1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/syslog.h> 50 #include <sys/lock.h> 51 #include <sys/rwlock.h> 52 #include <sys/queue.h> 53 #include <sys/sdt.h> 54 #include <sys/sysctl.h> 55 56 #include <net/if.h> 57 #include <net/if_var.h> 58 #include <net/if_arc.h> 59 #include <net/if_dl.h> 60 #include <net/if_types.h> 61 #include <net/iso88025.h> 62 #include <net/fddi.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_kdtrace.h> 68 #include <net/if_llatbl.h> 69 #include <netinet/if_ether.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/send.h> 78 79 #include <sys/limits.h> 80 81 #include <security/mac/mac_framework.h> 82 83 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 84 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 85 86 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 87 88 /* timer values */ 89 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 90 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 91 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 92 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 93 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 94 * local traffic */ 95 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 96 * collection timer */ 97 98 /* preventing too many loops in ND option parsing */ 99 static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 100 101 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 102 * layer hints */ 103 static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 104 * ND entries */ 105 #define V_nd6_maxndopt VNET(nd6_maxndopt) 106 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 107 108 #ifdef ND6_DEBUG 109 VNET_DEFINE(int, nd6_debug) = 1; 110 #else 111 VNET_DEFINE(int, nd6_debug) = 0; 112 #endif 113 114 static eventhandler_tag lle_event_eh, iflladdr_event_eh; 115 116 VNET_DEFINE(struct nd_drhead, nd_defrouter); 117 VNET_DEFINE(struct nd_prhead, nd_prefix); 118 119 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 120 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 121 122 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 123 124 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 125 struct ifnet *); 126 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 127 static void nd6_slowtimo(void *); 128 static int regen_tmpaddr(struct in6_ifaddr *); 129 static void nd6_free(struct llentry *, int); 130 static void nd6_free_redirect(const struct llentry *); 131 static void nd6_llinfo_timer(void *); 132 static void nd6_llinfo_settimer_locked(struct llentry *, long); 133 static void clear_llinfo_pqueue(struct llentry *); 134 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 135 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 136 const struct sockaddr_in6 *, u_char *, uint32_t *); 137 static int nd6_need_cache(struct ifnet *); 138 139 140 static VNET_DEFINE(struct callout, nd6_slowtimo_ch); 141 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 142 143 VNET_DEFINE(struct callout, nd6_timer_ch); 144 145 static void 146 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 147 { 148 struct rt_addrinfo rtinfo; 149 struct sockaddr_in6 dst; 150 struct sockaddr_dl gw; 151 struct ifnet *ifp; 152 int type; 153 154 LLE_WLOCK_ASSERT(lle); 155 156 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 157 return; 158 159 switch (evt) { 160 case LLENTRY_RESOLVED: 161 type = RTM_ADD; 162 KASSERT(lle->la_flags & LLE_VALID, 163 ("%s: %p resolved but not valid?", __func__, lle)); 164 break; 165 case LLENTRY_EXPIRED: 166 type = RTM_DELETE; 167 break; 168 default: 169 return; 170 } 171 172 ifp = lltable_get_ifp(lle->lle_tbl); 173 174 bzero(&dst, sizeof(dst)); 175 bzero(&gw, sizeof(gw)); 176 bzero(&rtinfo, sizeof(rtinfo)); 177 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 178 dst.sin6_scope_id = in6_getscopezone(ifp, 179 in6_addrscope(&dst.sin6_addr)); 180 gw.sdl_len = sizeof(struct sockaddr_dl); 181 gw.sdl_family = AF_LINK; 182 gw.sdl_alen = ifp->if_addrlen; 183 gw.sdl_index = ifp->if_index; 184 gw.sdl_type = ifp->if_type; 185 if (evt == LLENTRY_RESOLVED) 186 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 187 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 188 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 189 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 190 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 191 type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); 192 } 193 194 /* 195 * A handler for interface link layer address change event. 196 */ 197 static void 198 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 199 { 200 201 lltable_update_ifaddr(LLTABLE6(ifp)); 202 } 203 204 void 205 nd6_init(void) 206 { 207 208 LIST_INIT(&V_nd_prefix); 209 210 /* initialization of the default router list */ 211 TAILQ_INIT(&V_nd_defrouter); 212 213 /* start timer */ 214 callout_init(&V_nd6_slowtimo_ch, 0); 215 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 216 nd6_slowtimo, curvnet); 217 218 nd6_dad_init(); 219 if (IS_DEFAULT_VNET(curvnet)) { 220 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 221 NULL, EVENTHANDLER_PRI_ANY); 222 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 223 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 224 } 225 } 226 227 #ifdef VIMAGE 228 void 229 nd6_destroy() 230 { 231 232 callout_drain(&V_nd6_slowtimo_ch); 233 callout_drain(&V_nd6_timer_ch); 234 if (IS_DEFAULT_VNET(curvnet)) { 235 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 236 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 237 } 238 } 239 #endif 240 241 struct nd_ifinfo * 242 nd6_ifattach(struct ifnet *ifp) 243 { 244 struct nd_ifinfo *nd; 245 246 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 247 nd->initialized = 1; 248 249 nd->chlim = IPV6_DEFHLIM; 250 nd->basereachable = REACHABLE_TIME; 251 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 252 nd->retrans = RETRANS_TIMER; 253 254 nd->flags = ND6_IFF_PERFORMNUD; 255 256 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 257 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 258 * default regardless of the V_ip6_auto_linklocal configuration to 259 * give a reasonable default behavior. 260 */ 261 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 262 (ifp->if_flags & IFF_LOOPBACK)) 263 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 264 /* 265 * A loopback interface does not need to accept RTADV. 266 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 267 * default regardless of the V_ip6_accept_rtadv configuration to 268 * prevent the interface from accepting RA messages arrived 269 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 270 */ 271 if (V_ip6_accept_rtadv && 272 !(ifp->if_flags & IFF_LOOPBACK) && 273 (ifp->if_type != IFT_BRIDGE)) 274 nd->flags |= ND6_IFF_ACCEPT_RTADV; 275 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 276 nd->flags |= ND6_IFF_NO_RADR; 277 278 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 279 nd6_setmtu0(ifp, nd); 280 281 return nd; 282 } 283 284 void 285 nd6_ifdetach(struct nd_ifinfo *nd) 286 { 287 288 free(nd, M_IP6NDP); 289 } 290 291 /* 292 * Reset ND level link MTU. This function is called when the physical MTU 293 * changes, which means we might have to adjust the ND level MTU. 294 */ 295 void 296 nd6_setmtu(struct ifnet *ifp) 297 { 298 if (ifp->if_afdata[AF_INET6] == NULL) 299 return; 300 301 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 302 } 303 304 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 305 void 306 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 307 { 308 u_int32_t omaxmtu; 309 310 omaxmtu = ndi->maxmtu; 311 312 switch (ifp->if_type) { 313 case IFT_ARCNET: 314 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 315 break; 316 case IFT_FDDI: 317 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 318 break; 319 case IFT_ISO88025: 320 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 321 break; 322 default: 323 ndi->maxmtu = ifp->if_mtu; 324 break; 325 } 326 327 /* 328 * Decreasing the interface MTU under IPV6 minimum MTU may cause 329 * undesirable situation. We thus notify the operator of the change 330 * explicitly. The check for omaxmtu is necessary to restrict the 331 * log to the case of changing the MTU, not initializing it. 332 */ 333 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 334 log(LOG_NOTICE, "nd6_setmtu0: " 335 "new link MTU on %s (%lu) is too small for IPv6\n", 336 if_name(ifp), (unsigned long)ndi->maxmtu); 337 } 338 339 if (ndi->maxmtu > V_in6_maxmtu) 340 in6_setmaxmtu(); /* check all interfaces just in case */ 341 342 } 343 344 void 345 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 346 { 347 348 bzero(ndopts, sizeof(*ndopts)); 349 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 350 ndopts->nd_opts_last 351 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 352 353 if (icmp6len == 0) { 354 ndopts->nd_opts_done = 1; 355 ndopts->nd_opts_search = NULL; 356 } 357 } 358 359 /* 360 * Take one ND option. 