xref: /freebsd/sys/netinet6/nd6.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the project nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_inet.h"
36 #include "opt_inet6.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50 #include <sys/lock.h>
51 #include <sys/rwlock.h>
52 #include <sys/queue.h>
53 #include <sys/sdt.h>
54 #include <sys/sysctl.h>
55 
56 #include <net/if.h>
57 #include <net/if_var.h>
58 #include <net/if_arc.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/iso88025.h>
62 #include <net/fddi.h>
63 #include <net/route.h>
64 #include <net/vnet.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_kdtrace.h>
68 #include <net/if_llatbl.h>
69 #define	L3_ADDR_SIN6(le)	((struct sockaddr_in6 *) L3_ADDR(le))
70 #include <netinet/if_ether.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet/ip6.h>
73 #include <netinet6/ip6_var.h>
74 #include <netinet6/scope6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet6/in6_ifattach.h>
77 #include <netinet/icmp6.h>
78 #include <netinet6/send.h>
79 
80 #include <sys/limits.h>
81 
82 #include <security/mac/mac_framework.h>
83 
84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
86 
87 #define SIN6(s) ((const struct sockaddr_in6 *)(s))
88 
89 /* timer values */
90 VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
91 VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
92 VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
93 VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
94 VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
95 					 * local traffic */
96 VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
97 					 * collection timer */
98 
99 /* preventing too many loops in ND option parsing */
100 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
101 
102 VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
103 					 * layer hints */
104 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
105 					 * ND entries */
106 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
107 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
108 
109 #ifdef ND6_DEBUG
110 VNET_DEFINE(int, nd6_debug) = 1;
111 #else
112 VNET_DEFINE(int, nd6_debug) = 0;
113 #endif
114 
115 /* for debugging? */
116 #if 0
117 static int nd6_inuse, nd6_allocated;
118 #endif
119 
120 VNET_DEFINE(struct nd_drhead, nd_defrouter);
121 VNET_DEFINE(struct nd_prhead, nd_prefix);
122 
123 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
124 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
125 
126 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
127 
128 static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *,
129 	struct ifnet *);
130 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
131 static void nd6_slowtimo(void *);
132 static int regen_tmpaddr(struct in6_ifaddr *);
133 static struct llentry *nd6_free(struct llentry *, int);
134 static void nd6_llinfo_timer(void *);
135 static void clear_llinfo_pqueue(struct llentry *);
136 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
137 
138 static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
139 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
140 
141 VNET_DEFINE(struct callout, nd6_timer_ch);
142 
143 void
144 nd6_init(void)
145 {
146 
147 	LIST_INIT(&V_nd_prefix);
148 
149 	/* initialization of the default router list */
150 	TAILQ_INIT(&V_nd_defrouter);
151 
152 	/* start timer */
153 	callout_init(&V_nd6_slowtimo_ch, 0);
154 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
155 	    nd6_slowtimo, curvnet);
156 }
157 
158 #ifdef VIMAGE
159 void
160 nd6_destroy()
161 {
162 
163 	callout_drain(&V_nd6_slowtimo_ch);
164 	callout_drain(&V_nd6_timer_ch);
165 }
166 #endif
167 
168 struct nd_ifinfo *
169 nd6_ifattach(struct ifnet *ifp)
170 {
171 	struct nd_ifinfo *nd;
172 
173 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
174 	nd->initialized = 1;
175 
176 	nd->chlim = IPV6_DEFHLIM;
177 	nd->basereachable = REACHABLE_TIME;
178 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
179 	nd->retrans = RETRANS_TIMER;
180 
181 	nd->flags = ND6_IFF_PERFORMNUD;
182 
183 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
184 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
185 	 * default regardless of the V_ip6_auto_linklocal configuration to
186 	 * give a reasonable default behavior.
187 	 */
188 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
189 	    (ifp->if_flags & IFF_LOOPBACK))
190 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
191 	/*
192 	 * A loopback interface does not need to accept RTADV.
193 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
194 	 * default regardless of the V_ip6_accept_rtadv configuration to
195 	 * prevent the interface from accepting RA messages arrived
196 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
197 	 */
198 	if (V_ip6_accept_rtadv &&
199 	    !(ifp->if_flags & IFF_LOOPBACK) &&
200 	    (ifp->if_type != IFT_BRIDGE))
201 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
202 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
203 		nd->flags |= ND6_IFF_NO_RADR;
204 
205 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
206 	nd6_setmtu0(ifp, nd);
207 
208 	return nd;
209 }
210 
211 void
212 nd6_ifdetach(struct nd_ifinfo *nd)
213 {
214 
215 	free(nd, M_IP6NDP);
216 }
217 
218 /*
219  * Reset ND level link MTU. This function is called when the physical MTU
220  * changes, which means we might have to adjust the ND level MTU.
221  */
222 void
223 nd6_setmtu(struct ifnet *ifp)
224 {
225 
226 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
227 }
228 
229 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
230 void
231 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
232 {
233 	u_int32_t omaxmtu;
234 
235 	omaxmtu = ndi->maxmtu;
236 
237 	switch (ifp->if_type) {
238 	case IFT_ARCNET:
239 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
240 		break;
241 	case IFT_FDDI:
242 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
243 		break;
244 	case IFT_ISO88025:
245 		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
246 		 break;
247 	default:
248 		ndi->maxmtu = ifp->if_mtu;
249 		break;
250 	}
251 
252 	/*
253 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
254 	 * undesirable situation.  We thus notify the operator of the change
255 	 * explicitly.  The check for omaxmtu is necessary to restrict the
256 	 * log to the case of changing the MTU, not initializing it.
257 	 */
258 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
259 		log(LOG_NOTICE, "nd6_setmtu0: "
260 		    "new link MTU on %s (%lu) is too small for IPv6\n",
261 		    if_name(ifp), (unsigned long)ndi->maxmtu);
262 	}
263 
264 	if (ndi->maxmtu > V_in6_maxmtu)
265 		in6_setmaxmtu(); /* check all interfaces just in case */
266 
267 }
268 
269 void
270 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
271 {
272 
273 	bzero(ndopts, sizeof(*ndopts));
274 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
275 	ndopts->nd_opts_last
276 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
277 
278 	if (icmp6len == 0) {
279 		ndopts->nd_opts_done = 1;
280 		ndopts->nd_opts_search = NULL;
281 	}
282 }
283 
284 /*
285  * Take one ND option.
286  */
287 struct nd_opt_hdr *
288 nd6_option(union nd_opts *ndopts)
289 {
290 	struct nd_opt_hdr *nd_opt;
291 	int olen;
292 
293 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
294 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
295 	    __func__));
296 	if (ndopts->nd_opts_search == NULL)
297 		return NULL;
298 	if (ndopts->nd_opts_done)
299 		return NULL;
300 
301 	nd_opt = ndopts->nd_opts_search;
302 
303 	/* make sure nd_opt_len is inside the buffer */
304 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
305 		bzero(ndopts, sizeof(*ndopts));
306 		return NULL;
307 	}
308 
309 	olen = nd_opt->nd_opt_len << 3;
310 	if (olen == 0) {
311 		/*
312 		 * Message validation requires that all included
313 		 * options have a length that is greater than zero.
314 		 */
315 		bzero(ndopts, sizeof(*ndopts));
316 		return NULL;
317 	}
318 
319 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
320 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
321 		/* option overruns the end of buffer, invalid */
322 		bzero(ndopts, sizeof(*ndopts));
323 		return NULL;
324 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
325 		/* reached the end of options chain */
326 		ndopts->nd_opts_done = 1;
327 		ndopts->nd_opts_search = NULL;
328 	}
329 	return nd_opt;
330 }
331 
332 /*
333  * Parse multiple ND options.
334  * This function is much easier to use, for ND routines that do not need
335  * multiple options of the same type.
336  */
337 int
338 nd6_options(union nd_opts *ndopts)
339 {
340 	struct nd_opt_hdr *nd_opt;
341 	int i = 0;
342 
343 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
344 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
345 	    __func__));
346 	if (ndopts->nd_opts_search == NULL)
347 		return 0;
348 
349 	while (1) {
350 		nd_opt = nd6_option(ndopts);
351 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
352 			/*
353 			 * Message validation requires that all included
354 			 * options have a length that is greater than zero.
355 			 */
356 			ICMP6STAT_INC(icp6s_nd_badopt);
357 			bzero(ndopts, sizeof(*ndopts));
358 			return -1;
359 		}
360 
361 		if (nd_opt == NULL)
362 			goto skip1;
363 
364 		switch (nd_opt->nd_opt_type) {
365 		case ND_OPT_SOURCE_LINKADDR:
366 		case ND_OPT_TARGET_LINKADDR:
367 		case ND_OPT_MTU:
368 		case ND_OPT_REDIRECTED_HEADER:
369 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
370 				nd6log((LOG_INFO,
371 				    "duplicated ND6 option found (type=%d)\n",
372 				    nd_opt->nd_opt_type));
373 				/* XXX bark? */
374 			} else {
375 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
376 					= nd_opt;
377 			}
378 			break;
379 		case ND_OPT_PREFIX_INFORMATION:
380 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
381 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
382 					= nd_opt;
383 			}
384 			ndopts->nd_opts_pi_end =
385 				(struct nd_opt_prefix_info *)nd_opt;
386 			break;
387 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
388 		case ND_OPT_RDNSS:	/* RFC 6106 */
389 		case ND_OPT_DNSSL:	/* RFC 6106 */
390 			/*
391 			 * Silently ignore options we know and do not care about
392 			 * in the kernel.
393 			 */
394 			break;
395 		default:
396 			/*
397 			 * Unknown options must be silently ignored,
398 			 * to accomodate future extension to the protocol.
