xref: /freebsd/sys/netinet6/nd6.c (revision 473c31f15836fb5b98ded9e9a0fca84fa1e9e2f1)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arc.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/iso88025.h>
62 #include <net/fddi.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #include <netinet/if_ether.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/send.h>
78 
79 #include <sys/limits.h>
80 
81 #include <security/mac/mac_framework.h>
82 
83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
85 
86 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
87 
88 /* timer values */
89 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
90 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
91 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
92 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
93 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
94 					 * local traffic */
95 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
96 					 * collection timer */
97 
98 /* preventing too many loops in ND option parsing */
99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
100 
101 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
102 					 * layer hints */
103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
104 					 * ND entries */
105 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
106 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
107 
108 #ifdef ND6_DEBUG
109 VNET_DEFINE(int, nd6_debug) = 1;
110 #else
111 VNET_DEFINE(int, nd6_debug) = 0;
112 #endif
113 
114 static eventhandler_tag lle_event_eh;
115 
116 /* for debugging? */
117 #if 0
118 static int nd6_inuse, nd6_allocated;
119 #endif
120 
121 VNET_DEFINE(struct nd_drhead, nd_defrouter);
122 VNET_DEFINE(struct nd_prhead, nd_prefix);
123 
124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
125 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
126 
127 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
128 
129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
130 	struct ifnet *);
131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
132 static void nd6_slowtimo(void *);
133 static int regen_tmpaddr(struct in6_ifaddr *);
134 static void nd6_free(struct llentry *, int);
135 static void nd6_free_redirect(const struct llentry *);
136 static void nd6_llinfo_timer(void *);
137 static void clear_llinfo_pqueue(struct llentry *);
138 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
139 static int nd6_resolve_slow(struct ifnet *, struct mbuf *,
140     const struct sockaddr_in6 *, u_char *, uint32_t *);
141 static int nd6_need_cache(struct ifnet *);
142 
143 
144 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
145 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
146 
147 VNET_DEFINE(struct callout, nd6_timer_ch);
148 
149 static void
150 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
151 {
152 	struct rt_addrinfo rtinfo;
153 	struct sockaddr_in6 dst;
154 	struct sockaddr_dl gw;
155 	struct ifnet *ifp;
156 	int type;
157 
158 	LLE_WLOCK_ASSERT(lle);
159 
160 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
161 		return;
162 
163 	switch (evt) {
164 	case LLENTRY_RESOLVED:
165 		type = RTM_ADD;
166 		KASSERT(lle->la_flags & LLE_VALID,
167 		    ("%s: %p resolved but not valid?", __func__, lle));
168 		break;
169 	case LLENTRY_EXPIRED:
170 		type = RTM_DELETE;
171 		break;
172 	default:
173 		return;
174 	}
175 
176 	ifp = lltable_get_ifp(lle->lle_tbl);
177 
178 	bzero(&dst, sizeof(dst));
179 	bzero(&gw, sizeof(gw));
180 	bzero(&rtinfo, sizeof(rtinfo));
181 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
182 	dst.sin6_scope_id = in6_getscopezone(ifp,
183 	    in6_addrscope(&dst.sin6_addr));
184 	gw.sdl_len = sizeof(struct sockaddr_dl);
185 	gw.sdl_family = AF_LINK;
186 	gw.sdl_alen = ifp->if_addrlen;
187 	gw.sdl_index = ifp->if_index;
188 	gw.sdl_type = ifp->if_type;
189 	if (evt == LLENTRY_RESOLVED)
190 		bcopy(&lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
191 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
192 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
193 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
194 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
195 	    type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB);
196 }
197 
198 void
199 nd6_init(void)
200 {
201 
202 	LIST_INIT(&V_nd_prefix);
203 
204 	/* initialization of the default router list */
205 	TAILQ_INIT(&V_nd_defrouter);
206 
207 	/* start timer */
208 	callout_init(&V_nd6_slowtimo_ch, 0);
209 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
210 	    nd6_slowtimo, curvnet);
211 
212 	nd6_dad_init();
213 	if (IS_DEFAULT_VNET(curvnet))
214 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
215 		    NULL, EVENTHANDLER_PRI_ANY);
216 }
217 
218 #ifdef VIMAGE
219 void
220 nd6_destroy()
221 {
222 
223 	callout_drain(&V_nd6_slowtimo_ch);
224 	callout_drain(&V_nd6_timer_ch);
225 	if (IS_DEFAULT_VNET(curvnet))
226 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
227 }
228 #endif
229 
230 struct nd_ifinfo *
231 nd6_ifattach(struct ifnet *ifp)
232 {
233 	struct nd_ifinfo *nd;
234 
235 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
236 	nd->initialized = 1;
237 
238 	nd->chlim = IPV6_DEFHLIM;
239 	nd->basereachable = REACHABLE_TIME;
240 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
241 	nd->retrans = RETRANS_TIMER;
242 
243 	nd->flags = ND6_IFF_PERFORMNUD;
244 
245 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
246 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
247 	 * default regardless of the V_ip6_auto_linklocal configuration to
248 	 * give a reasonable default behavior.
249 	 */
250 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
251 	    (ifp->if_flags & IFF_LOOPBACK))
252 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
253 	/*
254 	 * A loopback interface does not need to accept RTADV.
255 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
256 	 * default regardless of the V_ip6_accept_rtadv configuration to
257 	 * prevent the interface from accepting RA messages arrived
258 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
259 	 */
260 	if (V_ip6_accept_rtadv &&
261 	    !(ifp->if_flags & IFF_LOOPBACK) &&
262 	    (ifp->if_type != IFT_BRIDGE))
263 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
264 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
265 		nd->flags |= ND6_IFF_NO_RADR;
266 
267 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
268 	nd6_setmtu0(ifp, nd);
269 
270 	return nd;
271 }
272 
273 void
274 nd6_ifdetach(struct nd_ifinfo *nd)
275 {
276 
277 	free(nd, M_IP6NDP);
278 }
279 
280 /*
281  * Reset ND level link MTU. This function is called when the physical MTU
282  * changes, which means we might have to adjust the ND level MTU.
283  */
284 void
285 nd6_setmtu(struct ifnet *ifp)
286 {
287 
288 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
289 }
290 
291 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
292 void
293 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
294 {
295 	u_int32_t omaxmtu;
296 
297 	omaxmtu = ndi->maxmtu;
298 
299 	switch (ifp->if_type) {
300 	case IFT_ARCNET:
301 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
302 		break;
303 	case IFT_FDDI:
304 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
305 		break;
306 	case IFT_ISO88025:
307 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
308 		 break;
309 	default:
310 		ndi->maxmtu = ifp->if_mtu;
311 		break;
312 	}
313 
314 	/*
315 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
316 	 * undesirable situation.  We thus notify the operator of the change
317 	 * explicitly.  The check for omaxmtu is necessary to restrict the
318 	 * log to the case of changing the MTU, not initializing it.
319 	 */
320 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
321 		log(LOG_NOTICE, "nd6_setmtu0: "
322 		    "new link MTU on %s (%lu) is too small for IPv6\n",
323 		    if_name(ifp), (unsigned long)ndi->maxmtu);
324 	}
325 
326 	if (ndi->maxmtu > V_in6_maxmtu)
327 		in6_setmaxmtu(); /* check all interfaces just in case */
328 
329 }
330 
331 void
332 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
333 {
334 
335 	bzero(ndopts, sizeof(*ndopts));
336 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
337 	ndopts->nd_opts_last
338 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
339 
340 	if (icmp6len == 0) {
341 		ndopts->nd_opts_done = 1;
342 		ndopts->nd_opts_search = NULL;
343 	}
344 }
345 
346 /*
347  * Take one ND option.
348  */
349 struct nd_opt_hdr *
350 nd6_option(union nd_opts *ndopts)
351 {
352 	struct nd_opt_hdr *nd_opt;
353 	int olen;
354 
355 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
356 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
357 	    __func__));
358 	if (ndopts->nd_opts_search == NULL)
359 		return NULL;
360 	if (ndopts->nd_opts_done)
361 		return NULL;
362 
363 	nd_opt = ndopts->nd_opts_search;
364 
365 	/* make sure nd_opt_len is inside the buffer */
366 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
367 		bzero(ndopts, sizeof(*ndopts));
368 		return NULL;
369 	}
370 
371 	olen = nd_opt->nd_opt_len << 3;
372 	if (olen == 0) {
373 		/*
374 		 * Message validation requires that all included
375 		 * options have a length that is greater than zero.
376 		 */
377 		bzero(ndopts, sizeof(*ndopts));
378 		return NULL;
379 	}
380 
381 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
382 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
383 		/* option overruns the end of buffer, invalid */
384 		bzero(ndopts, sizeof(*ndopts));
385 		return NULL;
386 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
387 		/* reached the end of options chain */
388 		ndopts->nd_opts_done = 1;
389 		ndopts->nd_opts_search = NULL;
390 	}
391 	return nd_opt;
392 }
393 
394 /*
395  * Parse multiple ND options.
396  * This function is much easier to use, for ND routines that do not need
397  * multiple options of the same type.
