1 /*- 2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the project nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_inet.h" 36 #include "opt_inet6.h" 37 #include "opt_mac.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/callout.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/time.h> 47 #include <sys/kernel.h> 48 #include <sys/protosw.h> 49 #include <sys/errno.h> 50 #include <sys/syslog.h> 51 #include <sys/queue.h> 52 #include <sys/sysctl.h> 53 54 #include <net/if.h> 55 #include <net/if_arc.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/iso88025.h> 59 #include <net/fddi.h> 60 #include <net/route.h> 61 62 #include <netinet/in.h> 63 #include <netinet/if_ether.h> 64 #include <netinet6/in6_var.h> 65 #include <netinet/ip6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet6/scope6_var.h> 68 #include <netinet6/nd6.h> 69 #include <netinet/icmp6.h> 70 71 #include <sys/limits.h> 72 73 #include <security/mac/mac_framework.h> 74 75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 77 78 #define SIN6(s) ((struct sockaddr_in6 *)s) 79 #define SDL(s) ((struct sockaddr_dl *)s) 80 81 /* timer values */ 82 int nd6_prune = 1; /* walk list every 1 seconds */ 83 int nd6_delay = 5; /* delay first probe time 5 second */ 84 int nd6_umaxtries = 3; /* maximum unicast query */ 85 int nd6_mmaxtries = 3; /* maximum multicast query */ 86 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 88 89 /* preventing too many loops in ND option parsing */ 90 int nd6_maxndopt = 10; /* max # of ND options allowed */ 91 92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 93 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 94 95 #ifdef ND6_DEBUG 96 int nd6_debug = 1; 97 #else 98 int nd6_debug = 0; 99 #endif 100 101 /* for debugging? */ 102 static int nd6_inuse, nd6_allocated; 103 104 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 105 struct nd_drhead nd_defrouter; 106 struct nd_prhead nd_prefix = { 0 }; 107 108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 109 static struct sockaddr_in6 all1_sa; 110 111 static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *, 112 struct ifnet *)); 113 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 114 static void nd6_slowtimo(void *); 115 static int regen_tmpaddr(struct in6_ifaddr *); 116 static struct llinfo_nd6 *nd6_free(struct rtentry *, int); 117 static void nd6_llinfo_timer(void *); 118 static void clear_llinfo_pqueue(struct llinfo_nd6 *); 119 120 struct callout nd6_slowtimo_ch; 121 struct callout nd6_timer_ch; 122 extern struct callout in6_tmpaddrtimer_ch; 123 124 void 125 nd6_init(void) 126 { 127 static int nd6_init_done = 0; 128 int i; 129 130 if (nd6_init_done) { 131 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 132 return; 133 } 134 135 all1_sa.sin6_family = AF_INET6; 136 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 137 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 138 all1_sa.sin6_addr.s6_addr[i] = 0xff; 139 140 /* initialization of the default router list */ 141 TAILQ_INIT(&nd_defrouter); 142 143 nd6_init_done = 1; 144 145 /* start timer */ 146 callout_init(&nd6_slowtimo_ch, 0); 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 } 150 151 struct nd_ifinfo * 152 nd6_ifattach(struct ifnet *ifp) 153 { 154 struct nd_ifinfo *nd; 155 156 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 157 bzero(nd, sizeof(*nd)); 158 159 nd->initialized = 1; 160 161 nd->chlim = IPV6_DEFHLIM; 162 nd->basereachable = REACHABLE_TIME; 163 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 164 nd->retrans = RETRANS_TIMER; 165 /* 166 * Note that the default value of ip6_accept_rtadv is 0, which means 167 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 168 * here. 169 */ 170 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 171 172 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 173 nd6_setmtu0(ifp, nd); 174 175 return nd; 176 } 177 178 void 179 nd6_ifdetach(struct nd_ifinfo *nd) 180 { 181 182 free(nd, M_IP6NDP); 183 } 184 185 /* 186 * Reset ND level link MTU. This function is called when the physical MTU 187 * changes, which means we might have to adjust the ND level MTU. 188 */ 189 void 190 nd6_setmtu(struct ifnet *ifp) 191 { 192 193 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 194 } 195 196 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 197 void 198 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 199 { 200 u_int32_t omaxmtu; 201 202 omaxmtu = ndi->maxmtu; 203 204 switch (ifp->if_type) { 205 case IFT_ARCNET: 206 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 207 break; 208 case IFT_FDDI: 209 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ 210 break; 211 case IFT_ISO88025: 212 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); 213 break; 214 default: 215 ndi->maxmtu = ifp->if_mtu; 216 break; 217 } 218 219 /* 220 * Decreasing the interface MTU under IPV6 minimum MTU may cause 221 * undesirable situation. We thus notify the operator of the change 222 * explicitly. The check for omaxmtu is necessary to restrict the 223 * log to the case of changing the MTU, not initializing it. 224 */ 225 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 226 log(LOG_NOTICE, "nd6_setmtu0: " 227 "new link MTU on %s (%lu) is too small for IPv6\n", 228 if_name(ifp), (unsigned long)ndi->maxmtu); 229 } 230 231 if (ndi->maxmtu > in6_maxmtu) 232 in6_setmaxmtu(); /* check all interfaces just in case */ 233 234 #undef MIN 235 } 236 237 void 238 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 239 { 240 241 bzero(ndopts, sizeof(*ndopts)); 242 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 243 ndopts->nd_opts_last 244 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 245 246 if (icmp6len == 0) { 247 ndopts->nd_opts_done = 1; 248 ndopts->nd_opts_search = NULL; 249 } 250 } 251 252 /* 253 * Take one ND option. 254 */ 255 struct nd_opt_hdr * 256 nd6_option(union nd_opts *ndopts) 257 { 258 struct nd_opt_hdr *nd_opt; 259 int olen; 260 261 if (ndopts == NULL) 262 panic("ndopts == NULL in nd6_option"); 263 if (ndopts->nd_opts_last == NULL) 264 panic("uninitialized ndopts in nd6_option"); 265 if (ndopts->nd_opts_search == NULL) 266 return NULL; 267 if (ndopts->nd_opts_done) 268 return NULL; 269 270 nd_opt = ndopts->nd_opts_search; 271 272 /* make sure nd_opt_len is inside the buffer */ 273 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 274 bzero(ndopts, sizeof(*ndopts)); 275 return NULL; 276 } 277 278 olen = nd_opt->nd_opt_len << 3; 279 if (olen == 0) { 280 /* 281 * Message validation requires that all included 282 * options have a length that is greater than zero. 283 */ 284 bzero(ndopts, sizeof(*ndopts)); 285 return NULL; 286 } 287 288 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 289 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 290 /* option overruns the end of buffer, invalid */ 291 bzero(ndopts, sizeof(*ndopts)); 292 return NULL; 293 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 294 /* reached the end of options chain */ 295 ndopts->nd_opts_done = 1; 296 ndopts->nd_opts_search = NULL; 297 } 298 return nd_opt; 299 } 300 301 /* 302 * Parse multiple ND options. 303 * This function is much easier to use, for ND routines that do not need 304 * multiple options of the same type. 305 */ 306 int 307 nd6_options(union nd_opts *ndopts) 308 { 309 struct nd_opt_hdr *nd_opt; 310 int i = 0; 311 312 if (ndopts == NULL) 313 panic("ndopts == NULL in nd6_options"); 314 if (ndopts->nd_opts_last == NULL) 315 panic("uninitialized ndopts in nd6_options"); 316 if (ndopts->nd_opts_search == NULL) 317 return 0; 318 319 while (1) { 320 nd_opt = nd6_option(ndopts); 321 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 322 /* 323 * Message validation requires that all included 324 * options have a length that is greater than zero. 325 */ 326 icmp6stat.icp6s_nd_badopt++; 327 bzero(ndopts, sizeof(*ndopts)); 328 return -1; 329 } 330 331 if (nd_opt == NULL) 332 goto skip1; 333 334 switch (nd_opt->nd_opt_type) { 335 case ND_OPT_SOURCE_LINKADDR: 336 case ND_OPT_TARGET_LINKADDR: 337 case ND_OPT_MTU: 338 case ND_OPT_REDIRECTED_HEADER: 339 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 340 nd6log((LOG_INFO, 341 "duplicated ND6 option found (type=%d)\n", 342 nd_opt->nd_opt_type)); 343 /* XXX bark? */ 344 } else { 345 ndopts->nd_opt_array[nd_opt->nd_opt_type] 346 = nd_opt; 347 } 348 break; 349 case ND_OPT_PREFIX_INFORMATION: 350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 351 ndopts->nd_opt_array[nd_opt->nd_opt_type] 352 = nd_opt; 353 } 354 ndopts->nd_opts_pi_end = 355 (struct nd_opt_prefix_info *)nd_opt; 356 break; 357 default: 358 /* 359 * Unknown options must be silently ignored, 360 * to accomodate future extension to the protocol. 