 2272 error = sa6_recoverscope(&d.rtaddr); 2273 if (error != 0) 2274 return (error); 2275 d.flags = dr->flags; 2276 d.rtlifetime = dr->rtlifetime; 2277 d.expire = dr->expire; 2278 d.if_index = dr->ifp->if_index; 2279 error = SYSCTL_OUT(req, &d, sizeof(d)); 2280 if (error != 0) 2281 return (error); 2282 } 2283 return (0); 2284 } 2285 2286 static int 2287 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2288 { 2289 struct in6_prefix p; 2290 struct sockaddr_in6 s6; 2291 struct nd_prefix *pr; 2292 struct nd_pfxrouter *pfr; 2293 time_t maxexpire; 2294 int error; 2295 char ip6buf[INET6_ADDRSTRLEN]; 2296 2297 if (req->newptr) 2298 return (EPERM); 2299 2300 bzero(&p, sizeof(p)); 2301 p.origin = PR_ORIG_RA; 2302 bzero(&s6, sizeof(s6)); 2303 s6.sin6_family = AF_INET6; 2304 s6.sin6_len = sizeof(s6); 2305 2306 /* 2307 * XXX locking 2308 */ 2309 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2310 p.prefix = pr->ndpr_prefix; 2311 if (sa6_recoverscope(&p.prefix)) { 2312 log(LOG_ERR, "scope error in prefix list (%s)\n", 2313 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2314 /* XXX: press on... */ 2315 } 2316 p.raflags = pr->ndpr_raf; 2317 p.prefixlen = pr->ndpr_plen; 2318 p.vltime = pr->ndpr_vltime; 2319 p.pltime = pr->ndpr_pltime; 2320 p.if_index = pr->ndpr_ifp->if_index; 2321 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2322 p.expire = 0; 2323 else { 2324 /* XXX: we assume time_t is signed. */ 2325 maxexpire = (-1) & 2326 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2327 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2328 p.expire = pr->ndpr_lastupdate + 2329 pr->ndpr_vltime; 2330 else 2331 p.expire = maxexpire; 2332 } 2333 p.refcnt = pr->ndpr_refcnt; 2334 p.flags = pr->ndpr_stateflags; 2335 p.advrtrs = 0; 2336 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2337 p.advrtrs++; 2338 error = SYSCTL_OUT(req, &p, sizeof(p)); 2339 if (error != 0) 2340 return (error); 2341 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2342 s6.sin6_addr = pfr->router->rtaddr; 2343 if (sa6_recoverscope(&s6)) 2344 log(LOG_ERR, 2345 "scope error in prefix list (%s)\n", 2346 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2347 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2348 if (error != 0) 2349 return (error); 2350 } 2351 } 2352 return (0); 2353 } 2354