1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/callout.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/mutex.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/time.h> 50 #include <sys/kernel.h> 51 #include <sys/protosw.h> 52 #include <sys/errno.h> 53 #include <sys/syslog.h> 54 #include <sys/rwlock.h> 55 #include <sys/queue.h> 56 #include <sys/sdt.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_types.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 89 90 /* timer values */ 91 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 92 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 93 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 94 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 95 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 96 * local traffic */ 97 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 98 * collection timer */ 99 100 /* preventing too many loops in ND option parsing */ 101 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 102 103 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 104 * layer hints */ 105 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 106 * ND entries */ 107 #define V_nd6_maxndopt VNET(nd6_maxndopt) 108 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 109 110 #ifdef ND6_DEBUG 111 VNET_DEFINE(int, nd6_debug) = 1; 112 #else 113 VNET_DEFINE(int, nd6_debug) = 0; 114 #endif 115 116 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 117 118 VNET_DEFINE(struct nd_drhead, nd_defrouter); 119 VNET_DEFINE(struct nd_prhead, nd_prefix); 120 VNET_DEFINE(struct rwlock, nd6_lock); 121 VNET_DEFINE(uint64_t, nd6_list_genid); 122 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 123 124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 125 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 126 127 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 128 129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 130 struct ifnet *); 131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 132 static void nd6_slowtimo(void *); 133 static int regen_tmpaddr(struct in6_ifaddr *); 134 static void nd6_free(struct llentry **, int); 135 static void nd6_free_redirect(const struct llentry *); 136 static void nd6_llinfo_timer(void *); 137 static void nd6_llinfo_settimer_locked(struct llentry *, long); 138 static void clear_llinfo_pqueue(struct llentry *); 139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 141 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 142 static int nd6_need_cache(struct ifnet *); 143 144 145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 146 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 147 148 VNET_DEFINE(struct callout, nd6_timer_ch); 149 #define V_nd6_timer_ch VNET(nd6_timer_ch) 150 151 static void 152 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 153 { 154 struct rt_addrinfo rtinfo; 155 struct sockaddr_in6 dst; 156 struct sockaddr_dl gw; 157 struct ifnet *ifp; 158 int type; 159 int fibnum; 160 161 LLE_WLOCK_ASSERT(lle); 162 163 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 164 return; 165 166 switch (evt) { 167 case LLENTRY_RESOLVED: 168 type = RTM_ADD; 169 KASSERT(lle->la_flags & LLE_VALID, 170 ("%s: %p resolved but not valid?", __func__, lle)); 171 break; 172 case LLENTRY_EXPIRED: 173 type = RTM_DELETE; 174 break; 175 default: 176 return; 177 } 178 179 ifp = lltable_get_ifp(lle->lle_tbl); 180 181 bzero(&dst, sizeof(dst)); 182 bzero(&gw, sizeof(gw)); 183 bzero(&rtinfo, sizeof(rtinfo)); 184 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 185 dst.sin6_scope_id = in6_getscopezone(ifp, 186 in6_addrscope(&dst.sin6_addr)); 187 gw.sdl_len = sizeof(struct sockaddr_dl); 188 gw.sdl_family = AF_LINK; 189 gw.sdl_alen = ifp->if_addrlen; 190 gw.sdl_index = ifp->if_index; 191 gw.sdl_type = ifp->if_type; 192 if (evt == LLENTRY_RESOLVED) 193 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 194 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 195 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 196 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 197 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 198 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 199 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 200 } 201 202 /* 203 * A handler for interface link layer address change event. 204 */ 205 static void 206 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 207 { 208 209 lltable_update_ifaddr(LLTABLE6(ifp)); 210 } 211 212 void 213 nd6_init(void) 214 { 215 216 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 217 rw_init(&V_nd6_lock, "nd6 list"); 218 219 LIST_INIT(&V_nd_prefix); 220 TAILQ_INIT(&V_nd_defrouter); 221 222 /* Start timers. */ 223 callout_init(&V_nd6_slowtimo_ch, 0); 224 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 225 nd6_slowtimo, curvnet); 226 227 callout_init(&V_nd6_timer_ch, 0); 228 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 229 230 nd6_dad_init(); 231 if (IS_DEFAULT_VNET(curvnet)) { 232 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 233 NULL, EVENTHANDLER_PRI_ANY); 234 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 235 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 236 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 237 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 238 } 239 } 240 241 #ifdef VIMAGE 242 void 243 nd6_destroy() 244 { 245 246 callout_drain(&V_nd6_slowtimo_ch); 247 callout_drain(&V_nd6_timer_ch); 248 if (IS_DEFAULT_VNET(curvnet)) { 249 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 250 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 251 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 252 } 253 rw_destroy(&V_nd6_lock); 254 mtx_destroy(&V_nd6_onlink_mtx); 255 } 256 #endif 257 258 struct nd_ifinfo * 259 nd6_ifattach(struct ifnet *ifp) 260 { 261 struct nd_ifinfo *nd; 262 263 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 264 nd->initialized = 1; 265 266 nd->chlim = IPV6_DEFHLIM; 267 nd->basereachable = REACHABLE_TIME; 268 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 269 nd->retrans = RETRANS_TIMER; 270 271 nd->flags = ND6_IFF_PERFORMNUD; 272 273 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 274 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 275 * default regardless of the V_ip6_auto_linklocal configuration to 276 * give a reasonable default behavior. 277 */ 278 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 279 (ifp->if_flags & IFF_LOOPBACK)) 280 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 281 /* 282 * A loopback interface does not need to accept RTADV. 283 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 284 * default regardless of the V_ip6_accept_rtadv configuration to 285 * prevent the interface from accepting RA messages arrived 286 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 287 */ 288 if (V_ip6_accept_rtadv && 289 !(ifp->if_flags & IFF_LOOPBACK) && 290 (ifp->if_type != IFT_BRIDGE)) 291 nd->flags |= ND6_IFF_ACCEPT_RTADV; 292 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 293 nd->flags |= ND6_IFF_NO_RADR; 294 295 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 296 nd6_setmtu0(ifp, nd); 297 298 return nd; 299 } 300 301 void 302 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 303 { 304 struct epoch_tracker et; 305 struct ifaddr *ifa, *next; 306 307 NET_EPOCH_ENTER(et); 308 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 309 if (ifa->ifa_addr->sa_family != AF_INET6) 310 continue; 311 312 /* stop DAD processing */ 313 nd6_dad_stop(ifa); 314 } 315 NET_EPOCH_EXIT(et); 316 317 free(nd, M_IP6NDP); 318 } 319 320 /* 321 * Reset ND level link MTU. This function is called when the physical MTU 322 * changes, which means we might have to adjust the ND level MTU. 323 */ 324 void 325 nd6_setmtu(struct ifnet *ifp) 326 { 327 if (ifp->if_afdata[AF_INET6] == NULL) 328 return; 329 330 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 331 } 332 333 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 334 void 335 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 336 { 337 u_int32_t omaxmtu; 338 339 omaxmtu = ndi->maxmtu; 340 ndi->maxmtu = ifp->if_mtu; 341 342 /* 343 * Decreasing the interface MTU under IPV6 minimum MTU may cause 344 * undesirable situation. We thus notify the operator of the change 345 * explicitly. The check for omaxmtu is necessary to restrict the 346 * log to the case of changing the MTU, not initializing it. 347 */ 348 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 349 log(LOG_NOTICE, "nd6_setmtu0: " 350 "new link MTU on %s (%lu) is too small for IPv6\n", 351 if_name(ifp), (unsigned long)ndi->maxmtu); 352 } 353 354 if (ndi->maxmtu > V_in6_maxmtu) 355 in6_setmaxmtu(); /* check all interfaces just in case */ 356 357 } 358 359 void 360 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 361 { 362 363 bzero(ndopts, sizeof(*ndopts)); 364 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 365 ndopts->nd_opts_last 366 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 367 368 if (icmp6len == 0) { 369 ndopts->nd_opts_done = 1; 370 ndopts->nd_opts_search = NULL; 371 } 372 } 373 374 /* 375 * Take one ND option. 