398  */
399 int
400 nd6_options(union nd_opts *ndopts)
401 {
402 	struct nd_opt_hdr *nd_opt;
403 	int i = 0;
404 
405 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
406 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
407 	    __func__));
408 	if (ndopts->nd_opts_search == NULL)
409 		return 0;
410 
411 	while (1) {
412 		nd_opt = nd6_option(ndopts);
413 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
414 			/*
415 			 * Message validation requires that all included
416 			 * options have a length that is greater than zero.
417 			 */
418 			ICMP6STAT_INC(icp6s_nd_badopt);
419 			bzero(ndopts, sizeof(*ndopts));
420 			return -1;
421 		}
422 
423 		if (nd_opt == NULL)
424 			goto skip1;
425 
426 		switch (nd_opt->nd_opt_type) {
427 		case ND_OPT_SOURCE_LINKADDR:
428 		case ND_OPT_TARGET_LINKADDR:
429 		case ND_OPT_MTU:
430 		case ND_OPT_REDIRECTED_HEADER:
431 		case ND_OPT_NONCE:
432 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
433 				nd6log((LOG_INFO,
434 				    "duplicated ND6 option found (type=%d)\n",
435 				    nd_opt->nd_opt_type));
436 				/* XXX bark? */
437 			} else {
438 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
439 					= nd_opt;
440 			}
441 			break;
442 		case ND_OPT_PREFIX_INFORMATION:
443 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
444 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
445 					= nd_opt;
446 			}
447 			ndopts->nd_opts_pi_end =
448 				(struct nd_opt_prefix_info *)nd_opt;
449 			break;
450 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
451 		case ND_OPT_RDNSS:	/* RFC 6106 */
452 		case ND_OPT_DNSSL:	/* RFC 6106 */
453 			/*
454 			 * Silently ignore options we know and do not care about
455 			 * in the kernel.
456 			 */
457 			break;
458 		default:
459 			/*
460 			 * Unknown options must be silently ignored,
461 			 * to accomodate future extension to the protocol.
462 			 */
463 			nd6log((LOG_DEBUG,
464 			    "nd6_options: unsupported option %d - "
465 			    "option ignored\n", nd_opt->nd_opt_type));
466 		}
467 
468 skip1:
469 		i++;
470 		if (i > V_nd6_maxndopt) {
471 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
472 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
473 			break;
474 		}
475 
476 		if (ndopts->nd_opts_done)
477 			break;
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * ND6 timer routine to handle ND6 entries
485  */
486 void
487 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
488 {
489 	int canceled;
490 
491 	LLE_WLOCK_ASSERT(ln);
492 
493 	if (tick < 0) {
494 		ln->la_expire = 0;
495 		ln->ln_ntick = 0;
496 		canceled = callout_stop(&ln->lle_timer);
497 	} else {
498 		ln->la_expire = time_uptime + tick / hz;
499 		LLE_ADDREF(ln);
500 		if (tick > INT_MAX) {
501 			ln->ln_ntick = tick - INT_MAX;
502 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
503 			    nd6_llinfo_timer, ln);
504 		} else {
505 			ln->ln_ntick = 0;
506 			canceled = callout_reset(&ln->lle_timer, tick,
507 			    nd6_llinfo_timer, ln);
508 		}
509 	}
510 	if (canceled)
511 		LLE_REMREF(ln);
512 }
513 
514 /*
515 * Gets source address of the first packet in hold queue
516 * and stores it in @src.
517 * Returns pointer to @src (if hold queue is not empty) or NULL.
518 *
519 */
520 static struct in6_addr *
521 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
522 {
523 	struct ip6_hdr hdr;
524 	struct mbuf *m;
525 
526 	if (ln->la_hold == NULL)
527 		return (NULL);
528 
529 	/*
530 	 * assume every packet in la_hold has the same IP header
531 	 */
532 	m = ln->la_hold;
533 	if (sizeof(hdr) < m->m_len)
534 		return (NULL);
535 
536 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
537 	*src = hdr.ip6_src;
538 
539 	return (src);
540 }
541 
542 /*
543  * Switch @lle state to new state optionally arming timers.
544  */
545 void
546 nd6_llinfo_setstate(struct llentry *lle, int newstate)
547 {
548 	struct ifnet *ifp;
549 	long delay;
550 
551 	delay = 0;
552 
553 	switch (newstate) {
554 	case ND6_LLINFO_INCOMPLETE:
555 		ifp = lle->lle_tbl->llt_ifp;
556 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
557 		break;
558 	case ND6_LLINFO_REACHABLE:
559 		if (!ND6_LLINFO_PERMANENT(lle)) {
560 			ifp = lle->lle_tbl->llt_ifp;
561 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
562 		}
563 		break;
564 	case ND6_LLINFO_STALE:
565 		delay = (long)V_nd6_gctimer * hz;
566 		break;
567 	case ND6_LLINFO_DELAY:
568 		lle->la_asked = 0;
569 		delay = (long)V_nd6_delay * hz;
570 		break;
571 	}
572 
573 	if (delay > 0)
574 		nd6_llinfo_settimer_locked(lle, delay);
575 
576 	lle->ln_state = newstate;
577 }
578 
579 
580 void
581 nd6_llinfo_settimer(struct llentry *ln, long tick)
582 {
583 
584 	LLE_WLOCK(ln);
585 	nd6_llinfo_settimer_locked(ln, tick);
586 	LLE_WUNLOCK(ln);
587 }
588 
589 static void
590 nd6_llinfo_timer(void *arg)
591 {
592 	struct llentry *ln;
593 	struct in6_addr *dst, *pdst, *psrc, src;
594 	struct ifnet *ifp;
595 	struct nd_ifinfo *ndi = NULL;
596 	int send_ns;
597 
598 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
599 	ln = (struct llentry *)arg;
600 	LLE_WLOCK(ln);
601 	if (callout_pending(&ln->lle_timer)) {
602 		/*
603 		 * Here we are a bit odd here in the treatment of
604 		 * active/pending. If the pending bit is set, it got
605 		 * rescheduled before I ran. The active
606 		 * bit we ignore, since if it was stopped
607 		 * in ll_tablefree() and was currently running
608 		 * it would have return 0 so the code would
609 		 * not have deleted it since the callout could
610 		 * not be stopped so we want to go through
611 		 * with the delete here now. If the callout
612 		 * was restarted, the pending bit will be back on and
613 		 * we just want to bail since the callout_reset would
614 		 * return 1 and our reference would have been removed
615 		 * by nd6_llinfo_settimer_locked above since canceled
616 		 * would have been 1.
617 		 */
618 		LLE_WUNLOCK(ln);
619 		return;
620 	}
621 	ifp = ln->lle_tbl->llt_ifp;
622 	CURVNET_SET(ifp->if_vnet);
623 	ndi = ND_IFINFO(ifp);
624 	send_ns = 0;
625 	dst = &ln->r_l3addr.addr6;
626 	pdst = dst;
627 
628 	if (ln->ln_ntick > 0) {
629 		if (ln->ln_ntick > INT_MAX) {
630 			ln->ln_ntick -= INT_MAX;
631 			nd6_llinfo_settimer_locked(ln, INT_MAX);
632 		} else {
633 			ln->ln_ntick = 0;
634 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
635 		}
636 		goto done;
637 	}
638 
639 	if (ln->la_flags & LLE_STATIC) {
640 		goto done;
641 	}
642 
643 	if (ln->la_flags & LLE_DELETED) {
644 		nd6_free(ln, 0);
645 		ln = NULL;
646 		goto done;
647 	}
648 
649 	switch (ln->ln_state) {
650 	case ND6_LLINFO_INCOMPLETE:
651 		if (ln->la_asked < V_nd6_mmaxtries) {
652 			ln->la_asked++;
653 			send_ns = 1;
654 			/* Send NS to multicast address */
655 			pdst = NULL;
656 		} else {
657 			struct mbuf *m = ln->la_hold;
658 			if (m) {
659 				struct mbuf *m0;
660 
661 				/*
662 				 * assuming every packet in la_hold has the
663 				 * same IP header.  Send error after unlock.
664 				 */
665 				m0 = m->m_nextpkt;
666 				m->m_nextpkt = NULL;
667 				ln->la_hold = m0;
668 				clear_llinfo_pqueue(ln);
669 			}
670 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT);
671 			nd6_free(ln, 0);
672 			ln = NULL;
673 			if (m != NULL)
674 				icmp6_error2(m, ICMP6_DST_UNREACH,
675 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
676 		}
677 		break;
678 	case ND6_LLINFO_REACHABLE:
679 		if (!ND6_LLINFO_PERMANENT(ln))
680 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
681 		break;
682 
683 	case ND6_LLINFO_STALE:
684 		/* Garbage Collection(RFC 2461 5.3) */
685 		if (!ND6_LLINFO_PERMANENT(ln)) {
686 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
687 			nd6_free(ln, 1);
688 			ln = NULL;
689 		}
690 		break;
691 
692 	case ND6_LLINFO_DELAY:
693 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
694 			/* We need NUD */
695 			ln->la_asked = 1;
696 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
697 			send_ns = 1;
698 		} else
699 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
700 		break;
701 	case ND6_LLINFO_PROBE:
702 		if (ln->la_asked < V_nd6_umaxtries) {
703 			ln->la_asked++;
704 			send_ns = 1;
705 		} else {
706 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
707 			nd6_free(ln, 0);
708 			ln = NULL;
709 		}
710 		break;
711 	default:
712 		panic("%s: paths in a dark night can be confusing: %d",
713 		    __func__, ln->ln_state);
714 	}
715 done:
716 	if (send_ns != 0) {
717 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
718 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
719 		LLE_FREE_LOCKED(ln);
720 		ln = NULL;
721 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
722 	}
723 
724 	if (ln != NULL)
725 		LLE_FREE_LOCKED(ln);
726 	CURVNET_RESTORE();
727 }
728 
729 
730 /*
731  * ND6 timer routine to expire default route list and prefix list
732  */
733 void
734 nd6_timer(void *arg)
735 {
736 	CURVNET_SET((struct vnet *) arg);
737 	struct nd_defrouter *dr, *ndr;
738 	struct nd_prefix *pr, *npr;
739 	struct in6_ifaddr *ia6, *nia6;
740 
741 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
742 	    nd6_timer, curvnet);
743 
744 	/* expire default router list */
745 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
746 		if (dr->expire && dr->expire < time_uptime)
747 			defrtrlist_del(dr);
748 	}
749 
750 	/*
751 	 * expire interface addresses.