399 			 */
400 			nd6log((LOG_DEBUG,
401 			    "nd6_options: unsupported option %d - "
402 			    "option ignored\n", nd_opt->nd_opt_type));
403 		}
404 
405 skip1:
406 		i++;
407 		if (i > V_nd6_maxndopt) {
408 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
409 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
410 			break;
411 		}
412 
413 		if (ndopts->nd_opts_done)
414 			break;
415 	}
416 
417 	return 0;
418 }
419 
420 /*
421  * ND6 timer routine to handle ND6 entries
422  */
423 void
424 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
425 {
426 	int canceled;
427 
428 	LLE_WLOCK_ASSERT(ln);
429 
430 	if (tick < 0) {
431 		ln->la_expire = 0;
432 		ln->ln_ntick = 0;
433 		canceled = callout_stop(&ln->ln_timer_ch);
434 	} else {
435 		ln->la_expire = time_uptime + tick / hz;
436 		LLE_ADDREF(ln);
437 		if (tick > INT_MAX) {
438 			ln->ln_ntick = tick - INT_MAX;
439 			canceled = callout_reset(&ln->ln_timer_ch, INT_MAX,
440 			    nd6_llinfo_timer, ln);
441 		} else {
442 			ln->ln_ntick = 0;
443 			canceled = callout_reset(&ln->ln_timer_ch, tick,
444 			    nd6_llinfo_timer, ln);
445 		}
446 	}
447 	if (canceled)
448 		LLE_REMREF(ln);
449 }
450 
451 void
452 nd6_llinfo_settimer(struct llentry *ln, long tick)
453 {
454 
455 	LLE_WLOCK(ln);
456 	nd6_llinfo_settimer_locked(ln, tick);
457 	LLE_WUNLOCK(ln);
458 }
459 
460 static void
461 nd6_llinfo_timer(void *arg)
462 {
463 	struct llentry *ln;
464 	struct in6_addr *dst;
465 	struct ifnet *ifp;
466 	struct nd_ifinfo *ndi = NULL;
467 
468 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
469 	ln = (struct llentry *)arg;
470 	LLE_WLOCK_ASSERT(ln);
471 	ifp = ln->lle_tbl->llt_ifp;
472 
473 	CURVNET_SET(ifp->if_vnet);
474 
475 	if (ln->ln_ntick > 0) {
476 		if (ln->ln_ntick > INT_MAX) {
477 			ln->ln_ntick -= INT_MAX;
478 			nd6_llinfo_settimer_locked(ln, INT_MAX);
479 		} else {
480 			ln->ln_ntick = 0;
481 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
482 		}
483 		goto done;
484 	}
485 
486 	ndi = ND_IFINFO(ifp);
487 	dst = &L3_ADDR_SIN6(ln)->sin6_addr;
488 	if (ln->la_flags & LLE_STATIC) {
489 		goto done;
490 	}
491 
492 	if (ln->la_flags & LLE_DELETED) {
493 		(void)nd6_free(ln, 0);
494 		ln = NULL;
495 		goto done;
496 	}
497 
498 	switch (ln->ln_state) {
499 	case ND6_LLINFO_INCOMPLETE:
500 		if (ln->la_asked < V_nd6_mmaxtries) {
501 			ln->la_asked++;
502 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
503 			LLE_WUNLOCK(ln);
504 			nd6_ns_output(ifp, NULL, dst, ln, 0);
505 			LLE_WLOCK(ln);
506 		} else {
507 			struct mbuf *m = ln->la_hold;
508 			if (m) {
509 				struct mbuf *m0;
510 
511 				/*
512 				 * assuming every packet in la_hold has the
513 				 * same IP header.  Send error after unlock.
514 				 */
515 				m0 = m->m_nextpkt;
516 				m->m_nextpkt = NULL;
517 				ln->la_hold = m0;
518 				clear_llinfo_pqueue(ln);
519 			}
520 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT);
521 			(void)nd6_free(ln, 0);
522 			ln = NULL;
523 			if (m != NULL)
524 				icmp6_error2(m, ICMP6_DST_UNREACH,
525 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
526 		}
527 		break;
528 	case ND6_LLINFO_REACHABLE:
529 		if (!ND6_LLINFO_PERMANENT(ln)) {
530 			ln->ln_state = ND6_LLINFO_STALE;
531 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
532 		}
533 		break;
534 
535 	case ND6_LLINFO_STALE:
536 		/* Garbage Collection(RFC 2461 5.3) */
537 		if (!ND6_LLINFO_PERMANENT(ln)) {
538 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
539 			(void)nd6_free(ln, 1);
540 			ln = NULL;
541 		}
542 		break;
543 
544 	case ND6_LLINFO_DELAY:
545 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
546 			/* We need NUD */
547 			ln->la_asked = 1;
548 			ln->ln_state = ND6_LLINFO_PROBE;
549 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
550 			LLE_WUNLOCK(ln);
551 			nd6_ns_output(ifp, dst, dst, ln, 0);
552 			LLE_WLOCK(ln);
553 		} else {
554 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
555 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
556 		}
557 		break;
558 	case ND6_LLINFO_PROBE:
559 		if (ln->la_asked < V_nd6_umaxtries) {
560 			ln->la_asked++;
561 			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
562 			LLE_WUNLOCK(ln);
563 			nd6_ns_output(ifp, dst, dst, ln, 0);
564 			LLE_WLOCK(ln);
565 		} else {
566 			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
567 			(void)nd6_free(ln, 0);
568 			ln = NULL;
569 		}
570 		break;
571 	default:
572 		panic("%s: paths in a dark night can be confusing: %d",
573 		    __func__, ln->ln_state);
574 	}
575 done:
576 	if (ln != NULL)
577 		LLE_FREE_LOCKED(ln);
578 	CURVNET_RESTORE();
579 }
580 
581 
582 /*
583  * ND6 timer routine to expire default route list and prefix list
584  */
585 void
586 nd6_timer(void *arg)
587 {
588 	CURVNET_SET((struct vnet *) arg);
589 	struct nd_defrouter *dr, *ndr;
590 	struct nd_prefix *pr, *npr;
591 	struct in6_ifaddr *ia6, *nia6;
592 
593 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
594 	    nd6_timer, curvnet);
595 
596 	/* expire default router list */
597 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
598 		if (dr->expire && dr->expire < time_uptime)
599 			defrtrlist_del(dr);
600 	}
601 
602 	/*
603 	 * expire interface addresses.
604 	 * in the past the loop was inside prefix expiry processing.
605 	 * However, from a stricter speci-confrmance standpoint, we should
606 	 * rather separate address lifetimes and prefix lifetimes.
607 	 *
608 	 * XXXRW: in6_ifaddrhead locking.
609 	 */
610   addrloop:
611 	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
612 		/* check address lifetime */
613 		if (IFA6_IS_INVALID(ia6)) {
614 			int regen = 0;
615 
616 			/*
617 			 * If the expiring address is temporary, try
618 			 * regenerating a new one.  This would be useful when
619 			 * we suspended a laptop PC, then turned it on after a
620 			 * period that could invalidate all temporary
621 			 * addresses.  Although we may have to restart the
622 			 * loop (see below), it must be after purging the
623 			 * address.  Otherwise, we'd see an infinite loop of
624 			 * regeneration.
625 			 */
626 			if (V_ip6_use_tempaddr &&
627 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
628 				if (regen_tmpaddr(ia6) == 0)
629 					regen = 1;
630 			}
631 
632 			in6_purgeaddr(&ia6->ia_ifa);
633 
634 			if (regen)
635 				goto addrloop; /* XXX: see below */
636 		} else if (IFA6_IS_DEPRECATED(ia6)) {
637 			int oldflags = ia6->ia6_flags;
638 
639 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
640 
641 			/*
642 			 * If a temporary address has just become deprecated,
643 			 * regenerate a new one if possible.
644 			 */
645 			if (V_ip6_use_tempaddr &&
646 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
647 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
648 
649 				if (regen_tmpaddr(ia6) == 0) {
650 					/*
651 					 * A new temporary address is
652 					 * generated.
653 					 * XXX: this means the address chain
654 					 * has changed while we are still in
655 					 * the loop.  Although the change
656 					 * would not cause disaster (because
657 					 * it's not a deletion, but an
658 					 * addition,) we'd rather restart the
659 					 * loop just for safety.  Or does this
660 					 * significantly reduce performance??
661 					 */
662 					goto addrloop;
663 				}
664 			}
665 		} else {
666 			/*
667 			 * A new RA might have made a deprecated address
668 			 * preferred.
669 			 */
670 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
671 		}
672 	}
673 
674 	/* expire prefix list */
675 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
676 		/*
677 		 * check prefix lifetime.
678 		 * since pltime is just for autoconf, pltime processing for
679 		 * prefix is not necessary.
680 		 */
681 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
682 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
683 
684 			/*
685 			 * address expiration and prefix expiration are
686 			 * separate.  NEVER perform in6_purgeaddr here.
687 			 */
688 			prelist_remove(pr);
689 		}
690 	}
691 	CURVNET_RESTORE();
692 }
693 
694 /*
695  * ia6 - deprecated/invalidated temporary address
696  */
697 static int
698 regen_tmpaddr(struct in6_ifaddr *ia6)
699 {
700 	struct ifaddr *ifa;
701 	struct ifnet *ifp;
702 	struct in6_ifaddr *public_ifa6 = NULL;
703 
704 	ifp = ia6->ia_ifa.ifa_ifp;
705 	IF_ADDR_RLOCK(ifp);
706 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
707 		struct in6_ifaddr *it6;
708 
709 		if (ifa->ifa_addr->sa_family != AF_INET6)
710 			continue;
711 
712 		it6 = (struct in6_ifaddr *)ifa;
713 
714 		/* ignore no autoconf addresses. */
715 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
716 			continue;
717 
718 		/* ignore autoconf addresses with different prefixes. */
719 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
720 			continue;
721 
722 		/*
723 		 * Now we are looking at an autoconf address with the same
724 		 * prefix as ours.  If the address is temporary and is still
725 		 * preferred, do not create another one.  It would be rare, but
726 		 * could happen, for example, when we resume a laptop PC after
727 		 * a long period.