376 */ 377 struct nd_opt_hdr * 378 nd6_option(union nd_opts *ndopts) 379 { 380 struct nd_opt_hdr *nd_opt; 381 int olen; 382 383 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 384 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 385 __func__)); 386 if (ndopts->nd_opts_search == NULL) 387 return NULL; 388 if (ndopts->nd_opts_done) 389 return NULL; 390 391 nd_opt = ndopts->nd_opts_search; 392 393 /* make sure nd_opt_len is inside the buffer */ 394 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 395 bzero(ndopts, sizeof(*ndopts)); 396 return NULL; 397 } 398 399 olen = nd_opt->nd_opt_len << 3; 400 if (olen == 0) { 401 /* 402 * Message validation requires that all included 403 * options have a length that is greater than zero. 404 */ 405 bzero(ndopts, sizeof(*ndopts)); 406 return NULL; 407 } 408 409 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 410 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 411 /* option overruns the end of buffer, invalid */ 412 bzero(ndopts, sizeof(*ndopts)); 413 return NULL; 414 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 415 /* reached the end of options chain */ 416 ndopts->nd_opts_done = 1; 417 ndopts->nd_opts_search = NULL; 418 } 419 return nd_opt; 420 } 421 422 /* 423 * Parse multiple ND options. 424 * This function is much easier to use, for ND routines that do not need 425 * multiple options of the same type. 426 */ 427 int 428 nd6_options(union nd_opts *ndopts) 429 { 430 struct nd_opt_hdr *nd_opt; 431 int i = 0; 432 433 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 434 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 435 __func__)); 436 if (ndopts->nd_opts_search == NULL) 437 return 0; 438 439 while (1) { 440 nd_opt = nd6_option(ndopts); 441 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 442 /* 443 * Message validation requires that all included 444 * options have a length that is greater than zero. 445 */ 446 ICMP6STAT_INC(icp6s_nd_badopt); 447 bzero(ndopts, sizeof(*ndopts)); 448 return -1; 449 } 450 451 if (nd_opt == NULL) 452 goto skip1; 453 454 switch (nd_opt->nd_opt_type) { 455 case ND_OPT_SOURCE_LINKADDR: 456 case ND_OPT_TARGET_LINKADDR: 457 case ND_OPT_MTU: 458 case ND_OPT_REDIRECTED_HEADER: 459 case ND_OPT_NONCE: 460 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 461 nd6log((LOG_INFO, 462 "duplicated ND6 option found (type=%d)\n", 463 nd_opt->nd_opt_type)); 464 /* XXX bark? */ 465 } else { 466 ndopts->nd_opt_array[nd_opt->nd_opt_type] 467 = nd_opt; 468 } 469 break; 470 case ND_OPT_PREFIX_INFORMATION: 471 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 472 ndopts->nd_opt_array[nd_opt->nd_opt_type] 473 = nd_opt; 474 } 475 ndopts->nd_opts_pi_end = 476 (struct nd_opt_prefix_info *)nd_opt; 477 break; 478 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 479 case ND_OPT_RDNSS: /* RFC 6106 */ 480 case ND_OPT_DNSSL: /* RFC 6106 */ 481 /* 482 * Silently ignore options we know and do not care about 483 * in the kernel. 484 */ 485 break; 486 default: 487 /* 488 * Unknown options must be silently ignored, 489 * to accommodate future extension to the protocol. 490 */ 491 nd6log((LOG_DEBUG, 492 "nd6_options: unsupported option %d - " 493 "option ignored\n", nd_opt->nd_opt_type)); 494 } 495 496 skip1: 497 i++; 498 if (i > V_nd6_maxndopt) { 499 ICMP6STAT_INC(icp6s_nd_toomanyopt); 500 nd6log((LOG_INFO, "too many loop in nd opt\n")); 501 break; 502 } 503 504 if (ndopts->nd_opts_done) 505 break; 506 } 507 508 return 0; 509 } 510 511 /* 512 * ND6 timer routine to handle ND6 entries 513 */ 514 static void 515 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 516 { 517 int canceled; 518 519 LLE_WLOCK_ASSERT(ln); 520 521 if (tick < 0) { 522 ln->la_expire = 0; 523 ln->ln_ntick = 0; 524 canceled = callout_stop(&ln->lle_timer); 525 } else { 526 ln->la_expire = time_uptime + tick / hz; 527 LLE_ADDREF(ln); 528 if (tick > INT_MAX) { 529 ln->ln_ntick = tick - INT_MAX; 530 canceled = callout_reset(&ln->lle_timer, INT_MAX, 531 nd6_llinfo_timer, ln); 532 } else { 533 ln->ln_ntick = 0; 534 canceled = callout_reset(&ln->lle_timer, tick, 535 nd6_llinfo_timer, ln); 536 } 537 } 538 if (canceled > 0) 539 LLE_REMREF(ln); 540 } 541 542 /* 543 * Gets source address of the first packet in hold queue 544 * and stores it in @src. 545 * Returns pointer to @src (if hold queue is not empty) or NULL. 546 * 547 * Set noinline to be dtrace-friendly 548 */ 549 static __noinline struct in6_addr * 550 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 551 { 552 struct ip6_hdr hdr; 553 struct mbuf *m; 554 555 if (ln->la_hold == NULL) 556 return (NULL); 557 558 /* 559 * assume every packet in la_hold has the same IP header 560 */ 561 m = ln->la_hold; 562 if (sizeof(hdr) > m->m_len) 563 return (NULL); 564 565 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 566 *src = hdr.ip6_src; 567 568 return (src); 569 } 570 571 /* 572 * Checks if we need to switch from STALE state. 573 * 574 * RFC 4861 requires switching from STALE to DELAY state 575 * on first packet matching entry, waiting V_nd6_delay and 576 * transition to PROBE state (if upper layer confirmation was 577 * not received). 578 * 579 * This code performs a bit differently: 580 * On packet hit we don't change state (but desired state 581 * can be guessed by control plane). However, after V_nd6_delay 582 * seconds code will transition to PROBE state (so DELAY state 583 * is kinda skipped in most situations). 584 * 585 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 586 * we perform the following upon entering STALE state: 587 * 588 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 589 * if packet was transmitted at the start of given interval, we 590 * would be able to switch to PROBE state in V_nd6_delay seconds 591 * as user expects. 592 * 593 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 594 * lle in STALE state (remaining timer value stored in lle_remtime). 595 * 596 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 597 * seconds ago. 598 * 599 * Returns non-zero value if the entry is still STALE (storing 600 * the next timer interval in @pdelay). 601 * 602 * Returns zero value if original timer expired or we need to switch to 603 * PROBE (store that in @do_switch variable). 604 */ 605 static int 606 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 607 { 608 int nd_delay, nd_gctimer, r_skip_req; 609 time_t lle_hittime; 610 long delay; 611 612 *do_switch = 0; 613 nd_gctimer = V_nd6_gctimer; 614 nd_delay = V_nd6_delay; 615 616 LLE_REQ_LOCK(lle); 617 r_skip_req = lle->r_skip_req; 618 lle_hittime = lle->lle_hittime; 619 LLE_REQ_UNLOCK(lle); 620 621 if (r_skip_req > 0) { 622 623 /* 624 * Nonzero r_skip_req value was set upon entering 625 * STALE state. Since value was not changed, no 626 * packets were passed using this lle. Ask for 627 * timer reschedule and keep STALE state. 628 */ 629 delay = (long)(MIN(nd_gctimer, nd_delay)); 630 delay *= hz; 631 if (lle->lle_remtime > delay) 632 lle->lle_remtime -= delay; 633 else { 634 delay = lle->lle_remtime; 635 lle->lle_remtime = 0; 636 } 637 638 if (delay == 0) { 639 640 /* 641 * The original ng6_gctime timeout ended, 642 * no more rescheduling. 643 */ 644 return (0); 645 } 646 647 *pdelay = delay; 648 return (1); 649 } 650 651 /* 652 * Packet received. Verify timestamp 653 */ 654 delay = (long)(time_uptime - lle_hittime); 655 if (delay < nd_delay) { 656 657 /* 658 * V_nd6_delay still not passed since the first 659 * hit in STALE state. 660 * Reshedule timer and return. 661 */ 662 *pdelay = (long)(nd_delay - delay) * hz; 663 return (1); 664 } 665 666 /* Request switching to probe */ 667 *do_switch = 1; 668 return (0); 669 } 670 671 672 /* 673 * Switch @lle state to new state optionally arming timers. 674 * 675 * Set noinline to be dtrace-friendly 676 */ 677 __noinline void 678 nd6_llinfo_setstate(struct llentry *lle, int newstate) 679 { 680 struct ifnet *ifp; 681 int nd_gctimer, nd_delay; 682 long delay, remtime; 683 684 delay = 0; 685 remtime = 0; 686 687 switch (newstate) { 688 case ND6_LLINFO_INCOMPLETE: 689 ifp = lle->lle_tbl->llt_ifp; 690 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 691 break; 692 case ND6_LLINFO_REACHABLE: 693 if (!ND6_LLINFO_PERMANENT(lle)) { 694 ifp = lle->lle_tbl->llt_ifp; 695 delay = (long)ND_IFINFO(ifp)->reachable * hz; 696 } 697 break; 698 case ND6_LLINFO_STALE: 699 700 /* 701 * Notify fast path that we want to know if any packet 702 * is transmitted by setting r_skip_req. 703 */ 704 LLE_REQ_LOCK(lle); 705 lle->r_skip_req = 1; 706 LLE_REQ_UNLOCK(lle); 707 nd_delay = V_nd6_delay; 708 nd_gctimer = V_nd6_gctimer; 709 710 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 711 remtime = (long)nd_gctimer * hz - delay; 712 break; 713 case ND6_LLINFO_DELAY: 714 lle->la_asked = 0; 715 delay = (long)V_nd6_delay * hz; 716 break; 717 } 718 719 if (delay > 0) 720 nd6_llinfo_settimer_locked(lle, delay); 721 722 lle->lle_remtime = remtime; 723 lle->ln_state = newstate; 724 } 725 726 /* 727 * Timer-dependent part of nd state machine. 