752 	 * in the past the loop was inside prefix expiry processing.
753 	 * However, from a stricter speci-confrmance standpoint, we should
754 	 * rather separate address lifetimes and prefix lifetimes.
755 	 *
756 	 * XXXRW: in6_ifaddrhead locking.
757 	 */
758   addrloop:
759 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
760 		/* check address lifetime */
761 		if (IFA6_IS_INVALID(ia6)) {
762 			int regen = 0;
763 
764 			/*
765 			 * If the expiring address is temporary, try
766 			 * regenerating a new one.  This would be useful when
767 			 * we suspended a laptop PC, then turned it on after a
768 			 * period that could invalidate all temporary
769 			 * addresses.  Although we may have to restart the
770 			 * loop (see below), it must be after purging the
771 			 * address.  Otherwise, we'd see an infinite loop of
772 			 * regeneration.
773 			 */
774 			if (V_ip6_use_tempaddr &&
775 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
776 				if (regen_tmpaddr(ia6) == 0)
777 					regen = 1;
778 			}
779 
780 			in6_purgeaddr(&ia6->ia_ifa);
781 
782 			if (regen)
783 				goto addrloop; /* XXX: see below */
784 		} else if (IFA6_IS_DEPRECATED(ia6)) {
785 			int oldflags = ia6->ia6_flags;
786 
787 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
788 
789 			/*
790 			 * If a temporary address has just become deprecated,
791 			 * regenerate a new one if possible.
792 			 */
793 			if (V_ip6_use_tempaddr &&
794 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
795 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
796 
797 				if (regen_tmpaddr(ia6) == 0) {
798 					/*
799 					 * A new temporary address is
800 					 * generated.
801 					 * XXX: this means the address chain
802 					 * has changed while we are still in
803 					 * the loop.  Although the change
804 					 * would not cause disaster (because
805 					 * it's not a deletion, but an
806 					 * addition,) we'd rather restart the
807 					 * loop just for safety.  Or does this
808 					 * significantly reduce performance??
809 					 */
810 					goto addrloop;
811 				}
812 			}
813 		} else {
814 			/*
815 			 * A new RA might have made a deprecated address
816 			 * preferred.
817 			 */
818 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
819 		}
820 	}
821 
822 	/* expire prefix list */
823 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
824 		/*
825 		 * check prefix lifetime.
826 		 * since pltime is just for autoconf, pltime processing for
827 		 * prefix is not necessary.
828 		 */
829 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
830 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
831 
832 			/*
833 			 * address expiration and prefix expiration are
834 			 * separate.  NEVER perform in6_purgeaddr here.
835 			 */
836 			prelist_remove(pr);
837 		}
838 	}
839 	CURVNET_RESTORE();
840 }
841 
842 /*
843  * ia6 - deprecated/invalidated temporary address
844  */
845 static int
846 regen_tmpaddr(struct in6_ifaddr *ia6)
847 {
848 	struct ifaddr *ifa;
849 	struct ifnet *ifp;
850 	struct in6_ifaddr *public_ifa6 = NULL;
851 
852 	ifp = ia6->ia_ifa.ifa_ifp;
853 	IF_ADDR_RLOCK(ifp);
854 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855 		struct in6_ifaddr *it6;
856 
857 		if (ifa->ifa_addr->sa_family != AF_INET6)
858 			continue;
859 
860 		it6 = (struct in6_ifaddr *)ifa;
861 
862 		/* ignore no autoconf addresses. */
863 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
864 			continue;
865 
866 		/* ignore autoconf addresses with different prefixes. */
867 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
868 			continue;
869 
870 		/*
871 		 * Now we are looking at an autoconf address with the same
872 		 * prefix as ours.  If the address is temporary and is still
873 		 * preferred, do not create another one.  It would be rare, but
874 		 * could happen, for example, when we resume a laptop PC after
875 		 * a long period.
876 		 */
877 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
878 		    !IFA6_IS_DEPRECATED(it6)) {
879 			public_ifa6 = NULL;
880 			break;
881 		}
882 
883 		/*
884 		 * This is a public autoconf address that has the same prefix
885 		 * as ours.  If it is preferred, keep it.  We can't break the
886 		 * loop here, because there may be a still-preferred temporary
887 		 * address with the prefix.
888 		 */
889 		if (!IFA6_IS_DEPRECATED(it6))
890 			public_ifa6 = it6;
891 	}
892 	if (public_ifa6 != NULL)
893 		ifa_ref(&public_ifa6->ia_ifa);
894 	IF_ADDR_RUNLOCK(ifp);
895 
896 	if (public_ifa6 != NULL) {
897 		int e;
898 
899 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
900 			ifa_free(&public_ifa6->ia_ifa);
901 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
902 			    " tmp addr,errno=%d\n", e);
903 			return (-1);
904 		}
905 		ifa_free(&public_ifa6->ia_ifa);
906 		return (0);
907 	}
908 
909 	return (-1);
910 }
911 
912 /*
913  * Nuke neighbor cache/prefix/default router management table, right before
914  * ifp goes away.
915  */
916 void
917 nd6_purge(struct ifnet *ifp)
918 {
919 	struct nd_defrouter *dr, *ndr;
920 	struct nd_prefix *pr, *npr;
921 
922 	/*
923 	 * Nuke default router list entries toward ifp.
924 	 * We defer removal of default router list entries that is installed
925 	 * in the routing table, in order to keep additional side effects as
926 	 * small as possible.
927 	 */
928 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
929 		if (dr->installed)
930 			continue;
931 
932 		if (dr->ifp == ifp)
933 			defrtrlist_del(dr);
934 	}
935 
936 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
937 		if (!dr->installed)
938 			continue;
939 
940 		if (dr->ifp == ifp)
941 			defrtrlist_del(dr);
942 	}
943 
944 	/* Nuke prefix list entries toward ifp */
945 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
946 		if (pr->ndpr_ifp == ifp) {
947 			/*
948 			 * Because if_detach() does *not* release prefixes
949 			 * while purging addresses the reference count will
950 			 * still be above zero. We therefore reset it to
951 			 * make sure that the prefix really gets purged.
952 			 */
953 			pr->ndpr_refcnt = 0;
954 
955 			/*
956 			 * Previously, pr->ndpr_addr is removed as well,
957 			 * but I strongly believe we don't have to do it.
958 			 * nd6_purge() is only called from in6_ifdetach(),
959 			 * which removes all the associated interface addresses
960 			 * by itself.
961 			 * (jinmei@kame.net 20010129)
962 			 */
963 			prelist_remove(pr);
964 		}
965 	}
966 
967 	/* cancel default outgoing interface setting */
968 	if (V_nd6_defifindex == ifp->if_index)
969 		nd6_setdefaultiface(0);
970 
971 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
972 		/* Refresh default router list. */
973 		defrouter_select();
974 	}
975 
976 	/* XXXXX
977 	 * We do not nuke the neighbor cache entries here any more
978 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
979 	 * nd6_purge() is invoked by in6_ifdetach() which is called
980 	 * from if_detach() where everything gets purged. So let
981 	 * in6_domifdetach() do the actual L2 table purging work.
982 	 */
983 }
984 
985 /*
986  * the caller acquires and releases the lock on the lltbls
987  * Returns the llentry locked
988  */
989 struct llentry *
990 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
991 {
992 	struct sockaddr_in6 sin6;
993 	struct llentry *ln;
994 
995 	bzero(&sin6, sizeof(sin6));
996 	sin6.sin6_len = sizeof(struct sockaddr_in6);
997 	sin6.sin6_family = AF_INET6;
998 	sin6.sin6_addr = *addr6;
999 
1000 	IF_AFDATA_LOCK_ASSERT(ifp);
1001 
1002 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1003 
1004 	return (ln);
1005 }
1006 
1007 struct llentry *
1008 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1009 {
1010 	struct sockaddr_in6 sin6;
1011 	struct llentry *ln;
1012 
1013 	bzero(&sin6, sizeof(sin6));
1014 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1015 	sin6.sin6_family = AF_INET6;
1016 	sin6.sin6_addr = *addr6;
1017 
1018 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1019 	if (ln != NULL)
1020 		ln->ln_state = ND6_LLINFO_NOSTATE;
1021 
1022 	return (ln);
1023 }
1024 
1025 /*
1026  * Test whether a given IPv6 address is a neighbor or not, ignoring
1027  * the actual neighbor cache.  The neighbor cache is ignored in order
1028  * to not reenter the routing code from within itself.