361 */ 362 struct nd_opt_hdr * 363 nd6_option(union nd_opts *ndopts) 364 { 365 struct nd_opt_hdr *nd_opt; 366 int olen; 367 368 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 369 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 370 __func__)); 371 if (ndopts->nd_opts_search == NULL) 372 return NULL; 373 if (ndopts->nd_opts_done) 374 return NULL; 375 376 nd_opt = ndopts->nd_opts_search; 377 378 /* make sure nd_opt_len is inside the buffer */ 379 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 380 bzero(ndopts, sizeof(*ndopts)); 381 return NULL; 382 } 383 384 olen = nd_opt->nd_opt_len << 3; 385 if (olen == 0) { 386 /* 387 * Message validation requires that all included 388 * options have a length that is greater than zero. 389 */ 390 bzero(ndopts, sizeof(*ndopts)); 391 return NULL; 392 } 393 394 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 395 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 396 /* option overruns the end of buffer, invalid */ 397 bzero(ndopts, sizeof(*ndopts)); 398 return NULL; 399 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 400 /* reached the end of options chain */ 401 ndopts->nd_opts_done = 1; 402 ndopts->nd_opts_search = NULL; 403 } 404 return nd_opt; 405 } 406 407 /* 408 * Parse multiple ND options. 409 * This function is much easier to use, for ND routines that do not need 410 * multiple options of the same type. 411 */ 412 int 413 nd6_options(union nd_opts *ndopts) 414 { 415 struct nd_opt_hdr *nd_opt; 416 int i = 0; 417 418 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 419 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 420 __func__)); 421 if (ndopts->nd_opts_search == NULL) 422 return 0; 423 424 while (1) { 425 nd_opt = nd6_option(ndopts); 426 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 427 /* 428 * Message validation requires that all included 429 * options have a length that is greater than zero. 430 */ 431 ICMP6STAT_INC(icp6s_nd_badopt); 432 bzero(ndopts, sizeof(*ndopts)); 433 return -1; 434 } 435 436 if (nd_opt == NULL) 437 goto skip1; 438 439 switch (nd_opt->nd_opt_type) { 440 case ND_OPT_SOURCE_LINKADDR: 441 case ND_OPT_TARGET_LINKADDR: 442 case ND_OPT_MTU: 443 case ND_OPT_REDIRECTED_HEADER: 444 case ND_OPT_NONCE: 445 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 446 nd6log((LOG_INFO, 447 "duplicated ND6 option found (type=%d)\n", 448 nd_opt->nd_opt_type)); 449 /* XXX bark? */ 450 } else { 451 ndopts->nd_opt_array[nd_opt->nd_opt_type] 452 = nd_opt; 453 } 454 break; 455 case ND_OPT_PREFIX_INFORMATION: 456 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 457 ndopts->nd_opt_array[nd_opt->nd_opt_type] 458 = nd_opt; 459 } 460 ndopts->nd_opts_pi_end = 461 (struct nd_opt_prefix_info *)nd_opt; 462 break; 463 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 464 case ND_OPT_RDNSS: /* RFC 6106 */ 465 case ND_OPT_DNSSL: /* RFC 6106 */ 466 /* 467 * Silently ignore options we know and do not care about 468 * in the kernel. 469 */ 470 break; 471 default: 472 /* 473 * Unknown options must be silently ignored, 474 * to accomodate future extension to the protocol. 475 */ 476 nd6log((LOG_DEBUG, 477 "nd6_options: unsupported option %d - " 478 "option ignored\n", nd_opt->nd_opt_type)); 479 } 480 481 skip1: 482 i++; 483 if (i > V_nd6_maxndopt) { 484 ICMP6STAT_INC(icp6s_nd_toomanyopt); 485 nd6log((LOG_INFO, "too many loop in nd opt\n")); 486 break; 487 } 488 489 if (ndopts->nd_opts_done) 490 break; 491 } 492 493 return 0; 494 } 495 496 /* 497 * ND6 timer routine to handle ND6 entries 498 */ 499 static void 500 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 501 { 502 int canceled; 503 504 LLE_WLOCK_ASSERT(ln); 505 506 if (tick < 0) { 507 ln->la_expire = 0; 508 ln->ln_ntick = 0; 509 canceled = callout_stop(&ln->lle_timer); 510 } else { 511 ln->la_expire = time_uptime + tick / hz; 512 LLE_ADDREF(ln); 513 if (tick > INT_MAX) { 514 ln->ln_ntick = tick - INT_MAX; 515 canceled = callout_reset(&ln->lle_timer, INT_MAX, 516 nd6_llinfo_timer, ln); 517 } else { 518 ln->ln_ntick = 0; 519 canceled = callout_reset(&ln->lle_timer, tick, 520 nd6_llinfo_timer, ln); 521 } 522 } 523 if (canceled > 0) 524 LLE_REMREF(ln); 525 } 526 527 /* 528 * Gets source address of the first packet in hold queue 529 * and stores it in @src. 530 * Returns pointer to @src (if hold queue is not empty) or NULL. 531 * 532 * Set noinline to be dtrace-friendly 533 */ 534 static __noinline struct in6_addr * 535 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 536 { 537 struct ip6_hdr hdr; 538 struct mbuf *m; 539 540 if (ln->la_hold == NULL) 541 return (NULL); 542 543 /* 544 * assume every packet in la_hold has the same IP header 545 */ 546 m = ln->la_hold; 547 if (sizeof(hdr) > m->m_len) 548 return (NULL); 549 550 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 551 *src = hdr.ip6_src; 552 553 return (src); 554 } 555 556 /* 557 * Checks if we need to switch from STALE state. 558 * 559 * RFC 4861 requires switching from STALE to DELAY state 560 * on first packet matching entry, waiting V_nd6_delay and 561 * transition to PROBE state (if upper layer confirmation was 562 * not received). 563 * 564 * This code performs a bit differently: 565 * On packet hit we don't change state (but desired state 566 * can be guessed by control plane). However, after V_nd6_delay 567 * seconds code will transition to PROBE state (so DELAY state 568 * is kinda skipped in most situations). 569 * 570 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 571 * we perform the following upon entering STALE state: 572 * 573 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 574 * if packet was transmitted at the start of given interval, we 575 * would be able to switch to PROBE state in V_nd6_delay seconds 576 * as user expects. 577 * 578 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 579 * lle in STALE state (remaining timer value stored in lle_remtime). 580 * 581 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 582 * seconds ago. 583 * 584 * Returns non-zero value if the entry is still STALE (storing 585 * the next timer interval in @pdelay). 586 * 587 * Returns zero value if original timer expired or we need to switch to 588 * PROBE (store that in @do_switch variable). 589 */ 590 static int 591 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 592 { 593 int nd_delay, nd_gctimer, r_skip_req; 594 time_t lle_hittime; 595 long delay; 596 597 *do_switch = 0; 598 nd_gctimer = V_nd6_gctimer; 599 nd_delay = V_nd6_delay; 600 601 LLE_REQ_LOCK(lle); 602 r_skip_req = lle->r_skip_req; 603 lle_hittime = lle->lle_hittime; 604 LLE_REQ_UNLOCK(lle); 605 606 if (r_skip_req > 0) { 607 608 /* 609 * Nonzero r_skip_req value was set upon entering 610 * STALE state. Since value was not changed, no 611 * packets were passed using this lle. Ask for 612 * timer reschedule and keep STALE state. 613 */ 614 delay = (long)(MIN(nd_gctimer, nd_delay)); 615 delay *= hz; 616 if (lle->lle_remtime > delay) 617 lle->lle_remtime -= delay; 618 else { 619 delay = lle->lle_remtime; 620 lle->lle_remtime = 0; 621 } 622 623 if (delay == 0) { 624 625 /* 626 * The original ng6_gctime timeout ended, 627 * no more rescheduling. 628 */ 629 return (0); 630 } 631 632 *pdelay = delay; 633 return (1); 634 } 635 636 /* 637 * Packet received. Verify timestamp 638 */ 639 delay = (long)(time_uptime - lle_hittime); 640 if (delay < nd_delay) { 641 642 /* 643 * V_nd6_delay still not passed since the first 644 * hit in STALE state. 645 * Reshedule timer and return. 646 */ 647 *pdelay = (long)(nd_delay - delay) * hz; 648 return (1); 649 } 650 651 /* Request switching to probe */ 652 *do_switch = 1; 653 return (0); 654 } 655 656 657 /* 658 * Switch @lle state to new state optionally arming timers. 659 * 660 * Set noinline to be dtrace-friendly 661 */ 662 __noinline void 663 nd6_llinfo_setstate(struct llentry *lle, int newstate) 664 { 665 struct ifnet *ifp; 666 int nd_gctimer, nd_delay; 667 long delay, remtime; 668 669 delay = 0; 670 remtime = 0; 671 672 switch (newstate) { 673 case ND6_LLINFO_INCOMPLETE: 674 ifp = lle->lle_tbl->llt_ifp; 675 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 676 break; 677 case ND6_LLINFO_REACHABLE: 678 if (!ND6_LLINFO_PERMANENT(lle)) { 679 ifp = lle->lle_tbl->llt_ifp; 680 delay = (long)ND_IFINFO(ifp)->reachable * hz; 681 } 682 break; 683 case ND6_LLINFO_STALE: 684 685 /* 686 * Notify fast path that we want to know if any packet 687 * is transmitted by setting r_skip_req. 688 */ 689 LLE_REQ_LOCK(lle); 690 lle->r_skip_req = 1; 691 LLE_REQ_UNLOCK(lle); 692 nd_delay = V_nd6_delay; 693 nd_gctimer = V_nd6_gctimer; 694 695 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 696 remtime = (long)nd_gctimer * hz - delay; 697 break; 698 case ND6_LLINFO_DELAY: 699 lle->la_asked = 0; 700 delay = (long)V_nd6_delay * hz; 701 break; 702 } 703 704 if (delay > 0) 705 nd6_llinfo_settimer_locked(lle, delay); 706 707 lle->lle_remtime = remtime; 708 lle->ln_state = newstate; 709 } 710 711 /* 712 * Timer-dependent part of nd state machine. 