728 * 729 * Set noinline to be dtrace-friendly 730 */ 731 static __noinline void 732 nd6_llinfo_timer(void *arg) 733 { 734 struct llentry *ln; 735 struct in6_addr *dst, *pdst, *psrc, src; 736 struct ifnet *ifp; 737 struct nd_ifinfo *ndi; 738 int do_switch, send_ns; 739 long delay; 740 741 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 742 ln = (struct llentry *)arg; 743 ifp = lltable_get_ifp(ln->lle_tbl); 744 CURVNET_SET(ifp->if_vnet); 745 746 ND6_RLOCK(); 747 LLE_WLOCK(ln); 748 if (callout_pending(&ln->lle_timer)) { 749 /* 750 * Here we are a bit odd here in the treatment of 751 * active/pending. If the pending bit is set, it got 752 * rescheduled before I ran. The active 753 * bit we ignore, since if it was stopped 754 * in ll_tablefree() and was currently running 755 * it would have return 0 so the code would 756 * not have deleted it since the callout could 757 * not be stopped so we want to go through 758 * with the delete here now. If the callout 759 * was restarted, the pending bit will be back on and 760 * we just want to bail since the callout_reset would 761 * return 1 and our reference would have been removed 762 * by nd6_llinfo_settimer_locked above since canceled 763 * would have been 1. 764 */ 765 LLE_WUNLOCK(ln); 766 ND6_RUNLOCK(); 767 CURVNET_RESTORE(); 768 return; 769 } 770 ndi = ND_IFINFO(ifp); 771 send_ns = 0; 772 dst = &ln->r_l3addr.addr6; 773 pdst = dst; 774 775 if (ln->ln_ntick > 0) { 776 if (ln->ln_ntick > INT_MAX) { 777 ln->ln_ntick -= INT_MAX; 778 nd6_llinfo_settimer_locked(ln, INT_MAX); 779 } else { 780 ln->ln_ntick = 0; 781 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 782 } 783 goto done; 784 } 785 786 if (ln->la_flags & LLE_STATIC) { 787 goto done; 788 } 789 790 if (ln->la_flags & LLE_DELETED) { 791 nd6_free(&ln, 0); 792 goto done; 793 } 794 795 switch (ln->ln_state) { 796 case ND6_LLINFO_INCOMPLETE: 797 if (ln->la_asked < V_nd6_mmaxtries) { 798 ln->la_asked++; 799 send_ns = 1; 800 /* Send NS to multicast address */ 801 pdst = NULL; 802 } else { 803 struct mbuf *m = ln->la_hold; 804 if (m) { 805 struct mbuf *m0; 806 807 /* 808 * assuming every packet in la_hold has the 809 * same IP header. Send error after unlock. 810 */ 811 m0 = m->m_nextpkt; 812 m->m_nextpkt = NULL; 813 ln->la_hold = m0; 814 clear_llinfo_pqueue(ln); 815 } 816 nd6_free(&ln, 0); 817 if (m != NULL) 818 icmp6_error2(m, ICMP6_DST_UNREACH, 819 ICMP6_DST_UNREACH_ADDR, 0, ifp); 820 } 821 break; 822 case ND6_LLINFO_REACHABLE: 823 if (!ND6_LLINFO_PERMANENT(ln)) 824 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 825 break; 826 827 case ND6_LLINFO_STALE: 828 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 829 830 /* 831 * No packet has used this entry and GC timeout 832 * has not been passed. Reshedule timer and 833 * return. 834 */ 835 nd6_llinfo_settimer_locked(ln, delay); 836 break; 837 } 838 839 if (do_switch == 0) { 840 841 /* 842 * GC timer has ended and entry hasn't been used. 843 * Run Garbage collector (RFC 4861, 5.3) 844 */ 845 if (!ND6_LLINFO_PERMANENT(ln)) 846 nd6_free(&ln, 1); 847 break; 848 } 849 850 /* Entry has been used AND delay timer has ended. */ 851 852 /* FALLTHROUGH */ 853 854 case ND6_LLINFO_DELAY: 855 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 856 /* We need NUD */ 857 ln->la_asked = 1; 858 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 859 send_ns = 1; 860 } else 861 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 862 break; 863 case ND6_LLINFO_PROBE: 864 if (ln->la_asked < V_nd6_umaxtries) { 865 ln->la_asked++; 866 send_ns = 1; 867 } else { 868 nd6_free(&ln, 0); 869 } 870 break; 871 default: 872 panic("%s: paths in a dark night can be confusing: %d", 873 __func__, ln->ln_state); 874 } 875 done: 876 if (ln != NULL) 877 ND6_RUNLOCK(); 878 if (send_ns != 0) { 879 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 880 psrc = nd6_llinfo_get_holdsrc(ln, &src); 881 LLE_FREE_LOCKED(ln); 882 ln = NULL; 883 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 884 } 885 886 if (ln != NULL) 887 LLE_FREE_LOCKED(ln); 888 CURVNET_RESTORE(); 889 } 890 891 892 /* 893 * ND6 timer routine to expire default route list and prefix list 894 */ 895 void 896 nd6_timer(void *arg) 897 { 898 CURVNET_SET((struct vnet *) arg); 899 struct nd_drhead drq; 900 struct nd_prhead prl; 901 struct nd_defrouter *dr, *ndr; 902 struct nd_prefix *pr, *npr; 903 struct ifnet *ifp; 904 struct in6_ifaddr *ia6, *nia6; 905 uint64_t genid; 906 907 TAILQ_INIT(&drq); 908 LIST_INIT(&prl); 909 910 ND6_WLOCK(); 911 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) 912 if (dr->expire && dr->expire < time_uptime) 913 defrouter_unlink(dr, &drq); 914 ND6_WUNLOCK(); 915 916 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 917 TAILQ_REMOVE(&drq, dr, dr_entry); 918 defrouter_del(dr); 919 } 920 921 /* 922 * expire interface addresses. 923 * in the past the loop was inside prefix expiry processing. 924 * However, from a stricter speci-confrmance standpoint, we should 925 * rather separate address lifetimes and prefix lifetimes. 926 * 927 * XXXRW: in6_ifaddrhead locking. 928 */ 929 addrloop: 930 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 931 /* check address lifetime */ 932 if (IFA6_IS_INVALID(ia6)) { 933 int regen = 0; 934 935 /* 936 * If the expiring address is temporary, try 937 * regenerating a new one. This would be useful when 938 * we suspended a laptop PC, then turned it on after a 939 * period that could invalidate all temporary 940 * addresses. Although we may have to restart the 941 * loop (see below), it must be after purging the 942 * address. Otherwise, we'd see an infinite loop of 943 * regeneration. 944 */ 945 if (V_ip6_use_tempaddr && 946 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 947 if (regen_tmpaddr(ia6) == 0) 948 regen = 1; 949 } 950 951 in6_purgeaddr(&ia6->ia_ifa); 952 953 if (regen) 954 goto addrloop; /* XXX: see below */ 955 } else if (IFA6_IS_DEPRECATED(ia6)) { 956 int oldflags = ia6->ia6_flags; 957 958 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 959 960 /* 961 * If a temporary address has just become deprecated, 962 * regenerate a new one if possible. 963 */ 964 if (V_ip6_use_tempaddr && 965 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 966 (oldflags & IN6_IFF_DEPRECATED) == 0) { 967 968 if (regen_tmpaddr(ia6) == 0) { 969 /* 970 * A new temporary address is 971 * generated. 972 * XXX: this means the address chain 973 * has changed while we are still in 974 * the loop. Although the change 975 * would not cause disaster (because 976 * it's not a deletion, but an 977 * addition,) we'd rather restart the 978 * loop just for safety. Or does this 979 * significantly reduce performance?? 980 */ 981 goto addrloop; 982 } 983 } 984 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 985 /* 986 * Schedule DAD for a tentative address. This happens 987 * if the interface was down or not running 988 * when the address was configured. 989 */ 990 int delay; 991 992 delay = arc4random() % 993 (MAX_RTR_SOLICITATION_DELAY * hz); 994 nd6_dad_start((struct ifaddr *)ia6, delay); 995 } else { 996 /* 997 * Check status of the interface. If it is down, 998 * mark the address as tentative for future DAD. 999 */ 1000 ifp = ia6->ia_ifp; 1001 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1002 ((ifp->if_flags & IFF_UP) == 0 || 1003 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1004 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1005 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1006 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1007 } 1008 1009 /* 1010 * A new RA might have made a deprecated address 1011 * preferred. 1012 */ 1013 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1014 } 1015 } 1016 1017 ND6_WLOCK(); 1018 restart: 1019 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1020 /* 1021 * Expire prefixes. Since the pltime is only used for 1022 * autoconfigured addresses, pltime processing for prefixes is 1023 * not necessary. 1024 * 1025 * Only unlink after all derived addresses have expired. This 1026 * may not occur until two hours after the prefix has expired 1027 * per RFC 4862. If the prefix expires before its derived 1028 * addresses, mark it off-link. This will be done automatically 1029 * after unlinking if no address references remain. 1030 */ 1031 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1032 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1033 continue; 1034 1035 if (pr->ndpr_addrcnt == 0) { 1036 nd6_prefix_unlink(pr, &prl); 1037 continue; 1038 } 1039 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1040 genid = V_nd6_list_genid; 1041 nd6_prefix_ref(pr); 1042 ND6_WUNLOCK(); 1043 ND6_ONLINK_LOCK(); 1044 (void)nd6_prefix_offlink(pr); 1045 ND6_ONLINK_UNLOCK(); 1046 ND6_WLOCK(); 1047 nd6_prefix_rele(pr); 1048 if (genid != V_nd6_list_genid) 1049 goto restart; 1050 } 1051 } 1052 ND6_WUNLOCK(); 1053 1054 while ((pr = LIST_FIRST(&prl)) != NULL) { 1055 LIST_REMOVE(pr, ndpr_entry); 1056 nd6_prefix_del(pr); 1057 } 1058 1059 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1060 nd6_timer, curvnet); 1061 1062 CURVNET_RESTORE(); 1063 } 1064 1065 /* 1066 * ia6 - deprecated/invalidated temporary address 1067 */ 1068 static int 1069 regen_tmpaddr(struct in6_ifaddr *ia6) 1070 { 1071 struct epoch_tracker et; 1072 struct ifaddr *ifa; 1073 struct ifnet *ifp; 1074 struct in6_ifaddr *public_ifa6 = NULL; 1075 1076 ifp = ia6->ia_ifa.ifa_ifp; 1077 NET_EPOCH_ENTER(et); 1078 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1079 struct in6_ifaddr *it6; 1080 1081 if (ifa->ifa_addr->sa_family != AF_INET6) 1082 continue; 1083 1084 it6 = (struct in6_ifaddr *)ifa; 1085 1086 /* ignore no autoconf addresses. */ 1087 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1088 continue; 1089 1090 /* ignore autoconf addresses with different prefixes. */ 1091 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1092 continue; 1093 1094 /* 1095 * Now we are looking at an autoconf address with the same 1096 * prefix as ours. If the address is temporary and is still 1097 * preferred, do not create another one. It would be rare, but 1098 * could happen, for example, when we resume a laptop PC after 1099 * a long period. 