361 */ 362 nd6log((LOG_DEBUG, 363 "nd6_options: unsupported option %d - " 364 "option ignored\n", nd_opt->nd_opt_type)); 365 } 366 367 skip1: 368 i++; 369 if (i > nd6_maxndopt) { 370 icmp6stat.icp6s_nd_toomanyopt++; 371 nd6log((LOG_INFO, "too many loop in nd opt\n")); 372 break; 373 } 374 375 if (ndopts->nd_opts_done) 376 break; 377 } 378 379 return 0; 380 } 381 382 /* 383 * ND6 timer routine to handle ND6 entries 384 */ 385 void 386 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick) 387 { 388 if (tick < 0) { 389 ln->ln_expire = 0; 390 ln->ln_ntick = 0; 391 callout_stop(&ln->ln_timer_ch); 392 } else { 393 ln->ln_expire = time_second + tick / hz; 394 if (tick > INT_MAX) { 395 ln->ln_ntick = tick - INT_MAX; 396 callout_reset(&ln->ln_timer_ch, INT_MAX, 397 nd6_llinfo_timer, ln); 398 } else { 399 ln->ln_ntick = 0; 400 callout_reset(&ln->ln_timer_ch, tick, 401 nd6_llinfo_timer, ln); 402 } 403 } 404 } 405 406 static void 407 nd6_llinfo_timer(void *arg) 408 { 409 struct llinfo_nd6 *ln; 410 struct rtentry *rt; 411 struct in6_addr *dst; 412 struct ifnet *ifp; 413 struct nd_ifinfo *ndi = NULL; 414 415 ln = (struct llinfo_nd6 *)arg; 416 417 if (ln->ln_ntick > 0) { 418 if (ln->ln_ntick > INT_MAX) { 419 ln->ln_ntick -= INT_MAX; 420 nd6_llinfo_settimer(ln, INT_MAX); 421 } else { 422 ln->ln_ntick = 0; 423 nd6_llinfo_settimer(ln, ln->ln_ntick); 424 } 425 return; 426 } 427 428 if ((rt = ln->ln_rt) == NULL) 429 panic("ln->ln_rt == NULL"); 430 if ((ifp = rt->rt_ifp) == NULL) 431 panic("ln->ln_rt->rt_ifp == NULL"); 432 ndi = ND_IFINFO(ifp); 433 434 /* sanity check */ 435 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 436 panic("rt_llinfo(%p) is not equal to ln(%p)", 437 rt->rt_llinfo, ln); 438 if (rt_key(rt) == NULL) 439 panic("rt key is NULL in nd6_timer(ln=%p)", ln); 440 441 dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 442 443 switch (ln->ln_state) { 444 case ND6_LLINFO_INCOMPLETE: 445 if (ln->ln_asked < nd6_mmaxtries) { 446 ln->ln_asked++; 447 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 448 nd6_ns_output(ifp, NULL, dst, ln, 0); 449 } else { 450 struct mbuf *m = ln->ln_hold; 451 if (m) { 452 struct mbuf *m0; 453 454 /* 455 * assuming every packet in ln_hold has the 456 * same IP header 457 */ 458 m0 = m->m_nextpkt; 459 m->m_nextpkt = NULL; 460 icmp6_error2(m, ICMP6_DST_UNREACH, 461 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); 462 463 ln->ln_hold = m0; 464 clear_llinfo_pqueue(ln); 465 } 466 if (rt && rt->rt_llinfo) 467 (void)nd6_free(rt, 0); 468 ln = NULL; 469 } 470 break; 471 case ND6_LLINFO_REACHABLE: 472 if (!ND6_LLINFO_PERMANENT(ln)) { 473 ln->ln_state = ND6_LLINFO_STALE; 474 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 475 } 476 break; 477 478 case ND6_LLINFO_STALE: 479 /* Garbage Collection(RFC 2461 5.3) */ 480 if (!ND6_LLINFO_PERMANENT(ln)) { 481 if (rt && rt->rt_llinfo) 482 (void)nd6_free(rt, 1); 483 ln = NULL; 484 } 485 break; 486 487 case ND6_LLINFO_DELAY: 488 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 489 /* We need NUD */ 490 ln->ln_asked = 1; 491 ln->ln_state = ND6_LLINFO_PROBE; 492 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 493 nd6_ns_output(ifp, dst, dst, ln, 0); 494 } else { 495 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 496 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 497 } 498 break; 499 case ND6_LLINFO_PROBE: 500 if (ln->ln_asked < nd6_umaxtries) { 501 ln->ln_asked++; 502 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 503 nd6_ns_output(ifp, dst, dst, ln, 0); 504 } else if (rt->rt_ifa != NULL && 505 rt->rt_ifa->ifa_addr->sa_family == AF_INET6 && 506 (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) { 507 /* 508 * This is an unreachable neighbor whose address is 509 * specified as the destination of a p2p interface 510 * (see in6_ifinit()). We should not free the entry 511 * since this is sort of a "static" entry generated 512 * via interface address configuration. 513 */ 514 ln->ln_asked = 0; 515 ln->ln_expire = 0; /* make it permanent */ 516 ln->ln_state = ND6_LLINFO_STALE; 517 } else { 518 if (rt && rt->rt_llinfo) 519 (void)nd6_free(rt, 0); 520 ln = NULL; 521 } 522 break; 523 } 524 } 525 526 527 /* 528 * ND6 timer routine to expire default route list and prefix list 529 */ 530 void 531 nd6_timer(void *ignored_arg) 532 { 533 int s; 534 struct nd_defrouter *dr; 535 struct nd_prefix *pr; 536 struct in6_ifaddr *ia6, *nia6; 537 struct in6_addrlifetime *lt6; 538 539 callout_reset(&nd6_timer_ch, nd6_prune * hz, 540 nd6_timer, NULL); 541 542 /* expire default router list */ 543 s = splnet(); 544 dr = TAILQ_FIRST(&nd_defrouter); 545 while (dr) { 546 if (dr->expire && dr->expire < time_second) { 547 struct nd_defrouter *t; 548 t = TAILQ_NEXT(dr, dr_entry); 549 defrtrlist_del(dr); 550 dr = t; 551 } else { 552 dr = TAILQ_NEXT(dr, dr_entry); 553 } 554 } 555 556 /* 557 * expire interface addresses. 558 * in the past the loop was inside prefix expiry processing. 559 * However, from a stricter speci-confrmance standpoint, we should 560 * rather separate address lifetimes and prefix lifetimes. 561 */ 562 addrloop: 563 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 564 nia6 = ia6->ia_next; 565 /* check address lifetime */ 566 lt6 = &ia6->ia6_lifetime; 567 if (IFA6_IS_INVALID(ia6)) { 568 int regen = 0; 569 570 /* 571 * If the expiring address is temporary, try 572 * regenerating a new one. This would be useful when 573 * we suspended a laptop PC, then turned it on after a 574 * period that could invalidate all temporary 575 * addresses. Although we may have to restart the 576 * loop (see below), it must be after purging the 577 * address. Otherwise, we'd see an infinite loop of 578 * regeneration. 579 */ 580 if (ip6_use_tempaddr && 581 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 582 if (regen_tmpaddr(ia6) == 0) 583 regen = 1; 584 } 585 586 in6_purgeaddr(&ia6->ia_ifa); 587 588 if (regen) 589 goto addrloop; /* XXX: see below */ 590 } else if (IFA6_IS_DEPRECATED(ia6)) { 591 int oldflags = ia6->ia6_flags; 592 593 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 594 595 /* 596 * If a temporary address has just become deprecated, 597 * regenerate a new one if possible. 598 */ 599 if (ip6_use_tempaddr && 600 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 601 (oldflags & IN6_IFF_DEPRECATED) == 0) { 602 603 if (regen_tmpaddr(ia6) == 0) { 604 /* 605 * A new temporary address is 606 * generated. 607 * XXX: this means the address chain 608 * has changed while we are still in 609 * the loop. Although the change 610 * would not cause disaster (because 611 * it's not a deletion, but an 612 * addition,) we'd rather restart the 613 * loop just for safety. Or does this 614 * significantly reduce performance?? 615 */ 616 goto addrloop; 617 } 618 } 619 } else { 620 /* 621 * A new RA might have made a deprecated address 622 * preferred. 623 */ 624 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 625 } 626 } 627 628 /* expire prefix list */ 629 pr = nd_prefix.lh_first; 630 while (pr) { 631 /* 632 * check prefix lifetime. 633 * since pltime is just for autoconf, pltime processing for 634 * prefix is not necessary. 635 */ 636 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 637 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 638 struct nd_prefix *t; 639 t = pr->ndpr_next; 640 641 /* 642 * address expiration and prefix expiration are 643 * separate. NEVER perform in6_purgeaddr here. 644 */ 645 646 prelist_remove(pr); 647 pr = t; 648 } else 649 pr = pr->ndpr_next; 650 } 651 splx(s); 652 } 653 654 /* 655 * ia6 - deprecated/invalidated temporary address 656 */ 657 static int 658 regen_tmpaddr(struct in6_ifaddr *ia6) 659 { 660 struct ifaddr *ifa; 661 struct ifnet *ifp; 662 struct in6_ifaddr *public_ifa6 = NULL; 663 664 ifp = ia6->ia_ifa.ifa_ifp; 665 for (ifa = ifp->if_addrlist.tqh_first; ifa; 666 ifa = ifa->ifa_list.tqe_next) { 667 struct in6_ifaddr *it6; 668 669 if (ifa->ifa_addr->sa_family != AF_INET6) 670 continue; 671 672 it6 = (struct in6_ifaddr *)ifa; 673 674 /* ignore no autoconf addresses. */ 675 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 676 continue; 677 678 /* ignore autoconf addresses with different prefixes. */ 679 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 680 continue; 681 682 /* 683 * Now we are looking at an autoconf address with the same 684 * prefix as ours. If the address is temporary and is still 685 * preferred, do not create another one. It would be rare, but 686 * could happen, for example, when we resume a laptop PC after 687 * a long period. 