713 * 714 * Set noinline to be dtrace-friendly 715 */ 716 static __noinline void 717 nd6_llinfo_timer(void *arg) 718 { 719 struct llentry *ln; 720 struct in6_addr *dst, *pdst, *psrc, src; 721 struct ifnet *ifp; 722 struct nd_ifinfo *ndi = NULL; 723 int do_switch, send_ns; 724 long delay; 725 726 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 727 ln = (struct llentry *)arg; 728 LLE_WLOCK(ln); 729 if (callout_pending(&ln->lle_timer)) { 730 /* 731 * Here we are a bit odd here in the treatment of 732 * active/pending. If the pending bit is set, it got 733 * rescheduled before I ran. The active 734 * bit we ignore, since if it was stopped 735 * in ll_tablefree() and was currently running 736 * it would have return 0 so the code would 737 * not have deleted it since the callout could 738 * not be stopped so we want to go through 739 * with the delete here now. If the callout 740 * was restarted, the pending bit will be back on and 741 * we just want to bail since the callout_reset would 742 * return 1 and our reference would have been removed 743 * by nd6_llinfo_settimer_locked above since canceled 744 * would have been 1. 745 */ 746 LLE_WUNLOCK(ln); 747 return; 748 } 749 ifp = ln->lle_tbl->llt_ifp; 750 CURVNET_SET(ifp->if_vnet); 751 ndi = ND_IFINFO(ifp); 752 send_ns = 0; 753 dst = &ln->r_l3addr.addr6; 754 pdst = dst; 755 756 if (ln->ln_ntick > 0) { 757 if (ln->ln_ntick > INT_MAX) { 758 ln->ln_ntick -= INT_MAX; 759 nd6_llinfo_settimer_locked(ln, INT_MAX); 760 } else { 761 ln->ln_ntick = 0; 762 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 763 } 764 goto done; 765 } 766 767 if (ln->la_flags & LLE_STATIC) { 768 goto done; 769 } 770 771 if (ln->la_flags & LLE_DELETED) { 772 nd6_free(ln, 0); 773 ln = NULL; 774 goto done; 775 } 776 777 switch (ln->ln_state) { 778 case ND6_LLINFO_INCOMPLETE: 779 if (ln->la_asked < V_nd6_mmaxtries) { 780 ln->la_asked++; 781 send_ns = 1; 782 /* Send NS to multicast address */ 783 pdst = NULL; 784 } else { 785 struct mbuf *m = ln->la_hold; 786 if (m) { 787 struct mbuf *m0; 788 789 /* 790 * assuming every packet in la_hold has the 791 * same IP header. Send error after unlock. 792 */ 793 m0 = m->m_nextpkt; 794 m->m_nextpkt = NULL; 795 ln->la_hold = m0; 796 clear_llinfo_pqueue(ln); 797 } 798 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT); 799 nd6_free(ln, 0); 800 ln = NULL; 801 if (m != NULL) 802 icmp6_error2(m, ICMP6_DST_UNREACH, 803 ICMP6_DST_UNREACH_ADDR, 0, ifp); 804 } 805 break; 806 case ND6_LLINFO_REACHABLE: 807 if (!ND6_LLINFO_PERMANENT(ln)) 808 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 809 break; 810 811 case ND6_LLINFO_STALE: 812 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 813 814 /* 815 * No packet has used this entry and GC timeout 816 * has not been passed. Reshedule timer and 817 * return. 818 */ 819 nd6_llinfo_settimer_locked(ln, delay); 820 break; 821 } 822 823 if (do_switch == 0) { 824 825 /* 826 * GC timer has ended and entry hasn't been used. 827 * Run Garbage collector (RFC 4861, 5.3) 828 */ 829 if (!ND6_LLINFO_PERMANENT(ln)) { 830 EVENTHANDLER_INVOKE(lle_event, ln, 831 LLENTRY_EXPIRED); 832 nd6_free(ln, 1); 833 ln = NULL; 834 } 835 break; 836 } 837 838 /* Entry has been used AND delay timer has ended. */ 839 840 /* FALLTHROUGH */ 841 842 case ND6_LLINFO_DELAY: 843 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 844 /* We need NUD */ 845 ln->la_asked = 1; 846 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 847 send_ns = 1; 848 } else 849 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 850 break; 851 case ND6_LLINFO_PROBE: 852 if (ln->la_asked < V_nd6_umaxtries) { 853 ln->la_asked++; 854 send_ns = 1; 855 } else { 856 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 857 nd6_free(ln, 0); 858 ln = NULL; 859 } 860 break; 861 default: 862 panic("%s: paths in a dark night can be confusing: %d", 863 __func__, ln->ln_state); 864 } 865 done: 866 if (send_ns != 0) { 867 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 868 psrc = nd6_llinfo_get_holdsrc(ln, &src); 869 LLE_FREE_LOCKED(ln); 870 ln = NULL; 871 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 872 } 873 874 if (ln != NULL) 875 LLE_FREE_LOCKED(ln); 876 CURVNET_RESTORE(); 877 } 878 879 880 /* 881 * ND6 timer routine to expire default route list and prefix list 882 */ 883 void 884 nd6_timer(void *arg) 885 { 886 CURVNET_SET((struct vnet *) arg); 887 struct nd_defrouter *dr, *ndr; 888 struct nd_prefix *pr, *npr; 889 struct in6_ifaddr *ia6, *nia6; 890 891 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 892 nd6_timer, curvnet); 893 894 /* expire default router list */ 895 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 896 if (dr->expire && dr->expire < time_uptime) 897 defrtrlist_del(dr); 898 } 899 900 /* 901 * expire interface addresses. 902 * in the past the loop was inside prefix expiry processing. 903 * However, from a stricter speci-confrmance standpoint, we should 904 * rather separate address lifetimes and prefix lifetimes. 905 * 906 * XXXRW: in6_ifaddrhead locking. 907 */ 908 addrloop: 909 TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 910 /* check address lifetime */ 911 if (IFA6_IS_INVALID(ia6)) { 912 int regen = 0; 913 914 /* 915 * If the expiring address is temporary, try 916 * regenerating a new one. This would be useful when 917 * we suspended a laptop PC, then turned it on after a 918 * period that could invalidate all temporary 919 * addresses. Although we may have to restart the 920 * loop (see below), it must be after purging the 921 * address. Otherwise, we'd see an infinite loop of 922 * regeneration. 923 */ 924 if (V_ip6_use_tempaddr && 925 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 926 if (regen_tmpaddr(ia6) == 0) 927 regen = 1; 928 } 929 930 in6_purgeaddr(&ia6->ia_ifa); 931 932 if (regen) 933 goto addrloop; /* XXX: see below */ 934 } else if (IFA6_IS_DEPRECATED(ia6)) { 935 int oldflags = ia6->ia6_flags; 936 937 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 938 939 /* 940 * If a temporary address has just become deprecated, 941 * regenerate a new one if possible. 942 */ 943 if (V_ip6_use_tempaddr && 944 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 945 (oldflags & IN6_IFF_DEPRECATED) == 0) { 946 947 if (regen_tmpaddr(ia6) == 0) { 948 /* 949 * A new temporary address is 950 * generated. 951 * XXX: this means the address chain 952 * has changed while we are still in 953 * the loop. Although the change 954 * would not cause disaster (because 955 * it's not a deletion, but an 956 * addition,) we'd rather restart the 957 * loop just for safety. Or does this 958 * significantly reduce performance?? 959 */ 960 goto addrloop; 961 } 962 } 963 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 964 /* 965 * Schedule DAD for a tentative address. This happens 966 * if the interface was down or not running 967 * when the address was configured. 968 */ 969 int delay; 970 971 delay = arc4random() % 972 (MAX_RTR_SOLICITATION_DELAY * hz); 973 nd6_dad_start((struct ifaddr *)ia6, delay); 974 } else { 975 /* 976 * Check status of the interface. If it is down, 977 * mark the address as tentative for future DAD. 978 */ 979 if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || 980 (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) 981 == 0 || 982 (ND_IFINFO(ia6->ia_ifp)->flags & 983 ND6_IFF_IFDISABLED) != 0) { 984 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 985 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 986 } 987 /* 988 * A new RA might have made a deprecated address 989 * preferred. 990 */ 991 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 992 } 993 } 994 995 /* expire prefix list */ 996 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 997 /* 998 * check prefix lifetime. 999 * since pltime is just for autoconf, pltime processing for 1000 * prefix is not necessary. 1001 */ 1002 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 1003 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 1004 1005 /* 1006 * address expiration and prefix expiration are 1007 * separate. NEVER perform in6_purgeaddr here. 1008 */ 1009 prelist_remove(pr); 1010 } 1011 } 1012 CURVNET_RESTORE(); 1013 } 1014 1015 /* 1016 * ia6 - deprecated/invalidated temporary address 1017 */ 1018 static int 1019 regen_tmpaddr(struct in6_ifaddr *ia6) 1020 { 1021 struct ifaddr *ifa; 1022 struct ifnet *ifp; 1023 struct in6_ifaddr *public_ifa6 = NULL; 1024 1025 ifp = ia6->ia_ifa.ifa_ifp; 1026 IF_ADDR_RLOCK(ifp); 1027 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1028 struct in6_ifaddr *it6; 1029 1030 if (ifa->ifa_addr->sa_family != AF_INET6) 1031 continue; 1032 1033 it6 = (struct in6_ifaddr *)ifa; 1034 1035 /* ignore no autoconf addresses. */ 1036 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1037 continue; 1038 1039 /* ignore autoconf addresses with different prefixes. */ 1040 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1041 continue; 1042 1043 /* 1044 * Now we are looking at an autoconf address with the same 1045 * prefix as ours. If the address is temporary and is still 1046 * preferred, do not create another one. It would be rare, but 1047 * could happen, for example, when we resume a laptop PC after 1048 * a long period. 