1100 */ 1101 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1102 !IFA6_IS_DEPRECATED(it6)) { 1103 public_ifa6 = NULL; 1104 break; 1105 } 1106 1107 /* 1108 * This is a public autoconf address that has the same prefix 1109 * as ours. If it is preferred, keep it. We can't break the 1110 * loop here, because there may be a still-preferred temporary 1111 * address with the prefix. 1112 */ 1113 if (!IFA6_IS_DEPRECATED(it6)) 1114 public_ifa6 = it6; 1115 } 1116 if (public_ifa6 != NULL) 1117 ifa_ref(&public_ifa6->ia_ifa); 1118 NET_EPOCH_EXIT(et); 1119 1120 if (public_ifa6 != NULL) { 1121 int e; 1122 1123 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1124 ifa_free(&public_ifa6->ia_ifa); 1125 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1126 " tmp addr,errno=%d\n", e); 1127 return (-1); 1128 } 1129 ifa_free(&public_ifa6->ia_ifa); 1130 return (0); 1131 } 1132 1133 return (-1); 1134 } 1135 1136 /* 1137 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1138 * cache entries are freed in in6_domifdetach(). 1139 */ 1140 void 1141 nd6_purge(struct ifnet *ifp) 1142 { 1143 struct nd_drhead drq; 1144 struct nd_prhead prl; 1145 struct nd_defrouter *dr, *ndr; 1146 struct nd_prefix *pr, *npr; 1147 1148 TAILQ_INIT(&drq); 1149 LIST_INIT(&prl); 1150 1151 /* 1152 * Nuke default router list entries toward ifp. 1153 * We defer removal of default router list entries that is installed 1154 * in the routing table, in order to keep additional side effects as 1155 * small as possible. 1156 */ 1157 ND6_WLOCK(); 1158 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1159 if (dr->installed) 1160 continue; 1161 if (dr->ifp == ifp) 1162 defrouter_unlink(dr, &drq); 1163 } 1164 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1165 if (!dr->installed) 1166 continue; 1167 if (dr->ifp == ifp) 1168 defrouter_unlink(dr, &drq); 1169 } 1170 1171 /* 1172 * Remove prefixes on ifp. We should have already removed addresses on 1173 * this interface, so no addresses should be referencing these prefixes. 1174 */ 1175 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1176 if (pr->ndpr_ifp == ifp) 1177 nd6_prefix_unlink(pr, &prl); 1178 } 1179 ND6_WUNLOCK(); 1180 1181 /* Delete the unlinked router and prefix objects. */ 1182 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1183 TAILQ_REMOVE(&drq, dr, dr_entry); 1184 defrouter_del(dr); 1185 } 1186 while ((pr = LIST_FIRST(&prl)) != NULL) { 1187 LIST_REMOVE(pr, ndpr_entry); 1188 nd6_prefix_del(pr); 1189 } 1190 1191 /* cancel default outgoing interface setting */ 1192 if (V_nd6_defifindex == ifp->if_index) 1193 nd6_setdefaultiface(0); 1194 1195 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1196 /* Refresh default router list. */ 1197 defrouter_select_fib(ifp->if_fib); 1198 } 1199 } 1200 1201 /* 1202 * the caller acquires and releases the lock on the lltbls 1203 * Returns the llentry locked 1204 */ 1205 struct llentry * 1206 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1207 { 1208 struct sockaddr_in6 sin6; 1209 struct llentry *ln; 1210 1211 bzero(&sin6, sizeof(sin6)); 1212 sin6.sin6_len = sizeof(struct sockaddr_in6); 1213 sin6.sin6_family = AF_INET6; 1214 sin6.sin6_addr = *addr6; 1215 1216 IF_AFDATA_LOCK_ASSERT(ifp); 1217 1218 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1219 1220 return (ln); 1221 } 1222 1223 struct llentry * 1224 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1225 { 1226 struct sockaddr_in6 sin6; 1227 struct llentry *ln; 1228 1229 bzero(&sin6, sizeof(sin6)); 1230 sin6.sin6_len = sizeof(struct sockaddr_in6); 1231 sin6.sin6_family = AF_INET6; 1232 sin6.sin6_addr = *addr6; 1233 1234 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1235 if (ln != NULL) 1236 ln->ln_state = ND6_LLINFO_NOSTATE; 1237 1238 return (ln); 1239 } 1240 1241 /* 1242 * Test whether a given IPv6 address is a neighbor or not, ignoring 1243 * the actual neighbor cache. The neighbor cache is ignored in order 1244 * to not reenter the routing code from within itself. 1245 */ 1246 static int 1247 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1248 { 1249 struct nd_prefix *pr; 1250 struct ifaddr *ifa; 1251 struct rt_addrinfo info; 1252 struct sockaddr_in6 rt_key; 1253 const struct sockaddr *dst6; 1254 uint64_t genid; 1255 int error, fibnum; 1256 1257 /* 1258 * A link-local address is always a neighbor. 1259 * XXX: a link does not necessarily specify a single interface. 1260 */ 1261 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1262 struct sockaddr_in6 sin6_copy; 1263 u_int32_t zone; 1264 1265 /* 1266 * We need sin6_copy since sa6_recoverscope() may modify the 1267 * content (XXX). 1268 */ 1269 sin6_copy = *addr; 1270 if (sa6_recoverscope(&sin6_copy)) 1271 return (0); /* XXX: should be impossible */ 1272 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1273 return (0); 1274 if (sin6_copy.sin6_scope_id == zone) 1275 return (1); 1276 else 1277 return (0); 1278 } 1279 1280 bzero(&rt_key, sizeof(rt_key)); 1281 bzero(&info, sizeof(info)); 1282 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1283 1284 /* 1285 * If the address matches one of our addresses, 1286 * it should be a neighbor. 1287 * If the address matches one of our on-link prefixes, it should be a 1288 * neighbor. 1289 */ 1290 ND6_RLOCK(); 1291 restart: 1292 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1293 if (pr->ndpr_ifp != ifp) 1294 continue; 1295 1296 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1297 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1298 1299 /* 1300 * We only need to check all FIBs if add_addr_allfibs 1301 * is unset. If set, checking any FIB will suffice. 1302 */ 1303 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1304 for (; fibnum < rt_numfibs; fibnum++) { 1305 genid = V_nd6_list_genid; 1306 ND6_RUNLOCK(); 1307 1308 /* 1309 * Restore length field before 1310 * retrying lookup 1311 */ 1312 rt_key.sin6_len = sizeof(rt_key); 1313 error = rib_lookup_info(fibnum, dst6, 0, 0, 1314 &info); 1315 1316 ND6_RLOCK(); 1317 if (genid != V_nd6_list_genid) 1318 goto restart; 1319 if (error == 0) 1320 break; 1321 } 1322 if (error != 0) 1323 continue; 1324 1325 /* 1326 * This is the case where multiple interfaces 1327 * have the same prefix, but only one is installed 1328 * into the routing table and that prefix entry 1329 * is not the one being examined here. In the case 1330 * where RADIX_MPATH is enabled, multiple route 1331 * entries (of the same rt_key value) will be 1332 * installed because the interface addresses all 1333 * differ. 1334 */ 1335 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1336 &rt_key.sin6_addr)) 1337 continue; 1338 } 1339 1340 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1341 &addr->sin6_addr, &pr->ndpr_mask)) { 1342 ND6_RUNLOCK(); 1343 return (1); 1344 } 1345 } 1346 ND6_RUNLOCK(); 1347 1348 /* 1349 * If the address is assigned on the node of the other side of 1350 * a p2p interface, the address should be a neighbor. 1351 */ 1352 if (ifp->if_flags & IFF_POINTOPOINT) { 1353 struct epoch_tracker et; 1354 1355 NET_EPOCH_ENTER(et); 1356 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1357 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1358 continue; 1359 if (ifa->ifa_dstaddr != NULL && 1360 sa_equal(addr, ifa->ifa_dstaddr)) { 1361 NET_EPOCH_EXIT(et); 1362 return 1; 1363 } 1364 } 1365 NET_EPOCH_EXIT(et); 1366 } 1367 1368 /* 1369 * If the default router list is empty, all addresses are regarded 1370 * as on-link, and thus, as a neighbor. 1371 */ 1372 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1373 TAILQ_EMPTY(&V_nd_defrouter) && 1374 V_nd6_defifindex == ifp->if_index) { 1375 return (1); 1376 } 1377 1378 return (0); 1379 } 1380 1381 1382 /* 1383 * Detect if a given IPv6 address identifies a neighbor on a given link. 1384 * XXX: should take care of the destination of a p2p link? 1385 */ 1386 int 1387 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1388 { 1389 struct epoch_tracker et; 1390 struct llentry *lle; 1391 int rc = 0; 1392 1393 IF_AFDATA_UNLOCK_ASSERT(ifp); 1394 if (nd6_is_new_addr_neighbor(addr, ifp)) 1395 return (1); 1396 1397 /* 1398 * Even if the address matches none of our addresses, it might be 1399 * in the neighbor cache. 1400 */ 1401 NET_EPOCH_ENTER(et); 1402 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1403 LLE_RUNLOCK(lle); 1404 rc = 1; 1405 } 1406 NET_EPOCH_EXIT(et); 1407 return (rc); 1408 } 1409 1410 /* 1411 * Free an nd6 llinfo entry. 1412 * Since the function would cause significant changes in the kernel, DO NOT 1413 * make it global, unless you have a strong reason for the change, and are sure 1414 * that the change is safe. 1415 * 1416 * Set noinline to be dtrace-friendly 1417 */ 1418 static __noinline void 1419 nd6_free(struct llentry **lnp, int gc) 1420 { 1421 struct ifnet *ifp; 1422 struct llentry *ln; 1423 struct nd_defrouter *dr; 1424 1425 ln = *lnp; 1426 *lnp = NULL; 1427 1428 LLE_WLOCK_ASSERT(ln); 1429 ND6_RLOCK_ASSERT(); 1430 1431 ifp = lltable_get_ifp(ln->lle_tbl); 1432 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1433 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1434 else 1435 dr = NULL; 1436 ND6_RUNLOCK(); 1437 1438 if ((ln->la_flags & LLE_DELETED) == 0) 1439 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1440 1441 /* 1442 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1443 * even though it is not harmful, it was not really necessary. 