688 */ 689 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 690 !IFA6_IS_DEPRECATED(it6)) { 691 public_ifa6 = NULL; 692 break; 693 } 694 695 /* 696 * This is a public autoconf address that has the same prefix 697 * as ours. If it is preferred, keep it. We can't break the 698 * loop here, because there may be a still-preferred temporary 699 * address with the prefix. 700 */ 701 if (!IFA6_IS_DEPRECATED(it6)) 702 public_ifa6 = it6; 703 } 704 705 if (public_ifa6 != NULL) { 706 int e; 707 708 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 709 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 710 " tmp addr,errno=%d\n", e); 711 return (-1); 712 } 713 return (0); 714 } 715 716 return (-1); 717 } 718 719 /* 720 * Nuke neighbor cache/prefix/default router management table, right before 721 * ifp goes away. 722 */ 723 void 724 nd6_purge(struct ifnet *ifp) 725 { 726 struct llinfo_nd6 *ln, *nln; 727 struct nd_defrouter *dr, *ndr; 728 struct nd_prefix *pr, *npr; 729 730 /* 731 * Nuke default router list entries toward ifp. 732 * We defer removal of default router list entries that is installed 733 * in the routing table, in order to keep additional side effects as 734 * small as possible. 735 */ 736 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 737 ndr = TAILQ_NEXT(dr, dr_entry); 738 if (dr->installed) 739 continue; 740 741 if (dr->ifp == ifp) 742 defrtrlist_del(dr); 743 } 744 745 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 746 ndr = TAILQ_NEXT(dr, dr_entry); 747 if (!dr->installed) 748 continue; 749 750 if (dr->ifp == ifp) 751 defrtrlist_del(dr); 752 } 753 754 /* Nuke prefix list entries toward ifp */ 755 for (pr = nd_prefix.lh_first; pr; pr = npr) { 756 npr = pr->ndpr_next; 757 if (pr->ndpr_ifp == ifp) { 758 /* 759 * Because if_detach() does *not* release prefixes 760 * while purging addresses the reference count will 761 * still be above zero. We therefore reset it to 762 * make sure that the prefix really gets purged. 763 */ 764 pr->ndpr_refcnt = 0; 765 766 /* 767 * Previously, pr->ndpr_addr is removed as well, 768 * but I strongly believe we don't have to do it. 769 * nd6_purge() is only called from in6_ifdetach(), 770 * which removes all the associated interface addresses 771 * by itself. 772 * (jinmei@kame.net 20010129) 773 */ 774 prelist_remove(pr); 775 } 776 } 777 778 /* cancel default outgoing interface setting */ 779 if (nd6_defifindex == ifp->if_index) 780 nd6_setdefaultiface(0); 781 782 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 783 /* refresh default router list */ 784 defrouter_select(); 785 } 786 787 /* 788 * Nuke neighbor cache entries for the ifp. 789 * Note that rt->rt_ifp may not be the same as ifp, 790 * due to KAME goto ours hack. See RTM_RESOLVE case in 791 * nd6_rtrequest(), and ip6_input(). 792 */ 793 ln = llinfo_nd6.ln_next; 794 while (ln && ln != &llinfo_nd6) { 795 struct rtentry *rt; 796 struct sockaddr_dl *sdl; 797 798 nln = ln->ln_next; 799 rt = ln->ln_rt; 800 if (rt && rt->rt_gateway && 801 rt->rt_gateway->sa_family == AF_LINK) { 802 sdl = (struct sockaddr_dl *)rt->rt_gateway; 803 if (sdl->sdl_index == ifp->if_index) 804 nln = nd6_free(rt, 0); 805 } 806 ln = nln; 807 } 808 } 809 810 struct rtentry * 811 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 812 { 813 struct rtentry *rt; 814 struct sockaddr_in6 sin6; 815 char ip6buf[INET6_ADDRSTRLEN]; 816 817 bzero(&sin6, sizeof(sin6)); 818 sin6.sin6_len = sizeof(struct sockaddr_in6); 819 sin6.sin6_family = AF_INET6; 820 sin6.sin6_addr = *addr6; 821 rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL); 822 if (rt) { 823 if ((rt->rt_flags & RTF_LLINFO) == 0 && create) { 824 /* 825 * This is the case for the default route. 826 * If we want to create a neighbor cache for the 827 * address, we should free the route for the 828 * destination and allocate an interface route. 829 */ 830 RTFREE_LOCKED(rt); 831 rt = NULL; 832 } 833 } 834 if (rt == NULL) { 835 if (create && ifp) { 836 int e; 837 838 /* 839 * If no route is available and create is set, 840 * we allocate a host route for the destination 841 * and treat it like an interface route. 842 * This hack is necessary for a neighbor which can't 843 * be covered by our own prefix. 844 */ 845 struct ifaddr *ifa = 846 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 847 if (ifa == NULL) 848 return (NULL); 849 850 /* 851 * Create a new route. RTF_LLINFO is necessary 852 * to create a Neighbor Cache entry for the 853 * destination in nd6_rtrequest which will be 854 * called in rtrequest via ifa->ifa_rtrequest. 855 */ 856 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 857 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 858 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 859 ~RTF_CLONING, &rt)) != 0) { 860 log(LOG_ERR, 861 "nd6_lookup: failed to add route for a " 862 "neighbor(%s), errno=%d\n", 863 ip6_sprintf(ip6buf, addr6), e); 864 } 865 if (rt == NULL) 866 return (NULL); 867 RT_LOCK(rt); 868 if (rt->rt_llinfo) { 869 struct llinfo_nd6 *ln = 870 (struct llinfo_nd6 *)rt->rt_llinfo; 871 ln->ln_state = ND6_LLINFO_NOSTATE; 872 } 873 } else 874 return (NULL); 875 } 876 RT_LOCK_ASSERT(rt); 877 RT_REMREF(rt); 878 /* 879 * Validation for the entry. 880 * Note that the check for rt_llinfo is necessary because a cloned 881 * route from a parent route that has the L flag (e.g. the default 882 * route to a p2p interface) may have the flag, too, while the 883 * destination is not actually a neighbor. 884 * XXX: we can't use rt->rt_ifp to check for the interface, since 885 * it might be the loopback interface if the entry is for our 886 * own address on a non-loopback interface. Instead, we should 887 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 888 * interface. 889 * Note also that ifa_ifp and ifp may differ when we connect two 890 * interfaces to a same link, install a link prefix to an interface, 891 * and try to install a neighbor cache on an interface that does not 892 * have a route to the prefix. 893 */ 894 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 895 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 896 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 897 if (create) { 898 nd6log((LOG_DEBUG, 899 "nd6_lookup: failed to lookup %s (if = %s)\n", 900 ip6_sprintf(ip6buf, addr6), 901 ifp ? if_name(ifp) : "unspec")); 902 } 903 RT_UNLOCK(rt); 904 return (NULL); 905 } 906 RT_UNLOCK(rt); /* XXX not ready to return rt locked */ 907 return (rt); 908 } 909 910 /* 911 * Test whether a given IPv6 address is a neighbor or not, ignoring 912 * the actual neighbor cache. The neighbor cache is ignored in order 913 * to not reenter the routing code from within itself. 914 */ 915 static int 916 nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 917 { 918 struct nd_prefix *pr; 919 struct ifaddr *dstaddr; 920 921 /* 922 * A link-local address is always a neighbor. 923 * XXX: a link does not necessarily specify a single interface. 924 */ 925 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 926 struct sockaddr_in6 sin6_copy; 927 u_int32_t zone; 928 929 /* 930 * We need sin6_copy since sa6_recoverscope() may modify the 931 * content (XXX). 932 */ 933 sin6_copy = *addr; 934 if (sa6_recoverscope(&sin6_copy)) 935 return (0); /* XXX: should be impossible */ 936 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 937 return (0); 938 if (sin6_copy.sin6_scope_id == zone) 939 return (1); 940 else 941 return (0); 942 } 943 944 /* 945 * If the address matches one of our addresses, 946 * it should be a neighbor. 947 * If the address matches one of our on-link prefixes, it should be a 948 * neighbor. 