1029  */
1030 static int
1031 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1032 {
1033 	struct nd_prefix *pr;
1034 	struct ifaddr *dstaddr;
1035 
1036 	/*
1037 	 * A link-local address is always a neighbor.
1038 	 * XXX: a link does not necessarily specify a single interface.
1039 	 */
1040 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1041 		struct sockaddr_in6 sin6_copy;
1042 		u_int32_t zone;
1043 
1044 		/*
1045 		 * We need sin6_copy since sa6_recoverscope() may modify the
1046 		 * content (XXX).
1047 		 */
1048 		sin6_copy = *addr;
1049 		if (sa6_recoverscope(&sin6_copy))
1050 			return (0); /* XXX: should be impossible */
1051 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1052 			return (0);
1053 		if (sin6_copy.sin6_scope_id == zone)
1054 			return (1);
1055 		else
1056 			return (0);
1057 	}
1058 
1059 	/*
1060 	 * If the address matches one of our addresses,
1061 	 * it should be a neighbor.
1062 	 * If the address matches one of our on-link prefixes, it should be a
1063 	 * neighbor.
1064 	 */
1065 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1066 		if (pr->ndpr_ifp != ifp)
1067 			continue;
1068 
1069 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1070 			struct rtentry *rt;
1071 
1072 			/* Always use the default FIB here. */
1073 			rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix,
1074 			    0, 0, RT_DEFAULT_FIB);
1075 			if (rt == NULL)
1076 				continue;
1077 			/*
1078 			 * This is the case where multiple interfaces
1079 			 * have the same prefix, but only one is installed
1080 			 * into the routing table and that prefix entry
1081 			 * is not the one being examined here. In the case
1082 			 * where RADIX_MPATH is enabled, multiple route
1083 			 * entries (of the same rt_key value) will be
1084 			 * installed because the interface addresses all
1085 			 * differ.
1086 			 */
1087 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1088 			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
1089 				RTFREE_LOCKED(rt);
1090 				continue;
1091 			}
1092 			RTFREE_LOCKED(rt);
1093 		}
1094 
1095 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1096 		    &addr->sin6_addr, &pr->ndpr_mask))
1097 			return (1);
1098 	}
1099 
1100 	/*
1101 	 * If the address is assigned on the node of the other side of
1102 	 * a p2p interface, the address should be a neighbor.
1103 	 */
1104 	dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS);
1105 	if (dstaddr != NULL) {
1106 		if (dstaddr->ifa_ifp == ifp) {
1107 			ifa_free(dstaddr);
1108 			return (1);
1109 		}
1110 		ifa_free(dstaddr);
1111 	}
1112 
1113 	/*
1114 	 * If the default router list is empty, all addresses are regarded
1115 	 * as on-link, and thus, as a neighbor.
1116 	 */
1117 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1118 	    TAILQ_EMPTY(&V_nd_defrouter) &&
1119 	    V_nd6_defifindex == ifp->if_index) {
1120 		return (1);
1121 	}
1122 
1123 	return (0);
1124 }
1125 
1126 
1127 /*
1128  * Detect if a given IPv6 address identifies a neighbor on a given link.
1129  * XXX: should take care of the destination of a p2p link?
1130  */
1131 int
1132 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1133 {
1134 	struct llentry *lle;
1135 	int rc = 0;
1136 
1137 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1138 	if (nd6_is_new_addr_neighbor(addr, ifp))
1139 		return (1);
1140 
1141 	/*
1142 	 * Even if the address matches none of our addresses, it might be
1143 	 * in the neighbor cache.
1144 	 */
1145 	IF_AFDATA_RLOCK(ifp);
1146 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1147 		LLE_RUNLOCK(lle);
1148 		rc = 1;
1149 	}
1150 	IF_AFDATA_RUNLOCK(ifp);
1151 	return (rc);
1152 }
1153 
1154 /*
1155  * Free an nd6 llinfo entry.
1156  * Since the function would cause significant changes in the kernel, DO NOT
1157  * make it global, unless you have a strong reason for the change, and are sure
1158  * that the change is safe.
1159  */
1160 static void
1161 nd6_free(struct llentry *ln, int gc)
1162 {
1163 	struct nd_defrouter *dr;
1164 	struct ifnet *ifp;
1165 
1166 	LLE_WLOCK_ASSERT(ln);
1167 
1168 	/*
1169 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1170 	 * even though it is not harmful, it was not really necessary.
1171 	 */
1172 
1173 	/* cancel timer */
1174 	nd6_llinfo_settimer_locked(ln, -1);
1175 
1176 	ifp = ln->lle_tbl->llt_ifp;
1177 
1178 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1179 		dr = defrouter_lookup(&ln->r_l3addr.addr6, ifp);
1180 
1181 		if (dr != NULL && dr->expire &&
1182 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1183 			/*
1184 			 * If the reason for the deletion is just garbage
1185 			 * collection, and the neighbor is an active default
1186 			 * router, do not delete it.  Instead, reset the GC
1187 			 * timer using the router's lifetime.
1188 			 * Simply deleting the entry would affect default
1189 			 * router selection, which is not necessarily a good
1190 			 * thing, especially when we're using router preference
1191 			 * values.
1192 			 * XXX: the check for ln_state would be redundant,
1193 			 *      but we intentionally keep it just in case.
1194 			 */
1195 			if (dr->expire > time_uptime)
1196 				nd6_llinfo_settimer_locked(ln,
1197 				    (dr->expire - time_uptime) * hz);
1198 			else
1199 				nd6_llinfo_settimer_locked(ln,
1200 				    (long)V_nd6_gctimer * hz);
1201 
1202 			LLE_REMREF(ln);
1203 			LLE_WUNLOCK(ln);
1204 			return;
1205 		}
1206 
1207 		if (dr) {
1208 			/*
1209 			 * Unreachablity of a router might affect the default
1210 			 * router selection and on-link detection of advertised
1211 			 * prefixes.
1212 			 */
1213 
1214 			/*
1215 			 * Temporarily fake the state to choose a new default
1216 			 * router and to perform on-link determination of
1217 			 * prefixes correctly.
1218 			 * Below the state will be set correctly,
1219 			 * or the entry itself will be deleted.
1220 			 */
1221 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1222 		}
1223 
1224 		if (ln->ln_router || dr) {
1225 
1226 			/*
1227 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1228 			 * rnh and for the calls to pfxlist_onlink_check() and
1229 			 * defrouter_select() in the block further down for calls
1230 			 * into nd6_lookup().  We still hold a ref.
1231 			 */
1232 			LLE_WUNLOCK(ln);
1233 
1234 			/*
1235 			 * rt6_flush must be called whether or not the neighbor
1236 			 * is in the Default Router List.
1237 			 * See a corresponding comment in nd6_na_input().
1238 			 */
1239 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1240 		}
1241 
1242 		if (dr) {
1243 			/*
1244 			 * Since defrouter_select() does not affect the
1245 			 * on-link determination and MIP6 needs the check
1246 			 * before the default router selection, we perform
1247 			 * the check now.
1248 			 */
1249 			pfxlist_onlink_check();
1250 
1251 			/*
1252 			 * Refresh default router list.
1253 			 */
1254 			defrouter_select();
1255 		}
1256 
1257 		/*
1258 		 * If this entry was added by an on-link redirect, remove the
1259 		 * corresponding host route.
1260 		 */
1261 		if (ln->la_flags & LLE_REDIRECT)
1262 			nd6_free_redirect(ln);
1263 
1264 		if (ln->ln_router || dr)
1265 			LLE_WLOCK(ln);
1266 	}
1267 
1268 	/*
1269 	 * Save to unlock. We still hold an extra reference and will not
1270 	 * free(9) in llentry_free() if someone else holds one as well.
1271 	 */
1272 	LLE_WUNLOCK(ln);
1273 	IF_AFDATA_LOCK(ifp);
1274 	LLE_WLOCK(ln);
1275 	/* Guard against race with other llentry_free(). */
1276 	if (ln->la_flags & LLE_LINKED) {
1277 		/* Remove callout reference */
1278 		LLE_REMREF(ln);
1279 		lltable_unlink_entry(ln->lle_tbl, ln);
1280 	}
1281 	IF_AFDATA_UNLOCK(ifp);
1282 
1283 	llentry_free(ln);
1284 }
1285 
1286 /*
1287  * Remove the rtentry for the given llentry,
1288  * both of which were installed by a redirect.