1444 */ 1445 1446 /* cancel timer */ 1447 nd6_llinfo_settimer_locked(ln, -1); 1448 1449 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1450 if (dr != NULL && dr->expire && 1451 ln->ln_state == ND6_LLINFO_STALE && gc) { 1452 /* 1453 * If the reason for the deletion is just garbage 1454 * collection, and the neighbor is an active default 1455 * router, do not delete it. Instead, reset the GC 1456 * timer using the router's lifetime. 1457 * Simply deleting the entry would affect default 1458 * router selection, which is not necessarily a good 1459 * thing, especially when we're using router preference 1460 * values. 1461 * XXX: the check for ln_state would be redundant, 1462 * but we intentionally keep it just in case. 1463 */ 1464 if (dr->expire > time_uptime) 1465 nd6_llinfo_settimer_locked(ln, 1466 (dr->expire - time_uptime) * hz); 1467 else 1468 nd6_llinfo_settimer_locked(ln, 1469 (long)V_nd6_gctimer * hz); 1470 1471 LLE_REMREF(ln); 1472 LLE_WUNLOCK(ln); 1473 defrouter_rele(dr); 1474 return; 1475 } 1476 1477 if (dr) { 1478 /* 1479 * Unreachablity of a router might affect the default 1480 * router selection and on-link detection of advertised 1481 * prefixes. 1482 */ 1483 1484 /* 1485 * Temporarily fake the state to choose a new default 1486 * router and to perform on-link determination of 1487 * prefixes correctly. 1488 * Below the state will be set correctly, 1489 * or the entry itself will be deleted. 1490 */ 1491 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1492 } 1493 1494 if (ln->ln_router || dr) { 1495 1496 /* 1497 * We need to unlock to avoid a LOR with rt6_flush() with the 1498 * rnh and for the calls to pfxlist_onlink_check() and 1499 * defrouter_select_fib() in the block further down for calls 1500 * into nd6_lookup(). We still hold a ref. 1501 */ 1502 LLE_WUNLOCK(ln); 1503 1504 /* 1505 * rt6_flush must be called whether or not the neighbor 1506 * is in the Default Router List. 1507 * See a corresponding comment in nd6_na_input(). 1508 */ 1509 rt6_flush(&ln->r_l3addr.addr6, ifp); 1510 } 1511 1512 if (dr) { 1513 /* 1514 * Since defrouter_select_fib() does not affect the 1515 * on-link determination and MIP6 needs the check 1516 * before the default router selection, we perform 1517 * the check now. 1518 */ 1519 pfxlist_onlink_check(); 1520 1521 /* 1522 * Refresh default router list. 1523 */ 1524 defrouter_select_fib(dr->ifp->if_fib); 1525 } 1526 1527 /* 1528 * If this entry was added by an on-link redirect, remove the 1529 * corresponding host route. 1530 */ 1531 if (ln->la_flags & LLE_REDIRECT) 1532 nd6_free_redirect(ln); 1533 1534 if (ln->ln_router || dr) 1535 LLE_WLOCK(ln); 1536 } 1537 1538 /* 1539 * Save to unlock. We still hold an extra reference and will not 1540 * free(9) in llentry_free() if someone else holds one as well. 1541 */ 1542 LLE_WUNLOCK(ln); 1543 IF_AFDATA_LOCK(ifp); 1544 LLE_WLOCK(ln); 1545 /* Guard against race with other llentry_free(). */ 1546 if (ln->la_flags & LLE_LINKED) { 1547 /* Remove callout reference */ 1548 LLE_REMREF(ln); 1549 lltable_unlink_entry(ln->lle_tbl, ln); 1550 } 1551 IF_AFDATA_UNLOCK(ifp); 1552 1553 llentry_free(ln); 1554 if (dr != NULL) 1555 defrouter_rele(dr); 1556 } 1557 1558 static int 1559 nd6_isdynrte(const struct rtentry *rt, void *xap) 1560 { 1561 1562 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1563 return (1); 1564 1565 return (0); 1566 } 1567 /* 1568 * Remove the rtentry for the given llentry, 1569 * both of which were installed by a redirect. 1570 */ 1571 static void 1572 nd6_free_redirect(const struct llentry *ln) 1573 { 1574 int fibnum; 1575 struct sockaddr_in6 sin6; 1576 struct rt_addrinfo info; 1577 1578 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1579 memset(&info, 0, sizeof(info)); 1580 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1581 info.rti_filter = nd6_isdynrte; 1582 1583 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1584 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1585 } 1586 1587 /* 1588 * Rejuvenate this function for routing operations related 1589 * processing. 1590 */ 1591 void 1592 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1593 { 1594 struct sockaddr_in6 *gateway; 1595 struct nd_defrouter *dr; 1596 struct ifnet *ifp; 1597 1598 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1599 ifp = rt->rt_ifp; 1600 1601 switch (req) { 1602 case RTM_ADD: 1603 break; 1604 1605 case RTM_DELETE: 1606 if (!ifp) 1607 return; 1608 /* 1609 * Only indirect routes are interesting. 1610 */ 1611 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1612 return; 1613 /* 1614 * check for default route 1615 */ 1616 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1617 &SIN6(rt_key(rt))->sin6_addr)) { 1618 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1619 if (dr != NULL) { 1620 dr->installed = 0; 1621 defrouter_rele(dr); 1622 } 1623 } 1624 break; 1625 } 1626 } 1627 1628 1629 int 1630 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1631 { 1632 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1633 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1634 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1635 struct epoch_tracker et; 1636 int error = 0; 1637 1638 if (ifp->if_afdata[AF_INET6] == NULL) 1639 return (EPFNOSUPPORT); 1640 switch (cmd) { 1641 case OSIOCGIFINFO_IN6: 1642 #define ND ndi->ndi 1643 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1644 bzero(&ND, sizeof(ND)); 1645 ND.linkmtu = IN6_LINKMTU(ifp); 1646 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1647 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1648 ND.reachable = ND_IFINFO(ifp)->reachable; 1649 ND.retrans = ND_IFINFO(ifp)->retrans; 1650 ND.flags = ND_IFINFO(ifp)->flags; 1651 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1652 ND.chlim = ND_IFINFO(ifp)->chlim; 1653 break; 1654 case SIOCGIFINFO_IN6: 1655 ND = *ND_IFINFO(ifp); 1656 break; 1657 case SIOCSIFINFO_IN6: 1658 /* 1659 * used to change host variables from userland. 1660 * intended for a use on router to reflect RA configurations. 1661 */ 1662 /* 0 means 'unspecified' */ 1663 if (ND.linkmtu != 0) { 1664 if (ND.linkmtu < IPV6_MMTU || 1665 ND.linkmtu > IN6_LINKMTU(ifp)) { 1666 error = EINVAL; 1667 break; 1668 } 1669 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1670 } 1671 1672 if (ND.basereachable != 0) { 1673 int obasereachable = ND_IFINFO(ifp)->basereachable; 1674 1675 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1676 if (ND.basereachable != obasereachable) 1677 ND_IFINFO(ifp)->reachable = 1678 ND_COMPUTE_RTIME(ND.basereachable); 1679 } 1680 if (ND.retrans != 0) 1681 ND_IFINFO(ifp)->retrans = ND.retrans; 1682 if (ND.chlim != 0) 1683 ND_IFINFO(ifp)->chlim = ND.chlim; 1684 /* FALLTHROUGH */ 1685 case SIOCSIFINFO_FLAGS: 1686 { 1687 struct ifaddr *ifa; 1688 struct in6_ifaddr *ia; 1689 1690 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1691 !(ND.flags & ND6_IFF_IFDISABLED)) { 1692 /* ifdisabled 1->0 transision */ 1693 1694 /* 1695 * If the interface is marked as ND6_IFF_IFDISABLED and 1696 * has an link-local address with IN6_IFF_DUPLICATED, 1697 * do not clear ND6_IFF_IFDISABLED. 1698 * See RFC 4862, Section 5.4.5. 1699 */ 1700 NET_EPOCH_ENTER(et); 1701 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1702 if (ifa->ifa_addr->sa_family != AF_INET6) 1703 continue; 1704 ia = (struct in6_ifaddr *)ifa; 1705 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1706 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1707 break; 1708 } 1709 NET_EPOCH_EXIT(et); 1710 1711 if (ifa != NULL) { 1712 /* LLA is duplicated. */ 1713 ND.flags |= ND6_IFF_IFDISABLED; 1714 log(LOG_ERR, "Cannot enable an interface" 1715 " with a link-local address marked" 1716 " duplicate.\n"); 1717 } else { 1718 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1719 if (ifp->if_flags & IFF_UP) 1720 in6_if_up(ifp); 1721 } 1722 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1723 (ND.flags & ND6_IFF_IFDISABLED)) { 1724 /* ifdisabled 0->1 transision */ 1725 /* Mark all IPv6 address as tentative. */ 1726 1727 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1728 if (V_ip6_dad_count > 0 && 1729 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1730 NET_EPOCH_ENTER(et); 1731 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1732 ifa_link) { 1733 if (ifa->ifa_addr->sa_family != 1734 AF_INET6) 1735 continue; 1736 ia = (struct in6_ifaddr *)ifa; 1737 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1738 } 1739 NET_EPOCH_EXIT(et); 1740 } 1741 } 1742 1743 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1744 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1745 /* auto_linklocal 0->1 transision */ 1746 1747 /* If no link-local address on ifp, configure */ 1748 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1749 in6_ifattach(ifp, NULL); 1750 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1751 ifp->if_flags & IFF_UP) { 1752 /* 1753 * When the IF already has 1754 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1755 * address is assigned, and IFF_UP, try to 1756 * assign one. 1757 */ 1758 NET_EPOCH_ENTER(et); 1759 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1760 ifa_link) { 1761 if (ifa->ifa_addr->sa_family != 1762 AF_INET6) 1763 continue; 1764 ia = (struct in6_ifaddr *)ifa; 1765 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1766 break; 1767 } 1768 NET_EPOCH_EXIT(et); 1769 if (ifa != NULL) 1770 /* No LLA is configured. */ 1771 in6_ifattach(ifp, NULL); 1772 } 1773 } 1774 } 1775 ND_IFINFO(ifp)->flags = ND.flags; 1776 break; 1777 #undef ND 1778 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1779 /* sync kernel routing table with the default router list */ 1780 defrouter_reset(); 1781 defrouter_select(); 1782 break; 1783 case SIOCSPFXFLUSH_IN6: 1784 { 1785 /* flush all the prefix advertised by routers */ 1786 struct in6_ifaddr *ia, *ia_next; 1787 struct nd_prefix *pr, *next; 1788 struct nd_prhead prl; 1789 1790 LIST_INIT(&prl); 1791 1792 ND6_WLOCK(); 1793 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1794 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1795 continue; /* XXX */ 1796 nd6_prefix_unlink(pr, &prl); 1797 } 1798 ND6_WUNLOCK(); 1799 1800 while ((pr = LIST_FIRST(&prl)) != NULL) { 1801 LIST_REMOVE(pr, ndpr_entry); 1802 /* XXXRW: in6_ifaddrhead locking. */ 1803 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1804 ia_next) { 1805 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1806 continue; 1807 1808 if (ia->ia6_ndpr == pr) 1809 in6_purgeaddr(&ia->ia_ifa); 1810 } 1811 nd6_prefix_del(pr); 1812 } 1813 break; 1814 } 1815 case SIOCSRTRFLUSH_IN6: 1816 { 1817 /* flush all the default routers */ 1818 struct nd_drhead drq; 1819 struct nd_defrouter *dr; 1820 1821 TAILQ_INIT(&drq); 1822 1823 defrouter_reset(); 1824 1825 ND6_WLOCK(); 1826 while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) 1827 defrouter_unlink(dr, &drq); 1828 ND6_WUNLOCK(); 1829 while ((dr = TAILQ_FIRST(&drq)) != NULL) { 1830 TAILQ_REMOVE(&drq, dr, dr_entry); 1831 defrouter_del(dr); 1832 } 1833 1834 defrouter_select(); 1835 break; 1836 } 1837 case SIOCGNBRINFO_IN6: 1838 { 1839 struct llentry *ln; 1840 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1841 1842 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1843 return (error); 1844 1845 NET_EPOCH_ENTER(et); 1846 ln = nd6_lookup(&nb_addr, 0, ifp); 1847 NET_EPOCH_EXIT(et); 1848 1849 if (ln == NULL) { 1850 error = EINVAL; 1851 break; 1852 } 1853 nbi->state = ln->ln_state; 1854 nbi->asked = ln->la_asked; 1855 nbi->isrouter = ln->ln_router; 1856 if (ln->la_expire == 0) 1857 nbi->expire = 0; 1858 else 1859 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1860 (time_second - time_uptime); 1861 LLE_RUNLOCK(ln); 1862 break; 1863 } 1864 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1865 ndif->ifindex = V_nd6_defifindex; 1866 break; 1867 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1868 return (nd6_setdefaultiface(ndif->ifindex)); 1869 } 1870 return (error); 1871 } 1872 1873 /* 1874 * Calculates new isRouter value based on provided parameters and 1875 * returns it. 1876 */ 1877 static int 1878 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1879 int ln_router) 1880 { 1881 1882 /* 1883 * ICMP6 type dependent behavior. 1884 * 1885 * NS: clear IsRouter if new entry 1886 * RS: clear IsRouter 1887 * RA: set IsRouter if there's lladdr 1888 * redir: clear IsRouter if new entry 1889 * 1890 * RA case, (1): 1891 * The spec says that we must set IsRouter in the following cases: 1892 * - If lladdr exist, set IsRouter. This means (1-5). 1893 * - If it is old entry (!newentry), set IsRouter. This means (7). 1894 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1895 * A quetion arises for (1) case. (1) case has no lladdr in the 1896 * neighbor cache, this is similar to (6). 1897 * This case is rare but we figured that we MUST NOT set IsRouter. 1898 * 1899 * is_new old_addr new_addr NS RS RA redir 1900 * D R 1901 * 0 n n (1) c ? s 1902 * 0 y n (2) c s s 1903 * 0 n y (3) c s s 1904 * 0 y y (4) c s s 1905 * 0 y y (5) c s s 1906 * 1 -- n (6) c c c s 1907 * 1 -- y (7) c c s c s 1908 * 1909 * (c=clear s=set) 1910 */ 1911 switch (type & 0xff) { 1912 case ND_NEIGHBOR_SOLICIT: 1913 /* 1914 * New entry must have is_router flag cleared. 1915 */ 1916 if (is_new) /* (6-7) */ 1917 ln_router = 0; 1918 break; 1919 case ND_REDIRECT: 1920 /* 1921 * If the icmp is a redirect to a better router, always set the 1922 * is_router flag. Otherwise, if the entry is newly created, 1923 * clear the flag. [RFC 2461, sec 8.3] 1924 */ 1925 if (code == ND_REDIRECT_ROUTER) 1926 ln_router = 1; 1927 else { 1928 if (is_new) /* (6-7) */ 1929 ln_router = 0; 1930 } 1931 break; 1932 case ND_ROUTER_SOLICIT: 1933 /* 1934 * is_router flag must always be cleared. 1935 */ 1936 ln_router = 0; 1937 break; 1938 case ND_ROUTER_ADVERT: 1939 /* 1940 * Mark an entry with lladdr as a router. 1941 */ 1942 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1943 (is_new && new_addr)) { /* (7) */ 1944 ln_router = 1; 1945 } 1946 break; 1947 } 1948 1949 return (ln_router); 1950 } 1951 1952 /* 1953 * Create neighbor cache entry and cache link-layer address, 1954 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1955 * 1956 * type - ICMP6 type 1957 * code - type dependent information 1958 * 1959 */ 1960 void 1961 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1962 int lladdrlen, int type, int code) 1963 { 1964 struct llentry *ln = NULL, *ln_tmp; 1965 int is_newentry; 1966 int do_update; 1967 int olladdr; 1968 int llchange; 1969 int flags; 1970 uint16_t router = 0; 1971 struct sockaddr_in6 sin6; 1972 struct epoch_tracker et; 1973 struct mbuf *chain = NULL; 1974 u_char linkhdr[LLE_MAX_LINKHDR]; 1975 size_t linkhdrsize; 1976 int lladdr_off; 1977 1978 IF_AFDATA_UNLOCK_ASSERT(ifp); 1979 1980 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1981 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1982 1983 /* nothing must be updated for unspecified address */ 1984 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1985 return; 1986 1987 /* 1988 * Validation about ifp->if_addrlen and lladdrlen must be done in 1989 * the caller. 1990 * 1991 * XXX If the link does not have link-layer adderss, what should 1992 * we do? (ifp->if_addrlen == 0) 1993 * Spec says nothing in sections for RA, RS and NA. There's small 1994 * description on it in NS section (RFC 2461 7.2.3). 1995 */ 1996 flags = lladdr ? LLE_EXCLUSIVE : 0; 1997 NET_EPOCH_ENTER(et); 1998 ln = nd6_lookup(from, flags, ifp); 1999 NET_EPOCH_EXIT(et); 2000 is_newentry = 0; 2001 if (ln == NULL) { 2002 flags |= LLE_EXCLUSIVE; 2003 ln = nd6_alloc(from, 0, ifp); 2004 if (ln == NULL) 2005 return; 2006 2007 /* 2008 * Since we already know all the data for the new entry, 2009 * fill it before insertion. 2010 */ 2011 if (lladdr != NULL) { 2012 linkhdrsize = sizeof(linkhdr); 2013 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2014 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2015 return; 2016 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2017 lladdr_off); 2018 } 2019 2020 IF_AFDATA_WLOCK(ifp); 2021 LLE_WLOCK(ln); 2022 /* Prefer any existing lle over newly-created one */ 2023 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 2024 if (ln_tmp == NULL) 2025 lltable_link_entry(LLTABLE6(ifp), ln); 2026 IF_AFDATA_WUNLOCK(ifp); 2027 if (ln_tmp == NULL) { 2028 /* No existing lle, mark as new entry (6,7) */ 2029 is_newentry = 1; 2030 if (lladdr != NULL) { /* (7) */ 2031 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2032 EVENTHANDLER_INVOKE(lle_event, ln, 2033 LLENTRY_RESOLVED); 2034 } 2035 } else { 2036 lltable_free_entry(LLTABLE6(ifp), ln); 2037 ln = ln_tmp; 2038 ln_tmp = NULL; 2039 } 2040 } 2041 /* do nothing if static ndp is set */ 2042 if ((ln->la_flags & LLE_STATIC)) { 2043 if (flags & LLE_EXCLUSIVE) 2044 LLE_WUNLOCK(ln); 2045 else 2046 LLE_RUNLOCK(ln); 2047 return; 2048 } 2049 2050 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2051 if (olladdr && lladdr) { 2052 llchange = bcmp(lladdr, ln->ll_addr, 2053 ifp->if_addrlen); 2054 } else if (!olladdr && lladdr) 2055 llchange = 1; 2056 else 2057 llchange = 0; 2058 2059 /* 2060 * newentry olladdr lladdr llchange (*=record) 2061 * 0 n n -- (1) 2062 * 0 y n -- (2) 2063 * 0 n y y (3) * STALE 2064 * 0 y y n (4) * 2065 * 0 y y y (5) * STALE 2066 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2067 * 1 -- y -- (7) * STALE 2068 */ 2069 2070 do_update = 0; 2071 if (is_newentry == 0 && llchange != 0) { 2072 do_update = 1; /* (3,5) */ 2073 2074 /* 2075 * Record source link-layer address 2076 * XXX is it dependent to ifp->if_type? 2077 */ 2078 linkhdrsize = sizeof(linkhdr); 2079 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2080 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2081 return; 2082 2083 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2084 lladdr_off) == 0) { 2085 /* Entry was deleted */ 2086 return; 2087 } 2088 2089 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2090 2091 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2092 2093 if (ln->la_hold != NULL) 2094 nd6_grab_holdchain(ln, &chain, &sin6); 2095 } 2096 2097 /* Calculates new router status */ 2098 router = nd6_is_router(type, code, is_newentry, olladdr, 2099 lladdr != NULL ? 1 : 0, ln->ln_router); 2100 2101 ln->ln_router = router; 2102 /* Mark non-router redirects with special flag */ 2103 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2104 ln->la_flags |= LLE_REDIRECT; 2105 2106 if (flags & LLE_EXCLUSIVE) 2107 LLE_WUNLOCK(ln); 2108 else 2109 LLE_RUNLOCK(ln); 2110 2111 if (chain != NULL) 2112 nd6_flush_holdchain(ifp, chain, &sin6); 2113 2114 /* 2115 * When the link-layer address of a router changes, select the 2116 * best router again. In particular, when the neighbor entry is newly 2117 * created, it might affect the selection policy. 