949 */ 950 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 951 if (pr->ndpr_ifp != ifp) 952 continue; 953 954 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 955 continue; 956 957 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 958 &addr->sin6_addr, &pr->ndpr_mask)) 959 return (1); 960 } 961 962 /* 963 * If the address is assigned on the node of the other side of 964 * a p2p interface, the address should be a neighbor. 965 */ 966 dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr); 967 if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp)) 968 return (1); 969 970 /* 971 * If the default router list is empty, all addresses are regarded 972 * as on-link, and thus, as a neighbor. 973 * XXX: we restrict the condition to hosts, because routers usually do 974 * not have the "default router list". 975 */ 976 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 977 nd6_defifindex == ifp->if_index) { 978 return (1); 979 } 980 981 return (0); 982 } 983 984 985 /* 986 * Detect if a given IPv6 address identifies a neighbor on a given link. 987 * XXX: should take care of the destination of a p2p link? 988 */ 989 int 990 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 991 { 992 993 if (nd6_is_new_addr_neighbor(addr, ifp)) 994 return (1); 995 996 /* 997 * Even if the address matches none of our addresses, it might be 998 * in the neighbor cache. 999 */ 1000 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 1001 return (1); 1002 1003 return (0); 1004 } 1005 1006 /* 1007 * Free an nd6 llinfo entry. 1008 * Since the function would cause significant changes in the kernel, DO NOT 1009 * make it global, unless you have a strong reason for the change, and are sure 1010 * that the change is safe. 1011 */ 1012 static struct llinfo_nd6 * 1013 nd6_free(struct rtentry *rt, int gc) 1014 { 1015 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 1016 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 1017 struct nd_defrouter *dr; 1018 1019 /* 1020 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1021 * even though it is not harmful, it was not really necessary. 1022 */ 1023 1024 /* cancel timer */ 1025 nd6_llinfo_settimer(ln, -1); 1026 1027 if (!ip6_forwarding) { 1028 int s; 1029 s = splnet(); 1030 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 1031 rt->rt_ifp); 1032 1033 if (dr != NULL && dr->expire && 1034 ln->ln_state == ND6_LLINFO_STALE && gc) { 1035 /* 1036 * If the reason for the deletion is just garbage 1037 * collection, and the neighbor is an active default 1038 * router, do not delete it. Instead, reset the GC 1039 * timer using the router's lifetime. 1040 * Simply deleting the entry would affect default 1041 * router selection, which is not necessarily a good 1042 * thing, especially when we're using router preference 1043 * values. 1044 * XXX: the check for ln_state would be redundant, 1045 * but we intentionally keep it just in case. 1046 */ 1047 if (dr->expire > time_second) 1048 nd6_llinfo_settimer(ln, 1049 (dr->expire - time_second) * hz); 1050 else 1051 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1052 splx(s); 1053 return (ln->ln_next); 1054 } 1055 1056 if (ln->ln_router || dr) { 1057 /* 1058 * rt6_flush must be called whether or not the neighbor 1059 * is in the Default Router List. 1060 * See a corresponding comment in nd6_na_input(). 1061 */ 1062 rt6_flush(&in6, rt->rt_ifp); 1063 } 1064 1065 if (dr) { 1066 /* 1067 * Unreachablity of a router might affect the default 1068 * router selection and on-link detection of advertised 1069 * prefixes. 1070 */ 1071 1072 /* 1073 * Temporarily fake the state to choose a new default 1074 * router and to perform on-link determination of 1075 * prefixes correctly. 1076 * Below the state will be set correctly, 1077 * or the entry itself will be deleted. 1078 */ 1079 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1080 1081 /* 1082 * Since defrouter_select() does not affect the 1083 * on-link determination and MIP6 needs the check 1084 * before the default router selection, we perform 1085 * the check now. 1086 */ 1087 pfxlist_onlink_check(); 1088 1089 /* 1090 * refresh default router list 1091 */ 1092 defrouter_select(); 1093 } 1094 splx(s); 1095 } 1096 1097 /* 1098 * Before deleting the entry, remember the next entry as the 1099 * return value. We need this because pfxlist_onlink_check() above 1100 * might have freed other entries (particularly the old next entry) as 1101 * a side effect (XXX). 1102 */ 1103 next = ln->ln_next; 1104 1105 /* 1106 * Detach the route from the routing tree and the list of neighbor 1107 * caches, and disable the route entry not to be used in already 1108 * cached routes. 1109 */ 1110 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 1111 rt_mask(rt), 0, (struct rtentry **)0); 1112 1113 return (next); 1114 } 1115 1116 /* 1117 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1118 * 1119 * XXX cost-effective methods? 1120 */ 1121 void 1122 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1123 { 1124 struct llinfo_nd6 *ln; 1125 1126 /* 1127 * If the caller specified "rt", use that. Otherwise, resolve the 1128 * routing table by supplied "dst6". 1129 */ 1130 if (rt == NULL) { 1131 if (dst6 == NULL) 1132 return; 1133 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL) 1134 return; 1135 } 1136 1137 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1138 (rt->rt_flags & RTF_LLINFO) == 0 || 1139 rt->rt_llinfo == NULL || rt->rt_gateway == NULL || 1140 rt->rt_gateway->sa_family != AF_LINK) { 1141 /* This is not a host route. */ 1142 return; 1143 } 1144 1145 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1146 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1147 return; 1148 1149 /* 1150 * if we get upper-layer reachability confirmation many times, 1151 * it is possible we have false information. 1152 */ 1153 if (!force) { 1154 ln->ln_byhint++; 1155 if (ln->ln_byhint > nd6_maxnudhint) 1156 return; 1157 } 1158 1159 ln->ln_state = ND6_LLINFO_REACHABLE; 1160 if (!ND6_LLINFO_PERMANENT(ln)) { 1161 nd6_llinfo_settimer(ln, 1162 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1163 } 1164 } 1165 1166 /* 1167 * info - XXX unused 1168 */ 1169 void 1170 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1171 { 1172 struct sockaddr *gate = rt->rt_gateway; 1173 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1174 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1175 struct ifnet *ifp = rt->rt_ifp; 1176 struct ifaddr *ifa; 1177 1178 RT_LOCK_ASSERT(rt); 1179 1180 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1181 return; 1182 1183 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1184 /* 1185 * This is probably an interface direct route for a link 1186 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1187 * We do not need special treatment below for such a route. 1188 * Moreover, the RTF_LLINFO flag which would be set below 1189 * would annoy the ndp(8) command. 1190 */ 1191 return; 1192 } 1193 1194 if (req == RTM_RESOLVE && 1195 (nd6_need_cache(ifp) == 0 || /* stf case */ 1196 !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), 1197 ifp))) { 1198 /* 1199 * FreeBSD and BSD/OS often make a cloned host route based 1200 * on a less-specific route (e.g. the default route). 1201 * If the less specific route does not have a "gateway" 1202 * (this is the case when the route just goes to a p2p or an 1203 * stf interface), we'll mistakenly make a neighbor cache for 1204 * the host route, and will see strange neighbor solicitation 1205 * for the corresponding destination. In order to avoid the 1206 * confusion, we check if the destination of the route is 1207 * a neighbor in terms of neighbor discovery, and stop the 1208 * process if not. Additionally, we remove the LLINFO flag 1209 * so that ndp(8) will not try to get the neighbor information 1210 * of the destination. 1211 */ 1212 rt->rt_flags &= ~RTF_LLINFO; 1213 return; 1214 } 1215 1216 switch (req) { 1217 case RTM_ADD: 1218 /* 1219 * There is no backward compatibility :) 1220 * 1221 * if ((rt->rt_flags & RTF_HOST) == 0 && 1222 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1223 * rt->rt_flags |= RTF_CLONING; 1224 */ 1225 if ((rt->rt_flags & RTF_CLONING) || 1226 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { 1227 /* 1228 * Case 1: This route should come from a route to 1229 * interface (RTF_CLONING case) or the route should be 1230 * treated as on-link but is currently not 1231 * (RTF_LLINFO && ln == NULL case). 