728 		 */
729 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
730 		    !IFA6_IS_DEPRECATED(it6)) {
731 			public_ifa6 = NULL;
732 			break;
733 		}
734 
735 		/*
736 		 * This is a public autoconf address that has the same prefix
737 		 * as ours.  If it is preferred, keep it.  We can't break the
738 		 * loop here, because there may be a still-preferred temporary
739 		 * address with the prefix.
740 		 */
741 		if (!IFA6_IS_DEPRECATED(it6))
742 		    public_ifa6 = it6;
743 
744 		if (public_ifa6 != NULL)
745 			ifa_ref(&public_ifa6->ia_ifa);
746 	}
747 	IF_ADDR_RUNLOCK(ifp);
748 
749 	if (public_ifa6 != NULL) {
750 		int e;
751 
752 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
753 			ifa_free(&public_ifa6->ia_ifa);
754 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
755 			    " tmp addr,errno=%d\n", e);
756 			return (-1);
757 		}
758 		ifa_free(&public_ifa6->ia_ifa);
759 		return (0);
760 	}
761 
762 	return (-1);
763 }
764 
765 /*
766  * Nuke neighbor cache/prefix/default router management table, right before
767  * ifp goes away.
768  */
769 void
770 nd6_purge(struct ifnet *ifp)
771 {
772 	struct nd_defrouter *dr, *ndr;
773 	struct nd_prefix *pr, *npr;
774 
775 	/*
776 	 * Nuke default router list entries toward ifp.
777 	 * We defer removal of default router list entries that is installed
778 	 * in the routing table, in order to keep additional side effects as
779 	 * small as possible.
780 	 */
781 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
782 		if (dr->installed)
783 			continue;
784 
785 		if (dr->ifp == ifp)
786 			defrtrlist_del(dr);
787 	}
788 
789 	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
790 		if (!dr->installed)
791 			continue;
792 
793 		if (dr->ifp == ifp)
794 			defrtrlist_del(dr);
795 	}
796 
797 	/* Nuke prefix list entries toward ifp */
798 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
799 		if (pr->ndpr_ifp == ifp) {
800 			/*
801 			 * Because if_detach() does *not* release prefixes
802 			 * while purging addresses the reference count will
803 			 * still be above zero. We therefore reset it to
804 			 * make sure that the prefix really gets purged.
805 			 */
806 			pr->ndpr_refcnt = 0;
807 
808 			/*
809 			 * Previously, pr->ndpr_addr is removed as well,
810 			 * but I strongly believe we don't have to do it.
811 			 * nd6_purge() is only called from in6_ifdetach(),
812 			 * which removes all the associated interface addresses
813 			 * by itself.
814 			 * (jinmei@kame.net 20010129)
815 			 */
816 			prelist_remove(pr);
817 		}
818 	}
819 
820 	/* cancel default outgoing interface setting */
821 	if (V_nd6_defifindex == ifp->if_index)
822 		nd6_setdefaultiface(0);
823 
824 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
825 		/* Refresh default router list. */
826 		defrouter_select();
827 	}
828 
829 	/* XXXXX
830 	 * We do not nuke the neighbor cache entries here any more
831 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
832 	 * nd6_purge() is invoked by in6_ifdetach() which is called
833 	 * from if_detach() where everything gets purged. So let
834 	 * in6_domifdetach() do the actual L2 table purging work.
835 	 */
836 }
837 
838 /*
839  * the caller acquires and releases the lock on the lltbls
840  * Returns the llentry locked
841  */
842 struct llentry *
843 nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp)
844 {
845 	struct sockaddr_in6 sin6;
846 	struct llentry *ln;
847 	int llflags;
848 
849 	bzero(&sin6, sizeof(sin6));
850 	sin6.sin6_len = sizeof(struct sockaddr_in6);
851 	sin6.sin6_family = AF_INET6;
852 	sin6.sin6_addr = *addr6;
853 
854 	IF_AFDATA_LOCK_ASSERT(ifp);
855 
856 	llflags = 0;
857 	if (flags & ND6_CREATE)
858 	    llflags |= LLE_CREATE;
859 	if (flags & ND6_EXCLUSIVE)
860 	    llflags |= LLE_EXCLUSIVE;
861 
862 	ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6);
863 	if ((ln != NULL) && (llflags & LLE_CREATE))
864 		ln->ln_state = ND6_LLINFO_NOSTATE;
865 
866 	return (ln);
867 }
868 
869 /*
870  * Test whether a given IPv6 address is a neighbor or not, ignoring
871  * the actual neighbor cache.  The neighbor cache is ignored in order
872  * to not reenter the routing code from within itself.
873  */
874 static int
875 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
876 {
877 	struct nd_prefix *pr;
878 	struct ifaddr *dstaddr;
879 
880 	/*
881 	 * A link-local address is always a neighbor.
882 	 * XXX: a link does not necessarily specify a single interface.
883 	 */
884 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
885 		struct sockaddr_in6 sin6_copy;
886 		u_int32_t zone;
887 
888 		/*
889 		 * We need sin6_copy since sa6_recoverscope() may modify the
890 		 * content (XXX).
891 		 */
892 		sin6_copy = *addr;
893 		if (sa6_recoverscope(&sin6_copy))
894 			return (0); /* XXX: should be impossible */
895 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
896 			return (0);
897 		if (sin6_copy.sin6_scope_id == zone)
898 			return (1);
899 		else
900 			return (0);
901 	}
902 
903 	/*
904 	 * If the address matches one of our addresses,
905 	 * it should be a neighbor.
906 	 * If the address matches one of our on-link prefixes, it should be a
907 	 * neighbor.
908 	 */
909 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
910 		if (pr->ndpr_ifp != ifp)
911 			continue;
912 
913 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
914 			struct rtentry *rt;
915 
916 			/* Always use the default FIB here. */
917 			rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix,
918 			    0, 0, RT_DEFAULT_FIB);
919 			if (rt == NULL)
920 				continue;
921 			/*
922 			 * This is the case where multiple interfaces
923 			 * have the same prefix, but only one is installed
924 			 * into the routing table and that prefix entry
925 			 * is not the one being examined here. In the case
926 			 * where RADIX_MPATH is enabled, multiple route
927 			 * entries (of the same rt_key value) will be
928 			 * installed because the interface addresses all
929 			 * differ.
930 			 */
931 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
932 			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
933 				RTFREE_LOCKED(rt);
934 				continue;
935 			}
936 			RTFREE_LOCKED(rt);
937 		}
938 
939 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
940 		    &addr->sin6_addr, &pr->ndpr_mask))
941 			return (1);
942 	}
943 
944 	/*
945 	 * If the address is assigned on the node of the other side of
946 	 * a p2p interface, the address should be a neighbor.
947 	 */
948 	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr, RT_ALL_FIBS);
949 	if (dstaddr != NULL) {
950 		if (dstaddr->ifa_ifp == ifp) {
951 			ifa_free(dstaddr);
952 			return (1);
953 		}
954 		ifa_free(dstaddr);
955 	}
956 
957 	/*
958 	 * If the default router list is empty, all addresses are regarded
959 	 * as on-link, and thus, as a neighbor.
960 	 */
961 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
962 	    TAILQ_EMPTY(&V_nd_defrouter) &&
963 	    V_nd6_defifindex == ifp->if_index) {
964 		return (1);
965 	}
966 
967 	return (0);
968 }
969 
970 
971 /*
972  * Detect if a given IPv6 address identifies a neighbor on a given link.
973  * XXX: should take care of the destination of a p2p link?
974  */
975 int
976 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
977 {
978 	struct llentry *lle;
979 	int rc = 0;
980 
981 	IF_AFDATA_UNLOCK_ASSERT(ifp);
982 	if (nd6_is_new_addr_neighbor(addr, ifp))
983 		return (1);
984 
985 	/*
986 	 * Even if the address matches none of our addresses, it might be
987 	 * in the neighbor cache.
988 	 */
989 	IF_AFDATA_RLOCK(ifp);
990 	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
991 		LLE_RUNLOCK(lle);
992 		rc = 1;
993 	}
994 	IF_AFDATA_RUNLOCK(ifp);
995 	return (rc);
996 }
997 
998 /*
999  * Free an nd6 llinfo entry.
1000  * Since the function would cause significant changes in the kernel, DO NOT
1001  * make it global, unless you have a strong reason for the change, and are sure
1002  * that the change is safe.
1003  */
1004 static struct llentry *
1005 nd6_free(struct llentry *ln, int gc)
1006 {
1007         struct llentry *next;
1008 	struct nd_defrouter *dr;
1009 	struct ifnet *ifp;
1010 
1011 	LLE_WLOCK_ASSERT(ln);
1012 
1013 	/*
1014 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1015 	 * even though it is not harmful, it was not really necessary.