1289  */
1290 static void
1291 nd6_free_redirect(const struct llentry *ln)
1292 {
1293 	int fibnum;
1294 	struct rtentry *rt;
1295 	struct radix_node_head *rnh;
1296 	struct sockaddr_in6 sin6;
1297 
1298 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1299 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++) {
1300 		rnh = rt_tables_get_rnh(fibnum, AF_INET6);
1301 		if (rnh == NULL)
1302 			continue;
1303 
1304 		RADIX_NODE_HEAD_LOCK(rnh);
1305 		rt = in6_rtalloc1((struct sockaddr *)&sin6, 0,
1306 		    RTF_RNH_LOCKED, fibnum);
1307 		if (rt) {
1308 			if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC))
1309 				rt_expunge(rnh, rt);
1310 			RTFREE_LOCKED(rt);
1311 		}
1312 		RADIX_NODE_HEAD_UNLOCK(rnh);
1313 	}
1314 }
1315 
1316 /*
1317  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1318  *
1319  * XXX cost-effective methods?
1320  */
1321 void
1322 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1323 {
1324 	struct llentry *ln;
1325 	struct ifnet *ifp;
1326 
1327 	if ((dst6 == NULL) || (rt == NULL))
1328 		return;
1329 
1330 	ifp = rt->rt_ifp;
1331 	IF_AFDATA_RLOCK(ifp);
1332 	ln = nd6_lookup(dst6, LLE_EXCLUSIVE, NULL);
1333 	IF_AFDATA_RUNLOCK(ifp);
1334 	if (ln == NULL)
1335 		return;
1336 
1337 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1338 		goto done;
1339 
1340 	/*
1341 	 * if we get upper-layer reachability confirmation many times,
1342 	 * it is possible we have false information.
1343 	 */
1344 	if (!force) {
1345 		ln->ln_byhint++;
1346 		if (ln->ln_byhint > V_nd6_maxnudhint) {
1347 			goto done;
1348 		}
1349 	}
1350 
1351  	nd6_llinfo_setstate(ln, ND6_LLINFO_REACHABLE);
1352 done:
1353 	LLE_WUNLOCK(ln);
1354 }
1355 
1356 
1357 /*
1358  * Rejuvenate this function for routing operations related
1359  * processing.
1360  */
1361 void
1362 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1363 {
1364 	struct sockaddr_in6 *gateway;
1365 	struct nd_defrouter *dr;
1366 	struct ifnet *ifp;
1367 
1368 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1369 	ifp = rt->rt_ifp;
1370 
1371 	switch (req) {
1372 	case RTM_ADD:
1373 		break;
1374 
1375 	case RTM_DELETE:
1376 		if (!ifp)
1377 			return;
1378 		/*
1379 		 * Only indirect routes are interesting.
1380 		 */
1381 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1382 			return;
1383 		/*
1384 		 * check for default route
1385 		 */
1386 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1387 				       &SIN6(rt_key(rt))->sin6_addr)) {
1388 
1389 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1390 			if (dr != NULL)
1391 				dr->installed = 0;
1392 		}
1393 		break;
1394 	}
1395 }
1396 
1397 
1398 int
1399 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1400 {
1401 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1402 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1403 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1404 	int error = 0;
1405 
1406 	if (ifp->if_afdata[AF_INET6] == NULL)
1407 		return (EPFNOSUPPORT);
1408 	switch (cmd) {
1409 	case OSIOCGIFINFO_IN6:
1410 #define ND	ndi->ndi
1411 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1412 		bzero(&ND, sizeof(ND));
1413 		ND.linkmtu = IN6_LINKMTU(ifp);
1414 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1415 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1416 		ND.reachable = ND_IFINFO(ifp)->reachable;
1417 		ND.retrans = ND_IFINFO(ifp)->retrans;
1418 		ND.flags = ND_IFINFO(ifp)->flags;
1419 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1420 		ND.chlim = ND_IFINFO(ifp)->chlim;
1421 		break;
1422 	case SIOCGIFINFO_IN6:
1423 		ND = *ND_IFINFO(ifp);
1424 		break;
1425 	case SIOCSIFINFO_IN6:
1426 		/*
1427 		 * used to change host variables from userland.
1428 		 * intented for a use on router to reflect RA configurations.
1429 		 */
1430 		/* 0 means 'unspecified' */
1431 		if (ND.linkmtu != 0) {
1432 			if (ND.linkmtu < IPV6_MMTU ||
1433 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1434 				error = EINVAL;
1435 				break;
1436 			}
1437 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1438 		}
1439 
1440 		if (ND.basereachable != 0) {
1441 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1442 
1443 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1444 			if (ND.basereachable != obasereachable)
1445 				ND_IFINFO(ifp)->reachable =
1446 				    ND_COMPUTE_RTIME(ND.basereachable);
1447 		}
1448 		if (ND.retrans != 0)
1449 			ND_IFINFO(ifp)->retrans = ND.retrans;
1450 		if (ND.chlim != 0)
1451 			ND_IFINFO(ifp)->chlim = ND.chlim;
1452 		/* FALLTHROUGH */
1453 	case SIOCSIFINFO_FLAGS:
1454 	{
1455 		struct ifaddr *ifa;
1456 		struct in6_ifaddr *ia;
1457 
1458 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1459 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1460 			/* ifdisabled 1->0 transision */
1461 
1462 			/*
1463 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1464 			 * has an link-local address with IN6_IFF_DUPLICATED,
1465 			 * do not clear ND6_IFF_IFDISABLED.
1466 			 * See RFC 4862, Section 5.4.5.
1467 			 */
1468 			IF_ADDR_RLOCK(ifp);
1469 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1470 				if (ifa->ifa_addr->sa_family != AF_INET6)
1471 					continue;
1472 				ia = (struct in6_ifaddr *)ifa;
1473 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1474 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1475 					break;
1476 			}
1477 			IF_ADDR_RUNLOCK(ifp);
1478 
1479 			if (ifa != NULL) {
1480 				/* LLA is duplicated. */
1481 				ND.flags |= ND6_IFF_IFDISABLED;
1482 				log(LOG_ERR, "Cannot enable an interface"
1483 				    " with a link-local address marked"
1484 				    " duplicate.\n");
1485 			} else {
1486 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1487 				if (ifp->if_flags & IFF_UP)
1488 					in6_if_up(ifp);
1489 			}
1490 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1491 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1492 			/* ifdisabled 0->1 transision */
1493 			/* Mark all IPv6 address as tentative. */
1494 
1495 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1496 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1497 				IF_ADDR_RLOCK(ifp);
1498 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1499 				    ifa_link) {
1500 					if (ifa->ifa_addr->sa_family !=
1501 					    AF_INET6)
1502 						continue;
1503 					ia = (struct in6_ifaddr *)ifa;
1504 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1505 				}
1506 				IF_ADDR_RUNLOCK(ifp);
1507 			}
1508 		}
1509 
1510 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1511 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1512 				/* auto_linklocal 0->1 transision */
1513 
1514 				/* If no link-local address on ifp, configure */
1515 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1516 				in6_ifattach(ifp, NULL);
1517 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1518 			    ifp->if_flags & IFF_UP) {
1519 				/*
1520 				 * When the IF already has
1521 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1522 				 * address is assigned, and IFF_UP, try to
1523 				 * assign one.
1524 				 */
1525 				IF_ADDR_RLOCK(ifp);
1526 				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1527 				    ifa_link) {
1528 					if (ifa->ifa_addr->sa_family !=
1529 					    AF_INET6)
1530 						continue;
1531 					ia = (struct in6_ifaddr *)ifa;
1532 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1533 						break;
1534 				}
1535 				IF_ADDR_RUNLOCK(ifp);
1536 				if (ifa != NULL)
1537 					/* No LLA is configured. */
1538 					in6_ifattach(ifp, NULL);
1539 			}
1540 		}
1541 	}
1542 		ND_IFINFO(ifp)->flags = ND.flags;
1543 		break;
1544 #undef ND
1545 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1546 		/* sync kernel routing table with the default router list */
1547 		defrouter_reset();
1548 		defrouter_select();
1549 		break;
1550 	case SIOCSPFXFLUSH_IN6:
1551 	{
1552 		/* flush all the prefix advertised by routers */
1553 		struct nd_prefix *pr, *next;
1554 
1555 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1556 			struct in6_ifaddr *ia, *ia_next;
1557 
1558 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1559 				continue; /* XXX */
1560 
1561 			/* do we really have to remove addresses as well? */
1562 			/* XXXRW: in6_ifaddrhead locking. */
1563 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1564 			    ia_next) {
1565 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1566 					continue;
1567 
1568 				if (ia->ia6_ndpr == pr)
1569 					in6_purgeaddr(&ia->ia_ifa);
1570 			}
1571 			prelist_remove(pr);
1572 		}
1573 		break;
1574 	}
1575 	case SIOCSRTRFLUSH_IN6:
1576 	{
1577 		/* flush all the default routers */
1578 		struct nd_defrouter *dr, *next;
1579 
1580 		defrouter_reset();
1581 		TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) {
1582 			defrtrlist_del(dr);
1583 		}
1584 		defrouter_select();
1585 		break;
1586 	}
1587 	case SIOCGNBRINFO_IN6:
1588 	{
1589 		struct llentry *ln;
1590 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1591 
1592 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1593 			return (error);
1594 
1595 		IF_AFDATA_RLOCK(ifp);
1596 		ln = nd6_lookup(&nb_addr, 0, ifp);
1597 		IF_AFDATA_RUNLOCK(ifp);
1598 
1599 		if (ln == NULL) {
1600 			error = EINVAL;
1601 			break;
1602 		}
1603 		nbi->state = ln->ln_state;
1604 		nbi->asked = ln->la_asked;
1605 		nbi->isrouter = ln->ln_router;
1606 		if (ln->la_expire == 0)
1607 			nbi->expire = 0;
1608 		else
1609 			nbi->expire = ln->la_expire +
1610 			    (time_second - time_uptime);
1611 		LLE_RUNLOCK(ln);
1612 		break;
1613 	}
1614 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1615 		ndif->ifindex = V_nd6_defifindex;
1616 		break;
1617 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1618 		return (nd6_setdefaultiface(ndif->ifindex));
1619 	}
1620 	return (error);
1621 }
1622 
1623 /*
1624  * Calculates new isRouter value based on provided parameters and
1625  * returns it.