1049 */ 1050 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1051 !IFA6_IS_DEPRECATED(it6)) { 1052 public_ifa6 = NULL; 1053 break; 1054 } 1055 1056 /* 1057 * This is a public autoconf address that has the same prefix 1058 * as ours. If it is preferred, keep it. We can't break the 1059 * loop here, because there may be a still-preferred temporary 1060 * address with the prefix. 1061 */ 1062 if (!IFA6_IS_DEPRECATED(it6)) 1063 public_ifa6 = it6; 1064 } 1065 if (public_ifa6 != NULL) 1066 ifa_ref(&public_ifa6->ia_ifa); 1067 IF_ADDR_RUNLOCK(ifp); 1068 1069 if (public_ifa6 != NULL) { 1070 int e; 1071 1072 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1073 ifa_free(&public_ifa6->ia_ifa); 1074 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1075 " tmp addr,errno=%d\n", e); 1076 return (-1); 1077 } 1078 ifa_free(&public_ifa6->ia_ifa); 1079 return (0); 1080 } 1081 1082 return (-1); 1083 } 1084 1085 /* 1086 * Nuke neighbor cache/prefix/default router management table, right before 1087 * ifp goes away. 1088 */ 1089 void 1090 nd6_purge(struct ifnet *ifp) 1091 { 1092 struct nd_defrouter *dr, *ndr; 1093 struct nd_prefix *pr, *npr; 1094 1095 /* 1096 * Nuke default router list entries toward ifp. 1097 * We defer removal of default router list entries that is installed 1098 * in the routing table, in order to keep additional side effects as 1099 * small as possible. 1100 */ 1101 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1102 if (dr->installed) 1103 continue; 1104 1105 if (dr->ifp == ifp) 1106 defrtrlist_del(dr); 1107 } 1108 1109 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { 1110 if (!dr->installed) 1111 continue; 1112 1113 if (dr->ifp == ifp) 1114 defrtrlist_del(dr); 1115 } 1116 1117 /* Nuke prefix list entries toward ifp */ 1118 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1119 if (pr->ndpr_ifp == ifp) { 1120 /* 1121 * Because if_detach() does *not* release prefixes 1122 * while purging addresses the reference count will 1123 * still be above zero. We therefore reset it to 1124 * make sure that the prefix really gets purged. 1125 */ 1126 pr->ndpr_refcnt = 0; 1127 1128 /* 1129 * Previously, pr->ndpr_addr is removed as well, 1130 * but I strongly believe we don't have to do it. 1131 * nd6_purge() is only called from in6_ifdetach(), 1132 * which removes all the associated interface addresses 1133 * by itself. 1134 * (jinmei@kame.net 20010129) 1135 */ 1136 prelist_remove(pr); 1137 } 1138 } 1139 1140 /* cancel default outgoing interface setting */ 1141 if (V_nd6_defifindex == ifp->if_index) 1142 nd6_setdefaultiface(0); 1143 1144 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1145 /* Refresh default router list. */ 1146 defrouter_select(); 1147 } 1148 1149 /* XXXXX 1150 * We do not nuke the neighbor cache entries here any more 1151 * because the neighbor cache is kept in if_afdata[AF_INET6]. 1152 * nd6_purge() is invoked by in6_ifdetach() which is called 1153 * from if_detach() where everything gets purged. So let 1154 * in6_domifdetach() do the actual L2 table purging work. 1155 */ 1156 } 1157 1158 /* 1159 * the caller acquires and releases the lock on the lltbls 1160 * Returns the llentry locked 1161 */ 1162 struct llentry * 1163 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1164 { 1165 struct sockaddr_in6 sin6; 1166 struct llentry *ln; 1167 1168 bzero(&sin6, sizeof(sin6)); 1169 sin6.sin6_len = sizeof(struct sockaddr_in6); 1170 sin6.sin6_family = AF_INET6; 1171 sin6.sin6_addr = *addr6; 1172 1173 IF_AFDATA_LOCK_ASSERT(ifp); 1174 1175 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1176 1177 return (ln); 1178 } 1179 1180 struct llentry * 1181 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1182 { 1183 struct sockaddr_in6 sin6; 1184 struct llentry *ln; 1185 1186 bzero(&sin6, sizeof(sin6)); 1187 sin6.sin6_len = sizeof(struct sockaddr_in6); 1188 sin6.sin6_family = AF_INET6; 1189 sin6.sin6_addr = *addr6; 1190 1191 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1192 if (ln != NULL) 1193 ln->ln_state = ND6_LLINFO_NOSTATE; 1194 1195 return (ln); 1196 } 1197 1198 /* 1199 * Test whether a given IPv6 address is a neighbor or not, ignoring 1200 * the actual neighbor cache. The neighbor cache is ignored in order 1201 * to not reenter the routing code from within itself. 1202 */ 1203 static int 1204 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1205 { 1206 struct nd_prefix *pr; 1207 struct ifaddr *dstaddr; 1208 struct rt_addrinfo info; 1209 struct sockaddr_in6 rt_key; 1210 struct sockaddr *dst6; 1211 int fibnum; 1212 1213 /* 1214 * A link-local address is always a neighbor. 1215 * XXX: a link does not necessarily specify a single interface. 1216 */ 1217 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1218 struct sockaddr_in6 sin6_copy; 1219 u_int32_t zone; 1220 1221 /* 1222 * We need sin6_copy since sa6_recoverscope() may modify the 1223 * content (XXX). 1224 */ 1225 sin6_copy = *addr; 1226 if (sa6_recoverscope(&sin6_copy)) 1227 return (0); /* XXX: should be impossible */ 1228 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1229 return (0); 1230 if (sin6_copy.sin6_scope_id == zone) 1231 return (1); 1232 else 1233 return (0); 1234 } 1235 1236 bzero(&rt_key, sizeof(rt_key)); 1237 bzero(&info, sizeof(info)); 1238 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1239 1240 /* Always use the default FIB here. XXME - why? */ 1241 fibnum = RT_DEFAULT_FIB; 1242 1243 /* 1244 * If the address matches one of our addresses, 1245 * it should be a neighbor. 1246 * If the address matches one of our on-link prefixes, it should be a 1247 * neighbor. 1248 */ 1249 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1250 if (pr->ndpr_ifp != ifp) 1251 continue; 1252 1253 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1254 1255 /* Always use the default FIB here. */ 1256 dst6 = (struct sockaddr *)&pr->ndpr_prefix; 1257 1258 /* Restore length field before retrying lookup */ 1259 rt_key.sin6_len = sizeof(rt_key); 1260 if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) 1261 continue; 1262 /* 1263 * This is the case where multiple interfaces 1264 * have the same prefix, but only one is installed 1265 * into the routing table and that prefix entry 1266 * is not the one being examined here. In the case 1267 * where RADIX_MPATH is enabled, multiple route 1268 * entries (of the same rt_key value) will be 1269 * installed because the interface addresses all 1270 * differ. 1271 */ 1272 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1273 &rt_key.sin6_addr)) 1274 continue; 1275 } 1276 1277 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1278 &addr->sin6_addr, &pr->ndpr_mask)) 1279 return (1); 1280 } 1281 1282 /* 1283 * If the address is assigned on the node of the other side of 1284 * a p2p interface, the address should be a neighbor. 1285 */ 1286 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); 1287 if (dstaddr != NULL) { 1288 if (dstaddr->ifa_ifp == ifp) { 1289 ifa_free(dstaddr); 1290 return (1); 1291 } 1292 ifa_free(dstaddr); 1293 } 1294 1295 /* 1296 * If the default router list is empty, all addresses are regarded 1297 * as on-link, and thus, as a neighbor. 1298 */ 1299 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1300 TAILQ_EMPTY(&V_nd_defrouter) && 1301 V_nd6_defifindex == ifp->if_index) { 1302 return (1); 1303 } 1304 1305 return (0); 1306 } 1307 1308 1309 /* 1310 * Detect if a given IPv6 address identifies a neighbor on a given link. 1311 * XXX: should take care of the destination of a p2p link? 1312 */ 1313 int 1314 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1315 { 1316 struct llentry *lle; 1317 int rc = 0; 1318 1319 IF_AFDATA_UNLOCK_ASSERT(ifp); 1320 if (nd6_is_new_addr_neighbor(addr, ifp)) 1321 return (1); 1322 1323 /* 1324 * Even if the address matches none of our addresses, it might be 1325 * in the neighbor cache. 1326 */ 1327 IF_AFDATA_RLOCK(ifp); 1328 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1329 LLE_RUNLOCK(lle); 1330 rc = 1; 1331 } 1332 IF_AFDATA_RUNLOCK(ifp); 1333 return (rc); 1334 } 1335 1336 /* 1337 * Free an nd6 llinfo entry. 1338 * Since the function would cause significant changes in the kernel, DO NOT 1339 * make it global, unless you have a strong reason for the change, and are sure 1340 * that the change is safe. 1341 * 1342 * Set noinline to be dtrace-friendly 1343 */ 1344 static __noinline void 1345 nd6_free(struct llentry *ln, int gc) 1346 { 1347 struct nd_defrouter *dr; 1348 struct ifnet *ifp; 1349 1350 LLE_WLOCK_ASSERT(ln); 1351 1352 /* 1353 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1354 * even though it is not harmful, it was not really necessary. 1355 */ 1356 1357 /* cancel timer */ 1358 nd6_llinfo_settimer_locked(ln, -1); 1359 1360 ifp = ln->lle_tbl->llt_ifp; 1361 1362 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1363 dr = defrouter_lookup(&ln->r_l3addr.addr6, ifp); 1364 1365 if (dr != NULL && dr->expire && 1366 ln->ln_state == ND6_LLINFO_STALE && gc) { 1367 /* 1368 * If the reason for the deletion is just garbage 1369 * collection, and the neighbor is an active default 1370 * router, do not delete it. Instead, reset the GC 1371 * timer using the router's lifetime. 