1016 	 */
1017 
1018 	/* cancel timer */
1019 	nd6_llinfo_settimer_locked(ln, -1);
1020 
1021 	ifp = ln->lle_tbl->llt_ifp;
1022 
1023 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1024 		dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1025 
1026 		if (dr != NULL && dr->expire &&
1027 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1028 			/*
1029 			 * If the reason for the deletion is just garbage
1030 			 * collection, and the neighbor is an active default
1031 			 * router, do not delete it.  Instead, reset the GC
1032 			 * timer using the router's lifetime.
1033 			 * Simply deleting the entry would affect default
1034 			 * router selection, which is not necessarily a good
1035 			 * thing, especially when we're using router preference
1036 			 * values.
1037 			 * XXX: the check for ln_state would be redundant,
1038 			 *      but we intentionally keep it just in case.
1039 			 */
1040 			if (dr->expire > time_uptime)
1041 				nd6_llinfo_settimer_locked(ln,
1042 				    (dr->expire - time_uptime) * hz);
1043 			else
1044 				nd6_llinfo_settimer_locked(ln,
1045 				    (long)V_nd6_gctimer * hz);
1046 
1047 			next = LIST_NEXT(ln, lle_next);
1048 			LLE_REMREF(ln);
1049 			LLE_WUNLOCK(ln);
1050 			return (next);
1051 		}
1052 
1053 		if (dr) {
1054 			/*
1055 			 * Unreachablity of a router might affect the default
1056 			 * router selection and on-link detection of advertised
1057 			 * prefixes.
1058 			 */
1059 
1060 			/*
1061 			 * Temporarily fake the state to choose a new default
1062 			 * router and to perform on-link determination of
1063 			 * prefixes correctly.
1064 			 * Below the state will be set correctly,
1065 			 * or the entry itself will be deleted.
1066 			 */
1067 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1068 		}
1069 
1070 		if (ln->ln_router || dr) {
1071 
1072 			/*
1073 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1074 			 * rnh and for the calls to pfxlist_onlink_check() and
1075 			 * defrouter_select() in the block further down for calls
1076 			 * into nd6_lookup().  We still hold a ref.
1077 			 */
1078 			LLE_WUNLOCK(ln);
1079 
1080 			/*
1081 			 * rt6_flush must be called whether or not the neighbor
1082 			 * is in the Default Router List.
1083 			 * See a corresponding comment in nd6_na_input().
1084 			 */
1085 			rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1086 		}
1087 
1088 		if (dr) {
1089 			/*
1090 			 * Since defrouter_select() does not affect the
1091 			 * on-link determination and MIP6 needs the check
1092 			 * before the default router selection, we perform
1093 			 * the check now.
1094 			 */
1095 			pfxlist_onlink_check();
1096 
1097 			/*
1098 			 * Refresh default router list.
1099 			 */
1100 			defrouter_select();
1101 		}
1102 
1103 		if (ln->ln_router || dr)
1104 			LLE_WLOCK(ln);
1105 	}
1106 
1107 	/*
1108 	 * Before deleting the entry, remember the next entry as the
1109 	 * return value.  We need this because pfxlist_onlink_check() above
1110 	 * might have freed other entries (particularly the old next entry) as
1111 	 * a side effect (XXX).
1112 	 */
1113 	next = LIST_NEXT(ln, lle_next);
1114 
1115 	/*
1116 	 * Save to unlock. We still hold an extra reference and will not
1117 	 * free(9) in llentry_free() if someone else holds one as well.
1118 	 */
1119 	LLE_WUNLOCK(ln);
1120 	IF_AFDATA_LOCK(ifp);
1121 	LLE_WLOCK(ln);
1122 
1123 	/* Guard against race with other llentry_free(). */
1124 	if (ln->la_flags & LLE_LINKED) {
1125 		LLE_REMREF(ln);
1126 		llentry_free(ln);
1127 	} else
1128 		LLE_FREE_LOCKED(ln);
1129 
1130 	IF_AFDATA_UNLOCK(ifp);
1131 
1132 	return (next);
1133 }
1134 
1135 /*
1136  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1137  *
1138  * XXX cost-effective methods?
1139  */
1140 void
1141 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1142 {
1143 	struct llentry *ln;
1144 	struct ifnet *ifp;
1145 
1146 	if ((dst6 == NULL) || (rt == NULL))
1147 		return;
1148 
1149 	ifp = rt->rt_ifp;
1150 	IF_AFDATA_RLOCK(ifp);
1151 	ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL);
1152 	IF_AFDATA_RUNLOCK(ifp);
1153 	if (ln == NULL)
1154 		return;
1155 
1156 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1157 		goto done;
1158 
1159 	/*
1160 	 * if we get upper-layer reachability confirmation many times,
1161 	 * it is possible we have false information.
1162 	 */
1163 	if (!force) {
1164 		ln->ln_byhint++;
1165 		if (ln->ln_byhint > V_nd6_maxnudhint) {
1166 			goto done;
1167 		}
1168 	}
1169 
1170  	ln->ln_state = ND6_LLINFO_REACHABLE;
1171 	if (!ND6_LLINFO_PERMANENT(ln)) {
1172 		nd6_llinfo_settimer_locked(ln,
1173 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1174 	}
1175 done:
1176 	LLE_WUNLOCK(ln);
1177 }
1178 
1179 
1180 /*
1181  * Rejuvenate this function for routing operations related
1182  * processing.
1183  */
1184 void
1185 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1186 {
1187 	struct sockaddr_in6 *gateway;
1188 	struct nd_defrouter *dr;
1189 	struct ifnet *ifp;
1190 
1191 	RT_LOCK_ASSERT(rt);
1192 	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1193 	ifp = rt->rt_ifp;
1194 
1195 	switch (req) {
1196 	case RTM_ADD:
1197 		break;
1198 
1199 	case RTM_DELETE:
1200 		if (!ifp)
1201 			return;
1202 		/*
1203 		 * Only indirect routes are interesting.
1204 		 */
1205 		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1206 			return;
1207 		/*
1208 		 * check for default route
1209 		 */
1210 		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1211 				       &SIN6(rt_key(rt))->sin6_addr)) {
1212 
1213 			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1214 			if (dr != NULL)
1215 				dr->installed = 0;
1216 		}
1217 		break;
1218 	}
1219 }
1220 
1221 
1222 int
1223 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1224 {
1225 	struct in6_drlist *drl = (struct in6_drlist *)data;
1226 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1227 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1228 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1229 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1230 	struct nd_defrouter *dr;
1231 	struct nd_prefix *pr;
1232 	int i = 0, error = 0;
1233 
1234 	if (ifp->if_afdata[AF_INET6] == NULL)
1235 		return (EPFNOSUPPORT);
1236 	switch (cmd) {
1237 	case SIOCGDRLST_IN6:
1238 		/*
1239 		 * obsolete API, use sysctl under net.inet6.icmp6
1240 		 */
1241 		bzero(drl, sizeof(*drl));
1242 		TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
1243 			if (i >= DRLSTSIZ)
1244 				break;
1245 			drl->defrouter[i].rtaddr = dr->rtaddr;
1246 			in6_clearscope(&drl->defrouter[i].rtaddr);
1247 
1248 			drl->defrouter[i].flags = dr->flags;
1249 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1250 			drl->defrouter[i].expire = dr->expire +
1251 			    (time_second - time_uptime);
1252 			drl->defrouter[i].if_index = dr->ifp->if_index;
1253 			i++;
1254 		}
1255 		break;
1256 	case SIOCGPRLST_IN6:
1257 		/*
1258 		 * obsolete API, use sysctl under net.inet6.icmp6
1259 		 *
1260 		 * XXX the structure in6_prlist was changed in backward-
1261 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1262 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1263 		 */
1264 		/*
1265 		 * XXX meaning of fields, especialy "raflags", is very
1266 		 * differnet between RA prefix list and RR/static prefix list.
1267 		 * how about separating ioctls into two?
1268 		 */
1269 		bzero(oprl, sizeof(*oprl));
1270 		LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1271 			struct nd_pfxrouter *pfr;
1272 			int j;
1273 
1274 			if (i >= PRLSTSIZ)
1275 				break;
1276 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1277 			oprl->prefix[i].raflags = pr->ndpr_raf;
1278 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1279 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1280 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1281 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1282 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1283 				oprl->prefix[i].expire = 0;
1284 			else {
1285 				time_t maxexpire;
1286 
1287 				/* XXX: we assume time_t is signed. */
1288 				maxexpire = (-1) &
1289 				    ~((time_t)1 <<
1290 				    ((sizeof(maxexpire) * 8) - 1));
1291 				if (pr->ndpr_vltime <
1292 				    maxexpire - pr->ndpr_lastupdate) {
1293 					oprl->prefix[i].expire =
1294 					    pr->ndpr_lastupdate +
1295 					    pr->ndpr_vltime +
1296 					    (time_second - time_uptime);
1297 				} else
1298 					oprl->prefix[i].expire = maxexpire;
1299 			}
1300 
1301 			j = 0;
1302 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1303 				if (j < DRLSTSIZ) {
1304 #define RTRADDR oprl->prefix[i].advrtr[j]
1305 					RTRADDR = pfr->router->rtaddr;
1306 					in6_clearscope(&RTRADDR);
1307 #undef RTRADDR
1308 				}
1309 				j++;
1310 			}
1311 			oprl->prefix[i].advrtrs = j;
1312 			oprl->prefix[i].origin = PR_ORIG_RA;
1313 
1314 			i++;
1315 		}
1316 
1317 		break;
1318 	case OSIOCGIFINFO_IN6:
1319 #define ND	ndi->ndi
1320 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1321 		bzero(&ND, sizeof(ND));
1322 		ND.linkmtu = IN6_LINKMTU(ifp);
1323 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1324 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1325 		ND.reachable = ND_IFINFO(ifp)->reachable;
1326 		ND.retrans = ND_IFINFO(ifp)->retrans;
1327 		ND.flags = ND_IFINFO(ifp)->flags;
1328 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1329 		ND.chlim = ND_IFINFO(ifp)->chlim;
1330 		break;
1331 	case SIOCGIFINFO_IN6:
1332 		ND = *ND_IFINFO(ifp);
1333 		break;
1334 	case SIOCSIFINFO_IN6:
1335 		/*
1336 		 * used to change host variables from userland.