1626  */
1627 static int
1628 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1629     int ln_router)
1630 {
1631 
1632 	/*
1633 	 * ICMP6 type dependent behavior.
1634 	 *
1635 	 * NS: clear IsRouter if new entry
1636 	 * RS: clear IsRouter
1637 	 * RA: set IsRouter if there's lladdr
1638 	 * redir: clear IsRouter if new entry
1639 	 *
1640 	 * RA case, (1):
1641 	 * The spec says that we must set IsRouter in the following cases:
1642 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1643 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1644 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1645 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1646 	 * neighbor cache, this is similar to (6).
1647 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1648 	 *
1649 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1650 	 *							D R
1651 	 *	0	n	n	(1)	c   ?     s
1652 	 *	0	y	n	(2)	c   s     s
1653 	 *	0	n	y	(3)	c   s     s
1654 	 *	0	y	y	(4)	c   s     s
1655 	 *	0	y	y	(5)	c   s     s
1656 	 *	1	--	n	(6) c	c	c s
1657 	 *	1	--	y	(7) c	c   s	c s
1658 	 *
1659 	 *					(c=clear s=set)
1660 	 */
1661 	switch (type & 0xff) {
1662 	case ND_NEIGHBOR_SOLICIT:
1663 		/*
1664 		 * New entry must have is_router flag cleared.
1665 		 */
1666 		if (is_new)					/* (6-7) */
1667 			ln_router = 0;
1668 		break;
1669 	case ND_REDIRECT:
1670 		/*
1671 		 * If the icmp is a redirect to a better router, always set the
1672 		 * is_router flag.  Otherwise, if the entry is newly created,
1673 		 * clear the flag.  [RFC 2461, sec 8.3]
1674 		 */
1675 		if (code == ND_REDIRECT_ROUTER)
1676 			ln_router = 1;
1677 		else {
1678 			if (is_new)				/* (6-7) */
1679 				ln_router = 0;
1680 		}
1681 		break;
1682 	case ND_ROUTER_SOLICIT:
1683 		/*
1684 		 * is_router flag must always be cleared.
1685 		 */
1686 		ln_router = 0;
1687 		break;
1688 	case ND_ROUTER_ADVERT:
1689 		/*
1690 		 * Mark an entry with lladdr as a router.
1691 		 */
1692 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1693 		    (is_new && new_addr)) {			/* (7) */
1694 			ln_router = 1;
1695 		}
1696 		break;
1697 	}
1698 
1699 	return (ln_router);
1700 }
1701 
1702 /*
1703  * Create neighbor cache entry and cache link-layer address,
1704  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1705  *
1706  * type - ICMP6 type
1707  * code - type dependent information
1708  *
1709  */
1710 void
1711 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1712     int lladdrlen, int type, int code)
1713 {
1714 	struct llentry *ln = NULL, *ln_tmp;
1715 	int is_newentry;
1716 	int do_update;
1717 	int olladdr;
1718 	int llchange;
1719 	int flags;
1720 	uint16_t router = 0;
1721 	struct sockaddr_in6 sin6;
1722 	struct mbuf *chain = NULL;
1723 
1724 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1725 
1726 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1727 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1728 
1729 	/* nothing must be updated for unspecified address */
1730 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1731 		return;
1732 
1733 	/*
1734 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1735 	 * the caller.
1736 	 *
1737 	 * XXX If the link does not have link-layer adderss, what should
1738 	 * we do? (ifp->if_addrlen == 0)
1739 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1740 	 * description on it in NS section (RFC 2461 7.2.3).
1741 	 */
1742 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1743 	IF_AFDATA_RLOCK(ifp);
1744 	ln = nd6_lookup(from, flags, ifp);
1745 	IF_AFDATA_RUNLOCK(ifp);
1746 	is_newentry = 0;
1747 	if (ln == NULL) {
1748 		flags |= LLE_EXCLUSIVE;
1749 		ln = nd6_alloc(from, 0, ifp);
1750 		if (ln == NULL)
1751 			return;
1752 
1753 		/*
1754 		 * Since we already know all the data for the new entry,
1755 		 * fill it before insertion.
1756 		 */
1757 		if (lladdr != NULL) {
1758 			bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1759 			ln->la_flags |= LLE_VALID;
1760 		}
1761 		IF_AFDATA_WLOCK(ifp);
1762 		LLE_WLOCK(ln);
1763 		/* Prefer any existing lle over newly-created one */
1764 		ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp);
1765 		if (ln_tmp == NULL)
1766 			lltable_link_entry(LLTABLE6(ifp), ln);
1767 		IF_AFDATA_WUNLOCK(ifp);
1768 		if (ln_tmp == NULL) {
1769 			/* No existing lle, mark as new entry */
1770 			is_newentry = 1;
1771 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1772 		} else {
1773 			lltable_free_entry(LLTABLE6(ifp), ln);
1774 			ln = ln_tmp;
1775 			ln_tmp = NULL;
1776 		}
1777 	}
1778 	/* do nothing if static ndp is set */
1779 	if ((ln->la_flags & LLE_STATIC)) {
1780 		if (flags & LLE_EXCLUSIVE)
1781 			LLE_WUNLOCK(ln);
1782 		else
1783 			LLE_RUNLOCK(ln);
1784 		return;
1785 	}
1786 
1787 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1788 	if (olladdr && lladdr) {
1789 		llchange = bcmp(lladdr, &ln->ll_addr,
1790 		    ifp->if_addrlen);
1791 	} else if (!olladdr && lladdr)
1792 		llchange = 1;
1793 	else
1794 		llchange = 0;
1795 
1796 	/*
1797 	 * newentry olladdr  lladdr  llchange	(*=record)
1798 	 *	0	n	n	--	(1)
1799 	 *	0	y	n	--	(2)
1800 	 *	0	n	y	y	(3) * STALE
1801 	 *	0	y	y	n	(4) *
1802 	 *	0	y	y	y	(5) * STALE
1803 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1804 	 *	1	--	y	--	(7) * STALE
1805 	 */
1806 
1807 	do_update = 0;
1808 	if (!is_newentry && llchange != 0)
1809 		do_update = 1;	/* (3,5) */
1810 
1811 	if (lladdr) {		/* (3-5) and (7) */
1812 		/*
1813 		 * Record source link-layer address
1814 		 * XXX is it dependent to ifp->if_type?
1815 		 */
1816 		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1817 		ln->la_flags |= LLE_VALID;
1818 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
1819 
1820 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
1821 
1822 		if (do_update) {
1823 			if (ln->la_hold != NULL)
1824 				nd6_grab_holdchain(ln, &chain, &sin6);
1825 		}
1826 	}
1827 
1828 	/* Calculates new router status */
1829 	router = nd6_is_router(type, code, is_newentry, olladdr,
1830 	    lladdr != NULL ? 1 : 0, ln->ln_router);
1831 
1832 	ln->ln_router = router;
1833 	/* Mark non-router redirects with special flag */
1834 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
1835 		ln->la_flags |= LLE_REDIRECT;
1836 
1837 	if (flags & LLE_EXCLUSIVE)
1838 		LLE_WUNLOCK(ln);
1839 	else
1840 		LLE_RUNLOCK(ln);
1841 
1842 	if (chain != NULL)
1843 		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
1844 
1845 	/*
1846 	 * When the link-layer address of a router changes, select the
1847 	 * best router again.  In particular, when the neighbor entry is newly
1848 	 * created, it might affect the selection policy.
1849 	 * Question: can we restrict the first condition to the "is_newentry"
1850 	 * case?
1851 	 * XXX: when we hear an RA from a new router with the link-layer
1852 	 * address option, defrouter_select() is called twice, since
1853 	 * defrtrlist_update called the function as well.  However, I believe
1854 	 * we can compromise the overhead, since it only happens the first
1855 	 * time.
1856 	 * XXX: although defrouter_select() should not have a bad effect
1857 	 * for those are not autoconfigured hosts, we explicitly avoid such
1858 	 * cases for safety.