1372 * Simply deleting the entry would affect default 1373 * router selection, which is not necessarily a good 1374 * thing, especially when we're using router preference 1375 * values. 1376 * XXX: the check for ln_state would be redundant, 1377 * but we intentionally keep it just in case. 1378 */ 1379 if (dr->expire > time_uptime) 1380 nd6_llinfo_settimer_locked(ln, 1381 (dr->expire - time_uptime) * hz); 1382 else 1383 nd6_llinfo_settimer_locked(ln, 1384 (long)V_nd6_gctimer * hz); 1385 1386 LLE_REMREF(ln); 1387 LLE_WUNLOCK(ln); 1388 return; 1389 } 1390 1391 if (dr) { 1392 /* 1393 * Unreachablity of a router might affect the default 1394 * router selection and on-link detection of advertised 1395 * prefixes. 1396 */ 1397 1398 /* 1399 * Temporarily fake the state to choose a new default 1400 * router and to perform on-link determination of 1401 * prefixes correctly. 1402 * Below the state will be set correctly, 1403 * or the entry itself will be deleted. 1404 */ 1405 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1406 } 1407 1408 if (ln->ln_router || dr) { 1409 1410 /* 1411 * We need to unlock to avoid a LOR with rt6_flush() with the 1412 * rnh and for the calls to pfxlist_onlink_check() and 1413 * defrouter_select() in the block further down for calls 1414 * into nd6_lookup(). We still hold a ref. 1415 */ 1416 LLE_WUNLOCK(ln); 1417 1418 /* 1419 * rt6_flush must be called whether or not the neighbor 1420 * is in the Default Router List. 1421 * See a corresponding comment in nd6_na_input(). 1422 */ 1423 rt6_flush(&ln->r_l3addr.addr6, ifp); 1424 } 1425 1426 if (dr) { 1427 /* 1428 * Since defrouter_select() does not affect the 1429 * on-link determination and MIP6 needs the check 1430 * before the default router selection, we perform 1431 * the check now. 1432 */ 1433 pfxlist_onlink_check(); 1434 1435 /* 1436 * Refresh default router list. 1437 */ 1438 defrouter_select(); 1439 } 1440 1441 /* 1442 * If this entry was added by an on-link redirect, remove the 1443 * corresponding host route. 1444 */ 1445 if (ln->la_flags & LLE_REDIRECT) 1446 nd6_free_redirect(ln); 1447 1448 if (ln->ln_router || dr) 1449 LLE_WLOCK(ln); 1450 } 1451 1452 /* 1453 * Save to unlock. We still hold an extra reference and will not 1454 * free(9) in llentry_free() if someone else holds one as well. 1455 */ 1456 LLE_WUNLOCK(ln); 1457 IF_AFDATA_LOCK(ifp); 1458 LLE_WLOCK(ln); 1459 /* Guard against race with other llentry_free(). */ 1460 if (ln->la_flags & LLE_LINKED) { 1461 /* Remove callout reference */ 1462 LLE_REMREF(ln); 1463 lltable_unlink_entry(ln->lle_tbl, ln); 1464 } 1465 IF_AFDATA_UNLOCK(ifp); 1466 1467 llentry_free(ln); 1468 } 1469 1470 static int 1471 nd6_isdynrte(const struct rtentry *rt, void *xap) 1472 { 1473 1474 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1475 return (1); 1476 1477 return (0); 1478 } 1479 /* 1480 * Remove the rtentry for the given llentry, 1481 * both of which were installed by a redirect. 1482 */ 1483 static void 1484 nd6_free_redirect(const struct llentry *ln) 1485 { 1486 int fibnum; 1487 struct sockaddr_in6 sin6; 1488 struct rt_addrinfo info; 1489 1490 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1491 memset(&info, 0, sizeof(info)); 1492 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1493 info.rti_filter = nd6_isdynrte; 1494 1495 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1496 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1497 } 1498 1499 /* 1500 * Rejuvenate this function for routing operations related 1501 * processing. 1502 */ 1503 void 1504 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1505 { 1506 struct sockaddr_in6 *gateway; 1507 struct nd_defrouter *dr; 1508 struct ifnet *ifp; 1509 1510 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1511 ifp = rt->rt_ifp; 1512 1513 switch (req) { 1514 case RTM_ADD: 1515 break; 1516 1517 case RTM_DELETE: 1518 if (!ifp) 1519 return; 1520 /* 1521 * Only indirect routes are interesting. 1522 */ 1523 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1524 return; 1525 /* 1526 * check for default route 1527 */ 1528 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1529 &SIN6(rt_key(rt))->sin6_addr)) { 1530 1531 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1532 if (dr != NULL) 1533 dr->installed = 0; 1534 } 1535 break; 1536 } 1537 } 1538 1539 1540 int 1541 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1542 { 1543 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1544 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1545 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1546 int error = 0; 1547 1548 if (ifp->if_afdata[AF_INET6] == NULL) 1549 return (EPFNOSUPPORT); 1550 switch (cmd) { 1551 case OSIOCGIFINFO_IN6: 1552 #define ND ndi->ndi 1553 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1554 bzero(&ND, sizeof(ND)); 1555 ND.linkmtu = IN6_LINKMTU(ifp); 1556 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1557 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1558 ND.reachable = ND_IFINFO(ifp)->reachable; 1559 ND.retrans = ND_IFINFO(ifp)->retrans; 1560 ND.flags = ND_IFINFO(ifp)->flags; 1561 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1562 ND.chlim = ND_IFINFO(ifp)->chlim; 1563 break; 1564 case SIOCGIFINFO_IN6: 1565 ND = *ND_IFINFO(ifp); 1566 break; 1567 case SIOCSIFINFO_IN6: 1568 /* 1569 * used to change host variables from userland. 1570 * intented for a use on router to reflect RA configurations. 1571 */ 1572 /* 0 means 'unspecified' */ 1573 if (ND.linkmtu != 0) { 1574 if (ND.linkmtu < IPV6_MMTU || 1575 ND.linkmtu > IN6_LINKMTU(ifp)) { 1576 error = EINVAL; 1577 break; 1578 } 1579 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1580 } 1581 1582 if (ND.basereachable != 0) { 1583 int obasereachable = ND_IFINFO(ifp)->basereachable; 1584 1585 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1586 if (ND.basereachable != obasereachable) 1587 ND_IFINFO(ifp)->reachable = 1588 ND_COMPUTE_RTIME(ND.basereachable); 1589 } 1590 if (ND.retrans != 0) 1591 ND_IFINFO(ifp)->retrans = ND.retrans; 1592 if (ND.chlim != 0) 1593 ND_IFINFO(ifp)->chlim = ND.chlim; 1594 /* FALLTHROUGH */ 1595 case SIOCSIFINFO_FLAGS: 1596 { 1597 struct ifaddr *ifa; 1598 struct in6_ifaddr *ia; 1599 1600 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1601 !(ND.flags & ND6_IFF_IFDISABLED)) { 1602 /* ifdisabled 1->0 transision */ 1603 1604 /* 1605 * If the interface is marked as ND6_IFF_IFDISABLED and 1606 * has an link-local address with IN6_IFF_DUPLICATED, 1607 * do not clear ND6_IFF_IFDISABLED. 1608 * See RFC 4862, Section 5.4.5. 1609 */ 1610 IF_ADDR_RLOCK(ifp); 1611 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1612 if (ifa->ifa_addr->sa_family != AF_INET6) 1613 continue; 1614 ia = (struct in6_ifaddr *)ifa; 1615 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1616 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1617 break; 1618 } 1619 IF_ADDR_RUNLOCK(ifp); 1620 1621 if (ifa != NULL) { 1622 /* LLA is duplicated. */ 1623 ND.flags |= ND6_IFF_IFDISABLED; 1624 log(LOG_ERR, "Cannot enable an interface" 1625 " with a link-local address marked" 1626 " duplicate.\n"); 1627 } else { 1628 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1629 if (ifp->if_flags & IFF_UP) 1630 in6_if_up(ifp); 1631 } 1632 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1633 (ND.flags & ND6_IFF_IFDISABLED)) { 1634 /* ifdisabled 0->1 transision */ 1635 /* Mark all IPv6 address as tentative. */ 1636 1637 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1638 if (V_ip6_dad_count > 0 && 1639 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1640 IF_ADDR_RLOCK(ifp); 1641 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1642 ifa_link) { 1643 if (ifa->ifa_addr->sa_family != 1644 AF_INET6) 1645 continue; 1646 ia = (struct in6_ifaddr *)ifa; 1647 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1648 } 1649 IF_ADDR_RUNLOCK(ifp); 1650 } 1651 } 1652 1653 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1654 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1655 /* auto_linklocal 0->1 transision */ 1656 1657 /* If no link-local address on ifp, configure */ 1658 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1659 in6_ifattach(ifp, NULL); 1660 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1661 ifp->if_flags & IFF_UP) { 1662 /* 1663 * When the IF already has 1664 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1665 * address is assigned, and IFF_UP, try to 1666 * assign one. 1667 */ 1668 IF_ADDR_RLOCK(ifp); 1669 TAILQ_FOREACH(ifa, &ifp->if_addrhead, 1670 ifa_link) { 1671 if (ifa->ifa_addr->sa_family != 1672 AF_INET6) 1673 continue; 1674 ia = (struct in6_ifaddr *)ifa; 1675 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1676 break; 1677 } 1678 IF_ADDR_RUNLOCK(ifp); 1679 if (ifa != NULL) 1680 /* No LLA is configured. */ 1681 in6_ifattach(ifp, NULL); 1682 } 1683 } 1684 } 1685 ND_IFINFO(ifp)->flags = ND.flags; 1686 break; 1687 #undef ND 1688 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1689 /* sync kernel routing table with the default router list */ 1690 defrouter_reset(); 1691 defrouter_select(); 1692 break; 1693 case SIOCSPFXFLUSH_IN6: 1694 { 1695 /* flush all the prefix advertised by routers */ 1696 struct nd_prefix *pr, *next; 1697 1698 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1699 struct in6_ifaddr *ia, *ia_next; 1700 1701 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1702 continue; /* XXX */ 1703 1704 /* do we really have to remove addresses as well? */ 1705 /* XXXRW: in6_ifaddrhead locking. */ 1706 TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1707 ia_next) { 1708 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1709 continue; 1710 1711 if (ia->ia6_ndpr == pr) 1712 in6_purgeaddr(&ia->ia_ifa); 1713 } 1714 prelist_remove(pr); 1715 } 1716 break; 1717 } 1718 case SIOCSRTRFLUSH_IN6: 1719 { 1720 /* flush all the default routers */ 1721 struct nd_defrouter *dr, *next; 1722 1723 defrouter_reset(); 1724 TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) { 1725 defrtrlist_del(dr); 1726 } 1727 defrouter_select(); 1728 break; 1729 } 1730 case SIOCGNBRINFO_IN6: 1731 { 1732 struct llentry *ln; 1733 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1734 1735 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1736 return (error); 1737 1738 IF_AFDATA_RLOCK(ifp); 1739 ln = nd6_lookup(&nb_addr, 0, ifp); 1740 IF_AFDATA_RUNLOCK(ifp); 1741 1742 if (ln == NULL) { 1743 error = EINVAL; 1744 break; 1745 } 1746 nbi->state = ln->ln_state; 1747 nbi->asked = ln->la_asked; 1748 nbi->isrouter = ln->ln_router; 1749 if (ln->la_expire == 0) 1750 nbi->expire = 0; 1751 else 1752 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1753 (time_second - time_uptime); 1754 LLE_RUNLOCK(ln); 1755 break; 1756 } 1757 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1758 ndif->ifindex = V_nd6_defifindex; 1759 break; 1760 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1761 return (nd6_setdefaultiface(ndif->ifindex)); 1762 } 1763 return (error); 1764 } 1765 1766 /* 1767 * Calculates new isRouter value based on provided parameters and 1768 * returns it. 1769 */ 1770 static int 1771 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1772 int ln_router) 1773 { 1774 1775 /* 1776 * ICMP6 type dependent behavior. 1777 * 1778 * NS: clear IsRouter if new entry 1779 * RS: clear IsRouter 1780 * RA: set IsRouter if there's lladdr 1781 * redir: clear IsRouter if new entry 1782 * 1783 * RA case, (1): 1784 * The spec says that we must set IsRouter in the following cases: 1785 * - If lladdr exist, set IsRouter. This means (1-5). 1786 * - If it is old entry (!newentry), set IsRouter. This means (7). 1787 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1788 * A quetion arises for (1) case. (1) case has no lladdr in the 1789 * neighbor cache, this is similar to (6). 1790 * This case is rare but we figured that we MUST NOT set IsRouter. 1791 * 1792 * is_new old_addr new_addr NS RS RA redir 1793 * D R 1794 * 0 n n (1) c ? s 1795 * 0 y n (2) c s s 1796 * 0 n y (3) c s s 1797 * 0 y y (4) c s s 1798 * 0 y y (5) c s s 1799 * 1 -- n (6) c c c s 1800 * 1 -- y (7) c c s c s 1801 * 1802 * (c=clear s=set) 1803 */ 1804 switch (type & 0xff) { 1805 case ND_NEIGHBOR_SOLICIT: 1806 /* 1807 * New entry must have is_router flag cleared. 1808 */ 1809 if (is_new) /* (6-7) */ 1810 ln_router = 0; 1811 break; 1812 case ND_REDIRECT: 1813 /* 1814 * If the icmp is a redirect to a better router, always set the 1815 * is_router flag. Otherwise, if the entry is newly created, 1816 * clear the flag. [RFC 2461, sec 8.3] 1817 */ 1818 if (code == ND_REDIRECT_ROUTER) 1819 ln_router = 1; 1820 else { 1821 if (is_new) /* (6-7) */ 1822 ln_router = 0; 1823 } 1824 break; 1825 case ND_ROUTER_SOLICIT: 1826 /* 1827 * is_router flag must always be cleared. 1828 */ 1829 ln_router = 0; 1830 break; 1831 case ND_ROUTER_ADVERT: 1832 /* 1833 * Mark an entry with lladdr as a router. 1834 */ 1835 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1836 (is_new && new_addr)) { /* (7) */ 1837 ln_router = 1; 1838 } 1839 break; 1840 } 1841 1842 return (ln_router); 1843 } 1844 1845 /* 1846 * Create neighbor cache entry and cache link-layer address, 1847 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1848 * 1849 * type - ICMP6 type 1850 * code - type dependent information 1851 * 1852 */ 1853 void 1854 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1855 int lladdrlen, int type, int code) 1856 { 1857 struct llentry *ln = NULL, *ln_tmp; 1858 int is_newentry; 1859 int do_update; 1860 int olladdr; 1861 int llchange; 1862 int flags; 1863 uint16_t router = 0; 1864 struct sockaddr_in6 sin6; 1865 struct mbuf *chain = NULL; 1866 u_char linkhdr[LLE_MAX_LINKHDR]; 1867 size_t linkhdrsize; 1868 int lladdr_off; 1869 1870 IF_AFDATA_UNLOCK_ASSERT(ifp); 1871 1872 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1873 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1874 1875 /* nothing must be updated for unspecified address */ 1876 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1877 return; 1878 1879 /* 1880 * Validation about ifp->if_addrlen and lladdrlen must be done in 1881 * the caller. 1882 * 1883 * XXX If the link does not have link-layer adderss, what should 1884 * we do? (ifp->if_addrlen == 0) 1885 * Spec says nothing in sections for RA, RS and NA. There's small 1886 * description on it in NS section (RFC 2461 7.2.3). 1887 */ 1888 flags = lladdr ? LLE_EXCLUSIVE : 0; 1889 IF_AFDATA_RLOCK(ifp); 1890 ln = nd6_lookup(from, flags, ifp); 1891 IF_AFDATA_RUNLOCK(ifp); 1892 is_newentry = 0; 1893 if (ln == NULL) { 1894 flags |= LLE_EXCLUSIVE; 1895 ln = nd6_alloc(from, 0, ifp); 1896 if (ln == NULL) 1897 return; 1898 1899 /* 1900 * Since we already know all the data for the new entry, 1901 * fill it before insertion. 1902 */ 1903 if (lladdr != NULL) { 1904 linkhdrsize = sizeof(linkhdr); 1905 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1906 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1907 return; 1908 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1909 lladdr_off); 1910 } 1911 1912 IF_AFDATA_WLOCK(ifp); 1913 LLE_WLOCK(ln); 1914 /* Prefer any existing lle over newly-created one */ 1915 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1916 if (ln_tmp == NULL) 1917 lltable_link_entry(LLTABLE6(ifp), ln); 1918 IF_AFDATA_WUNLOCK(ifp); 1919 if (ln_tmp == NULL) { 1920 /* No existing lle, mark as new entry (6,7) */ 1921 is_newentry = 1; 1922 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1923 if (lladdr != NULL) /* (7) */ 1924 EVENTHANDLER_INVOKE(lle_event, ln, 1925 LLENTRY_RESOLVED); 1926 } else { 1927 lltable_free_entry(LLTABLE6(ifp), ln); 1928 ln = ln_tmp; 1929 ln_tmp = NULL; 1930 } 1931 } 1932 /* do nothing if static ndp is set */ 1933 if ((ln->la_flags & LLE_STATIC)) { 1934 if (flags & LLE_EXCLUSIVE) 1935 LLE_WUNLOCK(ln); 1936 else 1937 LLE_RUNLOCK(ln); 1938 return; 1939 } 1940 1941 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1942 if (olladdr && lladdr) { 1943 llchange = bcmp(lladdr, ln->ll_addr, 1944 ifp->if_addrlen); 1945 } else if (!olladdr && lladdr) 1946 llchange = 1; 1947 else 1948 llchange = 0; 1949 1950 /* 1951 * newentry olladdr lladdr llchange (*=record) 1952 * 0 n n -- (1) 1953 * 0 y n -- (2) 1954 * 0 n y y (3) * STALE 1955 * 0 y y n (4) * 1956 * 0 y y y (5) * STALE 1957 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1958 * 1 -- y -- (7) * STALE 1959 */ 1960 1961 do_update = 0; 1962 if (is_newentry == 0 && llchange != 0) { 1963 do_update = 1; /* (3,5) */ 1964 1965 /* 1966 * Record source link-layer address 1967 * XXX is it dependent to ifp->if_type? 1968 */ 1969 linkhdrsize = sizeof(linkhdr); 1970 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1971 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1972 return; 1973 1974 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1975 lladdr_off) == 0) { 1976 /* Entry was deleted */ 1977 return; 1978 } 1979 1980 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1981 1982 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 1983 1984 if (ln->la_hold != NULL) 1985 nd6_grab_holdchain(ln, &chain, &sin6); 1986 } 1987 1988 /* Calculates new router status */ 1989 router = nd6_is_router(type, code, is_newentry, olladdr, 1990 lladdr != NULL ? 1 : 0, ln->ln_router); 1991 1992 ln->ln_router = router; 1993 /* Mark non-router redirects with special flag */ 1994 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 1995 ln->la_flags |= LLE_REDIRECT; 1996 1997 if (flags & LLE_EXCLUSIVE) 1998 LLE_WUNLOCK(ln); 1999 else 2000 LLE_RUNLOCK(ln); 2001 2002 if (chain != NULL) 2003 nd6_flush_holdchain(ifp, ifp, chain, &sin6); 2004 2005 /* 2006 * When the link-layer address of a router changes, select the 2007 * best router again. In particular, when the neighbor entry is newly 2008 * created, it might affect the selection policy. 