1337 		 * intented for a use on router to reflect RA configurations.
1338 		 */
1339 		/* 0 means 'unspecified' */
1340 		if (ND.linkmtu != 0) {
1341 			if (ND.linkmtu < IPV6_MMTU ||
1342 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1343 				error = EINVAL;
1344 				break;
1345 			}
1346 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1347 		}
1348 
1349 		if (ND.basereachable != 0) {
1350 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1351 
1352 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1353 			if (ND.basereachable != obasereachable)
1354 				ND_IFINFO(ifp)->reachable =
1355 				    ND_COMPUTE_RTIME(ND.basereachable);
1356 		}
1357 		if (ND.retrans != 0)
1358 			ND_IFINFO(ifp)->retrans = ND.retrans;
1359 		if (ND.chlim != 0)
1360 			ND_IFINFO(ifp)->chlim = ND.chlim;
1361 		/* FALLTHROUGH */
1362 	case SIOCSIFINFO_FLAGS:
1363 	{
1364 		struct ifaddr *ifa;
1365 		struct in6_ifaddr *ia;
1366 
1367 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1368 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1369 			/* ifdisabled 1->0 transision */
1370 
1371 			/*
1372 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1373 			 * has an link-local address with IN6_IFF_DUPLICATED,
1374 			 * do not clear ND6_IFF_IFDISABLED.
1375 			 * See RFC 4862, Section 5.4.5.
1376 			 */
1377 			int duplicated_linklocal = 0;
1378 
1379 			IF_ADDR_RLOCK(ifp);
1380 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1381 				if (ifa->ifa_addr->sa_family != AF_INET6)
1382 					continue;
1383 				ia = (struct in6_ifaddr *)ifa;
1384 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1385 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) {
1386 					duplicated_linklocal = 1;
1387 					break;
1388 				}
1389 			}
1390 			IF_ADDR_RUNLOCK(ifp);
1391 
1392 			if (duplicated_linklocal) {
1393 				ND.flags |= ND6_IFF_IFDISABLED;
1394 				log(LOG_ERR, "Cannot enable an interface"
1395 				    " with a link-local address marked"
1396 				    " duplicate.\n");
1397 			} else {
1398 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1399 				if (ifp->if_flags & IFF_UP)
1400 					in6_if_up(ifp);
1401 			}
1402 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1403 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1404 			/* ifdisabled 0->1 transision */
1405 			/* Mark all IPv6 address as tentative. */
1406 
1407 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1408 			IF_ADDR_RLOCK(ifp);
1409 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1410 				if (ifa->ifa_addr->sa_family != AF_INET6)
1411 					continue;
1412 				ia = (struct in6_ifaddr *)ifa;
1413 				ia->ia6_flags |= IN6_IFF_TENTATIVE;
1414 			}
1415 			IF_ADDR_RUNLOCK(ifp);
1416 		}
1417 
1418 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1419 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1420 				/* auto_linklocal 0->1 transision */
1421 
1422 				/* If no link-local address on ifp, configure */
1423 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1424 				in6_ifattach(ifp, NULL);
1425 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1426 			    ifp->if_flags & IFF_UP) {
1427 				/*
1428 				 * When the IF already has
1429 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1430 				 * address is assigned, and IFF_UP, try to
1431 				 * assign one.
1432 				 */
1433 				int haslinklocal = 0;
1434 
1435 				IF_ADDR_RLOCK(ifp);
1436 				TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1437 					if (ifa->ifa_addr->sa_family != AF_INET6)
1438 						continue;
1439 					ia = (struct in6_ifaddr *)ifa;
1440 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) {
1441 						haslinklocal = 1;
1442 						break;
1443 					}
1444 				}
1445 				IF_ADDR_RUNLOCK(ifp);
1446 				if (!haslinklocal)
1447 					in6_ifattach(ifp, NULL);
1448 			}
1449 		}
1450 	}
1451 		ND_IFINFO(ifp)->flags = ND.flags;
1452 		break;
1453 #undef ND
1454 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1455 		/* sync kernel routing table with the default router list */
1456 		defrouter_reset();
1457 		defrouter_select();
1458 		break;
1459 	case SIOCSPFXFLUSH_IN6:
1460 	{
1461 		/* flush all the prefix advertised by routers */
1462 		struct nd_prefix *pr, *next;
1463 
1464 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1465 			struct in6_ifaddr *ia, *ia_next;
1466 
1467 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1468 				continue; /* XXX */
1469 
1470 			/* do we really have to remove addresses as well? */
1471 			/* XXXRW: in6_ifaddrhead locking. */
1472 			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1473 			    ia_next) {
1474 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1475 					continue;
1476 
1477 				if (ia->ia6_ndpr == pr)
1478 					in6_purgeaddr(&ia->ia_ifa);
1479 			}
1480 			prelist_remove(pr);
1481 		}
1482 		break;
1483 	}
1484 	case SIOCSRTRFLUSH_IN6:
1485 	{
1486 		/* flush all the default routers */
1487 		struct nd_defrouter *dr, *next;
1488 
1489 		defrouter_reset();
1490 		TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) {
1491 			defrtrlist_del(dr);
1492 		}
1493 		defrouter_select();
1494 		break;
1495 	}
1496 	case SIOCGNBRINFO_IN6:
1497 	{
1498 		struct llentry *ln;
1499 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1500 
1501 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1502 			return (error);
1503 
1504 		IF_AFDATA_RLOCK(ifp);
1505 		ln = nd6_lookup(&nb_addr, 0, ifp);
1506 		IF_AFDATA_RUNLOCK(ifp);
1507 
1508 		if (ln == NULL) {
1509 			error = EINVAL;
1510 			break;
1511 		}
1512 		nbi->state = ln->ln_state;
1513 		nbi->asked = ln->la_asked;
1514 		nbi->isrouter = ln->ln_router;
1515 		if (ln->la_expire == 0)
1516 			nbi->expire = 0;
1517 		else
1518 			nbi->expire = ln->la_expire +
1519 			    (time_second - time_uptime);
1520 		LLE_RUNLOCK(ln);
1521 		break;
1522 	}
1523 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1524 		ndif->ifindex = V_nd6_defifindex;
1525 		break;
1526 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1527 		return (nd6_setdefaultiface(ndif->ifindex));
1528 	}
1529 	return (error);
1530 }
1531 
1532 /*
1533  * Create neighbor cache entry and cache link-layer address,
1534  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1535  *
1536  * type - ICMP6 type
1537  * code - type dependent information
1538  *
1539  * XXXXX
1540  *  The caller of this function already acquired the ndp
1541  *  cache table lock because the cache entry is returned.
1542  */
1543 struct llentry *
1544 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1545     int lladdrlen, int type, int code)
1546 {
1547 	struct llentry *ln = NULL;
1548 	int is_newentry;
1549 	int do_update;
1550 	int olladdr;
1551 	int llchange;
1552 	int flags;
1553 	int newstate = 0;
1554 	uint16_t router = 0;
1555 	struct sockaddr_in6 sin6;
1556 	struct mbuf *chain = NULL;
1557 	int static_route = 0;
1558 
1559 	IF_AFDATA_UNLOCK_ASSERT(ifp);
1560 
1561 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1562 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1563 
1564 	/* nothing must be updated for unspecified address */
1565 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1566 		return NULL;
1567 
1568 	/*
1569 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1570 	 * the caller.
1571 	 *
1572 	 * XXX If the link does not have link-layer adderss, what should
1573 	 * we do? (ifp->if_addrlen == 0)
1574 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1575 	 * description on it in NS section (RFC 2461 7.2.3).
1576 	 */
1577 	flags = lladdr ? ND6_EXCLUSIVE : 0;
1578 	IF_AFDATA_RLOCK(ifp);
1579 	ln = nd6_lookup(from, flags, ifp);
1580 	IF_AFDATA_RUNLOCK(ifp);
1581 	if (ln == NULL) {
1582 		flags |= ND6_EXCLUSIVE;
1583 		IF_AFDATA_LOCK(ifp);
1584 		ln = nd6_lookup(from, flags | ND6_CREATE, ifp);
1585 		IF_AFDATA_UNLOCK(ifp);
1586 		is_newentry = 1;
1587 	} else {
1588 		/* do nothing if static ndp is set */
1589 		if (ln->la_flags & LLE_STATIC) {
1590 			static_route = 1;
1591 			goto done;
1592 		}
1593 		is_newentry = 0;
1594 	}
1595 	if (ln == NULL)
1596 		return (NULL);
1597 
1598 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1599 	if (olladdr && lladdr) {
1600 		llchange = bcmp(lladdr, &ln->ll_addr,
1601 		    ifp->if_addrlen);
1602 	} else
1603 		llchange = 0;
1604 
1605 	/*
1606 	 * newentry olladdr  lladdr  llchange	(*=record)
1607 	 *	0	n	n	--	(1)
1608 	 *	0	y	n	--	(2)
1609 	 *	0	n	y	--	(3) * STALE
1610 	 *	0	y	y	n	(4) *
1611 	 *	0	y	y	y	(5) * STALE
1612 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1613 	 *	1	--	y	--	(7) * STALE
1614 	 */
1615 
1616 	if (lladdr) {		/* (3-5) and (7) */
1617 		/*
1618 		 * Record source link-layer address
1619 		 * XXX is it dependent to ifp->if_type?