1859 	 */
1860 	if ((do_update || is_newentry) && router &&
1861 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1862 		/*
1863 		 * guaranteed recursion
1864 		 */
1865 		defrouter_select();
1866 	}
1867 }
1868 
1869 static void
1870 nd6_slowtimo(void *arg)
1871 {
1872 	CURVNET_SET((struct vnet *) arg);
1873 	struct nd_ifinfo *nd6if;
1874 	struct ifnet *ifp;
1875 
1876 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1877 	    nd6_slowtimo, curvnet);
1878 	IFNET_RLOCK_NOSLEEP();
1879 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
1880 		if (ifp->if_afdata[AF_INET6] == NULL)
1881 			continue;
1882 		nd6if = ND_IFINFO(ifp);
1883 		if (nd6if->basereachable && /* already initialized */
1884 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1885 			/*
1886 			 * Since reachable time rarely changes by router
1887 			 * advertisements, we SHOULD insure that a new random
1888 			 * value gets recomputed at least once every few hours.
1889 			 * (RFC 2461, 6.3.4)
1890 			 */
1891 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1892 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1893 		}
1894 	}
1895 	IFNET_RUNLOCK_NOSLEEP();
1896 	CURVNET_RESTORE();
1897 }
1898 
1899 void
1900 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
1901     struct sockaddr_in6 *sin6)
1902 {
1903 
1904 	LLE_WLOCK_ASSERT(ln);
1905 
1906 	*chain = ln->la_hold;
1907 	ln->la_hold = NULL;
1908 	lltable_fill_sa_entry(ln, (struct sockaddr *)sin6);
1909 
1910 	if (ln->ln_state == ND6_LLINFO_STALE) {
1911 
1912 		/*
1913 		 * The first time we send a packet to a
1914 		 * neighbor whose entry is STALE, we have
1915 		 * to change the state to DELAY and a sets
1916 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
1917 		 * seconds to ensure do neighbor unreachability
1918 		 * detection on expiration.
1919 		 * (RFC 2461 7.3.3)
1920 		 */
1921 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
1922 	}
1923 }
1924 
1925 int
1926 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1927     struct sockaddr_in6 *dst)
1928 {
1929 	int error;
1930 	int ip6len;
1931 	struct ip6_hdr *ip6;
1932 	struct m_tag *mtag;
1933 
1934 #ifdef MAC
1935 	mac_netinet6_nd6_send(ifp, m);
1936 #endif
1937 
1938 	/*
1939 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
1940 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
1941 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
1942 	 * to be diverted to user space.  When re-injected into the kernel,
1943 	 * send_output() will directly dispatch them to the outgoing interface.
1944 	 */
1945 	if (send_sendso_input_hook != NULL) {
1946 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
1947 		if (mtag != NULL) {
1948 			ip6 = mtod(m, struct ip6_hdr *);
1949 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
1950 			/* Use the SEND socket */
1951 			error = send_sendso_input_hook(m, ifp, SND_OUT,
1952 			    ip6len);
1953 			/* -1 == no app on SEND socket */
1954 			if (error == 0 || error != -1)
1955 			    return (error);
1956 		}
1957 	}
1958 
1959 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
1960 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
1961 	    mtod(m, struct ip6_hdr *));
1962 
1963 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
1964 		origifp = ifp;
1965 
1966 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL);
1967 	return (error);
1968 }
1969 
1970 /*
1971  * Do L2 address resolution for @sa_dst address. Stores found
1972  * address in @desten buffer. Copy of lle ln_flags can be also
1973  * saved in @pflags if @pflags is non-NULL.
1974  *
1975  * If destination LLE does not exists or lle state modification
1976  * is required, call "slow" version.
1977  *
1978  * Return values:
1979  * - 0 on success (address copied to buffer).
1980  * - EWOULDBLOCK (no local error, but address is still unresolved)
1981  * - other errors (alloc failure, etc)
1982  */
1983 int
1984 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m,
1985     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags)
1986 {
1987 	struct llentry *ln = NULL;
1988 	const struct sockaddr_in6 *dst6;
1989 
1990 	if (pflags != NULL)
1991 		*pflags = 0;
1992 
1993 	dst6 = (const struct sockaddr_in6 *)sa_dst;
1994 
1995 	/* discard the packet if IPv6 operation is disabled on the interface */
1996 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1997 		m_freem(m);
1998 		return (ENETDOWN); /* better error? */
1999 	}
2000 
2001 	if (m != NULL && m->m_flags & M_MCAST) {
2002 		switch (ifp->if_type) {
2003 		case IFT_ETHER:
2004 		case IFT_FDDI:
2005 		case IFT_L2VLAN:
2006 		case IFT_IEEE80211:
2007 		case IFT_BRIDGE:
2008 		case IFT_ISO88025:
2009 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2010 						 desten);
2011 			return (0);
2012 		default:
2013 			m_freem(m);
2014 			return (EAFNOSUPPORT);
2015 		}
2016 	}
2017 
2018 	IF_AFDATA_RLOCK(ifp);
2019 	ln = nd6_lookup(&dst6->sin6_addr, 0, ifp);
2020 	IF_AFDATA_RUNLOCK(ifp);
2021 
2022 	/*
2023 	 * Perform fast path for the following cases:
2024 	 * 1) lle state is REACHABLE
2025 	 * 2) lle state is DELAY (NS message sent)
2026 	 *
2027 	 * Every other case involves lle modification, so we handle
2028 	 * them separately.
2029 	 */
2030 	if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE &&
2031 	    ln->ln_state != ND6_LLINFO_DELAY)) {
2032 		/* Fall back to slow processing path */
2033 		if (ln != NULL)
2034 			LLE_RUNLOCK(ln);
2035 		return (nd6_resolve_slow(ifp, m, dst6, desten, pflags));
2036 	}
2037 
2038 
2039 	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2040 	if (pflags != NULL)
2041 		*pflags = ln->la_flags;
2042 	LLE_RUNLOCK(ln);
2043 	return (0);
2044 }
2045 
2046 
2047 /*
2048  * Do L2 address resolution for @sa_dst address. Stores found
2049  * address in @desten buffer. Copy of lle ln_flags can be also
2050  * saved in @pflags if @pflags is non-NULL.
2051  *
2052  * Heavy version.
2053  * Function assume that destination LLE does not exist,
2054  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2055  */
2056 static int
2057 nd6_resolve_slow(struct ifnet *ifp, struct mbuf *m,
2058     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags)
2059 {
2060 	struct llentry *lle = NULL, *lle_tmp;
2061 	struct in6_addr *psrc, src;
2062 	int send_ns;
2063 
2064 	/*
2065 	 * Address resolution or Neighbor Unreachability Detection
2066 	 * for the next hop.
2067 	 * At this point, the destination of the packet must be a unicast
2068 	 * or an anycast address(i.e. not a multicast).
2069 	 */
2070 	if (lle == NULL) {
2071 		IF_AFDATA_RLOCK(ifp);
2072 		lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2073 		IF_AFDATA_RUNLOCK(ifp);
2074 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2075 			/*
2076 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2077 			 * the condition below is not very efficient.  But we believe
2078 			 * it is tolerable, because this should be a rare case.
2079 			 */
2080 			lle = nd6_alloc(&dst->sin6_addr, 0, ifp);
2081 			if (lle == NULL) {
2082 				char ip6buf[INET6_ADDRSTRLEN];
2083 				log(LOG_DEBUG,
2084 				    "nd6_output: can't allocate llinfo for %s "
2085 				    "(ln=%p)\n",
2086 				    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
2087 				m_freem(m);
2088 				return (ENOBUFS);
2089 			}
2090 
2091 			IF_AFDATA_WLOCK(ifp);
2092 			LLE_WLOCK(lle);
2093 			/* Prefer any existing entry over newly-created one */
2094 			lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp);
2095 			if (lle_tmp == NULL)
2096 				lltable_link_entry(LLTABLE6(ifp), lle);
2097 			IF_AFDATA_WUNLOCK(ifp);
2098 			if (lle_tmp != NULL) {
2099 				lltable_free_entry(LLTABLE6(ifp), lle);
2100 				lle = lle_tmp;
2101 				lle_tmp = NULL;
2102 			}
2103 		}
2104 	}
2105 	if (lle == NULL) {
2106 		if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2107 			m_freem(m);
2108 			return (ENOBUFS);
2109 		}
2110 
2111 		if (m != NULL)
2112 			m_freem(m);
2113 		return (ENOBUFS);
2114 	}
2115 
2116 	LLE_WLOCK_ASSERT(lle);
2117 
2118 	/*
2119 	 * The first time we send a packet to a neighbor whose entry is
2120 	 * STALE, we have to change the state to DELAY and a sets a timer to
2121 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2122 	 * neighbor unreachability detection on expiration.
2123 	 * (RFC 2461 7.3.3)
2124 	 */
2125 	if (lle->ln_state == ND6_LLINFO_STALE)
2126 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2127 
2128 	/*
2129 	 * If the neighbor cache entry has a state other than INCOMPLETE
2130 	 * (i.e. its link-layer address is already resolved), just
2131 	 * send the packet.
2132 	 */
2133 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2134 		bcopy(&lle->ll_addr, desten, ifp->if_addrlen);
2135 		if (pflags != NULL)
2136 			*pflags = lle->la_flags;
2137 		LLE_WUNLOCK(lle);
2138 		return (0);
2139 	}
2140 
2141 	/*
2142 	 * There is a neighbor cache entry, but no ethernet address
2143 	 * response yet.  Append this latest packet to the end of the
2144 	 * packet queue in the mbuf, unless the number of the packet
2145 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2146 	 * the oldest packet in the queue will be removed.