2118 * Question: can we restrict the first condition to the "is_newentry" 2119 * case? 2120 * XXX: when we hear an RA from a new router with the link-layer 2121 * address option, defrouter_select_fib() is called twice, since 2122 * defrtrlist_update called the function as well. However, I believe 2123 * we can compromise the overhead, since it only happens the first 2124 * time. 2125 * XXX: although defrouter_select_fib() should not have a bad effect 2126 * for those are not autoconfigured hosts, we explicitly avoid such 2127 * cases for safety. 2128 */ 2129 if ((do_update || is_newentry) && router && 2130 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2131 /* 2132 * guaranteed recursion 2133 */ 2134 defrouter_select_fib(ifp->if_fib); 2135 } 2136 } 2137 2138 static void 2139 nd6_slowtimo(void *arg) 2140 { 2141 struct epoch_tracker et; 2142 CURVNET_SET((struct vnet *) arg); 2143 struct nd_ifinfo *nd6if; 2144 struct ifnet *ifp; 2145 2146 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2147 nd6_slowtimo, curvnet); 2148 NET_EPOCH_ENTER(et); 2149 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2150 if (ifp->if_afdata[AF_INET6] == NULL) 2151 continue; 2152 nd6if = ND_IFINFO(ifp); 2153 if (nd6if->basereachable && /* already initialized */ 2154 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2155 /* 2156 * Since reachable time rarely changes by router 2157 * advertisements, we SHOULD insure that a new random 2158 * value gets recomputed at least once every few hours. 2159 * (RFC 2461, 6.3.4) 2160 */ 2161 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2162 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2163 } 2164 } 2165 NET_EPOCH_EXIT(et); 2166 CURVNET_RESTORE(); 2167 } 2168 2169 void 2170 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2171 struct sockaddr_in6 *sin6) 2172 { 2173 2174 LLE_WLOCK_ASSERT(ln); 2175 2176 *chain = ln->la_hold; 2177 ln->la_hold = NULL; 2178 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2179 2180 if (ln->ln_state == ND6_LLINFO_STALE) { 2181 2182 /* 2183 * The first time we send a packet to a 2184 * neighbor whose entry is STALE, we have 2185 * to change the state to DELAY and a sets 2186 * a timer to expire in DELAY_FIRST_PROBE_TIME 2187 * seconds to ensure do neighbor unreachability 2188 * detection on expiration. 2189 * (RFC 2461 7.3.3) 2190 */ 2191 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2192 } 2193 } 2194 2195 int 2196 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2197 struct sockaddr_in6 *dst, struct route *ro) 2198 { 2199 int error; 2200 int ip6len; 2201 struct ip6_hdr *ip6; 2202 struct m_tag *mtag; 2203 2204 #ifdef MAC 2205 mac_netinet6_nd6_send(ifp, m); 2206 #endif 2207 2208 /* 2209 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2210 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2211 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2212 * to be diverted to user space. When re-injected into the kernel, 2213 * send_output() will directly dispatch them to the outgoing interface. 2214 */ 2215 if (send_sendso_input_hook != NULL) { 2216 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2217 if (mtag != NULL) { 2218 ip6 = mtod(m, struct ip6_hdr *); 2219 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2220 /* Use the SEND socket */ 2221 error = send_sendso_input_hook(m, ifp, SND_OUT, 2222 ip6len); 2223 /* -1 == no app on SEND socket */ 2224 if (error == 0 || error != -1) 2225 return (error); 2226 } 2227 } 2228 2229 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2230 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2231 mtod(m, struct ip6_hdr *)); 2232 2233 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2234 origifp = ifp; 2235 2236 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2237 return (error); 2238 } 2239 2240 /* 2241 * Lookup link headerfor @sa_dst address. Stores found 2242 * data in @desten buffer. Copy of lle ln_flags can be also 2243 * saved in @pflags if @pflags is non-NULL. 2244 * 2245 * If destination LLE does not exists or lle state modification 2246 * is required, call "slow" version. 2247 * 2248 * Return values: 2249 * - 0 on success (address copied to buffer). 2250 * - EWOULDBLOCK (no local error, but address is still unresolved) 2251 * - other errors (alloc failure, etc) 2252 */ 2253 int 2254 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2255 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2256 struct llentry **plle) 2257 { 2258 struct epoch_tracker et; 2259 struct llentry *ln = NULL; 2260 const struct sockaddr_in6 *dst6; 2261 2262 if (pflags != NULL) 2263 *pflags = 0; 2264 2265 dst6 = (const struct sockaddr_in6 *)sa_dst; 2266 2267 /* discard the packet if IPv6 operation is disabled on the interface */ 2268 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2269 m_freem(m); 2270 return (ENETDOWN); /* better error? */ 2271 } 2272 2273 if (m != NULL && m->m_flags & M_MCAST) { 2274 switch (ifp->if_type) { 2275 case IFT_ETHER: 2276 case IFT_L2VLAN: 2277 case IFT_BRIDGE: 2278 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2279 desten); 2280 return (0); 2281 default: 2282 m_freem(m); 2283 return (EAFNOSUPPORT); 2284 } 2285 } 2286 2287 NET_EPOCH_ENTER(et); 2288 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2289 ifp); 2290 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2291 /* Entry found, let's copy lle info */ 2292 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2293 if (pflags != NULL) 2294 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2295 /* Check if we have feedback request from nd6 timer */ 2296 if (ln->r_skip_req != 0) { 2297 LLE_REQ_LOCK(ln); 2298 ln->r_skip_req = 0; /* Notify that entry was used */ 2299 ln->lle_hittime = time_uptime; 2300 LLE_REQ_UNLOCK(ln); 2301 } 2302 if (plle) { 2303 LLE_ADDREF(ln); 2304 *plle = ln; 2305 LLE_WUNLOCK(ln); 2306 } 2307 NET_EPOCH_EXIT(et); 2308 return (0); 2309 } else if (plle && ln) 2310 LLE_WUNLOCK(ln); 2311 NET_EPOCH_EXIT(et); 2312 2313 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2314 } 2315 2316 2317 /* 2318 * Do L2 address resolution for @sa_dst address. Stores found 2319 * address in @desten buffer. Copy of lle ln_flags can be also 2320 * saved in @pflags if @pflags is non-NULL. 2321 * 2322 * Heavy version. 2323 * Function assume that destination LLE does not exist, 2324 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2325 * 2326 * Set noinline to be dtrace-friendly 2327 */ 2328 static __noinline int 2329 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2330 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2331 struct llentry **plle) 2332 { 2333 struct llentry *lle = NULL, *lle_tmp; 2334 struct in6_addr *psrc, src; 2335 int send_ns, ll_len; 2336 char *lladdr; 2337 2338 /* 2339 * Address resolution or Neighbor Unreachability Detection 2340 * for the next hop. 2341 * At this point, the destination of the packet must be a unicast 2342 * or an anycast address(i.e. not a multicast). 2343 */ 2344 if (lle == NULL) { 2345 struct epoch_tracker et; 2346 2347 NET_EPOCH_ENTER(et); 2348 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2349 NET_EPOCH_EXIT(et); 2350 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2351 /* 2352 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2353 * the condition below is not very efficient. But we believe 2354 * it is tolerable, because this should be a rare case. 2355 */ 2356 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2357 if (lle == NULL) { 2358 char ip6buf[INET6_ADDRSTRLEN]; 2359 log(LOG_DEBUG, 2360 "nd6_output: can't allocate llinfo for %s " 2361 "(ln=%p)\n", 2362 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2363 m_freem(m); 2364 return (ENOBUFS); 2365 } 2366 2367 IF_AFDATA_WLOCK(ifp); 2368 LLE_WLOCK(lle); 2369 /* Prefer any existing entry over newly-created one */ 2370 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2371 if (lle_tmp == NULL) 2372 lltable_link_entry(LLTABLE6(ifp), lle); 2373 IF_AFDATA_WUNLOCK(ifp); 2374 if (lle_tmp != NULL) { 2375 lltable_free_entry(LLTABLE6(ifp), lle); 2376 lle = lle_tmp; 2377 lle_tmp = NULL; 2378 } 2379 } 2380 } 2381 if (lle == NULL) { 2382 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2383 m_freem(m); 2384 return (ENOBUFS); 2385 } 2386 2387 if (m != NULL) 2388 m_freem(m); 2389 return (ENOBUFS); 2390 } 2391 2392 LLE_WLOCK_ASSERT(lle); 2393 2394 /* 2395 * The first time we send a packet to a neighbor whose entry is 2396 * STALE, we have to change the state to DELAY and a sets a timer to 2397 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2398 * neighbor unreachability detection on expiration. 2399 * (RFC 2461 7.3.3) 2400 */ 2401 if (lle->ln_state == ND6_LLINFO_STALE) 2402 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2403 2404 /* 2405 * If the neighbor cache entry has a state other than INCOMPLETE 2406 * (i.e. its link-layer address is already resolved), just 2407 * send the packet. 