1232 */ 1233 rt_setgate(rt, rt_key(rt), 1234 (struct sockaddr *)&null_sdl); 1235 gate = rt->rt_gateway; 1236 SDL(gate)->sdl_type = ifp->if_type; 1237 SDL(gate)->sdl_index = ifp->if_index; 1238 if (ln) 1239 nd6_llinfo_settimer(ln, 0); 1240 if ((rt->rt_flags & RTF_CLONING) != 0) 1241 break; 1242 } 1243 /* 1244 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1245 * We don't do that here since llinfo is not ready yet. 1246 * 1247 * There are also couple of other things to be discussed: 1248 * - unsolicited NA code needs improvement beforehand 1249 * - RFC2461 says we MAY send multicast unsolicited NA 1250 * (7.2.6 paragraph 4), however, it also says that we 1251 * SHOULD provide a mechanism to prevent multicast NA storm. 1252 * we don't have anything like it right now. 1253 * note that the mechanism needs a mutual agreement 1254 * between proxies, which means that we need to implement 1255 * a new protocol, or a new kludge. 1256 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1257 * we need to check ip6forwarding before sending it. 1258 * (or should we allow proxy ND configuration only for 1259 * routers? there's no mention about proxy ND from hosts) 1260 */ 1261 /* FALLTHROUGH */ 1262 case RTM_RESOLVE: 1263 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1264 /* 1265 * Address resolution isn't necessary for a point to 1266 * point link, so we can skip this test for a p2p link. 1267 */ 1268 if (gate->sa_family != AF_LINK || 1269 gate->sa_len < sizeof(null_sdl)) { 1270 log(LOG_DEBUG, 1271 "nd6_rtrequest: bad gateway value: %s\n", 1272 if_name(ifp)); 1273 break; 1274 } 1275 SDL(gate)->sdl_type = ifp->if_type; 1276 SDL(gate)->sdl_index = ifp->if_index; 1277 } 1278 if (ln != NULL) 1279 break; /* This happens on a route change */ 1280 /* 1281 * Case 2: This route may come from cloning, or a manual route 1282 * add with a LL address. 1283 */ 1284 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1285 rt->rt_llinfo = (caddr_t)ln; 1286 if (ln == NULL) { 1287 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1288 break; 1289 } 1290 nd6_inuse++; 1291 nd6_allocated++; 1292 bzero(ln, sizeof(*ln)); 1293 RT_ADDREF(rt); 1294 ln->ln_rt = rt; 1295 callout_init(&ln->ln_timer_ch, 0); 1296 1297 /* this is required for "ndp" command. - shin */ 1298 if (req == RTM_ADD) { 1299 /* 1300 * gate should have some valid AF_LINK entry, 1301 * and ln->ln_expire should have some lifetime 1302 * which is specified by ndp command. 1303 */ 1304 ln->ln_state = ND6_LLINFO_REACHABLE; 1305 ln->ln_byhint = 0; 1306 } else { 1307 /* 1308 * When req == RTM_RESOLVE, rt is created and 1309 * initialized in rtrequest(), so rt_expire is 0. 1310 */ 1311 ln->ln_state = ND6_LLINFO_NOSTATE; 1312 nd6_llinfo_settimer(ln, 0); 1313 } 1314 rt->rt_flags |= RTF_LLINFO; 1315 ln->ln_next = llinfo_nd6.ln_next; 1316 llinfo_nd6.ln_next = ln; 1317 ln->ln_prev = &llinfo_nd6; 1318 ln->ln_next->ln_prev = ln; 1319 1320 /* 1321 * check if rt_key(rt) is one of my address assigned 1322 * to the interface. 1323 */ 1324 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1325 &SIN6(rt_key(rt))->sin6_addr); 1326 if (ifa) { 1327 caddr_t macp = nd6_ifptomac(ifp); 1328 nd6_llinfo_settimer(ln, -1); 1329 ln->ln_state = ND6_LLINFO_REACHABLE; 1330 ln->ln_byhint = 0; 1331 if (macp) { 1332 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1333 SDL(gate)->sdl_alen = ifp->if_addrlen; 1334 } 1335 if (nd6_useloopback) { 1336 rt->rt_ifp = &loif[0]; /* XXX */ 1337 /* 1338 * Make sure rt_ifa be equal to the ifaddr 1339 * corresponding to the address. 1340 * We need this because when we refer 1341 * rt_ifa->ia6_flags in ip6_input, we assume 1342 * that the rt_ifa points to the address instead 1343 * of the loopback address. 1344 */ 1345 if (ifa != rt->rt_ifa) { 1346 IFAFREE(rt->rt_ifa); 1347 IFAREF(ifa); 1348 rt->rt_ifa = ifa; 1349 } 1350 } 1351 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1352 nd6_llinfo_settimer(ln, -1); 1353 ln->ln_state = ND6_LLINFO_REACHABLE; 1354 ln->ln_byhint = 0; 1355 1356 /* join solicited node multicast for proxy ND */ 1357 if (ifp->if_flags & IFF_MULTICAST) { 1358 struct in6_addr llsol; 1359 int error; 1360 1361 llsol = SIN6(rt_key(rt))->sin6_addr; 1362 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1363 llsol.s6_addr32[1] = 0; 1364 llsol.s6_addr32[2] = htonl(1); 1365 llsol.s6_addr8[12] = 0xff; 1366 if (in6_setscope(&llsol, ifp, NULL)) 1367 break; 1368 if (in6_addmulti(&llsol, ifp, 1369 &error, 0) == NULL) { 1370 char ip6buf[INET6_ADDRSTRLEN]; 1371 nd6log((LOG_ERR, "%s: failed to join " 1372 "%s (errno=%d)\n", if_name(ifp), 1373 ip6_sprintf(ip6buf, &llsol), 1374 error)); 1375 } 1376 } 1377 } 1378 break; 1379 1380 case RTM_DELETE: 1381 if (ln == NULL) 1382 break; 1383 /* leave from solicited node multicast for proxy ND */ 1384 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1385 (ifp->if_flags & IFF_MULTICAST) != 0) { 1386 struct in6_addr llsol; 1387 struct in6_multi *in6m; 1388 1389 llsol = SIN6(rt_key(rt))->sin6_addr; 1390 llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL; 1391 llsol.s6_addr32[1] = 0; 1392 llsol.s6_addr32[2] = htonl(1); 1393 llsol.s6_addr8[12] = 0xff; 1394 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1395 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1396 if (in6m) 1397 in6_delmulti(in6m); 1398 } else 1399 ; /* XXX: should not happen. bark here? */ 1400 } 1401 nd6_inuse--; 1402 ln->ln_next->ln_prev = ln->ln_prev; 1403 ln->ln_prev->ln_next = ln->ln_next; 1404 ln->ln_prev = NULL; 1405 nd6_llinfo_settimer(ln, -1); 1406 RT_REMREF(rt); 1407 rt->rt_llinfo = 0; 1408 rt->rt_flags &= ~RTF_LLINFO; 1409 clear_llinfo_pqueue(ln); 1410 Free((caddr_t)ln); 1411 } 1412 } 1413 1414 int 1415 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1416 { 1417 struct in6_drlist *drl = (struct in6_drlist *)data; 1418 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1419 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1420 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1421 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1422 struct nd_defrouter *dr; 1423 struct nd_prefix *pr; 1424 struct rtentry *rt; 1425 int i = 0, error = 0; 1426 int s; 1427 1428 switch (cmd) { 1429 case SIOCGDRLST_IN6: 1430 /* 1431 * obsolete API, use sysctl under net.inet6.icmp6 1432 */ 1433 bzero(drl, sizeof(*drl)); 1434 s = splnet(); 1435 dr = TAILQ_FIRST(&nd_defrouter); 1436 while (dr && i < DRLSTSIZ) { 1437 drl->defrouter[i].rtaddr = dr->rtaddr; 1438 in6_clearscope(&drl->defrouter[i].rtaddr); 1439 1440 drl->defrouter[i].flags = dr->flags; 1441 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1442 drl->defrouter[i].expire = dr->expire; 1443 drl->defrouter[i].if_index = dr->ifp->if_index; 1444 i++; 1445 dr = TAILQ_NEXT(dr, dr_entry); 1446 } 1447 splx(s); 1448 break; 1449 case SIOCGPRLST_IN6: 1450 /* 1451 * obsolete API, use sysctl under net.inet6.icmp6 1452 * 1453 * XXX the structure in6_prlist was changed in backward- 1454 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1455 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1456 */ 1457 /* 1458 * XXX meaning of fields, especialy "raflags", is very 1459 * differnet between RA prefix list and RR/static prefix list. 1460 * how about separating ioctls into two? 1461 */ 1462 bzero(oprl, sizeof(*oprl)); 1463 s = splnet(); 1464 pr = nd_prefix.lh_first; 1465 while (pr && i < PRLSTSIZ) { 1466 struct nd_pfxrouter *pfr; 1467 int j; 1468 1469 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1470 oprl->prefix[i].raflags = pr->ndpr_raf; 1471 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1472 oprl->prefix[i].vltime = pr->ndpr_vltime; 1473 oprl->prefix[i].pltime = pr->ndpr_pltime; 1474 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1475 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1476 oprl->prefix[i].expire = 0; 1477 else { 1478 time_t maxexpire; 1479 1480 /* XXX: we assume time_t is signed. */ 1481 maxexpire = (-1) & 1482 ~((time_t)1 << 1483 ((sizeof(maxexpire) * 8) - 1)); 1484 if (pr->ndpr_vltime < 1485 maxexpire - pr->ndpr_lastupdate) { 1486 oprl->prefix[i].expire = 1487 pr->ndpr_lastupdate + 1488 pr->ndpr_vltime; 1489 } else 1490 oprl->prefix[i].expire = maxexpire; 1491 } 1492 1493 pfr = pr->ndpr_advrtrs.lh_first; 1494 j = 0; 1495 while (pfr) { 1496 if (j < DRLSTSIZ) { 1497 #define RTRADDR oprl->prefix[i].advrtr[j] 1498 RTRADDR = pfr->router->rtaddr; 1499 in6_clearscope(&RTRADDR); 1500 #undef RTRADDR 1501 } 1502 j++; 1503 pfr = pfr->pfr_next; 1504 } 1505 oprl->prefix[i].advrtrs = j; 1506 oprl->prefix[i].origin = PR_ORIG_RA; 1507 1508 i++; 1509 pr = pr->ndpr_next; 1510 } 1511 splx(s); 1512 1513 break; 1514 case OSIOCGIFINFO_IN6: 1515 #define ND ndi->ndi 1516 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1517 bzero(&ND, sizeof(ND)); 1518 ND.linkmtu = IN6_LINKMTU(ifp); 1519 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1520 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1521 ND.reachable = ND_IFINFO(ifp)->reachable; 1522 ND.retrans = ND_IFINFO(ifp)->retrans; 1523 ND.flags = ND_IFINFO(ifp)->flags; 1524 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1525 ND.chlim = ND_IFINFO(ifp)->chlim; 1526 break; 1527 case SIOCGIFINFO_IN6: 1528 ND = *ND_IFINFO(ifp); 1529 break; 1530 case SIOCSIFINFO_IN6: 1531 /* 1532 * used to change host variables from userland. 