1620 		 */
1621 		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1622 		ln->la_flags |= LLE_VALID;
1623 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
1624 	}
1625 
1626 	if (!is_newentry) {
1627 		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1628 		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1629 			do_update = 1;
1630 			newstate = ND6_LLINFO_STALE;
1631 		} else					/* (1-2,4) */
1632 			do_update = 0;
1633 	} else {
1634 		do_update = 1;
1635 		if (lladdr == NULL)			/* (6) */
1636 			newstate = ND6_LLINFO_NOSTATE;
1637 		else					/* (7) */
1638 			newstate = ND6_LLINFO_STALE;
1639 	}
1640 
1641 	if (do_update) {
1642 		/*
1643 		 * Update the state of the neighbor cache.
1644 		 */
1645 		ln->ln_state = newstate;
1646 
1647 		if (ln->ln_state == ND6_LLINFO_STALE) {
1648 			/*
1649 			 * XXX: since nd6_output() below will cause
1650 			 * state tansition to DELAY and reset the timer,
1651 			 * we must set the timer now, although it is actually
1652 			 * meaningless.
1653 			 */
1654 			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
1655 
1656 			if (ln->la_hold) {
1657 				struct mbuf *m_hold, *m_hold_next;
1658 
1659 				/*
1660 				 * reset the la_hold in advance, to explicitly
1661 				 * prevent a la_hold lookup in nd6_output()
1662 				 * (wouldn't happen, though...)
1663 				 */
1664 				for (m_hold = ln->la_hold, ln->la_hold = NULL;
1665 				    m_hold; m_hold = m_hold_next) {
1666 					m_hold_next = m_hold->m_nextpkt;
1667 					m_hold->m_nextpkt = NULL;
1668 
1669 					/*
1670 					 * we assume ifp is not a p2p here, so
1671 					 * just set the 2nd argument as the
1672 					 * 1st one.
1673 					 */
1674 					nd6_output_lle(ifp, ifp, m_hold, L3_ADDR_SIN6(ln), NULL, ln, &chain);
1675 				}
1676 				/*
1677 				 * If we have mbufs in the chain we need to do
1678 				 * deferred transmit. Copy the address from the
1679 				 * llentry before dropping the lock down below.
1680 				 */
1681 				if (chain != NULL)
1682 					memcpy(&sin6, L3_ADDR_SIN6(ln), sizeof(sin6));
1683 			}
1684 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1685 			/* probe right away */
1686 			nd6_llinfo_settimer_locked((void *)ln, 0);
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * ICMP6 type dependent behavior.
1692 	 *
1693 	 * NS: clear IsRouter if new entry
1694 	 * RS: clear IsRouter
1695 	 * RA: set IsRouter if there's lladdr
1696 	 * redir: clear IsRouter if new entry
1697 	 *
1698 	 * RA case, (1):
1699 	 * The spec says that we must set IsRouter in the following cases:
1700 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1701 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1702 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1703 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1704 	 * neighbor cache, this is similar to (6).
1705 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1706 	 *
1707 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1708 	 *							D R
1709 	 *	0	n	n	--	(1)	c   ?     s
1710 	 *	0	y	n	--	(2)	c   s     s
1711 	 *	0	n	y	--	(3)	c   s     s
1712 	 *	0	y	y	n	(4)	c   s     s
1713 	 *	0	y	y	y	(5)	c   s     s
1714 	 *	1	--	n	--	(6) c	c	c s
1715 	 *	1	--	y	--	(7) c	c   s	c s
1716 	 *
1717 	 *					(c=clear s=set)
1718 	 */
1719 	switch (type & 0xff) {
1720 	case ND_NEIGHBOR_SOLICIT:
1721 		/*
1722 		 * New entry must have is_router flag cleared.
1723 		 */
1724 		if (is_newentry)	/* (6-7) */
1725 			ln->ln_router = 0;
1726 		break;
1727 	case ND_REDIRECT:
1728 		/*
1729 		 * If the icmp is a redirect to a better router, always set the
1730 		 * is_router flag.  Otherwise, if the entry is newly created,
1731 		 * clear the flag.  [RFC 2461, sec 8.3]
1732 		 */
1733 		if (code == ND_REDIRECT_ROUTER)
1734 			ln->ln_router = 1;
1735 		else if (is_newentry) /* (6-7) */
1736 			ln->ln_router = 0;
1737 		break;
1738 	case ND_ROUTER_SOLICIT:
1739 		/*
1740 		 * is_router flag must always be cleared.
1741 		 */
1742 		ln->ln_router = 0;
1743 		break;
1744 	case ND_ROUTER_ADVERT:
1745 		/*
1746 		 * Mark an entry with lladdr as a router.
1747 		 */
1748 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1749 		    (is_newentry && lladdr)) {			/* (7) */
1750 			ln->ln_router = 1;
1751 		}
1752 		break;
1753 	}
1754 
1755 	if (ln != NULL) {
1756 		static_route = (ln->la_flags & LLE_STATIC);
1757 		router = ln->ln_router;
1758 
1759 		if (flags & ND6_EXCLUSIVE)
1760 			LLE_WUNLOCK(ln);
1761 		else
1762 			LLE_RUNLOCK(ln);
1763 		if (static_route)
1764 			ln = NULL;
1765 	}
1766 	if (chain)
1767 		nd6_output_flush(ifp, ifp, chain, &sin6, NULL);
1768 
1769 	/*
1770 	 * When the link-layer address of a router changes, select the
1771 	 * best router again.  In particular, when the neighbor entry is newly
1772 	 * created, it might affect the selection policy.
1773 	 * Question: can we restrict the first condition to the "is_newentry"
1774 	 * case?
1775 	 * XXX: when we hear an RA from a new router with the link-layer
1776 	 * address option, defrouter_select() is called twice, since
1777 	 * defrtrlist_update called the function as well.  However, I believe
1778 	 * we can compromise the overhead, since it only happens the first
1779 	 * time.
1780 	 * XXX: although defrouter_select() should not have a bad effect
1781 	 * for those are not autoconfigured hosts, we explicitly avoid such
1782 	 * cases for safety.
1783 	 */
1784 	if (do_update && router &&
1785 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1786 		/*
1787 		 * guaranteed recursion
1788 		 */
1789 		defrouter_select();
1790 	}
1791 
1792 	return (ln);
1793 done:
1794 	if (ln != NULL) {
1795 		if (flags & ND6_EXCLUSIVE)
1796 			LLE_WUNLOCK(ln);
1797 		else
1798 			LLE_RUNLOCK(ln);
1799 		if (static_route)
1800 			ln = NULL;
1801 	}
1802 	return (ln);
1803 }
1804 
1805 static void
1806 nd6_slowtimo(void *arg)
1807 {
1808 	CURVNET_SET((struct vnet *) arg);
1809 	struct nd_ifinfo *nd6if;
1810 	struct ifnet *ifp;
1811 
1812 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1813 	    nd6_slowtimo, curvnet);
1814 	IFNET_RLOCK_NOSLEEP();
1815 	TAILQ_FOREACH(ifp, &V_ifnet, if_list) {
1816 		if (ifp->if_afdata[AF_INET6] == NULL)
1817 			continue;
1818 		nd6if = ND_IFINFO(ifp);
1819 		if (nd6if->basereachable && /* already initialized */
1820 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1821 			/*
1822 			 * Since reachable time rarely changes by router
1823 			 * advertisements, we SHOULD insure that a new random
1824 			 * value gets recomputed at least once every few hours.
1825 			 * (RFC 2461, 6.3.4)
1826 			 */
1827 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1828 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1829 		}
1830 	}
1831 	IFNET_RUNLOCK_NOSLEEP();
1832 	CURVNET_RESTORE();
1833 }
1834 
1835 /*
1836  * IPv6 packet output - light version.
1837  * Checks if destination LLE exists and is in proper state
1838  * (e.g no modification required). If not true, fall back to
1839  * "heavy" version.
1840  */
1841 int
1842 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1843     struct sockaddr_in6 *dst, struct rtentry *rt0)
1844 {
1845 	struct llentry *ln = NULL;
1846 	int error = 0;
1847 
1848 	/* discard the packet if IPv6 operation is disabled on the interface */
1849 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1850 		m_freem(m);
1851 		return (ENETDOWN); /* better error? */
1852 	}
1853 
1854 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1855 		goto sendpkt;
1856 
1857 	if (nd6_need_cache(ifp) == 0)
1858 		goto sendpkt;
1859 
1860 	IF_AFDATA_RLOCK(ifp);
1861 	ln = nd6_lookup(&dst->sin6_addr, 0, ifp);
1862 	IF_AFDATA_RUNLOCK(ifp);
1863 
1864 	/*
1865 	 * Perform fast path for the following cases:
1866 	 * 1) lle state is REACHABLE
1867 	 * 2) lle state is DELAY (NS message sentNS message sent)
1868 	 *
1869 	 * Every other case involves lle modification, so we handle
1870 	 * them separately.
1871 	 */
1872 	if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE &&
1873 	    ln->ln_state != ND6_LLINFO_DELAY)) {
1874 		/* Fall back to slow processing path */
1875 		if (ln != NULL)
1876 			LLE_RUNLOCK(ln);
1877 		return (nd6_output_lle(ifp, origifp, m, dst, rt0, NULL, NULL));
1878 	}
1879 
1880 sendpkt:
1881 	if (ln != NULL)
1882 		LLE_RUNLOCK(ln);
1883 
1884 #ifdef MAC
1885 	mac_netinet6_nd6_send(ifp, m);
1886 #endif
1887 
1888 	/*
1889 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
1890 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
1891 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
1892 	 * to be diverted to user space.  When re-injected into the kernel,
1893 	 * send_output() will directly dispatch them to the outgoing interface.