2408 */ 2409 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2410 if (flags & LLE_ADDRONLY) { 2411 lladdr = lle->ll_addr; 2412 ll_len = ifp->if_addrlen; 2413 } else { 2414 lladdr = lle->r_linkdata; 2415 ll_len = lle->r_hdrlen; 2416 } 2417 bcopy(lladdr, desten, ll_len); 2418 if (pflags != NULL) 2419 *pflags = lle->la_flags; 2420 if (plle) { 2421 LLE_ADDREF(lle); 2422 *plle = lle; 2423 } 2424 LLE_WUNLOCK(lle); 2425 return (0); 2426 } 2427 2428 /* 2429 * There is a neighbor cache entry, but no ethernet address 2430 * response yet. Append this latest packet to the end of the 2431 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2432 * the oldest packet in the queue will be removed. 2433 */ 2434 2435 if (lle->la_hold != NULL) { 2436 struct mbuf *m_hold; 2437 int i; 2438 2439 i = 0; 2440 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2441 i++; 2442 if (m_hold->m_nextpkt == NULL) { 2443 m_hold->m_nextpkt = m; 2444 break; 2445 } 2446 } 2447 while (i >= V_nd6_maxqueuelen) { 2448 m_hold = lle->la_hold; 2449 lle->la_hold = lle->la_hold->m_nextpkt; 2450 m_freem(m_hold); 2451 i--; 2452 } 2453 } else { 2454 lle->la_hold = m; 2455 } 2456 2457 /* 2458 * If there has been no NS for the neighbor after entering the 2459 * INCOMPLETE state, send the first solicitation. 2460 * Note that for newly-created lle la_asked will be 0, 2461 * so we will transition from ND6_LLINFO_NOSTATE to 2462 * ND6_LLINFO_INCOMPLETE state here. 2463 */ 2464 psrc = NULL; 2465 send_ns = 0; 2466 if (lle->la_asked == 0) { 2467 lle->la_asked++; 2468 send_ns = 1; 2469 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2470 2471 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2472 } 2473 LLE_WUNLOCK(lle); 2474 if (send_ns != 0) 2475 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2476 2477 return (EWOULDBLOCK); 2478 } 2479 2480 /* 2481 * Do L2 address resolution for @sa_dst address. Stores found 2482 * address in @desten buffer. Copy of lle ln_flags can be also 2483 * saved in @pflags if @pflags is non-NULL. 2484 * 2485 * Return values: 2486 * - 0 on success (address copied to buffer). 2487 * - EWOULDBLOCK (no local error, but address is still unresolved) 2488 * - other errors (alloc failure, etc) 2489 */ 2490 int 2491 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2492 char *desten, uint32_t *pflags) 2493 { 2494 int error; 2495 2496 flags |= LLE_ADDRONLY; 2497 error = nd6_resolve_slow(ifp, flags, NULL, 2498 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2499 return (error); 2500 } 2501 2502 int 2503 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2504 struct sockaddr_in6 *dst) 2505 { 2506 struct mbuf *m, *m_head; 2507 int error = 0; 2508 2509 m_head = chain; 2510 2511 while (m_head) { 2512 m = m_head; 2513 m_head = m_head->m_nextpkt; 2514 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2515 } 2516 2517 /* 2518 * XXX 2519 * note that intermediate errors are blindly ignored 2520 */ 2521 return (error); 2522 } 2523 2524 static int 2525 nd6_need_cache(struct ifnet *ifp) 2526 { 2527 /* 2528 * XXX: we currently do not make neighbor cache on any interface 2529 * other than Ethernet and GIF. 2530 * 2531 * RFC2893 says: 2532 * - unidirectional tunnels needs no ND 2533 */ 2534 switch (ifp->if_type) { 2535 case IFT_ETHER: 2536 case IFT_IEEE1394: 2537 case IFT_L2VLAN: 2538 case IFT_INFINIBAND: 2539 case IFT_BRIDGE: 2540 case IFT_PROPVIRTUAL: 2541 return (1); 2542 default: 2543 return (0); 2544 } 2545 } 2546 2547 /* 2548 * Add pernament ND6 link-layer record for given 2549 * interface address. 2550 * 2551 * Very similar to IPv4 arp_ifinit(), but: 2552 * 1) IPv6 DAD is performed in different place 2553 * 2) It is called by IPv6 protocol stack in contrast to 2554 * arp_ifinit() which is typically called in SIOCSIFADDR 2555 * driver ioctl handler. 2556 * 2557 */ 2558 int 2559 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2560 { 2561 struct ifnet *ifp; 2562 struct llentry *ln, *ln_tmp; 2563 struct sockaddr *dst; 2564 2565 ifp = ia->ia_ifa.ifa_ifp; 2566 if (nd6_need_cache(ifp) == 0) 2567 return (0); 2568 2569 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2570 dst = (struct sockaddr *)&ia->ia_addr; 2571 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2572 if (ln == NULL) 2573 return (ENOBUFS); 2574 2575 IF_AFDATA_WLOCK(ifp); 2576 LLE_WLOCK(ln); 2577 /* Unlink any entry if exists */ 2578 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2579 if (ln_tmp != NULL) 2580 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2581 lltable_link_entry(LLTABLE6(ifp), ln); 2582 IF_AFDATA_WUNLOCK(ifp); 2583 2584 if (ln_tmp != NULL) 2585 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2586 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2587 2588 LLE_WUNLOCK(ln); 2589 if (ln_tmp != NULL) 2590 llentry_free(ln_tmp); 2591 2592 return (0); 2593 } 2594 2595 /* 2596 * Removes either all lle entries for given @ia, or lle 2597 * corresponding to @ia address. 2598 */ 2599 void 2600 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2601 { 2602 struct sockaddr_in6 mask, addr; 2603 struct sockaddr *saddr, *smask; 2604 struct ifnet *ifp; 2605 2606 ifp = ia->ia_ifa.ifa_ifp; 2607 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2608 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2609 saddr = (struct sockaddr *)&addr; 2610 smask = (struct sockaddr *)&mask; 2611 2612 if (all != 0) 2613 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2614 else 2615 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2616 } 2617 2618 static void 2619 clear_llinfo_pqueue(struct llentry *ln) 2620 { 2621 struct mbuf *m_hold, *m_hold_next; 2622 2623 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2624 m_hold_next = m_hold->m_nextpkt; 2625 m_freem(m_hold); 2626 } 2627 2628 ln->la_hold = NULL; 2629 } 2630 2631 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2632 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2633 2634 SYSCTL_DECL(_net_inet6_icmp6); 2635 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2636 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2637 NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", 2638 "NDP default router list"); 2639 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2640 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2641 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2642 "NDP prefix list"); 2643 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2644 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2645 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2646 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2647 2648 static int 2649 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2650 { 2651 struct in6_defrouter d; 2652 struct nd_defrouter *dr; 2653 int error; 2654 2655 if (req->newptr != NULL) 2656 return (EPERM); 2657 2658 error = sysctl_wire_old_buffer(req, 0); 2659 if (error != 0) 2660 return (error); 2661 2662 bzero(&d, sizeof(d)); 2663 d.rtaddr.sin6_family = AF_INET6; 2664 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2665 2666 ND6_RLOCK(); 2667 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2668 d.rtaddr.sin6_addr = dr->rtaddr; 2669 error = sa6_recoverscope(&d.rtaddr); 2670 if (error != 0) 2671 break; 2672 d.flags = dr->raflags; 2673 d.rtlifetime = dr->rtlifetime; 2674 d.expire = dr->expire + (time_second - time_uptime); 2675 d.if_index = dr->ifp->if_index; 2676 error = SYSCTL_OUT(req, &d, sizeof(d)); 2677 if (error != 0) 2678 break; 2679 } 2680 ND6_RUNLOCK(); 2681 return (error); 2682 } 2683 2684 static int 2685 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2686 { 2687 struct in6_prefix p; 2688 struct sockaddr_in6 s6; 2689 struct nd_prefix *pr; 2690 struct nd_pfxrouter *pfr; 2691 time_t maxexpire; 2692 int error; 2693 char ip6buf[INET6_ADDRSTRLEN]; 2694 2695 if (req->newptr) 2696 return (EPERM); 2697 2698 error = sysctl_wire_old_buffer(req, 0); 2699 if (error != 0) 2700 return (error); 2701 2702 bzero(&p, sizeof(p)); 2703 p.origin = PR_ORIG_RA; 2704 bzero(&s6, sizeof(s6)); 2705 s6.sin6_family = AF_INET6; 2706 s6.sin6_len = sizeof(s6); 2707 2708 ND6_RLOCK(); 2709 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2710 p.prefix = pr->ndpr_prefix; 2711 if (sa6_recoverscope(&p.prefix)) { 2712 log(LOG_ERR, "scope error in prefix list (%s)\n", 2713 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2714 /* XXX: press on... */ 2715 } 2716 p.raflags = pr->ndpr_raf; 2717 p.prefixlen = pr->ndpr_plen; 2718 p.vltime = pr->ndpr_vltime; 2719 p.pltime = pr->ndpr_pltime; 2720 p.if_index = pr->ndpr_ifp->if_index; 2721 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2722 p.expire = 0; 2723 else { 2724 /* XXX: we assume time_t is signed. */ 2725 maxexpire = (-1) & 2726 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2727 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2728 p.expire = pr->ndpr_lastupdate + 2729 pr->ndpr_vltime + 2730 (time_second - time_uptime); 2731 else 2732 p.expire = maxexpire; 2733 } 2734 p.refcnt = pr->ndpr_addrcnt; 2735 p.flags = pr->ndpr_stateflags; 2736 p.advrtrs = 0; 2737 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2738 p.advrtrs++; 2739 error = SYSCTL_OUT(req, &p, sizeof(p)); 2740 if (error != 0) 2741 break; 2742 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2743 s6.sin6_addr = pfr->router->rtaddr; 2744 if (sa6_recoverscope(&s6)) 2745 log(LOG_ERR, 2746 "scope error in prefix list (%s)\n", 2747 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2748 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2749 if (error != 0) 2750 goto out; 2751 } 2752 } 2753 out: 2754 ND6_RUNLOCK(); 2755 return (error); 2756 } 2757