2009 * Question: can we restrict the first condition to the "is_newentry" 2010 * case? 2011 * XXX: when we hear an RA from a new router with the link-layer 2012 * address option, defrouter_select() is called twice, since 2013 * defrtrlist_update called the function as well. However, I believe 2014 * we can compromise the overhead, since it only happens the first 2015 * time. 2016 * XXX: although defrouter_select() should not have a bad effect 2017 * for those are not autoconfigured hosts, we explicitly avoid such 2018 * cases for safety. 2019 */ 2020 if ((do_update || is_newentry) && router && 2021 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2022 /* 2023 * guaranteed recursion 2024 */ 2025 defrouter_select(); 2026 } 2027 } 2028 2029 static void 2030 nd6_slowtimo(void *arg) 2031 { 2032 CURVNET_SET((struct vnet *) arg); 2033 struct nd_ifinfo *nd6if; 2034 struct ifnet *ifp; 2035 2036 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2037 nd6_slowtimo, curvnet); 2038 IFNET_RLOCK_NOSLEEP(); 2039 TAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2040 if (ifp->if_afdata[AF_INET6] == NULL) 2041 continue; 2042 nd6if = ND_IFINFO(ifp); 2043 if (nd6if->basereachable && /* already initialized */ 2044 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2045 /* 2046 * Since reachable time rarely changes by router 2047 * advertisements, we SHOULD insure that a new random 2048 * value gets recomputed at least once every few hours. 2049 * (RFC 2461, 6.3.4) 2050 */ 2051 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2052 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2053 } 2054 } 2055 IFNET_RUNLOCK_NOSLEEP(); 2056 CURVNET_RESTORE(); 2057 } 2058 2059 void 2060 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2061 struct sockaddr_in6 *sin6) 2062 { 2063 2064 LLE_WLOCK_ASSERT(ln); 2065 2066 *chain = ln->la_hold; 2067 ln->la_hold = NULL; 2068 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2069 2070 if (ln->ln_state == ND6_LLINFO_STALE) { 2071 2072 /* 2073 * The first time we send a packet to a 2074 * neighbor whose entry is STALE, we have 2075 * to change the state to DELAY and a sets 2076 * a timer to expire in DELAY_FIRST_PROBE_TIME 2077 * seconds to ensure do neighbor unreachability 2078 * detection on expiration. 2079 * (RFC 2461 7.3.3) 2080 */ 2081 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2082 } 2083 } 2084 2085 int 2086 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2087 struct sockaddr_in6 *dst, struct route *ro) 2088 { 2089 int error; 2090 int ip6len; 2091 struct ip6_hdr *ip6; 2092 struct m_tag *mtag; 2093 2094 #ifdef MAC 2095 mac_netinet6_nd6_send(ifp, m); 2096 #endif 2097 2098 /* 2099 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2100 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2101 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2102 * to be diverted to user space. When re-injected into the kernel, 2103 * send_output() will directly dispatch them to the outgoing interface. 2104 */ 2105 if (send_sendso_input_hook != NULL) { 2106 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2107 if (mtag != NULL) { 2108 ip6 = mtod(m, struct ip6_hdr *); 2109 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2110 /* Use the SEND socket */ 2111 error = send_sendso_input_hook(m, ifp, SND_OUT, 2112 ip6len); 2113 /* -1 == no app on SEND socket */ 2114 if (error == 0 || error != -1) 2115 return (error); 2116 } 2117 } 2118 2119 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2120 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2121 mtod(m, struct ip6_hdr *)); 2122 2123 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2124 origifp = ifp; 2125 2126 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2127 return (error); 2128 } 2129 2130 /* 2131 * Lookup link headerfor @sa_dst address. Stores found 2132 * data in @desten buffer. Copy of lle ln_flags can be also 2133 * saved in @pflags if @pflags is non-NULL. 2134 * 2135 * If destination LLE does not exists or lle state modification 2136 * is required, call "slow" version. 2137 * 2138 * Return values: 2139 * - 0 on success (address copied to buffer). 2140 * - EWOULDBLOCK (no local error, but address is still unresolved) 2141 * - other errors (alloc failure, etc) 2142 */ 2143 int 2144 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2145 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags) 2146 { 2147 struct llentry *ln = NULL; 2148 const struct sockaddr_in6 *dst6; 2149 2150 if (pflags != NULL) 2151 *pflags = 0; 2152 2153 dst6 = (const struct sockaddr_in6 *)sa_dst; 2154 2155 /* discard the packet if IPv6 operation is disabled on the interface */ 2156 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2157 m_freem(m); 2158 return (ENETDOWN); /* better error? */ 2159 } 2160 2161 if (m != NULL && m->m_flags & M_MCAST) { 2162 switch (ifp->if_type) { 2163 case IFT_ETHER: 2164 case IFT_FDDI: 2165 case IFT_L2VLAN: 2166 case IFT_IEEE80211: 2167 case IFT_BRIDGE: 2168 case IFT_ISO88025: 2169 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2170 desten); 2171 return (0); 2172 default: 2173 m_freem(m); 2174 return (EAFNOSUPPORT); 2175 } 2176 } 2177 2178 IF_AFDATA_RLOCK(ifp); 2179 ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); 2180 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2181 /* Entry found, let's copy lle info */ 2182 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2183 if (pflags != NULL) 2184 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2185 /* Check if we have feedback request from nd6 timer */ 2186 if (ln->r_skip_req != 0) { 2187 LLE_REQ_LOCK(ln); 2188 ln->r_skip_req = 0; /* Notify that entry was used */ 2189 ln->lle_hittime = time_uptime; 2190 LLE_REQ_UNLOCK(ln); 2191 } 2192 IF_AFDATA_RUNLOCK(ifp); 2193 return (0); 2194 } 2195 IF_AFDATA_RUNLOCK(ifp); 2196 2197 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags)); 2198 } 2199 2200 2201 /* 2202 * Do L2 address resolution for @sa_dst address. Stores found 2203 * address in @desten buffer. Copy of lle ln_flags can be also 2204 * saved in @pflags if @pflags is non-NULL. 2205 * 2206 * Heavy version. 2207 * Function assume that destination LLE does not exist, 2208 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2209 * 2210 * Set noinline to be dtrace-friendly 2211 */ 2212 static __noinline int 2213 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2214 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags) 2215 { 2216 struct llentry *lle = NULL, *lle_tmp; 2217 struct in6_addr *psrc, src; 2218 int send_ns, ll_len; 2219 char *lladdr; 2220 2221 /* 2222 * Address resolution or Neighbor Unreachability Detection 2223 * for the next hop. 2224 * At this point, the destination of the packet must be a unicast 2225 * or an anycast address(i.e. not a multicast). 2226 */ 2227 if (lle == NULL) { 2228 IF_AFDATA_RLOCK(ifp); 2229 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2230 IF_AFDATA_RUNLOCK(ifp); 2231 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2232 /* 2233 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2234 * the condition below is not very efficient. But we believe 2235 * it is tolerable, because this should be a rare case. 2236 */ 2237 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2238 if (lle == NULL) { 2239 char ip6buf[INET6_ADDRSTRLEN]; 2240 log(LOG_DEBUG, 2241 "nd6_output: can't allocate llinfo for %s " 2242 "(ln=%p)\n", 2243 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2244 m_freem(m); 2245 return (ENOBUFS); 2246 } 2247 2248 IF_AFDATA_WLOCK(ifp); 2249 LLE_WLOCK(lle); 2250 /* Prefer any existing entry over newly-created one */ 2251 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2252 if (lle_tmp == NULL) 2253 lltable_link_entry(LLTABLE6(ifp), lle); 2254 IF_AFDATA_WUNLOCK(ifp); 2255 if (lle_tmp != NULL) { 2256 lltable_free_entry(LLTABLE6(ifp), lle); 2257 lle = lle_tmp; 2258 lle_tmp = NULL; 2259 } 2260 } 2261 } 2262 if (lle == NULL) { 2263 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2264 m_freem(m); 2265 return (ENOBUFS); 2266 } 2267 2268 if (m != NULL) 2269 m_freem(m); 2270 return (ENOBUFS); 2271 } 2272 2273 LLE_WLOCK_ASSERT(lle); 2274 2275 /* 2276 * The first time we send a packet to a neighbor whose entry is 2277 * STALE, we have to change the state to DELAY and a sets a timer to 2278 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2279 * neighbor unreachability detection on expiration. 2280 * (RFC 2461 7.3.3) 2281 */ 2282 if (lle->ln_state == ND6_LLINFO_STALE) 2283 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2284 2285 /* 2286 * If the neighbor cache entry has a state other than INCOMPLETE 2287 * (i.e. its link-layer address is already resolved), just 2288 * send the packet. 2289 */ 2290 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2291 if (flags & LLE_ADDRONLY) { 2292 lladdr = lle->ll_addr; 2293 ll_len = ifp->if_addrlen; 2294 } else { 2295 lladdr = lle->r_linkdata; 2296 ll_len = lle->r_hdrlen; 2297 } 2298 bcopy(lladdr, desten, ll_len); 2299 if (pflags != NULL) 2300 *pflags = lle->la_flags; 2301 LLE_WUNLOCK(lle); 2302 return (0); 2303 } 2304 2305 /* 2306 * There is a neighbor cache entry, but no ethernet address 2307 * response yet. Append this latest packet to the end of the 2308 * packet queue in the mbuf, unless the number of the packet 2309 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2310 * the oldest packet in the queue will be removed. 