1894 	 */
1895 	if (send_sendso_input_hook != NULL) {
1896 		struct m_tag *mtag;
1897 		struct ip6_hdr *ip6;
1898 		int ip6len;
1899 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
1900 		if (mtag != NULL) {
1901 			ip6 = mtod(m, struct ip6_hdr *);
1902 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
1903 			/* Use the SEND socket */
1904 			error = send_sendso_input_hook(m, ifp, SND_OUT,
1905 			    ip6len);
1906 			/* -1 == no app on SEND socket */
1907 			if (error == 0 || error != -1)
1908 			    return (error);
1909 		}
1910 	}
1911 
1912 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
1913 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
1914 	    mtod(m, struct ip6_hdr *));
1915 
1916 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
1917 		origifp = ifp;
1918 
1919 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL);
1920 	return (error);
1921 }
1922 
1923 
1924 /*
1925  * Output IPv6 packet - heavy version.
1926  * Function assume that either
1927  * 1) destination LLE does not exist, is invalid or stale, so
1928  *   ND6_EXCLUSIVE lock needs to be acquired
1929  * 2) destination lle is provided (with ND6_EXCLUSIVE lock),
1930  *   in that case packets are queued in &chain.
1931  *
1932  */
1933 int
1934 nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1935     struct sockaddr_in6 *dst, struct rtentry *rt0, struct llentry *lle,
1936 	struct mbuf **chain)
1937 {
1938 	struct m_tag *mtag;
1939 	struct ip6_hdr *ip6;
1940 	int error = 0;
1941 	int flags = 0;
1942 	int has_lle = 0;
1943 	int ip6len;
1944 
1945 #ifdef INVARIANTS
1946 	if (lle != NULL) {
1947 
1948 		LLE_WLOCK_ASSERT(lle);
1949 
1950 		KASSERT(chain != NULL, (" lle locked but no mbuf chain pointer passed"));
1951 	}
1952 #endif
1953 	KASSERT(m != NULL, ("NULL mbuf, nothing to send"));
1954 	/* discard the packet if IPv6 operation is disabled on the interface */
1955 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1956 		m_freem(m);
1957 		return (ENETDOWN); /* better error? */
1958 	}
1959 
1960 	if (lle != NULL)
1961 		has_lle = 1;
1962 
1963 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1964 		goto sendpkt;
1965 
1966 	if (nd6_need_cache(ifp) == 0)
1967 		goto sendpkt;
1968 
1969 	/*
1970 	 * Address resolution or Neighbor Unreachability Detection
1971 	 * for the next hop.
1972 	 * At this point, the destination of the packet must be a unicast
1973 	 * or an anycast address(i.e. not a multicast).
1974 	 */
1975 	if (lle == NULL) {
1976 		IF_AFDATA_RLOCK(ifp);
1977 		lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp);
1978 		IF_AFDATA_RUNLOCK(ifp);
1979 		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
1980 			/*
1981 			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1982 			 * the condition below is not very efficient.  But we believe
1983 			 * it is tolerable, because this should be a rare case.
1984 			 */
1985 			flags = ND6_CREATE | ND6_EXCLUSIVE;
1986 			IF_AFDATA_LOCK(ifp);
1987 			lle = nd6_lookup(&dst->sin6_addr, flags, ifp);
1988 			IF_AFDATA_UNLOCK(ifp);
1989 		}
1990 	}
1991 	if (lle == NULL) {
1992 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1993 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1994 			char ip6buf[INET6_ADDRSTRLEN];
1995 			log(LOG_DEBUG,
1996 			    "nd6_output: can't allocate llinfo for %s "
1997 			    "(ln=%p)\n",
1998 			    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
1999 			m_freem(m);
2000 			return (ENOBUFS);
2001 		}
2002 		goto sendpkt;	/* send anyway */
2003 	}
2004 
2005 	LLE_WLOCK_ASSERT(lle);
2006 
2007 	/* We don't have to do link-layer address resolution on a p2p link. */
2008 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2009 	    lle->ln_state < ND6_LLINFO_REACHABLE) {
2010 		lle->ln_state = ND6_LLINFO_STALE;
2011 		nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz);
2012 	}
2013 
2014 	/*
2015 	 * The first time we send a packet to a neighbor whose entry is
2016 	 * STALE, we have to change the state to DELAY and a sets a timer to
2017 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2018 	 * neighbor unreachability detection on expiration.
2019 	 * (RFC 2461 7.3.3)
2020 	 */
2021 	if (lle->ln_state == ND6_LLINFO_STALE) {
2022 		lle->la_asked = 0;
2023 		lle->ln_state = ND6_LLINFO_DELAY;
2024 		nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz);
2025 	}
2026 
2027 	/*
2028 	 * If the neighbor cache entry has a state other than INCOMPLETE
2029 	 * (i.e. its link-layer address is already resolved), just
2030 	 * send the packet.
2031 	 */
2032 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE)
2033 		goto sendpkt;
2034 
2035 	/*
2036 	 * There is a neighbor cache entry, but no ethernet address
2037 	 * response yet.  Append this latest packet to the end of the
2038 	 * packet queue in the mbuf, unless the number of the packet
2039 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2040 	 * the oldest packet in the queue will be removed.
2041 	 */
2042 	if (lle->ln_state == ND6_LLINFO_NOSTATE)
2043 		lle->ln_state = ND6_LLINFO_INCOMPLETE;
2044 
2045 	if (lle->la_hold != NULL) {
2046 		struct mbuf *m_hold;
2047 		int i;
2048 
2049 		i = 0;
2050 		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2051 			i++;
2052 			if (m_hold->m_nextpkt == NULL) {
2053 				m_hold->m_nextpkt = m;
2054 				break;
2055 			}
2056 		}
2057 		while (i >= V_nd6_maxqueuelen) {
2058 			m_hold = lle->la_hold;
2059 			lle->la_hold = lle->la_hold->m_nextpkt;
2060 			m_freem(m_hold);
2061 			i--;
2062 		}
2063 	} else {
2064 		lle->la_hold = m;
2065 	}
2066 
2067 	/*
2068 	 * If there has been no NS for the neighbor after entering the
2069 	 * INCOMPLETE state, send the first solicitation.
2070 	 */
2071 	if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) {
2072 		lle->la_asked++;
2073 
2074 		nd6_llinfo_settimer_locked(lle,
2075 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2076 		LLE_WUNLOCK(lle);
2077 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, 0);
2078 		if (has_lle != 0)
2079 			LLE_WLOCK(lle);
2080 	} else if (has_lle == 0) {
2081 		/*
2082 		 * We did the lookup (no lle arg) so we
2083 		 * need to do the unlock here.
2084 		 */
2085 		LLE_WUNLOCK(lle);
2086 	}
2087 
2088 	return (0);
2089 
2090   sendpkt:
2091 	/*
2092 	 * ln is valid and the caller did not pass in
2093 	 * an llentry
2094 	 */
2095 	if (lle != NULL && has_lle == 0)
2096 		LLE_WUNLOCK(lle);
2097 
2098 #ifdef MAC
2099 	mac_netinet6_nd6_send(ifp, m);
2100 #endif
2101 
2102 	/*
2103 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2104 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2105 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2106 	 * to be diverted to user space.  When re-injected into the kernel,
2107 	 * send_output() will directly dispatch them to the outgoing interface.
2108 	 */
2109 	if (send_sendso_input_hook != NULL) {
2110 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2111 		if (mtag != NULL) {
2112 			ip6 = mtod(m, struct ip6_hdr *);
2113 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2114 			/* Use the SEND socket */
2115 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2116 			    ip6len);
2117 			/* -1 == no app on SEND socket */
2118 			if (error == 0 || error != -1)
2119 			    return (error);
2120 		}
2121 	}
2122 
2123 	/*
2124 	 * We were passed in a pointer to an lle with the lock held
2125 	 * this means that we can't call if_output as we will
2126 	 * recurse on the lle lock - so what we do is we create
2127 	 * a list of mbufs to send and transmit them in the caller
2128 	 * after the lock is dropped
2129 	 */
2130 	if (has_lle != 0) {
2131 		if (*chain == NULL)
2132 			*chain = m;
2133 		else {
2134 			struct mbuf *mb;
2135 
2136 			/*
2137 			 * append mbuf to end of deferred chain
2138 			 */
2139 			mb = *chain;
2140 			while (mb->m_nextpkt != NULL)
2141 				mb = mb->m_nextpkt;
2142 			mb->m_nextpkt = m;
2143 		}
2144 		return (error);
2145 	}
2146 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2147 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2148 	    mtod(m, struct ip6_hdr *));
2149 
2150 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2151 		origifp = ifp;
2152 
2153 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL);
2154 	return (error);
2155 }
2156 
2157 
2158 int
2159 nd6_output_flush(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2160     struct sockaddr_in6 *dst, struct route *ro)
2161 {
2162 	struct mbuf *m, *m_head;
2163 	struct ifnet *outifp;
2164 	int error = 0;
2165 
2166 	m_head = chain;
2167 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2168 		outifp = origifp;
2169 	else
2170 		outifp = ifp;
2171 
2172 	while (m_head) {
2173 		m = m_head;
2174 		m_head = m_head->m_nextpkt;
2175 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, ro);
2176 	}
2177 
2178 	/*
2179 	 * XXX
2180 	 * note that intermediate errors are blindly ignored - but this is
2181 	 * the same convention as used with nd6_output when called by
2182 	 * nd6_cache_lladdr
2183 	 */
2184 	return (error);
2185 }
2186 
2187 
2188 int
2189 nd6_need_cache(struct ifnet *ifp)
2190 {
2191 	/*
2192 	 * XXX: we currently do not make neighbor cache on any interface
2193 	 * other than ARCnet, Ethernet, FDDI and GIF.