1533 * intented for a use on router to reflect RA configurations. 1534 */ 1535 /* 0 means 'unspecified' */ 1536 if (ND.linkmtu != 0) { 1537 if (ND.linkmtu < IPV6_MMTU || 1538 ND.linkmtu > IN6_LINKMTU(ifp)) { 1539 error = EINVAL; 1540 break; 1541 } 1542 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1543 } 1544 1545 if (ND.basereachable != 0) { 1546 int obasereachable = ND_IFINFO(ifp)->basereachable; 1547 1548 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1549 if (ND.basereachable != obasereachable) 1550 ND_IFINFO(ifp)->reachable = 1551 ND_COMPUTE_RTIME(ND.basereachable); 1552 } 1553 if (ND.retrans != 0) 1554 ND_IFINFO(ifp)->retrans = ND.retrans; 1555 if (ND.chlim != 0) 1556 ND_IFINFO(ifp)->chlim = ND.chlim; 1557 /* FALLTHROUGH */ 1558 case SIOCSIFINFO_FLAGS: 1559 ND_IFINFO(ifp)->flags = ND.flags; 1560 break; 1561 #undef ND 1562 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1563 /* sync kernel routing table with the default router list */ 1564 defrouter_reset(); 1565 defrouter_select(); 1566 break; 1567 case SIOCSPFXFLUSH_IN6: 1568 { 1569 /* flush all the prefix advertised by routers */ 1570 struct nd_prefix *pr, *next; 1571 1572 s = splnet(); 1573 for (pr = nd_prefix.lh_first; pr; pr = next) { 1574 struct in6_ifaddr *ia, *ia_next; 1575 1576 next = pr->ndpr_next; 1577 1578 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1579 continue; /* XXX */ 1580 1581 /* do we really have to remove addresses as well? */ 1582 for (ia = in6_ifaddr; ia; ia = ia_next) { 1583 /* ia might be removed. keep the next ptr. */ 1584 ia_next = ia->ia_next; 1585 1586 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1587 continue; 1588 1589 if (ia->ia6_ndpr == pr) 1590 in6_purgeaddr(&ia->ia_ifa); 1591 } 1592 prelist_remove(pr); 1593 } 1594 splx(s); 1595 break; 1596 } 1597 case SIOCSRTRFLUSH_IN6: 1598 { 1599 /* flush all the default routers */ 1600 struct nd_defrouter *dr, *next; 1601 1602 s = splnet(); 1603 defrouter_reset(); 1604 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1605 next = TAILQ_NEXT(dr, dr_entry); 1606 defrtrlist_del(dr); 1607 } 1608 defrouter_select(); 1609 splx(s); 1610 break; 1611 } 1612 case SIOCGNBRINFO_IN6: 1613 { 1614 struct llinfo_nd6 *ln; 1615 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1616 1617 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1618 return (error); 1619 1620 s = splnet(); 1621 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1622 error = EINVAL; 1623 splx(s); 1624 break; 1625 } 1626 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1627 nbi->state = ln->ln_state; 1628 nbi->asked = ln->ln_asked; 1629 nbi->isrouter = ln->ln_router; 1630 nbi->expire = ln->ln_expire; 1631 splx(s); 1632 1633 break; 1634 } 1635 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1636 ndif->ifindex = nd6_defifindex; 1637 break; 1638 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1639 return (nd6_setdefaultiface(ndif->ifindex)); 1640 } 1641 return (error); 1642 } 1643 1644 /* 1645 * Create neighbor cache entry and cache link-layer address, 1646 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1647 * 1648 * type - ICMP6 type 1649 * code - type dependent information 1650 */ 1651 struct rtentry * 1652 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1653 int lladdrlen, int type, int code) 1654 { 1655 struct rtentry *rt = NULL; 1656 struct llinfo_nd6 *ln = NULL; 1657 int is_newentry; 1658 struct sockaddr_dl *sdl = NULL; 1659 int do_update; 1660 int olladdr; 1661 int llchange; 1662 int newstate = 0; 1663 1664 if (ifp == NULL) 1665 panic("ifp == NULL in nd6_cache_lladdr"); 1666 if (from == NULL) 1667 panic("from == NULL in nd6_cache_lladdr"); 1668 1669 /* nothing must be updated for unspecified address */ 1670 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1671 return NULL; 1672 1673 /* 1674 * Validation about ifp->if_addrlen and lladdrlen must be done in 1675 * the caller. 1676 * 1677 * XXX If the link does not have link-layer adderss, what should 1678 * we do? (ifp->if_addrlen == 0) 1679 * Spec says nothing in sections for RA, RS and NA. There's small 1680 * description on it in NS section (RFC 2461 7.2.3). 1681 */ 1682 1683 rt = nd6_lookup(from, 0, ifp); 1684 if (rt == NULL) { 1685 rt = nd6_lookup(from, 1, ifp); 1686 is_newentry = 1; 1687 } else { 1688 /* do nothing if static ndp is set */ 1689 if (rt->rt_flags & RTF_STATIC) 1690 return NULL; 1691 is_newentry = 0; 1692 } 1693 1694 if (rt == NULL) 1695 return NULL; 1696 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1697 fail: 1698 (void)nd6_free(rt, 0); 1699 return NULL; 1700 } 1701 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1702 if (ln == NULL) 1703 goto fail; 1704 if (rt->rt_gateway == NULL) 1705 goto fail; 1706 if (rt->rt_gateway->sa_family != AF_LINK) 1707 goto fail; 1708 sdl = SDL(rt->rt_gateway); 1709 1710 olladdr = (sdl->sdl_alen) ? 1 : 0; 1711 if (olladdr && lladdr) { 1712 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1713 llchange = 1; 1714 else 1715 llchange = 0; 1716 } else 1717 llchange = 0; 1718 1719 /* 1720 * newentry olladdr lladdr llchange (*=record) 1721 * 0 n n -- (1) 1722 * 0 y n -- (2) 1723 * 0 n y -- (3) * STALE 1724 * 0 y y n (4) * 1725 * 0 y y y (5) * STALE 1726 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1727 * 1 -- y -- (7) * STALE 1728 */ 1729 1730 if (lladdr) { /* (3-5) and (7) */ 1731 /* 1732 * Record source link-layer address 1733 * XXX is it dependent to ifp->if_type? 1734 */ 1735 sdl->sdl_alen = ifp->if_addrlen; 1736 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1737 } 1738 1739 if (!is_newentry) { 1740 if ((!olladdr && lladdr != NULL) || /* (3) */ 1741 (olladdr && lladdr != NULL && llchange)) { /* (5) */ 1742 do_update = 1; 1743 newstate = ND6_LLINFO_STALE; 1744 } else /* (1-2,4) */ 1745 do_update = 0; 1746 } else { 1747 do_update = 1; 1748 if (lladdr == NULL) /* (6) */ 1749 newstate = ND6_LLINFO_NOSTATE; 1750 else /* (7) */ 1751 newstate = ND6_LLINFO_STALE; 1752 } 1753 1754 if (do_update) { 1755 /* 1756 * Update the state of the neighbor cache. 1757 */ 1758 ln->ln_state = newstate; 1759 1760 if (ln->ln_state == ND6_LLINFO_STALE) { 1761 /* 1762 * XXX: since nd6_output() below will cause 1763 * state tansition to DELAY and reset the timer, 1764 * we must set the timer now, although it is actually 1765 * meaningless. 1766 */ 1767 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1768 1769 if (ln->ln_hold) { 1770 struct mbuf *m_hold, *m_hold_next; 1771 1772 /* 1773 * reset the ln_hold in advance, to explicitly 1774 * prevent a ln_hold lookup in nd6_output() 1775 * (wouldn't happen, though...) 1776 */ 1777 for (m_hold = ln->ln_hold, ln->ln_hold = NULL; 1778 m_hold; m_hold = m_hold_next) { 1779 m_hold_next = m_hold->m_nextpkt; 1780 m_hold->m_nextpkt = NULL; 1781 1782 /* 1783 * we assume ifp is not a p2p here, so 1784 * just set the 2nd argument as the 1785 * 1st one. 1786 */ 1787 nd6_output(ifp, ifp, m_hold, 1788 (struct sockaddr_in6 *)rt_key(rt), 1789 rt); 1790 } 1791 } 1792 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1793 /* probe right away */ 1794 nd6_llinfo_settimer((void *)ln, 0); 1795 } 1796 } 1797 1798 /* 1799 * ICMP6 type dependent behavior. 