2311 */ 2312 2313 if (lle->la_hold != NULL) { 2314 struct mbuf *m_hold; 2315 int i; 2316 2317 i = 0; 2318 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2319 i++; 2320 if (m_hold->m_nextpkt == NULL) { 2321 m_hold->m_nextpkt = m; 2322 break; 2323 } 2324 } 2325 while (i >= V_nd6_maxqueuelen) { 2326 m_hold = lle->la_hold; 2327 lle->la_hold = lle->la_hold->m_nextpkt; 2328 m_freem(m_hold); 2329 i--; 2330 } 2331 } else { 2332 lle->la_hold = m; 2333 } 2334 2335 /* 2336 * If there has been no NS for the neighbor after entering the 2337 * INCOMPLETE state, send the first solicitation. 2338 * Note that for newly-created lle la_asked will be 0, 2339 * so we will transition from ND6_LLINFO_NOSTATE to 2340 * ND6_LLINFO_INCOMPLETE state here. 2341 */ 2342 psrc = NULL; 2343 send_ns = 0; 2344 if (lle->la_asked == 0) { 2345 lle->la_asked++; 2346 send_ns = 1; 2347 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2348 2349 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2350 } 2351 LLE_WUNLOCK(lle); 2352 if (send_ns != 0) 2353 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2354 2355 return (EWOULDBLOCK); 2356 } 2357 2358 /* 2359 * Do L2 address resolution for @sa_dst address. Stores found 2360 * address in @desten buffer. Copy of lle ln_flags can be also 2361 * saved in @pflags if @pflags is non-NULL. 2362 * 2363 * Return values: 2364 * - 0 on success (address copied to buffer). 2365 * - EWOULDBLOCK (no local error, but address is still unresolved) 2366 * - other errors (alloc failure, etc) 2367 */ 2368 int 2369 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2370 char *desten, uint32_t *pflags) 2371 { 2372 int error; 2373 2374 flags |= LLE_ADDRONLY; 2375 error = nd6_resolve_slow(ifp, flags, NULL, 2376 (const struct sockaddr_in6 *)dst, desten, pflags); 2377 return (error); 2378 } 2379 2380 int 2381 nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, 2382 struct sockaddr_in6 *dst) 2383 { 2384 struct mbuf *m, *m_head; 2385 struct ifnet *outifp; 2386 int error = 0; 2387 2388 m_head = chain; 2389 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2390 outifp = origifp; 2391 else 2392 outifp = ifp; 2393 2394 while (m_head) { 2395 m = m_head; 2396 m_head = m_head->m_nextpkt; 2397 error = nd6_output_ifp(ifp, origifp, m, dst, NULL); 2398 } 2399 2400 /* 2401 * XXX 2402 * note that intermediate errors are blindly ignored 2403 */ 2404 return (error); 2405 } 2406 2407 static int 2408 nd6_need_cache(struct ifnet *ifp) 2409 { 2410 /* 2411 * XXX: we currently do not make neighbor cache on any interface 2412 * other than ARCnet, Ethernet, FDDI and GIF. 2413 * 2414 * RFC2893 says: 2415 * - unidirectional tunnels needs no ND 2416 */ 2417 switch (ifp->if_type) { 2418 case IFT_ARCNET: 2419 case IFT_ETHER: 2420 case IFT_FDDI: 2421 case IFT_IEEE1394: 2422 case IFT_L2VLAN: 2423 case IFT_IEEE80211: 2424 case IFT_INFINIBAND: 2425 case IFT_BRIDGE: 2426 case IFT_PROPVIRTUAL: 2427 return (1); 2428 default: 2429 return (0); 2430 } 2431 } 2432 2433 /* 2434 * Add pernament ND6 link-layer record for given 2435 * interface address. 2436 * 2437 * Very similar to IPv4 arp_ifinit(), but: 2438 * 1) IPv6 DAD is performed in different place 2439 * 2) It is called by IPv6 protocol stack in contrast to 2440 * arp_ifinit() which is typically called in SIOCSIFADDR 2441 * driver ioctl handler. 2442 * 2443 */ 2444 int 2445 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2446 { 2447 struct ifnet *ifp; 2448 struct llentry *ln, *ln_tmp; 2449 struct sockaddr *dst; 2450 2451 ifp = ia->ia_ifa.ifa_ifp; 2452 if (nd6_need_cache(ifp) == 0) 2453 return (0); 2454 2455 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2456 dst = (struct sockaddr *)&ia->ia_addr; 2457 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2458 if (ln == NULL) 2459 return (ENOBUFS); 2460 2461 IF_AFDATA_WLOCK(ifp); 2462 LLE_WLOCK(ln); 2463 /* Unlink any entry if exists */ 2464 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2465 if (ln_tmp != NULL) 2466 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2467 lltable_link_entry(LLTABLE6(ifp), ln); 2468 IF_AFDATA_WUNLOCK(ifp); 2469 2470 if (ln_tmp != NULL) 2471 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2472 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2473 2474 LLE_WUNLOCK(ln); 2475 if (ln_tmp != NULL) 2476 llentry_free(ln_tmp); 2477 2478 return (0); 2479 } 2480 2481 /* 2482 * Removes either all lle entries for given @ia, or lle 2483 * corresponding to @ia address. 2484 */ 2485 void 2486 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2487 { 2488 struct sockaddr_in6 mask, addr; 2489 struct sockaddr *saddr, *smask; 2490 struct ifnet *ifp; 2491 2492 ifp = ia->ia_ifa.ifa_ifp; 2493 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2494 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2495 saddr = (struct sockaddr *)&addr; 2496 smask = (struct sockaddr *)&mask; 2497 2498 if (all != 0) 2499 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2500 else 2501 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2502 } 2503 2504 static void 2505 clear_llinfo_pqueue(struct llentry *ln) 2506 { 2507 struct mbuf *m_hold, *m_hold_next; 2508 2509 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2510 m_hold_next = m_hold->m_nextpkt; 2511 m_freem(m_hold); 2512 } 2513 2514 ln->la_hold = NULL; 2515 } 2516 2517 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2518 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2519 #ifdef SYSCTL_DECL 2520 SYSCTL_DECL(_net_inet6_icmp6); 2521 #endif 2522 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2523 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2524 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2525 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2526 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2527 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2528 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2529 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2530 2531 static int 2532 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2533 { 2534 struct in6_defrouter d; 2535 struct nd_defrouter *dr; 2536 int error; 2537 2538 if (req->newptr) 2539 return (EPERM); 2540 2541 bzero(&d, sizeof(d)); 2542 d.rtaddr.sin6_family = AF_INET6; 2543 d.rtaddr.sin6_len = sizeof(d.rtaddr); 2544 2545 /* 2546 * XXX locking 2547 */ 2548 TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { 2549 d.rtaddr.sin6_addr = dr->rtaddr; 2550 error = sa6_recoverscope(&d.rtaddr); 2551 if (error != 0) 2552 return (error); 2553 d.flags = dr->raflags; 2554 d.rtlifetime = dr->rtlifetime; 2555 d.expire = dr->expire + (time_second - time_uptime); 2556 d.if_index = dr->ifp->if_index; 2557 error = SYSCTL_OUT(req, &d, sizeof(d)); 2558 if (error != 0) 2559 return (error); 2560 } 2561 return (0); 2562 } 2563 2564 static int 2565 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2566 { 2567 struct in6_prefix p; 2568 struct sockaddr_in6 s6; 2569 struct nd_prefix *pr; 2570 struct nd_pfxrouter *pfr; 2571 time_t maxexpire; 2572 int error; 2573 char ip6buf[INET6_ADDRSTRLEN]; 2574 2575 if (req->newptr) 2576 return (EPERM); 2577 2578 bzero(&p, sizeof(p)); 2579 p.origin = PR_ORIG_RA; 2580 bzero(&s6, sizeof(s6)); 2581 s6.sin6_family = AF_INET6; 2582 s6.sin6_len = sizeof(s6); 2583 2584 /* 2585 * XXX locking 2586 */ 2587 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2588 p.prefix = pr->ndpr_prefix; 2589 if (sa6_recoverscope(&p.prefix)) { 2590 log(LOG_ERR, "scope error in prefix list (%s)\n", 2591 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2592 /* XXX: press on... */ 2593 } 2594 p.raflags = pr->ndpr_raf; 2595 p.prefixlen = pr->ndpr_plen; 2596 p.vltime = pr->ndpr_vltime; 2597 p.pltime = pr->ndpr_pltime; 2598 p.if_index = pr->ndpr_ifp->if_index; 2599 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2600 p.expire = 0; 2601 else { 2602 /* XXX: we assume time_t is signed. */ 2603 maxexpire = (-1) & 2604 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2605 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2606 p.expire = pr->ndpr_lastupdate + 2607 pr->ndpr_vltime + 2608 (time_second - time_uptime); 2609 else 2610 p.expire = maxexpire; 2611 } 2612 p.refcnt = pr->ndpr_refcnt; 2613 p.flags = pr->ndpr_stateflags; 2614 p.advrtrs = 0; 2615 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2616 p.advrtrs++; 2617 error = SYSCTL_OUT(req, &p, sizeof(p)); 2618 if (error != 0) 2619 return (error); 2620 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2621 s6.sin6_addr = pfr->router->rtaddr; 2622 if (sa6_recoverscope(&s6)) 2623 log(LOG_ERR, 2624 "scope error in prefix list (%s)\n", 2625 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2626 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2627 if (error != 0) 2628 return (error); 2629 } 2630 } 2631 return (0); 2632 } 2633