2194 	 *
2195 	 * RFC2893 says:
2196 	 * - unidirectional tunnels needs no ND
2197 	 */
2198 	switch (ifp->if_type) {
2199 	case IFT_ARCNET:
2200 	case IFT_ETHER:
2201 	case IFT_FDDI:
2202 	case IFT_IEEE1394:
2203 #ifdef IFT_L2VLAN
2204 	case IFT_L2VLAN:
2205 #endif
2206 #ifdef IFT_IEEE80211
2207 	case IFT_IEEE80211:
2208 #endif
2209 	case IFT_INFINIBAND:
2210 	case IFT_GIF:		/* XXX need more cases? */
2211 	case IFT_PPP:
2212 	case IFT_TUNNEL:
2213 	case IFT_BRIDGE:
2214 	case IFT_PROPVIRTUAL:
2215 		return (1);
2216 	default:
2217 		return (0);
2218 	}
2219 }
2220 
2221 /*
2222  * Add pernament ND6 link-layer record for given
2223  * interface address.
2224  *
2225  * Very similar to IPv4 arp_ifinit(), but:
2226  * 1) IPv6 DAD is performed in different place
2227  * 2) It is called by IPv6 protocol stack in contrast to
2228  * arp_ifinit() which is typically called in SIOCSIFADDR
2229  * driver ioctl handler.
2230  *
2231  */
2232 int
2233 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2234 {
2235 	struct ifnet *ifp;
2236 	struct llentry *ln;
2237 
2238 	ifp = ia->ia_ifa.ifa_ifp;
2239 	IF_AFDATA_LOCK(ifp);
2240 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2241 	ln = lla_lookup(LLTABLE6(ifp), (LLE_CREATE | LLE_IFADDR |
2242 	    LLE_EXCLUSIVE), (struct sockaddr *)&ia->ia_addr);
2243 	IF_AFDATA_UNLOCK(ifp);
2244 	if (ln != NULL) {
2245 		ln->la_expire = 0;  /* for IPv6 this means permanent */
2246 		ln->ln_state = ND6_LLINFO_REACHABLE;
2247 		LLE_WUNLOCK(ln);
2248 		in6_newaddrmsg(ia, RTM_ADD);
2249 		return (0);
2250 	}
2251 
2252 	return (ENOBUFS);
2253 }
2254 
2255 /*
2256  * Removes ALL lle records for interface address prefix.
2257  * XXXME: That's probably not we really want to do, we need
2258  * to remove address record only and keep other records
2259  * until we determine if given prefix is really going
2260  * to be removed.
2261  */
2262 void
2263 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2264 {
2265 	struct sockaddr_in6 mask, addr;
2266 	struct ifnet *ifp;
2267 
2268 	in6_newaddrmsg(ia, RTM_DELETE);
2269 
2270 	ifp = ia->ia_ifa.ifa_ifp;
2271 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2272 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2273 	lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr,
2274 	            (struct sockaddr *)&mask, LLE_STATIC);
2275 }
2276 
2277 /*
2278  * the callers of this function need to be re-worked to drop
2279  * the lle lock, drop here for now
2280  */
2281 int
2282 nd6_storelladdr(struct ifnet *ifp, struct mbuf *m,
2283     const struct sockaddr *dst, u_char *desten, struct llentry **lle)
2284 {
2285 	struct llentry *ln;
2286 
2287 	*lle = NULL;
2288 	IF_AFDATA_UNLOCK_ASSERT(ifp);
2289 	if (m != NULL && m->m_flags & M_MCAST) {
2290 		int i;
2291 
2292 		switch (ifp->if_type) {
2293 		case IFT_ETHER:
2294 		case IFT_FDDI:
2295 #ifdef IFT_L2VLAN
2296 		case IFT_L2VLAN:
2297 #endif
2298 #ifdef IFT_IEEE80211
2299 		case IFT_IEEE80211:
2300 #endif
2301 		case IFT_BRIDGE:
2302 		case IFT_ISO88025:
2303 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2304 						 desten);
2305 			return (0);
2306 		case IFT_IEEE1394:
2307 			/*
2308 			 * netbsd can use if_broadcastaddr, but we don't do so
2309 			 * to reduce # of ifdef.
2310 			 */
2311 			for (i = 0; i < ifp->if_addrlen; i++)
2312 				desten[i] = ~0;
2313 			return (0);
2314 		case IFT_ARCNET:
2315 			*desten = 0;
2316 			return (0);
2317 		default:
2318 			m_freem(m);
2319 			return (EAFNOSUPPORT);
2320 		}
2321 	}
2322 
2323 
2324 	/*
2325 	 * the entry should have been created in nd6_store_lladdr
2326 	 */
2327 	IF_AFDATA_RLOCK(ifp);
2328 	ln = lla_lookup(LLTABLE6(ifp), 0, dst);
2329 	IF_AFDATA_RUNLOCK(ifp);
2330 	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2331 		if (ln != NULL)
2332 			LLE_RUNLOCK(ln);
2333 		/* this could happen, if we could not allocate memory */
2334 		m_freem(m);
2335 		return (1);
2336 	}
2337 
2338 	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2339 	*lle = ln;
2340 	LLE_RUNLOCK(ln);
2341 	/*
2342 	 * A *small* use after free race exists here
2343 	 */
2344 	return (0);
2345 }
2346 
2347 static void
2348 clear_llinfo_pqueue(struct llentry *ln)
2349 {
2350 	struct mbuf *m_hold, *m_hold_next;
2351 
2352 	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2353 		m_hold_next = m_hold->m_nextpkt;
2354 		m_freem(m_hold);
2355 	}
2356 
2357 	ln->la_hold = NULL;
2358 	return;
2359 }
2360 
2361 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2362 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2363 #ifdef SYSCTL_DECL
2364 SYSCTL_DECL(_net_inet6_icmp6);
2365 #endif
2366 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2367 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2368 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2369 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2370 SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2371 	CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2372 SYSCTL_VNET_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2373 	CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2374 
2375 static int
2376 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2377 {
2378 	struct in6_defrouter d;
2379 	struct nd_defrouter *dr;
2380 	int error;
2381 
2382 	if (req->newptr)
2383 		return (EPERM);
2384 
2385 	bzero(&d, sizeof(d));
2386 	d.rtaddr.sin6_family = AF_INET6;
2387 	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2388 
2389 	/*
2390 	 * XXX locking
2391 	 */
2392 	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2393 		d.rtaddr.sin6_addr = dr->rtaddr;
2394 		error = sa6_recoverscope(&d.rtaddr);
2395 		if (error != 0)
2396 			return (error);
2397 		d.flags = dr->flags;
2398 		d.rtlifetime = dr->rtlifetime;
2399 		d.expire = dr->expire + (time_second - time_uptime);
2400 		d.if_index = dr->ifp->if_index;
2401 		error = SYSCTL_OUT(req, &d, sizeof(d));
2402 		if (error != 0)
2403 			return (error);
2404 	}
2405 	return (0);
2406 }
2407 
2408 static int
2409 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2410 {
2411 	struct in6_prefix p;
2412 	struct sockaddr_in6 s6;
2413 	struct nd_prefix *pr;
2414 	struct nd_pfxrouter *pfr;
2415 	time_t maxexpire;
2416 	int error;
2417 	char ip6buf[INET6_ADDRSTRLEN];
2418 
2419 	if (req->newptr)
2420 		return (EPERM);
2421 
2422 	bzero(&p, sizeof(p));
2423 	p.origin = PR_ORIG_RA;
2424 	bzero(&s6, sizeof(s6));
2425 	s6.sin6_family = AF_INET6;
2426 	s6.sin6_len = sizeof(s6);
2427 
2428 	/*
2429 	 * XXX locking
2430 	 */
2431 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2432 		p.prefix = pr->ndpr_prefix;
2433 		if (sa6_recoverscope(&p.prefix)) {
2434 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2435 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2436 			/* XXX: press on... */
2437 		}
2438 		p.raflags = pr->ndpr_raf;
2439 		p.prefixlen = pr->ndpr_plen;
2440 		p.vltime = pr->ndpr_vltime;
2441 		p.pltime = pr->ndpr_pltime;
2442 		p.if_index = pr->ndpr_ifp->if_index;
2443 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2444 			p.expire = 0;
2445 		else {
2446 			/* XXX: we assume time_t is signed. */
2447 			maxexpire = (-1) &
2448 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2449 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2450 				p.expire = pr->ndpr_lastupdate +
2451 				    pr->ndpr_vltime +
2452 				    (time_second - time_uptime);
2453 			else
2454 				p.expire = maxexpire;
2455 		}
2456 		p.refcnt = pr->ndpr_refcnt;
2457 		p.flags = pr->ndpr_stateflags;
2458 		p.advrtrs = 0;
2459 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2460 			p.advrtrs++;
2461 		error = SYSCTL_OUT(req, &p, sizeof(p));
2462 		if (error != 0)
2463 			return (error);
2464 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2465 			s6.sin6_addr = pfr->router->rtaddr;
2466 			if (sa6_recoverscope(&s6))
2467 				log(LOG_ERR,
2468 				    "scope error in prefix list (%s)\n",
2469 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2470 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2471 			if (error != 0)
2472 				return (error);
2473 		}
2474 	}
2475 	return (0);
2476 }
2477