1800 * 1801 * NS: clear IsRouter if new entry 1802 * RS: clear IsRouter 1803 * RA: set IsRouter if there's lladdr 1804 * redir: clear IsRouter if new entry 1805 * 1806 * RA case, (1): 1807 * The spec says that we must set IsRouter in the following cases: 1808 * - If lladdr exist, set IsRouter. This means (1-5). 1809 * - If it is old entry (!newentry), set IsRouter. This means (7). 1810 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1811 * A quetion arises for (1) case. (1) case has no lladdr in the 1812 * neighbor cache, this is similar to (6). 1813 * This case is rare but we figured that we MUST NOT set IsRouter. 1814 * 1815 * newentry olladdr lladdr llchange NS RS RA redir 1816 * D R 1817 * 0 n n -- (1) c ? s 1818 * 0 y n -- (2) c s s 1819 * 0 n y -- (3) c s s 1820 * 0 y y n (4) c s s 1821 * 0 y y y (5) c s s 1822 * 1 -- n -- (6) c c c s 1823 * 1 -- y -- (7) c c s c s 1824 * 1825 * (c=clear s=set) 1826 */ 1827 switch (type & 0xff) { 1828 case ND_NEIGHBOR_SOLICIT: 1829 /* 1830 * New entry must have is_router flag cleared. 1831 */ 1832 if (is_newentry) /* (6-7) */ 1833 ln->ln_router = 0; 1834 break; 1835 case ND_REDIRECT: 1836 /* 1837 * If the icmp is a redirect to a better router, always set the 1838 * is_router flag. Otherwise, if the entry is newly created, 1839 * clear the flag. [RFC 2461, sec 8.3] 1840 */ 1841 if (code == ND_REDIRECT_ROUTER) 1842 ln->ln_router = 1; 1843 else if (is_newentry) /* (6-7) */ 1844 ln->ln_router = 0; 1845 break; 1846 case ND_ROUTER_SOLICIT: 1847 /* 1848 * is_router flag must always be cleared. 1849 */ 1850 ln->ln_router = 0; 1851 break; 1852 case ND_ROUTER_ADVERT: 1853 /* 1854 * Mark an entry with lladdr as a router. 1855 */ 1856 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1857 (is_newentry && lladdr)) { /* (7) */ 1858 ln->ln_router = 1; 1859 } 1860 break; 1861 } 1862 1863 /* 1864 * When the link-layer address of a router changes, select the 1865 * best router again. In particular, when the neighbor entry is newly 1866 * created, it might affect the selection policy. 1867 * Question: can we restrict the first condition to the "is_newentry" 1868 * case? 1869 * XXX: when we hear an RA from a new router with the link-layer 1870 * address option, defrouter_select() is called twice, since 1871 * defrtrlist_update called the function as well. However, I believe 1872 * we can compromise the overhead, since it only happens the first 1873 * time. 1874 * XXX: although defrouter_select() should not have a bad effect 1875 * for those are not autoconfigured hosts, we explicitly avoid such 1876 * cases for safety. 1877 */ 1878 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1879 defrouter_select(); 1880 1881 return rt; 1882 } 1883 1884 static void 1885 nd6_slowtimo(void *ignored_arg) 1886 { 1887 struct nd_ifinfo *nd6if; 1888 struct ifnet *ifp; 1889 1890 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1891 nd6_slowtimo, NULL); 1892 IFNET_RLOCK(); 1893 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) { 1894 nd6if = ND_IFINFO(ifp); 1895 if (nd6if->basereachable && /* already initialized */ 1896 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1897 /* 1898 * Since reachable time rarely changes by router 1899 * advertisements, we SHOULD insure that a new random 1900 * value gets recomputed at least once every few hours. 1901 * (RFC 2461, 6.3.4) 1902 */ 1903 nd6if->recalctm = nd6_recalc_reachtm_interval; 1904 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1905 } 1906 } 1907 IFNET_RUNLOCK(); 1908 } 1909 1910 #define senderr(e) { error = (e); goto bad;} 1911 int 1912 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1913 struct sockaddr_in6 *dst, struct rtentry *rt0) 1914 { 1915 struct mbuf *m = m0; 1916 struct rtentry *rt = rt0; 1917 struct sockaddr_in6 *gw6 = NULL; 1918 struct llinfo_nd6 *ln = NULL; 1919 int error = 0; 1920 1921 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1922 goto sendpkt; 1923 1924 if (nd6_need_cache(ifp) == 0) 1925 goto sendpkt; 1926 1927 /* 1928 * next hop determination. This routine is derived from ether_output. 1929 */ 1930 /* NB: the locking here is tortuous... */ 1931 if (rt != NULL) 1932 RT_LOCK(rt); 1933 again: 1934 if (rt != NULL) { 1935 if ((rt->rt_flags & RTF_UP) == 0) { 1936 RT_UNLOCK(rt); 1937 rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL); 1938 if (rt != NULL) { 1939 RT_REMREF(rt); 1940 if (rt->rt_ifp != ifp) 1941 /* 1942 * XXX maybe we should update ifp too, 1943 * but the original code didn't and I 1944 * don't know what is correct here. 1945 */ 1946 goto again; 1947 } else 1948 senderr(EHOSTUNREACH); 1949 } 1950 1951 if (rt->rt_flags & RTF_GATEWAY) { 1952 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1953 1954 /* 1955 * We skip link-layer address resolution and NUD 1956 * if the gateway is not a neighbor from ND point 1957 * of view, regardless of the value of nd_ifinfo.flags. 1958 * The second condition is a bit tricky; we skip 1959 * if the gateway is our own address, which is 1960 * sometimes used to install a route to a p2p link. 1961 */ 1962 if (!nd6_is_addr_neighbor(gw6, ifp) || 1963 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1964 RT_UNLOCK(rt); 1965 /* 1966 * We allow this kind of tricky route only 1967 * when the outgoing interface is p2p. 1968 * XXX: we may need a more generic rule here. 1969 */ 1970 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1971 senderr(EHOSTUNREACH); 1972 1973 goto sendpkt; 1974 } 1975 1976 if (rt->rt_gwroute == NULL) 1977 goto lookup; 1978 rt = rt->rt_gwroute; 1979 RT_LOCK(rt); /* NB: gwroute */ 1980 if ((rt->rt_flags & RTF_UP) == 0) { 1981 RTFREE_LOCKED(rt); /* unlock gwroute */ 1982 rt = rt0; 1983 rt0->rt_gwroute = NULL; 1984 lookup: 1985 RT_UNLOCK(rt0); 1986 rt = rtalloc1(rt->rt_gateway, 1, 0UL); 1987 if (rt == rt0) { 1988 RT_REMREF(rt0); 1989 RT_UNLOCK(rt0); 1990 senderr(EHOSTUNREACH); 1991 } 1992 RT_LOCK(rt0); 1993 if (rt0->rt_gwroute != NULL) 1994 RTFREE(rt0->rt_gwroute); 1995 rt0->rt_gwroute = rt; 1996 if (rt == NULL) { 1997 RT_UNLOCK(rt0); 1998 senderr(EHOSTUNREACH); 1999 } 2000 } 2001 RT_UNLOCK(rt0); 2002 } 2003 RT_UNLOCK(rt); 2004 } 2005 2006 /* 2007 * Address resolution or Neighbor Unreachability Detection 2008 * for the next hop. 2009 * At this point, the destination of the packet must be a unicast 2010 * or an anycast address(i.e. not a multicast). 2011 */ 2012 2013 /* Look up the neighbor cache for the nexthop */ 2014 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 2015 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2016 else { 2017 /* 2018 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2019 * the condition below is not very efficient. But we believe 2020 * it is tolerable, because this should be a rare case. 2021 */ 2022 if (nd6_is_addr_neighbor(dst, ifp) && 2023 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 2024 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2025 } 2026 if (ln == NULL || rt == NULL) { 2027 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2028 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2029 char ip6buf[INET6_ADDRSTRLEN]; 2030 log(LOG_DEBUG, 2031 "nd6_output: can't allocate llinfo for %s " 2032 "(ln=%p, rt=%p)\n", 2033 ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt); 2034 senderr(EIO); /* XXX: good error? */ 2035 } 2036 2037 goto sendpkt; /* send anyway */ 2038 } 2039 2040 /* We don't have to do link-layer address resolution on a p2p link. */ 2041 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2042 ln->ln_state < ND6_LLINFO_REACHABLE) { 2043 ln->ln_state = ND6_LLINFO_STALE; 2044 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 2045 } 2046 2047 /* 2048 * The first time we send a packet to a neighbor whose entry is 2049 * STALE, we have to change the state to DELAY and a sets a timer to 2050 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2051 * neighbor unreachability detection on expiration. 2052 * (RFC 2461 7.3.3) 2053 */ 2054 if (ln->ln_state == ND6_LLINFO_STALE) { 2055 ln->ln_asked = 0; 2056 ln->ln_state = ND6_LLINFO_DELAY; 2057 nd6_llinfo_settimer(ln, (long)nd6_delay * hz); 2058 } 2059 2060 /* 2061 * If the neighbor cache entry has a state other than INCOMPLETE 2062 * (i.e. its link-layer address is already resolved), just 2063 * send the packet. 2064 */ 2065 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 2066 goto sendpkt; 2067 2068 /* 2069 * There is a neighbor cache entry, but no ethernet address 2070 * response yet. Append this latest packet to the end of the 2071 * packet queue in the mbuf, unless the number of the packet 2072 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2073 * the oldest packet in the queue will be removed. 