2147 	 */
2148 
2149 	if (lle->la_hold != NULL) {
2150 		struct mbuf *m_hold;
2151 		int i;
2152 
2153 		i = 0;
2154 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2155 			i++;
2156 			if (m_hold->m_nextpkt == NULL) {
2157 				m_hold->m_nextpkt = m;
2158 				break;
2159 			}
2160 		}
2161 		while (i >= V_nd6_maxqueuelen) {
2162 			m_hold = lle->la_hold;
2163 			lle->la_hold = lle->la_hold->m_nextpkt;
2164 			m_freem(m_hold);
2165 			i--;
2166 		}
2167 	} else {
2168 		lle->la_hold = m;
2169 	}
2170 
2171 	/*
2172 	 * If there has been no NS for the neighbor after entering the
2173 	 * INCOMPLETE state, send the first solicitation.
2174 	 * Note that for newly-created lle la_asked will be 0,
2175 	 * so we will transition from ND6_LLINFO_NOSTATE to
2176 	 * ND6_LLINFO_INCOMPLETE state here.
2177 	 */
2178 	psrc = NULL;
2179 	send_ns = 0;
2180 	if (lle->la_asked == 0) {
2181 		lle->la_asked++;
2182 		send_ns = 1;
2183 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2184 
2185 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2186 	}
2187 	LLE_WUNLOCK(lle);
2188 	if (send_ns != 0)
2189 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2190 
2191 	return (EWOULDBLOCK);
2192 }
2193 
2194 
2195 int
2196 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2197     struct sockaddr_in6 *dst)
2198 {
2199 	struct mbuf *m, *m_head;
2200 	struct ifnet *outifp;
2201 	int error = 0;
2202 
2203 	m_head = chain;
2204 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2205 		outifp = origifp;
2206 	else
2207 		outifp = ifp;
2208 
2209 	while (m_head) {
2210 		m = m_head;
2211 		m_head = m_head->m_nextpkt;
2212 		error = nd6_output_ifp(ifp, origifp, m, dst);
2213 	}
2214 
2215 	/*
2216 	 * XXX
2217 	 * note that intermediate errors are blindly ignored
2218 	 */
2219 	return (error);
2220 }
2221 
2222 static int
2223 nd6_need_cache(struct ifnet *ifp)
2224 {
2225 	/*
2226 	 * XXX: we currently do not make neighbor cache on any interface
2227 	 * other than ARCnet, Ethernet, FDDI and GIF.
2228 	 *
2229 	 * RFC2893 says:
2230 	 * - unidirectional tunnels needs no ND
2231 	 */
2232 	switch (ifp->if_type) {
2233 	case IFT_ARCNET:
2234 	case IFT_ETHER:
2235 	case IFT_FDDI:
2236 	case IFT_IEEE1394:
2237 	case IFT_L2VLAN:
2238 	case IFT_IEEE80211:
2239 	case IFT_INFINIBAND:
2240 	case IFT_BRIDGE:
2241 	case IFT_PROPVIRTUAL:
2242 		return (1);
2243 	default:
2244 		return (0);
2245 	}
2246 }
2247 
2248 /*
2249  * Add pernament ND6 link-layer record for given
2250  * interface address.
2251  *
2252  * Very similar to IPv4 arp_ifinit(), but:
2253  * 1) IPv6 DAD is performed in different place
2254  * 2) It is called by IPv6 protocol stack in contrast to
2255  * arp_ifinit() which is typically called in SIOCSIFADDR
2256  * driver ioctl handler.
2257  *
2258  */
2259 int
2260 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2261 {
2262 	struct ifnet *ifp;
2263 	struct llentry *ln, *ln_tmp;
2264 	struct sockaddr *dst;
2265 
2266 	ifp = ia->ia_ifa.ifa_ifp;
2267 	if (nd6_need_cache(ifp) == 0)
2268 		return (0);
2269 
2270 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2271 	dst = (struct sockaddr *)&ia->ia_addr;
2272 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2273 	if (ln == NULL)
2274 		return (ENOBUFS);
2275 
2276 	IF_AFDATA_WLOCK(ifp);
2277 	LLE_WLOCK(ln);
2278 	/* Unlink any entry if exists */
2279 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst);
2280 	if (ln_tmp != NULL)
2281 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2282 	lltable_link_entry(LLTABLE6(ifp), ln);
2283 	IF_AFDATA_WUNLOCK(ifp);
2284 
2285 	if (ln_tmp != NULL)
2286 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2287 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2288 
2289 	LLE_WUNLOCK(ln);
2290 	if (ln_tmp != NULL)
2291 		llentry_free(ln_tmp);
2292 
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Removes either all lle entries for given @ia, or lle
2298  * corresponding to @ia address.
2299  */
2300 void
2301 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2302 {
2303 	struct sockaddr_in6 mask, addr;
2304 	struct sockaddr *saddr, *smask;
2305 	struct ifnet *ifp;
2306 
2307 	ifp = ia->ia_ifa.ifa_ifp;
2308 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2309 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2310 	saddr = (struct sockaddr *)&addr;
2311 	smask = (struct sockaddr *)&mask;
2312 
2313 	if (all != 0)
2314 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2315 	else
2316 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2317 }
2318 
2319 static void
2320 clear_llinfo_pqueue(struct llentry *ln)
2321 {
2322 	struct mbuf *m_hold, *m_hold_next;
2323 
2324 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2325 		m_hold_next = m_hold->m_nextpkt;
2326 		m_freem(m_hold);
2327 	}
2328 
2329 	ln->la_hold = NULL;
2330 	return;
2331 }
2332 
2333 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2334 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2335 #ifdef SYSCTL_DECL
2336 SYSCTL_DECL(_net_inet6_icmp6);
2337 #endif
2338 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2339 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2340 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2341 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2342 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2343 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2344 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2345 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2346 
2347 static int
2348 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2349 {
2350 	struct in6_defrouter d;
2351 	struct nd_defrouter *dr;
2352 	int error;
2353 
2354 	if (req->newptr)
2355 		return (EPERM);
2356 
2357 	bzero(&d, sizeof(d));
2358 	d.rtaddr.sin6_family = AF_INET6;
2359 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2360 
2361 	/*
2362 	 * XXX locking
2363 	 */
2364 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2365 		d.rtaddr.sin6_addr = dr->rtaddr;
2366 		error = sa6_recoverscope(&d.rtaddr);
2367 		if (error != 0)
2368 			return (error);
2369 		d.flags = dr->flags;
2370 		d.rtlifetime = dr->rtlifetime;
2371 		d.expire = dr->expire + (time_second - time_uptime);
2372 		d.if_index = dr->ifp->if_index;
2373 		error = SYSCTL_OUT(req, &d, sizeof(d));
2374 		if (error != 0)
2375 			return (error);
2376 	}
2377 	return (0);
2378 }
2379 
2380 static int
2381 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2382 {
2383 	struct in6_prefix p;
2384 	struct sockaddr_in6 s6;
2385 	struct nd_prefix *pr;
2386 	struct nd_pfxrouter *pfr;
2387 	time_t maxexpire;
2388 	int error;
2389 	char ip6buf[INET6_ADDRSTRLEN];
2390 
2391 	if (req->newptr)
2392 		return (EPERM);
2393 
2394 	bzero(&p, sizeof(p));
2395 	p.origin = PR_ORIG_RA;
2396 	bzero(&s6, sizeof(s6));
2397 	s6.sin6_family = AF_INET6;
2398 	s6.sin6_len = sizeof(s6);
2399 
2400 	/*
2401 	 * XXX locking
2402 	 */
2403 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2404 		p.prefix = pr->ndpr_prefix;
2405 		if (sa6_recoverscope(&p.prefix)) {
2406 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2407 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2408 			/* XXX: press on... */
2409 		}
2410 		p.raflags = pr->ndpr_raf;
2411 		p.prefixlen = pr->ndpr_plen;
2412 		p.vltime = pr->ndpr_vltime;
2413 		p.pltime = pr->ndpr_pltime;
2414 		p.if_index = pr->ndpr_ifp->if_index;
2415 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2416 			p.expire = 0;
2417 		else {
2418 			/* XXX: we assume time_t is signed. */
2419 			maxexpire = (-1) &
2420 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2421 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2422 				p.expire = pr->ndpr_lastupdate +
2423 				    pr->ndpr_vltime +
2424 				    (time_second - time_uptime);
2425 			else
2426 				p.expire = maxexpire;
2427 		}
2428 		p.refcnt = pr->ndpr_refcnt;
2429 		p.flags = pr->ndpr_stateflags;
2430 		p.advrtrs = 0;
2431 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2432 			p.advrtrs++;
2433 		error = SYSCTL_OUT(req, &p, sizeof(p));
2434 		if (error != 0)
2435 			return (error);
2436 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2437 			s6.sin6_addr = pfr->router->rtaddr;
2438 			if (sa6_recoverscope(&s6))
2439 				log(LOG_ERR,
2440 				    "scope error in prefix list (%s)\n",
2441 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2442 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2443 			if (error != 0)
2444 				return (error);
2445 		}
2446 	}
2447 	return (0);
2448 }
2449