2074 */ 2075 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2076 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2077 if (ln->ln_hold) { 2078 struct mbuf *m_hold; 2079 int i; 2080 2081 i = 0; 2082 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2083 i++; 2084 if (m_hold->m_nextpkt == NULL) { 2085 m_hold->m_nextpkt = m; 2086 break; 2087 } 2088 } 2089 while (i >= nd6_maxqueuelen) { 2090 m_hold = ln->ln_hold; 2091 ln->ln_hold = ln->ln_hold->m_nextpkt; 2092 m_freem(m_hold); 2093 i--; 2094 } 2095 } else { 2096 ln->ln_hold = m; 2097 } 2098 2099 /* 2100 * If there has been no NS for the neighbor after entering the 2101 * INCOMPLETE state, send the first solicitation. 2102 */ 2103 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2104 ln->ln_asked++; 2105 nd6_llinfo_settimer(ln, 2106 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2107 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2108 } 2109 return (0); 2110 2111 sendpkt: 2112 /* discard the packet if IPv6 operation is disabled on the interface */ 2113 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2114 error = ENETDOWN; /* better error? */ 2115 goto bad; 2116 } 2117 2118 #ifdef MAC 2119 mac_netinet6_nd6_send(ifp, m); 2120 #endif 2121 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 2122 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 2123 rt)); 2124 } 2125 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 2126 2127 bad: 2128 if (m) 2129 m_freem(m); 2130 return (error); 2131 } 2132 #undef senderr 2133 2134 int 2135 nd6_need_cache(struct ifnet *ifp) 2136 { 2137 /* 2138 * XXX: we currently do not make neighbor cache on any interface 2139 * other than ARCnet, Ethernet, FDDI and GIF. 2140 * 2141 * RFC2893 says: 2142 * - unidirectional tunnels needs no ND 2143 */ 2144 switch (ifp->if_type) { 2145 case IFT_ARCNET: 2146 case IFT_ETHER: 2147 case IFT_FDDI: 2148 case IFT_IEEE1394: 2149 #ifdef IFT_L2VLAN 2150 case IFT_L2VLAN: 2151 #endif 2152 #ifdef IFT_IEEE80211 2153 case IFT_IEEE80211: 2154 #endif 2155 #ifdef IFT_CARP 2156 case IFT_CARP: 2157 #endif 2158 case IFT_GIF: /* XXX need more cases? */ 2159 case IFT_PPP: 2160 case IFT_TUNNEL: 2161 case IFT_BRIDGE: 2162 case IFT_PROPVIRTUAL: 2163 return (1); 2164 default: 2165 return (0); 2166 } 2167 } 2168 2169 int 2170 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, 2171 struct sockaddr *dst, u_char *desten) 2172 { 2173 struct sockaddr_dl *sdl; 2174 struct rtentry *rt; 2175 int error; 2176 2177 if (m->m_flags & M_MCAST) { 2178 int i; 2179 2180 switch (ifp->if_type) { 2181 case IFT_ETHER: 2182 case IFT_FDDI: 2183 #ifdef IFT_L2VLAN 2184 case IFT_L2VLAN: 2185 #endif 2186 #ifdef IFT_IEEE80211 2187 case IFT_IEEE80211: 2188 #endif 2189 case IFT_BRIDGE: 2190 case IFT_ISO88025: 2191 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 2192 desten); 2193 return (0); 2194 case IFT_IEEE1394: 2195 /* 2196 * netbsd can use if_broadcastaddr, but we don't do so 2197 * to reduce # of ifdef. 2198 */ 2199 for (i = 0; i < ifp->if_addrlen; i++) 2200 desten[i] = ~0; 2201 return (0); 2202 case IFT_ARCNET: 2203 *desten = 0; 2204 return (0); 2205 default: 2206 m_freem(m); 2207 return (EAFNOSUPPORT); 2208 } 2209 } 2210 2211 if (rt0 == NULL) { 2212 /* this could happen, if we could not allocate memory */ 2213 m_freem(m); 2214 return (ENOMEM); 2215 } 2216 2217 error = rt_check(&rt, &rt0, dst); 2218 if (error) { 2219 m_freem(m); 2220 return (error); 2221 } 2222 RT_UNLOCK(rt); 2223 2224 if (rt->rt_gateway->sa_family != AF_LINK) { 2225 printf("nd6_storelladdr: something odd happens\n"); 2226 m_freem(m); 2227 return (EINVAL); 2228 } 2229 sdl = SDL(rt->rt_gateway); 2230 if (sdl->sdl_alen == 0) { 2231 /* this should be impossible, but we bark here for debugging */ 2232 printf("nd6_storelladdr: sdl_alen == 0\n"); 2233 m_freem(m); 2234 return (EINVAL); 2235 } 2236 2237 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2238 return (0); 2239 } 2240 2241 static void 2242 clear_llinfo_pqueue(struct llinfo_nd6 *ln) 2243 { 2244 struct mbuf *m_hold, *m_hold_next; 2245 2246 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2247 m_hold_next = m_hold->m_nextpkt; 2248 m_hold->m_nextpkt = NULL; 2249 m_freem(m_hold); 2250 } 2251 2252 ln->ln_hold = NULL; 2253 return; 2254 } 2255 2256 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); 2257 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); 2258 #ifdef SYSCTL_DECL 2259 SYSCTL_DECL(_net_inet6_icmp6); 2260 #endif 2261 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, 2262 CTLFLAG_RD, nd6_sysctl_drlist, ""); 2263 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2264 CTLFLAG_RD, nd6_sysctl_prlist, ""); 2265 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2266 CTLFLAG_RW, &nd6_maxqueuelen, 1, ""); 2267 2268 static int 2269 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) 2270 { 2271 int error; 2272 char buf[1024] __aligned(4); 2273 struct in6_defrouter *d, *de; 2274 struct nd_defrouter *dr; 2275 2276 if (req->newptr) 2277 return EPERM; 2278 error = 0; 2279 2280 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2281 dr = TAILQ_NEXT(dr, dr_entry)) { 2282 d = (struct in6_defrouter *)buf; 2283 de = (struct in6_defrouter *)(buf + sizeof(buf)); 2284 2285 if (d + 1 <= de) { 2286 bzero(d, sizeof(*d)); 2287 d->rtaddr.sin6_family = AF_INET6; 2288 d->rtaddr.sin6_len = sizeof(d->rtaddr); 2289 d->rtaddr.sin6_addr = dr->rtaddr; 2290 error = sa6_recoverscope(&d->rtaddr); 2291 if (error != 0) 2292 return (error); 2293 d->flags = dr->flags; 2294 d->rtlifetime = dr->rtlifetime; 2295 d->expire = dr->expire; 2296 d->if_index = dr->ifp->if_index; 2297 } else 2298 panic("buffer too short"); 2299 2300 error = SYSCTL_OUT(req, buf, sizeof(*d)); 2301 if (error) 2302 break; 2303 } 2304 2305 return (error); 2306 } 2307 2308 static int 2309 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2310 { 2311 int error; 2312 char buf[1024] __aligned(4); 2313 struct in6_prefix *p, *pe; 2314 struct nd_prefix *pr; 2315 char ip6buf[INET6_ADDRSTRLEN]; 2316 2317 if (req->newptr) 2318 return EPERM; 2319 error = 0; 2320 2321 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2322 u_short advrtrs; 2323 size_t advance; 2324 struct sockaddr_in6 *sin6, *s6; 2325 struct nd_pfxrouter *pfr; 2326 2327 p = (struct in6_prefix *)buf; 2328 pe = (struct in6_prefix *)(buf + sizeof(buf)); 2329 2330 if (p + 1 <= pe) { 2331 bzero(p, sizeof(*p)); 2332 sin6 = (struct sockaddr_in6 *)(p + 1); 2333 2334 p->prefix = pr->ndpr_prefix; 2335 if (sa6_recoverscope(&p->prefix)) { 2336 log(LOG_ERR, 2337 "scope error in prefix list (%s)\n", 2338 ip6_sprintf(ip6buf, &p->prefix.sin6_addr)); 2339 /* XXX: press on... */ 2340 } 2341 p->raflags = pr->ndpr_raf; 2342 p->prefixlen = pr->ndpr_plen; 2343 p->vltime = pr->ndpr_vltime; 2344 p->pltime = pr->ndpr_pltime; 2345 p->if_index = pr->ndpr_ifp->if_index; 2346 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2347 p->expire = 0; 2348 else { 2349 time_t maxexpire; 2350 2351 /* XXX: we assume time_t is signed. */ 2352 maxexpire = (-1) & 2353 ~((time_t)1 << 2354 ((sizeof(maxexpire) * 8) - 1)); 2355 if (pr->ndpr_vltime < 2356 maxexpire - pr->ndpr_lastupdate) { 2357 p->expire = pr->ndpr_lastupdate + 2358 pr->ndpr_vltime; 2359 } else 2360 p->expire = maxexpire; 2361 } 2362 p->refcnt = pr->ndpr_refcnt; 2363 p->flags = pr->ndpr_stateflags; 2364 p->origin = PR_ORIG_RA; 2365 advrtrs = 0; 2366 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2367 pfr = pfr->pfr_next) { 2368 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2369 advrtrs++; 2370 continue; 2371 } 2372 s6 = &sin6[advrtrs]; 2373 bzero(s6, sizeof(*s6)); 2374 s6->sin6_family = AF_INET6; 2375 s6->sin6_len = sizeof(*sin6); 2376 s6->sin6_addr = pfr->router->rtaddr; 2377 if (sa6_recoverscope(s6)) { 2378 log(LOG_ERR, 2379 "scope error in " 2380 "prefix list (%s)\n", 2381 ip6_sprintf(ip6buf, 2382 &pfr->router->rtaddr)); 2383 } 2384 advrtrs++; 2385 } 2386 p->advrtrs = advrtrs; 2387 } else 2388 panic("buffer too short"); 2389 2390 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2391 error = SYSCTL_OUT(req, buf, advance); 2392 if (error) 2393 break; 2394 } 2395 2396 return (error); 2397 } 2398